ZJdog commited on
Commit
710f241
·
verified ·
1 Parent(s): 8ebcb04

Initial commit

Browse files
Files changed (1) hide show
  1. data_generation_tutorial.ipynb +151 -0
data_generation_tutorial.ipynb ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 3,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import random\n",
10
+ "import numpy as np\n",
11
+ "import pandas as pd\n",
12
+ "\n",
13
+ "def generate_random_dna_sequence(length):\n",
14
+ " return ''.join(random.choices('ATGC', k=length))\n",
15
+ "\n",
16
+ "np.random.seed(42)\n",
17
+ "\n",
18
+ "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
19
+ "sequence_lengths = np.random.randint(200, 2001, size=2000)\n",
20
+ "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
21
+ "labels1 = np.random.randint(0, 2, size=2000)\n",
22
+ "labels2 = np.random.randint(0, 3, size=2000)\n",
23
+ "labels3 = np.random.randint(0, 5, size=2000)\n",
24
+ "\n",
25
+ "# Create a DataFrame with the DNA sequences and random labels\n",
26
+ "df_dna = pd.DataFrame({\n",
27
+ " 'sequence': dna_sequences,\n",
28
+ " 'label1': labels1,\n",
29
+ " 'label2': labels2,\n",
30
+ " 'label3': labels3\n",
31
+ "})\n",
32
+ "\n",
33
+ "# Save to CSV\n",
34
+ "csv_dna_path = \"/data/project/hf_tutorial/data/train.csv\"\n",
35
+ "df_dna.to_csv(csv_dna_path, index=False)\n",
36
+ "\n",
37
+ "\n"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 4,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "\n",
47
+ "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
48
+ "sequence_lengths = np.random.randint(200, 2001, size=200)\n",
49
+ "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
50
+ "labels1 = np.random.randint(0, 2, size=200)\n",
51
+ "labels2 = np.random.randint(0, 3, size=200)\n",
52
+ "labels3 = np.random.randint(0, 5, size=200)\n",
53
+ "\n",
54
+ "# Create a DataFrame with the DNA sequences and random labels\n",
55
+ "df_dna = pd.DataFrame({\n",
56
+ " 'sequence': dna_sequences,\n",
57
+ " 'label1': labels1,\n",
58
+ " 'label2': labels2,\n",
59
+ " 'label3': labels3\n",
60
+ "})\n",
61
+ "\n",
62
+ "# Save to CSV\n",
63
+ "csv_dna_path = \"/data/project/hf_tutorial/data/eval.csv\"\n",
64
+ "df_dna.to_csv(csv_dna_path, index=False)\n"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 5,
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "# Function to generate a random string of a given length\n",
74
+ "def generate_random_string(length):\n",
75
+ " return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=length))\n",
76
+ "\n",
77
+ "# Generate random strings for each label category\n",
78
+ "label1_strings = {0: generate_random_string(2), 1: generate_random_string(2)}\n",
79
+ "label2_strings = {i: generate_random_string(3) for i in range(3)}\n",
80
+ "label3_strings = {i: generate_random_string(5) for i in range(5)}\n",
81
+ "\n",
82
+ "# Save each string to a separate text file\n",
83
+ "label1_path = \"/data/project/hf_tutorial/data/label1.txt\"\n",
84
+ "label2_path = \"/data/project/hf_tutorial/data/label2.txt\"\n",
85
+ "label3_path = \"/data/project/hf_tutorial/data/label3.txt\"\n",
86
+ "\n",
87
+ "def save_label_strings(label_strings, path):\n",
88
+ " with open(path, 'w') as f:\n",
89
+ " for label, string in label_strings.items():\n",
90
+ " f.write(f\"{label}: {string}\\n\")\n",
91
+ "\n",
92
+ "save_label_strings(label1_strings, label1_path)\n",
93
+ "save_label_strings(label2_strings, label2_path)\n",
94
+ "save_label_strings(label3_strings, label3_path)\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 7,
100
+ "metadata": {},
101
+ "outputs": [
102
+ {
103
+ "data": {
104
+ "text/plain": [
105
+ "CommitInfo(commit_url='https://huggingface.co/datasets/ZJdog/hf_tutorial_dna/commit/8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', commit_message='Initial commit', commit_description='', oid='8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', pr_url=None, pr_revision=None, pr_num=None)"
106
+ ]
107
+ },
108
+ "execution_count": 7,
109
+ "metadata": {},
110
+ "output_type": "execute_result"
111
+ }
112
+ ],
113
+ "source": [
114
+ "from huggingface_hub import HfApi, HfFolder\n",
115
+ "\n",
116
+ "dataset_path = \"/data/project/hf_tutorial/data\" # 你的数据集文件夹路径\n",
117
+ "dataset_name = \"ZJdog/hf_tutorial_dna\" # 数据集名称\n",
118
+ "\n",
119
+ "api = HfApi()\n",
120
+ "# api.create_repo(repo_id=dataset_name, repo_type=\"dataset\")\n",
121
+ "api.upload_folder(\n",
122
+ " repo_id=dataset_name,\n",
123
+ " folder_path=dataset_path,\n",
124
+ " repo_type=\"dataset\",\n",
125
+ " commit_message=\"Initial commit\"\n",
126
+ ")\n"
127
+ ]
128
+ }
129
+ ],
130
+ "metadata": {
131
+ "kernelspec": {
132
+ "display_name": "Python 3",
133
+ "language": "python",
134
+ "name": "python3"
135
+ },
136
+ "language_info": {
137
+ "codemirror_mode": {
138
+ "name": "ipython",
139
+ "version": 3
140
+ },
141
+ "file_extension": ".py",
142
+ "mimetype": "text/x-python",
143
+ "name": "python",
144
+ "nbconvert_exporter": "python",
145
+ "pygments_lexer": "ipython3",
146
+ "version": "3.10.13"
147
+ }
148
+ },
149
+ "nbformat": 4,
150
+ "nbformat_minor": 2
151
+ }