Initial commit
Browse files- data_generation_tutorial.ipynb +151 -0
data_generation_tutorial.ipynb
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import random\n",
|
| 10 |
+
"import numpy as np\n",
|
| 11 |
+
"import pandas as pd\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"def generate_random_dna_sequence(length):\n",
|
| 14 |
+
" return ''.join(random.choices('ATGC', k=length))\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"np.random.seed(42)\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
|
| 19 |
+
"sequence_lengths = np.random.randint(200, 2001, size=2000)\n",
|
| 20 |
+
"dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
|
| 21 |
+
"labels1 = np.random.randint(0, 2, size=2000)\n",
|
| 22 |
+
"labels2 = np.random.randint(0, 3, size=2000)\n",
|
| 23 |
+
"labels3 = np.random.randint(0, 5, size=2000)\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"# Create a DataFrame with the DNA sequences and random labels\n",
|
| 26 |
+
"df_dna = pd.DataFrame({\n",
|
| 27 |
+
" 'sequence': dna_sequences,\n",
|
| 28 |
+
" 'label1': labels1,\n",
|
| 29 |
+
" 'label2': labels2,\n",
|
| 30 |
+
" 'label3': labels3\n",
|
| 31 |
+
"})\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"# Save to CSV\n",
|
| 34 |
+
"csv_dna_path = \"/data/project/hf_tutorial/data/train.csv\"\n",
|
| 35 |
+
"df_dna.to_csv(csv_dna_path, index=False)\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"\n"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": 4,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"\n",
|
| 47 |
+
"# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
|
| 48 |
+
"sequence_lengths = np.random.randint(200, 2001, size=200)\n",
|
| 49 |
+
"dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
|
| 50 |
+
"labels1 = np.random.randint(0, 2, size=200)\n",
|
| 51 |
+
"labels2 = np.random.randint(0, 3, size=200)\n",
|
| 52 |
+
"labels3 = np.random.randint(0, 5, size=200)\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"# Create a DataFrame with the DNA sequences and random labels\n",
|
| 55 |
+
"df_dna = pd.DataFrame({\n",
|
| 56 |
+
" 'sequence': dna_sequences,\n",
|
| 57 |
+
" 'label1': labels1,\n",
|
| 58 |
+
" 'label2': labels2,\n",
|
| 59 |
+
" 'label3': labels3\n",
|
| 60 |
+
"})\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"# Save to CSV\n",
|
| 63 |
+
"csv_dna_path = \"/data/project/hf_tutorial/data/eval.csv\"\n",
|
| 64 |
+
"df_dna.to_csv(csv_dna_path, index=False)\n"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": 5,
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"# Function to generate a random string of a given length\n",
|
| 74 |
+
"def generate_random_string(length):\n",
|
| 75 |
+
" return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=length))\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"# Generate random strings for each label category\n",
|
| 78 |
+
"label1_strings = {0: generate_random_string(2), 1: generate_random_string(2)}\n",
|
| 79 |
+
"label2_strings = {i: generate_random_string(3) for i in range(3)}\n",
|
| 80 |
+
"label3_strings = {i: generate_random_string(5) for i in range(5)}\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"# Save each string to a separate text file\n",
|
| 83 |
+
"label1_path = \"/data/project/hf_tutorial/data/label1.txt\"\n",
|
| 84 |
+
"label2_path = \"/data/project/hf_tutorial/data/label2.txt\"\n",
|
| 85 |
+
"label3_path = \"/data/project/hf_tutorial/data/label3.txt\"\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"def save_label_strings(label_strings, path):\n",
|
| 88 |
+
" with open(path, 'w') as f:\n",
|
| 89 |
+
" for label, string in label_strings.items():\n",
|
| 90 |
+
" f.write(f\"{label}: {string}\\n\")\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"save_label_strings(label1_strings, label1_path)\n",
|
| 93 |
+
"save_label_strings(label2_strings, label2_path)\n",
|
| 94 |
+
"save_label_strings(label3_strings, label3_path)\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": 7,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [
|
| 102 |
+
{
|
| 103 |
+
"data": {
|
| 104 |
+
"text/plain": [
|
| 105 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/ZJdog/hf_tutorial_dna/commit/8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', commit_message='Initial commit', commit_description='', oid='8ebcb0406ec3cc2b6cbbdefac6b07ca720603508', pr_url=None, pr_revision=None, pr_num=None)"
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
"execution_count": 7,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"output_type": "execute_result"
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"source": [
|
| 114 |
+
"from huggingface_hub import HfApi, HfFolder\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"dataset_path = \"/data/project/hf_tutorial/data\" # 你的数据集文件夹路径\n",
|
| 117 |
+
"dataset_name = \"ZJdog/hf_tutorial_dna\" # 数据集名称\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"api = HfApi()\n",
|
| 120 |
+
"# api.create_repo(repo_id=dataset_name, repo_type=\"dataset\")\n",
|
| 121 |
+
"api.upload_folder(\n",
|
| 122 |
+
" repo_id=dataset_name,\n",
|
| 123 |
+
" folder_path=dataset_path,\n",
|
| 124 |
+
" repo_type=\"dataset\",\n",
|
| 125 |
+
" commit_message=\"Initial commit\"\n",
|
| 126 |
+
")\n"
|
| 127 |
+
]
|
| 128 |
+
}
|
| 129 |
+
],
|
| 130 |
+
"metadata": {
|
| 131 |
+
"kernelspec": {
|
| 132 |
+
"display_name": "Python 3",
|
| 133 |
+
"language": "python",
|
| 134 |
+
"name": "python3"
|
| 135 |
+
},
|
| 136 |
+
"language_info": {
|
| 137 |
+
"codemirror_mode": {
|
| 138 |
+
"name": "ipython",
|
| 139 |
+
"version": 3
|
| 140 |
+
},
|
| 141 |
+
"file_extension": ".py",
|
| 142 |
+
"mimetype": "text/x-python",
|
| 143 |
+
"name": "python",
|
| 144 |
+
"nbconvert_exporter": "python",
|
| 145 |
+
"pygments_lexer": "ipython3",
|
| 146 |
+
"version": "3.10.13"
|
| 147 |
+
}
|
| 148 |
+
},
|
| 149 |
+
"nbformat": 4,
|
| 150 |
+
"nbformat_minor": 2
|
| 151 |
+
}
|