{ "cells": [ { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import random\n", "import numpy as np\n", "import pandas as pd\n", "\n", "def generate_random_dna_sequence(length):\n", " return ''.join(random.choices('ATGC', k=length))\n", "\n", "np.random.seed(42)\n", "\n", "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n", "sequence_lengths = np.random.randint(200, 2001, size=200)\n", "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n", "labels1 = np.random.randint(0, 2, size=200)\n", "labels2 = np.random.randint(0, 3, size=200)\n", "labels3 = np.random.randint(0, 5, size=200)\n", "\n", "# Create a DataFrame with the DNA sequences and random labels\n", "df_dna = pd.DataFrame({\n", " 'sequence': dna_sequences,\n", " 'label1': labels1,\n", " 'label2': labels2,\n", " 'label3': labels3\n", "})\n", "\n", "# Save to CSV\n", "csv_dna_path = \"/data/project/hf_tutorial/data/train.csv\"\n", "df_dna.to_csv(csv_dna_path, index=False)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "\n", "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n", "sequence_lengths = np.random.randint(200, 2001, size=200)\n", "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n", "labels1 = np.random.randint(0, 2, size=200)\n", "labels2 = np.random.randint(0, 3, size=200)\n", "labels3 = np.random.randint(0, 5, size=200)\n", "\n", "# Create a DataFrame with the DNA sequences and random labels\n", "df_dna = pd.DataFrame({\n", " 'sequence': dna_sequences,\n", " 'label1': labels1,\n", " 'label2': labels2,\n", " 'label3': labels3\n", "})\n", "\n", "# Save to CSV\n", "csv_dna_path = \"/data/project/hf_tutorial/data/eval.csv\"\n", "df_dna.to_csv(csv_dna_path, index=False)\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# Function to generate a random string of a given length\n", "def generate_random_string(length):\n", " return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=length))\n", "\n", "# Generate random strings for each label category\n", "label1_strings = {0: generate_random_string(2), 1: generate_random_string(2)}\n", "label2_strings = {i: generate_random_string(3) for i in range(3)}\n", "label3_strings = {i: generate_random_string(5) for i in range(5)}\n", "\n", "# Save each string to a separate text file\n", "label1_path = \"/data/project/hf_tutorial/data/label1.txt\"\n", "label2_path = \"/data/project/hf_tutorial/data/label2.txt\"\n", "label3_path = \"/data/project/hf_tutorial/data/label3.txt\"\n", "\n", "def save_label_strings(label_strings, path):\n", " with open(path, 'w') as f:\n", " for label, string in label_strings.items():\n", " f.write(f\"{label}: {string}\\n\")\n", "\n", "save_label_strings(label1_strings, label1_path)\n", "save_label_strings(label2_strings, label2_path)\n", "save_label_strings(label3_strings, label3_path)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 2 }