Add files using upload-large-folder tool
Browse files- infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/__pycache__/override.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/override.py +1 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/__init__.py +367 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/__init__.py +27 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/algos.pyi +416 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/arrays.pyi +40 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/groupby.pyi +216 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/hashing.pyi +9 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/indexing.pyi +17 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/internals.pyi +94 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/join.pyi +79 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/json.pyi +23 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/lib.pyi +213 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/missing.pyi +16 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops.pyi +51 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/properties.pyi +27 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/reshape.pyi +16 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/sas.pyi +7 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/sparse.pyi +51 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/testing.pyi +12 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.pyi +21 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/writers.pyi +20 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_typing.py +525 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_version.py +692 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_version_meson.py +2 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/conftest.py +1980 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/pyproject.toml +811 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/testing.py +18 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/INSTALLER +1 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/LICENSE +29 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/METADATA +146 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/RECORD +385 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/REQUESTED +0 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/WHEEL +5 -0
- infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/top_level.txt +1 -0
infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (8.22 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/__pycache__/override.cpython-310.pyc
ADDED
|
Binary file (224 Bytes). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/_distutils_hack/override.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__import__('_distutils_hack').do_override()
|
infer_4_30_0/lib/python3.10/site-packages/pandas/__init__.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
__docformat__ = "restructuredtext"
|
| 7 |
+
|
| 8 |
+
# Let users know if they're missing any of our hard dependencies
|
| 9 |
+
_hard_dependencies = ("numpy", "pytz", "dateutil")
|
| 10 |
+
_missing_dependencies = []
|
| 11 |
+
|
| 12 |
+
for _dependency in _hard_dependencies:
|
| 13 |
+
try:
|
| 14 |
+
__import__(_dependency)
|
| 15 |
+
except ImportError as _e: # pragma: no cover
|
| 16 |
+
_missing_dependencies.append(f"{_dependency}: {_e}")
|
| 17 |
+
|
| 18 |
+
if _missing_dependencies: # pragma: no cover
|
| 19 |
+
raise ImportError(
|
| 20 |
+
"Unable to import required dependencies:\n" + "\n".join(_missing_dependencies)
|
| 21 |
+
)
|
| 22 |
+
del _hard_dependencies, _dependency, _missing_dependencies
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
# numpy compat
|
| 26 |
+
from pandas.compat import (
|
| 27 |
+
is_numpy_dev as _is_numpy_dev, # pyright: ignore[reportUnusedImport] # noqa: F401
|
| 28 |
+
)
|
| 29 |
+
except ImportError as _err: # pragma: no cover
|
| 30 |
+
_module = _err.name
|
| 31 |
+
raise ImportError(
|
| 32 |
+
f"C extension: {_module} not built. If you want to import "
|
| 33 |
+
"pandas from the source directory, you may need to run "
|
| 34 |
+
"'python setup.py build_ext' to build the C extensions first."
|
| 35 |
+
) from _err
|
| 36 |
+
|
| 37 |
+
from pandas._config import (
|
| 38 |
+
get_option,
|
| 39 |
+
set_option,
|
| 40 |
+
reset_option,
|
| 41 |
+
describe_option,
|
| 42 |
+
option_context,
|
| 43 |
+
options,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# let init-time option registration happen
|
| 47 |
+
import pandas.core.config_init # pyright: ignore[reportUnusedImport] # noqa: F401
|
| 48 |
+
|
| 49 |
+
from pandas.core.api import (
|
| 50 |
+
# dtype
|
| 51 |
+
ArrowDtype,
|
| 52 |
+
Int8Dtype,
|
| 53 |
+
Int16Dtype,
|
| 54 |
+
Int32Dtype,
|
| 55 |
+
Int64Dtype,
|
| 56 |
+
UInt8Dtype,
|
| 57 |
+
UInt16Dtype,
|
| 58 |
+
UInt32Dtype,
|
| 59 |
+
UInt64Dtype,
|
| 60 |
+
Float32Dtype,
|
| 61 |
+
Float64Dtype,
|
| 62 |
+
CategoricalDtype,
|
| 63 |
+
PeriodDtype,
|
| 64 |
+
IntervalDtype,
|
| 65 |
+
DatetimeTZDtype,
|
| 66 |
+
StringDtype,
|
| 67 |
+
BooleanDtype,
|
| 68 |
+
# missing
|
| 69 |
+
NA,
|
| 70 |
+
isna,
|
| 71 |
+
isnull,
|
| 72 |
+
notna,
|
| 73 |
+
notnull,
|
| 74 |
+
# indexes
|
| 75 |
+
Index,
|
| 76 |
+
CategoricalIndex,
|
| 77 |
+
RangeIndex,
|
| 78 |
+
MultiIndex,
|
| 79 |
+
IntervalIndex,
|
| 80 |
+
TimedeltaIndex,
|
| 81 |
+
DatetimeIndex,
|
| 82 |
+
PeriodIndex,
|
| 83 |
+
IndexSlice,
|
| 84 |
+
# tseries
|
| 85 |
+
NaT,
|
| 86 |
+
Period,
|
| 87 |
+
period_range,
|
| 88 |
+
Timedelta,
|
| 89 |
+
timedelta_range,
|
| 90 |
+
Timestamp,
|
| 91 |
+
date_range,
|
| 92 |
+
bdate_range,
|
| 93 |
+
Interval,
|
| 94 |
+
interval_range,
|
| 95 |
+
DateOffset,
|
| 96 |
+
# conversion
|
| 97 |
+
to_numeric,
|
| 98 |
+
to_datetime,
|
| 99 |
+
to_timedelta,
|
| 100 |
+
# misc
|
| 101 |
+
Flags,
|
| 102 |
+
Grouper,
|
| 103 |
+
factorize,
|
| 104 |
+
unique,
|
| 105 |
+
value_counts,
|
| 106 |
+
NamedAgg,
|
| 107 |
+
array,
|
| 108 |
+
Categorical,
|
| 109 |
+
set_eng_float_format,
|
| 110 |
+
Series,
|
| 111 |
+
DataFrame,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
from pandas.core.dtypes.dtypes import SparseDtype
|
| 115 |
+
|
| 116 |
+
from pandas.tseries.api import infer_freq
|
| 117 |
+
from pandas.tseries import offsets
|
| 118 |
+
|
| 119 |
+
from pandas.core.computation.api import eval
|
| 120 |
+
|
| 121 |
+
from pandas.core.reshape.api import (
|
| 122 |
+
concat,
|
| 123 |
+
lreshape,
|
| 124 |
+
melt,
|
| 125 |
+
wide_to_long,
|
| 126 |
+
merge,
|
| 127 |
+
merge_asof,
|
| 128 |
+
merge_ordered,
|
| 129 |
+
crosstab,
|
| 130 |
+
pivot,
|
| 131 |
+
pivot_table,
|
| 132 |
+
get_dummies,
|
| 133 |
+
from_dummies,
|
| 134 |
+
cut,
|
| 135 |
+
qcut,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
from pandas import api, arrays, errors, io, plotting, tseries
|
| 139 |
+
from pandas import testing
|
| 140 |
+
from pandas.util._print_versions import show_versions
|
| 141 |
+
|
| 142 |
+
from pandas.io.api import (
|
| 143 |
+
# excel
|
| 144 |
+
ExcelFile,
|
| 145 |
+
ExcelWriter,
|
| 146 |
+
read_excel,
|
| 147 |
+
# parsers
|
| 148 |
+
read_csv,
|
| 149 |
+
read_fwf,
|
| 150 |
+
read_table,
|
| 151 |
+
# pickle
|
| 152 |
+
read_pickle,
|
| 153 |
+
to_pickle,
|
| 154 |
+
# pytables
|
| 155 |
+
HDFStore,
|
| 156 |
+
read_hdf,
|
| 157 |
+
# sql
|
| 158 |
+
read_sql,
|
| 159 |
+
read_sql_query,
|
| 160 |
+
read_sql_table,
|
| 161 |
+
# misc
|
| 162 |
+
read_clipboard,
|
| 163 |
+
read_parquet,
|
| 164 |
+
read_orc,
|
| 165 |
+
read_feather,
|
| 166 |
+
read_gbq,
|
| 167 |
+
read_html,
|
| 168 |
+
read_xml,
|
| 169 |
+
read_json,
|
| 170 |
+
read_stata,
|
| 171 |
+
read_sas,
|
| 172 |
+
read_spss,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
from pandas.io.json._normalize import json_normalize
|
| 176 |
+
|
| 177 |
+
from pandas.util._tester import test
|
| 178 |
+
|
| 179 |
+
# use the closest tagged version if possible
|
| 180 |
+
_built_with_meson = False
|
| 181 |
+
try:
|
| 182 |
+
from pandas._version_meson import ( # pyright: ignore [reportMissingImports]
|
| 183 |
+
__version__,
|
| 184 |
+
__git_version__,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
_built_with_meson = True
|
| 188 |
+
except ImportError:
|
| 189 |
+
from pandas._version import get_versions
|
| 190 |
+
|
| 191 |
+
v = get_versions()
|
| 192 |
+
__version__ = v.get("closest-tag", v["version"])
|
| 193 |
+
__git_version__ = v.get("full-revisionid")
|
| 194 |
+
del get_versions, v
|
| 195 |
+
|
| 196 |
+
# GH#55043 - deprecation of the data_manager option
|
| 197 |
+
if "PANDAS_DATA_MANAGER" in os.environ:
|
| 198 |
+
warnings.warn(
|
| 199 |
+
"The env variable PANDAS_DATA_MANAGER is set. The data_manager option is "
|
| 200 |
+
"deprecated and will be removed in a future version. Only the BlockManager "
|
| 201 |
+
"will be available. Unset this environment variable to silence this warning.",
|
| 202 |
+
FutureWarning,
|
| 203 |
+
stacklevel=2,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
del warnings, os
|
| 207 |
+
|
| 208 |
+
# module level doc-string
|
| 209 |
+
__doc__ = """
|
| 210 |
+
pandas - a powerful data analysis and manipulation library for Python
|
| 211 |
+
=====================================================================
|
| 212 |
+
|
| 213 |
+
**pandas** is a Python package providing fast, flexible, and expressive data
|
| 214 |
+
structures designed to make working with "relational" or "labeled" data both
|
| 215 |
+
easy and intuitive. It aims to be the fundamental high-level building block for
|
| 216 |
+
doing practical, **real world** data analysis in Python. Additionally, it has
|
| 217 |
+
the broader goal of becoming **the most powerful and flexible open source data
|
| 218 |
+
analysis / manipulation tool available in any language**. It is already well on
|
| 219 |
+
its way toward this goal.
|
| 220 |
+
|
| 221 |
+
Main Features
|
| 222 |
+
-------------
|
| 223 |
+
Here are just a few of the things that pandas does well:
|
| 224 |
+
|
| 225 |
+
- Easy handling of missing data in floating point as well as non-floating
|
| 226 |
+
point data.
|
| 227 |
+
- Size mutability: columns can be inserted and deleted from DataFrame and
|
| 228 |
+
higher dimensional objects
|
| 229 |
+
- Automatic and explicit data alignment: objects can be explicitly aligned
|
| 230 |
+
to a set of labels, or the user can simply ignore the labels and let
|
| 231 |
+
`Series`, `DataFrame`, etc. automatically align the data for you in
|
| 232 |
+
computations.
|
| 233 |
+
- Powerful, flexible group by functionality to perform split-apply-combine
|
| 234 |
+
operations on data sets, for both aggregating and transforming data.
|
| 235 |
+
- Make it easy to convert ragged, differently-indexed data in other Python
|
| 236 |
+
and NumPy data structures into DataFrame objects.
|
| 237 |
+
- Intelligent label-based slicing, fancy indexing, and subsetting of large
|
| 238 |
+
data sets.
|
| 239 |
+
- Intuitive merging and joining data sets.
|
| 240 |
+
- Flexible reshaping and pivoting of data sets.
|
| 241 |
+
- Hierarchical labeling of axes (possible to have multiple labels per tick).
|
| 242 |
+
- Robust IO tools for loading data from flat files (CSV and delimited),
|
| 243 |
+
Excel files, databases, and saving/loading data from the ultrafast HDF5
|
| 244 |
+
format.
|
| 245 |
+
- Time series-specific functionality: date range generation and frequency
|
| 246 |
+
conversion, moving window statistics, date shifting and lagging.
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
# Use __all__ to let type checkers know what is part of the public API.
|
| 250 |
+
# Pandas is not (yet) a py.typed library: the public API is determined
|
| 251 |
+
# based on the documentation.
|
| 252 |
+
__all__ = [
|
| 253 |
+
"ArrowDtype",
|
| 254 |
+
"BooleanDtype",
|
| 255 |
+
"Categorical",
|
| 256 |
+
"CategoricalDtype",
|
| 257 |
+
"CategoricalIndex",
|
| 258 |
+
"DataFrame",
|
| 259 |
+
"DateOffset",
|
| 260 |
+
"DatetimeIndex",
|
| 261 |
+
"DatetimeTZDtype",
|
| 262 |
+
"ExcelFile",
|
| 263 |
+
"ExcelWriter",
|
| 264 |
+
"Flags",
|
| 265 |
+
"Float32Dtype",
|
| 266 |
+
"Float64Dtype",
|
| 267 |
+
"Grouper",
|
| 268 |
+
"HDFStore",
|
| 269 |
+
"Index",
|
| 270 |
+
"IndexSlice",
|
| 271 |
+
"Int16Dtype",
|
| 272 |
+
"Int32Dtype",
|
| 273 |
+
"Int64Dtype",
|
| 274 |
+
"Int8Dtype",
|
| 275 |
+
"Interval",
|
| 276 |
+
"IntervalDtype",
|
| 277 |
+
"IntervalIndex",
|
| 278 |
+
"MultiIndex",
|
| 279 |
+
"NA",
|
| 280 |
+
"NaT",
|
| 281 |
+
"NamedAgg",
|
| 282 |
+
"Period",
|
| 283 |
+
"PeriodDtype",
|
| 284 |
+
"PeriodIndex",
|
| 285 |
+
"RangeIndex",
|
| 286 |
+
"Series",
|
| 287 |
+
"SparseDtype",
|
| 288 |
+
"StringDtype",
|
| 289 |
+
"Timedelta",
|
| 290 |
+
"TimedeltaIndex",
|
| 291 |
+
"Timestamp",
|
| 292 |
+
"UInt16Dtype",
|
| 293 |
+
"UInt32Dtype",
|
| 294 |
+
"UInt64Dtype",
|
| 295 |
+
"UInt8Dtype",
|
| 296 |
+
"api",
|
| 297 |
+
"array",
|
| 298 |
+
"arrays",
|
| 299 |
+
"bdate_range",
|
| 300 |
+
"concat",
|
| 301 |
+
"crosstab",
|
| 302 |
+
"cut",
|
| 303 |
+
"date_range",
|
| 304 |
+
"describe_option",
|
| 305 |
+
"errors",
|
| 306 |
+
"eval",
|
| 307 |
+
"factorize",
|
| 308 |
+
"get_dummies",
|
| 309 |
+
"from_dummies",
|
| 310 |
+
"get_option",
|
| 311 |
+
"infer_freq",
|
| 312 |
+
"interval_range",
|
| 313 |
+
"io",
|
| 314 |
+
"isna",
|
| 315 |
+
"isnull",
|
| 316 |
+
"json_normalize",
|
| 317 |
+
"lreshape",
|
| 318 |
+
"melt",
|
| 319 |
+
"merge",
|
| 320 |
+
"merge_asof",
|
| 321 |
+
"merge_ordered",
|
| 322 |
+
"notna",
|
| 323 |
+
"notnull",
|
| 324 |
+
"offsets",
|
| 325 |
+
"option_context",
|
| 326 |
+
"options",
|
| 327 |
+
"period_range",
|
| 328 |
+
"pivot",
|
| 329 |
+
"pivot_table",
|
| 330 |
+
"plotting",
|
| 331 |
+
"qcut",
|
| 332 |
+
"read_clipboard",
|
| 333 |
+
"read_csv",
|
| 334 |
+
"read_excel",
|
| 335 |
+
"read_feather",
|
| 336 |
+
"read_fwf",
|
| 337 |
+
"read_gbq",
|
| 338 |
+
"read_hdf",
|
| 339 |
+
"read_html",
|
| 340 |
+
"read_json",
|
| 341 |
+
"read_orc",
|
| 342 |
+
"read_parquet",
|
| 343 |
+
"read_pickle",
|
| 344 |
+
"read_sas",
|
| 345 |
+
"read_spss",
|
| 346 |
+
"read_sql",
|
| 347 |
+
"read_sql_query",
|
| 348 |
+
"read_sql_table",
|
| 349 |
+
"read_stata",
|
| 350 |
+
"read_table",
|
| 351 |
+
"read_xml",
|
| 352 |
+
"reset_option",
|
| 353 |
+
"set_eng_float_format",
|
| 354 |
+
"set_option",
|
| 355 |
+
"show_versions",
|
| 356 |
+
"test",
|
| 357 |
+
"testing",
|
| 358 |
+
"timedelta_range",
|
| 359 |
+
"to_datetime",
|
| 360 |
+
"to_numeric",
|
| 361 |
+
"to_pickle",
|
| 362 |
+
"to_timedelta",
|
| 363 |
+
"tseries",
|
| 364 |
+
"unique",
|
| 365 |
+
"value_counts",
|
| 366 |
+
"wide_to_long",
|
| 367 |
+
]
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/__init__.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__all__ = [
|
| 2 |
+
"NaT",
|
| 3 |
+
"NaTType",
|
| 4 |
+
"OutOfBoundsDatetime",
|
| 5 |
+
"Period",
|
| 6 |
+
"Timedelta",
|
| 7 |
+
"Timestamp",
|
| 8 |
+
"iNaT",
|
| 9 |
+
"Interval",
|
| 10 |
+
]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Below imports needs to happen first to ensure pandas top level
|
| 14 |
+
# module gets monkeypatched with the pandas_datetime_CAPI
|
| 15 |
+
# see pandas_datetime_exec in pd_datetime.c
|
| 16 |
+
import pandas._libs.pandas_parser # isort: skip # type: ignore[reportUnusedImport]
|
| 17 |
+
import pandas._libs.pandas_datetime # noqa: F401 # isort: skip # type: ignore[reportUnusedImport]
|
| 18 |
+
from pandas._libs.interval import Interval
|
| 19 |
+
from pandas._libs.tslibs import (
|
| 20 |
+
NaT,
|
| 21 |
+
NaTType,
|
| 22 |
+
OutOfBoundsDatetime,
|
| 23 |
+
Period,
|
| 24 |
+
Timedelta,
|
| 25 |
+
Timestamp,
|
| 26 |
+
iNaT,
|
| 27 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/algos.pyi
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from pandas._typing import npt
|
| 6 |
+
|
| 7 |
+
class Infinity:
|
| 8 |
+
def __eq__(self, other) -> bool: ...
|
| 9 |
+
def __ne__(self, other) -> bool: ...
|
| 10 |
+
def __lt__(self, other) -> bool: ...
|
| 11 |
+
def __le__(self, other) -> bool: ...
|
| 12 |
+
def __gt__(self, other) -> bool: ...
|
| 13 |
+
def __ge__(self, other) -> bool: ...
|
| 14 |
+
|
| 15 |
+
class NegInfinity:
|
| 16 |
+
def __eq__(self, other) -> bool: ...
|
| 17 |
+
def __ne__(self, other) -> bool: ...
|
| 18 |
+
def __lt__(self, other) -> bool: ...
|
| 19 |
+
def __le__(self, other) -> bool: ...
|
| 20 |
+
def __gt__(self, other) -> bool: ...
|
| 21 |
+
def __ge__(self, other) -> bool: ...
|
| 22 |
+
|
| 23 |
+
def unique_deltas(
|
| 24 |
+
arr: np.ndarray, # const int64_t[:]
|
| 25 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
| 26 |
+
def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
|
| 27 |
+
def groupsort_indexer(
|
| 28 |
+
index: np.ndarray, # const int64_t[:]
|
| 29 |
+
ngroups: int,
|
| 30 |
+
) -> tuple[
|
| 31 |
+
np.ndarray, # ndarray[int64_t, ndim=1]
|
| 32 |
+
np.ndarray, # ndarray[int64_t, ndim=1]
|
| 33 |
+
]: ...
|
| 34 |
+
def kth_smallest(
|
| 35 |
+
arr: np.ndarray, # numeric[:]
|
| 36 |
+
k: int,
|
| 37 |
+
) -> Any: ... # numeric
|
| 38 |
+
|
| 39 |
+
# ----------------------------------------------------------------------
|
| 40 |
+
# Pairwise correlation/covariance
|
| 41 |
+
|
| 42 |
+
def nancorr(
|
| 43 |
+
mat: npt.NDArray[np.float64], # const float64_t[:, :]
|
| 44 |
+
cov: bool = ...,
|
| 45 |
+
minp: int | None = ...,
|
| 46 |
+
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
| 47 |
+
def nancorr_spearman(
|
| 48 |
+
mat: npt.NDArray[np.float64], # ndarray[float64_t, ndim=2]
|
| 49 |
+
minp: int = ...,
|
| 50 |
+
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
| 51 |
+
|
| 52 |
+
# ----------------------------------------------------------------------
|
| 53 |
+
|
| 54 |
+
def validate_limit(nobs: int | None, limit=...) -> int: ...
|
| 55 |
+
def get_fill_indexer(
|
| 56 |
+
mask: npt.NDArray[np.bool_],
|
| 57 |
+
limit: int | None = None,
|
| 58 |
+
) -> npt.NDArray[np.intp]: ...
|
| 59 |
+
def pad(
|
| 60 |
+
old: np.ndarray, # ndarray[numeric_object_t]
|
| 61 |
+
new: np.ndarray, # ndarray[numeric_object_t]
|
| 62 |
+
limit=...,
|
| 63 |
+
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
| 64 |
+
def pad_inplace(
|
| 65 |
+
values: np.ndarray, # numeric_object_t[:]
|
| 66 |
+
mask: np.ndarray, # uint8_t[:]
|
| 67 |
+
limit=...,
|
| 68 |
+
) -> None: ...
|
| 69 |
+
def pad_2d_inplace(
|
| 70 |
+
values: np.ndarray, # numeric_object_t[:, :]
|
| 71 |
+
mask: np.ndarray, # const uint8_t[:, :]
|
| 72 |
+
limit=...,
|
| 73 |
+
) -> None: ...
|
| 74 |
+
def backfill(
|
| 75 |
+
old: np.ndarray, # ndarray[numeric_object_t]
|
| 76 |
+
new: np.ndarray, # ndarray[numeric_object_t]
|
| 77 |
+
limit=...,
|
| 78 |
+
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
| 79 |
+
def backfill_inplace(
|
| 80 |
+
values: np.ndarray, # numeric_object_t[:]
|
| 81 |
+
mask: np.ndarray, # uint8_t[:]
|
| 82 |
+
limit=...,
|
| 83 |
+
) -> None: ...
|
| 84 |
+
def backfill_2d_inplace(
|
| 85 |
+
values: np.ndarray, # numeric_object_t[:, :]
|
| 86 |
+
mask: np.ndarray, # const uint8_t[:, :]
|
| 87 |
+
limit=...,
|
| 88 |
+
) -> None: ...
|
| 89 |
+
def is_monotonic(
|
| 90 |
+
arr: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
| 91 |
+
timelike: bool,
|
| 92 |
+
) -> tuple[bool, bool, bool]: ...
|
| 93 |
+
|
| 94 |
+
# ----------------------------------------------------------------------
|
| 95 |
+
# rank_1d, rank_2d
|
| 96 |
+
# ----------------------------------------------------------------------
|
| 97 |
+
|
| 98 |
+
def rank_1d(
|
| 99 |
+
values: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
| 100 |
+
labels: np.ndarray | None = ..., # const int64_t[:]=None
|
| 101 |
+
is_datetimelike: bool = ...,
|
| 102 |
+
ties_method=...,
|
| 103 |
+
ascending: bool = ...,
|
| 104 |
+
pct: bool = ...,
|
| 105 |
+
na_option=...,
|
| 106 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 107 |
+
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
| 108 |
+
def rank_2d(
|
| 109 |
+
in_arr: np.ndarray, # ndarray[numeric_object_t, ndim=2]
|
| 110 |
+
axis: int = ...,
|
| 111 |
+
is_datetimelike: bool = ...,
|
| 112 |
+
ties_method=...,
|
| 113 |
+
ascending: bool = ...,
|
| 114 |
+
na_option=...,
|
| 115 |
+
pct: bool = ...,
|
| 116 |
+
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
| 117 |
+
def diff_2d(
|
| 118 |
+
arr: np.ndarray, # ndarray[diff_t, ndim=2]
|
| 119 |
+
out: np.ndarray, # ndarray[out_t, ndim=2]
|
| 120 |
+
periods: int,
|
| 121 |
+
axis: int,
|
| 122 |
+
datetimelike: bool = ...,
|
| 123 |
+
) -> None: ...
|
| 124 |
+
def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
|
| 125 |
+
def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
|
| 126 |
+
def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
|
| 127 |
+
def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
|
| 128 |
+
def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
|
| 129 |
+
def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
|
| 130 |
+
def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
|
| 131 |
+
def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
|
| 132 |
+
def take_1d_int8_int8(
|
| 133 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 134 |
+
) -> None: ...
|
| 135 |
+
def take_1d_int8_int32(
|
| 136 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 137 |
+
) -> None: ...
|
| 138 |
+
def take_1d_int8_int64(
|
| 139 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 140 |
+
) -> None: ...
|
| 141 |
+
def take_1d_int8_float64(
|
| 142 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 143 |
+
) -> None: ...
|
| 144 |
+
def take_1d_int16_int16(
|
| 145 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 146 |
+
) -> None: ...
|
| 147 |
+
def take_1d_int16_int32(
|
| 148 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 149 |
+
) -> None: ...
|
| 150 |
+
def take_1d_int16_int64(
|
| 151 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 152 |
+
) -> None: ...
|
| 153 |
+
def take_1d_int16_float64(
|
| 154 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 155 |
+
) -> None: ...
|
| 156 |
+
def take_1d_int32_int32(
|
| 157 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 158 |
+
) -> None: ...
|
| 159 |
+
def take_1d_int32_int64(
|
| 160 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 161 |
+
) -> None: ...
|
| 162 |
+
def take_1d_int32_float64(
|
| 163 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 164 |
+
) -> None: ...
|
| 165 |
+
def take_1d_int64_int64(
|
| 166 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 167 |
+
) -> None: ...
|
| 168 |
+
def take_1d_int64_float64(
|
| 169 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 170 |
+
) -> None: ...
|
| 171 |
+
def take_1d_float32_float32(
|
| 172 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 173 |
+
) -> None: ...
|
| 174 |
+
def take_1d_float32_float64(
|
| 175 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 176 |
+
) -> None: ...
|
| 177 |
+
def take_1d_float64_float64(
|
| 178 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 179 |
+
) -> None: ...
|
| 180 |
+
def take_1d_object_object(
|
| 181 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 182 |
+
) -> None: ...
|
| 183 |
+
def take_1d_bool_bool(
|
| 184 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 185 |
+
) -> None: ...
|
| 186 |
+
def take_1d_bool_object(
|
| 187 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 188 |
+
) -> None: ...
|
| 189 |
+
def take_2d_axis0_int8_int8(
|
| 190 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 191 |
+
) -> None: ...
|
| 192 |
+
def take_2d_axis0_int8_int32(
|
| 193 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 194 |
+
) -> None: ...
|
| 195 |
+
def take_2d_axis0_int8_int64(
|
| 196 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 197 |
+
) -> None: ...
|
| 198 |
+
def take_2d_axis0_int8_float64(
|
| 199 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 200 |
+
) -> None: ...
|
| 201 |
+
def take_2d_axis0_int16_int16(
|
| 202 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 203 |
+
) -> None: ...
|
| 204 |
+
def take_2d_axis0_int16_int32(
|
| 205 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 206 |
+
) -> None: ...
|
| 207 |
+
def take_2d_axis0_int16_int64(
|
| 208 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 209 |
+
) -> None: ...
|
| 210 |
+
def take_2d_axis0_int16_float64(
|
| 211 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 212 |
+
) -> None: ...
|
| 213 |
+
def take_2d_axis0_int32_int32(
|
| 214 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 215 |
+
) -> None: ...
|
| 216 |
+
def take_2d_axis0_int32_int64(
|
| 217 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 218 |
+
) -> None: ...
|
| 219 |
+
def take_2d_axis0_int32_float64(
|
| 220 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 221 |
+
) -> None: ...
|
| 222 |
+
def take_2d_axis0_int64_int64(
|
| 223 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 224 |
+
) -> None: ...
|
| 225 |
+
def take_2d_axis0_int64_float64(
|
| 226 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 227 |
+
) -> None: ...
|
| 228 |
+
def take_2d_axis0_float32_float32(
|
| 229 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 230 |
+
) -> None: ...
|
| 231 |
+
def take_2d_axis0_float32_float64(
|
| 232 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 233 |
+
) -> None: ...
|
| 234 |
+
def take_2d_axis0_float64_float64(
|
| 235 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 236 |
+
) -> None: ...
|
| 237 |
+
def take_2d_axis0_object_object(
|
| 238 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 239 |
+
) -> None: ...
|
| 240 |
+
def take_2d_axis0_bool_bool(
|
| 241 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 242 |
+
) -> None: ...
|
| 243 |
+
def take_2d_axis0_bool_object(
|
| 244 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 245 |
+
) -> None: ...
|
| 246 |
+
def take_2d_axis1_int8_int8(
|
| 247 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 248 |
+
) -> None: ...
|
| 249 |
+
def take_2d_axis1_int8_int32(
|
| 250 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 251 |
+
) -> None: ...
|
| 252 |
+
def take_2d_axis1_int8_int64(
|
| 253 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 254 |
+
) -> None: ...
|
| 255 |
+
def take_2d_axis1_int8_float64(
|
| 256 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 257 |
+
) -> None: ...
|
| 258 |
+
def take_2d_axis1_int16_int16(
|
| 259 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 260 |
+
) -> None: ...
|
| 261 |
+
def take_2d_axis1_int16_int32(
|
| 262 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 263 |
+
) -> None: ...
|
| 264 |
+
def take_2d_axis1_int16_int64(
|
| 265 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 266 |
+
) -> None: ...
|
| 267 |
+
def take_2d_axis1_int16_float64(
|
| 268 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 269 |
+
) -> None: ...
|
| 270 |
+
def take_2d_axis1_int32_int32(
|
| 271 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 272 |
+
) -> None: ...
|
| 273 |
+
def take_2d_axis1_int32_int64(
|
| 274 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 275 |
+
) -> None: ...
|
| 276 |
+
def take_2d_axis1_int32_float64(
|
| 277 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 278 |
+
) -> None: ...
|
| 279 |
+
def take_2d_axis1_int64_int64(
|
| 280 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 281 |
+
) -> None: ...
|
| 282 |
+
def take_2d_axis1_int64_float64(
|
| 283 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 284 |
+
) -> None: ...
|
| 285 |
+
def take_2d_axis1_float32_float32(
|
| 286 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 287 |
+
) -> None: ...
|
| 288 |
+
def take_2d_axis1_float32_float64(
|
| 289 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 290 |
+
) -> None: ...
|
| 291 |
+
def take_2d_axis1_float64_float64(
|
| 292 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 293 |
+
) -> None: ...
|
| 294 |
+
def take_2d_axis1_object_object(
|
| 295 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 296 |
+
) -> None: ...
|
| 297 |
+
def take_2d_axis1_bool_bool(
|
| 298 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 299 |
+
) -> None: ...
|
| 300 |
+
def take_2d_axis1_bool_object(
|
| 301 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
| 302 |
+
) -> None: ...
|
| 303 |
+
def take_2d_multi_int8_int8(
|
| 304 |
+
values: np.ndarray,
|
| 305 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 306 |
+
out: np.ndarray,
|
| 307 |
+
fill_value=...,
|
| 308 |
+
) -> None: ...
|
| 309 |
+
def take_2d_multi_int8_int32(
|
| 310 |
+
values: np.ndarray,
|
| 311 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 312 |
+
out: np.ndarray,
|
| 313 |
+
fill_value=...,
|
| 314 |
+
) -> None: ...
|
| 315 |
+
def take_2d_multi_int8_int64(
|
| 316 |
+
values: np.ndarray,
|
| 317 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 318 |
+
out: np.ndarray,
|
| 319 |
+
fill_value=...,
|
| 320 |
+
) -> None: ...
|
| 321 |
+
def take_2d_multi_int8_float64(
|
| 322 |
+
values: np.ndarray,
|
| 323 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 324 |
+
out: np.ndarray,
|
| 325 |
+
fill_value=...,
|
| 326 |
+
) -> None: ...
|
| 327 |
+
def take_2d_multi_int16_int16(
|
| 328 |
+
values: np.ndarray,
|
| 329 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 330 |
+
out: np.ndarray,
|
| 331 |
+
fill_value=...,
|
| 332 |
+
) -> None: ...
|
| 333 |
+
def take_2d_multi_int16_int32(
|
| 334 |
+
values: np.ndarray,
|
| 335 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 336 |
+
out: np.ndarray,
|
| 337 |
+
fill_value=...,
|
| 338 |
+
) -> None: ...
|
| 339 |
+
def take_2d_multi_int16_int64(
|
| 340 |
+
values: np.ndarray,
|
| 341 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 342 |
+
out: np.ndarray,
|
| 343 |
+
fill_value=...,
|
| 344 |
+
) -> None: ...
|
| 345 |
+
def take_2d_multi_int16_float64(
|
| 346 |
+
values: np.ndarray,
|
| 347 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 348 |
+
out: np.ndarray,
|
| 349 |
+
fill_value=...,
|
| 350 |
+
) -> None: ...
|
| 351 |
+
def take_2d_multi_int32_int32(
|
| 352 |
+
values: np.ndarray,
|
| 353 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 354 |
+
out: np.ndarray,
|
| 355 |
+
fill_value=...,
|
| 356 |
+
) -> None: ...
|
| 357 |
+
def take_2d_multi_int32_int64(
|
| 358 |
+
values: np.ndarray,
|
| 359 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 360 |
+
out: np.ndarray,
|
| 361 |
+
fill_value=...,
|
| 362 |
+
) -> None: ...
|
| 363 |
+
def take_2d_multi_int32_float64(
|
| 364 |
+
values: np.ndarray,
|
| 365 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 366 |
+
out: np.ndarray,
|
| 367 |
+
fill_value=...,
|
| 368 |
+
) -> None: ...
|
| 369 |
+
def take_2d_multi_int64_float64(
|
| 370 |
+
values: np.ndarray,
|
| 371 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 372 |
+
out: np.ndarray,
|
| 373 |
+
fill_value=...,
|
| 374 |
+
) -> None: ...
|
| 375 |
+
def take_2d_multi_float32_float32(
|
| 376 |
+
values: np.ndarray,
|
| 377 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 378 |
+
out: np.ndarray,
|
| 379 |
+
fill_value=...,
|
| 380 |
+
) -> None: ...
|
| 381 |
+
def take_2d_multi_float32_float64(
|
| 382 |
+
values: np.ndarray,
|
| 383 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 384 |
+
out: np.ndarray,
|
| 385 |
+
fill_value=...,
|
| 386 |
+
) -> None: ...
|
| 387 |
+
def take_2d_multi_float64_float64(
|
| 388 |
+
values: np.ndarray,
|
| 389 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 390 |
+
out: np.ndarray,
|
| 391 |
+
fill_value=...,
|
| 392 |
+
) -> None: ...
|
| 393 |
+
def take_2d_multi_object_object(
|
| 394 |
+
values: np.ndarray,
|
| 395 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 396 |
+
out: np.ndarray,
|
| 397 |
+
fill_value=...,
|
| 398 |
+
) -> None: ...
|
| 399 |
+
def take_2d_multi_bool_bool(
|
| 400 |
+
values: np.ndarray,
|
| 401 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 402 |
+
out: np.ndarray,
|
| 403 |
+
fill_value=...,
|
| 404 |
+
) -> None: ...
|
| 405 |
+
def take_2d_multi_bool_object(
|
| 406 |
+
values: np.ndarray,
|
| 407 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 408 |
+
out: np.ndarray,
|
| 409 |
+
fill_value=...,
|
| 410 |
+
) -> None: ...
|
| 411 |
+
def take_2d_multi_int64_int64(
|
| 412 |
+
values: np.ndarray,
|
| 413 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
| 414 |
+
out: np.ndarray,
|
| 415 |
+
fill_value=...,
|
| 416 |
+
) -> None: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/arrays.pyi
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Sequence
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from pandas._typing import (
|
| 6 |
+
AxisInt,
|
| 7 |
+
DtypeObj,
|
| 8 |
+
Self,
|
| 9 |
+
Shape,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
class NDArrayBacked:
|
| 13 |
+
_dtype: DtypeObj
|
| 14 |
+
_ndarray: np.ndarray
|
| 15 |
+
def __init__(self, values: np.ndarray, dtype: DtypeObj) -> None: ...
|
| 16 |
+
@classmethod
|
| 17 |
+
def _simple_new(cls, values: np.ndarray, dtype: DtypeObj): ...
|
| 18 |
+
def _from_backing_data(self, values: np.ndarray): ...
|
| 19 |
+
def __setstate__(self, state): ...
|
| 20 |
+
def __len__(self) -> int: ...
|
| 21 |
+
@property
|
| 22 |
+
def shape(self) -> Shape: ...
|
| 23 |
+
@property
|
| 24 |
+
def ndim(self) -> int: ...
|
| 25 |
+
@property
|
| 26 |
+
def size(self) -> int: ...
|
| 27 |
+
@property
|
| 28 |
+
def nbytes(self) -> int: ...
|
| 29 |
+
def copy(self, order=...): ...
|
| 30 |
+
def delete(self, loc, axis=...): ...
|
| 31 |
+
def swapaxes(self, axis1, axis2): ...
|
| 32 |
+
def repeat(self, repeats: int | Sequence[int], axis: int | None = ...): ...
|
| 33 |
+
def reshape(self, *args, **kwargs): ...
|
| 34 |
+
def ravel(self, order=...): ...
|
| 35 |
+
@property
|
| 36 |
+
def T(self): ...
|
| 37 |
+
@classmethod
|
| 38 |
+
def _concat_same_type(
|
| 39 |
+
cls, to_concat: Sequence[Self], axis: AxisInt = ...
|
| 40 |
+
) -> Self: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (61.7 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
| 2 |
+
def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
| 3 |
+
def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
| 4 |
+
def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
| 5 |
+
def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/groupby.pyi
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from pandas._typing import npt
|
| 6 |
+
|
| 7 |
+
def group_median_float64(
|
| 8 |
+
out: np.ndarray, # ndarray[float64_t, ndim=2]
|
| 9 |
+
counts: npt.NDArray[np.int64],
|
| 10 |
+
values: np.ndarray, # ndarray[float64_t, ndim=2]
|
| 11 |
+
labels: npt.NDArray[np.int64],
|
| 12 |
+
min_count: int = ..., # Py_ssize_t
|
| 13 |
+
mask: np.ndarray | None = ...,
|
| 14 |
+
result_mask: np.ndarray | None = ...,
|
| 15 |
+
) -> None: ...
|
| 16 |
+
def group_cumprod(
|
| 17 |
+
out: np.ndarray, # float64_t[:, ::1]
|
| 18 |
+
values: np.ndarray, # const float64_t[:, :]
|
| 19 |
+
labels: np.ndarray, # const int64_t[:]
|
| 20 |
+
ngroups: int,
|
| 21 |
+
is_datetimelike: bool,
|
| 22 |
+
skipna: bool = ...,
|
| 23 |
+
mask: np.ndarray | None = ...,
|
| 24 |
+
result_mask: np.ndarray | None = ...,
|
| 25 |
+
) -> None: ...
|
| 26 |
+
def group_cumsum(
|
| 27 |
+
out: np.ndarray, # int64float_t[:, ::1]
|
| 28 |
+
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
| 29 |
+
labels: np.ndarray, # const int64_t[:]
|
| 30 |
+
ngroups: int,
|
| 31 |
+
is_datetimelike: bool,
|
| 32 |
+
skipna: bool = ...,
|
| 33 |
+
mask: np.ndarray | None = ...,
|
| 34 |
+
result_mask: np.ndarray | None = ...,
|
| 35 |
+
) -> None: ...
|
| 36 |
+
def group_shift_indexer(
|
| 37 |
+
out: np.ndarray, # int64_t[::1]
|
| 38 |
+
labels: np.ndarray, # const int64_t[:]
|
| 39 |
+
ngroups: int,
|
| 40 |
+
periods: int,
|
| 41 |
+
) -> None: ...
|
| 42 |
+
def group_fillna_indexer(
|
| 43 |
+
out: np.ndarray, # ndarray[intp_t]
|
| 44 |
+
labels: np.ndarray, # ndarray[int64_t]
|
| 45 |
+
sorted_labels: npt.NDArray[np.intp],
|
| 46 |
+
mask: npt.NDArray[np.uint8],
|
| 47 |
+
limit: int, # int64_t
|
| 48 |
+
dropna: bool,
|
| 49 |
+
) -> None: ...
|
| 50 |
+
def group_any_all(
|
| 51 |
+
out: np.ndarray, # uint8_t[::1]
|
| 52 |
+
values: np.ndarray, # const uint8_t[::1]
|
| 53 |
+
labels: np.ndarray, # const int64_t[:]
|
| 54 |
+
mask: np.ndarray, # const uint8_t[::1]
|
| 55 |
+
val_test: Literal["any", "all"],
|
| 56 |
+
skipna: bool,
|
| 57 |
+
result_mask: np.ndarray | None,
|
| 58 |
+
) -> None: ...
|
| 59 |
+
def group_sum(
|
| 60 |
+
out: np.ndarray, # complexfloatingintuint_t[:, ::1]
|
| 61 |
+
counts: np.ndarray, # int64_t[::1]
|
| 62 |
+
values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
|
| 63 |
+
labels: np.ndarray, # const intp_t[:]
|
| 64 |
+
mask: np.ndarray | None,
|
| 65 |
+
result_mask: np.ndarray | None = ...,
|
| 66 |
+
min_count: int = ...,
|
| 67 |
+
is_datetimelike: bool = ...,
|
| 68 |
+
) -> None: ...
|
| 69 |
+
def group_prod(
|
| 70 |
+
out: np.ndarray, # int64float_t[:, ::1]
|
| 71 |
+
counts: np.ndarray, # int64_t[::1]
|
| 72 |
+
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
| 73 |
+
labels: np.ndarray, # const intp_t[:]
|
| 74 |
+
mask: np.ndarray | None,
|
| 75 |
+
result_mask: np.ndarray | None = ...,
|
| 76 |
+
min_count: int = ...,
|
| 77 |
+
) -> None: ...
|
| 78 |
+
def group_var(
|
| 79 |
+
out: np.ndarray, # floating[:, ::1]
|
| 80 |
+
counts: np.ndarray, # int64_t[::1]
|
| 81 |
+
values: np.ndarray, # ndarray[floating, ndim=2]
|
| 82 |
+
labels: np.ndarray, # const intp_t[:]
|
| 83 |
+
min_count: int = ..., # Py_ssize_t
|
| 84 |
+
ddof: int = ..., # int64_t
|
| 85 |
+
mask: np.ndarray | None = ...,
|
| 86 |
+
result_mask: np.ndarray | None = ...,
|
| 87 |
+
is_datetimelike: bool = ...,
|
| 88 |
+
name: str = ...,
|
| 89 |
+
) -> None: ...
|
| 90 |
+
def group_skew(
|
| 91 |
+
out: np.ndarray, # float64_t[:, ::1]
|
| 92 |
+
counts: np.ndarray, # int64_t[::1]
|
| 93 |
+
values: np.ndarray, # ndarray[float64_T, ndim=2]
|
| 94 |
+
labels: np.ndarray, # const intp_t[::1]
|
| 95 |
+
mask: np.ndarray | None = ...,
|
| 96 |
+
result_mask: np.ndarray | None = ...,
|
| 97 |
+
skipna: bool = ...,
|
| 98 |
+
) -> None: ...
|
| 99 |
+
def group_mean(
|
| 100 |
+
out: np.ndarray, # floating[:, ::1]
|
| 101 |
+
counts: np.ndarray, # int64_t[::1]
|
| 102 |
+
values: np.ndarray, # ndarray[floating, ndim=2]
|
| 103 |
+
labels: np.ndarray, # const intp_t[:]
|
| 104 |
+
min_count: int = ..., # Py_ssize_t
|
| 105 |
+
is_datetimelike: bool = ..., # bint
|
| 106 |
+
mask: np.ndarray | None = ...,
|
| 107 |
+
result_mask: np.ndarray | None = ...,
|
| 108 |
+
) -> None: ...
|
| 109 |
+
def group_ohlc(
|
| 110 |
+
out: np.ndarray, # floatingintuint_t[:, ::1]
|
| 111 |
+
counts: np.ndarray, # int64_t[::1]
|
| 112 |
+
values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
|
| 113 |
+
labels: np.ndarray, # const intp_t[:]
|
| 114 |
+
min_count: int = ...,
|
| 115 |
+
mask: np.ndarray | None = ...,
|
| 116 |
+
result_mask: np.ndarray | None = ...,
|
| 117 |
+
) -> None: ...
|
| 118 |
+
def group_quantile(
|
| 119 |
+
out: npt.NDArray[np.float64],
|
| 120 |
+
values: np.ndarray, # ndarray[numeric, ndim=1]
|
| 121 |
+
labels: npt.NDArray[np.intp],
|
| 122 |
+
mask: npt.NDArray[np.uint8],
|
| 123 |
+
qs: npt.NDArray[np.float64], # const
|
| 124 |
+
starts: npt.NDArray[np.int64],
|
| 125 |
+
ends: npt.NDArray[np.int64],
|
| 126 |
+
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
| 127 |
+
result_mask: np.ndarray | None,
|
| 128 |
+
is_datetimelike: bool,
|
| 129 |
+
) -> None: ...
|
| 130 |
+
def group_last(
|
| 131 |
+
out: np.ndarray, # rank_t[:, ::1]
|
| 132 |
+
counts: np.ndarray, # int64_t[::1]
|
| 133 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
| 134 |
+
labels: np.ndarray, # const int64_t[:]
|
| 135 |
+
mask: npt.NDArray[np.bool_] | None,
|
| 136 |
+
result_mask: npt.NDArray[np.bool_] | None = ...,
|
| 137 |
+
min_count: int = ..., # Py_ssize_t
|
| 138 |
+
is_datetimelike: bool = ...,
|
| 139 |
+
skipna: bool = ...,
|
| 140 |
+
) -> None: ...
|
| 141 |
+
def group_nth(
|
| 142 |
+
out: np.ndarray, # rank_t[:, ::1]
|
| 143 |
+
counts: np.ndarray, # int64_t[::1]
|
| 144 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
| 145 |
+
labels: np.ndarray, # const int64_t[:]
|
| 146 |
+
mask: npt.NDArray[np.bool_] | None,
|
| 147 |
+
result_mask: npt.NDArray[np.bool_] | None = ...,
|
| 148 |
+
min_count: int = ..., # int64_t
|
| 149 |
+
rank: int = ..., # int64_t
|
| 150 |
+
is_datetimelike: bool = ...,
|
| 151 |
+
skipna: bool = ...,
|
| 152 |
+
) -> None: ...
|
| 153 |
+
def group_rank(
|
| 154 |
+
out: np.ndarray, # float64_t[:, ::1]
|
| 155 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
| 156 |
+
labels: np.ndarray, # const int64_t[:]
|
| 157 |
+
ngroups: int,
|
| 158 |
+
is_datetimelike: bool,
|
| 159 |
+
ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
|
| 160 |
+
ascending: bool = ...,
|
| 161 |
+
pct: bool = ...,
|
| 162 |
+
na_option: Literal["keep", "top", "bottom"] = ...,
|
| 163 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 164 |
+
) -> None: ...
|
| 165 |
+
def group_max(
|
| 166 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
| 167 |
+
counts: np.ndarray, # int64_t[::1]
|
| 168 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
| 169 |
+
labels: np.ndarray, # const int64_t[:]
|
| 170 |
+
min_count: int = ...,
|
| 171 |
+
is_datetimelike: bool = ...,
|
| 172 |
+
mask: np.ndarray | None = ...,
|
| 173 |
+
result_mask: np.ndarray | None = ...,
|
| 174 |
+
) -> None: ...
|
| 175 |
+
def group_min(
|
| 176 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
| 177 |
+
counts: np.ndarray, # int64_t[::1]
|
| 178 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
| 179 |
+
labels: np.ndarray, # const int64_t[:]
|
| 180 |
+
min_count: int = ...,
|
| 181 |
+
is_datetimelike: bool = ...,
|
| 182 |
+
mask: np.ndarray | None = ...,
|
| 183 |
+
result_mask: np.ndarray | None = ...,
|
| 184 |
+
) -> None: ...
|
| 185 |
+
def group_idxmin_idxmax(
|
| 186 |
+
out: npt.NDArray[np.intp],
|
| 187 |
+
counts: npt.NDArray[np.int64],
|
| 188 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
| 189 |
+
labels: npt.NDArray[np.intp],
|
| 190 |
+
min_count: int = ...,
|
| 191 |
+
is_datetimelike: bool = ...,
|
| 192 |
+
mask: np.ndarray | None = ...,
|
| 193 |
+
name: str = ...,
|
| 194 |
+
skipna: bool = ...,
|
| 195 |
+
result_mask: np.ndarray | None = ...,
|
| 196 |
+
) -> None: ...
|
| 197 |
+
def group_cummin(
|
| 198 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
| 199 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
| 200 |
+
labels: np.ndarray, # const int64_t[:]
|
| 201 |
+
ngroups: int,
|
| 202 |
+
is_datetimelike: bool,
|
| 203 |
+
mask: np.ndarray | None = ...,
|
| 204 |
+
result_mask: np.ndarray | None = ...,
|
| 205 |
+
skipna: bool = ...,
|
| 206 |
+
) -> None: ...
|
| 207 |
+
def group_cummax(
|
| 208 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
| 209 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
| 210 |
+
labels: np.ndarray, # const int64_t[:]
|
| 211 |
+
ngroups: int,
|
| 212 |
+
is_datetimelike: bool,
|
| 213 |
+
mask: np.ndarray | None = ...,
|
| 214 |
+
result_mask: np.ndarray | None = ...,
|
| 215 |
+
skipna: bool = ...,
|
| 216 |
+
) -> None: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/hashing.pyi
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from pandas._typing import npt
|
| 4 |
+
|
| 5 |
+
def hash_object_array(
|
| 6 |
+
arr: npt.NDArray[np.object_],
|
| 7 |
+
key: str,
|
| 8 |
+
encoding: str = ...,
|
| 9 |
+
) -> npt.NDArray[np.uint64]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Any,
|
| 3 |
+
Hashable,
|
| 4 |
+
Literal,
|
| 5 |
+
)
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
from pandas._typing import npt
|
| 10 |
+
|
| 11 |
+
def unique_label_indices(
|
| 12 |
+
labels: np.ndarray, # const int64_t[:]
|
| 13 |
+
) -> np.ndarray: ...
|
| 14 |
+
|
| 15 |
+
class Factorizer:
|
| 16 |
+
count: int
|
| 17 |
+
uniques: Any
|
| 18 |
+
def __init__(self, size_hint: int) -> None: ...
|
| 19 |
+
def get_count(self) -> int: ...
|
| 20 |
+
def factorize(
|
| 21 |
+
self,
|
| 22 |
+
values: np.ndarray,
|
| 23 |
+
na_sentinel=...,
|
| 24 |
+
na_value=...,
|
| 25 |
+
mask=...,
|
| 26 |
+
) -> npt.NDArray[np.intp]: ...
|
| 27 |
+
|
| 28 |
+
class ObjectFactorizer(Factorizer):
|
| 29 |
+
table: PyObjectHashTable
|
| 30 |
+
uniques: ObjectVector
|
| 31 |
+
|
| 32 |
+
class Int64Factorizer(Factorizer):
|
| 33 |
+
table: Int64HashTable
|
| 34 |
+
uniques: Int64Vector
|
| 35 |
+
|
| 36 |
+
class UInt64Factorizer(Factorizer):
|
| 37 |
+
table: UInt64HashTable
|
| 38 |
+
uniques: UInt64Vector
|
| 39 |
+
|
| 40 |
+
class Int32Factorizer(Factorizer):
|
| 41 |
+
table: Int32HashTable
|
| 42 |
+
uniques: Int32Vector
|
| 43 |
+
|
| 44 |
+
class UInt32Factorizer(Factorizer):
|
| 45 |
+
table: UInt32HashTable
|
| 46 |
+
uniques: UInt32Vector
|
| 47 |
+
|
| 48 |
+
class Int16Factorizer(Factorizer):
|
| 49 |
+
table: Int16HashTable
|
| 50 |
+
uniques: Int16Vector
|
| 51 |
+
|
| 52 |
+
class UInt16Factorizer(Factorizer):
|
| 53 |
+
table: UInt16HashTable
|
| 54 |
+
uniques: UInt16Vector
|
| 55 |
+
|
| 56 |
+
class Int8Factorizer(Factorizer):
|
| 57 |
+
table: Int8HashTable
|
| 58 |
+
uniques: Int8Vector
|
| 59 |
+
|
| 60 |
+
class UInt8Factorizer(Factorizer):
|
| 61 |
+
table: UInt8HashTable
|
| 62 |
+
uniques: UInt8Vector
|
| 63 |
+
|
| 64 |
+
class Float64Factorizer(Factorizer):
|
| 65 |
+
table: Float64HashTable
|
| 66 |
+
uniques: Float64Vector
|
| 67 |
+
|
| 68 |
+
class Float32Factorizer(Factorizer):
|
| 69 |
+
table: Float32HashTable
|
| 70 |
+
uniques: Float32Vector
|
| 71 |
+
|
| 72 |
+
class Complex64Factorizer(Factorizer):
|
| 73 |
+
table: Complex64HashTable
|
| 74 |
+
uniques: Complex64Vector
|
| 75 |
+
|
| 76 |
+
class Complex128Factorizer(Factorizer):
|
| 77 |
+
table: Complex128HashTable
|
| 78 |
+
uniques: Complex128Vector
|
| 79 |
+
|
| 80 |
+
class Int64Vector:
|
| 81 |
+
def __init__(self, *args) -> None: ...
|
| 82 |
+
def __len__(self) -> int: ...
|
| 83 |
+
def to_array(self) -> npt.NDArray[np.int64]: ...
|
| 84 |
+
|
| 85 |
+
class Int32Vector:
|
| 86 |
+
def __init__(self, *args) -> None: ...
|
| 87 |
+
def __len__(self) -> int: ...
|
| 88 |
+
def to_array(self) -> npt.NDArray[np.int32]: ...
|
| 89 |
+
|
| 90 |
+
class Int16Vector:
|
| 91 |
+
def __init__(self, *args) -> None: ...
|
| 92 |
+
def __len__(self) -> int: ...
|
| 93 |
+
def to_array(self) -> npt.NDArray[np.int16]: ...
|
| 94 |
+
|
| 95 |
+
class Int8Vector:
|
| 96 |
+
def __init__(self, *args) -> None: ...
|
| 97 |
+
def __len__(self) -> int: ...
|
| 98 |
+
def to_array(self) -> npt.NDArray[np.int8]: ...
|
| 99 |
+
|
| 100 |
+
class UInt64Vector:
|
| 101 |
+
def __init__(self, *args) -> None: ...
|
| 102 |
+
def __len__(self) -> int: ...
|
| 103 |
+
def to_array(self) -> npt.NDArray[np.uint64]: ...
|
| 104 |
+
|
| 105 |
+
class UInt32Vector:
|
| 106 |
+
def __init__(self, *args) -> None: ...
|
| 107 |
+
def __len__(self) -> int: ...
|
| 108 |
+
def to_array(self) -> npt.NDArray[np.uint32]: ...
|
| 109 |
+
|
| 110 |
+
class UInt16Vector:
|
| 111 |
+
def __init__(self, *args) -> None: ...
|
| 112 |
+
def __len__(self) -> int: ...
|
| 113 |
+
def to_array(self) -> npt.NDArray[np.uint16]: ...
|
| 114 |
+
|
| 115 |
+
class UInt8Vector:
|
| 116 |
+
def __init__(self, *args) -> None: ...
|
| 117 |
+
def __len__(self) -> int: ...
|
| 118 |
+
def to_array(self) -> npt.NDArray[np.uint8]: ...
|
| 119 |
+
|
| 120 |
+
class Float64Vector:
|
| 121 |
+
def __init__(self, *args) -> None: ...
|
| 122 |
+
def __len__(self) -> int: ...
|
| 123 |
+
def to_array(self) -> npt.NDArray[np.float64]: ...
|
| 124 |
+
|
| 125 |
+
class Float32Vector:
|
| 126 |
+
def __init__(self, *args) -> None: ...
|
| 127 |
+
def __len__(self) -> int: ...
|
| 128 |
+
def to_array(self) -> npt.NDArray[np.float32]: ...
|
| 129 |
+
|
| 130 |
+
class Complex128Vector:
|
| 131 |
+
def __init__(self, *args) -> None: ...
|
| 132 |
+
def __len__(self) -> int: ...
|
| 133 |
+
def to_array(self) -> npt.NDArray[np.complex128]: ...
|
| 134 |
+
|
| 135 |
+
class Complex64Vector:
|
| 136 |
+
def __init__(self, *args) -> None: ...
|
| 137 |
+
def __len__(self) -> int: ...
|
| 138 |
+
def to_array(self) -> npt.NDArray[np.complex64]: ...
|
| 139 |
+
|
| 140 |
+
class StringVector:
|
| 141 |
+
def __init__(self, *args) -> None: ...
|
| 142 |
+
def __len__(self) -> int: ...
|
| 143 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
| 144 |
+
|
| 145 |
+
class ObjectVector:
|
| 146 |
+
def __init__(self, *args) -> None: ...
|
| 147 |
+
def __len__(self) -> int: ...
|
| 148 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
| 149 |
+
|
| 150 |
+
class HashTable:
|
| 151 |
+
# NB: The base HashTable class does _not_ actually have these methods;
|
| 152 |
+
# we are putting them here for the sake of mypy to avoid
|
| 153 |
+
# reproducing them in each subclass below.
|
| 154 |
+
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
|
| 155 |
+
def __len__(self) -> int: ...
|
| 156 |
+
def __contains__(self, key: Hashable) -> bool: ...
|
| 157 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
| 158 |
+
def get_state(self) -> dict[str, int]: ...
|
| 159 |
+
# TODO: `val/key` type is subclass-specific
|
| 160 |
+
def get_item(self, val): ... # TODO: return type?
|
| 161 |
+
def set_item(self, key, val) -> None: ...
|
| 162 |
+
def get_na(self): ... # TODO: return type?
|
| 163 |
+
def set_na(self, val) -> None: ...
|
| 164 |
+
def map_locations(
|
| 165 |
+
self,
|
| 166 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
| 167 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 168 |
+
) -> None: ...
|
| 169 |
+
def lookup(
|
| 170 |
+
self,
|
| 171 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
| 172 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 173 |
+
) -> npt.NDArray[np.intp]: ...
|
| 174 |
+
def get_labels(
|
| 175 |
+
self,
|
| 176 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
| 177 |
+
uniques, # SubclassTypeVector
|
| 178 |
+
count_prior: int = ...,
|
| 179 |
+
na_sentinel: int = ...,
|
| 180 |
+
na_value: object = ...,
|
| 181 |
+
mask=...,
|
| 182 |
+
) -> npt.NDArray[np.intp]: ...
|
| 183 |
+
def unique(
|
| 184 |
+
self,
|
| 185 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
| 186 |
+
return_inverse: bool = ...,
|
| 187 |
+
mask=...,
|
| 188 |
+
) -> (
|
| 189 |
+
tuple[
|
| 190 |
+
np.ndarray, # np.ndarray[subclass-specific]
|
| 191 |
+
npt.NDArray[np.intp],
|
| 192 |
+
]
|
| 193 |
+
| np.ndarray
|
| 194 |
+
): ... # np.ndarray[subclass-specific]
|
| 195 |
+
def factorize(
|
| 196 |
+
self,
|
| 197 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
| 198 |
+
na_sentinel: int = ...,
|
| 199 |
+
na_value: object = ...,
|
| 200 |
+
mask=...,
|
| 201 |
+
ignore_na: bool = True,
|
| 202 |
+
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
|
| 203 |
+
|
| 204 |
+
class Complex128HashTable(HashTable): ...
|
| 205 |
+
class Complex64HashTable(HashTable): ...
|
| 206 |
+
class Float64HashTable(HashTable): ...
|
| 207 |
+
class Float32HashTable(HashTable): ...
|
| 208 |
+
|
| 209 |
+
class Int64HashTable(HashTable):
|
| 210 |
+
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
|
| 211 |
+
def get_labels_groupby(
|
| 212 |
+
self,
|
| 213 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
| 214 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
|
| 215 |
+
def map_keys_to_values(
|
| 216 |
+
self,
|
| 217 |
+
keys: npt.NDArray[np.int64],
|
| 218 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
| 219 |
+
) -> None: ...
|
| 220 |
+
|
| 221 |
+
class Int32HashTable(HashTable): ...
|
| 222 |
+
class Int16HashTable(HashTable): ...
|
| 223 |
+
class Int8HashTable(HashTable): ...
|
| 224 |
+
class UInt64HashTable(HashTable): ...
|
| 225 |
+
class UInt32HashTable(HashTable): ...
|
| 226 |
+
class UInt16HashTable(HashTable): ...
|
| 227 |
+
class UInt8HashTable(HashTable): ...
|
| 228 |
+
class StringHashTable(HashTable): ...
|
| 229 |
+
class PyObjectHashTable(HashTable): ...
|
| 230 |
+
class IntpHashTable(HashTable): ...
|
| 231 |
+
|
| 232 |
+
def duplicated(
|
| 233 |
+
values: np.ndarray,
|
| 234 |
+
keep: Literal["last", "first", False] = ...,
|
| 235 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 236 |
+
) -> npt.NDArray[np.bool_]: ...
|
| 237 |
+
def mode(
|
| 238 |
+
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
|
| 239 |
+
) -> np.ndarray: ...
|
| 240 |
+
def value_count(
|
| 241 |
+
values: np.ndarray,
|
| 242 |
+
dropna: bool,
|
| 243 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
| 244 |
+
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
|
| 245 |
+
|
| 246 |
+
# arr and values should have same dtype
|
| 247 |
+
def ismember(
|
| 248 |
+
arr: np.ndarray,
|
| 249 |
+
values: np.ndarray,
|
| 250 |
+
) -> npt.NDArray[np.bool_]: ...
|
| 251 |
+
def object_hash(obj) -> int: ...
|
| 252 |
+
def objects_are_equal(a, b) -> bool: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/index.pyi
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from pandas._typing import npt
|
| 4 |
+
|
| 5 |
+
from pandas import MultiIndex
|
| 6 |
+
from pandas.core.arrays import ExtensionArray
|
| 7 |
+
|
| 8 |
+
multiindex_nulls_shift: int
|
| 9 |
+
|
| 10 |
+
class IndexEngine:
|
| 11 |
+
over_size_threshold: bool
|
| 12 |
+
def __init__(self, values: np.ndarray) -> None: ...
|
| 13 |
+
def __contains__(self, val: object) -> bool: ...
|
| 14 |
+
|
| 15 |
+
# -> int | slice | np.ndarray[bool]
|
| 16 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
| 17 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
| 18 |
+
def __sizeof__(self) -> int: ...
|
| 19 |
+
@property
|
| 20 |
+
def is_unique(self) -> bool: ...
|
| 21 |
+
@property
|
| 22 |
+
def is_monotonic_increasing(self) -> bool: ...
|
| 23 |
+
@property
|
| 24 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
| 25 |
+
@property
|
| 26 |
+
def is_mapping_populated(self) -> bool: ...
|
| 27 |
+
def clear_mapping(self): ...
|
| 28 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
| 29 |
+
def get_indexer_non_unique(
|
| 30 |
+
self,
|
| 31 |
+
targets: np.ndarray,
|
| 32 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 33 |
+
|
| 34 |
+
class MaskedIndexEngine(IndexEngine):
|
| 35 |
+
def __init__(self, values: object) -> None: ...
|
| 36 |
+
def get_indexer_non_unique(
|
| 37 |
+
self, targets: object
|
| 38 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 39 |
+
|
| 40 |
+
class Float64Engine(IndexEngine): ...
|
| 41 |
+
class Float32Engine(IndexEngine): ...
|
| 42 |
+
class Complex128Engine(IndexEngine): ...
|
| 43 |
+
class Complex64Engine(IndexEngine): ...
|
| 44 |
+
class Int64Engine(IndexEngine): ...
|
| 45 |
+
class Int32Engine(IndexEngine): ...
|
| 46 |
+
class Int16Engine(IndexEngine): ...
|
| 47 |
+
class Int8Engine(IndexEngine): ...
|
| 48 |
+
class UInt64Engine(IndexEngine): ...
|
| 49 |
+
class UInt32Engine(IndexEngine): ...
|
| 50 |
+
class UInt16Engine(IndexEngine): ...
|
| 51 |
+
class UInt8Engine(IndexEngine): ...
|
| 52 |
+
class ObjectEngine(IndexEngine): ...
|
| 53 |
+
class DatetimeEngine(Int64Engine): ...
|
| 54 |
+
class TimedeltaEngine(DatetimeEngine): ...
|
| 55 |
+
class PeriodEngine(Int64Engine): ...
|
| 56 |
+
class BoolEngine(UInt8Engine): ...
|
| 57 |
+
class MaskedFloat64Engine(MaskedIndexEngine): ...
|
| 58 |
+
class MaskedFloat32Engine(MaskedIndexEngine): ...
|
| 59 |
+
class MaskedComplex128Engine(MaskedIndexEngine): ...
|
| 60 |
+
class MaskedComplex64Engine(MaskedIndexEngine): ...
|
| 61 |
+
class MaskedInt64Engine(MaskedIndexEngine): ...
|
| 62 |
+
class MaskedInt32Engine(MaskedIndexEngine): ...
|
| 63 |
+
class MaskedInt16Engine(MaskedIndexEngine): ...
|
| 64 |
+
class MaskedInt8Engine(MaskedIndexEngine): ...
|
| 65 |
+
class MaskedUInt64Engine(MaskedIndexEngine): ...
|
| 66 |
+
class MaskedUInt32Engine(MaskedIndexEngine): ...
|
| 67 |
+
class MaskedUInt16Engine(MaskedIndexEngine): ...
|
| 68 |
+
class MaskedUInt8Engine(MaskedIndexEngine): ...
|
| 69 |
+
class MaskedBoolEngine(MaskedUInt8Engine): ...
|
| 70 |
+
|
| 71 |
+
class BaseMultiIndexCodesEngine:
|
| 72 |
+
levels: list[np.ndarray]
|
| 73 |
+
offsets: np.ndarray # ndarray[uint64_t, ndim=1]
|
| 74 |
+
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
levels: list[np.ndarray], # all entries hashable
|
| 78 |
+
labels: list[np.ndarray], # all entries integer-dtyped
|
| 79 |
+
offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
|
| 80 |
+
) -> None: ...
|
| 81 |
+
def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
|
| 82 |
+
def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
|
| 83 |
+
|
| 84 |
+
class ExtensionEngine:
|
| 85 |
+
def __init__(self, values: ExtensionArray) -> None: ...
|
| 86 |
+
def __contains__(self, val: object) -> bool: ...
|
| 87 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
| 88 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
| 89 |
+
def get_indexer_non_unique(
|
| 90 |
+
self,
|
| 91 |
+
targets: np.ndarray,
|
| 92 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 93 |
+
@property
|
| 94 |
+
def is_unique(self) -> bool: ...
|
| 95 |
+
@property
|
| 96 |
+
def is_monotonic_increasing(self) -> bool: ...
|
| 97 |
+
@property
|
| 98 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
| 99 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
| 100 |
+
def clear_mapping(self): ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (66.6 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/indexing.pyi
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Generic,
|
| 3 |
+
TypeVar,
|
| 4 |
+
)
|
| 5 |
+
|
| 6 |
+
from pandas.core.indexing import IndexingMixin
|
| 7 |
+
|
| 8 |
+
_IndexingMixinT = TypeVar("_IndexingMixinT", bound=IndexingMixin)
|
| 9 |
+
|
| 10 |
+
class NDFrameIndexerBase(Generic[_IndexingMixinT]):
|
| 11 |
+
name: str
|
| 12 |
+
# in practice obj is either a DataFrame or a Series
|
| 13 |
+
obj: _IndexingMixinT
|
| 14 |
+
|
| 15 |
+
def __init__(self, name: str, obj: _IndexingMixinT) -> None: ...
|
| 16 |
+
@property
|
| 17 |
+
def ndim(self) -> int: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/internals.pyi
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Iterator,
|
| 3 |
+
Sequence,
|
| 4 |
+
final,
|
| 5 |
+
overload,
|
| 6 |
+
)
|
| 7 |
+
import weakref
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from pandas._typing import (
|
| 12 |
+
ArrayLike,
|
| 13 |
+
Self,
|
| 14 |
+
npt,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
from pandas import Index
|
| 18 |
+
from pandas.core.internals.blocks import Block as B
|
| 19 |
+
|
| 20 |
+
def slice_len(slc: slice, objlen: int = ...) -> int: ...
|
| 21 |
+
def get_concat_blkno_indexers(
|
| 22 |
+
blknos_list: list[npt.NDArray[np.intp]],
|
| 23 |
+
) -> list[tuple[npt.NDArray[np.intp], BlockPlacement]]: ...
|
| 24 |
+
def get_blkno_indexers(
|
| 25 |
+
blknos: np.ndarray, # int64_t[:]
|
| 26 |
+
group: bool = ...,
|
| 27 |
+
) -> list[tuple[int, slice | np.ndarray]]: ...
|
| 28 |
+
def get_blkno_placements(
|
| 29 |
+
blknos: np.ndarray,
|
| 30 |
+
group: bool = ...,
|
| 31 |
+
) -> Iterator[tuple[int, BlockPlacement]]: ...
|
| 32 |
+
def update_blklocs_and_blknos(
|
| 33 |
+
blklocs: npt.NDArray[np.intp],
|
| 34 |
+
blknos: npt.NDArray[np.intp],
|
| 35 |
+
loc: int,
|
| 36 |
+
nblocks: int,
|
| 37 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 38 |
+
@final
|
| 39 |
+
class BlockPlacement:
|
| 40 |
+
def __init__(self, val: int | slice | np.ndarray) -> None: ...
|
| 41 |
+
@property
|
| 42 |
+
def indexer(self) -> np.ndarray | slice: ...
|
| 43 |
+
@property
|
| 44 |
+
def as_array(self) -> np.ndarray: ...
|
| 45 |
+
@property
|
| 46 |
+
def as_slice(self) -> slice: ...
|
| 47 |
+
@property
|
| 48 |
+
def is_slice_like(self) -> bool: ...
|
| 49 |
+
@overload
|
| 50 |
+
def __getitem__(
|
| 51 |
+
self, loc: slice | Sequence[int] | npt.NDArray[np.intp]
|
| 52 |
+
) -> BlockPlacement: ...
|
| 53 |
+
@overload
|
| 54 |
+
def __getitem__(self, loc: int) -> int: ...
|
| 55 |
+
def __iter__(self) -> Iterator[int]: ...
|
| 56 |
+
def __len__(self) -> int: ...
|
| 57 |
+
def delete(self, loc) -> BlockPlacement: ...
|
| 58 |
+
def add(self, other) -> BlockPlacement: ...
|
| 59 |
+
def append(self, others: list[BlockPlacement]) -> BlockPlacement: ...
|
| 60 |
+
def tile_for_unstack(self, factor: int) -> npt.NDArray[np.intp]: ...
|
| 61 |
+
|
| 62 |
+
class Block:
|
| 63 |
+
_mgr_locs: BlockPlacement
|
| 64 |
+
ndim: int
|
| 65 |
+
values: ArrayLike
|
| 66 |
+
refs: BlockValuesRefs
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
values: ArrayLike,
|
| 70 |
+
placement: BlockPlacement,
|
| 71 |
+
ndim: int,
|
| 72 |
+
refs: BlockValuesRefs | None = ...,
|
| 73 |
+
) -> None: ...
|
| 74 |
+
def slice_block_rows(self, slicer: slice) -> Self: ...
|
| 75 |
+
|
| 76 |
+
class BlockManager:
|
| 77 |
+
blocks: tuple[B, ...]
|
| 78 |
+
axes: list[Index]
|
| 79 |
+
_known_consolidated: bool
|
| 80 |
+
_is_consolidated: bool
|
| 81 |
+
_blknos: np.ndarray
|
| 82 |
+
_blklocs: np.ndarray
|
| 83 |
+
def __init__(
|
| 84 |
+
self, blocks: tuple[B, ...], axes: list[Index], verify_integrity=...
|
| 85 |
+
) -> None: ...
|
| 86 |
+
def get_slice(self, slobj: slice, axis: int = ...) -> Self: ...
|
| 87 |
+
def _rebuild_blknos_and_blklocs(self) -> None: ...
|
| 88 |
+
|
| 89 |
+
class BlockValuesRefs:
|
| 90 |
+
referenced_blocks: list[weakref.ref]
|
| 91 |
+
def __init__(self, blk: Block | None = ...) -> None: ...
|
| 92 |
+
def add_reference(self, blk: Block) -> None: ...
|
| 93 |
+
def add_index_reference(self, index: Index) -> None: ...
|
| 94 |
+
def has_reference(self) -> bool: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/interval.pyi
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Any,
|
| 3 |
+
Generic,
|
| 4 |
+
TypeVar,
|
| 5 |
+
overload,
|
| 6 |
+
)
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import numpy.typing as npt
|
| 10 |
+
|
| 11 |
+
from pandas._typing import (
|
| 12 |
+
IntervalClosedType,
|
| 13 |
+
Timedelta,
|
| 14 |
+
Timestamp,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
VALID_CLOSED: frozenset[str]
|
| 18 |
+
|
| 19 |
+
_OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
|
| 20 |
+
_OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
|
| 21 |
+
_OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
|
| 22 |
+
|
| 23 |
+
class _LengthDescriptor:
|
| 24 |
+
@overload
|
| 25 |
+
def __get__(
|
| 26 |
+
self, instance: Interval[_OrderableScalarT], owner: Any
|
| 27 |
+
) -> _OrderableScalarT: ...
|
| 28 |
+
@overload
|
| 29 |
+
def __get__(
|
| 30 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
| 31 |
+
) -> Timedelta: ...
|
| 32 |
+
|
| 33 |
+
class _MidDescriptor:
|
| 34 |
+
@overload
|
| 35 |
+
def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
|
| 36 |
+
@overload
|
| 37 |
+
def __get__(
|
| 38 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
| 39 |
+
) -> _OrderableTimesT: ...
|
| 40 |
+
|
| 41 |
+
class IntervalMixin:
|
| 42 |
+
@property
|
| 43 |
+
def closed_left(self) -> bool: ...
|
| 44 |
+
@property
|
| 45 |
+
def closed_right(self) -> bool: ...
|
| 46 |
+
@property
|
| 47 |
+
def open_left(self) -> bool: ...
|
| 48 |
+
@property
|
| 49 |
+
def open_right(self) -> bool: ...
|
| 50 |
+
@property
|
| 51 |
+
def is_empty(self) -> bool: ...
|
| 52 |
+
def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
|
| 53 |
+
|
| 54 |
+
class Interval(IntervalMixin, Generic[_OrderableT]):
|
| 55 |
+
@property
|
| 56 |
+
def left(self: Interval[_OrderableT]) -> _OrderableT: ...
|
| 57 |
+
@property
|
| 58 |
+
def right(self: Interval[_OrderableT]) -> _OrderableT: ...
|
| 59 |
+
@property
|
| 60 |
+
def closed(self) -> IntervalClosedType: ...
|
| 61 |
+
mid: _MidDescriptor
|
| 62 |
+
length: _LengthDescriptor
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
left: _OrderableT,
|
| 66 |
+
right: _OrderableT,
|
| 67 |
+
closed: IntervalClosedType = ...,
|
| 68 |
+
) -> None: ...
|
| 69 |
+
def __hash__(self) -> int: ...
|
| 70 |
+
@overload
|
| 71 |
+
def __contains__(
|
| 72 |
+
self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
|
| 73 |
+
) -> bool: ...
|
| 74 |
+
@overload
|
| 75 |
+
def __contains__(
|
| 76 |
+
self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
|
| 77 |
+
) -> bool: ...
|
| 78 |
+
@overload
|
| 79 |
+
def __contains__(
|
| 80 |
+
self: Interval[_OrderableScalarT],
|
| 81 |
+
key: _OrderableScalarT | Interval[_OrderableScalarT],
|
| 82 |
+
) -> bool: ...
|
| 83 |
+
@overload
|
| 84 |
+
def __add__(
|
| 85 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
| 86 |
+
) -> Interval[_OrderableTimesT]: ...
|
| 87 |
+
@overload
|
| 88 |
+
def __add__(
|
| 89 |
+
self: Interval[int], y: _OrderableScalarT
|
| 90 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 91 |
+
@overload
|
| 92 |
+
def __add__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 93 |
+
@overload
|
| 94 |
+
def __radd__(
|
| 95 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
| 96 |
+
) -> Interval[_OrderableTimesT]: ...
|
| 97 |
+
@overload
|
| 98 |
+
def __radd__(
|
| 99 |
+
self: Interval[int], y: _OrderableScalarT
|
| 100 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 101 |
+
@overload
|
| 102 |
+
def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 103 |
+
@overload
|
| 104 |
+
def __sub__(
|
| 105 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
| 106 |
+
) -> Interval[_OrderableTimesT]: ...
|
| 107 |
+
@overload
|
| 108 |
+
def __sub__(
|
| 109 |
+
self: Interval[int], y: _OrderableScalarT
|
| 110 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 111 |
+
@overload
|
| 112 |
+
def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 113 |
+
@overload
|
| 114 |
+
def __rsub__(
|
| 115 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
| 116 |
+
) -> Interval[_OrderableTimesT]: ...
|
| 117 |
+
@overload
|
| 118 |
+
def __rsub__(
|
| 119 |
+
self: Interval[int], y: _OrderableScalarT
|
| 120 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 121 |
+
@overload
|
| 122 |
+
def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 123 |
+
@overload
|
| 124 |
+
def __mul__(
|
| 125 |
+
self: Interval[int], y: _OrderableScalarT
|
| 126 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 127 |
+
@overload
|
| 128 |
+
def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 129 |
+
@overload
|
| 130 |
+
def __rmul__(
|
| 131 |
+
self: Interval[int], y: _OrderableScalarT
|
| 132 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 133 |
+
@overload
|
| 134 |
+
def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 135 |
+
@overload
|
| 136 |
+
def __truediv__(
|
| 137 |
+
self: Interval[int], y: _OrderableScalarT
|
| 138 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 139 |
+
@overload
|
| 140 |
+
def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 141 |
+
@overload
|
| 142 |
+
def __floordiv__(
|
| 143 |
+
self: Interval[int], y: _OrderableScalarT
|
| 144 |
+
) -> Interval[_OrderableScalarT]: ...
|
| 145 |
+
@overload
|
| 146 |
+
def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
|
| 147 |
+
def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
|
| 148 |
+
|
| 149 |
+
def intervals_to_interval_bounds(
|
| 150 |
+
intervals: np.ndarray, validate_closed: bool = ...
|
| 151 |
+
) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
|
| 152 |
+
|
| 153 |
+
class IntervalTree(IntervalMixin):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
left: np.ndarray,
|
| 157 |
+
right: np.ndarray,
|
| 158 |
+
closed: IntervalClosedType = ...,
|
| 159 |
+
leaf_size: int = ...,
|
| 160 |
+
) -> None: ...
|
| 161 |
+
@property
|
| 162 |
+
def mid(self) -> np.ndarray: ...
|
| 163 |
+
@property
|
| 164 |
+
def length(self) -> np.ndarray: ...
|
| 165 |
+
def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
|
| 166 |
+
def get_indexer_non_unique(
|
| 167 |
+
self, target
|
| 168 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 169 |
+
_na_count: int
|
| 170 |
+
@property
|
| 171 |
+
def is_overlapping(self) -> bool: ...
|
| 172 |
+
@property
|
| 173 |
+
def is_monotonic_increasing(self) -> bool: ...
|
| 174 |
+
def clear_mapping(self) -> None: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/join.pyi
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from pandas._typing import npt
|
| 4 |
+
|
| 5 |
+
def inner_join(
|
| 6 |
+
left: np.ndarray, # const intp_t[:]
|
| 7 |
+
right: np.ndarray, # const intp_t[:]
|
| 8 |
+
max_groups: int,
|
| 9 |
+
sort: bool = ...,
|
| 10 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 11 |
+
def left_outer_join(
|
| 12 |
+
left: np.ndarray, # const intp_t[:]
|
| 13 |
+
right: np.ndarray, # const intp_t[:]
|
| 14 |
+
max_groups: int,
|
| 15 |
+
sort: bool = ...,
|
| 16 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 17 |
+
def full_outer_join(
|
| 18 |
+
left: np.ndarray, # const intp_t[:]
|
| 19 |
+
right: np.ndarray, # const intp_t[:]
|
| 20 |
+
max_groups: int,
|
| 21 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 22 |
+
def ffill_indexer(
|
| 23 |
+
indexer: np.ndarray, # const intp_t[:]
|
| 24 |
+
) -> npt.NDArray[np.intp]: ...
|
| 25 |
+
def left_join_indexer_unique(
|
| 26 |
+
left: np.ndarray, # ndarray[join_t]
|
| 27 |
+
right: np.ndarray, # ndarray[join_t]
|
| 28 |
+
) -> npt.NDArray[np.intp]: ...
|
| 29 |
+
def left_join_indexer(
|
| 30 |
+
left: np.ndarray, # ndarray[join_t]
|
| 31 |
+
right: np.ndarray, # ndarray[join_t]
|
| 32 |
+
) -> tuple[
|
| 33 |
+
np.ndarray, # np.ndarray[join_t]
|
| 34 |
+
npt.NDArray[np.intp],
|
| 35 |
+
npt.NDArray[np.intp],
|
| 36 |
+
]: ...
|
| 37 |
+
def inner_join_indexer(
|
| 38 |
+
left: np.ndarray, # ndarray[join_t]
|
| 39 |
+
right: np.ndarray, # ndarray[join_t]
|
| 40 |
+
) -> tuple[
|
| 41 |
+
np.ndarray, # np.ndarray[join_t]
|
| 42 |
+
npt.NDArray[np.intp],
|
| 43 |
+
npt.NDArray[np.intp],
|
| 44 |
+
]: ...
|
| 45 |
+
def outer_join_indexer(
|
| 46 |
+
left: np.ndarray, # ndarray[join_t]
|
| 47 |
+
right: np.ndarray, # ndarray[join_t]
|
| 48 |
+
) -> tuple[
|
| 49 |
+
np.ndarray, # np.ndarray[join_t]
|
| 50 |
+
npt.NDArray[np.intp],
|
| 51 |
+
npt.NDArray[np.intp],
|
| 52 |
+
]: ...
|
| 53 |
+
def asof_join_backward_on_X_by_Y(
|
| 54 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
| 55 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
| 56 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
| 57 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
| 58 |
+
allow_exact_matches: bool = ...,
|
| 59 |
+
tolerance: np.number | float | None = ...,
|
| 60 |
+
use_hashtable: bool = ...,
|
| 61 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 62 |
+
def asof_join_forward_on_X_by_Y(
|
| 63 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
| 64 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
| 65 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
| 66 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
| 67 |
+
allow_exact_matches: bool = ...,
|
| 68 |
+
tolerance: np.number | float | None = ...,
|
| 69 |
+
use_hashtable: bool = ...,
|
| 70 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
| 71 |
+
def asof_join_nearest_on_X_by_Y(
|
| 72 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
| 73 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
| 74 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
| 75 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
| 76 |
+
allow_exact_matches: bool = ...,
|
| 77 |
+
tolerance: np.number | float | None = ...,
|
| 78 |
+
use_hashtable: bool = ...,
|
| 79 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (64.3 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/json.pyi
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Any,
|
| 3 |
+
Callable,
|
| 4 |
+
)
|
| 5 |
+
|
| 6 |
+
def ujson_dumps(
|
| 7 |
+
obj: Any,
|
| 8 |
+
ensure_ascii: bool = ...,
|
| 9 |
+
double_precision: int = ...,
|
| 10 |
+
indent: int = ...,
|
| 11 |
+
orient: str = ...,
|
| 12 |
+
date_unit: str = ...,
|
| 13 |
+
iso_dates: bool = ...,
|
| 14 |
+
default_handler: None
|
| 15 |
+
| Callable[[Any], str | float | bool | list | dict | None] = ...,
|
| 16 |
+
) -> str: ...
|
| 17 |
+
def ujson_loads(
|
| 18 |
+
s: str,
|
| 19 |
+
precise_float: bool = ...,
|
| 20 |
+
numpy: bool = ...,
|
| 21 |
+
dtype: None = ...,
|
| 22 |
+
labelled: bool = ...,
|
| 23 |
+
) -> Any: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/lib.pyi
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO(npdtypes): Many types specified here can be made more specific/accurate;
|
| 2 |
+
# the more specific versions are specified in comments
|
| 3 |
+
from decimal import Decimal
|
| 4 |
+
from typing import (
|
| 5 |
+
Any,
|
| 6 |
+
Callable,
|
| 7 |
+
Final,
|
| 8 |
+
Generator,
|
| 9 |
+
Hashable,
|
| 10 |
+
Literal,
|
| 11 |
+
TypeAlias,
|
| 12 |
+
overload,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from pandas._libs.interval import Interval
|
| 18 |
+
from pandas._libs.tslibs import Period
|
| 19 |
+
from pandas._typing import (
|
| 20 |
+
ArrayLike,
|
| 21 |
+
DtypeObj,
|
| 22 |
+
TypeGuard,
|
| 23 |
+
npt,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# placeholder until we can specify np.ndarray[object, ndim=2]
|
| 27 |
+
ndarray_obj_2d = np.ndarray
|
| 28 |
+
|
| 29 |
+
from enum import Enum
|
| 30 |
+
|
| 31 |
+
class _NoDefault(Enum):
|
| 32 |
+
no_default = ...
|
| 33 |
+
|
| 34 |
+
no_default: Final = _NoDefault.no_default
|
| 35 |
+
NoDefault: TypeAlias = Literal[_NoDefault.no_default]
|
| 36 |
+
|
| 37 |
+
i8max: int
|
| 38 |
+
u8max: int
|
| 39 |
+
|
| 40 |
+
def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ...
|
| 41 |
+
def item_from_zerodim(val: object) -> object: ...
|
| 42 |
+
def infer_dtype(value: object, skipna: bool = ...) -> str: ...
|
| 43 |
+
def is_iterator(obj: object) -> bool: ...
|
| 44 |
+
def is_scalar(val: object) -> bool: ...
|
| 45 |
+
def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
|
| 46 |
+
def is_pyarrow_array(obj: object) -> bool: ...
|
| 47 |
+
def is_period(val: object) -> TypeGuard[Period]: ...
|
| 48 |
+
def is_interval(obj: object) -> TypeGuard[Interval]: ...
|
| 49 |
+
def is_decimal(obj: object) -> TypeGuard[Decimal]: ...
|
| 50 |
+
def is_complex(obj: object) -> TypeGuard[complex]: ...
|
| 51 |
+
def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ...
|
| 52 |
+
def is_integer(obj: object) -> TypeGuard[int | np.integer]: ...
|
| 53 |
+
def is_int_or_none(obj) -> bool: ...
|
| 54 |
+
def is_float(obj: object) -> TypeGuard[float]: ...
|
| 55 |
+
def is_interval_array(values: np.ndarray) -> bool: ...
|
| 56 |
+
def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ...
|
| 57 |
+
def is_timedelta_or_timedelta64_array(
|
| 58 |
+
values: np.ndarray, skipna: bool = True
|
| 59 |
+
) -> bool: ...
|
| 60 |
+
def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
|
| 61 |
+
def is_time_array(values: np.ndarray, skipna: bool = ...): ...
|
| 62 |
+
def is_date_array(values: np.ndarray, skipna: bool = ...): ...
|
| 63 |
+
def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
|
| 64 |
+
def is_string_array(values: np.ndarray, skipna: bool = ...): ...
|
| 65 |
+
def is_float_array(values: np.ndarray): ...
|
| 66 |
+
def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
|
| 67 |
+
def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
|
| 68 |
+
def fast_multiget(
|
| 69 |
+
mapping: dict,
|
| 70 |
+
keys: np.ndarray, # object[:]
|
| 71 |
+
default=...,
|
| 72 |
+
) -> np.ndarray: ...
|
| 73 |
+
def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
|
| 74 |
+
def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
|
| 75 |
+
def map_infer(
|
| 76 |
+
arr: np.ndarray,
|
| 77 |
+
f: Callable[[Any], Any],
|
| 78 |
+
convert: bool = ...,
|
| 79 |
+
ignore_na: bool = ...,
|
| 80 |
+
) -> np.ndarray: ...
|
| 81 |
+
@overload
|
| 82 |
+
def maybe_convert_objects(
|
| 83 |
+
objects: npt.NDArray[np.object_],
|
| 84 |
+
*,
|
| 85 |
+
try_float: bool = ...,
|
| 86 |
+
safe: bool = ...,
|
| 87 |
+
convert_numeric: bool = ...,
|
| 88 |
+
convert_non_numeric: Literal[False] = ...,
|
| 89 |
+
convert_to_nullable_dtype: Literal[False] = ...,
|
| 90 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
| 91 |
+
) -> npt.NDArray[np.object_ | np.number]: ...
|
| 92 |
+
@overload
|
| 93 |
+
def maybe_convert_objects(
|
| 94 |
+
objects: npt.NDArray[np.object_],
|
| 95 |
+
*,
|
| 96 |
+
try_float: bool = ...,
|
| 97 |
+
safe: bool = ...,
|
| 98 |
+
convert_numeric: bool = ...,
|
| 99 |
+
convert_non_numeric: bool = ...,
|
| 100 |
+
convert_to_nullable_dtype: Literal[True] = ...,
|
| 101 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
| 102 |
+
) -> ArrayLike: ...
|
| 103 |
+
@overload
|
| 104 |
+
def maybe_convert_objects(
|
| 105 |
+
objects: npt.NDArray[np.object_],
|
| 106 |
+
*,
|
| 107 |
+
try_float: bool = ...,
|
| 108 |
+
safe: bool = ...,
|
| 109 |
+
convert_numeric: bool = ...,
|
| 110 |
+
convert_non_numeric: bool = ...,
|
| 111 |
+
convert_to_nullable_dtype: bool = ...,
|
| 112 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
| 113 |
+
) -> ArrayLike: ...
|
| 114 |
+
@overload
|
| 115 |
+
def maybe_convert_numeric(
|
| 116 |
+
values: npt.NDArray[np.object_],
|
| 117 |
+
na_values: set,
|
| 118 |
+
convert_empty: bool = ...,
|
| 119 |
+
coerce_numeric: bool = ...,
|
| 120 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
| 121 |
+
) -> tuple[np.ndarray, None]: ...
|
| 122 |
+
@overload
|
| 123 |
+
def maybe_convert_numeric(
|
| 124 |
+
values: npt.NDArray[np.object_],
|
| 125 |
+
na_values: set,
|
| 126 |
+
convert_empty: bool = ...,
|
| 127 |
+
coerce_numeric: bool = ...,
|
| 128 |
+
*,
|
| 129 |
+
convert_to_masked_nullable: Literal[True],
|
| 130 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
| 131 |
+
|
| 132 |
+
# TODO: restrict `arr`?
|
| 133 |
+
def ensure_string_array(
|
| 134 |
+
arr,
|
| 135 |
+
na_value: object = ...,
|
| 136 |
+
convert_na_value: bool = ...,
|
| 137 |
+
copy: bool = ...,
|
| 138 |
+
skipna: bool = ...,
|
| 139 |
+
) -> npt.NDArray[np.object_]: ...
|
| 140 |
+
def convert_nans_to_NA(
|
| 141 |
+
arr: npt.NDArray[np.object_],
|
| 142 |
+
) -> npt.NDArray[np.object_]: ...
|
| 143 |
+
def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
|
| 144 |
+
|
| 145 |
+
# TODO: can we be more specific about rows?
|
| 146 |
+
def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
|
| 147 |
+
def tuples_to_object_array(
|
| 148 |
+
tuples: npt.NDArray[np.object_],
|
| 149 |
+
) -> ndarray_obj_2d: ...
|
| 150 |
+
|
| 151 |
+
# TODO: can we be more specific about rows?
|
| 152 |
+
def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
|
| 153 |
+
def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
|
| 154 |
+
def maybe_booleans_to_slice(
|
| 155 |
+
mask: npt.NDArray[np.uint8],
|
| 156 |
+
) -> slice | npt.NDArray[np.uint8]: ...
|
| 157 |
+
def maybe_indices_to_slice(
|
| 158 |
+
indices: npt.NDArray[np.intp],
|
| 159 |
+
max_len: int,
|
| 160 |
+
) -> slice | npt.NDArray[np.intp]: ...
|
| 161 |
+
def is_all_arraylike(obj: list) -> bool: ...
|
| 162 |
+
|
| 163 |
+
# -----------------------------------------------------------------
|
| 164 |
+
# Functions which in reality take memoryviews
|
| 165 |
+
|
| 166 |
+
def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
|
| 167 |
+
def map_infer_mask(
|
| 168 |
+
arr: np.ndarray,
|
| 169 |
+
f: Callable[[Any], Any],
|
| 170 |
+
mask: np.ndarray, # const uint8_t[:]
|
| 171 |
+
convert: bool = ...,
|
| 172 |
+
na_value: Any = ...,
|
| 173 |
+
dtype: np.dtype = ...,
|
| 174 |
+
) -> np.ndarray: ...
|
| 175 |
+
def indices_fast(
|
| 176 |
+
index: npt.NDArray[np.intp],
|
| 177 |
+
labels: np.ndarray, # const int64_t[:]
|
| 178 |
+
keys: list,
|
| 179 |
+
sorted_labels: list[npt.NDArray[np.int64]],
|
| 180 |
+
) -> dict[Hashable, npt.NDArray[np.intp]]: ...
|
| 181 |
+
def generate_slices(
|
| 182 |
+
labels: np.ndarray, ngroups: int # const intp_t[:]
|
| 183 |
+
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
|
| 184 |
+
def count_level_2d(
|
| 185 |
+
mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
|
| 186 |
+
labels: np.ndarray, # const intp_t[:]
|
| 187 |
+
max_bin: int,
|
| 188 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
|
| 189 |
+
def get_level_sorter(
|
| 190 |
+
codes: np.ndarray, # const int64_t[:]
|
| 191 |
+
starts: np.ndarray, # const intp_t[:]
|
| 192 |
+
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
|
| 193 |
+
def generate_bins_dt64(
|
| 194 |
+
values: npt.NDArray[np.int64],
|
| 195 |
+
binner: np.ndarray, # const int64_t[:]
|
| 196 |
+
closed: object = ...,
|
| 197 |
+
hasnans: bool = ...,
|
| 198 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
| 199 |
+
def array_equivalent_object(
|
| 200 |
+
left: npt.NDArray[np.object_],
|
| 201 |
+
right: npt.NDArray[np.object_],
|
| 202 |
+
) -> bool: ...
|
| 203 |
+
def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
|
| 204 |
+
def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... # const floating[:]
|
| 205 |
+
def get_reverse_indexer(
|
| 206 |
+
indexer: np.ndarray, # const intp_t[:]
|
| 207 |
+
length: int,
|
| 208 |
+
) -> npt.NDArray[np.intp]: ...
|
| 209 |
+
def is_bool_list(obj: list) -> bool: ...
|
| 210 |
+
def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...
|
| 211 |
+
def is_range_indexer(
|
| 212 |
+
left: np.ndarray, n: int # np.ndarray[np.int64, ndim=1]
|
| 213 |
+
) -> bool: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/missing.pyi
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy import typing as npt
|
| 3 |
+
|
| 4 |
+
class NAType:
|
| 5 |
+
def __new__(cls, *args, **kwargs): ...
|
| 6 |
+
|
| 7 |
+
NA: NAType
|
| 8 |
+
|
| 9 |
+
def is_matching_na(
|
| 10 |
+
left: object, right: object, nan_matches_none: bool = ...
|
| 11 |
+
) -> bool: ...
|
| 12 |
+
def isposinf_scalar(val: object) -> bool: ...
|
| 13 |
+
def isneginf_scalar(val: object) -> bool: ...
|
| 14 |
+
def checknull(val: object, inf_as_na: bool = ...) -> bool: ...
|
| 15 |
+
def isnaobj(arr: np.ndarray, inf_as_na: bool = ...) -> npt.NDArray[np.bool_]: ...
|
| 16 |
+
def is_numeric_na(values: np.ndarray) -> npt.NDArray[np.bool_]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops.pyi
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Any,
|
| 3 |
+
Callable,
|
| 4 |
+
Iterable,
|
| 5 |
+
Literal,
|
| 6 |
+
TypeAlias,
|
| 7 |
+
overload,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
from pandas._typing import npt
|
| 13 |
+
|
| 14 |
+
_BinOp: TypeAlias = Callable[[Any, Any], Any]
|
| 15 |
+
_BoolOp: TypeAlias = Callable[[Any, Any], bool]
|
| 16 |
+
|
| 17 |
+
def scalar_compare(
|
| 18 |
+
values: np.ndarray, # object[:]
|
| 19 |
+
val: object,
|
| 20 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
| 21 |
+
) -> npt.NDArray[np.bool_]: ...
|
| 22 |
+
def vec_compare(
|
| 23 |
+
left: npt.NDArray[np.object_],
|
| 24 |
+
right: npt.NDArray[np.object_],
|
| 25 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
| 26 |
+
) -> npt.NDArray[np.bool_]: ...
|
| 27 |
+
def scalar_binop(
|
| 28 |
+
values: np.ndarray, # object[:]
|
| 29 |
+
val: object,
|
| 30 |
+
op: _BinOp, # binary operator
|
| 31 |
+
) -> np.ndarray: ...
|
| 32 |
+
def vec_binop(
|
| 33 |
+
left: np.ndarray, # object[:]
|
| 34 |
+
right: np.ndarray, # object[:]
|
| 35 |
+
op: _BinOp, # binary operator
|
| 36 |
+
) -> np.ndarray: ...
|
| 37 |
+
@overload
|
| 38 |
+
def maybe_convert_bool(
|
| 39 |
+
arr: npt.NDArray[np.object_],
|
| 40 |
+
true_values: Iterable | None = None,
|
| 41 |
+
false_values: Iterable | None = None,
|
| 42 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
| 43 |
+
) -> tuple[np.ndarray, None]: ...
|
| 44 |
+
@overload
|
| 45 |
+
def maybe_convert_bool(
|
| 46 |
+
arr: npt.NDArray[np.object_],
|
| 47 |
+
true_values: Iterable = ...,
|
| 48 |
+
false_values: Iterable = ...,
|
| 49 |
+
*,
|
| 50 |
+
convert_to_masked_nullable: Literal[True],
|
| 51 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (61.7 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
def maybe_dispatch_ufunc_to_dunder_op(
|
| 4 |
+
self, ufunc: np.ufunc, method: str, *inputs, **kwargs
|
| 5 |
+
): ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (39.3 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (43.4 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/parsers.pyi
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Hashable,
|
| 3 |
+
Literal,
|
| 4 |
+
)
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from pandas._typing import (
|
| 9 |
+
ArrayLike,
|
| 10 |
+
Dtype,
|
| 11 |
+
npt,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
STR_NA_VALUES: set[str]
|
| 15 |
+
DEFAULT_BUFFER_HEURISTIC: int
|
| 16 |
+
|
| 17 |
+
def sanitize_objects(
|
| 18 |
+
values: npt.NDArray[np.object_],
|
| 19 |
+
na_values: set,
|
| 20 |
+
) -> int: ...
|
| 21 |
+
|
| 22 |
+
class TextReader:
|
| 23 |
+
unnamed_cols: set[str]
|
| 24 |
+
table_width: int # int64_t
|
| 25 |
+
leading_cols: int # int64_t
|
| 26 |
+
header: list[list[int]] # non-negative integers
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
source,
|
| 30 |
+
delimiter: bytes | str = ..., # single-character only
|
| 31 |
+
header=...,
|
| 32 |
+
header_start: int = ..., # int64_t
|
| 33 |
+
header_end: int = ..., # uint64_t
|
| 34 |
+
index_col=...,
|
| 35 |
+
names=...,
|
| 36 |
+
tokenize_chunksize: int = ..., # int64_t
|
| 37 |
+
delim_whitespace: bool = ...,
|
| 38 |
+
converters=...,
|
| 39 |
+
skipinitialspace: bool = ...,
|
| 40 |
+
escapechar: bytes | str | None = ..., # single-character only
|
| 41 |
+
doublequote: bool = ...,
|
| 42 |
+
quotechar: str | bytes | None = ..., # at most 1 character
|
| 43 |
+
quoting: int = ...,
|
| 44 |
+
lineterminator: bytes | str | None = ..., # at most 1 character
|
| 45 |
+
comment=...,
|
| 46 |
+
decimal: bytes | str = ..., # single-character only
|
| 47 |
+
thousands: bytes | str | None = ..., # single-character only
|
| 48 |
+
dtype: Dtype | dict[Hashable, Dtype] = ...,
|
| 49 |
+
usecols=...,
|
| 50 |
+
error_bad_lines: bool = ...,
|
| 51 |
+
warn_bad_lines: bool = ...,
|
| 52 |
+
na_filter: bool = ...,
|
| 53 |
+
na_values=...,
|
| 54 |
+
na_fvalues=...,
|
| 55 |
+
keep_default_na: bool = ...,
|
| 56 |
+
true_values=...,
|
| 57 |
+
false_values=...,
|
| 58 |
+
allow_leading_cols: bool = ...,
|
| 59 |
+
skiprows=...,
|
| 60 |
+
skipfooter: int = ..., # int64_t
|
| 61 |
+
verbose: bool = ...,
|
| 62 |
+
float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
|
| 63 |
+
skip_blank_lines: bool = ...,
|
| 64 |
+
encoding_errors: bytes | str = ...,
|
| 65 |
+
) -> None: ...
|
| 66 |
+
def set_noconvert(self, i: int) -> None: ...
|
| 67 |
+
def remove_noconvert(self, i: int) -> None: ...
|
| 68 |
+
def close(self) -> None: ...
|
| 69 |
+
def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
|
| 70 |
+
def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
|
| 71 |
+
|
| 72 |
+
# _maybe_upcast, na_values are only exposed for testing
|
| 73 |
+
na_values: dict
|
| 74 |
+
|
| 75 |
+
def _maybe_upcast(
|
| 76 |
+
arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
|
| 77 |
+
) -> np.ndarray: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (91.9 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/properties.pyi
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import (
|
| 2 |
+
Sequence,
|
| 3 |
+
overload,
|
| 4 |
+
)
|
| 5 |
+
|
| 6 |
+
from pandas._typing import (
|
| 7 |
+
AnyArrayLike,
|
| 8 |
+
DataFrame,
|
| 9 |
+
Index,
|
| 10 |
+
Series,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
# note: this is a lie to make type checkers happy (they special
|
| 14 |
+
# case property). cache_readonly uses attribute names similar to
|
| 15 |
+
# property (fget) but it does not provide fset and fdel.
|
| 16 |
+
cache_readonly = property
|
| 17 |
+
|
| 18 |
+
class AxisProperty:
|
| 19 |
+
axis: int
|
| 20 |
+
def __init__(self, axis: int = ..., doc: str = ...) -> None: ...
|
| 21 |
+
@overload
|
| 22 |
+
def __get__(self, obj: DataFrame | Series, type) -> Index: ...
|
| 23 |
+
@overload
|
| 24 |
+
def __get__(self, obj: None, type) -> AxisProperty: ...
|
| 25 |
+
def __set__(
|
| 26 |
+
self, obj: DataFrame | Series, value: AnyArrayLike | Sequence
|
| 27 |
+
) -> None: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/reshape.pyi
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from pandas._typing import npt
|
| 4 |
+
|
| 5 |
+
def unstack(
|
| 6 |
+
values: np.ndarray, # reshape_t[:, :]
|
| 7 |
+
mask: np.ndarray, # const uint8_t[:]
|
| 8 |
+
stride: int,
|
| 9 |
+
length: int,
|
| 10 |
+
width: int,
|
| 11 |
+
new_values: np.ndarray, # reshape_t[:, :]
|
| 12 |
+
new_mask: np.ndarray, # uint8_t[:, :]
|
| 13 |
+
) -> None: ...
|
| 14 |
+
def explode(
|
| 15 |
+
values: npt.NDArray[np.object_],
|
| 16 |
+
) -> tuple[npt.NDArray[np.object_], npt.NDArray[np.int64]]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/sas.pyi
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
| 2 |
+
|
| 3 |
+
class Parser:
|
| 4 |
+
def __init__(self, parser: SAS7BDATReader) -> None: ...
|
| 5 |
+
def read(self, nrows: int) -> None: ...
|
| 6 |
+
|
| 7 |
+
def get_subheader_index(signature: bytes) -> int: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/sparse.pyi
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Sequence
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from pandas._typing import (
|
| 6 |
+
Self,
|
| 7 |
+
npt,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
class SparseIndex:
|
| 11 |
+
length: int
|
| 12 |
+
npoints: int
|
| 13 |
+
def __init__(self) -> None: ...
|
| 14 |
+
@property
|
| 15 |
+
def ngaps(self) -> int: ...
|
| 16 |
+
@property
|
| 17 |
+
def nbytes(self) -> int: ...
|
| 18 |
+
@property
|
| 19 |
+
def indices(self) -> npt.NDArray[np.int32]: ...
|
| 20 |
+
def equals(self, other) -> bool: ...
|
| 21 |
+
def lookup(self, index: int) -> np.int32: ...
|
| 22 |
+
def lookup_array(self, indexer: npt.NDArray[np.int32]) -> npt.NDArray[np.int32]: ...
|
| 23 |
+
def to_int_index(self) -> IntIndex: ...
|
| 24 |
+
def to_block_index(self) -> BlockIndex: ...
|
| 25 |
+
def intersect(self, y_: SparseIndex) -> Self: ...
|
| 26 |
+
def make_union(self, y_: SparseIndex) -> Self: ...
|
| 27 |
+
|
| 28 |
+
class IntIndex(SparseIndex):
|
| 29 |
+
indices: npt.NDArray[np.int32]
|
| 30 |
+
def __init__(
|
| 31 |
+
self, length: int, indices: Sequence[int], check_integrity: bool = ...
|
| 32 |
+
) -> None: ...
|
| 33 |
+
|
| 34 |
+
class BlockIndex(SparseIndex):
|
| 35 |
+
nblocks: int
|
| 36 |
+
blocs: np.ndarray
|
| 37 |
+
blengths: np.ndarray
|
| 38 |
+
def __init__(
|
| 39 |
+
self, length: int, blocs: np.ndarray, blengths: np.ndarray
|
| 40 |
+
) -> None: ...
|
| 41 |
+
|
| 42 |
+
# Override to have correct parameters
|
| 43 |
+
def intersect(self, other: SparseIndex) -> Self: ...
|
| 44 |
+
def make_union(self, y: SparseIndex) -> Self: ...
|
| 45 |
+
|
| 46 |
+
def make_mask_object_ndarray(
|
| 47 |
+
arr: npt.NDArray[np.object_], fill_value
|
| 48 |
+
) -> npt.NDArray[np.bool_]: ...
|
| 49 |
+
def get_blocks(
|
| 50 |
+
indices: npt.NDArray[np.int32],
|
| 51 |
+
) -> tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/testing.pyi
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def assert_dict_equal(a, b, compare_keys: bool = ...): ...
|
| 2 |
+
def assert_almost_equal(
|
| 3 |
+
a,
|
| 4 |
+
b,
|
| 5 |
+
rtol: float = ...,
|
| 6 |
+
atol: float = ...,
|
| 7 |
+
check_dtype: bool = ...,
|
| 8 |
+
obj=...,
|
| 9 |
+
lobj=...,
|
| 10 |
+
robj=...,
|
| 11 |
+
index_values=...,
|
| 12 |
+
): ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslib.pyi
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import tzinfo
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from pandas._typing import npt
|
| 6 |
+
|
| 7 |
+
def format_array_from_datetime(
|
| 8 |
+
values: npt.NDArray[np.int64],
|
| 9 |
+
tz: tzinfo | None = ...,
|
| 10 |
+
format: str | None = ...,
|
| 11 |
+
na_rep: str | float = ...,
|
| 12 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
| 13 |
+
) -> npt.NDArray[np.object_]: ...
|
| 14 |
+
def array_with_unit_to_datetime(
|
| 15 |
+
values: npt.NDArray[np.object_],
|
| 16 |
+
unit: str,
|
| 17 |
+
errors: str = ...,
|
| 18 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
| 19 |
+
def first_non_null(values: np.ndarray) -> int: ...
|
| 20 |
+
def array_to_datetime(
|
| 21 |
+
values: npt.NDArray[np.object_],
|
| 22 |
+
errors: str = ...,
|
| 23 |
+
dayfirst: bool = ...,
|
| 24 |
+
yearfirst: bool = ...,
|
| 25 |
+
utc: bool = ...,
|
| 26 |
+
creso: int = ...,
|
| 27 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
| 28 |
+
|
| 29 |
+
# returned ndarray may be object dtype or datetime64[ns]
|
| 30 |
+
|
| 31 |
+
def array_to_datetime_with_tz(
|
| 32 |
+
values: npt.NDArray[np.object_],
|
| 33 |
+
tz: tzinfo,
|
| 34 |
+
dayfirst: bool,
|
| 35 |
+
yearfirst: bool,
|
| 36 |
+
creso: int,
|
| 37 |
+
) -> npt.NDArray[np.int64]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.pyi
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import (
|
| 2 |
+
timedelta,
|
| 3 |
+
tzinfo,
|
| 4 |
+
)
|
| 5 |
+
from typing import Iterable
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
from pandas._typing import npt
|
| 10 |
+
|
| 11 |
+
# tz_convert_from_utc_single exposed for testing
|
| 12 |
+
def tz_convert_from_utc_single(
|
| 13 |
+
utc_val: np.int64, tz: tzinfo, creso: int = ...
|
| 14 |
+
) -> np.int64: ...
|
| 15 |
+
def tz_localize_to_utc(
|
| 16 |
+
vals: npt.NDArray[np.int64],
|
| 17 |
+
tz: tzinfo | None,
|
| 18 |
+
ambiguous: str | bool | Iterable[bool] | None = ...,
|
| 19 |
+
nonexistent: str | timedelta | np.timedelta64 | None = ...,
|
| 20 |
+
creso: int = ..., # NPY_DATETIMEUNIT
|
| 21 |
+
) -> npt.NDArray[np.int64]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/writers.pyi
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from pandas._typing import ArrayLike
|
| 4 |
+
|
| 5 |
+
def write_csv_rows(
|
| 6 |
+
data: list[ArrayLike],
|
| 7 |
+
data_index: np.ndarray,
|
| 8 |
+
nlevels: int,
|
| 9 |
+
cols: np.ndarray,
|
| 10 |
+
writer: object, # _csv.writer
|
| 11 |
+
) -> None: ...
|
| 12 |
+
def convert_json_to_lines(arr: str) -> str: ...
|
| 13 |
+
def max_len_string_array(
|
| 14 |
+
arr: np.ndarray, # pandas_string[:]
|
| 15 |
+
) -> int: ...
|
| 16 |
+
def word_len(val: object) -> int: ...
|
| 17 |
+
def string_array_replace_from_nan_rep(
|
| 18 |
+
arr: np.ndarray, # np.ndarray[object, ndim=1]
|
| 19 |
+
nan_rep: object,
|
| 20 |
+
) -> None: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_typing.py
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from collections.abc import (
|
| 4 |
+
Hashable,
|
| 5 |
+
Iterator,
|
| 6 |
+
Mapping,
|
| 7 |
+
MutableMapping,
|
| 8 |
+
Sequence,
|
| 9 |
+
)
|
| 10 |
+
from datetime import (
|
| 11 |
+
date,
|
| 12 |
+
datetime,
|
| 13 |
+
timedelta,
|
| 14 |
+
tzinfo,
|
| 15 |
+
)
|
| 16 |
+
from os import PathLike
|
| 17 |
+
import sys
|
| 18 |
+
from typing import (
|
| 19 |
+
TYPE_CHECKING,
|
| 20 |
+
Any,
|
| 21 |
+
Callable,
|
| 22 |
+
Literal,
|
| 23 |
+
Optional,
|
| 24 |
+
Protocol,
|
| 25 |
+
Type as type_t,
|
| 26 |
+
TypeVar,
|
| 27 |
+
Union,
|
| 28 |
+
overload,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
import numpy as np
|
| 32 |
+
|
| 33 |
+
# To prevent import cycles place any internal imports in the branch below
|
| 34 |
+
# and use a string literal forward reference to it in subsequent types
|
| 35 |
+
# https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles
|
| 36 |
+
if TYPE_CHECKING:
|
| 37 |
+
import numpy.typing as npt
|
| 38 |
+
|
| 39 |
+
from pandas._libs import (
|
| 40 |
+
NaTType,
|
| 41 |
+
Period,
|
| 42 |
+
Timedelta,
|
| 43 |
+
Timestamp,
|
| 44 |
+
)
|
| 45 |
+
from pandas._libs.tslibs import BaseOffset
|
| 46 |
+
|
| 47 |
+
from pandas.core.dtypes.dtypes import ExtensionDtype
|
| 48 |
+
|
| 49 |
+
from pandas import Interval
|
| 50 |
+
from pandas.arrays import (
|
| 51 |
+
DatetimeArray,
|
| 52 |
+
TimedeltaArray,
|
| 53 |
+
)
|
| 54 |
+
from pandas.core.arrays.base import ExtensionArray
|
| 55 |
+
from pandas.core.frame import DataFrame
|
| 56 |
+
from pandas.core.generic import NDFrame
|
| 57 |
+
from pandas.core.groupby.generic import (
|
| 58 |
+
DataFrameGroupBy,
|
| 59 |
+
GroupBy,
|
| 60 |
+
SeriesGroupBy,
|
| 61 |
+
)
|
| 62 |
+
from pandas.core.indexes.base import Index
|
| 63 |
+
from pandas.core.internals import (
|
| 64 |
+
ArrayManager,
|
| 65 |
+
BlockManager,
|
| 66 |
+
SingleArrayManager,
|
| 67 |
+
SingleBlockManager,
|
| 68 |
+
)
|
| 69 |
+
from pandas.core.resample import Resampler
|
| 70 |
+
from pandas.core.series import Series
|
| 71 |
+
from pandas.core.window.rolling import BaseWindow
|
| 72 |
+
|
| 73 |
+
from pandas.io.formats.format import EngFormatter
|
| 74 |
+
from pandas.tseries.holiday import AbstractHolidayCalendar
|
| 75 |
+
|
| 76 |
+
ScalarLike_co = Union[
|
| 77 |
+
int,
|
| 78 |
+
float,
|
| 79 |
+
complex,
|
| 80 |
+
str,
|
| 81 |
+
bytes,
|
| 82 |
+
np.generic,
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
# numpy compatible types
|
| 86 |
+
NumpyValueArrayLike = Union[ScalarLike_co, npt.ArrayLike]
|
| 87 |
+
# Name "npt._ArrayLikeInt_co" is not defined [name-defined]
|
| 88 |
+
NumpySorter = Optional[npt._ArrayLikeInt_co] # type: ignore[name-defined]
|
| 89 |
+
|
| 90 |
+
from typing import SupportsIndex
|
| 91 |
+
|
| 92 |
+
if sys.version_info >= (3, 10):
|
| 93 |
+
from typing import TypeGuard # pyright: ignore[reportUnusedImport]
|
| 94 |
+
else:
|
| 95 |
+
from typing_extensions import TypeGuard # pyright: ignore[reportUnusedImport]
|
| 96 |
+
|
| 97 |
+
if sys.version_info >= (3, 11):
|
| 98 |
+
from typing import Self # pyright: ignore[reportUnusedImport]
|
| 99 |
+
else:
|
| 100 |
+
from typing_extensions import Self # pyright: ignore[reportUnusedImport]
|
| 101 |
+
else:
|
| 102 |
+
npt: Any = None
|
| 103 |
+
Self: Any = None
|
| 104 |
+
TypeGuard: Any = None
|
| 105 |
+
|
| 106 |
+
HashableT = TypeVar("HashableT", bound=Hashable)
|
| 107 |
+
MutableMappingT = TypeVar("MutableMappingT", bound=MutableMapping)
|
| 108 |
+
|
| 109 |
+
# array-like
|
| 110 |
+
|
| 111 |
+
ArrayLike = Union["ExtensionArray", np.ndarray]
|
| 112 |
+
AnyArrayLike = Union[ArrayLike, "Index", "Series"]
|
| 113 |
+
TimeArrayLike = Union["DatetimeArray", "TimedeltaArray"]
|
| 114 |
+
|
| 115 |
+
# list-like
|
| 116 |
+
|
| 117 |
+
# from https://github.com/hauntsaninja/useful_types
|
| 118 |
+
# includes Sequence-like objects but excludes str and bytes
|
| 119 |
+
_T_co = TypeVar("_T_co", covariant=True)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class SequenceNotStr(Protocol[_T_co]):
|
| 123 |
+
@overload
|
| 124 |
+
def __getitem__(self, index: SupportsIndex, /) -> _T_co:
|
| 125 |
+
...
|
| 126 |
+
|
| 127 |
+
@overload
|
| 128 |
+
def __getitem__(self, index: slice, /) -> Sequence[_T_co]:
|
| 129 |
+
...
|
| 130 |
+
|
| 131 |
+
def __contains__(self, value: object, /) -> bool:
|
| 132 |
+
...
|
| 133 |
+
|
| 134 |
+
def __len__(self) -> int:
|
| 135 |
+
...
|
| 136 |
+
|
| 137 |
+
def __iter__(self) -> Iterator[_T_co]:
|
| 138 |
+
...
|
| 139 |
+
|
| 140 |
+
def index(self, value: Any, /, start: int = 0, stop: int = ...) -> int:
|
| 141 |
+
...
|
| 142 |
+
|
| 143 |
+
def count(self, value: Any, /) -> int:
|
| 144 |
+
...
|
| 145 |
+
|
| 146 |
+
def __reversed__(self) -> Iterator[_T_co]:
|
| 147 |
+
...
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
ListLike = Union[AnyArrayLike, SequenceNotStr, range]
|
| 151 |
+
|
| 152 |
+
# scalars
|
| 153 |
+
|
| 154 |
+
PythonScalar = Union[str, float, bool]
|
| 155 |
+
DatetimeLikeScalar = Union["Period", "Timestamp", "Timedelta"]
|
| 156 |
+
PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"]
|
| 157 |
+
Scalar = Union[PythonScalar, PandasScalar, np.datetime64, np.timedelta64, date]
|
| 158 |
+
IntStrT = TypeVar("IntStrT", bound=Union[int, str])
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# timestamp and timedelta convertible types
|
| 162 |
+
|
| 163 |
+
TimestampConvertibleTypes = Union[
|
| 164 |
+
"Timestamp", date, np.datetime64, np.int64, float, str
|
| 165 |
+
]
|
| 166 |
+
TimestampNonexistent = Union[
|
| 167 |
+
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
|
| 168 |
+
]
|
| 169 |
+
TimedeltaConvertibleTypes = Union[
|
| 170 |
+
"Timedelta", timedelta, np.timedelta64, np.int64, float, str
|
| 171 |
+
]
|
| 172 |
+
Timezone = Union[str, tzinfo]
|
| 173 |
+
|
| 174 |
+
ToTimestampHow = Literal["s", "e", "start", "end"]
|
| 175 |
+
|
| 176 |
+
# NDFrameT is stricter and ensures that the same subclass of NDFrame always is
|
| 177 |
+
# used. E.g. `def func(a: NDFrameT) -> NDFrameT: ...` means that if a
|
| 178 |
+
# Series is passed into a function, a Series is always returned and if a DataFrame is
|
| 179 |
+
# passed in, a DataFrame is always returned.
|
| 180 |
+
NDFrameT = TypeVar("NDFrameT", bound="NDFrame")
|
| 181 |
+
|
| 182 |
+
NumpyIndexT = TypeVar("NumpyIndexT", np.ndarray, "Index")
|
| 183 |
+
|
| 184 |
+
AxisInt = int
|
| 185 |
+
Axis = Union[AxisInt, Literal["index", "columns", "rows"]]
|
| 186 |
+
IndexLabel = Union[Hashable, Sequence[Hashable]]
|
| 187 |
+
Level = Hashable
|
| 188 |
+
Shape = tuple[int, ...]
|
| 189 |
+
Suffixes = tuple[Optional[str], Optional[str]]
|
| 190 |
+
Ordered = Optional[bool]
|
| 191 |
+
JSONSerializable = Optional[Union[PythonScalar, list, dict]]
|
| 192 |
+
Frequency = Union[str, "BaseOffset"]
|
| 193 |
+
Axes = ListLike
|
| 194 |
+
|
| 195 |
+
RandomState = Union[
|
| 196 |
+
int,
|
| 197 |
+
np.ndarray,
|
| 198 |
+
np.random.Generator,
|
| 199 |
+
np.random.BitGenerator,
|
| 200 |
+
np.random.RandomState,
|
| 201 |
+
]
|
| 202 |
+
|
| 203 |
+
# dtypes
|
| 204 |
+
NpDtype = Union[str, np.dtype, type_t[Union[str, complex, bool, object]]]
|
| 205 |
+
Dtype = Union["ExtensionDtype", NpDtype]
|
| 206 |
+
AstypeArg = Union["ExtensionDtype", "npt.DTypeLike"]
|
| 207 |
+
# DtypeArg specifies all allowable dtypes in a functions its dtype argument
|
| 208 |
+
DtypeArg = Union[Dtype, dict[Hashable, Dtype]]
|
| 209 |
+
DtypeObj = Union[np.dtype, "ExtensionDtype"]
|
| 210 |
+
|
| 211 |
+
# converters
|
| 212 |
+
ConvertersArg = dict[Hashable, Callable[[Dtype], Dtype]]
|
| 213 |
+
|
| 214 |
+
# parse_dates
|
| 215 |
+
ParseDatesArg = Union[
|
| 216 |
+
bool, list[Hashable], list[list[Hashable]], dict[Hashable, list[Hashable]]
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
# For functions like rename that convert one label to another
|
| 220 |
+
Renamer = Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]
|
| 221 |
+
|
| 222 |
+
# to maintain type information across generic functions and parametrization
|
| 223 |
+
T = TypeVar("T")
|
| 224 |
+
|
| 225 |
+
# used in decorators to preserve the signature of the function it decorates
|
| 226 |
+
# see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators
|
| 227 |
+
FuncType = Callable[..., Any]
|
| 228 |
+
F = TypeVar("F", bound=FuncType)
|
| 229 |
+
|
| 230 |
+
# types of vectorized key functions for DataFrame::sort_values and
|
| 231 |
+
# DataFrame::sort_index, among others
|
| 232 |
+
ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]]
|
| 233 |
+
IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]]
|
| 234 |
+
|
| 235 |
+
# types of `func` kwarg for DataFrame.aggregate and Series.aggregate
|
| 236 |
+
AggFuncTypeBase = Union[Callable, str]
|
| 237 |
+
AggFuncTypeDict = MutableMapping[
|
| 238 |
+
Hashable, Union[AggFuncTypeBase, list[AggFuncTypeBase]]
|
| 239 |
+
]
|
| 240 |
+
AggFuncType = Union[
|
| 241 |
+
AggFuncTypeBase,
|
| 242 |
+
list[AggFuncTypeBase],
|
| 243 |
+
AggFuncTypeDict,
|
| 244 |
+
]
|
| 245 |
+
AggObjType = Union[
|
| 246 |
+
"Series",
|
| 247 |
+
"DataFrame",
|
| 248 |
+
"GroupBy",
|
| 249 |
+
"SeriesGroupBy",
|
| 250 |
+
"DataFrameGroupBy",
|
| 251 |
+
"BaseWindow",
|
| 252 |
+
"Resampler",
|
| 253 |
+
]
|
| 254 |
+
|
| 255 |
+
PythonFuncType = Callable[[Any], Any]
|
| 256 |
+
|
| 257 |
+
# filenames and file-like-objects
|
| 258 |
+
AnyStr_co = TypeVar("AnyStr_co", str, bytes, covariant=True)
|
| 259 |
+
AnyStr_contra = TypeVar("AnyStr_contra", str, bytes, contravariant=True)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class BaseBuffer(Protocol):
|
| 263 |
+
@property
|
| 264 |
+
def mode(self) -> str:
|
| 265 |
+
# for _get_filepath_or_buffer
|
| 266 |
+
...
|
| 267 |
+
|
| 268 |
+
def seek(self, __offset: int, __whence: int = ...) -> int:
|
| 269 |
+
# with one argument: gzip.GzipFile, bz2.BZ2File
|
| 270 |
+
# with two arguments: zip.ZipFile, read_sas
|
| 271 |
+
...
|
| 272 |
+
|
| 273 |
+
def seekable(self) -> bool:
|
| 274 |
+
# for bz2.BZ2File
|
| 275 |
+
...
|
| 276 |
+
|
| 277 |
+
def tell(self) -> int:
|
| 278 |
+
# for zip.ZipFile, read_stata, to_stata
|
| 279 |
+
...
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class ReadBuffer(BaseBuffer, Protocol[AnyStr_co]):
|
| 283 |
+
def read(self, __n: int = ...) -> AnyStr_co:
|
| 284 |
+
# for BytesIOWrapper, gzip.GzipFile, bz2.BZ2File
|
| 285 |
+
...
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class WriteBuffer(BaseBuffer, Protocol[AnyStr_contra]):
|
| 289 |
+
def write(self, __b: AnyStr_contra) -> Any:
|
| 290 |
+
# for gzip.GzipFile, bz2.BZ2File
|
| 291 |
+
...
|
| 292 |
+
|
| 293 |
+
def flush(self) -> Any:
|
| 294 |
+
# for gzip.GzipFile, bz2.BZ2File
|
| 295 |
+
...
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class ReadPickleBuffer(ReadBuffer[bytes], Protocol):
|
| 299 |
+
def readline(self) -> bytes:
|
| 300 |
+
...
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class WriteExcelBuffer(WriteBuffer[bytes], Protocol):
|
| 304 |
+
def truncate(self, size: int | None = ...) -> int:
|
| 305 |
+
...
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class ReadCsvBuffer(ReadBuffer[AnyStr_co], Protocol):
|
| 309 |
+
def __iter__(self) -> Iterator[AnyStr_co]:
|
| 310 |
+
# for engine=python
|
| 311 |
+
...
|
| 312 |
+
|
| 313 |
+
def fileno(self) -> int:
|
| 314 |
+
# for _MMapWrapper
|
| 315 |
+
...
|
| 316 |
+
|
| 317 |
+
def readline(self) -> AnyStr_co:
|
| 318 |
+
# for engine=python
|
| 319 |
+
...
|
| 320 |
+
|
| 321 |
+
@property
|
| 322 |
+
def closed(self) -> bool:
|
| 323 |
+
# for enine=pyarrow
|
| 324 |
+
...
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
FilePath = Union[str, "PathLike[str]"]
|
| 328 |
+
|
| 329 |
+
# for arbitrary kwargs passed during reading/writing files
|
| 330 |
+
StorageOptions = Optional[dict[str, Any]]
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# compression keywords and compression
|
| 334 |
+
CompressionDict = dict[str, Any]
|
| 335 |
+
CompressionOptions = Optional[
|
| 336 |
+
Union[Literal["infer", "gzip", "bz2", "zip", "xz", "zstd", "tar"], CompressionDict]
|
| 337 |
+
]
|
| 338 |
+
|
| 339 |
+
# types in DataFrameFormatter
|
| 340 |
+
FormattersType = Union[
|
| 341 |
+
list[Callable], tuple[Callable, ...], Mapping[Union[str, int], Callable]
|
| 342 |
+
]
|
| 343 |
+
ColspaceType = Mapping[Hashable, Union[str, int]]
|
| 344 |
+
FloatFormatType = Union[str, Callable, "EngFormatter"]
|
| 345 |
+
ColspaceArgType = Union[
|
| 346 |
+
str, int, Sequence[Union[str, int]], Mapping[Hashable, Union[str, int]]
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
# Arguments for fillna()
|
| 350 |
+
FillnaOptions = Literal["backfill", "bfill", "ffill", "pad"]
|
| 351 |
+
InterpolateOptions = Literal[
|
| 352 |
+
"linear",
|
| 353 |
+
"time",
|
| 354 |
+
"index",
|
| 355 |
+
"values",
|
| 356 |
+
"nearest",
|
| 357 |
+
"zero",
|
| 358 |
+
"slinear",
|
| 359 |
+
"quadratic",
|
| 360 |
+
"cubic",
|
| 361 |
+
"barycentric",
|
| 362 |
+
"polynomial",
|
| 363 |
+
"krogh",
|
| 364 |
+
"piecewise_polynomial",
|
| 365 |
+
"spline",
|
| 366 |
+
"pchip",
|
| 367 |
+
"akima",
|
| 368 |
+
"cubicspline",
|
| 369 |
+
"from_derivatives",
|
| 370 |
+
]
|
| 371 |
+
|
| 372 |
+
# internals
|
| 373 |
+
Manager = Union[
|
| 374 |
+
"ArrayManager", "SingleArrayManager", "BlockManager", "SingleBlockManager"
|
| 375 |
+
]
|
| 376 |
+
SingleManager = Union["SingleArrayManager", "SingleBlockManager"]
|
| 377 |
+
Manager2D = Union["ArrayManager", "BlockManager"]
|
| 378 |
+
|
| 379 |
+
# indexing
|
| 380 |
+
# PositionalIndexer -> valid 1D positional indexer, e.g. can pass
|
| 381 |
+
# to ndarray.__getitem__
|
| 382 |
+
# ScalarIndexer is for a single value as the index
|
| 383 |
+
# SequenceIndexer is for list like or slices (but not tuples)
|
| 384 |
+
# PositionalIndexerTuple is extends the PositionalIndexer for 2D arrays
|
| 385 |
+
# These are used in various __getitem__ overloads
|
| 386 |
+
# TODO(typing#684): add Ellipsis, see
|
| 387 |
+
# https://github.com/python/typing/issues/684#issuecomment-548203158
|
| 388 |
+
# https://bugs.python.org/issue41810
|
| 389 |
+
# Using List[int] here rather than Sequence[int] to disallow tuples.
|
| 390 |
+
ScalarIndexer = Union[int, np.integer]
|
| 391 |
+
SequenceIndexer = Union[slice, list[int], np.ndarray]
|
| 392 |
+
PositionalIndexer = Union[ScalarIndexer, SequenceIndexer]
|
| 393 |
+
PositionalIndexerTuple = tuple[PositionalIndexer, PositionalIndexer]
|
| 394 |
+
PositionalIndexer2D = Union[PositionalIndexer, PositionalIndexerTuple]
|
| 395 |
+
if TYPE_CHECKING:
|
| 396 |
+
TakeIndexer = Union[Sequence[int], Sequence[np.integer], npt.NDArray[np.integer]]
|
| 397 |
+
else:
|
| 398 |
+
TakeIndexer = Any
|
| 399 |
+
|
| 400 |
+
# Shared by functions such as drop and astype
|
| 401 |
+
IgnoreRaise = Literal["ignore", "raise"]
|
| 402 |
+
|
| 403 |
+
# Windowing rank methods
|
| 404 |
+
WindowingRankType = Literal["average", "min", "max"]
|
| 405 |
+
|
| 406 |
+
# read_csv engines
|
| 407 |
+
CSVEngine = Literal["c", "python", "pyarrow", "python-fwf"]
|
| 408 |
+
|
| 409 |
+
# read_json engines
|
| 410 |
+
JSONEngine = Literal["ujson", "pyarrow"]
|
| 411 |
+
|
| 412 |
+
# read_xml parsers
|
| 413 |
+
XMLParsers = Literal["lxml", "etree"]
|
| 414 |
+
|
| 415 |
+
# read_html flavors
|
| 416 |
+
HTMLFlavors = Literal["lxml", "html5lib", "bs4"]
|
| 417 |
+
|
| 418 |
+
# Interval closed type
|
| 419 |
+
IntervalLeftRight = Literal["left", "right"]
|
| 420 |
+
IntervalClosedType = Union[IntervalLeftRight, Literal["both", "neither"]]
|
| 421 |
+
|
| 422 |
+
# datetime and NaTType
|
| 423 |
+
DatetimeNaTType = Union[datetime, "NaTType"]
|
| 424 |
+
DateTimeErrorChoices = Union[IgnoreRaise, Literal["coerce"]]
|
| 425 |
+
|
| 426 |
+
# sort_index
|
| 427 |
+
SortKind = Literal["quicksort", "mergesort", "heapsort", "stable"]
|
| 428 |
+
NaPosition = Literal["first", "last"]
|
| 429 |
+
|
| 430 |
+
# Arguments for nsmalles and n_largest
|
| 431 |
+
NsmallestNlargestKeep = Literal["first", "last", "all"]
|
| 432 |
+
|
| 433 |
+
# quantile interpolation
|
| 434 |
+
QuantileInterpolation = Literal["linear", "lower", "higher", "midpoint", "nearest"]
|
| 435 |
+
|
| 436 |
+
# plotting
|
| 437 |
+
PlottingOrientation = Literal["horizontal", "vertical"]
|
| 438 |
+
|
| 439 |
+
# dropna
|
| 440 |
+
AnyAll = Literal["any", "all"]
|
| 441 |
+
|
| 442 |
+
# merge
|
| 443 |
+
MergeHow = Literal["left", "right", "inner", "outer", "cross"]
|
| 444 |
+
MergeValidate = Literal[
|
| 445 |
+
"one_to_one",
|
| 446 |
+
"1:1",
|
| 447 |
+
"one_to_many",
|
| 448 |
+
"1:m",
|
| 449 |
+
"many_to_one",
|
| 450 |
+
"m:1",
|
| 451 |
+
"many_to_many",
|
| 452 |
+
"m:m",
|
| 453 |
+
]
|
| 454 |
+
|
| 455 |
+
# join
|
| 456 |
+
JoinHow = Literal["left", "right", "inner", "outer"]
|
| 457 |
+
JoinValidate = Literal[
|
| 458 |
+
"one_to_one",
|
| 459 |
+
"1:1",
|
| 460 |
+
"one_to_many",
|
| 461 |
+
"1:m",
|
| 462 |
+
"many_to_one",
|
| 463 |
+
"m:1",
|
| 464 |
+
"many_to_many",
|
| 465 |
+
"m:m",
|
| 466 |
+
]
|
| 467 |
+
|
| 468 |
+
# reindex
|
| 469 |
+
ReindexMethod = Union[FillnaOptions, Literal["nearest"]]
|
| 470 |
+
|
| 471 |
+
MatplotlibColor = Union[str, Sequence[float]]
|
| 472 |
+
TimeGrouperOrigin = Union[
|
| 473 |
+
"Timestamp", Literal["epoch", "start", "start_day", "end", "end_day"]
|
| 474 |
+
]
|
| 475 |
+
TimeAmbiguous = Union[Literal["infer", "NaT", "raise"], "npt.NDArray[np.bool_]"]
|
| 476 |
+
TimeNonexistent = Union[
|
| 477 |
+
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
|
| 478 |
+
]
|
| 479 |
+
DropKeep = Literal["first", "last", False]
|
| 480 |
+
CorrelationMethod = Union[
|
| 481 |
+
Literal["pearson", "kendall", "spearman"], Callable[[np.ndarray, np.ndarray], float]
|
| 482 |
+
]
|
| 483 |
+
AlignJoin = Literal["outer", "inner", "left", "right"]
|
| 484 |
+
DtypeBackend = Literal["pyarrow", "numpy_nullable"]
|
| 485 |
+
|
| 486 |
+
TimeUnit = Literal["s", "ms", "us", "ns"]
|
| 487 |
+
OpenFileErrors = Literal[
|
| 488 |
+
"strict",
|
| 489 |
+
"ignore",
|
| 490 |
+
"replace",
|
| 491 |
+
"surrogateescape",
|
| 492 |
+
"xmlcharrefreplace",
|
| 493 |
+
"backslashreplace",
|
| 494 |
+
"namereplace",
|
| 495 |
+
]
|
| 496 |
+
|
| 497 |
+
# update
|
| 498 |
+
UpdateJoin = Literal["left"]
|
| 499 |
+
|
| 500 |
+
# applymap
|
| 501 |
+
NaAction = Literal["ignore"]
|
| 502 |
+
|
| 503 |
+
# from_dict
|
| 504 |
+
FromDictOrient = Literal["columns", "index", "tight"]
|
| 505 |
+
|
| 506 |
+
# to_gbc
|
| 507 |
+
ToGbqIfexist = Literal["fail", "replace", "append"]
|
| 508 |
+
|
| 509 |
+
# to_stata
|
| 510 |
+
ToStataByteorder = Literal[">", "<", "little", "big"]
|
| 511 |
+
|
| 512 |
+
# ExcelWriter
|
| 513 |
+
ExcelWriterIfSheetExists = Literal["error", "new", "replace", "overlay"]
|
| 514 |
+
|
| 515 |
+
# Offsets
|
| 516 |
+
OffsetCalendar = Union[np.busdaycalendar, "AbstractHolidayCalendar"]
|
| 517 |
+
|
| 518 |
+
# read_csv: usecols
|
| 519 |
+
UsecolsArgType = Union[
|
| 520 |
+
SequenceNotStr[Hashable],
|
| 521 |
+
range,
|
| 522 |
+
AnyArrayLike,
|
| 523 |
+
Callable[[HashableT], bool],
|
| 524 |
+
None,
|
| 525 |
+
]
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_version.py
ADDED
|
@@ -0,0 +1,692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file helps to compute a version number in source trees obtained from
|
| 2 |
+
# git-archive tarball (such as those provided by githubs download-from-tag
|
| 3 |
+
# feature). Distribution tarballs (built by setup.py sdist) and build
|
| 4 |
+
# directories (produced by setup.py build) will contain a much shorter file
|
| 5 |
+
# that just contains the computed version number.
|
| 6 |
+
|
| 7 |
+
# This file is released into the public domain.
|
| 8 |
+
# Generated by versioneer-0.28
|
| 9 |
+
# https://github.com/python-versioneer/python-versioneer
|
| 10 |
+
|
| 11 |
+
"""Git implementation of _version.py."""
|
| 12 |
+
|
| 13 |
+
import errno
|
| 14 |
+
import functools
|
| 15 |
+
import os
|
| 16 |
+
import re
|
| 17 |
+
import subprocess
|
| 18 |
+
import sys
|
| 19 |
+
from typing import Callable
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_keywords():
|
| 23 |
+
"""Get the keywords needed to look up the version information."""
|
| 24 |
+
# these strings will be replaced by git during git-archive.
|
| 25 |
+
# setup.py/versioneer.py will grep for the variable names, so they must
|
| 26 |
+
# each be defined on a line of their own. _version.py will just call
|
| 27 |
+
# get_keywords().
|
| 28 |
+
git_refnames = "$Format:%d$"
|
| 29 |
+
git_full = "$Format:%H$"
|
| 30 |
+
git_date = "$Format:%ci$"
|
| 31 |
+
keywords = {"refnames": git_refnames, "full": git_full, "date": git_date}
|
| 32 |
+
return keywords
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class VersioneerConfig:
|
| 36 |
+
"""Container for Versioneer configuration parameters."""
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_config():
|
| 40 |
+
"""Create, populate and return the VersioneerConfig() object."""
|
| 41 |
+
# these strings are filled in when 'setup.py versioneer' creates
|
| 42 |
+
# _version.py
|
| 43 |
+
cfg = VersioneerConfig()
|
| 44 |
+
cfg.VCS = "git"
|
| 45 |
+
cfg.style = "pep440"
|
| 46 |
+
cfg.tag_prefix = "v"
|
| 47 |
+
cfg.parentdir_prefix = "pandas-"
|
| 48 |
+
cfg.versionfile_source = "pandas/_version.py"
|
| 49 |
+
cfg.verbose = False
|
| 50 |
+
return cfg
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class NotThisMethod(Exception):
|
| 54 |
+
"""Exception raised if a method is not valid for the current scenario."""
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
LONG_VERSION_PY: dict[str, str] = {}
|
| 58 |
+
HANDLERS: dict[str, dict[str, Callable]] = {}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def register_vcs_handler(vcs, method): # decorator
|
| 62 |
+
"""Create decorator to mark a method as the handler of a VCS."""
|
| 63 |
+
|
| 64 |
+
def decorate(f):
|
| 65 |
+
"""Store f in HANDLERS[vcs][method]."""
|
| 66 |
+
if vcs not in HANDLERS:
|
| 67 |
+
HANDLERS[vcs] = {}
|
| 68 |
+
HANDLERS[vcs][method] = f
|
| 69 |
+
return f
|
| 70 |
+
|
| 71 |
+
return decorate
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None):
|
| 75 |
+
"""Call the given command(s)."""
|
| 76 |
+
assert isinstance(commands, list)
|
| 77 |
+
process = None
|
| 78 |
+
|
| 79 |
+
popen_kwargs = {}
|
| 80 |
+
if sys.platform == "win32":
|
| 81 |
+
# This hides the console window if pythonw.exe is used
|
| 82 |
+
startupinfo = subprocess.STARTUPINFO()
|
| 83 |
+
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
|
| 84 |
+
popen_kwargs["startupinfo"] = startupinfo
|
| 85 |
+
|
| 86 |
+
for command in commands:
|
| 87 |
+
dispcmd = str([command] + args)
|
| 88 |
+
try:
|
| 89 |
+
# remember shell=False, so use git.cmd on windows, not just git
|
| 90 |
+
process = subprocess.Popen(
|
| 91 |
+
[command] + args,
|
| 92 |
+
cwd=cwd,
|
| 93 |
+
env=env,
|
| 94 |
+
stdout=subprocess.PIPE,
|
| 95 |
+
stderr=(subprocess.PIPE if hide_stderr else None),
|
| 96 |
+
**popen_kwargs,
|
| 97 |
+
)
|
| 98 |
+
break
|
| 99 |
+
except OSError:
|
| 100 |
+
e = sys.exc_info()[1]
|
| 101 |
+
if e.errno == errno.ENOENT:
|
| 102 |
+
continue
|
| 103 |
+
if verbose:
|
| 104 |
+
print(f"unable to run {dispcmd}")
|
| 105 |
+
print(e)
|
| 106 |
+
return None, None
|
| 107 |
+
else:
|
| 108 |
+
if verbose:
|
| 109 |
+
print(f"unable to find command, tried {commands}")
|
| 110 |
+
return None, None
|
| 111 |
+
stdout = process.communicate()[0].strip().decode()
|
| 112 |
+
if process.returncode != 0:
|
| 113 |
+
if verbose:
|
| 114 |
+
print(f"unable to run {dispcmd} (error)")
|
| 115 |
+
print(f"stdout was {stdout}")
|
| 116 |
+
return None, process.returncode
|
| 117 |
+
return stdout, process.returncode
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def versions_from_parentdir(parentdir_prefix, root, verbose):
|
| 121 |
+
"""Try to determine the version from the parent directory name.
|
| 122 |
+
|
| 123 |
+
Source tarballs conventionally unpack into a directory that includes both
|
| 124 |
+
the project name and a version string. We will also support searching up
|
| 125 |
+
two directory levels for an appropriately named parent directory
|
| 126 |
+
"""
|
| 127 |
+
rootdirs = []
|
| 128 |
+
|
| 129 |
+
for _ in range(3):
|
| 130 |
+
dirname = os.path.basename(root)
|
| 131 |
+
if dirname.startswith(parentdir_prefix):
|
| 132 |
+
return {
|
| 133 |
+
"version": dirname[len(parentdir_prefix) :],
|
| 134 |
+
"full-revisionid": None,
|
| 135 |
+
"dirty": False,
|
| 136 |
+
"error": None,
|
| 137 |
+
"date": None,
|
| 138 |
+
}
|
| 139 |
+
rootdirs.append(root)
|
| 140 |
+
root = os.path.dirname(root) # up a level
|
| 141 |
+
|
| 142 |
+
if verbose:
|
| 143 |
+
print(
|
| 144 |
+
f"Tried directories {str(rootdirs)} \
|
| 145 |
+
but none started with prefix {parentdir_prefix}"
|
| 146 |
+
)
|
| 147 |
+
raise NotThisMethod("rootdir doesn't start with parentdir_prefix")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
@register_vcs_handler("git", "get_keywords")
|
| 151 |
+
def git_get_keywords(versionfile_abs):
|
| 152 |
+
"""Extract version information from the given file."""
|
| 153 |
+
# the code embedded in _version.py can just fetch the value of these
|
| 154 |
+
# keywords. When used from setup.py, we don't want to import _version.py,
|
| 155 |
+
# so we do it with a regexp instead. This function is not used from
|
| 156 |
+
# _version.py.
|
| 157 |
+
keywords = {}
|
| 158 |
+
try:
|
| 159 |
+
with open(versionfile_abs, encoding="utf-8") as fobj:
|
| 160 |
+
for line in fobj:
|
| 161 |
+
if line.strip().startswith("git_refnames ="):
|
| 162 |
+
mo = re.search(r'=\s*"(.*)"', line)
|
| 163 |
+
if mo:
|
| 164 |
+
keywords["refnames"] = mo.group(1)
|
| 165 |
+
if line.strip().startswith("git_full ="):
|
| 166 |
+
mo = re.search(r'=\s*"(.*)"', line)
|
| 167 |
+
if mo:
|
| 168 |
+
keywords["full"] = mo.group(1)
|
| 169 |
+
if line.strip().startswith("git_date ="):
|
| 170 |
+
mo = re.search(r'=\s*"(.*)"', line)
|
| 171 |
+
if mo:
|
| 172 |
+
keywords["date"] = mo.group(1)
|
| 173 |
+
except OSError:
|
| 174 |
+
pass
|
| 175 |
+
return keywords
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
@register_vcs_handler("git", "keywords")
|
| 179 |
+
def git_versions_from_keywords(keywords, tag_prefix, verbose):
|
| 180 |
+
"""Get version information from git keywords."""
|
| 181 |
+
if "refnames" not in keywords:
|
| 182 |
+
raise NotThisMethod("Short version file found")
|
| 183 |
+
date = keywords.get("date")
|
| 184 |
+
if date is not None:
|
| 185 |
+
# Use only the last line. Previous lines may contain GPG signature
|
| 186 |
+
# information.
|
| 187 |
+
date = date.splitlines()[-1]
|
| 188 |
+
|
| 189 |
+
# git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant
|
| 190 |
+
# datestamp. However we prefer "%ci" (which expands to an "ISO-8601
|
| 191 |
+
# -like" string, which we must then edit to make compliant), because
|
| 192 |
+
# it's been around since git-1.5.3, and it's too difficult to
|
| 193 |
+
# discover which version we're using, or to work around using an
|
| 194 |
+
# older one.
|
| 195 |
+
date = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
|
| 196 |
+
refnames = keywords["refnames"].strip()
|
| 197 |
+
if refnames.startswith("$Format"):
|
| 198 |
+
if verbose:
|
| 199 |
+
print("keywords are unexpanded, not using")
|
| 200 |
+
raise NotThisMethod("unexpanded keywords, not a git-archive tarball")
|
| 201 |
+
refs = {r.strip() for r in refnames.strip("()").split(",")}
|
| 202 |
+
# starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of
|
| 203 |
+
# just "foo-1.0". If we see a "tag: " prefix, prefer those.
|
| 204 |
+
TAG = "tag: "
|
| 205 |
+
tags = {r[len(TAG) :] for r in refs if r.startswith(TAG)}
|
| 206 |
+
if not tags:
|
| 207 |
+
# Either we're using git < 1.8.3, or there really are no tags. We use
|
| 208 |
+
# a heuristic: assume all version tags have a digit. The old git %d
|
| 209 |
+
# expansion behaves like git log --decorate=short and strips out the
|
| 210 |
+
# refs/heads/ and refs/tags/ prefixes that would let us distinguish
|
| 211 |
+
# between branches and tags. By ignoring refnames without digits, we
|
| 212 |
+
# filter out many common branch names like "release" and
|
| 213 |
+
# "stabilization", as well as "HEAD" and "master".
|
| 214 |
+
tags = {r for r in refs if re.search(r"\d", r)}
|
| 215 |
+
if verbose:
|
| 216 |
+
print(f"discarding '{','.join(refs - tags)}', no digits")
|
| 217 |
+
if verbose:
|
| 218 |
+
print(f"likely tags: {','.join(sorted(tags))}")
|
| 219 |
+
for ref in sorted(tags):
|
| 220 |
+
# sorting will prefer e.g. "2.0" over "2.0rc1"
|
| 221 |
+
if ref.startswith(tag_prefix):
|
| 222 |
+
r = ref[len(tag_prefix) :]
|
| 223 |
+
# Filter out refs that exactly match prefix or that don't start
|
| 224 |
+
# with a number once the prefix is stripped (mostly a concern
|
| 225 |
+
# when prefix is '')
|
| 226 |
+
if not re.match(r"\d", r):
|
| 227 |
+
continue
|
| 228 |
+
if verbose:
|
| 229 |
+
print(f"picking {r}")
|
| 230 |
+
return {
|
| 231 |
+
"version": r,
|
| 232 |
+
"full-revisionid": keywords["full"].strip(),
|
| 233 |
+
"dirty": False,
|
| 234 |
+
"error": None,
|
| 235 |
+
"date": date,
|
| 236 |
+
}
|
| 237 |
+
# no suitable tags, so version is "0+unknown", but full hex is still there
|
| 238 |
+
if verbose:
|
| 239 |
+
print("no suitable tags, using unknown + full revision id")
|
| 240 |
+
return {
|
| 241 |
+
"version": "0+unknown",
|
| 242 |
+
"full-revisionid": keywords["full"].strip(),
|
| 243 |
+
"dirty": False,
|
| 244 |
+
"error": "no suitable tags",
|
| 245 |
+
"date": None,
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
@register_vcs_handler("git", "pieces_from_vcs")
|
| 250 |
+
def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command):
|
| 251 |
+
"""Get version from 'git describe' in the root of the source tree.
|
| 252 |
+
|
| 253 |
+
This only gets called if the git-archive 'subst' keywords were *not*
|
| 254 |
+
expanded, and _version.py hasn't already been rewritten with a short
|
| 255 |
+
version string, meaning we're inside a checked out source tree.
|
| 256 |
+
"""
|
| 257 |
+
GITS = ["git"]
|
| 258 |
+
if sys.platform == "win32":
|
| 259 |
+
GITS = ["git.cmd", "git.exe"]
|
| 260 |
+
|
| 261 |
+
# GIT_DIR can interfere with correct operation of Versioneer.
|
| 262 |
+
# It may be intended to be passed to the Versioneer-versioned project,
|
| 263 |
+
# but that should not change where we get our version from.
|
| 264 |
+
env = os.environ.copy()
|
| 265 |
+
env.pop("GIT_DIR", None)
|
| 266 |
+
runner = functools.partial(runner, env=env)
|
| 267 |
+
|
| 268 |
+
_, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=not verbose)
|
| 269 |
+
if rc != 0:
|
| 270 |
+
if verbose:
|
| 271 |
+
print(f"Directory {root} not under git control")
|
| 272 |
+
raise NotThisMethod("'git rev-parse --git-dir' returned error")
|
| 273 |
+
|
| 274 |
+
# if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]
|
| 275 |
+
# if there isn't one, this yields HEX[-dirty] (no NUM)
|
| 276 |
+
describe_out, rc = runner(
|
| 277 |
+
GITS,
|
| 278 |
+
[
|
| 279 |
+
"describe",
|
| 280 |
+
"--tags",
|
| 281 |
+
"--dirty",
|
| 282 |
+
"--always",
|
| 283 |
+
"--long",
|
| 284 |
+
"--match",
|
| 285 |
+
f"{tag_prefix}[[:digit:]]*",
|
| 286 |
+
],
|
| 287 |
+
cwd=root,
|
| 288 |
+
)
|
| 289 |
+
# --long was added in git-1.5.5
|
| 290 |
+
if describe_out is None:
|
| 291 |
+
raise NotThisMethod("'git describe' failed")
|
| 292 |
+
describe_out = describe_out.strip()
|
| 293 |
+
full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root)
|
| 294 |
+
if full_out is None:
|
| 295 |
+
raise NotThisMethod("'git rev-parse' failed")
|
| 296 |
+
full_out = full_out.strip()
|
| 297 |
+
|
| 298 |
+
pieces = {}
|
| 299 |
+
pieces["long"] = full_out
|
| 300 |
+
pieces["short"] = full_out[:7] # maybe improved later
|
| 301 |
+
pieces["error"] = None
|
| 302 |
+
|
| 303 |
+
branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root)
|
| 304 |
+
# --abbrev-ref was added in git-1.6.3
|
| 305 |
+
if rc != 0 or branch_name is None:
|
| 306 |
+
raise NotThisMethod("'git rev-parse --abbrev-ref' returned error")
|
| 307 |
+
branch_name = branch_name.strip()
|
| 308 |
+
|
| 309 |
+
if branch_name == "HEAD":
|
| 310 |
+
# If we aren't exactly on a branch, pick a branch which represents
|
| 311 |
+
# the current commit. If all else fails, we are on a branchless
|
| 312 |
+
# commit.
|
| 313 |
+
branches, rc = runner(GITS, ["branch", "--contains"], cwd=root)
|
| 314 |
+
# --contains was added in git-1.5.4
|
| 315 |
+
if rc != 0 or branches is None:
|
| 316 |
+
raise NotThisMethod("'git branch --contains' returned error")
|
| 317 |
+
branches = branches.split("\n")
|
| 318 |
+
|
| 319 |
+
# Remove the first line if we're running detached
|
| 320 |
+
if "(" in branches[0]:
|
| 321 |
+
branches.pop(0)
|
| 322 |
+
|
| 323 |
+
# Strip off the leading "* " from the list of branches.
|
| 324 |
+
branches = [branch[2:] for branch in branches]
|
| 325 |
+
if "master" in branches:
|
| 326 |
+
branch_name = "master"
|
| 327 |
+
elif not branches:
|
| 328 |
+
branch_name = None
|
| 329 |
+
else:
|
| 330 |
+
# Pick the first branch that is returned. Good or bad.
|
| 331 |
+
branch_name = branches[0]
|
| 332 |
+
|
| 333 |
+
pieces["branch"] = branch_name
|
| 334 |
+
|
| 335 |
+
# parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]
|
| 336 |
+
# TAG might have hyphens.
|
| 337 |
+
git_describe = describe_out
|
| 338 |
+
|
| 339 |
+
# look for -dirty suffix
|
| 340 |
+
dirty = git_describe.endswith("-dirty")
|
| 341 |
+
pieces["dirty"] = dirty
|
| 342 |
+
if dirty:
|
| 343 |
+
git_describe = git_describe[: git_describe.rindex("-dirty")]
|
| 344 |
+
|
| 345 |
+
# now we have TAG-NUM-gHEX or HEX
|
| 346 |
+
|
| 347 |
+
if "-" in git_describe:
|
| 348 |
+
# TAG-NUM-gHEX
|
| 349 |
+
mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe)
|
| 350 |
+
if not mo:
|
| 351 |
+
# unparsable. Maybe git-describe is misbehaving?
|
| 352 |
+
pieces["error"] = f"unable to parse git-describe output: '{describe_out}'"
|
| 353 |
+
return pieces
|
| 354 |
+
|
| 355 |
+
# tag
|
| 356 |
+
full_tag = mo.group(1)
|
| 357 |
+
if not full_tag.startswith(tag_prefix):
|
| 358 |
+
if verbose:
|
| 359 |
+
fmt = "tag '%s' doesn't start with prefix '%s'"
|
| 360 |
+
print(fmt % (full_tag, tag_prefix))
|
| 361 |
+
pieces[
|
| 362 |
+
"error"
|
| 363 |
+
] = f"tag '{full_tag}' doesn't start with prefix '{tag_prefix}'"
|
| 364 |
+
return pieces
|
| 365 |
+
pieces["closest-tag"] = full_tag[len(tag_prefix) :]
|
| 366 |
+
|
| 367 |
+
# distance: number of commits since tag
|
| 368 |
+
pieces["distance"] = int(mo.group(2))
|
| 369 |
+
|
| 370 |
+
# commit: short hex revision ID
|
| 371 |
+
pieces["short"] = mo.group(3)
|
| 372 |
+
|
| 373 |
+
else:
|
| 374 |
+
# HEX: no tags
|
| 375 |
+
pieces["closest-tag"] = None
|
| 376 |
+
out, rc = runner(GITS, ["rev-list", "HEAD", "--left-right"], cwd=root)
|
| 377 |
+
pieces["distance"] = len(out.split()) # total number of commits
|
| 378 |
+
|
| 379 |
+
# commit date: see ISO-8601 comment in git_versions_from_keywords()
|
| 380 |
+
date = runner(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip()
|
| 381 |
+
# Use only the last line. Previous lines may contain GPG signature
|
| 382 |
+
# information.
|
| 383 |
+
date = date.splitlines()[-1]
|
| 384 |
+
pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1)
|
| 385 |
+
|
| 386 |
+
return pieces
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def plus_or_dot(pieces) -> str:
|
| 390 |
+
"""Return a + if we don't already have one, else return a ."""
|
| 391 |
+
if "+" in pieces.get("closest-tag", ""):
|
| 392 |
+
return "."
|
| 393 |
+
return "+"
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
def render_pep440(pieces):
|
| 397 |
+
"""Build up version string, with post-release "local version identifier".
|
| 398 |
+
|
| 399 |
+
Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you
|
| 400 |
+
get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty
|
| 401 |
+
|
| 402 |
+
Exceptions:
|
| 403 |
+
1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]
|
| 404 |
+
"""
|
| 405 |
+
if pieces["closest-tag"]:
|
| 406 |
+
rendered = pieces["closest-tag"]
|
| 407 |
+
if pieces["distance"] or pieces["dirty"]:
|
| 408 |
+
rendered += plus_or_dot(pieces)
|
| 409 |
+
rendered += f"{pieces['distance']}.g{pieces['short']}"
|
| 410 |
+
if pieces["dirty"]:
|
| 411 |
+
rendered += ".dirty"
|
| 412 |
+
else:
|
| 413 |
+
# exception #1
|
| 414 |
+
rendered = f"0+untagged.{pieces['distance']}.g{pieces['short']}"
|
| 415 |
+
if pieces["dirty"]:
|
| 416 |
+
rendered += ".dirty"
|
| 417 |
+
return rendered
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def render_pep440_branch(pieces):
|
| 421 |
+
"""TAG[[.dev0]+DISTANCE.gHEX[.dirty]] .
|
| 422 |
+
|
| 423 |
+
The ".dev0" means not master branch. Note that .dev0 sorts backwards
|
| 424 |
+
(a feature branch will appear "older" than the master branch).
|
| 425 |
+
|
| 426 |
+
Exceptions:
|
| 427 |
+
1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty]
|
| 428 |
+
"""
|
| 429 |
+
if pieces["closest-tag"]:
|
| 430 |
+
rendered = pieces["closest-tag"]
|
| 431 |
+
if pieces["distance"] or pieces["dirty"]:
|
| 432 |
+
if pieces["branch"] != "master":
|
| 433 |
+
rendered += ".dev0"
|
| 434 |
+
rendered += plus_or_dot(pieces)
|
| 435 |
+
rendered += f"{pieces['distance']}.g{pieces['short']}"
|
| 436 |
+
if pieces["dirty"]:
|
| 437 |
+
rendered += ".dirty"
|
| 438 |
+
else:
|
| 439 |
+
# exception #1
|
| 440 |
+
rendered = "0"
|
| 441 |
+
if pieces["branch"] != "master":
|
| 442 |
+
rendered += ".dev0"
|
| 443 |
+
rendered += f"+untagged.{pieces['distance']}.g{pieces['short']}"
|
| 444 |
+
if pieces["dirty"]:
|
| 445 |
+
rendered += ".dirty"
|
| 446 |
+
return rendered
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
def pep440_split_post(ver):
|
| 450 |
+
"""Split pep440 version string at the post-release segment.
|
| 451 |
+
|
| 452 |
+
Returns the release segments before the post-release and the
|
| 453 |
+
post-release version number (or -1 if no post-release segment is present).
|
| 454 |
+
"""
|
| 455 |
+
vc = str.split(ver, ".post")
|
| 456 |
+
return vc[0], int(vc[1] or 0) if len(vc) == 2 else None
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def render_pep440_pre(pieces):
|
| 460 |
+
"""TAG[.postN.devDISTANCE] -- No -dirty.
|
| 461 |
+
|
| 462 |
+
Exceptions:
|
| 463 |
+
1: no tags. 0.post0.devDISTANCE
|
| 464 |
+
"""
|
| 465 |
+
if pieces["closest-tag"]:
|
| 466 |
+
if pieces["distance"]:
|
| 467 |
+
# update the post release segment
|
| 468 |
+
tag_version, post_version = pep440_split_post(pieces["closest-tag"])
|
| 469 |
+
rendered = tag_version
|
| 470 |
+
if post_version is not None:
|
| 471 |
+
rendered += f".post{post_version + 1}.dev{pieces['distance']}"
|
| 472 |
+
else:
|
| 473 |
+
rendered += f".post0.dev{pieces['distance']}"
|
| 474 |
+
else:
|
| 475 |
+
# no commits, use the tag as the version
|
| 476 |
+
rendered = pieces["closest-tag"]
|
| 477 |
+
else:
|
| 478 |
+
# exception #1
|
| 479 |
+
rendered = f"0.post0.dev{pieces['distance']}"
|
| 480 |
+
return rendered
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def render_pep440_post(pieces):
|
| 484 |
+
"""TAG[.postDISTANCE[.dev0]+gHEX] .
|
| 485 |
+
|
| 486 |
+
The ".dev0" means dirty. Note that .dev0 sorts backwards
|
| 487 |
+
(a dirty tree will appear "older" than the corresponding clean one),
|
| 488 |
+
but you shouldn't be releasing software with -dirty anyways.
|
| 489 |
+
|
| 490 |
+
Exceptions:
|
| 491 |
+
1: no tags. 0.postDISTANCE[.dev0]
|
| 492 |
+
"""
|
| 493 |
+
if pieces["closest-tag"]:
|
| 494 |
+
rendered = pieces["closest-tag"]
|
| 495 |
+
if pieces["distance"] or pieces["dirty"]:
|
| 496 |
+
rendered += f".post{pieces['distance']}"
|
| 497 |
+
if pieces["dirty"]:
|
| 498 |
+
rendered += ".dev0"
|
| 499 |
+
rendered += plus_or_dot(pieces)
|
| 500 |
+
rendered += f"g{pieces['short']}"
|
| 501 |
+
else:
|
| 502 |
+
# exception #1
|
| 503 |
+
rendered = f"0.post{pieces['distance']}"
|
| 504 |
+
if pieces["dirty"]:
|
| 505 |
+
rendered += ".dev0"
|
| 506 |
+
rendered += f"+g{pieces['short']}"
|
| 507 |
+
return rendered
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def render_pep440_post_branch(pieces):
|
| 511 |
+
"""TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] .
|
| 512 |
+
|
| 513 |
+
The ".dev0" means not master branch.
|
| 514 |
+
|
| 515 |
+
Exceptions:
|
| 516 |
+
1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty]
|
| 517 |
+
"""
|
| 518 |
+
if pieces["closest-tag"]:
|
| 519 |
+
rendered = pieces["closest-tag"]
|
| 520 |
+
if pieces["distance"] or pieces["dirty"]:
|
| 521 |
+
rendered += f".post{pieces['distance']}"
|
| 522 |
+
if pieces["branch"] != "master":
|
| 523 |
+
rendered += ".dev0"
|
| 524 |
+
rendered += plus_or_dot(pieces)
|
| 525 |
+
rendered += f"g{pieces['short']}"
|
| 526 |
+
if pieces["dirty"]:
|
| 527 |
+
rendered += ".dirty"
|
| 528 |
+
else:
|
| 529 |
+
# exception #1
|
| 530 |
+
rendered = f"0.post{pieces['distance']}"
|
| 531 |
+
if pieces["branch"] != "master":
|
| 532 |
+
rendered += ".dev0"
|
| 533 |
+
rendered += f"+g{pieces['short']}"
|
| 534 |
+
if pieces["dirty"]:
|
| 535 |
+
rendered += ".dirty"
|
| 536 |
+
return rendered
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def render_pep440_old(pieces):
|
| 540 |
+
"""TAG[.postDISTANCE[.dev0]] .
|
| 541 |
+
|
| 542 |
+
The ".dev0" means dirty.
|
| 543 |
+
|
| 544 |
+
Exceptions:
|
| 545 |
+
1: no tags. 0.postDISTANCE[.dev0]
|
| 546 |
+
"""
|
| 547 |
+
if pieces["closest-tag"]:
|
| 548 |
+
rendered = pieces["closest-tag"]
|
| 549 |
+
if pieces["distance"] or pieces["dirty"]:
|
| 550 |
+
rendered += f"0.post{pieces['distance']}"
|
| 551 |
+
if pieces["dirty"]:
|
| 552 |
+
rendered += ".dev0"
|
| 553 |
+
else:
|
| 554 |
+
# exception #1
|
| 555 |
+
rendered = f"0.post{pieces['distance']}"
|
| 556 |
+
if pieces["dirty"]:
|
| 557 |
+
rendered += ".dev0"
|
| 558 |
+
return rendered
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def render_git_describe(pieces):
|
| 562 |
+
"""TAG[-DISTANCE-gHEX][-dirty].
|
| 563 |
+
|
| 564 |
+
Like 'git describe --tags --dirty --always'.
|
| 565 |
+
|
| 566 |
+
Exceptions:
|
| 567 |
+
1: no tags. HEX[-dirty] (note: no 'g' prefix)
|
| 568 |
+
"""
|
| 569 |
+
if pieces["closest-tag"]:
|
| 570 |
+
rendered = pieces["closest-tag"]
|
| 571 |
+
if pieces["distance"]:
|
| 572 |
+
rendered += f"-{pieces['distance']}-g{pieces['short']}"
|
| 573 |
+
else:
|
| 574 |
+
# exception #1
|
| 575 |
+
rendered = pieces["short"]
|
| 576 |
+
if pieces["dirty"]:
|
| 577 |
+
rendered += "-dirty"
|
| 578 |
+
return rendered
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
def render_git_describe_long(pieces):
|
| 582 |
+
"""TAG-DISTANCE-gHEX[-dirty].
|
| 583 |
+
|
| 584 |
+
Like 'git describe --tags --dirty --always -long'.
|
| 585 |
+
The distance/hash is unconditional.
|
| 586 |
+
|
| 587 |
+
Exceptions:
|
| 588 |
+
1: no tags. HEX[-dirty] (note: no 'g' prefix)
|
| 589 |
+
"""
|
| 590 |
+
if pieces["closest-tag"]:
|
| 591 |
+
rendered = pieces["closest-tag"]
|
| 592 |
+
rendered += f"-{pieces['distance']}-g{pieces['short']}"
|
| 593 |
+
else:
|
| 594 |
+
# exception #1
|
| 595 |
+
rendered = pieces["short"]
|
| 596 |
+
if pieces["dirty"]:
|
| 597 |
+
rendered += "-dirty"
|
| 598 |
+
return rendered
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
def render(pieces, style):
|
| 602 |
+
"""Render the given version pieces into the requested style."""
|
| 603 |
+
if pieces["error"]:
|
| 604 |
+
return {
|
| 605 |
+
"version": "unknown",
|
| 606 |
+
"full-revisionid": pieces.get("long"),
|
| 607 |
+
"dirty": None,
|
| 608 |
+
"error": pieces["error"],
|
| 609 |
+
"date": None,
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
if not style or style == "default":
|
| 613 |
+
style = "pep440" # the default
|
| 614 |
+
|
| 615 |
+
if style == "pep440":
|
| 616 |
+
rendered = render_pep440(pieces)
|
| 617 |
+
elif style == "pep440-branch":
|
| 618 |
+
rendered = render_pep440_branch(pieces)
|
| 619 |
+
elif style == "pep440-pre":
|
| 620 |
+
rendered = render_pep440_pre(pieces)
|
| 621 |
+
elif style == "pep440-post":
|
| 622 |
+
rendered = render_pep440_post(pieces)
|
| 623 |
+
elif style == "pep440-post-branch":
|
| 624 |
+
rendered = render_pep440_post_branch(pieces)
|
| 625 |
+
elif style == "pep440-old":
|
| 626 |
+
rendered = render_pep440_old(pieces)
|
| 627 |
+
elif style == "git-describe":
|
| 628 |
+
rendered = render_git_describe(pieces)
|
| 629 |
+
elif style == "git-describe-long":
|
| 630 |
+
rendered = render_git_describe_long(pieces)
|
| 631 |
+
else:
|
| 632 |
+
raise ValueError(f"unknown style '{style}'")
|
| 633 |
+
|
| 634 |
+
return {
|
| 635 |
+
"version": rendered,
|
| 636 |
+
"full-revisionid": pieces["long"],
|
| 637 |
+
"dirty": pieces["dirty"],
|
| 638 |
+
"error": None,
|
| 639 |
+
"date": pieces.get("date"),
|
| 640 |
+
}
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
def get_versions():
|
| 644 |
+
"""Get version information or return default if unable to do so."""
|
| 645 |
+
# I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have
|
| 646 |
+
# __file__, we can work backwards from there to the root. Some
|
| 647 |
+
# py2exe/bbfreeze/non-CPython implementations don't do __file__, in which
|
| 648 |
+
# case we can only use expanded keywords.
|
| 649 |
+
|
| 650 |
+
cfg = get_config()
|
| 651 |
+
verbose = cfg.verbose
|
| 652 |
+
|
| 653 |
+
try:
|
| 654 |
+
return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose)
|
| 655 |
+
except NotThisMethod:
|
| 656 |
+
pass
|
| 657 |
+
|
| 658 |
+
try:
|
| 659 |
+
root = os.path.realpath(__file__)
|
| 660 |
+
# versionfile_source is the relative path from the top of the source
|
| 661 |
+
# tree (where the .git directory might live) to this file. Invert
|
| 662 |
+
# this to find the root from __file__.
|
| 663 |
+
for _ in cfg.versionfile_source.split("/"):
|
| 664 |
+
root = os.path.dirname(root)
|
| 665 |
+
except NameError:
|
| 666 |
+
return {
|
| 667 |
+
"version": "0+unknown",
|
| 668 |
+
"full-revisionid": None,
|
| 669 |
+
"dirty": None,
|
| 670 |
+
"error": "unable to find root of source tree",
|
| 671 |
+
"date": None,
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
try:
|
| 675 |
+
pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose)
|
| 676 |
+
return render(pieces, cfg.style)
|
| 677 |
+
except NotThisMethod:
|
| 678 |
+
pass
|
| 679 |
+
|
| 680 |
+
try:
|
| 681 |
+
if cfg.parentdir_prefix:
|
| 682 |
+
return versions_from_parentdir(cfg.parentdir_prefix, root, verbose)
|
| 683 |
+
except NotThisMethod:
|
| 684 |
+
pass
|
| 685 |
+
|
| 686 |
+
return {
|
| 687 |
+
"version": "0+unknown",
|
| 688 |
+
"full-revisionid": None,
|
| 689 |
+
"dirty": None,
|
| 690 |
+
"error": "unable to compute version",
|
| 691 |
+
"date": None,
|
| 692 |
+
}
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_version_meson.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__="2.2.3"
|
| 2 |
+
__git_version__="0691c5cf90477d3503834d983f69350f250a6ff7"
|
infer_4_30_0/lib/python3.10/site-packages/pandas/conftest.py
ADDED
|
@@ -0,0 +1,1980 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file is very long and growing, but it was decided to not split it yet, as
|
| 3 |
+
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989
|
| 4 |
+
|
| 5 |
+
Instead of splitting it was decided to define sections here:
|
| 6 |
+
- Configuration / Settings
|
| 7 |
+
- Autouse fixtures
|
| 8 |
+
- Common arguments
|
| 9 |
+
- Missing values & co.
|
| 10 |
+
- Classes
|
| 11 |
+
- Indices
|
| 12 |
+
- Series'
|
| 13 |
+
- DataFrames
|
| 14 |
+
- Operators & Operations
|
| 15 |
+
- Data sets/files
|
| 16 |
+
- Time zones
|
| 17 |
+
- Dtypes
|
| 18 |
+
- Misc
|
| 19 |
+
"""
|
| 20 |
+
from __future__ import annotations
|
| 21 |
+
|
| 22 |
+
from collections import abc
|
| 23 |
+
from datetime import (
|
| 24 |
+
date,
|
| 25 |
+
datetime,
|
| 26 |
+
time,
|
| 27 |
+
timedelta,
|
| 28 |
+
timezone,
|
| 29 |
+
)
|
| 30 |
+
from decimal import Decimal
|
| 31 |
+
import operator
|
| 32 |
+
import os
|
| 33 |
+
from typing import (
|
| 34 |
+
TYPE_CHECKING,
|
| 35 |
+
Callable,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
from dateutil.tz import (
|
| 39 |
+
tzlocal,
|
| 40 |
+
tzutc,
|
| 41 |
+
)
|
| 42 |
+
import hypothesis
|
| 43 |
+
from hypothesis import strategies as st
|
| 44 |
+
import numpy as np
|
| 45 |
+
import pytest
|
| 46 |
+
from pytz import (
|
| 47 |
+
FixedOffset,
|
| 48 |
+
utc,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
from pandas._config.config import _get_option
|
| 52 |
+
|
| 53 |
+
import pandas.util._test_decorators as td
|
| 54 |
+
|
| 55 |
+
from pandas.core.dtypes.dtypes import (
|
| 56 |
+
DatetimeTZDtype,
|
| 57 |
+
IntervalDtype,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
import pandas as pd
|
| 61 |
+
from pandas import (
|
| 62 |
+
CategoricalIndex,
|
| 63 |
+
DataFrame,
|
| 64 |
+
Interval,
|
| 65 |
+
IntervalIndex,
|
| 66 |
+
Period,
|
| 67 |
+
RangeIndex,
|
| 68 |
+
Series,
|
| 69 |
+
Timedelta,
|
| 70 |
+
Timestamp,
|
| 71 |
+
date_range,
|
| 72 |
+
period_range,
|
| 73 |
+
timedelta_range,
|
| 74 |
+
)
|
| 75 |
+
import pandas._testing as tm
|
| 76 |
+
from pandas.core import ops
|
| 77 |
+
from pandas.core.indexes.api import (
|
| 78 |
+
Index,
|
| 79 |
+
MultiIndex,
|
| 80 |
+
)
|
| 81 |
+
from pandas.util.version import Version
|
| 82 |
+
|
| 83 |
+
if TYPE_CHECKING:
|
| 84 |
+
from collections.abc import (
|
| 85 |
+
Hashable,
|
| 86 |
+
Iterator,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
import pyarrow as pa
|
| 91 |
+
except ImportError:
|
| 92 |
+
has_pyarrow = False
|
| 93 |
+
else:
|
| 94 |
+
del pa
|
| 95 |
+
has_pyarrow = True
|
| 96 |
+
|
| 97 |
+
import zoneinfo
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
zoneinfo.ZoneInfo("UTC")
|
| 101 |
+
except zoneinfo.ZoneInfoNotFoundError:
|
| 102 |
+
zoneinfo = None # type: ignore[assignment]
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# ----------------------------------------------------------------
|
| 106 |
+
# Configuration / Settings
|
| 107 |
+
# ----------------------------------------------------------------
|
| 108 |
+
# pytest
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def pytest_addoption(parser) -> None:
|
| 112 |
+
parser.addoption(
|
| 113 |
+
"--no-strict-data-files",
|
| 114 |
+
action="store_false",
|
| 115 |
+
help="Don't fail if a test is skipped for missing data file.",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None:
|
| 120 |
+
"""Ignore doctest warning.
|
| 121 |
+
|
| 122 |
+
Parameters
|
| 123 |
+
----------
|
| 124 |
+
item : pytest.Item
|
| 125 |
+
pytest test item.
|
| 126 |
+
path : str
|
| 127 |
+
Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A
|
| 128 |
+
warning will be filtered when item.name ends with in given path. So it is
|
| 129 |
+
sufficient to specify e.g. "DataFrame.append".
|
| 130 |
+
message : str
|
| 131 |
+
Message to be filtered.
|
| 132 |
+
"""
|
| 133 |
+
if item.name.endswith(path):
|
| 134 |
+
item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}"))
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def pytest_collection_modifyitems(items, config) -> None:
|
| 138 |
+
is_doctest = config.getoption("--doctest-modules") or config.getoption(
|
| 139 |
+
"--doctest-cython", default=False
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Warnings from doctests that can be ignored; place reason in comment above.
|
| 143 |
+
# Each entry specifies (path, message) - see the ignore_doctest_warning function
|
| 144 |
+
ignored_doctest_warnings = [
|
| 145 |
+
("is_int64_dtype", "is_int64_dtype is deprecated"),
|
| 146 |
+
("is_interval_dtype", "is_interval_dtype is deprecated"),
|
| 147 |
+
("is_period_dtype", "is_period_dtype is deprecated"),
|
| 148 |
+
("is_datetime64tz_dtype", "is_datetime64tz_dtype is deprecated"),
|
| 149 |
+
("is_categorical_dtype", "is_categorical_dtype is deprecated"),
|
| 150 |
+
("is_sparse", "is_sparse is deprecated"),
|
| 151 |
+
("DataFrameGroupBy.fillna", "DataFrameGroupBy.fillna is deprecated"),
|
| 152 |
+
("NDFrame.replace", "The 'method' keyword"),
|
| 153 |
+
("NDFrame.replace", "Series.replace without 'value'"),
|
| 154 |
+
("NDFrame.clip", "Downcasting behavior in Series and DataFrame methods"),
|
| 155 |
+
("Series.idxmin", "The behavior of Series.idxmin"),
|
| 156 |
+
("Series.idxmax", "The behavior of Series.idxmax"),
|
| 157 |
+
("SeriesGroupBy.fillna", "SeriesGroupBy.fillna is deprecated"),
|
| 158 |
+
("SeriesGroupBy.idxmin", "The behavior of Series.idxmin"),
|
| 159 |
+
("SeriesGroupBy.idxmax", "The behavior of Series.idxmax"),
|
| 160 |
+
# Docstring divides by zero to show behavior difference
|
| 161 |
+
("missing.mask_zero_div_zero", "divide by zero encountered"),
|
| 162 |
+
(
|
| 163 |
+
"to_pydatetime",
|
| 164 |
+
"The behavior of DatetimeProperties.to_pydatetime is deprecated",
|
| 165 |
+
),
|
| 166 |
+
(
|
| 167 |
+
"pandas.core.generic.NDFrame.bool",
|
| 168 |
+
"(Series|DataFrame).bool is now deprecated and will be removed "
|
| 169 |
+
"in future version of pandas",
|
| 170 |
+
),
|
| 171 |
+
(
|
| 172 |
+
"pandas.core.generic.NDFrame.first",
|
| 173 |
+
"first is deprecated and will be removed in a future version. "
|
| 174 |
+
"Please create a mask and filter using `.loc` instead",
|
| 175 |
+
),
|
| 176 |
+
(
|
| 177 |
+
"Resampler.fillna",
|
| 178 |
+
"DatetimeIndexResampler.fillna is deprecated",
|
| 179 |
+
),
|
| 180 |
+
(
|
| 181 |
+
"DataFrameGroupBy.fillna",
|
| 182 |
+
"DataFrameGroupBy.fillna with 'method' is deprecated",
|
| 183 |
+
),
|
| 184 |
+
(
|
| 185 |
+
"DataFrameGroupBy.fillna",
|
| 186 |
+
"DataFrame.fillna with 'method' is deprecated",
|
| 187 |
+
),
|
| 188 |
+
("read_parquet", "Passing a BlockManager to DataFrame is deprecated"),
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
if is_doctest:
|
| 192 |
+
for item in items:
|
| 193 |
+
for path, message in ignored_doctest_warnings:
|
| 194 |
+
ignore_doctest_warning(item, path, message)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
hypothesis_health_checks = [hypothesis.HealthCheck.too_slow]
|
| 198 |
+
if Version(hypothesis.__version__) >= Version("6.83.2"):
|
| 199 |
+
hypothesis_health_checks.append(hypothesis.HealthCheck.differing_executors)
|
| 200 |
+
|
| 201 |
+
# Hypothesis
|
| 202 |
+
hypothesis.settings.register_profile(
|
| 203 |
+
"ci",
|
| 204 |
+
# Hypothesis timing checks are tuned for scalars by default, so we bump
|
| 205 |
+
# them from 200ms to 500ms per test case as the global default. If this
|
| 206 |
+
# is too short for a specific test, (a) try to make it faster, and (b)
|
| 207 |
+
# if it really is slow add `@settings(deadline=...)` with a working value,
|
| 208 |
+
# or `deadline=None` to entirely disable timeouts for that test.
|
| 209 |
+
# 2022-02-09: Changed deadline from 500 -> None. Deadline leads to
|
| 210 |
+
# non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969)
|
| 211 |
+
deadline=None,
|
| 212 |
+
suppress_health_check=tuple(hypothesis_health_checks),
|
| 213 |
+
)
|
| 214 |
+
hypothesis.settings.load_profile("ci")
|
| 215 |
+
|
| 216 |
+
# Registering these strategies makes them globally available via st.from_type,
|
| 217 |
+
# which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
|
| 218 |
+
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
|
| 219 |
+
cls = getattr(pd.tseries.offsets, name)
|
| 220 |
+
st.register_type_strategy(
|
| 221 |
+
cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
|
| 225 |
+
cls = getattr(pd.tseries.offsets, name)
|
| 226 |
+
st.register_type_strategy(
|
| 227 |
+
cls,
|
| 228 |
+
st.builds(
|
| 229 |
+
cls,
|
| 230 |
+
n=st.integers(-5, 5),
|
| 231 |
+
normalize=st.booleans(),
|
| 232 |
+
month=st.integers(min_value=1, max_value=12),
|
| 233 |
+
),
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
|
| 237 |
+
cls = getattr(pd.tseries.offsets, name)
|
| 238 |
+
st.register_type_strategy(
|
| 239 |
+
cls,
|
| 240 |
+
st.builds(
|
| 241 |
+
cls,
|
| 242 |
+
n=st.integers(-24, 24),
|
| 243 |
+
normalize=st.booleans(),
|
| 244 |
+
startingMonth=st.integers(min_value=1, max_value=12),
|
| 245 |
+
),
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
# ----------------------------------------------------------------
|
| 250 |
+
# Autouse fixtures
|
| 251 |
+
# ----------------------------------------------------------------
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# https://github.com/pytest-dev/pytest/issues/11873
|
| 255 |
+
# Would like to avoid autouse=True, but cannot as of pytest 8.0.0
|
| 256 |
+
@pytest.fixture(autouse=True)
|
| 257 |
+
def add_doctest_imports(doctest_namespace) -> None:
|
| 258 |
+
"""
|
| 259 |
+
Make `np` and `pd` names available for doctests.
|
| 260 |
+
"""
|
| 261 |
+
doctest_namespace["np"] = np
|
| 262 |
+
doctest_namespace["pd"] = pd
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
@pytest.fixture(autouse=True)
|
| 266 |
+
def configure_tests() -> None:
|
| 267 |
+
"""
|
| 268 |
+
Configure settings for all tests and test modules.
|
| 269 |
+
"""
|
| 270 |
+
pd.set_option("chained_assignment", "raise")
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# ----------------------------------------------------------------
|
| 274 |
+
# Common arguments
|
| 275 |
+
# ----------------------------------------------------------------
|
| 276 |
+
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}")
|
| 277 |
+
def axis(request):
|
| 278 |
+
"""
|
| 279 |
+
Fixture for returning the axis numbers of a DataFrame.
|
| 280 |
+
"""
|
| 281 |
+
return request.param
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
axis_frame = axis
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
@pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}")
|
| 288 |
+
def axis_1(request):
|
| 289 |
+
"""
|
| 290 |
+
Fixture for returning aliases of axis 1 of a DataFrame.
|
| 291 |
+
"""
|
| 292 |
+
return request.param
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
@pytest.fixture(params=[True, False, None])
|
| 296 |
+
def observed(request):
|
| 297 |
+
"""
|
| 298 |
+
Pass in the observed keyword to groupby for [True, False]
|
| 299 |
+
This indicates whether categoricals should return values for
|
| 300 |
+
values which are not in the grouper [False / None], or only values which
|
| 301 |
+
appear in the grouper [True]. [None] is supported for future compatibility
|
| 302 |
+
if we decide to change the default (and would need to warn if this
|
| 303 |
+
parameter is not passed).
|
| 304 |
+
"""
|
| 305 |
+
return request.param
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
@pytest.fixture(params=[True, False, None])
|
| 309 |
+
def ordered(request):
|
| 310 |
+
"""
|
| 311 |
+
Boolean 'ordered' parameter for Categorical.
|
| 312 |
+
"""
|
| 313 |
+
return request.param
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
@pytest.fixture(params=[True, False])
|
| 317 |
+
def skipna(request):
|
| 318 |
+
"""
|
| 319 |
+
Boolean 'skipna' parameter.
|
| 320 |
+
"""
|
| 321 |
+
return request.param
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
@pytest.fixture(params=["first", "last", False])
|
| 325 |
+
def keep(request):
|
| 326 |
+
"""
|
| 327 |
+
Valid values for the 'keep' parameter used in
|
| 328 |
+
.duplicated or .drop_duplicates
|
| 329 |
+
"""
|
| 330 |
+
return request.param
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
@pytest.fixture(params=["both", "neither", "left", "right"])
|
| 334 |
+
def inclusive_endpoints_fixture(request):
|
| 335 |
+
"""
|
| 336 |
+
Fixture for trying all interval 'inclusive' parameters.
|
| 337 |
+
"""
|
| 338 |
+
return request.param
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
@pytest.fixture(params=["left", "right", "both", "neither"])
|
| 342 |
+
def closed(request):
|
| 343 |
+
"""
|
| 344 |
+
Fixture for trying all interval closed parameters.
|
| 345 |
+
"""
|
| 346 |
+
return request.param
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@pytest.fixture(params=["left", "right", "both", "neither"])
|
| 350 |
+
def other_closed(request):
|
| 351 |
+
"""
|
| 352 |
+
Secondary closed fixture to allow parametrizing over all pairs of closed.
|
| 353 |
+
"""
|
| 354 |
+
return request.param
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
@pytest.fixture(
|
| 358 |
+
params=[
|
| 359 |
+
None,
|
| 360 |
+
"gzip",
|
| 361 |
+
"bz2",
|
| 362 |
+
"zip",
|
| 363 |
+
"xz",
|
| 364 |
+
"tar",
|
| 365 |
+
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
|
| 366 |
+
]
|
| 367 |
+
)
|
| 368 |
+
def compression(request):
|
| 369 |
+
"""
|
| 370 |
+
Fixture for trying common compression types in compression tests.
|
| 371 |
+
"""
|
| 372 |
+
return request.param
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
@pytest.fixture(
|
| 376 |
+
params=[
|
| 377 |
+
"gzip",
|
| 378 |
+
"bz2",
|
| 379 |
+
"zip",
|
| 380 |
+
"xz",
|
| 381 |
+
"tar",
|
| 382 |
+
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
|
| 383 |
+
]
|
| 384 |
+
)
|
| 385 |
+
def compression_only(request):
|
| 386 |
+
"""
|
| 387 |
+
Fixture for trying common compression types in compression tests excluding
|
| 388 |
+
uncompressed case.
|
| 389 |
+
"""
|
| 390 |
+
return request.param
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
@pytest.fixture(params=[True, False])
|
| 394 |
+
def writable(request):
|
| 395 |
+
"""
|
| 396 |
+
Fixture that an array is writable.
|
| 397 |
+
"""
|
| 398 |
+
return request.param
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
@pytest.fixture(params=["inner", "outer", "left", "right"])
|
| 402 |
+
def join_type(request):
|
| 403 |
+
"""
|
| 404 |
+
Fixture for trying all types of join operations.
|
| 405 |
+
"""
|
| 406 |
+
return request.param
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
@pytest.fixture(params=["nlargest", "nsmallest"])
|
| 410 |
+
def nselect_method(request):
|
| 411 |
+
"""
|
| 412 |
+
Fixture for trying all nselect methods.
|
| 413 |
+
"""
|
| 414 |
+
return request.param
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# ----------------------------------------------------------------
|
| 418 |
+
# Missing values & co.
|
| 419 |
+
# ----------------------------------------------------------------
|
| 420 |
+
@pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__)
|
| 421 |
+
def nulls_fixture(request):
|
| 422 |
+
"""
|
| 423 |
+
Fixture for each null type in pandas.
|
| 424 |
+
"""
|
| 425 |
+
return request.param
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
@pytest.fixture(params=[None, np.nan, pd.NaT])
|
| 432 |
+
def unique_nulls_fixture(request):
|
| 433 |
+
"""
|
| 434 |
+
Fixture for each null type in pandas, each null type exactly once.
|
| 435 |
+
"""
|
| 436 |
+
return request.param
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
# Generate cartesian product of unique_nulls_fixture:
|
| 440 |
+
unique_nulls_fixture2 = unique_nulls_fixture
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
@pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__)
|
| 444 |
+
def np_nat_fixture(request):
|
| 445 |
+
"""
|
| 446 |
+
Fixture for each NaT type in numpy.
|
| 447 |
+
"""
|
| 448 |
+
return request.param
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
# Generate cartesian product of np_nat_fixture:
|
| 452 |
+
np_nat_fixture2 = np_nat_fixture
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
# ----------------------------------------------------------------
|
| 456 |
+
# Classes
|
| 457 |
+
# ----------------------------------------------------------------
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
@pytest.fixture(params=[DataFrame, Series])
|
| 461 |
+
def frame_or_series(request):
|
| 462 |
+
"""
|
| 463 |
+
Fixture to parametrize over DataFrame and Series.
|
| 464 |
+
"""
|
| 465 |
+
return request.param
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
@pytest.fixture(params=[Index, Series], ids=["index", "series"])
|
| 469 |
+
def index_or_series(request):
|
| 470 |
+
"""
|
| 471 |
+
Fixture to parametrize over Index and Series, made necessary by a mypy
|
| 472 |
+
bug, giving an error:
|
| 473 |
+
|
| 474 |
+
List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
|
| 475 |
+
|
| 476 |
+
See GH#29725
|
| 477 |
+
"""
|
| 478 |
+
return request.param
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
# Generate cartesian product of index_or_series fixture:
|
| 482 |
+
index_or_series2 = index_or_series
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
@pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"])
|
| 486 |
+
def index_or_series_or_array(request):
|
| 487 |
+
"""
|
| 488 |
+
Fixture to parametrize over Index, Series, and ExtensionArray
|
| 489 |
+
"""
|
| 490 |
+
return request.param
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
@pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__)
|
| 494 |
+
def box_with_array(request):
|
| 495 |
+
"""
|
| 496 |
+
Fixture to test behavior for Index, Series, DataFrame, and pandas Array
|
| 497 |
+
classes
|
| 498 |
+
"""
|
| 499 |
+
return request.param
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
box_with_array2 = box_with_array
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
@pytest.fixture
|
| 506 |
+
def dict_subclass() -> type[dict]:
|
| 507 |
+
"""
|
| 508 |
+
Fixture for a dictionary subclass.
|
| 509 |
+
"""
|
| 510 |
+
|
| 511 |
+
class TestSubDict(dict):
|
| 512 |
+
def __init__(self, *args, **kwargs) -> None:
|
| 513 |
+
dict.__init__(self, *args, **kwargs)
|
| 514 |
+
|
| 515 |
+
return TestSubDict
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
@pytest.fixture
|
| 519 |
+
def non_dict_mapping_subclass() -> type[abc.Mapping]:
|
| 520 |
+
"""
|
| 521 |
+
Fixture for a non-mapping dictionary subclass.
|
| 522 |
+
"""
|
| 523 |
+
|
| 524 |
+
class TestNonDictMapping(abc.Mapping):
|
| 525 |
+
def __init__(self, underlying_dict) -> None:
|
| 526 |
+
self._data = underlying_dict
|
| 527 |
+
|
| 528 |
+
def __getitem__(self, key):
|
| 529 |
+
return self._data.__getitem__(key)
|
| 530 |
+
|
| 531 |
+
def __iter__(self) -> Iterator:
|
| 532 |
+
return self._data.__iter__()
|
| 533 |
+
|
| 534 |
+
def __len__(self) -> int:
|
| 535 |
+
return self._data.__len__()
|
| 536 |
+
|
| 537 |
+
return TestNonDictMapping
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
# ----------------------------------------------------------------
|
| 541 |
+
# Indices
|
| 542 |
+
# ----------------------------------------------------------------
|
| 543 |
+
@pytest.fixture
|
| 544 |
+
def multiindex_year_month_day_dataframe_random_data():
|
| 545 |
+
"""
|
| 546 |
+
DataFrame with 3 level MultiIndex (year, month, day) covering
|
| 547 |
+
first 100 business days from 2000-01-01 with random data
|
| 548 |
+
"""
|
| 549 |
+
tdf = DataFrame(
|
| 550 |
+
np.random.default_rng(2).standard_normal((100, 4)),
|
| 551 |
+
columns=Index(list("ABCD"), dtype=object),
|
| 552 |
+
index=date_range("2000-01-01", periods=100, freq="B"),
|
| 553 |
+
)
|
| 554 |
+
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
|
| 555 |
+
# use int64 Index, to make sure things work
|
| 556 |
+
ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
|
| 557 |
+
ymd.index.set_names(["year", "month", "day"], inplace=True)
|
| 558 |
+
return ymd
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
@pytest.fixture
|
| 562 |
+
def lexsorted_two_level_string_multiindex() -> MultiIndex:
|
| 563 |
+
"""
|
| 564 |
+
2-level MultiIndex, lexsorted, with string names.
|
| 565 |
+
"""
|
| 566 |
+
return MultiIndex(
|
| 567 |
+
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
|
| 568 |
+
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
|
| 569 |
+
names=["first", "second"],
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
@pytest.fixture
|
| 574 |
+
def multiindex_dataframe_random_data(
|
| 575 |
+
lexsorted_two_level_string_multiindex,
|
| 576 |
+
) -> DataFrame:
|
| 577 |
+
"""DataFrame with 2 level MultiIndex with random data"""
|
| 578 |
+
index = lexsorted_two_level_string_multiindex
|
| 579 |
+
return DataFrame(
|
| 580 |
+
np.random.default_rng(2).standard_normal((10, 3)),
|
| 581 |
+
index=index,
|
| 582 |
+
columns=Index(["A", "B", "C"], name="exp"),
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
def _create_multiindex():
|
| 587 |
+
"""
|
| 588 |
+
MultiIndex used to test the general functionality of this object
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
# See Also: tests.multi.conftest.idx
|
| 592 |
+
major_axis = Index(["foo", "bar", "baz", "qux"])
|
| 593 |
+
minor_axis = Index(["one", "two"])
|
| 594 |
+
|
| 595 |
+
major_codes = np.array([0, 0, 1, 2, 3, 3])
|
| 596 |
+
minor_codes = np.array([0, 1, 0, 1, 0, 1])
|
| 597 |
+
index_names = ["first", "second"]
|
| 598 |
+
return MultiIndex(
|
| 599 |
+
levels=[major_axis, minor_axis],
|
| 600 |
+
codes=[major_codes, minor_codes],
|
| 601 |
+
names=index_names,
|
| 602 |
+
verify_integrity=False,
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
def _create_mi_with_dt64tz_level():
|
| 607 |
+
"""
|
| 608 |
+
MultiIndex with a level that is a tzaware DatetimeIndex.
|
| 609 |
+
"""
|
| 610 |
+
# GH#8367 round trip with pickle
|
| 611 |
+
return MultiIndex.from_product(
|
| 612 |
+
[[1, 2], ["a", "b"], date_range("20130101", periods=3, tz="US/Eastern")],
|
| 613 |
+
names=["one", "two", "three"],
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
indices_dict = {
|
| 618 |
+
"string": Index([f"pandas_{i}" for i in range(100)]),
|
| 619 |
+
"datetime": date_range("2020-01-01", periods=100),
|
| 620 |
+
"datetime-tz": date_range("2020-01-01", periods=100, tz="US/Pacific"),
|
| 621 |
+
"period": period_range("2020-01-01", periods=100, freq="D"),
|
| 622 |
+
"timedelta": timedelta_range(start="1 day", periods=100, freq="D"),
|
| 623 |
+
"range": RangeIndex(100),
|
| 624 |
+
"int8": Index(np.arange(100), dtype="int8"),
|
| 625 |
+
"int16": Index(np.arange(100), dtype="int16"),
|
| 626 |
+
"int32": Index(np.arange(100), dtype="int32"),
|
| 627 |
+
"int64": Index(np.arange(100), dtype="int64"),
|
| 628 |
+
"uint8": Index(np.arange(100), dtype="uint8"),
|
| 629 |
+
"uint16": Index(np.arange(100), dtype="uint16"),
|
| 630 |
+
"uint32": Index(np.arange(100), dtype="uint32"),
|
| 631 |
+
"uint64": Index(np.arange(100), dtype="uint64"),
|
| 632 |
+
"float32": Index(np.arange(100), dtype="float32"),
|
| 633 |
+
"float64": Index(np.arange(100), dtype="float64"),
|
| 634 |
+
"bool-object": Index([True, False] * 5, dtype=object),
|
| 635 |
+
"bool-dtype": Index([True, False] * 5, dtype=bool),
|
| 636 |
+
"complex64": Index(
|
| 637 |
+
np.arange(100, dtype="complex64") + 1.0j * np.arange(100, dtype="complex64")
|
| 638 |
+
),
|
| 639 |
+
"complex128": Index(
|
| 640 |
+
np.arange(100, dtype="complex128") + 1.0j * np.arange(100, dtype="complex128")
|
| 641 |
+
),
|
| 642 |
+
"categorical": CategoricalIndex(list("abcd") * 25),
|
| 643 |
+
"interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=101)),
|
| 644 |
+
"empty": Index([]),
|
| 645 |
+
"tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
|
| 646 |
+
"mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
|
| 647 |
+
"multi": _create_multiindex(),
|
| 648 |
+
"repeats": Index([0, 0, 1, 1, 2, 2]),
|
| 649 |
+
"nullable_int": Index(np.arange(100), dtype="Int64"),
|
| 650 |
+
"nullable_uint": Index(np.arange(100), dtype="UInt16"),
|
| 651 |
+
"nullable_float": Index(np.arange(100), dtype="Float32"),
|
| 652 |
+
"nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"),
|
| 653 |
+
"string-python": Index(
|
| 654 |
+
pd.array([f"pandas_{i}" for i in range(100)], dtype="string[python]")
|
| 655 |
+
),
|
| 656 |
+
}
|
| 657 |
+
if has_pyarrow:
|
| 658 |
+
idx = Index(pd.array([f"pandas_{i}" for i in range(100)], dtype="string[pyarrow]"))
|
| 659 |
+
indices_dict["string-pyarrow"] = idx
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
@pytest.fixture(params=indices_dict.keys())
|
| 663 |
+
def index(request):
|
| 664 |
+
"""
|
| 665 |
+
Fixture for many "simple" kinds of indices.
|
| 666 |
+
|
| 667 |
+
These indices are unlikely to cover corner cases, e.g.
|
| 668 |
+
- no names
|
| 669 |
+
- no NaTs/NaNs
|
| 670 |
+
- no values near implementation bounds
|
| 671 |
+
- ...
|
| 672 |
+
"""
|
| 673 |
+
# copy to avoid mutation, e.g. setting .name
|
| 674 |
+
return indices_dict[request.param].copy()
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
# Needed to generate cartesian product of indices
|
| 678 |
+
index_fixture2 = index
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
@pytest.fixture(
|
| 682 |
+
params=[
|
| 683 |
+
key for key, value in indices_dict.items() if not isinstance(value, MultiIndex)
|
| 684 |
+
]
|
| 685 |
+
)
|
| 686 |
+
def index_flat(request):
|
| 687 |
+
"""
|
| 688 |
+
index fixture, but excluding MultiIndex cases.
|
| 689 |
+
"""
|
| 690 |
+
key = request.param
|
| 691 |
+
return indices_dict[key].copy()
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
# Alias so we can test with cartesian product of index_flat
|
| 695 |
+
index_flat2 = index_flat
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
@pytest.fixture(
|
| 699 |
+
params=[
|
| 700 |
+
key
|
| 701 |
+
for key, value in indices_dict.items()
|
| 702 |
+
if not (
|
| 703 |
+
key.startswith(("int", "uint", "float"))
|
| 704 |
+
or key in ["range", "empty", "repeats", "bool-dtype"]
|
| 705 |
+
)
|
| 706 |
+
and not isinstance(value, MultiIndex)
|
| 707 |
+
]
|
| 708 |
+
)
|
| 709 |
+
def index_with_missing(request):
|
| 710 |
+
"""
|
| 711 |
+
Fixture for indices with missing values.
|
| 712 |
+
|
| 713 |
+
Integer-dtype and empty cases are excluded because they cannot hold missing
|
| 714 |
+
values.
|
| 715 |
+
|
| 716 |
+
MultiIndex is excluded because isna() is not defined for MultiIndex.
|
| 717 |
+
"""
|
| 718 |
+
|
| 719 |
+
# GH 35538. Use deep copy to avoid illusive bug on np-dev
|
| 720 |
+
# GHA pipeline that writes into indices_dict despite copy
|
| 721 |
+
ind = indices_dict[request.param].copy(deep=True)
|
| 722 |
+
vals = ind.values.copy()
|
| 723 |
+
if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
|
| 724 |
+
# For setting missing values in the top level of MultiIndex
|
| 725 |
+
vals = ind.tolist()
|
| 726 |
+
vals[0] = (None,) + vals[0][1:]
|
| 727 |
+
vals[-1] = (None,) + vals[-1][1:]
|
| 728 |
+
return MultiIndex.from_tuples(vals)
|
| 729 |
+
else:
|
| 730 |
+
vals[0] = None
|
| 731 |
+
vals[-1] = None
|
| 732 |
+
return type(ind)(vals)
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
# ----------------------------------------------------------------
|
| 736 |
+
# Series'
|
| 737 |
+
# ----------------------------------------------------------------
|
| 738 |
+
@pytest.fixture
|
| 739 |
+
def string_series() -> Series:
|
| 740 |
+
"""
|
| 741 |
+
Fixture for Series of floats with Index of unique strings
|
| 742 |
+
"""
|
| 743 |
+
return Series(
|
| 744 |
+
np.arange(30, dtype=np.float64) * 1.1,
|
| 745 |
+
index=Index([f"i_{i}" for i in range(30)], dtype=object),
|
| 746 |
+
name="series",
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
@pytest.fixture
|
| 751 |
+
def object_series() -> Series:
|
| 752 |
+
"""
|
| 753 |
+
Fixture for Series of dtype object with Index of unique strings
|
| 754 |
+
"""
|
| 755 |
+
data = [f"foo_{i}" for i in range(30)]
|
| 756 |
+
index = Index([f"bar_{i}" for i in range(30)], dtype=object)
|
| 757 |
+
return Series(data, index=index, name="objects", dtype=object)
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
@pytest.fixture
|
| 761 |
+
def datetime_series() -> Series:
|
| 762 |
+
"""
|
| 763 |
+
Fixture for Series of floats with DatetimeIndex
|
| 764 |
+
"""
|
| 765 |
+
return Series(
|
| 766 |
+
np.random.default_rng(2).standard_normal(30),
|
| 767 |
+
index=date_range("2000-01-01", periods=30, freq="B"),
|
| 768 |
+
name="ts",
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
def _create_series(index):
|
| 773 |
+
"""Helper for the _series dict"""
|
| 774 |
+
size = len(index)
|
| 775 |
+
data = np.random.default_rng(2).standard_normal(size)
|
| 776 |
+
return Series(data, index=index, name="a", copy=False)
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
_series = {
|
| 780 |
+
f"series-with-{index_id}-index": _create_series(index)
|
| 781 |
+
for index_id, index in indices_dict.items()
|
| 782 |
+
}
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
@pytest.fixture
|
| 786 |
+
def series_with_simple_index(index) -> Series:
|
| 787 |
+
"""
|
| 788 |
+
Fixture for tests on series with changing types of indices.
|
| 789 |
+
"""
|
| 790 |
+
return _create_series(index)
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
_narrow_series = {
|
| 794 |
+
f"{dtype.__name__}-series": Series(
|
| 795 |
+
range(30), index=[f"i-{i}" for i in range(30)], name="a", dtype=dtype
|
| 796 |
+
)
|
| 797 |
+
for dtype in tm.NARROW_NP_DTYPES
|
| 798 |
+
}
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
_index_or_series_objs = {**indices_dict, **_series, **_narrow_series}
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
@pytest.fixture(params=_index_or_series_objs.keys())
|
| 805 |
+
def index_or_series_obj(request):
|
| 806 |
+
"""
|
| 807 |
+
Fixture for tests on indexes, series and series with a narrow dtype
|
| 808 |
+
copy to avoid mutation, e.g. setting .name
|
| 809 |
+
"""
|
| 810 |
+
return _index_or_series_objs[request.param].copy(deep=True)
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
_typ_objects_series = {
|
| 814 |
+
f"{dtype.__name__}-series": Series(dtype) for dtype in tm.PYTHON_DATA_TYPES
|
| 815 |
+
}
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
_index_or_series_memory_objs = {
|
| 819 |
+
**indices_dict,
|
| 820 |
+
**_series,
|
| 821 |
+
**_narrow_series,
|
| 822 |
+
**_typ_objects_series,
|
| 823 |
+
}
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
@pytest.fixture(params=_index_or_series_memory_objs.keys())
|
| 827 |
+
def index_or_series_memory_obj(request):
|
| 828 |
+
"""
|
| 829 |
+
Fixture for tests on indexes, series, series with a narrow dtype and
|
| 830 |
+
series with empty objects type
|
| 831 |
+
copy to avoid mutation, e.g. setting .name
|
| 832 |
+
"""
|
| 833 |
+
return _index_or_series_memory_objs[request.param].copy(deep=True)
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
# ----------------------------------------------------------------
|
| 837 |
+
# DataFrames
|
| 838 |
+
# ----------------------------------------------------------------
|
| 839 |
+
@pytest.fixture
|
| 840 |
+
def int_frame() -> DataFrame:
|
| 841 |
+
"""
|
| 842 |
+
Fixture for DataFrame of ints with index of unique strings
|
| 843 |
+
|
| 844 |
+
Columns are ['A', 'B', 'C', 'D']
|
| 845 |
+
"""
|
| 846 |
+
return DataFrame(
|
| 847 |
+
np.ones((30, 4), dtype=np.int64),
|
| 848 |
+
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
|
| 849 |
+
columns=Index(list("ABCD"), dtype=object),
|
| 850 |
+
)
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
@pytest.fixture
|
| 854 |
+
def float_frame() -> DataFrame:
|
| 855 |
+
"""
|
| 856 |
+
Fixture for DataFrame of floats with index of unique strings
|
| 857 |
+
|
| 858 |
+
Columns are ['A', 'B', 'C', 'D'].
|
| 859 |
+
"""
|
| 860 |
+
return DataFrame(
|
| 861 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
| 862 |
+
index=Index([f"foo_{i}" for i in range(30)]),
|
| 863 |
+
columns=Index(list("ABCD")),
|
| 864 |
+
)
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
@pytest.fixture
|
| 868 |
+
def rand_series_with_duplicate_datetimeindex() -> Series:
|
| 869 |
+
"""
|
| 870 |
+
Fixture for Series with a DatetimeIndex that has duplicates.
|
| 871 |
+
"""
|
| 872 |
+
dates = [
|
| 873 |
+
datetime(2000, 1, 2),
|
| 874 |
+
datetime(2000, 1, 2),
|
| 875 |
+
datetime(2000, 1, 2),
|
| 876 |
+
datetime(2000, 1, 3),
|
| 877 |
+
datetime(2000, 1, 3),
|
| 878 |
+
datetime(2000, 1, 3),
|
| 879 |
+
datetime(2000, 1, 4),
|
| 880 |
+
datetime(2000, 1, 4),
|
| 881 |
+
datetime(2000, 1, 4),
|
| 882 |
+
datetime(2000, 1, 5),
|
| 883 |
+
]
|
| 884 |
+
|
| 885 |
+
return Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
# ----------------------------------------------------------------
|
| 889 |
+
# Scalars
|
| 890 |
+
# ----------------------------------------------------------------
|
| 891 |
+
@pytest.fixture(
|
| 892 |
+
params=[
|
| 893 |
+
(Interval(left=0, right=5), IntervalDtype("int64", "right")),
|
| 894 |
+
(Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")),
|
| 895 |
+
(Period("2012-01", freq="M"), "period[M]"),
|
| 896 |
+
(Period("2012-02-01", freq="D"), "period[D]"),
|
| 897 |
+
(
|
| 898 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
| 899 |
+
DatetimeTZDtype(unit="s", tz="US/Eastern"),
|
| 900 |
+
),
|
| 901 |
+
(Timedelta(seconds=500), "timedelta64[ns]"),
|
| 902 |
+
]
|
| 903 |
+
)
|
| 904 |
+
def ea_scalar_and_dtype(request):
|
| 905 |
+
return request.param
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
# ----------------------------------------------------------------
|
| 909 |
+
# Operators & Operations
|
| 910 |
+
# ----------------------------------------------------------------
|
| 911 |
+
|
| 912 |
+
|
| 913 |
+
@pytest.fixture(params=tm.arithmetic_dunder_methods)
|
| 914 |
+
def all_arithmetic_operators(request):
|
| 915 |
+
"""
|
| 916 |
+
Fixture for dunder names for common arithmetic operations.
|
| 917 |
+
"""
|
| 918 |
+
return request.param
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
@pytest.fixture(
|
| 922 |
+
params=[
|
| 923 |
+
operator.add,
|
| 924 |
+
ops.radd,
|
| 925 |
+
operator.sub,
|
| 926 |
+
ops.rsub,
|
| 927 |
+
operator.mul,
|
| 928 |
+
ops.rmul,
|
| 929 |
+
operator.truediv,
|
| 930 |
+
ops.rtruediv,
|
| 931 |
+
operator.floordiv,
|
| 932 |
+
ops.rfloordiv,
|
| 933 |
+
operator.mod,
|
| 934 |
+
ops.rmod,
|
| 935 |
+
operator.pow,
|
| 936 |
+
ops.rpow,
|
| 937 |
+
operator.eq,
|
| 938 |
+
operator.ne,
|
| 939 |
+
operator.lt,
|
| 940 |
+
operator.le,
|
| 941 |
+
operator.gt,
|
| 942 |
+
operator.ge,
|
| 943 |
+
operator.and_,
|
| 944 |
+
ops.rand_,
|
| 945 |
+
operator.xor,
|
| 946 |
+
ops.rxor,
|
| 947 |
+
operator.or_,
|
| 948 |
+
ops.ror_,
|
| 949 |
+
]
|
| 950 |
+
)
|
| 951 |
+
def all_binary_operators(request):
|
| 952 |
+
"""
|
| 953 |
+
Fixture for operator and roperator arithmetic, comparison, and logical ops.
|
| 954 |
+
"""
|
| 955 |
+
return request.param
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
@pytest.fixture(
|
| 959 |
+
params=[
|
| 960 |
+
operator.add,
|
| 961 |
+
ops.radd,
|
| 962 |
+
operator.sub,
|
| 963 |
+
ops.rsub,
|
| 964 |
+
operator.mul,
|
| 965 |
+
ops.rmul,
|
| 966 |
+
operator.truediv,
|
| 967 |
+
ops.rtruediv,
|
| 968 |
+
operator.floordiv,
|
| 969 |
+
ops.rfloordiv,
|
| 970 |
+
operator.mod,
|
| 971 |
+
ops.rmod,
|
| 972 |
+
operator.pow,
|
| 973 |
+
ops.rpow,
|
| 974 |
+
]
|
| 975 |
+
)
|
| 976 |
+
def all_arithmetic_functions(request):
|
| 977 |
+
"""
|
| 978 |
+
Fixture for operator and roperator arithmetic functions.
|
| 979 |
+
|
| 980 |
+
Notes
|
| 981 |
+
-----
|
| 982 |
+
This includes divmod and rdivmod, whereas all_arithmetic_operators
|
| 983 |
+
does not.
|
| 984 |
+
"""
|
| 985 |
+
return request.param
|
| 986 |
+
|
| 987 |
+
|
| 988 |
+
_all_numeric_reductions = [
|
| 989 |
+
"count",
|
| 990 |
+
"sum",
|
| 991 |
+
"max",
|
| 992 |
+
"min",
|
| 993 |
+
"mean",
|
| 994 |
+
"prod",
|
| 995 |
+
"std",
|
| 996 |
+
"var",
|
| 997 |
+
"median",
|
| 998 |
+
"kurt",
|
| 999 |
+
"skew",
|
| 1000 |
+
"sem",
|
| 1001 |
+
]
|
| 1002 |
+
|
| 1003 |
+
|
| 1004 |
+
@pytest.fixture(params=_all_numeric_reductions)
|
| 1005 |
+
def all_numeric_reductions(request):
|
| 1006 |
+
"""
|
| 1007 |
+
Fixture for numeric reduction names.
|
| 1008 |
+
"""
|
| 1009 |
+
return request.param
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
_all_boolean_reductions = ["all", "any"]
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
+
@pytest.fixture(params=_all_boolean_reductions)
|
| 1016 |
+
def all_boolean_reductions(request):
|
| 1017 |
+
"""
|
| 1018 |
+
Fixture for boolean reduction names.
|
| 1019 |
+
"""
|
| 1020 |
+
return request.param
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
_all_reductions = _all_numeric_reductions + _all_boolean_reductions
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
@pytest.fixture(params=_all_reductions)
|
| 1027 |
+
def all_reductions(request):
|
| 1028 |
+
"""
|
| 1029 |
+
Fixture for all (boolean + numeric) reduction names.
|
| 1030 |
+
"""
|
| 1031 |
+
return request.param
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
@pytest.fixture(
|
| 1035 |
+
params=[
|
| 1036 |
+
operator.eq,
|
| 1037 |
+
operator.ne,
|
| 1038 |
+
operator.gt,
|
| 1039 |
+
operator.ge,
|
| 1040 |
+
operator.lt,
|
| 1041 |
+
operator.le,
|
| 1042 |
+
]
|
| 1043 |
+
)
|
| 1044 |
+
def comparison_op(request):
|
| 1045 |
+
"""
|
| 1046 |
+
Fixture for operator module comparison functions.
|
| 1047 |
+
"""
|
| 1048 |
+
return request.param
|
| 1049 |
+
|
| 1050 |
+
|
| 1051 |
+
@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
|
| 1052 |
+
def compare_operators_no_eq_ne(request):
|
| 1053 |
+
"""
|
| 1054 |
+
Fixture for dunder names for compare operations except == and !=
|
| 1055 |
+
|
| 1056 |
+
* >=
|
| 1057 |
+
* >
|
| 1058 |
+
* <
|
| 1059 |
+
* <=
|
| 1060 |
+
"""
|
| 1061 |
+
return request.param
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
@pytest.fixture(
|
| 1065 |
+
params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
|
| 1066 |
+
)
|
| 1067 |
+
def all_logical_operators(request):
|
| 1068 |
+
"""
|
| 1069 |
+
Fixture for dunder names for common logical operations
|
| 1070 |
+
|
| 1071 |
+
* |
|
| 1072 |
+
* &
|
| 1073 |
+
* ^
|
| 1074 |
+
"""
|
| 1075 |
+
return request.param
|
| 1076 |
+
|
| 1077 |
+
|
| 1078 |
+
_all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"]
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
@pytest.fixture(params=_all_numeric_accumulations)
|
| 1082 |
+
def all_numeric_accumulations(request):
|
| 1083 |
+
"""
|
| 1084 |
+
Fixture for numeric accumulation names
|
| 1085 |
+
"""
|
| 1086 |
+
return request.param
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
# ----------------------------------------------------------------
|
| 1090 |
+
# Data sets/files
|
| 1091 |
+
# ----------------------------------------------------------------
|
| 1092 |
+
@pytest.fixture
|
| 1093 |
+
def strict_data_files(pytestconfig):
|
| 1094 |
+
"""
|
| 1095 |
+
Returns the configuration for the test setting `--no-strict-data-files`.
|
| 1096 |
+
"""
|
| 1097 |
+
return pytestconfig.getoption("--no-strict-data-files")
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
@pytest.fixture
|
| 1101 |
+
def datapath(strict_data_files: str) -> Callable[..., str]:
|
| 1102 |
+
"""
|
| 1103 |
+
Get the path to a data file.
|
| 1104 |
+
|
| 1105 |
+
Parameters
|
| 1106 |
+
----------
|
| 1107 |
+
path : str
|
| 1108 |
+
Path to the file, relative to ``pandas/tests/``
|
| 1109 |
+
|
| 1110 |
+
Returns
|
| 1111 |
+
-------
|
| 1112 |
+
path including ``pandas/tests``.
|
| 1113 |
+
|
| 1114 |
+
Raises
|
| 1115 |
+
------
|
| 1116 |
+
ValueError
|
| 1117 |
+
If the path doesn't exist and the --no-strict-data-files option is not set.
|
| 1118 |
+
"""
|
| 1119 |
+
BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
|
| 1120 |
+
|
| 1121 |
+
def deco(*args):
|
| 1122 |
+
path = os.path.join(BASE_PATH, *args)
|
| 1123 |
+
if not os.path.exists(path):
|
| 1124 |
+
if strict_data_files:
|
| 1125 |
+
raise ValueError(
|
| 1126 |
+
f"Could not find file {path} and --no-strict-data-files is not set."
|
| 1127 |
+
)
|
| 1128 |
+
pytest.skip(f"Could not find {path}.")
|
| 1129 |
+
return path
|
| 1130 |
+
|
| 1131 |
+
return deco
|
| 1132 |
+
|
| 1133 |
+
|
| 1134 |
+
# ----------------------------------------------------------------
|
| 1135 |
+
# Time zones
|
| 1136 |
+
# ----------------------------------------------------------------
|
| 1137 |
+
TIMEZONES = [
|
| 1138 |
+
None,
|
| 1139 |
+
"UTC",
|
| 1140 |
+
"US/Eastern",
|
| 1141 |
+
"Asia/Tokyo",
|
| 1142 |
+
"dateutil/US/Pacific",
|
| 1143 |
+
"dateutil/Asia/Singapore",
|
| 1144 |
+
"+01:15",
|
| 1145 |
+
"-02:15",
|
| 1146 |
+
"UTC+01:15",
|
| 1147 |
+
"UTC-02:15",
|
| 1148 |
+
tzutc(),
|
| 1149 |
+
tzlocal(),
|
| 1150 |
+
FixedOffset(300),
|
| 1151 |
+
FixedOffset(0),
|
| 1152 |
+
FixedOffset(-300),
|
| 1153 |
+
timezone.utc,
|
| 1154 |
+
timezone(timedelta(hours=1)),
|
| 1155 |
+
timezone(timedelta(hours=-1), name="foo"),
|
| 1156 |
+
]
|
| 1157 |
+
if zoneinfo is not None:
|
| 1158 |
+
TIMEZONES.extend(
|
| 1159 |
+
[
|
| 1160 |
+
zoneinfo.ZoneInfo("US/Pacific"), # type: ignore[list-item]
|
| 1161 |
+
zoneinfo.ZoneInfo("UTC"), # type: ignore[list-item]
|
| 1162 |
+
]
|
| 1163 |
+
)
|
| 1164 |
+
TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
|
| 1165 |
+
|
| 1166 |
+
|
| 1167 |
+
@td.parametrize_fixture_doc(str(TIMEZONE_IDS))
|
| 1168 |
+
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
|
| 1169 |
+
def tz_naive_fixture(request):
|
| 1170 |
+
"""
|
| 1171 |
+
Fixture for trying timezones including default (None): {0}
|
| 1172 |
+
"""
|
| 1173 |
+
return request.param
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
|
| 1177 |
+
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
|
| 1178 |
+
def tz_aware_fixture(request):
|
| 1179 |
+
"""
|
| 1180 |
+
Fixture for trying explicit timezones: {0}
|
| 1181 |
+
"""
|
| 1182 |
+
return request.param
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
# Generate cartesian product of tz_aware_fixture:
|
| 1186 |
+
tz_aware_fixture2 = tz_aware_fixture
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
_UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]
|
| 1190 |
+
if zoneinfo is not None:
|
| 1191 |
+
_UTCS.append(zoneinfo.ZoneInfo("UTC"))
|
| 1192 |
+
|
| 1193 |
+
|
| 1194 |
+
@pytest.fixture(params=_UTCS)
|
| 1195 |
+
def utc_fixture(request):
|
| 1196 |
+
"""
|
| 1197 |
+
Fixture to provide variants of UTC timezone strings and tzinfo objects.
|
| 1198 |
+
"""
|
| 1199 |
+
return request.param
|
| 1200 |
+
|
| 1201 |
+
|
| 1202 |
+
utc_fixture2 = utc_fixture
|
| 1203 |
+
|
| 1204 |
+
|
| 1205 |
+
@pytest.fixture(params=["s", "ms", "us", "ns"])
|
| 1206 |
+
def unit(request):
|
| 1207 |
+
"""
|
| 1208 |
+
datetime64 units we support.
|
| 1209 |
+
"""
|
| 1210 |
+
return request.param
|
| 1211 |
+
|
| 1212 |
+
|
| 1213 |
+
unit2 = unit
|
| 1214 |
+
|
| 1215 |
+
|
| 1216 |
+
# ----------------------------------------------------------------
|
| 1217 |
+
# Dtypes
|
| 1218 |
+
# ----------------------------------------------------------------
|
| 1219 |
+
@pytest.fixture(params=tm.STRING_DTYPES)
|
| 1220 |
+
def string_dtype(request):
|
| 1221 |
+
"""
|
| 1222 |
+
Parametrized fixture for string dtypes.
|
| 1223 |
+
|
| 1224 |
+
* str
|
| 1225 |
+
* 'str'
|
| 1226 |
+
* 'U'
|
| 1227 |
+
"""
|
| 1228 |
+
return request.param
|
| 1229 |
+
|
| 1230 |
+
|
| 1231 |
+
@pytest.fixture(
|
| 1232 |
+
params=[
|
| 1233 |
+
"string[python]",
|
| 1234 |
+
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
|
| 1235 |
+
]
|
| 1236 |
+
)
|
| 1237 |
+
def nullable_string_dtype(request):
|
| 1238 |
+
"""
|
| 1239 |
+
Parametrized fixture for string dtypes.
|
| 1240 |
+
|
| 1241 |
+
* 'string[python]'
|
| 1242 |
+
* 'string[pyarrow]'
|
| 1243 |
+
"""
|
| 1244 |
+
return request.param
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
@pytest.fixture(
|
| 1248 |
+
params=[
|
| 1249 |
+
"python",
|
| 1250 |
+
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
|
| 1251 |
+
pytest.param("pyarrow_numpy", marks=td.skip_if_no("pyarrow")),
|
| 1252 |
+
]
|
| 1253 |
+
)
|
| 1254 |
+
def string_storage(request):
|
| 1255 |
+
"""
|
| 1256 |
+
Parametrized fixture for pd.options.mode.string_storage.
|
| 1257 |
+
|
| 1258 |
+
* 'python'
|
| 1259 |
+
* 'pyarrow'
|
| 1260 |
+
* 'pyarrow_numpy'
|
| 1261 |
+
"""
|
| 1262 |
+
return request.param
|
| 1263 |
+
|
| 1264 |
+
|
| 1265 |
+
@pytest.fixture(
|
| 1266 |
+
params=[
|
| 1267 |
+
"numpy_nullable",
|
| 1268 |
+
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
|
| 1269 |
+
]
|
| 1270 |
+
)
|
| 1271 |
+
def dtype_backend(request):
|
| 1272 |
+
"""
|
| 1273 |
+
Parametrized fixture for pd.options.mode.string_storage.
|
| 1274 |
+
|
| 1275 |
+
* 'python'
|
| 1276 |
+
* 'pyarrow'
|
| 1277 |
+
"""
|
| 1278 |
+
return request.param
|
| 1279 |
+
|
| 1280 |
+
|
| 1281 |
+
# Alias so we can test with cartesian product of string_storage
|
| 1282 |
+
string_storage2 = string_storage
|
| 1283 |
+
|
| 1284 |
+
|
| 1285 |
+
@pytest.fixture(params=tm.BYTES_DTYPES)
|
| 1286 |
+
def bytes_dtype(request):
|
| 1287 |
+
"""
|
| 1288 |
+
Parametrized fixture for bytes dtypes.
|
| 1289 |
+
|
| 1290 |
+
* bytes
|
| 1291 |
+
* 'bytes'
|
| 1292 |
+
"""
|
| 1293 |
+
return request.param
|
| 1294 |
+
|
| 1295 |
+
|
| 1296 |
+
@pytest.fixture(params=tm.OBJECT_DTYPES)
|
| 1297 |
+
def object_dtype(request):
|
| 1298 |
+
"""
|
| 1299 |
+
Parametrized fixture for object dtypes.
|
| 1300 |
+
|
| 1301 |
+
* object
|
| 1302 |
+
* 'object'
|
| 1303 |
+
"""
|
| 1304 |
+
return request.param
|
| 1305 |
+
|
| 1306 |
+
|
| 1307 |
+
@pytest.fixture(
|
| 1308 |
+
params=[
|
| 1309 |
+
"object",
|
| 1310 |
+
"string[python]",
|
| 1311 |
+
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
|
| 1312 |
+
pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
|
| 1313 |
+
]
|
| 1314 |
+
)
|
| 1315 |
+
def any_string_dtype(request):
|
| 1316 |
+
"""
|
| 1317 |
+
Parametrized fixture for string dtypes.
|
| 1318 |
+
* 'object'
|
| 1319 |
+
* 'string[python]'
|
| 1320 |
+
* 'string[pyarrow]'
|
| 1321 |
+
"""
|
| 1322 |
+
return request.param
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
@pytest.fixture(params=tm.DATETIME64_DTYPES)
|
| 1326 |
+
def datetime64_dtype(request):
|
| 1327 |
+
"""
|
| 1328 |
+
Parametrized fixture for datetime64 dtypes.
|
| 1329 |
+
|
| 1330 |
+
* 'datetime64[ns]'
|
| 1331 |
+
* 'M8[ns]'
|
| 1332 |
+
"""
|
| 1333 |
+
return request.param
|
| 1334 |
+
|
| 1335 |
+
|
| 1336 |
+
@pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
|
| 1337 |
+
def timedelta64_dtype(request):
|
| 1338 |
+
"""
|
| 1339 |
+
Parametrized fixture for timedelta64 dtypes.
|
| 1340 |
+
|
| 1341 |
+
* 'timedelta64[ns]'
|
| 1342 |
+
* 'm8[ns]'
|
| 1343 |
+
"""
|
| 1344 |
+
return request.param
|
| 1345 |
+
|
| 1346 |
+
|
| 1347 |
+
@pytest.fixture
|
| 1348 |
+
def fixed_now_ts() -> Timestamp:
|
| 1349 |
+
"""
|
| 1350 |
+
Fixture emits fixed Timestamp.now()
|
| 1351 |
+
"""
|
| 1352 |
+
return Timestamp( # pyright: ignore[reportGeneralTypeIssues]
|
| 1353 |
+
year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22
|
| 1354 |
+
)
|
| 1355 |
+
|
| 1356 |
+
|
| 1357 |
+
@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES)
|
| 1358 |
+
def float_numpy_dtype(request):
|
| 1359 |
+
"""
|
| 1360 |
+
Parameterized fixture for float dtypes.
|
| 1361 |
+
|
| 1362 |
+
* float
|
| 1363 |
+
* 'float32'
|
| 1364 |
+
* 'float64'
|
| 1365 |
+
"""
|
| 1366 |
+
return request.param
|
| 1367 |
+
|
| 1368 |
+
|
| 1369 |
+
@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
|
| 1370 |
+
def float_ea_dtype(request):
|
| 1371 |
+
"""
|
| 1372 |
+
Parameterized fixture for float dtypes.
|
| 1373 |
+
|
| 1374 |
+
* 'Float32'
|
| 1375 |
+
* 'Float64'
|
| 1376 |
+
"""
|
| 1377 |
+
return request.param
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
@pytest.fixture(params=tm.ALL_FLOAT_DTYPES)
|
| 1381 |
+
def any_float_dtype(request):
|
| 1382 |
+
"""
|
| 1383 |
+
Parameterized fixture for float dtypes.
|
| 1384 |
+
|
| 1385 |
+
* float
|
| 1386 |
+
* 'float32'
|
| 1387 |
+
* 'float64'
|
| 1388 |
+
* 'Float32'
|
| 1389 |
+
* 'Float64'
|
| 1390 |
+
"""
|
| 1391 |
+
return request.param
|
| 1392 |
+
|
| 1393 |
+
|
| 1394 |
+
@pytest.fixture(params=tm.COMPLEX_DTYPES)
|
| 1395 |
+
def complex_dtype(request):
|
| 1396 |
+
"""
|
| 1397 |
+
Parameterized fixture for complex dtypes.
|
| 1398 |
+
|
| 1399 |
+
* complex
|
| 1400 |
+
* 'complex64'
|
| 1401 |
+
* 'complex128'
|
| 1402 |
+
"""
|
| 1403 |
+
return request.param
|
| 1404 |
+
|
| 1405 |
+
|
| 1406 |
+
@pytest.fixture(params=tm.COMPLEX_FLOAT_DTYPES)
|
| 1407 |
+
def complex_or_float_dtype(request):
|
| 1408 |
+
"""
|
| 1409 |
+
Parameterized fixture for complex and numpy float dtypes.
|
| 1410 |
+
|
| 1411 |
+
* complex
|
| 1412 |
+
* 'complex64'
|
| 1413 |
+
* 'complex128'
|
| 1414 |
+
* float
|
| 1415 |
+
* 'float32'
|
| 1416 |
+
* 'float64'
|
| 1417 |
+
"""
|
| 1418 |
+
return request.param
|
| 1419 |
+
|
| 1420 |
+
|
| 1421 |
+
@pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES)
|
| 1422 |
+
def any_signed_int_numpy_dtype(request):
|
| 1423 |
+
"""
|
| 1424 |
+
Parameterized fixture for signed integer dtypes.
|
| 1425 |
+
|
| 1426 |
+
* int
|
| 1427 |
+
* 'int8'
|
| 1428 |
+
* 'int16'
|
| 1429 |
+
* 'int32'
|
| 1430 |
+
* 'int64'
|
| 1431 |
+
"""
|
| 1432 |
+
return request.param
|
| 1433 |
+
|
| 1434 |
+
|
| 1435 |
+
@pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES)
|
| 1436 |
+
def any_unsigned_int_numpy_dtype(request):
|
| 1437 |
+
"""
|
| 1438 |
+
Parameterized fixture for unsigned integer dtypes.
|
| 1439 |
+
|
| 1440 |
+
* 'uint8'
|
| 1441 |
+
* 'uint16'
|
| 1442 |
+
* 'uint32'
|
| 1443 |
+
* 'uint64'
|
| 1444 |
+
"""
|
| 1445 |
+
return request.param
|
| 1446 |
+
|
| 1447 |
+
|
| 1448 |
+
@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES)
|
| 1449 |
+
def any_int_numpy_dtype(request):
|
| 1450 |
+
"""
|
| 1451 |
+
Parameterized fixture for any integer dtype.
|
| 1452 |
+
|
| 1453 |
+
* int
|
| 1454 |
+
* 'int8'
|
| 1455 |
+
* 'uint8'
|
| 1456 |
+
* 'int16'
|
| 1457 |
+
* 'uint16'
|
| 1458 |
+
* 'int32'
|
| 1459 |
+
* 'uint32'
|
| 1460 |
+
* 'int64'
|
| 1461 |
+
* 'uint64'
|
| 1462 |
+
"""
|
| 1463 |
+
return request.param
|
| 1464 |
+
|
| 1465 |
+
|
| 1466 |
+
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES)
|
| 1467 |
+
def any_int_ea_dtype(request):
|
| 1468 |
+
"""
|
| 1469 |
+
Parameterized fixture for any nullable integer dtype.
|
| 1470 |
+
|
| 1471 |
+
* 'UInt8'
|
| 1472 |
+
* 'Int8'
|
| 1473 |
+
* 'UInt16'
|
| 1474 |
+
* 'Int16'
|
| 1475 |
+
* 'UInt32'
|
| 1476 |
+
* 'Int32'
|
| 1477 |
+
* 'UInt64'
|
| 1478 |
+
* 'Int64'
|
| 1479 |
+
"""
|
| 1480 |
+
return request.param
|
| 1481 |
+
|
| 1482 |
+
|
| 1483 |
+
@pytest.fixture(params=tm.ALL_INT_DTYPES)
|
| 1484 |
+
def any_int_dtype(request):
|
| 1485 |
+
"""
|
| 1486 |
+
Parameterized fixture for any nullable integer dtype.
|
| 1487 |
+
|
| 1488 |
+
* int
|
| 1489 |
+
* 'int8'
|
| 1490 |
+
* 'uint8'
|
| 1491 |
+
* 'int16'
|
| 1492 |
+
* 'uint16'
|
| 1493 |
+
* 'int32'
|
| 1494 |
+
* 'uint32'
|
| 1495 |
+
* 'int64'
|
| 1496 |
+
* 'uint64'
|
| 1497 |
+
* 'UInt8'
|
| 1498 |
+
* 'Int8'
|
| 1499 |
+
* 'UInt16'
|
| 1500 |
+
* 'Int16'
|
| 1501 |
+
* 'UInt32'
|
| 1502 |
+
* 'Int32'
|
| 1503 |
+
* 'UInt64'
|
| 1504 |
+
* 'Int64'
|
| 1505 |
+
"""
|
| 1506 |
+
return request.param
|
| 1507 |
+
|
| 1508 |
+
|
| 1509 |
+
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES)
|
| 1510 |
+
def any_numeric_ea_dtype(request):
|
| 1511 |
+
"""
|
| 1512 |
+
Parameterized fixture for any nullable integer dtype and
|
| 1513 |
+
any float ea dtypes.
|
| 1514 |
+
|
| 1515 |
+
* 'UInt8'
|
| 1516 |
+
* 'Int8'
|
| 1517 |
+
* 'UInt16'
|
| 1518 |
+
* 'Int16'
|
| 1519 |
+
* 'UInt32'
|
| 1520 |
+
* 'Int32'
|
| 1521 |
+
* 'UInt64'
|
| 1522 |
+
* 'Int64'
|
| 1523 |
+
* 'Float32'
|
| 1524 |
+
* 'Float64'
|
| 1525 |
+
"""
|
| 1526 |
+
return request.param
|
| 1527 |
+
|
| 1528 |
+
|
| 1529 |
+
# Unsupported operand types for + ("List[Union[str, ExtensionDtype, dtype[Any],
|
| 1530 |
+
# Type[object]]]" and "List[str]")
|
| 1531 |
+
@pytest.fixture(
|
| 1532 |
+
params=tm.ALL_INT_EA_DTYPES
|
| 1533 |
+
+ tm.FLOAT_EA_DTYPES
|
| 1534 |
+
+ tm.ALL_INT_PYARROW_DTYPES_STR_REPR
|
| 1535 |
+
+ tm.FLOAT_PYARROW_DTYPES_STR_REPR # type: ignore[operator]
|
| 1536 |
+
)
|
| 1537 |
+
def any_numeric_ea_and_arrow_dtype(request):
|
| 1538 |
+
"""
|
| 1539 |
+
Parameterized fixture for any nullable integer dtype and
|
| 1540 |
+
any float ea dtypes.
|
| 1541 |
+
|
| 1542 |
+
* 'UInt8'
|
| 1543 |
+
* 'Int8'
|
| 1544 |
+
* 'UInt16'
|
| 1545 |
+
* 'Int16'
|
| 1546 |
+
* 'UInt32'
|
| 1547 |
+
* 'Int32'
|
| 1548 |
+
* 'UInt64'
|
| 1549 |
+
* 'Int64'
|
| 1550 |
+
* 'Float32'
|
| 1551 |
+
* 'Float64'
|
| 1552 |
+
* 'uint8[pyarrow]'
|
| 1553 |
+
* 'int8[pyarrow]'
|
| 1554 |
+
* 'uint16[pyarrow]'
|
| 1555 |
+
* 'int16[pyarrow]'
|
| 1556 |
+
* 'uint32[pyarrow]'
|
| 1557 |
+
* 'int32[pyarrow]'
|
| 1558 |
+
* 'uint64[pyarrow]'
|
| 1559 |
+
* 'int64[pyarrow]'
|
| 1560 |
+
* 'float32[pyarrow]'
|
| 1561 |
+
* 'float64[pyarrow]'
|
| 1562 |
+
"""
|
| 1563 |
+
return request.param
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
+
@pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES)
|
| 1567 |
+
def any_signed_int_ea_dtype(request):
|
| 1568 |
+
"""
|
| 1569 |
+
Parameterized fixture for any signed nullable integer dtype.
|
| 1570 |
+
|
| 1571 |
+
* 'Int8'
|
| 1572 |
+
* 'Int16'
|
| 1573 |
+
* 'Int32'
|
| 1574 |
+
* 'Int64'
|
| 1575 |
+
"""
|
| 1576 |
+
return request.param
|
| 1577 |
+
|
| 1578 |
+
|
| 1579 |
+
@pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES)
|
| 1580 |
+
def any_real_numpy_dtype(request):
|
| 1581 |
+
"""
|
| 1582 |
+
Parameterized fixture for any (purely) real numeric dtype.
|
| 1583 |
+
|
| 1584 |
+
* int
|
| 1585 |
+
* 'int8'
|
| 1586 |
+
* 'uint8'
|
| 1587 |
+
* 'int16'
|
| 1588 |
+
* 'uint16'
|
| 1589 |
+
* 'int32'
|
| 1590 |
+
* 'uint32'
|
| 1591 |
+
* 'int64'
|
| 1592 |
+
* 'uint64'
|
| 1593 |
+
* float
|
| 1594 |
+
* 'float32'
|
| 1595 |
+
* 'float64'
|
| 1596 |
+
"""
|
| 1597 |
+
return request.param
|
| 1598 |
+
|
| 1599 |
+
|
| 1600 |
+
@pytest.fixture(params=tm.ALL_REAL_DTYPES)
|
| 1601 |
+
def any_real_numeric_dtype(request):
|
| 1602 |
+
"""
|
| 1603 |
+
Parameterized fixture for any (purely) real numeric dtype.
|
| 1604 |
+
|
| 1605 |
+
* int
|
| 1606 |
+
* 'int8'
|
| 1607 |
+
* 'uint8'
|
| 1608 |
+
* 'int16'
|
| 1609 |
+
* 'uint16'
|
| 1610 |
+
* 'int32'
|
| 1611 |
+
* 'uint32'
|
| 1612 |
+
* 'int64'
|
| 1613 |
+
* 'uint64'
|
| 1614 |
+
* float
|
| 1615 |
+
* 'float32'
|
| 1616 |
+
* 'float64'
|
| 1617 |
+
|
| 1618 |
+
and associated ea dtypes.
|
| 1619 |
+
"""
|
| 1620 |
+
return request.param
|
| 1621 |
+
|
| 1622 |
+
|
| 1623 |
+
@pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
|
| 1624 |
+
def any_numpy_dtype(request):
|
| 1625 |
+
"""
|
| 1626 |
+
Parameterized fixture for all numpy dtypes.
|
| 1627 |
+
|
| 1628 |
+
* bool
|
| 1629 |
+
* 'bool'
|
| 1630 |
+
* int
|
| 1631 |
+
* 'int8'
|
| 1632 |
+
* 'uint8'
|
| 1633 |
+
* 'int16'
|
| 1634 |
+
* 'uint16'
|
| 1635 |
+
* 'int32'
|
| 1636 |
+
* 'uint32'
|
| 1637 |
+
* 'int64'
|
| 1638 |
+
* 'uint64'
|
| 1639 |
+
* float
|
| 1640 |
+
* 'float32'
|
| 1641 |
+
* 'float64'
|
| 1642 |
+
* complex
|
| 1643 |
+
* 'complex64'
|
| 1644 |
+
* 'complex128'
|
| 1645 |
+
* str
|
| 1646 |
+
* 'str'
|
| 1647 |
+
* 'U'
|
| 1648 |
+
* bytes
|
| 1649 |
+
* 'bytes'
|
| 1650 |
+
* 'datetime64[ns]'
|
| 1651 |
+
* 'M8[ns]'
|
| 1652 |
+
* 'timedelta64[ns]'
|
| 1653 |
+
* 'm8[ns]'
|
| 1654 |
+
* object
|
| 1655 |
+
* 'object'
|
| 1656 |
+
"""
|
| 1657 |
+
return request.param
|
| 1658 |
+
|
| 1659 |
+
|
| 1660 |
+
@pytest.fixture(params=tm.ALL_REAL_NULLABLE_DTYPES)
|
| 1661 |
+
def any_real_nullable_dtype(request):
|
| 1662 |
+
"""
|
| 1663 |
+
Parameterized fixture for all real dtypes that can hold NA.
|
| 1664 |
+
|
| 1665 |
+
* float
|
| 1666 |
+
* 'float32'
|
| 1667 |
+
* 'float64'
|
| 1668 |
+
* 'Float32'
|
| 1669 |
+
* 'Float64'
|
| 1670 |
+
* 'UInt8'
|
| 1671 |
+
* 'UInt16'
|
| 1672 |
+
* 'UInt32'
|
| 1673 |
+
* 'UInt64'
|
| 1674 |
+
* 'Int8'
|
| 1675 |
+
* 'Int16'
|
| 1676 |
+
* 'Int32'
|
| 1677 |
+
* 'Int64'
|
| 1678 |
+
* 'uint8[pyarrow]'
|
| 1679 |
+
* 'uint16[pyarrow]'
|
| 1680 |
+
* 'uint32[pyarrow]'
|
| 1681 |
+
* 'uint64[pyarrow]'
|
| 1682 |
+
* 'int8[pyarrow]'
|
| 1683 |
+
* 'int16[pyarrow]'
|
| 1684 |
+
* 'int32[pyarrow]'
|
| 1685 |
+
* 'int64[pyarrow]'
|
| 1686 |
+
* 'float[pyarrow]'
|
| 1687 |
+
* 'double[pyarrow]'
|
| 1688 |
+
"""
|
| 1689 |
+
return request.param
|
| 1690 |
+
|
| 1691 |
+
|
| 1692 |
+
@pytest.fixture(params=tm.ALL_NUMERIC_DTYPES)
|
| 1693 |
+
def any_numeric_dtype(request):
|
| 1694 |
+
"""
|
| 1695 |
+
Parameterized fixture for all numeric dtypes.
|
| 1696 |
+
|
| 1697 |
+
* int
|
| 1698 |
+
* 'int8'
|
| 1699 |
+
* 'uint8'
|
| 1700 |
+
* 'int16'
|
| 1701 |
+
* 'uint16'
|
| 1702 |
+
* 'int32'
|
| 1703 |
+
* 'uint32'
|
| 1704 |
+
* 'int64'
|
| 1705 |
+
* 'uint64'
|
| 1706 |
+
* float
|
| 1707 |
+
* 'float32'
|
| 1708 |
+
* 'float64'
|
| 1709 |
+
* complex
|
| 1710 |
+
* 'complex64'
|
| 1711 |
+
* 'complex128'
|
| 1712 |
+
* 'UInt8'
|
| 1713 |
+
* 'Int8'
|
| 1714 |
+
* 'UInt16'
|
| 1715 |
+
* 'Int16'
|
| 1716 |
+
* 'UInt32'
|
| 1717 |
+
* 'Int32'
|
| 1718 |
+
* 'UInt64'
|
| 1719 |
+
* 'Int64'
|
| 1720 |
+
* 'Float32'
|
| 1721 |
+
* 'Float64'
|
| 1722 |
+
"""
|
| 1723 |
+
return request.param
|
| 1724 |
+
|
| 1725 |
+
|
| 1726 |
+
# categoricals are handled separately
|
| 1727 |
+
_any_skipna_inferred_dtype = [
|
| 1728 |
+
("string", ["a", np.nan, "c"]),
|
| 1729 |
+
("string", ["a", pd.NA, "c"]),
|
| 1730 |
+
("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array
|
| 1731 |
+
("bytes", [b"a", np.nan, b"c"]),
|
| 1732 |
+
("empty", [np.nan, np.nan, np.nan]),
|
| 1733 |
+
("empty", []),
|
| 1734 |
+
("mixed-integer", ["a", np.nan, 2]),
|
| 1735 |
+
("mixed", ["a", np.nan, 2.0]),
|
| 1736 |
+
("floating", [1.0, np.nan, 2.0]),
|
| 1737 |
+
("integer", [1, np.nan, 2]),
|
| 1738 |
+
("mixed-integer-float", [1, np.nan, 2.0]),
|
| 1739 |
+
("decimal", [Decimal(1), np.nan, Decimal(2)]),
|
| 1740 |
+
("boolean", [True, np.nan, False]),
|
| 1741 |
+
("boolean", [True, pd.NA, False]),
|
| 1742 |
+
("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
|
| 1743 |
+
("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]),
|
| 1744 |
+
("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
|
| 1745 |
+
("complex", [1 + 1j, np.nan, 2 + 2j]),
|
| 1746 |
+
# The following dtype is commented out due to GH 23554
|
| 1747 |
+
# ('timedelta64', [np.timedelta64(1, 'D'),
|
| 1748 |
+
# np.nan, np.timedelta64(2, 'D')]),
|
| 1749 |
+
("timedelta", [timedelta(1), np.nan, timedelta(2)]),
|
| 1750 |
+
("time", [time(1), np.nan, time(2)]),
|
| 1751 |
+
("period", [Period(2013), pd.NaT, Period(2018)]),
|
| 1752 |
+
("interval", [Interval(0, 1), np.nan, Interval(0, 2)]),
|
| 1753 |
+
]
|
| 1754 |
+
ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
|
| 1755 |
+
|
| 1756 |
+
|
| 1757 |
+
@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
|
| 1758 |
+
def any_skipna_inferred_dtype(request):
|
| 1759 |
+
"""
|
| 1760 |
+
Fixture for all inferred dtypes from _libs.lib.infer_dtype
|
| 1761 |
+
|
| 1762 |
+
The covered (inferred) types are:
|
| 1763 |
+
* 'string'
|
| 1764 |
+
* 'empty'
|
| 1765 |
+
* 'bytes'
|
| 1766 |
+
* 'mixed'
|
| 1767 |
+
* 'mixed-integer'
|
| 1768 |
+
* 'mixed-integer-float'
|
| 1769 |
+
* 'floating'
|
| 1770 |
+
* 'integer'
|
| 1771 |
+
* 'decimal'
|
| 1772 |
+
* 'boolean'
|
| 1773 |
+
* 'datetime64'
|
| 1774 |
+
* 'datetime'
|
| 1775 |
+
* 'date'
|
| 1776 |
+
* 'timedelta'
|
| 1777 |
+
* 'time'
|
| 1778 |
+
* 'period'
|
| 1779 |
+
* 'interval'
|
| 1780 |
+
|
| 1781 |
+
Returns
|
| 1782 |
+
-------
|
| 1783 |
+
inferred_dtype : str
|
| 1784 |
+
The string for the inferred dtype from _libs.lib.infer_dtype
|
| 1785 |
+
values : np.ndarray
|
| 1786 |
+
An array of object dtype that will be inferred to have
|
| 1787 |
+
`inferred_dtype`
|
| 1788 |
+
|
| 1789 |
+
Examples
|
| 1790 |
+
--------
|
| 1791 |
+
>>> from pandas._libs import lib
|
| 1792 |
+
>>>
|
| 1793 |
+
>>> def test_something(any_skipna_inferred_dtype):
|
| 1794 |
+
... inferred_dtype, values = any_skipna_inferred_dtype
|
| 1795 |
+
... # will pass
|
| 1796 |
+
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
|
| 1797 |
+
"""
|
| 1798 |
+
inferred_dtype, values = request.param
|
| 1799 |
+
values = np.array(values, dtype=object) # object dtype to avoid casting
|
| 1800 |
+
|
| 1801 |
+
# correctness of inference tested in tests/dtypes/test_inference.py
|
| 1802 |
+
return inferred_dtype, values
|
| 1803 |
+
|
| 1804 |
+
|
| 1805 |
+
# ----------------------------------------------------------------
|
| 1806 |
+
# Misc
|
| 1807 |
+
# ----------------------------------------------------------------
|
| 1808 |
+
@pytest.fixture
|
| 1809 |
+
def ip():
|
| 1810 |
+
"""
|
| 1811 |
+
Get an instance of IPython.InteractiveShell.
|
| 1812 |
+
|
| 1813 |
+
Will raise a skip if IPython is not installed.
|
| 1814 |
+
"""
|
| 1815 |
+
pytest.importorskip("IPython", minversion="6.0.0")
|
| 1816 |
+
from IPython.core.interactiveshell import InteractiveShell
|
| 1817 |
+
|
| 1818 |
+
# GH#35711 make sure sqlite history file handle is not leaked
|
| 1819 |
+
from traitlets.config import Config # isort:skip
|
| 1820 |
+
|
| 1821 |
+
c = Config()
|
| 1822 |
+
c.HistoryManager.hist_file = ":memory:"
|
| 1823 |
+
|
| 1824 |
+
return InteractiveShell(config=c)
|
| 1825 |
+
|
| 1826 |
+
|
| 1827 |
+
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
|
| 1828 |
+
def spmatrix(request):
|
| 1829 |
+
"""
|
| 1830 |
+
Yields scipy sparse matrix classes.
|
| 1831 |
+
"""
|
| 1832 |
+
sparse = pytest.importorskip("scipy.sparse")
|
| 1833 |
+
|
| 1834 |
+
return getattr(sparse, request.param + "_matrix")
|
| 1835 |
+
|
| 1836 |
+
|
| 1837 |
+
@pytest.fixture(
|
| 1838 |
+
params=[
|
| 1839 |
+
getattr(pd.offsets, o)
|
| 1840 |
+
for o in pd.offsets.__all__
|
| 1841 |
+
if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick"
|
| 1842 |
+
]
|
| 1843 |
+
)
|
| 1844 |
+
def tick_classes(request):
|
| 1845 |
+
"""
|
| 1846 |
+
Fixture for Tick based datetime offsets available for a time series.
|
| 1847 |
+
"""
|
| 1848 |
+
return request.param
|
| 1849 |
+
|
| 1850 |
+
|
| 1851 |
+
@pytest.fixture(params=[None, lambda x: x])
|
| 1852 |
+
def sort_by_key(request):
|
| 1853 |
+
"""
|
| 1854 |
+
Simple fixture for testing keys in sorting methods.
|
| 1855 |
+
Tests None (no key) and the identity key.
|
| 1856 |
+
"""
|
| 1857 |
+
return request.param
|
| 1858 |
+
|
| 1859 |
+
|
| 1860 |
+
@pytest.fixture(
|
| 1861 |
+
params=[
|
| 1862 |
+
("foo", None, None),
|
| 1863 |
+
("Egon", "Venkman", None),
|
| 1864 |
+
("NCC1701D", "NCC1701D", "NCC1701D"),
|
| 1865 |
+
# possibly-matching NAs
|
| 1866 |
+
(np.nan, np.nan, np.nan),
|
| 1867 |
+
(np.nan, pd.NaT, None),
|
| 1868 |
+
(np.nan, pd.NA, None),
|
| 1869 |
+
(pd.NA, pd.NA, pd.NA),
|
| 1870 |
+
]
|
| 1871 |
+
)
|
| 1872 |
+
def names(request) -> tuple[Hashable, Hashable, Hashable]:
|
| 1873 |
+
"""
|
| 1874 |
+
A 3-tuple of names, the first two for operands, the last for a result.
|
| 1875 |
+
"""
|
| 1876 |
+
return request.param
|
| 1877 |
+
|
| 1878 |
+
|
| 1879 |
+
@pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc])
|
| 1880 |
+
def indexer_sli(request):
|
| 1881 |
+
"""
|
| 1882 |
+
Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__
|
| 1883 |
+
"""
|
| 1884 |
+
return request.param
|
| 1885 |
+
|
| 1886 |
+
|
| 1887 |
+
@pytest.fixture(params=[tm.loc, tm.iloc])
|
| 1888 |
+
def indexer_li(request):
|
| 1889 |
+
"""
|
| 1890 |
+
Parametrize over loc.__getitem__, iloc.__getitem__
|
| 1891 |
+
"""
|
| 1892 |
+
return request.param
|
| 1893 |
+
|
| 1894 |
+
|
| 1895 |
+
@pytest.fixture(params=[tm.setitem, tm.iloc])
|
| 1896 |
+
def indexer_si(request):
|
| 1897 |
+
"""
|
| 1898 |
+
Parametrize over __setitem__, iloc.__setitem__
|
| 1899 |
+
"""
|
| 1900 |
+
return request.param
|
| 1901 |
+
|
| 1902 |
+
|
| 1903 |
+
@pytest.fixture(params=[tm.setitem, tm.loc])
|
| 1904 |
+
def indexer_sl(request):
|
| 1905 |
+
"""
|
| 1906 |
+
Parametrize over __setitem__, loc.__setitem__
|
| 1907 |
+
"""
|
| 1908 |
+
return request.param
|
| 1909 |
+
|
| 1910 |
+
|
| 1911 |
+
@pytest.fixture(params=[tm.at, tm.loc])
|
| 1912 |
+
def indexer_al(request):
|
| 1913 |
+
"""
|
| 1914 |
+
Parametrize over at.__setitem__, loc.__setitem__
|
| 1915 |
+
"""
|
| 1916 |
+
return request.param
|
| 1917 |
+
|
| 1918 |
+
|
| 1919 |
+
@pytest.fixture(params=[tm.iat, tm.iloc])
|
| 1920 |
+
def indexer_ial(request):
|
| 1921 |
+
"""
|
| 1922 |
+
Parametrize over iat.__setitem__, iloc.__setitem__
|
| 1923 |
+
"""
|
| 1924 |
+
return request.param
|
| 1925 |
+
|
| 1926 |
+
|
| 1927 |
+
@pytest.fixture
|
| 1928 |
+
def using_array_manager() -> bool:
|
| 1929 |
+
"""
|
| 1930 |
+
Fixture to check if the array manager is being used.
|
| 1931 |
+
"""
|
| 1932 |
+
return _get_option("mode.data_manager", silent=True) == "array"
|
| 1933 |
+
|
| 1934 |
+
|
| 1935 |
+
@pytest.fixture
|
| 1936 |
+
def using_copy_on_write() -> bool:
|
| 1937 |
+
"""
|
| 1938 |
+
Fixture to check if Copy-on-Write is enabled.
|
| 1939 |
+
"""
|
| 1940 |
+
return (
|
| 1941 |
+
pd.options.mode.copy_on_write is True
|
| 1942 |
+
and _get_option("mode.data_manager", silent=True) == "block"
|
| 1943 |
+
)
|
| 1944 |
+
|
| 1945 |
+
|
| 1946 |
+
@pytest.fixture
|
| 1947 |
+
def warn_copy_on_write() -> bool:
|
| 1948 |
+
"""
|
| 1949 |
+
Fixture to check if Copy-on-Write is in warning mode.
|
| 1950 |
+
"""
|
| 1951 |
+
return (
|
| 1952 |
+
pd.options.mode.copy_on_write == "warn"
|
| 1953 |
+
and _get_option("mode.data_manager", silent=True) == "block"
|
| 1954 |
+
)
|
| 1955 |
+
|
| 1956 |
+
|
| 1957 |
+
@pytest.fixture
|
| 1958 |
+
def using_infer_string() -> bool:
|
| 1959 |
+
"""
|
| 1960 |
+
Fixture to check if infer string option is enabled.
|
| 1961 |
+
"""
|
| 1962 |
+
return pd.options.future.infer_string is True
|
| 1963 |
+
|
| 1964 |
+
|
| 1965 |
+
warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"]
|
| 1966 |
+
if zoneinfo is not None:
|
| 1967 |
+
warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw")) # type: ignore[arg-type]
|
| 1968 |
+
|
| 1969 |
+
|
| 1970 |
+
@pytest.fixture(params=warsaws)
|
| 1971 |
+
def warsaw(request) -> str:
|
| 1972 |
+
"""
|
| 1973 |
+
tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo.
|
| 1974 |
+
"""
|
| 1975 |
+
return request.param
|
| 1976 |
+
|
| 1977 |
+
|
| 1978 |
+
@pytest.fixture()
|
| 1979 |
+
def arrow_string_storage():
|
| 1980 |
+
return ("pyarrow", "pyarrow_numpy")
|
infer_4_30_0/lib/python3.10/site-packages/pandas/pyproject.toml
ADDED
|
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
# Minimum requirements for the build system to execute.
|
| 3 |
+
# See https://github.com/scipy/scipy/pull/12940 for the AIX issue.
|
| 4 |
+
requires = [
|
| 5 |
+
"meson-python==0.13.1",
|
| 6 |
+
"meson==1.2.1",
|
| 7 |
+
"wheel",
|
| 8 |
+
"Cython~=3.0.5", # Note: sync with setup.py, environment.yml and asv.conf.json
|
| 9 |
+
# Force numpy higher than 2.0, so that built wheels are compatible
|
| 10 |
+
# with both numpy 1 and 2
|
| 11 |
+
"numpy>=2.0",
|
| 12 |
+
"versioneer[toml]"
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
build-backend = "mesonpy"
|
| 16 |
+
|
| 17 |
+
[project]
|
| 18 |
+
name = 'pandas'
|
| 19 |
+
dynamic = [
|
| 20 |
+
'version'
|
| 21 |
+
]
|
| 22 |
+
description = 'Powerful data structures for data analysis, time series, and statistics'
|
| 23 |
+
readme = 'README.md'
|
| 24 |
+
authors = [
|
| 25 |
+
{ name = 'The Pandas Development Team', email='[email protected]' },
|
| 26 |
+
]
|
| 27 |
+
license = {file = 'LICENSE'}
|
| 28 |
+
requires-python = '>=3.9'
|
| 29 |
+
dependencies = [
|
| 30 |
+
"numpy>=1.22.4; python_version<'3.11'",
|
| 31 |
+
"numpy>=1.23.2; python_version=='3.11'",
|
| 32 |
+
"numpy>=1.26.0; python_version>='3.12'",
|
| 33 |
+
"python-dateutil>=2.8.2",
|
| 34 |
+
"pytz>=2020.1",
|
| 35 |
+
"tzdata>=2022.7"
|
| 36 |
+
]
|
| 37 |
+
classifiers = [
|
| 38 |
+
'Development Status :: 5 - Production/Stable',
|
| 39 |
+
'Environment :: Console',
|
| 40 |
+
'Intended Audience :: Science/Research',
|
| 41 |
+
'License :: OSI Approved :: BSD License',
|
| 42 |
+
'Operating System :: OS Independent',
|
| 43 |
+
'Programming Language :: Cython',
|
| 44 |
+
'Programming Language :: Python',
|
| 45 |
+
'Programming Language :: Python :: 3',
|
| 46 |
+
'Programming Language :: Python :: 3 :: Only',
|
| 47 |
+
'Programming Language :: Python :: 3.9',
|
| 48 |
+
'Programming Language :: Python :: 3.10',
|
| 49 |
+
'Programming Language :: Python :: 3.11',
|
| 50 |
+
'Programming Language :: Python :: 3.12',
|
| 51 |
+
'Topic :: Scientific/Engineering'
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
[project.urls]
|
| 55 |
+
homepage = 'https://pandas.pydata.org'
|
| 56 |
+
documentation = 'https://pandas.pydata.org/docs/'
|
| 57 |
+
repository = 'https://github.com/pandas-dev/pandas'
|
| 58 |
+
|
| 59 |
+
[project.entry-points."pandas_plotting_backends"]
|
| 60 |
+
matplotlib = "pandas:plotting._matplotlib"
|
| 61 |
+
|
| 62 |
+
[project.optional-dependencies]
|
| 63 |
+
test = ['hypothesis>=6.46.1', 'pytest>=7.3.2', 'pytest-xdist>=2.2.0']
|
| 64 |
+
pyarrow = ['pyarrow>=10.0.1']
|
| 65 |
+
performance = ['bottleneck>=1.3.6', 'numba>=0.56.4', 'numexpr>=2.8.4']
|
| 66 |
+
computation = ['scipy>=1.10.0', 'xarray>=2022.12.0']
|
| 67 |
+
fss = ['fsspec>=2022.11.0']
|
| 68 |
+
aws = ['s3fs>=2022.11.0']
|
| 69 |
+
gcp = ['gcsfs>=2022.11.0', 'pandas-gbq>=0.19.0']
|
| 70 |
+
excel = ['odfpy>=1.4.1', 'openpyxl>=3.1.0', 'python-calamine>=0.1.7', 'pyxlsb>=1.0.10', 'xlrd>=2.0.1', 'xlsxwriter>=3.0.5']
|
| 71 |
+
parquet = ['pyarrow>=10.0.1']
|
| 72 |
+
feather = ['pyarrow>=10.0.1']
|
| 73 |
+
hdf5 = [# blosc only available on conda (https://github.com/Blosc/python-blosc/issues/297)
|
| 74 |
+
#'blosc>=1.20.1',
|
| 75 |
+
'tables>=3.8.0']
|
| 76 |
+
spss = ['pyreadstat>=1.2.0']
|
| 77 |
+
postgresql = ['SQLAlchemy>=2.0.0', 'psycopg2>=2.9.6', 'adbc-driver-postgresql>=0.8.0']
|
| 78 |
+
mysql = ['SQLAlchemy>=2.0.0', 'pymysql>=1.0.2']
|
| 79 |
+
sql-other = ['SQLAlchemy>=2.0.0', 'adbc-driver-postgresql>=0.8.0', 'adbc-driver-sqlite>=0.8.0']
|
| 80 |
+
html = ['beautifulsoup4>=4.11.2', 'html5lib>=1.1', 'lxml>=4.9.2']
|
| 81 |
+
xml = ['lxml>=4.9.2']
|
| 82 |
+
plot = ['matplotlib>=3.6.3']
|
| 83 |
+
output-formatting = ['jinja2>=3.1.2', 'tabulate>=0.9.0']
|
| 84 |
+
clipboard = ['PyQt5>=5.15.9', 'qtpy>=2.3.0']
|
| 85 |
+
compression = ['zstandard>=0.19.0']
|
| 86 |
+
consortium-standard = ['dataframe-api-compat>=0.1.7']
|
| 87 |
+
all = ['adbc-driver-postgresql>=0.8.0',
|
| 88 |
+
'adbc-driver-sqlite>=0.8.0',
|
| 89 |
+
'beautifulsoup4>=4.11.2',
|
| 90 |
+
# blosc only available on conda (https://github.com/Blosc/python-blosc/issues/297)
|
| 91 |
+
#'blosc>=1.21.3',
|
| 92 |
+
'bottleneck>=1.3.6',
|
| 93 |
+
'dataframe-api-compat>=0.1.7',
|
| 94 |
+
'fastparquet>=2022.12.0',
|
| 95 |
+
'fsspec>=2022.11.0',
|
| 96 |
+
'gcsfs>=2022.11.0',
|
| 97 |
+
'html5lib>=1.1',
|
| 98 |
+
'hypothesis>=6.46.1',
|
| 99 |
+
'jinja2>=3.1.2',
|
| 100 |
+
'lxml>=4.9.2',
|
| 101 |
+
'matplotlib>=3.6.3',
|
| 102 |
+
'numba>=0.56.4',
|
| 103 |
+
'numexpr>=2.8.4',
|
| 104 |
+
'odfpy>=1.4.1',
|
| 105 |
+
'openpyxl>=3.1.0',
|
| 106 |
+
'pandas-gbq>=0.19.0',
|
| 107 |
+
'psycopg2>=2.9.6',
|
| 108 |
+
'pyarrow>=10.0.1',
|
| 109 |
+
'pymysql>=1.0.2',
|
| 110 |
+
'PyQt5>=5.15.9',
|
| 111 |
+
'pyreadstat>=1.2.0',
|
| 112 |
+
'pytest>=7.3.2',
|
| 113 |
+
'pytest-xdist>=2.2.0',
|
| 114 |
+
'python-calamine>=0.1.7',
|
| 115 |
+
'pyxlsb>=1.0.10',
|
| 116 |
+
'qtpy>=2.3.0',
|
| 117 |
+
'scipy>=1.10.0',
|
| 118 |
+
's3fs>=2022.11.0',
|
| 119 |
+
'SQLAlchemy>=2.0.0',
|
| 120 |
+
'tables>=3.8.0',
|
| 121 |
+
'tabulate>=0.9.0',
|
| 122 |
+
'xarray>=2022.12.0',
|
| 123 |
+
'xlrd>=2.0.1',
|
| 124 |
+
'xlsxwriter>=3.0.5',
|
| 125 |
+
'zstandard>=0.19.0']
|
| 126 |
+
|
| 127 |
+
# TODO: Remove after setuptools support is dropped.
|
| 128 |
+
[tool.setuptools]
|
| 129 |
+
include-package-data = true
|
| 130 |
+
|
| 131 |
+
[tool.setuptools.packages.find]
|
| 132 |
+
include = ["pandas", "pandas.*"]
|
| 133 |
+
namespaces = false
|
| 134 |
+
|
| 135 |
+
[tool.setuptools.exclude-package-data]
|
| 136 |
+
"*" = ["*.c", "*.h"]
|
| 137 |
+
|
| 138 |
+
# See the docstring in versioneer.py for instructions. Note that you must
|
| 139 |
+
# re-run 'versioneer.py setup' after changing this section, and commit the
|
| 140 |
+
# resulting files.
|
| 141 |
+
[tool.versioneer]
|
| 142 |
+
VCS = "git"
|
| 143 |
+
style = "pep440"
|
| 144 |
+
versionfile_source = "pandas/_version.py"
|
| 145 |
+
versionfile_build = "pandas/_version.py"
|
| 146 |
+
tag_prefix = "v"
|
| 147 |
+
parentdir_prefix = "pandas-"
|
| 148 |
+
|
| 149 |
+
[tool.meson-python.args]
|
| 150 |
+
setup = ['--vsenv'] # For Windows
|
| 151 |
+
|
| 152 |
+
[tool.cibuildwheel]
|
| 153 |
+
skip = "cp36-* cp37-* cp38-* pp* *_i686 *_ppc64le *_s390x"
|
| 154 |
+
build-verbosity = "3"
|
| 155 |
+
environment = {LDFLAGS="-Wl,--strip-all"}
|
| 156 |
+
# pytz 2024.2 causing some failures
|
| 157 |
+
test-requires = "hypothesis>=6.46.1 pytest>=7.3.2 pytest-xdist>=2.2.0 pytz<2024.2"
|
| 158 |
+
test-command = """
|
| 159 |
+
PANDAS_CI='1' python -c 'import pandas as pd; \
|
| 160 |
+
pd.test(extra_args=["-m not clipboard and not single_cpu and not slow and not network and not db", "-n 2", "--no-strict-data-files"]); \
|
| 161 |
+
pd.test(extra_args=["-m not clipboard and single_cpu and not slow and not network and not db", "--no-strict-data-files"]);' \
|
| 162 |
+
"""
|
| 163 |
+
free-threaded-support = true
|
| 164 |
+
before-build = "PACKAGE_DIR={package} bash {package}/scripts/cibw_before_build.sh"
|
| 165 |
+
|
| 166 |
+
[tool.cibuildwheel.windows]
|
| 167 |
+
before-build = "pip install delvewheel && bash {package}/scripts/cibw_before_build.sh"
|
| 168 |
+
repair-wheel-command = "delvewheel repair -w {dest_dir} {wheel}"
|
| 169 |
+
|
| 170 |
+
[[tool.cibuildwheel.overrides]]
|
| 171 |
+
select = "*-manylinux_aarch64*"
|
| 172 |
+
test-command = """
|
| 173 |
+
PANDAS_CI='1' python -c 'import pandas as pd; \
|
| 174 |
+
pd.test(extra_args=["-m not clipboard and not single_cpu and not slow and not network and not db and not fails_arm_wheels", "-n 2", "--no-strict-data-files"]); \
|
| 175 |
+
pd.test(extra_args=["-m not clipboard and single_cpu and not slow and not network and not db", "--no-strict-data-files"]);' \
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
[[tool.cibuildwheel.overrides]]
|
| 179 |
+
select = "*-musllinux*"
|
| 180 |
+
before-test = "apk update && apk add musl-locales"
|
| 181 |
+
|
| 182 |
+
[[tool.cibuildwheel.overrides]]
|
| 183 |
+
select = "*-win*"
|
| 184 |
+
# We test separately for Windows, since we use
|
| 185 |
+
# the windowsservercore docker image to check if any dlls are
|
| 186 |
+
# missing from the wheel
|
| 187 |
+
test-command = ""
|
| 188 |
+
|
| 189 |
+
[[tool.cibuildwheel.overrides]]
|
| 190 |
+
# Don't strip wheels on macOS.
|
| 191 |
+
# macOS doesn't support stripping wheels with linker
|
| 192 |
+
# https://github.com/MacPython/numpy-wheels/pull/87#issuecomment-624878264
|
| 193 |
+
select = "*-macosx*"
|
| 194 |
+
environment = {CFLAGS="-g0"}
|
| 195 |
+
|
| 196 |
+
[tool.black]
|
| 197 |
+
target-version = ['py39', 'py310']
|
| 198 |
+
required-version = '23.11.0'
|
| 199 |
+
exclude = '''
|
| 200 |
+
(
|
| 201 |
+
asv_bench/env
|
| 202 |
+
| \.egg
|
| 203 |
+
| \.git
|
| 204 |
+
| \.hg
|
| 205 |
+
| \.mypy_cache
|
| 206 |
+
| \.nox
|
| 207 |
+
| \.tox
|
| 208 |
+
| \.venv
|
| 209 |
+
| _build
|
| 210 |
+
| buck-out
|
| 211 |
+
| build
|
| 212 |
+
| dist
|
| 213 |
+
| setup.py
|
| 214 |
+
)
|
| 215 |
+
'''
|
| 216 |
+
|
| 217 |
+
[tool.ruff]
|
| 218 |
+
line-length = 88
|
| 219 |
+
target-version = "py310"
|
| 220 |
+
fix = true
|
| 221 |
+
unfixable = []
|
| 222 |
+
typing-modules = ["pandas._typing"]
|
| 223 |
+
|
| 224 |
+
select = [
|
| 225 |
+
# pyflakes
|
| 226 |
+
"F",
|
| 227 |
+
# pycodestyle
|
| 228 |
+
"E", "W",
|
| 229 |
+
# flake8-2020
|
| 230 |
+
"YTT",
|
| 231 |
+
# flake8-bugbear
|
| 232 |
+
"B",
|
| 233 |
+
# flake8-quotes
|
| 234 |
+
"Q",
|
| 235 |
+
# flake8-debugger
|
| 236 |
+
"T10",
|
| 237 |
+
# flake8-gettext
|
| 238 |
+
"INT",
|
| 239 |
+
# pylint
|
| 240 |
+
"PL",
|
| 241 |
+
# misc lints
|
| 242 |
+
"PIE",
|
| 243 |
+
# flake8-pyi
|
| 244 |
+
"PYI",
|
| 245 |
+
# tidy imports
|
| 246 |
+
"TID",
|
| 247 |
+
# implicit string concatenation
|
| 248 |
+
"ISC",
|
| 249 |
+
# type-checking imports
|
| 250 |
+
"TCH",
|
| 251 |
+
# comprehensions
|
| 252 |
+
"C4",
|
| 253 |
+
# pygrep-hooks
|
| 254 |
+
"PGH",
|
| 255 |
+
# Ruff-specific rules
|
| 256 |
+
"RUF",
|
| 257 |
+
# flake8-bandit: exec-builtin
|
| 258 |
+
"S102",
|
| 259 |
+
# numpy-legacy-random
|
| 260 |
+
"NPY002",
|
| 261 |
+
# Perflint
|
| 262 |
+
"PERF",
|
| 263 |
+
# flynt
|
| 264 |
+
"FLY",
|
| 265 |
+
# flake8-logging-format
|
| 266 |
+
"G",
|
| 267 |
+
# flake8-future-annotations
|
| 268 |
+
"FA",
|
| 269 |
+
]
|
| 270 |
+
|
| 271 |
+
ignore = [
|
| 272 |
+
### Intentionally disabled
|
| 273 |
+
# space before : (needed for how black formats slicing)
|
| 274 |
+
"E203",
|
| 275 |
+
# module level import not at top of file
|
| 276 |
+
"E402",
|
| 277 |
+
# do not assign a lambda expression, use a def
|
| 278 |
+
"E731",
|
| 279 |
+
# line break before binary operator
|
| 280 |
+
# "W503", # not yet implemented
|
| 281 |
+
# line break after binary operator
|
| 282 |
+
# "W504", # not yet implemented
|
| 283 |
+
# controversial
|
| 284 |
+
"B006",
|
| 285 |
+
# controversial
|
| 286 |
+
"B007",
|
| 287 |
+
# controversial
|
| 288 |
+
"B008",
|
| 289 |
+
# setattr is used to side-step mypy
|
| 290 |
+
"B009",
|
| 291 |
+
# getattr is used to side-step mypy
|
| 292 |
+
"B010",
|
| 293 |
+
# tests use assert False
|
| 294 |
+
"B011",
|
| 295 |
+
# tests use comparisons but not their returned value
|
| 296 |
+
"B015",
|
| 297 |
+
# false positives
|
| 298 |
+
"B019",
|
| 299 |
+
# Loop control variable overrides iterable it iterates
|
| 300 |
+
"B020",
|
| 301 |
+
# Function definition does not bind loop variable
|
| 302 |
+
"B023",
|
| 303 |
+
# Functions defined inside a loop must not use variables redefined in the loop
|
| 304 |
+
# "B301", # not yet implemented
|
| 305 |
+
# Only works with python >=3.10
|
| 306 |
+
"B905",
|
| 307 |
+
# Too many arguments to function call
|
| 308 |
+
"PLR0913",
|
| 309 |
+
# Too many returns
|
| 310 |
+
"PLR0911",
|
| 311 |
+
# Too many branches
|
| 312 |
+
"PLR0912",
|
| 313 |
+
# Too many statements
|
| 314 |
+
"PLR0915",
|
| 315 |
+
# Redefined loop name
|
| 316 |
+
"PLW2901",
|
| 317 |
+
# Global statements are discouraged
|
| 318 |
+
"PLW0603",
|
| 319 |
+
# Docstrings should not be included in stubs
|
| 320 |
+
"PYI021",
|
| 321 |
+
# Use `typing.NamedTuple` instead of `collections.namedtuple`
|
| 322 |
+
"PYI024",
|
| 323 |
+
# No builtin `eval()` allowed
|
| 324 |
+
"PGH001",
|
| 325 |
+
# compare-to-empty-string
|
| 326 |
+
"PLC1901",
|
| 327 |
+
# while int | float can be shortened to float, the former is more explicit
|
| 328 |
+
"PYI041",
|
| 329 |
+
# incorrect-dict-iterator, flags valid Series.items usage
|
| 330 |
+
"PERF102",
|
| 331 |
+
# try-except-in-loop, becomes useless in Python 3.11
|
| 332 |
+
"PERF203",
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
### TODO: Enable gradually
|
| 336 |
+
# Useless statement
|
| 337 |
+
"B018",
|
| 338 |
+
# Within an except clause, raise exceptions with ...
|
| 339 |
+
"B904",
|
| 340 |
+
# Magic number
|
| 341 |
+
"PLR2004",
|
| 342 |
+
# comparison-with-itself
|
| 343 |
+
"PLR0124",
|
| 344 |
+
# Consider `elif` instead of `else` then `if` to remove indentation level
|
| 345 |
+
"PLR5501",
|
| 346 |
+
# collection-literal-concatenation
|
| 347 |
+
"RUF005",
|
| 348 |
+
# pairwise-over-zipped (>=PY310 only)
|
| 349 |
+
"RUF007",
|
| 350 |
+
# explicit-f-string-type-conversion
|
| 351 |
+
"RUF010",
|
| 352 |
+
# mutable-class-default
|
| 353 |
+
"RUF012"
|
| 354 |
+
]
|
| 355 |
+
|
| 356 |
+
exclude = [
|
| 357 |
+
"doc/sphinxext/*.py",
|
| 358 |
+
"doc/build/*.py",
|
| 359 |
+
"doc/temp/*.py",
|
| 360 |
+
".eggs/*.py",
|
| 361 |
+
# vendored files
|
| 362 |
+
"pandas/util/version/*",
|
| 363 |
+
"pandas/io/clipboard/__init__.py",
|
| 364 |
+
# exclude asv benchmark environments from linting
|
| 365 |
+
"env",
|
| 366 |
+
]
|
| 367 |
+
|
| 368 |
+
[tool.ruff.per-file-ignores]
|
| 369 |
+
# relative imports allowed for asv_bench
|
| 370 |
+
"asv_bench/*" = ["TID", "NPY002"]
|
| 371 |
+
# to be enabled gradually
|
| 372 |
+
"pandas/core/*" = ["PLR5501"]
|
| 373 |
+
"pandas/tests/*" = ["B028", "FLY"]
|
| 374 |
+
"scripts/*" = ["B028"]
|
| 375 |
+
# Keep this one enabled
|
| 376 |
+
"pandas/_typing.py" = ["TCH"]
|
| 377 |
+
|
| 378 |
+
[tool.pylint.messages_control]
|
| 379 |
+
max-line-length = 88
|
| 380 |
+
disable = [
|
| 381 |
+
# intentionally turned off
|
| 382 |
+
"bad-mcs-classmethod-argument",
|
| 383 |
+
"broad-except",
|
| 384 |
+
"c-extension-no-member",
|
| 385 |
+
"comparison-with-itself",
|
| 386 |
+
"consider-using-enumerate",
|
| 387 |
+
"import-error",
|
| 388 |
+
"import-outside-toplevel",
|
| 389 |
+
"invalid-name",
|
| 390 |
+
"invalid-unary-operand-type",
|
| 391 |
+
"line-too-long",
|
| 392 |
+
"no-else-continue",
|
| 393 |
+
"no-else-raise",
|
| 394 |
+
"no-else-return",
|
| 395 |
+
"no-member",
|
| 396 |
+
"no-name-in-module",
|
| 397 |
+
"not-an-iterable",
|
| 398 |
+
"overridden-final-method",
|
| 399 |
+
"pointless-statement",
|
| 400 |
+
"redundant-keyword-arg",
|
| 401 |
+
"singleton-comparison",
|
| 402 |
+
"too-many-ancestors",
|
| 403 |
+
"too-many-arguments",
|
| 404 |
+
"too-many-boolean-expressions",
|
| 405 |
+
"too-many-branches",
|
| 406 |
+
"too-many-function-args",
|
| 407 |
+
"too-many-instance-attributes",
|
| 408 |
+
"too-many-locals",
|
| 409 |
+
"too-many-nested-blocks",
|
| 410 |
+
"too-many-public-methods",
|
| 411 |
+
"too-many-return-statements",
|
| 412 |
+
"too-many-statements",
|
| 413 |
+
"unexpected-keyword-arg",
|
| 414 |
+
"ungrouped-imports",
|
| 415 |
+
"unsubscriptable-object",
|
| 416 |
+
"unsupported-assignment-operation",
|
| 417 |
+
"unsupported-membership-test",
|
| 418 |
+
"unused-import",
|
| 419 |
+
"use-dict-literal",
|
| 420 |
+
"use-implicit-booleaness-not-comparison",
|
| 421 |
+
"use-implicit-booleaness-not-len",
|
| 422 |
+
"wrong-import-order",
|
| 423 |
+
"wrong-import-position",
|
| 424 |
+
"redefined-loop-name",
|
| 425 |
+
|
| 426 |
+
# misc
|
| 427 |
+
"abstract-class-instantiated",
|
| 428 |
+
"no-value-for-parameter",
|
| 429 |
+
"undefined-variable",
|
| 430 |
+
"unpacking-non-sequence",
|
| 431 |
+
"used-before-assignment",
|
| 432 |
+
|
| 433 |
+
# pylint type "C": convention, for programming standard violation
|
| 434 |
+
"missing-class-docstring",
|
| 435 |
+
"missing-function-docstring",
|
| 436 |
+
"missing-module-docstring",
|
| 437 |
+
"superfluous-parens",
|
| 438 |
+
"too-many-lines",
|
| 439 |
+
"unidiomatic-typecheck",
|
| 440 |
+
"unnecessary-dunder-call",
|
| 441 |
+
"unnecessary-lambda-assignment",
|
| 442 |
+
|
| 443 |
+
# pylint type "R": refactor, for bad code smell
|
| 444 |
+
"consider-using-with",
|
| 445 |
+
"cyclic-import",
|
| 446 |
+
"duplicate-code",
|
| 447 |
+
"inconsistent-return-statements",
|
| 448 |
+
"redefined-argument-from-local",
|
| 449 |
+
"too-few-public-methods",
|
| 450 |
+
|
| 451 |
+
# pylint type "W": warning, for python specific problems
|
| 452 |
+
"abstract-method",
|
| 453 |
+
"arguments-differ",
|
| 454 |
+
"arguments-out-of-order",
|
| 455 |
+
"arguments-renamed",
|
| 456 |
+
"attribute-defined-outside-init",
|
| 457 |
+
"broad-exception-raised",
|
| 458 |
+
"comparison-with-callable",
|
| 459 |
+
"dangerous-default-value",
|
| 460 |
+
"deprecated-module",
|
| 461 |
+
"eval-used",
|
| 462 |
+
"expression-not-assigned",
|
| 463 |
+
"fixme",
|
| 464 |
+
"global-statement",
|
| 465 |
+
"invalid-overridden-method",
|
| 466 |
+
"keyword-arg-before-vararg",
|
| 467 |
+
"possibly-unused-variable",
|
| 468 |
+
"protected-access",
|
| 469 |
+
"raise-missing-from",
|
| 470 |
+
"redefined-builtin",
|
| 471 |
+
"redefined-outer-name",
|
| 472 |
+
"self-cls-assignment",
|
| 473 |
+
"signature-differs",
|
| 474 |
+
"super-init-not-called",
|
| 475 |
+
"try-except-raise",
|
| 476 |
+
"unnecessary-lambda",
|
| 477 |
+
"unused-argument",
|
| 478 |
+
"unused-variable",
|
| 479 |
+
"using-constant-test"
|
| 480 |
+
]
|
| 481 |
+
|
| 482 |
+
[tool.pytest.ini_options]
|
| 483 |
+
# sync minversion with pyproject.toml & install.rst
|
| 484 |
+
minversion = "7.3.2"
|
| 485 |
+
addopts = "--strict-markers --strict-config --capture=no --durations=30 --junitxml=test-data.xml"
|
| 486 |
+
empty_parameter_set_mark = "fail_at_collect"
|
| 487 |
+
xfail_strict = true
|
| 488 |
+
testpaths = "pandas"
|
| 489 |
+
doctest_optionflags = [
|
| 490 |
+
"NORMALIZE_WHITESPACE",
|
| 491 |
+
"IGNORE_EXCEPTION_DETAIL",
|
| 492 |
+
"ELLIPSIS",
|
| 493 |
+
]
|
| 494 |
+
filterwarnings = [
|
| 495 |
+
"error:::pandas",
|
| 496 |
+
"error::ResourceWarning",
|
| 497 |
+
"error::pytest.PytestUnraisableExceptionWarning",
|
| 498 |
+
# TODO(PY311-minimum): Specify EncodingWarning
|
| 499 |
+
# Ignore 3rd party EncodingWarning but raise on pandas'
|
| 500 |
+
"ignore:.*encoding.* argument not specified",
|
| 501 |
+
"error:.*encoding.* argument not specified::pandas",
|
| 502 |
+
"ignore:.*ssl.SSLSocket:pytest.PytestUnraisableExceptionWarning",
|
| 503 |
+
"ignore:.*ssl.SSLSocket:ResourceWarning",
|
| 504 |
+
# GH 44844: Can remove once minimum matplotlib version >= 3.7
|
| 505 |
+
"ignore:.*FileIO:pytest.PytestUnraisableExceptionWarning",
|
| 506 |
+
"ignore:.*BufferedRandom:ResourceWarning",
|
| 507 |
+
"ignore::ResourceWarning:asyncio",
|
| 508 |
+
# From plotting doctests
|
| 509 |
+
"ignore:More than 20 figures have been opened:RuntimeWarning",
|
| 510 |
+
# Will be fixed in numba 0.56: https://github.com/numba/numba/issues/7758
|
| 511 |
+
"ignore:`np.MachAr` is deprecated:DeprecationWarning:numba",
|
| 512 |
+
"ignore:.*urllib3:DeprecationWarning:botocore",
|
| 513 |
+
"ignore:Setuptools is replacing distutils.:UserWarning:_distutils_hack",
|
| 514 |
+
# https://github.com/PyTables/PyTables/issues/822
|
| 515 |
+
"ignore:a closed node found in the registry:UserWarning:tables",
|
| 516 |
+
"ignore:`np.object` is a deprecated:DeprecationWarning:tables",
|
| 517 |
+
"ignore:tostring:DeprecationWarning:tables",
|
| 518 |
+
"ignore:distutils Version classes are deprecated:DeprecationWarning:pandas_datareader",
|
| 519 |
+
"ignore:distutils Version classes are deprecated:DeprecationWarning:numexpr",
|
| 520 |
+
"ignore:distutils Version classes are deprecated:DeprecationWarning:fastparquet",
|
| 521 |
+
"ignore:distutils Version classes are deprecated:DeprecationWarning:fsspec",
|
| 522 |
+
# Can be removed once https://github.com/numpy/numpy/pull/24794 is merged
|
| 523 |
+
"ignore:.*In the future `np.long` will be defined as.*:FutureWarning",
|
| 524 |
+
]
|
| 525 |
+
junit_family = "xunit2"
|
| 526 |
+
markers = [
|
| 527 |
+
"single_cpu: tests that should run on a single cpu only",
|
| 528 |
+
"slow: mark a test as slow",
|
| 529 |
+
"network: mark a test as network",
|
| 530 |
+
"db: tests requiring a database (mysql or postgres)",
|
| 531 |
+
"clipboard: mark a pd.read_clipboard test",
|
| 532 |
+
"arm_slow: mark a test as slow for arm64 architecture",
|
| 533 |
+
"skip_ubsan: Tests known to fail UBSAN check",
|
| 534 |
+
# TODO: someone should investigate this ...
|
| 535 |
+
# these tests only fail in the wheel builder and don't fail in regular
|
| 536 |
+
# ARM CI
|
| 537 |
+
"fails_arm_wheels: Tests that fail in the ARM wheel build only",
|
| 538 |
+
]
|
| 539 |
+
|
| 540 |
+
[tool.mypy]
|
| 541 |
+
# Import discovery
|
| 542 |
+
mypy_path = "typings"
|
| 543 |
+
files = ["pandas", "typings"]
|
| 544 |
+
namespace_packages = false
|
| 545 |
+
explicit_package_bases = false
|
| 546 |
+
ignore_missing_imports = true
|
| 547 |
+
follow_imports = "normal"
|
| 548 |
+
follow_imports_for_stubs = false
|
| 549 |
+
no_site_packages = false
|
| 550 |
+
no_silence_site_packages = false
|
| 551 |
+
# Platform configuration
|
| 552 |
+
python_version = "3.11"
|
| 553 |
+
platform = "linux-64"
|
| 554 |
+
# Disallow dynamic typing
|
| 555 |
+
disallow_any_unimported = false # TODO
|
| 556 |
+
disallow_any_expr = false # TODO
|
| 557 |
+
disallow_any_decorated = false # TODO
|
| 558 |
+
disallow_any_explicit = false # TODO
|
| 559 |
+
disallow_any_generics = false # TODO
|
| 560 |
+
disallow_subclassing_any = false # TODO
|
| 561 |
+
# Untyped definitions and calls
|
| 562 |
+
disallow_untyped_calls = true
|
| 563 |
+
disallow_untyped_defs = true
|
| 564 |
+
disallow_incomplete_defs = true
|
| 565 |
+
check_untyped_defs = true
|
| 566 |
+
disallow_untyped_decorators = true
|
| 567 |
+
# None and Optional handling
|
| 568 |
+
no_implicit_optional = true
|
| 569 |
+
strict_optional = true
|
| 570 |
+
# Configuring warnings
|
| 571 |
+
warn_redundant_casts = true
|
| 572 |
+
warn_unused_ignores = true
|
| 573 |
+
warn_no_return = true
|
| 574 |
+
warn_return_any = false # TODO
|
| 575 |
+
warn_unreachable = false # GH#27396
|
| 576 |
+
# Suppressing errors
|
| 577 |
+
ignore_errors = false
|
| 578 |
+
enable_error_code = "ignore-without-code"
|
| 579 |
+
# Miscellaneous strictness flags
|
| 580 |
+
allow_untyped_globals = false
|
| 581 |
+
allow_redefinition = false
|
| 582 |
+
local_partial_types = false
|
| 583 |
+
implicit_reexport = true
|
| 584 |
+
strict_equality = true
|
| 585 |
+
# Configuring error messages
|
| 586 |
+
show_error_context = false
|
| 587 |
+
show_column_numbers = false
|
| 588 |
+
show_error_codes = true
|
| 589 |
+
|
| 590 |
+
[[tool.mypy.overrides]]
|
| 591 |
+
module = [
|
| 592 |
+
"pandas._config.config", # TODO
|
| 593 |
+
"pandas._libs.*",
|
| 594 |
+
"pandas._testing.*", # TODO
|
| 595 |
+
"pandas.arrays", # TODO
|
| 596 |
+
"pandas.compat.numpy.function", # TODO
|
| 597 |
+
"pandas.compat._optional", # TODO
|
| 598 |
+
"pandas.compat.compressors", # TODO
|
| 599 |
+
"pandas.compat.pickle_compat", # TODO
|
| 600 |
+
"pandas.core._numba.executor", # TODO
|
| 601 |
+
"pandas.core.array_algos.datetimelike_accumulations", # TODO
|
| 602 |
+
"pandas.core.array_algos.masked_accumulations", # TODO
|
| 603 |
+
"pandas.core.array_algos.masked_reductions", # TODO
|
| 604 |
+
"pandas.core.array_algos.putmask", # TODO
|
| 605 |
+
"pandas.core.array_algos.quantile", # TODO
|
| 606 |
+
"pandas.core.array_algos.replace", # TODO
|
| 607 |
+
"pandas.core.array_algos.take", # TODO
|
| 608 |
+
"pandas.core.arrays.*", # TODO
|
| 609 |
+
"pandas.core.computation.*", # TODO
|
| 610 |
+
"pandas.core.dtypes.astype", # TODO
|
| 611 |
+
"pandas.core.dtypes.cast", # TODO
|
| 612 |
+
"pandas.core.dtypes.common", # TODO
|
| 613 |
+
"pandas.core.dtypes.concat", # TODO
|
| 614 |
+
"pandas.core.dtypes.dtypes", # TODO
|
| 615 |
+
"pandas.core.dtypes.generic", # TODO
|
| 616 |
+
"pandas.core.dtypes.inference", # TODO
|
| 617 |
+
"pandas.core.dtypes.missing", # TODO
|
| 618 |
+
"pandas.core.groupby.categorical", # TODO
|
| 619 |
+
"pandas.core.groupby.generic", # TODO
|
| 620 |
+
"pandas.core.groupby.grouper", # TODO
|
| 621 |
+
"pandas.core.groupby.groupby", # TODO
|
| 622 |
+
"pandas.core.groupby.ops", # TODO
|
| 623 |
+
"pandas.core.indexers.*", # TODO
|
| 624 |
+
"pandas.core.indexes.*", # TODO
|
| 625 |
+
"pandas.core.interchange.column", # TODO
|
| 626 |
+
"pandas.core.interchange.dataframe_protocol", # TODO
|
| 627 |
+
"pandas.core.interchange.from_dataframe", # TODO
|
| 628 |
+
"pandas.core.internals.*", # TODO
|
| 629 |
+
"pandas.core.methods.*", # TODO
|
| 630 |
+
"pandas.core.ops.array_ops", # TODO
|
| 631 |
+
"pandas.core.ops.common", # TODO
|
| 632 |
+
"pandas.core.ops.invalid", # TODO
|
| 633 |
+
"pandas.core.ops.mask_ops", # TODO
|
| 634 |
+
"pandas.core.ops.missing", # TODO
|
| 635 |
+
"pandas.core.reshape.*", # TODO
|
| 636 |
+
"pandas.core.strings.*", # TODO
|
| 637 |
+
"pandas.core.tools.*", # TODO
|
| 638 |
+
"pandas.core.window.common", # TODO
|
| 639 |
+
"pandas.core.window.ewm", # TODO
|
| 640 |
+
"pandas.core.window.expanding", # TODO
|
| 641 |
+
"pandas.core.window.numba_", # TODO
|
| 642 |
+
"pandas.core.window.online", # TODO
|
| 643 |
+
"pandas.core.window.rolling", # TODO
|
| 644 |
+
"pandas.core.accessor", # TODO
|
| 645 |
+
"pandas.core.algorithms", # TODO
|
| 646 |
+
"pandas.core.apply", # TODO
|
| 647 |
+
"pandas.core.arraylike", # TODO
|
| 648 |
+
"pandas.core.base", # TODO
|
| 649 |
+
"pandas.core.common", # TODO
|
| 650 |
+
"pandas.core.config_init", # TODO
|
| 651 |
+
"pandas.core.construction", # TODO
|
| 652 |
+
"pandas.core.flags", # TODO
|
| 653 |
+
"pandas.core.frame", # TODO
|
| 654 |
+
"pandas.core.generic", # TODO
|
| 655 |
+
"pandas.core.indexing", # TODO
|
| 656 |
+
"pandas.core.missing", # TODO
|
| 657 |
+
"pandas.core.nanops", # TODO
|
| 658 |
+
"pandas.core.resample", # TODO
|
| 659 |
+
"pandas.core.roperator", # TODO
|
| 660 |
+
"pandas.core.sample", # TODO
|
| 661 |
+
"pandas.core.series", # TODO
|
| 662 |
+
"pandas.core.sorting", # TODO
|
| 663 |
+
"pandas.errors", # TODO
|
| 664 |
+
"pandas.io.clipboard", # TODO
|
| 665 |
+
"pandas.io.excel._base", # TODO
|
| 666 |
+
"pandas.io.excel._odfreader", # TODO
|
| 667 |
+
"pandas.io.excel._odswriter", # TODO
|
| 668 |
+
"pandas.io.excel._openpyxl", # TODO
|
| 669 |
+
"pandas.io.excel._pyxlsb", # TODO
|
| 670 |
+
"pandas.io.excel._xlrd", # TODO
|
| 671 |
+
"pandas.io.excel._xlsxwriter", # TODO
|
| 672 |
+
"pandas.io.formats.console", # TODO
|
| 673 |
+
"pandas.io.formats.css", # TODO
|
| 674 |
+
"pandas.io.formats.excel", # TODO
|
| 675 |
+
"pandas.io.formats.format", # TODO
|
| 676 |
+
"pandas.io.formats.info", # TODO
|
| 677 |
+
"pandas.io.formats.printing", # TODO
|
| 678 |
+
"pandas.io.formats.style", # TODO
|
| 679 |
+
"pandas.io.formats.style_render", # TODO
|
| 680 |
+
"pandas.io.formats.xml", # TODO
|
| 681 |
+
"pandas.io.json.*", # TODO
|
| 682 |
+
"pandas.io.parsers.*", # TODO
|
| 683 |
+
"pandas.io.sas.sas_xport", # TODO
|
| 684 |
+
"pandas.io.sas.sas7bdat", # TODO
|
| 685 |
+
"pandas.io.clipboards", # TODO
|
| 686 |
+
"pandas.io.common", # TODO
|
| 687 |
+
"pandas.io.gbq", # TODO
|
| 688 |
+
"pandas.io.html", # TODO
|
| 689 |
+
"pandas.io.gbq", # TODO
|
| 690 |
+
"pandas.io.parquet", # TODO
|
| 691 |
+
"pandas.io.pytables", # TODO
|
| 692 |
+
"pandas.io.sql", # TODO
|
| 693 |
+
"pandas.io.stata", # TODO
|
| 694 |
+
"pandas.io.xml", # TODO
|
| 695 |
+
"pandas.plotting.*", # TODO
|
| 696 |
+
"pandas.tests.*",
|
| 697 |
+
"pandas.tseries.frequencies", # TODO
|
| 698 |
+
"pandas.tseries.holiday", # TODO
|
| 699 |
+
"pandas.util._decorators", # TODO
|
| 700 |
+
"pandas.util._doctools", # TODO
|
| 701 |
+
"pandas.util._print_versions", # TODO
|
| 702 |
+
"pandas.util._test_decorators", # TODO
|
| 703 |
+
"pandas.util._validators", # TODO
|
| 704 |
+
"pandas.util", # TODO
|
| 705 |
+
"pandas._version",
|
| 706 |
+
"pandas.conftest",
|
| 707 |
+
"pandas"
|
| 708 |
+
]
|
| 709 |
+
disallow_untyped_calls = false
|
| 710 |
+
disallow_untyped_defs = false
|
| 711 |
+
disallow_incomplete_defs = false
|
| 712 |
+
|
| 713 |
+
[[tool.mypy.overrides]]
|
| 714 |
+
module = [
|
| 715 |
+
"pandas.tests.*",
|
| 716 |
+
"pandas._version",
|
| 717 |
+
"pandas.io.clipboard",
|
| 718 |
+
]
|
| 719 |
+
check_untyped_defs = false
|
| 720 |
+
|
| 721 |
+
[[tool.mypy.overrides]]
|
| 722 |
+
module = [
|
| 723 |
+
"pandas.tests.apply.test_series_apply",
|
| 724 |
+
"pandas.tests.arithmetic.conftest",
|
| 725 |
+
"pandas.tests.arrays.sparse.test_combine_concat",
|
| 726 |
+
"pandas.tests.dtypes.test_common",
|
| 727 |
+
"pandas.tests.frame.methods.test_to_records",
|
| 728 |
+
"pandas.tests.groupby.test_rank",
|
| 729 |
+
"pandas.tests.groupby.transform.test_transform",
|
| 730 |
+
"pandas.tests.indexes.interval.test_interval",
|
| 731 |
+
"pandas.tests.indexing.test_categorical",
|
| 732 |
+
"pandas.tests.io.excel.test_writers",
|
| 733 |
+
"pandas.tests.reductions.test_reductions",
|
| 734 |
+
"pandas.tests.test_expressions",
|
| 735 |
+
]
|
| 736 |
+
ignore_errors = true
|
| 737 |
+
|
| 738 |
+
# To be kept consistent with "Import Formatting" section in contributing.rst
|
| 739 |
+
[tool.isort]
|
| 740 |
+
known_pre_libs = "pandas._config"
|
| 741 |
+
known_pre_core = ["pandas._libs", "pandas._typing", "pandas.util._*", "pandas.compat", "pandas.errors"]
|
| 742 |
+
known_dtypes = "pandas.core.dtypes"
|
| 743 |
+
known_post_core = ["pandas.tseries", "pandas.io", "pandas.plotting"]
|
| 744 |
+
sections = ["FUTURE", "STDLIB", "THIRDPARTY" ,"PRE_LIBS" , "PRE_CORE", "DTYPES", "FIRSTPARTY", "POST_CORE", "LOCALFOLDER"]
|
| 745 |
+
profile = "black"
|
| 746 |
+
combine_as_imports = true
|
| 747 |
+
force_grid_wrap = 2
|
| 748 |
+
force_sort_within_sections = true
|
| 749 |
+
skip_glob = "env"
|
| 750 |
+
skip = "pandas/__init__.py"
|
| 751 |
+
|
| 752 |
+
[tool.pyright]
|
| 753 |
+
pythonVersion = "3.11"
|
| 754 |
+
typeCheckingMode = "basic"
|
| 755 |
+
useLibraryCodeForTypes = false
|
| 756 |
+
include = ["pandas", "typings"]
|
| 757 |
+
exclude = ["pandas/tests", "pandas/io/clipboard", "pandas/util/version", "pandas/core/_numba/extensions.py"]
|
| 758 |
+
# enable subset of "strict"
|
| 759 |
+
reportDuplicateImport = true
|
| 760 |
+
reportInconsistentConstructor = true
|
| 761 |
+
reportInvalidStubStatement = true
|
| 762 |
+
reportOverlappingOverload = true
|
| 763 |
+
reportPropertyTypeMismatch = true
|
| 764 |
+
reportUntypedClassDecorator = true
|
| 765 |
+
reportUntypedFunctionDecorator = true
|
| 766 |
+
reportUntypedNamedTuple = true
|
| 767 |
+
reportUnusedImport = true
|
| 768 |
+
disableBytesTypePromotions = true
|
| 769 |
+
# disable subset of "basic"
|
| 770 |
+
reportGeneralTypeIssues = false
|
| 771 |
+
reportMissingModuleSource = false
|
| 772 |
+
reportOptionalCall = false
|
| 773 |
+
reportOptionalIterable = false
|
| 774 |
+
reportOptionalMemberAccess = false
|
| 775 |
+
reportOptionalOperand = false
|
| 776 |
+
reportOptionalSubscript = false
|
| 777 |
+
reportPrivateImportUsage = false
|
| 778 |
+
reportUnboundVariable = false
|
| 779 |
+
|
| 780 |
+
[tool.coverage.run]
|
| 781 |
+
branch = true
|
| 782 |
+
omit = ["pandas/_typing.py", "pandas/_version.py"]
|
| 783 |
+
plugins = ["Cython.Coverage"]
|
| 784 |
+
source = ["pandas"]
|
| 785 |
+
|
| 786 |
+
[tool.coverage.report]
|
| 787 |
+
ignore_errors = false
|
| 788 |
+
show_missing = true
|
| 789 |
+
omit = ["pandas/_version.py"]
|
| 790 |
+
exclude_lines = [
|
| 791 |
+
# Have to re-enable the standard pragma
|
| 792 |
+
"pragma: no cover",
|
| 793 |
+
# Don't complain about missing debug-only code:s
|
| 794 |
+
"def __repr__",
|
| 795 |
+
"if self.debug",
|
| 796 |
+
# Don't complain if tests don't hit defensive assertion code:
|
| 797 |
+
"raise AssertionError",
|
| 798 |
+
"raise NotImplementedError",
|
| 799 |
+
"AbstractMethodError",
|
| 800 |
+
# Don't complain if non-runnable code isn't run:
|
| 801 |
+
"if 0:",
|
| 802 |
+
"if __name__ == .__main__.:",
|
| 803 |
+
"if TYPE_CHECKING:",
|
| 804 |
+
]
|
| 805 |
+
|
| 806 |
+
[tool.coverage.html]
|
| 807 |
+
directory = "coverage_html_report"
|
| 808 |
+
|
| 809 |
+
[tool.codespell]
|
| 810 |
+
ignore-words-list = "blocs, coo, hist, nd, sav, ser, recuse, nin, timere, expec, expecs"
|
| 811 |
+
ignore-regex = 'https://([\w/\.])+'
|
infer_4_30_0/lib/python3.10/site-packages/pandas/testing.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Public testing utility functions.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
from pandas._testing import (
|
| 7 |
+
assert_extension_array_equal,
|
| 8 |
+
assert_frame_equal,
|
| 9 |
+
assert_index_equal,
|
| 10 |
+
assert_series_equal,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
__all__ = [
|
| 14 |
+
"assert_extension_array_equal",
|
| 15 |
+
"assert_frame_equal",
|
| 16 |
+
"assert_series_equal",
|
| 17 |
+
"assert_index_equal",
|
| 18 |
+
]
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/INSTALLER
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/LICENSE
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
BSD 3-Clause License
|
| 2 |
+
|
| 3 |
+
Copyright (c) Soumith Chintala 2016,
|
| 4 |
+
All rights reserved.
|
| 5 |
+
|
| 6 |
+
Redistribution and use in source and binary forms, with or without
|
| 7 |
+
modification, are permitted provided that the following conditions are met:
|
| 8 |
+
|
| 9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
| 10 |
+
list of conditions and the following disclaimer.
|
| 11 |
+
|
| 12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
| 13 |
+
this list of conditions and the following disclaimer in the documentation
|
| 14 |
+
and/or other materials provided with the distribution.
|
| 15 |
+
|
| 16 |
+
* Neither the name of the copyright holder nor the names of its
|
| 17 |
+
contributors may be used to endorse or promote products derived from
|
| 18 |
+
this software without specific prior written permission.
|
| 19 |
+
|
| 20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/METADATA
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.1
|
| 2 |
+
Name: torchvision
|
| 3 |
+
Version: 0.20.1
|
| 4 |
+
Summary: image and video datasets and models for torch deep learning
|
| 5 |
+
Home-page: https://github.com/pytorch/vision
|
| 6 |
+
Author: PyTorch Core Team
|
| 7 |
+
Author-email: [email protected]
|
| 8 |
+
License: BSD
|
| 9 |
+
Requires-Python: >=3.8
|
| 10 |
+
Description-Content-Type: text/markdown
|
| 11 |
+
License-File: LICENSE
|
| 12 |
+
Requires-Dist: numpy
|
| 13 |
+
Requires-Dist: torch (==2.5.1)
|
| 14 |
+
Requires-Dist: pillow (!=8.3.*,>=5.3.0)
|
| 15 |
+
Provides-Extra: gdown
|
| 16 |
+
Requires-Dist: gdown (>=4.7.3) ; extra == 'gdown'
|
| 17 |
+
Provides-Extra: scipy
|
| 18 |
+
Requires-Dist: scipy ; extra == 'scipy'
|
| 19 |
+
|
| 20 |
+
# torchvision
|
| 21 |
+
|
| 22 |
+
[](https://pepy.tech/project/torchvision)
|
| 23 |
+
[](https://pytorch.org/vision/stable/index.html)
|
| 24 |
+
|
| 25 |
+
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer
|
| 26 |
+
vision.
|
| 27 |
+
|
| 28 |
+
## Installation
|
| 29 |
+
|
| 30 |
+
Please refer to the [official
|
| 31 |
+
instructions](https://pytorch.org/get-started/locally/) to install the stable
|
| 32 |
+
versions of `torch` and `torchvision` on your system.
|
| 33 |
+
|
| 34 |
+
To build source, refer to our [contributing
|
| 35 |
+
page](https://github.com/pytorch/vision/blob/main/CONTRIBUTING.md#development-installation).
|
| 36 |
+
|
| 37 |
+
The following is the corresponding `torchvision` versions and supported Python
|
| 38 |
+
versions.
|
| 39 |
+
|
| 40 |
+
| `torch` | `torchvision` | Python |
|
| 41 |
+
| ------------------ | ------------------ | ------------------- |
|
| 42 |
+
| `main` / `nightly` | `main` / `nightly` | `>=3.9`, `<=3.12` |
|
| 43 |
+
| `2.4` | `0.19` | `>=3.8`, `<=3.12` |
|
| 44 |
+
| `2.3` | `0.18` | `>=3.8`, `<=3.12` |
|
| 45 |
+
| `2.2` | `0.17` | `>=3.8`, `<=3.11` |
|
| 46 |
+
| `2.1` | `0.16` | `>=3.8`, `<=3.11` |
|
| 47 |
+
| `2.0` | `0.15` | `>=3.8`, `<=3.11` |
|
| 48 |
+
|
| 49 |
+
<details>
|
| 50 |
+
<summary>older versions</summary>
|
| 51 |
+
|
| 52 |
+
| `torch` | `torchvision` | Python |
|
| 53 |
+
|---------|-------------------|---------------------------|
|
| 54 |
+
| `1.13` | `0.14` | `>=3.7.2`, `<=3.10` |
|
| 55 |
+
| `1.12` | `0.13` | `>=3.7`, `<=3.10` |
|
| 56 |
+
| `1.11` | `0.12` | `>=3.7`, `<=3.10` |
|
| 57 |
+
| `1.10` | `0.11` | `>=3.6`, `<=3.9` |
|
| 58 |
+
| `1.9` | `0.10` | `>=3.6`, `<=3.9` |
|
| 59 |
+
| `1.8` | `0.9` | `>=3.6`, `<=3.9` |
|
| 60 |
+
| `1.7` | `0.8` | `>=3.6`, `<=3.9` |
|
| 61 |
+
| `1.6` | `0.7` | `>=3.6`, `<=3.8` |
|
| 62 |
+
| `1.5` | `0.6` | `>=3.5`, `<=3.8` |
|
| 63 |
+
| `1.4` | `0.5` | `==2.7`, `>=3.5`, `<=3.8` |
|
| 64 |
+
| `1.3` | `0.4.2` / `0.4.3` | `==2.7`, `>=3.5`, `<=3.7` |
|
| 65 |
+
| `1.2` | `0.4.1` | `==2.7`, `>=3.5`, `<=3.7` |
|
| 66 |
+
| `1.1` | `0.3` | `==2.7`, `>=3.5`, `<=3.7` |
|
| 67 |
+
| `<=1.0` | `0.2` | `==2.7`, `>=3.5`, `<=3.7` |
|
| 68 |
+
|
| 69 |
+
</details>
|
| 70 |
+
|
| 71 |
+
## Image Backends
|
| 72 |
+
|
| 73 |
+
Torchvision currently supports the following image backends:
|
| 74 |
+
|
| 75 |
+
- torch tensors
|
| 76 |
+
- PIL images:
|
| 77 |
+
- [Pillow](https://python-pillow.org/)
|
| 78 |
+
- [Pillow-SIMD](https://github.com/uploadcare/pillow-simd) - a **much faster** drop-in replacement for Pillow with SIMD.
|
| 79 |
+
|
| 80 |
+
Read more in in our [docs](https://pytorch.org/vision/stable/transforms.html).
|
| 81 |
+
|
| 82 |
+
## [UNSTABLE] Video Backend
|
| 83 |
+
|
| 84 |
+
Torchvision currently supports the following video backends:
|
| 85 |
+
|
| 86 |
+
- [pyav](https://github.com/PyAV-Org/PyAV) (default) - Pythonic binding for ffmpeg libraries.
|
| 87 |
+
- video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any
|
| 88 |
+
conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
|
| 89 |
+
|
| 90 |
+
```
|
| 91 |
+
conda install -c conda-forge 'ffmpeg<4.3'
|
| 92 |
+
python setup.py install
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
# Using the models on C++
|
| 96 |
+
|
| 97 |
+
Refer to [example/cpp](https://github.com/pytorch/vision/tree/main/examples/cpp).
|
| 98 |
+
|
| 99 |
+
**DISCLAIMER**: the `libtorchvision` library includes the torchvision
|
| 100 |
+
custom ops as well as most of the C++ torchvision APIs. Those APIs do not come
|
| 101 |
+
with any backward-compatibility guarantees and may change from one version to
|
| 102 |
+
the next. Only the Python APIs are stable and with backward-compatibility
|
| 103 |
+
guarantees. So, if you need stability within a C++ environment, your best bet is
|
| 104 |
+
to export the Python APIs via torchscript.
|
| 105 |
+
|
| 106 |
+
## Documentation
|
| 107 |
+
|
| 108 |
+
You can find the API documentation on the pytorch website: <https://pytorch.org/vision/stable/index.html>
|
| 109 |
+
|
| 110 |
+
## Contributing
|
| 111 |
+
|
| 112 |
+
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
|
| 113 |
+
|
| 114 |
+
## Disclaimer on Datasets
|
| 115 |
+
|
| 116 |
+
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets,
|
| 117 |
+
vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to
|
| 118 |
+
determine whether you have permission to use the dataset under the dataset's license.
|
| 119 |
+
|
| 120 |
+
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset
|
| 121 |
+
to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML
|
| 122 |
+
community!
|
| 123 |
+
|
| 124 |
+
## Pre-trained Model License
|
| 125 |
+
|
| 126 |
+
The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the
|
| 127 |
+
dataset used for training. It is your responsibility to determine whether you have permission to use the models for your
|
| 128 |
+
use case.
|
| 129 |
+
|
| 130 |
+
More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See
|
| 131 |
+
[SWAG LICENSE](https://github.com/facebookresearch/SWAG/blob/main/LICENSE) for additional details.
|
| 132 |
+
|
| 133 |
+
## Citing TorchVision
|
| 134 |
+
|
| 135 |
+
If you find TorchVision useful in your work, please consider citing the following BibTeX entry:
|
| 136 |
+
|
| 137 |
+
```bibtex
|
| 138 |
+
@software{torchvision2016,
|
| 139 |
+
title = {TorchVision: PyTorch's Computer Vision library},
|
| 140 |
+
author = {TorchVision maintainers and contributors},
|
| 141 |
+
year = 2016,
|
| 142 |
+
journal = {GitHub repository},
|
| 143 |
+
publisher = {GitHub},
|
| 144 |
+
howpublished = {\url{https://github.com/pytorch/vision}}
|
| 145 |
+
}
|
| 146 |
+
```
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/RECORD
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torchvision-0.20.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
| 2 |
+
torchvision-0.20.1.dist-info/LICENSE,sha256=ZQL2doUc_iX4r3VTHfsyN1tzJbc8N-e0N0H6QiiT5x0,1517
|
| 3 |
+
torchvision-0.20.1.dist-info/METADATA,sha256=KdpnEZQcR2IsY1ARsKthcFVj1_jftHgCQSJ_kP843Wk,6068
|
| 4 |
+
torchvision-0.20.1.dist-info/RECORD,,
|
| 5 |
+
torchvision-0.20.1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 6 |
+
torchvision-0.20.1.dist-info/WHEEL,sha256=-tCk4BkDuXUB87ypq3-Y_qNDCWWx0qcANqRVWFABVws,104
|
| 7 |
+
torchvision-0.20.1.dist-info/top_level.txt,sha256=ucJZoaluBW9BGYT4TuCE6zoZY_JuSP30wbDh-IRpxUU,12
|
| 8 |
+
torchvision.libs/libcudart.41118559.so.12,sha256=h3QiT1sRpzsV0HSj_M5zJzIsXEz9_ZJNaoJnee7JaP4,707904
|
| 9 |
+
torchvision.libs/libjpeg.ceea7512.so.62,sha256=Q0Nt1U7kvyOPOH37o9EyH96wBEFcgH1NNJDDaL1eXew,285328
|
| 10 |
+
torchvision.libs/libnvjpeg.02b6d700.so.12,sha256=btLqpaLN_zk7yVxUNHS5YRemcYi76kbqdNEvf4OHR5c,6722352
|
| 11 |
+
torchvision.libs/libpng16.7f72a3c5.so.16,sha256=oLjzyAs4Xamd6gz3yNqpVAANI7AWTxEqvnsvr_Cg9j0,1079081
|
| 12 |
+
torchvision.libs/libwebp.4a54d2c8.so.4,sha256=PCamJr4mr2g5WEa4H_DP9GDtB0TInsPuUMYmiaYTdhE,320536
|
| 13 |
+
torchvision.libs/libz.5f199d92.so.1,sha256=Cw5oKp3H_UiVpngyiPhRt5PciWM_KHFAJ5dPpNZvORQ,124744
|
| 14 |
+
torchvision/_C.so,sha256=0Z1qM0HrPA4kiuCMBr_57Hl9H8owZZ3Hri5SfVUgbCo,7746688
|
| 15 |
+
torchvision/__init__.py,sha256=7iyfQRDPEgPbSMQmAWBzKawfGXCfqRwVL42V61NDenM,3534
|
| 16 |
+
torchvision/__pycache__/__init__.cpython-310.pyc,,
|
| 17 |
+
torchvision/__pycache__/_internally_replaced_utils.cpython-310.pyc,,
|
| 18 |
+
torchvision/__pycache__/_meta_registrations.cpython-310.pyc,,
|
| 19 |
+
torchvision/__pycache__/_utils.cpython-310.pyc,,
|
| 20 |
+
torchvision/__pycache__/extension.cpython-310.pyc,,
|
| 21 |
+
torchvision/__pycache__/utils.cpython-310.pyc,,
|
| 22 |
+
torchvision/__pycache__/version.cpython-310.pyc,,
|
| 23 |
+
torchvision/_internally_replaced_utils.py,sha256=67zSUHOn6JwdnMUQchHgpNLCtWQQ9dJFpV_OUn8Qb_w,1389
|
| 24 |
+
torchvision/_meta_registrations.py,sha256=lkEGW61fKUrGSh0iOFsZ1ZHskItS1EJ9Oo2UfM-OvQ8,7208
|
| 25 |
+
torchvision/_utils.py,sha256=6TWK0JGaZVQrofgCAp5ox61_NQE2gIwhYouKQMiTaJ8,934
|
| 26 |
+
torchvision/datasets/__init__.py,sha256=AHSoX8LkWIt7RGlJDmk64pDvmWq6GCh-D7XwE2l382A,3587
|
| 27 |
+
torchvision/datasets/__pycache__/__init__.cpython-310.pyc,,
|
| 28 |
+
torchvision/datasets/__pycache__/_optical_flow.cpython-310.pyc,,
|
| 29 |
+
torchvision/datasets/__pycache__/_stereo_matching.cpython-310.pyc,,
|
| 30 |
+
torchvision/datasets/__pycache__/caltech.cpython-310.pyc,,
|
| 31 |
+
torchvision/datasets/__pycache__/celeba.cpython-310.pyc,,
|
| 32 |
+
torchvision/datasets/__pycache__/cifar.cpython-310.pyc,,
|
| 33 |
+
torchvision/datasets/__pycache__/cityscapes.cpython-310.pyc,,
|
| 34 |
+
torchvision/datasets/__pycache__/clevr.cpython-310.pyc,,
|
| 35 |
+
torchvision/datasets/__pycache__/coco.cpython-310.pyc,,
|
| 36 |
+
torchvision/datasets/__pycache__/country211.cpython-310.pyc,,
|
| 37 |
+
torchvision/datasets/__pycache__/dtd.cpython-310.pyc,,
|
| 38 |
+
torchvision/datasets/__pycache__/eurosat.cpython-310.pyc,,
|
| 39 |
+
torchvision/datasets/__pycache__/fakedata.cpython-310.pyc,,
|
| 40 |
+
torchvision/datasets/__pycache__/fer2013.cpython-310.pyc,,
|
| 41 |
+
torchvision/datasets/__pycache__/fgvc_aircraft.cpython-310.pyc,,
|
| 42 |
+
torchvision/datasets/__pycache__/flickr.cpython-310.pyc,,
|
| 43 |
+
torchvision/datasets/__pycache__/flowers102.cpython-310.pyc,,
|
| 44 |
+
torchvision/datasets/__pycache__/folder.cpython-310.pyc,,
|
| 45 |
+
torchvision/datasets/__pycache__/food101.cpython-310.pyc,,
|
| 46 |
+
torchvision/datasets/__pycache__/gtsrb.cpython-310.pyc,,
|
| 47 |
+
torchvision/datasets/__pycache__/hmdb51.cpython-310.pyc,,
|
| 48 |
+
torchvision/datasets/__pycache__/imagenet.cpython-310.pyc,,
|
| 49 |
+
torchvision/datasets/__pycache__/imagenette.cpython-310.pyc,,
|
| 50 |
+
torchvision/datasets/__pycache__/inaturalist.cpython-310.pyc,,
|
| 51 |
+
torchvision/datasets/__pycache__/kinetics.cpython-310.pyc,,
|
| 52 |
+
torchvision/datasets/__pycache__/kitti.cpython-310.pyc,,
|
| 53 |
+
torchvision/datasets/__pycache__/lfw.cpython-310.pyc,,
|
| 54 |
+
torchvision/datasets/__pycache__/lsun.cpython-310.pyc,,
|
| 55 |
+
torchvision/datasets/__pycache__/mnist.cpython-310.pyc,,
|
| 56 |
+
torchvision/datasets/__pycache__/moving_mnist.cpython-310.pyc,,
|
| 57 |
+
torchvision/datasets/__pycache__/omniglot.cpython-310.pyc,,
|
| 58 |
+
torchvision/datasets/__pycache__/oxford_iiit_pet.cpython-310.pyc,,
|
| 59 |
+
torchvision/datasets/__pycache__/pcam.cpython-310.pyc,,
|
| 60 |
+
torchvision/datasets/__pycache__/phototour.cpython-310.pyc,,
|
| 61 |
+
torchvision/datasets/__pycache__/places365.cpython-310.pyc,,
|
| 62 |
+
torchvision/datasets/__pycache__/rendered_sst2.cpython-310.pyc,,
|
| 63 |
+
torchvision/datasets/__pycache__/sbd.cpython-310.pyc,,
|
| 64 |
+
torchvision/datasets/__pycache__/sbu.cpython-310.pyc,,
|
| 65 |
+
torchvision/datasets/__pycache__/semeion.cpython-310.pyc,,
|
| 66 |
+
torchvision/datasets/__pycache__/stanford_cars.cpython-310.pyc,,
|
| 67 |
+
torchvision/datasets/__pycache__/stl10.cpython-310.pyc,,
|
| 68 |
+
torchvision/datasets/__pycache__/sun397.cpython-310.pyc,,
|
| 69 |
+
torchvision/datasets/__pycache__/svhn.cpython-310.pyc,,
|
| 70 |
+
torchvision/datasets/__pycache__/ucf101.cpython-310.pyc,,
|
| 71 |
+
torchvision/datasets/__pycache__/usps.cpython-310.pyc,,
|
| 72 |
+
torchvision/datasets/__pycache__/utils.cpython-310.pyc,,
|
| 73 |
+
torchvision/datasets/__pycache__/video_utils.cpython-310.pyc,,
|
| 74 |
+
torchvision/datasets/__pycache__/vision.cpython-310.pyc,,
|
| 75 |
+
torchvision/datasets/__pycache__/voc.cpython-310.pyc,,
|
| 76 |
+
torchvision/datasets/__pycache__/widerface.cpython-310.pyc,,
|
| 77 |
+
torchvision/datasets/_optical_flow.py,sha256=oRm_6rlBpJyi9d2IeTiebHssDEXQDKEKGw3ZqNVDMrg,19697
|
| 78 |
+
torchvision/datasets/_stereo_matching.py,sha256=f1sAkmyKKmFtyvrw4osElkMR7vupD8gEp8Y2rQ4btFA,49112
|
| 79 |
+
torchvision/datasets/caltech.py,sha256=6W8artbXAhp7lok8LDhx28Q5-MkupkyUmmc1RTXACnQ,8933
|
| 80 |
+
torchvision/datasets/celeba.py,sha256=BfMfogQ5DkzdbZMXF7qC7PMSAEY4o-jeEQTYKdGszeQ,8470
|
| 81 |
+
torchvision/datasets/cifar.py,sha256=mwMBBDUu10FE1SshtQQaQ65jSt3XeH44rkkaUUN_UcE,5850
|
| 82 |
+
torchvision/datasets/cityscapes.py,sha256=h6uX9d886G86_zm1Ok_Nz876wA7oC50qDWfQTn8ErKA,10321
|
| 83 |
+
torchvision/datasets/clevr.py,sha256=Yw2dTlep-ERTzIsKHPGL9cblF88mGlRcoGoBGac1XZ0,3460
|
| 84 |
+
torchvision/datasets/coco.py,sha256=Zmfp6yZgWcDxXLDshcTnxDaKC6xvYsasPcBh_j9E9m4,4180
|
| 85 |
+
torchvision/datasets/country211.py,sha256=T_WIsox6Ve6CxmFwnx6bX3KkLy1xzBCbAFBcGqHVYC8,2436
|
| 86 |
+
torchvision/datasets/dtd.py,sha256=c6GtnNd4xj4BCE52GMaXnn-AnZm7yn9Yha8Iwb5xhCo,4019
|
| 87 |
+
torchvision/datasets/eurosat.py,sha256=nKBDlYaYupwughReDD7Z_EH_WVTqqSyGRBjnIjmvUUk,2307
|
| 88 |
+
torchvision/datasets/fakedata.py,sha256=gKmN6VyQzWjjeEPpLPxb9i4DWwW-MtGVJfZf8uwHgyo,2447
|
| 89 |
+
torchvision/datasets/fer2013.py,sha256=f_Zj3Qf32x8ew5dZu8A03uph3I4AUvmmZabaLhTSMnU,5118
|
| 90 |
+
torchvision/datasets/fgvc_aircraft.py,sha256=Y5P7SsYLeXDuxy7VHVTx9TYDKHloxtxlxT4JBDgbvXg,4626
|
| 91 |
+
torchvision/datasets/flickr.py,sha256=rcbyRlYd-d_vRW9qmOPfX1bKBgFu4NbF-qlldqt2mcU,5431
|
| 92 |
+
torchvision/datasets/flowers102.py,sha256=SdPXQtHAeZ5Iod0xyK2Xq7n0ENA6YIoEUFfRqiBu1Q0,4641
|
| 93 |
+
torchvision/datasets/folder.py,sha256=bh7Jv0BOphBkKYxD-BogUWexE9RIrGR0FLM5MR24aGM,12919
|
| 94 |
+
torchvision/datasets/food101.py,sha256=1vbbbahI-Lp9xySy5bsnS50TeV93ovesSIotY0astw0,3752
|
| 95 |
+
torchvision/datasets/gtsrb.py,sha256=0n6GQIGPuKU7yA0tSpiAA1UktoShE2vzeA2EqhQZK-Q,3785
|
| 96 |
+
torchvision/datasets/hmdb51.py,sha256=lC16QNHvbKkS8QfgVdhBvSwN2eLRFUBUNL021nkvgdc,5971
|
| 97 |
+
torchvision/datasets/imagenet.py,sha256=kllmhLsUPgm88rww0j-OaEa-iuzGgyu49q6gphpXLjA,8691
|
| 98 |
+
torchvision/datasets/imagenette.py,sha256=zzgx2cWRkDCrzX93qbhv4fOdngu8WXpTT6M0ZCg_AsE,4456
|
| 99 |
+
torchvision/datasets/inaturalist.py,sha256=8F43yInRw4Q4yAjWalwhgDIYkvzHtWBiQ_MtB0Jyn4g,10161
|
| 100 |
+
torchvision/datasets/kinetics.py,sha256=JlLErOUo7OQf_lp-vUS2yNtfP5vxMgjl-onPLj2tffw,10416
|
| 101 |
+
torchvision/datasets/kitti.py,sha256=8mCScWNce0OdG3b6vWCJGR370CydbK2Iy8W96Dfsl0I,5637
|
| 102 |
+
torchvision/datasets/lfw.py,sha256=7cwiL0PgnnS2d2CTse8LL2mOoo_eremqosyYmHETiwI,10560
|
| 103 |
+
torchvision/datasets/lsun.py,sha256=SAwzOTu0cQr7Tfo-iT0hIT986lCwOXKsIQYccSPDTBg,5728
|
| 104 |
+
torchvision/datasets/mnist.py,sha256=ymXGCJfp0V3YLsMGw15Ofry-_NwmbvaXnp13eJ67GQA,21718
|
| 105 |
+
torchvision/datasets/moving_mnist.py,sha256=6yCTZVgIlWy2f9bNlrAjpUWryeLohaWuN0bRhMdAERw,3644
|
| 106 |
+
torchvision/datasets/omniglot.py,sha256=b2MTG1TVxq3dk2ASBdHLu5uxLBnT4lpgSer8k9uuQq4,4151
|
| 107 |
+
torchvision/datasets/oxford_iiit_pet.py,sha256=t4me06AwjDjSTIE7f80VFuGxISGHFPz6B4Sn3uOrCBw,5519
|
| 108 |
+
torchvision/datasets/pcam.py,sha256=Ub7UWrAufIzLXN8p6Cunt7osnHCNTL-sxDmEMGypq2Q,5285
|
| 109 |
+
torchvision/datasets/phototour.py,sha256=4Sjdg-1dHk5Me5Ku-G75zSek0vs0CqkpQUgGF0KzI84,8037
|
| 110 |
+
torchvision/datasets/places365.py,sha256=rdktgfZAQWtXwptMeXNsNz3mqftmaN7DqMqWH0eTicY,7259
|
| 111 |
+
torchvision/datasets/rendered_sst2.py,sha256=2NRiL3I1hDrOdNllubdQ-gQ-Unaaqb2mLAXG4_JL5wY,3597
|
| 112 |
+
torchvision/datasets/samplers/__init__.py,sha256=W1ZtQpGLG6aoHylo1t8PEsHIVoWwso5bSFk9JzKfH8g,161
|
| 113 |
+
torchvision/datasets/samplers/__pycache__/__init__.cpython-310.pyc,,
|
| 114 |
+
torchvision/datasets/samplers/__pycache__/clip_sampler.cpython-310.pyc,,
|
| 115 |
+
torchvision/datasets/samplers/clip_sampler.py,sha256=1-k3bxToGpBlqC4-iyVDggtojA701NflW0nBRLK27tQ,6244
|
| 116 |
+
torchvision/datasets/sbd.py,sha256=BpowMEO3_IxJgyjrtEN7XSLAKlrONVhCGr2kJXtTIzs,5414
|
| 117 |
+
torchvision/datasets/sbu.py,sha256=LFMPoEeuf7w0ABpevnIAuoxnTL-n1F1yzBVtB2z7m08,4143
|
| 118 |
+
torchvision/datasets/semeion.py,sha256=6GK9LWRZgwOFQA6yVxe5V7IsbM64-H4smYfPBquYGhY,3148
|
| 119 |
+
torchvision/datasets/stanford_cars.py,sha256=WgmPvMR-ZOpw-IV53Ud2cNvnnC1rHUDl-soCJSzEP1Y,4517
|
| 120 |
+
torchvision/datasets/stl10.py,sha256=0rUR0czJgbilfJ57L8qvwsSdojEhBsxtXLNzdxEJJPc,7293
|
| 121 |
+
torchvision/datasets/sun397.py,sha256=q_qfa_rdx4GUklR9oIHCgQC0JUKXMc7UudTq6yUeJPQ,2783
|
| 122 |
+
torchvision/datasets/svhn.py,sha256=Vk8VO74JUUaZHvejvkWJBRnmk-zpmHwjksMCZoBDWDc,4828
|
| 123 |
+
torchvision/datasets/ucf101.py,sha256=s7rHl7qonY7PnmEZac_O2gmJUIVFzyNxVbvMY7IY_Io,5533
|
| 124 |
+
torchvision/datasets/usps.py,sha256=7IP-xNZUJQNibubSodJgnpUJlCvNe-prd8BHsrbzSR0,3500
|
| 125 |
+
torchvision/datasets/utils.py,sha256=OJP_dKoAM1gx6OUSjLQnwRAN4DRFMx-iAHLDxBResro,16355
|
| 126 |
+
torchvision/datasets/video_utils.py,sha256=14GvzCRi7tbfeCq31MN9XP_6-bfewRSrvwavO4VBFdk,17213
|
| 127 |
+
torchvision/datasets/vision.py,sha256=x8AuTqEBwwBoHmkkWD6Iki8o5LMxac2yhrzIFBDgodE,4249
|
| 128 |
+
torchvision/datasets/voc.py,sha256=LhdQavn7-nq13zf9HIfjNYxPDa5SaTUDgayDe8uLfZc,8835
|
| 129 |
+
torchvision/datasets/widerface.py,sha256=f70xsvDz-PGLUA2eUFP6wSqbaA_ws0EErUPFvjnJ7wE,8323
|
| 130 |
+
torchvision/extension.py,sha256=YWBDURfCFXSmRvXi2iEg2L0hafN2-RnybpImh9JAUtQ,3141
|
| 131 |
+
torchvision/image.so,sha256=0eUsH9xFGN9c_8oDmWJtbCNpwEEgL6-P5Uwe24sNjZc,667265
|
| 132 |
+
torchvision/io/__init__.py,sha256=GMwjZuig-LWPufamClwl5EpFq0fExa7MXabkaMEuaHs,1625
|
| 133 |
+
torchvision/io/__pycache__/__init__.cpython-310.pyc,,
|
| 134 |
+
torchvision/io/__pycache__/_load_gpu_decoder.cpython-310.pyc,,
|
| 135 |
+
torchvision/io/__pycache__/_video_opt.cpython-310.pyc,,
|
| 136 |
+
torchvision/io/__pycache__/image.cpython-310.pyc,,
|
| 137 |
+
torchvision/io/__pycache__/video.cpython-310.pyc,,
|
| 138 |
+
torchvision/io/__pycache__/video_reader.cpython-310.pyc,,
|
| 139 |
+
torchvision/io/_load_gpu_decoder.py,sha256=Cc8eP620qPDFc0q2qd-VYtjxtsgFPjOgg7Z04RXRziU,178
|
| 140 |
+
torchvision/io/_video_opt.py,sha256=oW2Vvs13fa9nopb4Ot3n_VNiOUCn5ZPLQnH8Xf8-81g,20456
|
| 141 |
+
torchvision/io/image.py,sha256=KooxdS2Ov2_mnbIOnYbSJU3SjPMvY0ck6NKIZ3hWneQ,17714
|
| 142 |
+
torchvision/io/video.py,sha256=AGMKrxzGb2KStloWlElYidVUvu3rRnYZyQF62MFXKgk,16779
|
| 143 |
+
torchvision/io/video_reader.py,sha256=eI09x1vuUsbtL6rnyeiv894y8EA9bfdJakV1zWYzBtQ,11689
|
| 144 |
+
torchvision/models/__init__.py,sha256=A8GQPE1bl3oUHpuD9ND53DV557IPY4459FNLW6sVXGI,865
|
| 145 |
+
torchvision/models/__pycache__/__init__.cpython-310.pyc,,
|
| 146 |
+
torchvision/models/__pycache__/_api.cpython-310.pyc,,
|
| 147 |
+
torchvision/models/__pycache__/_meta.cpython-310.pyc,,
|
| 148 |
+
torchvision/models/__pycache__/_utils.cpython-310.pyc,,
|
| 149 |
+
torchvision/models/__pycache__/alexnet.cpython-310.pyc,,
|
| 150 |
+
torchvision/models/__pycache__/convnext.cpython-310.pyc,,
|
| 151 |
+
torchvision/models/__pycache__/densenet.cpython-310.pyc,,
|
| 152 |
+
torchvision/models/__pycache__/efficientnet.cpython-310.pyc,,
|
| 153 |
+
torchvision/models/__pycache__/feature_extraction.cpython-310.pyc,,
|
| 154 |
+
torchvision/models/__pycache__/googlenet.cpython-310.pyc,,
|
| 155 |
+
torchvision/models/__pycache__/inception.cpython-310.pyc,,
|
| 156 |
+
torchvision/models/__pycache__/maxvit.cpython-310.pyc,,
|
| 157 |
+
torchvision/models/__pycache__/mnasnet.cpython-310.pyc,,
|
| 158 |
+
torchvision/models/__pycache__/mobilenet.cpython-310.pyc,,
|
| 159 |
+
torchvision/models/__pycache__/mobilenetv2.cpython-310.pyc,,
|
| 160 |
+
torchvision/models/__pycache__/mobilenetv3.cpython-310.pyc,,
|
| 161 |
+
torchvision/models/__pycache__/regnet.cpython-310.pyc,,
|
| 162 |
+
torchvision/models/__pycache__/resnet.cpython-310.pyc,,
|
| 163 |
+
torchvision/models/__pycache__/shufflenetv2.cpython-310.pyc,,
|
| 164 |
+
torchvision/models/__pycache__/squeezenet.cpython-310.pyc,,
|
| 165 |
+
torchvision/models/__pycache__/swin_transformer.cpython-310.pyc,,
|
| 166 |
+
torchvision/models/__pycache__/vgg.cpython-310.pyc,,
|
| 167 |
+
torchvision/models/__pycache__/vision_transformer.cpython-310.pyc,,
|
| 168 |
+
torchvision/models/_api.py,sha256=uIIJnxX1zYMNpdvJ0haSq15_XlR1QteFZBYVAdtEheg,10054
|
| 169 |
+
torchvision/models/_meta.py,sha256=fqpeQBsf9EEYbmApQ8Q0LKyM9_UFwjireII5mwDbwJY,28875
|
| 170 |
+
torchvision/models/_utils.py,sha256=S8uDD7maNefy-fEW6mpz8dFU68acK1HxN0kt1qpkkDo,10893
|
| 171 |
+
torchvision/models/alexnet.py,sha256=dvBZLVH60TOTHCNNkWg0TFLtuJ5Ghh_xXN73r3Vyq58,4488
|
| 172 |
+
torchvision/models/convnext.py,sha256=tP73tH-us6h2KSdVcPypEX9Izk5lsr82KsGT15mj4NE,15326
|
| 173 |
+
torchvision/models/densenet.py,sha256=OZEsHJw76kOSRG4TKhLy7lPGsGEixy6llHkpC8snSOo,16825
|
| 174 |
+
torchvision/models/detection/__init__.py,sha256=JwYm_fTGO_FeRg4eTOQLwQPZ9lC9jheZ-QEoJgqKTjg,168
|
| 175 |
+
torchvision/models/detection/__pycache__/__init__.cpython-310.pyc,,
|
| 176 |
+
torchvision/models/detection/__pycache__/_utils.cpython-310.pyc,,
|
| 177 |
+
torchvision/models/detection/__pycache__/anchor_utils.cpython-310.pyc,,
|
| 178 |
+
torchvision/models/detection/__pycache__/backbone_utils.cpython-310.pyc,,
|
| 179 |
+
torchvision/models/detection/__pycache__/faster_rcnn.cpython-310.pyc,,
|
| 180 |
+
torchvision/models/detection/__pycache__/fcos.cpython-310.pyc,,
|
| 181 |
+
torchvision/models/detection/__pycache__/generalized_rcnn.cpython-310.pyc,,
|
| 182 |
+
torchvision/models/detection/__pycache__/image_list.cpython-310.pyc,,
|
| 183 |
+
torchvision/models/detection/__pycache__/keypoint_rcnn.cpython-310.pyc,,
|
| 184 |
+
torchvision/models/detection/__pycache__/mask_rcnn.cpython-310.pyc,,
|
| 185 |
+
torchvision/models/detection/__pycache__/retinanet.cpython-310.pyc,,
|
| 186 |
+
torchvision/models/detection/__pycache__/roi_heads.cpython-310.pyc,,
|
| 187 |
+
torchvision/models/detection/__pycache__/rpn.cpython-310.pyc,,
|
| 188 |
+
torchvision/models/detection/__pycache__/ssd.cpython-310.pyc,,
|
| 189 |
+
torchvision/models/detection/__pycache__/ssdlite.cpython-310.pyc,,
|
| 190 |
+
torchvision/models/detection/__pycache__/transform.cpython-310.pyc,,
|
| 191 |
+
torchvision/models/detection/_utils.py,sha256=2y3FQ4F5yXhFM7VIWmu_70FpKgZjxdT_ucfzYwi3ZUQ,22127
|
| 192 |
+
torchvision/models/detection/anchor_utils.py,sha256=8Ix1Vp3i2kgJGr6esie3rw0_yAjtrUSvLXVKPaoZeQo,11859
|
| 193 |
+
torchvision/models/detection/backbone_utils.py,sha256=4FyzocR6YS7cG5IJTMRwC44tupbXQDA_Ru_8qqaju2I,10548
|
| 194 |
+
torchvision/models/detection/faster_rcnn.py,sha256=8DnegLKZnr8Q-zrzGT7_peIc_k_R1q1ijDH5n1P3gQE,36979
|
| 195 |
+
torchvision/models/detection/fcos.py,sha256=8r8MayvUMeTKfDoza4Hy67ChgRglLzBG6YS5qNe84sM,34235
|
| 196 |
+
torchvision/models/detection/generalized_rcnn.py,sha256=4-Dp8Vx-SjDDSZ7TsZ11rmkvEH336aLuSOlERXiQ7fs,4743
|
| 197 |
+
torchvision/models/detection/image_list.py,sha256=SUJ3xMn-1xc6ivYZUNIdWBh3RH9xD8EtCdpsXnPI_iM,783
|
| 198 |
+
torchvision/models/detection/keypoint_rcnn.py,sha256=4HxwRrp8lJfdyi8K3eBq4vstbRrL8bZc2Hhh-pVHjsI,21947
|
| 199 |
+
torchvision/models/detection/mask_rcnn.py,sha256=X1GQS314qOy4uCCp7MPfH6W12IydRwW-tDCmCnB1FGg,26713
|
| 200 |
+
torchvision/models/detection/retinanet.py,sha256=17Q0RdqqugASEVDGJfr8lCD61zjEqD5XxwQZAmZUZ24,37300
|
| 201 |
+
torchvision/models/detection/roi_heads.py,sha256=Uh9950xZUEmejwD2pRRhKvqNV0bY_G2Om8yGC2EdDDg,33822
|
| 202 |
+
torchvision/models/detection/rpn.py,sha256=7jbqPpLelnGCb5Fn-muUXeZF9EQ2nhE5r2aNAuR9V0M,15838
|
| 203 |
+
torchvision/models/detection/ssd.py,sha256=tbsgVbRD36WrjkZEB4xi1fvOXT62ry0p8G_Sd-j5CrY,28979
|
| 204 |
+
torchvision/models/detection/ssdlite.py,sha256=8nyEUYONUYe319JpgevKEfjr_FxCgDNU8gOyfuZ3L3c,13219
|
| 205 |
+
torchvision/models/detection/transform.py,sha256=Ma0CDvLCMlk3MxS3asXcDxrSosRLacaLpi-T34LXm1A,12189
|
| 206 |
+
torchvision/models/efficientnet.py,sha256=4qyeoXkYGFyUsBDt8TygDYycMMt1zhGwB_l4PmoPv4g,43090
|
| 207 |
+
torchvision/models/feature_extraction.py,sha256=RD4Ba_6FPKRVBZs1Io3ebA1P-iZS7T7flxY5MWPPlv4,26339
|
| 208 |
+
torchvision/models/googlenet.py,sha256=ni7VlSJW2_zG0Adxx56fuN5t4yI6vROBAuAu06-V4f0,12806
|
| 209 |
+
torchvision/models/inception.py,sha256=ifrLErzOVG-vlwQOMXLX5yMgcpHxCQQ17L7Wacn5QhQ,18851
|
| 210 |
+
torchvision/models/maxvit.py,sha256=_8L8gG5ob2DCZJbiny81P1fBAMmOcOKbTngckPy8xTE,32053
|
| 211 |
+
torchvision/models/mnasnet.py,sha256=h9jY1TupaChZj9khnXya_l4O1exUWhWOOCmhJCCImKc,17574
|
| 212 |
+
torchvision/models/mobilenet.py,sha256=lSRVxw2TL3LFBwCadvyvH6n3GzqUTnK2-rhX3MOgSrs,211
|
| 213 |
+
torchvision/models/mobilenetv2.py,sha256=v9cRBAp7_C_50JFkjGZ0luvuh45oCYgYn37pcG2UL8o,9710
|
| 214 |
+
torchvision/models/mobilenetv3.py,sha256=-Xk32m_Wdn-ap8wCL4Tl7wjiROIwDwhasInYTMwwOrE,16279
|
| 215 |
+
torchvision/models/optical_flow/__init__.py,sha256=0zRlMWQJCjFqoUafUXVgO89-z7em7tACo9E8hHSq9RQ,20
|
| 216 |
+
torchvision/models/optical_flow/__pycache__/__init__.cpython-310.pyc,,
|
| 217 |
+
torchvision/models/optical_flow/__pycache__/_utils.cpython-310.pyc,,
|
| 218 |
+
torchvision/models/optical_flow/__pycache__/raft.cpython-310.pyc,,
|
| 219 |
+
torchvision/models/optical_flow/_utils.py,sha256=v-tQJzYmYukrD1sQAE-5j5jxyvComwF1UdGkz5tVTLw,2077
|
| 220 |
+
torchvision/models/optical_flow/raft.py,sha256=FpSLPXisugu5Rzp_D5XCr037snBapMJ0dDPrw9c3CNk,39995
|
| 221 |
+
torchvision/models/quantization/__init__.py,sha256=gqFM7zI4UUHKKBDJAumozOn7xPL0JtvyNS8Ejz6QXp0,125
|
| 222 |
+
torchvision/models/quantization/__pycache__/__init__.cpython-310.pyc,,
|
| 223 |
+
torchvision/models/quantization/__pycache__/googlenet.cpython-310.pyc,,
|
| 224 |
+
torchvision/models/quantization/__pycache__/inception.cpython-310.pyc,,
|
| 225 |
+
torchvision/models/quantization/__pycache__/mobilenet.cpython-310.pyc,,
|
| 226 |
+
torchvision/models/quantization/__pycache__/mobilenetv2.cpython-310.pyc,,
|
| 227 |
+
torchvision/models/quantization/__pycache__/mobilenetv3.cpython-310.pyc,,
|
| 228 |
+
torchvision/models/quantization/__pycache__/resnet.cpython-310.pyc,,
|
| 229 |
+
torchvision/models/quantization/__pycache__/shufflenetv2.cpython-310.pyc,,
|
| 230 |
+
torchvision/models/quantization/__pycache__/utils.cpython-310.pyc,,
|
| 231 |
+
torchvision/models/quantization/googlenet.py,sha256=C-8lm9TnjkEuwu6zaPp0r5mb0QMYvTMGOtz2--s1IFo,8080
|
| 232 |
+
torchvision/models/quantization/inception.py,sha256=hg8K1QNk7T-Qo3zOB47eupS3Thu_RjVI6mG2HzAEx8M,10815
|
| 233 |
+
torchvision/models/quantization/mobilenet.py,sha256=lSRVxw2TL3LFBwCadvyvH6n3GzqUTnK2-rhX3MOgSrs,211
|
| 234 |
+
torchvision/models/quantization/mobilenetv2.py,sha256=ggpNLU4_JkyMn8IPTgj1p0xx_Wvspcii2Wd3ISj5tBE,5883
|
| 235 |
+
torchvision/models/quantization/mobilenetv3.py,sha256=PVWmSP62Pn8hQkd682l6uYFLQp1nxZltMOE-FhhO9OU,9230
|
| 236 |
+
torchvision/models/quantization/resnet.py,sha256=9Hb6KyPv33Jj1A6JciXvGX06q0RkwwP10u8GxFfmorM,17939
|
| 237 |
+
torchvision/models/quantization/shufflenetv2.py,sha256=eS2y34ZTG03dNJgtVJ2qSXQWZ22PHIWBYeC8cbvI1yI,16884
|
| 238 |
+
torchvision/models/quantization/utils.py,sha256=n8mWsK9_Ek_M2AqGKPLoLlcKaYGH2PrF2l5_W84oBMk,2058
|
| 239 |
+
torchvision/models/regnet.py,sha256=-7s5n0qzXZPR9HgzOk9aj1sv9dWZ3AxnP7CmZRdUeZI,63553
|
| 240 |
+
torchvision/models/resnet.py,sha256=dJmlBZrXsaH491Q8BLShN5UUD62DfDhTC0j_XZYQv24,38932
|
| 241 |
+
torchvision/models/segmentation/__init__.py,sha256=TGk6UdVXAMtwBpYalrvdXZnmSwqzTDOT1lgKrfzhHrQ,66
|
| 242 |
+
torchvision/models/segmentation/__pycache__/__init__.cpython-310.pyc,,
|
| 243 |
+
torchvision/models/segmentation/__pycache__/_utils.cpython-310.pyc,,
|
| 244 |
+
torchvision/models/segmentation/__pycache__/deeplabv3.cpython-310.pyc,,
|
| 245 |
+
torchvision/models/segmentation/__pycache__/fcn.cpython-310.pyc,,
|
| 246 |
+
torchvision/models/segmentation/__pycache__/lraspp.cpython-310.pyc,,
|
| 247 |
+
torchvision/models/segmentation/_utils.py,sha256=QfyqCtH_MJnIkKW5m-98GZD2MjtPYLtPTDi79pcIGhs,1197
|
| 248 |
+
torchvision/models/segmentation/deeplabv3.py,sha256=wVgXz21sugSck2KbG7WD-wgMwCAW0wd8jBGhgue300s,15015
|
| 249 |
+
torchvision/models/segmentation/fcn.py,sha256=I1FqaZZVPc3Fbg_7E2L5qpumnupxBYc7KYsW03EG_Cs,8973
|
| 250 |
+
torchvision/models/segmentation/lraspp.py,sha256=dt5DJ_qbDZlEM0SIuN87JU43JHfVlb8Oepp76KDv5tw,7643
|
| 251 |
+
torchvision/models/shufflenetv2.py,sha256=84FiPfkhJpSw6Q9Jmaug5MW5qmWCO3VhAPF61EiMn7Q,15444
|
| 252 |
+
torchvision/models/squeezenet.py,sha256=apjFPEI5nr_493bAQsR245EorzaMYXVQSqdcveyAfy0,8763
|
| 253 |
+
torchvision/models/swin_transformer.py,sha256=VwvnImWcjblashj0OONycDJnIkz-zRDpm365v_a0-zo,39337
|
| 254 |
+
torchvision/models/vgg.py,sha256=jYjIoY2jtKAc-aURCQsvbgBxup1Gh4fVZSt2NzFLlZY,19225
|
| 255 |
+
torchvision/models/video/__init__.py,sha256=O4HB-RaXgCtnvpMDAuMBaIeKIiYEkNxra_fmAHLUIJM,93
|
| 256 |
+
torchvision/models/video/__pycache__/__init__.cpython-310.pyc,,
|
| 257 |
+
torchvision/models/video/__pycache__/mvit.cpython-310.pyc,,
|
| 258 |
+
torchvision/models/video/__pycache__/resnet.cpython-310.pyc,,
|
| 259 |
+
torchvision/models/video/__pycache__/s3d.cpython-310.pyc,,
|
| 260 |
+
torchvision/models/video/__pycache__/swin_transformer.cpython-310.pyc,,
|
| 261 |
+
torchvision/models/video/mvit.py,sha256=0AZ31K5QcUBWZUUPTI1FCCM2Fma95bPs1o82zzpw2i0,32998
|
| 262 |
+
torchvision/models/video/resnet.py,sha256=RUnbUXFmoWNo_XbEKLmVSM8LUDcyv6jGZJ8GGpZi_6U,16771
|
| 263 |
+
torchvision/models/video/s3d.py,sha256=jx9gMP18Bzb7UO3vjejVBHlrCrJPdWFDfTn7XeU5kMg,7815
|
| 264 |
+
torchvision/models/video/swin_transformer.py,sha256=3GMyPGPeMcwJ1p9TGiRbpIlP-G7Qv_jWNbZmqIwMNyA,27688
|
| 265 |
+
torchvision/models/vision_transformer.py,sha256=O4mdBjYFsp-HTZA9bXfux_wJzIPRv1uS43PjuNh52zc,32136
|
| 266 |
+
torchvision/ops/__init__.py,sha256=eVv16QSBwgKaojOUHMPCy4ou9ZeFh-HoCV4DpqrZG4U,1928
|
| 267 |
+
torchvision/ops/__pycache__/__init__.cpython-310.pyc,,
|
| 268 |
+
torchvision/ops/__pycache__/_box_convert.cpython-310.pyc,,
|
| 269 |
+
torchvision/ops/__pycache__/_register_onnx_ops.cpython-310.pyc,,
|
| 270 |
+
torchvision/ops/__pycache__/_utils.cpython-310.pyc,,
|
| 271 |
+
torchvision/ops/__pycache__/boxes.cpython-310.pyc,,
|
| 272 |
+
torchvision/ops/__pycache__/ciou_loss.cpython-310.pyc,,
|
| 273 |
+
torchvision/ops/__pycache__/deform_conv.cpython-310.pyc,,
|
| 274 |
+
torchvision/ops/__pycache__/diou_loss.cpython-310.pyc,,
|
| 275 |
+
torchvision/ops/__pycache__/drop_block.cpython-310.pyc,,
|
| 276 |
+
torchvision/ops/__pycache__/feature_pyramid_network.cpython-310.pyc,,
|
| 277 |
+
torchvision/ops/__pycache__/focal_loss.cpython-310.pyc,,
|
| 278 |
+
torchvision/ops/__pycache__/giou_loss.cpython-310.pyc,,
|
| 279 |
+
torchvision/ops/__pycache__/misc.cpython-310.pyc,,
|
| 280 |
+
torchvision/ops/__pycache__/poolers.cpython-310.pyc,,
|
| 281 |
+
torchvision/ops/__pycache__/ps_roi_align.cpython-310.pyc,,
|
| 282 |
+
torchvision/ops/__pycache__/ps_roi_pool.cpython-310.pyc,,
|
| 283 |
+
torchvision/ops/__pycache__/roi_align.cpython-310.pyc,,
|
| 284 |
+
torchvision/ops/__pycache__/roi_pool.cpython-310.pyc,,
|
| 285 |
+
torchvision/ops/__pycache__/stochastic_depth.cpython-310.pyc,,
|
| 286 |
+
torchvision/ops/_box_convert.py,sha256=_bRRpErwk03rcPuscO1tCI9v3l88oNlDBDl2jzPlbKo,2409
|
| 287 |
+
torchvision/ops/_register_onnx_ops.py,sha256=Fyb1kC2m2OqZdfW_M86pt9-S66e1qNUhXNu1EQRa034,4181
|
| 288 |
+
torchvision/ops/_utils.py,sha256=pVHPpsmx6XcfGjUVk-XAEnd8QJBkrw_cT6fO_IwICE4,3630
|
| 289 |
+
torchvision/ops/boxes.py,sha256=n1aBkhkQYOwYdjkQMv5S9_G1NhpaBhmx3iwuJAq3nC8,16363
|
| 290 |
+
torchvision/ops/ciou_loss.py,sha256=3HClrMMKOJ3bndIUinNp3cp6Cim4-ZmmfuLn1-NPDUo,2756
|
| 291 |
+
torchvision/ops/deform_conv.py,sha256=fJxkVR_p_OQMzMja4flvmTgqDPvrOOcwzDG8bV7Q7pE,6990
|
| 292 |
+
torchvision/ops/diou_loss.py,sha256=tssNJhII4WT-wmidFS8gFNteQIAJz-Nd1Q7Trz1BjIY,3362
|
| 293 |
+
torchvision/ops/drop_block.py,sha256=A4EGIl7txrU_QmkI1N0W9hfd8tq8yx6zq32oYXaddLQ,5855
|
| 294 |
+
torchvision/ops/feature_pyramid_network.py,sha256=mfkaygxRz-0TAdTMq2fCAL-E0WxlRnTfdb-s_J5qPE4,8702
|
| 295 |
+
torchvision/ops/focal_loss.py,sha256=9kFqGyA0-hodRw9Au74k-FuS14OhsAvbFxDGvpx08Sg,2261
|
| 296 |
+
torchvision/ops/giou_loss.py,sha256=OXSaMZDZ0qy7jgaQ9exB_DMQXzcATBAFiIjzSlOV-bQ,2696
|
| 297 |
+
torchvision/ops/misc.py,sha256=yFnK7GT9OCMfDrn4NtQXKdh5broi1xocL94SoyqhWuw,13572
|
| 298 |
+
torchvision/ops/poolers.py,sha256=zzYhH7poMwGlYxDvAvCaL9emg9X7sM4xZFLEy0zvv5s,11920
|
| 299 |
+
torchvision/ops/ps_roi_align.py,sha256=4iAbeUVTessAcxvJhuARN_aFGUTZC9R4KrKC_mBH3MQ,3625
|
| 300 |
+
torchvision/ops/ps_roi_pool.py,sha256=jOv-2pAZdLFvvt4r4NwiRfxU5WAOy_vi6gxZjMvlusw,2870
|
| 301 |
+
torchvision/ops/roi_align.py,sha256=Ig9jLul90wBM3kaZuYEutsJEXfaCo3D0s_PxYMr9jQc,11292
|
| 302 |
+
torchvision/ops/roi_pool.py,sha256=70ou6Xc7qJxKe3SC54QIW3L99PoS0gLlwGocaYDbD2w,2943
|
| 303 |
+
torchvision/ops/stochastic_depth.py,sha256=ISZ9noJyZLxpTG-wa2VmPs66qjhVsP7ZxWHvumWSP3U,2236
|
| 304 |
+
torchvision/transforms/__init__.py,sha256=EMft42B1JAiU11J1rxIN4Znis6EJPbp-bsGjAzH-24M,53
|
| 305 |
+
torchvision/transforms/__pycache__/__init__.cpython-310.pyc,,
|
| 306 |
+
torchvision/transforms/__pycache__/_functional_pil.cpython-310.pyc,,
|
| 307 |
+
torchvision/transforms/__pycache__/_functional_tensor.cpython-310.pyc,,
|
| 308 |
+
torchvision/transforms/__pycache__/_functional_video.cpython-310.pyc,,
|
| 309 |
+
torchvision/transforms/__pycache__/_presets.cpython-310.pyc,,
|
| 310 |
+
torchvision/transforms/__pycache__/_transforms_video.cpython-310.pyc,,
|
| 311 |
+
torchvision/transforms/__pycache__/autoaugment.cpython-310.pyc,,
|
| 312 |
+
torchvision/transforms/__pycache__/functional.cpython-310.pyc,,
|
| 313 |
+
torchvision/transforms/__pycache__/transforms.cpython-310.pyc,,
|
| 314 |
+
torchvision/transforms/_functional_pil.py,sha256=TXZK3Y0huFHhXUGPin6ET5ToNoCbgdNGy65f8MPSpM0,12070
|
| 315 |
+
torchvision/transforms/_functional_tensor.py,sha256=3cEs8IYfRNQyff5Iriv--cZTWOIfvw2eaWiHU1-94AE,33939
|
| 316 |
+
torchvision/transforms/_functional_video.py,sha256=YcV557YglbJsq9SRGJHFoRbtxawiLSJ1oM5rV75OyqQ,3857
|
| 317 |
+
torchvision/transforms/_presets.py,sha256=RAjD6DgpU4QnNxV0MfZ3uHgzuARf-cdxD3Vo_KKIYeY,8510
|
| 318 |
+
torchvision/transforms/_transforms_video.py,sha256=Buz5LCWVPGiEonHE-cXIXfbkBhNc0qxVraxkNdxKp8o,4950
|
| 319 |
+
torchvision/transforms/autoaugment.py,sha256=JcbdEDbR0-OqTE4cwkhVSB45woFZQ_Fq5xmjFu_3bjg,28243
|
| 320 |
+
torchvision/transforms/functional.py,sha256=r9DojEr-0oqCOLuSMH0B4kWtI3UEbY_4jS7RBWDZKqM,67855
|
| 321 |
+
torchvision/transforms/transforms.py,sha256=eRIUr0I1i7BMqrXm4xsBJQYYGpvIkDr_VMsctQOI0M4,85547
|
| 322 |
+
torchvision/transforms/v2/__init__.py,sha256=UUJgzZguNPl7B33Zt3gexO7gSApSuWHTpzE7fNXQpA0,1545
|
| 323 |
+
torchvision/transforms/v2/__pycache__/__init__.cpython-310.pyc,,
|
| 324 |
+
torchvision/transforms/v2/__pycache__/_augment.cpython-310.pyc,,
|
| 325 |
+
torchvision/transforms/v2/__pycache__/_auto_augment.cpython-310.pyc,,
|
| 326 |
+
torchvision/transforms/v2/__pycache__/_color.cpython-310.pyc,,
|
| 327 |
+
torchvision/transforms/v2/__pycache__/_container.cpython-310.pyc,,
|
| 328 |
+
torchvision/transforms/v2/__pycache__/_deprecated.cpython-310.pyc,,
|
| 329 |
+
torchvision/transforms/v2/__pycache__/_geometry.cpython-310.pyc,,
|
| 330 |
+
torchvision/transforms/v2/__pycache__/_meta.cpython-310.pyc,,
|
| 331 |
+
torchvision/transforms/v2/__pycache__/_misc.cpython-310.pyc,,
|
| 332 |
+
torchvision/transforms/v2/__pycache__/_temporal.cpython-310.pyc,,
|
| 333 |
+
torchvision/transforms/v2/__pycache__/_transform.cpython-310.pyc,,
|
| 334 |
+
torchvision/transforms/v2/__pycache__/_type_conversion.cpython-310.pyc,,
|
| 335 |
+
torchvision/transforms/v2/__pycache__/_utils.cpython-310.pyc,,
|
| 336 |
+
torchvision/transforms/v2/_augment.py,sha256=NtbxWHrD1tbBJ9LVGcYsEv1tlHqpQyYNE23aH0NZ868,16159
|
| 337 |
+
torchvision/transforms/v2/_auto_augment.py,sha256=sQWkEF1N17XU4F6nBGva7kUuiuGNEOCAGHYGn8oa0A8,32025
|
| 338 |
+
torchvision/transforms/v2/_color.py,sha256=YHc7vhv4XR0CfSmEUoGQDexbENjV_whIHi9c-JgPrpo,16990
|
| 339 |
+
torchvision/transforms/v2/_container.py,sha256=SFh-FU8ceir934hxS_VkbVQq0SxzGSULPaYpouJJhPs,6055
|
| 340 |
+
torchvision/transforms/v2/_deprecated.py,sha256=0kXQWo6x1D2Gg98pJ0wahiDHuJBGNvsadZwdFtOM5YE,1947
|
| 341 |
+
torchvision/transforms/v2/_geometry.py,sha256=Ux5ghMCEVwpYYKB4sBamJUIfRbz8EutjfI_cskbNnhk,67606
|
| 342 |
+
torchvision/transforms/v2/_meta.py,sha256=Pcrh0dKMgwfpHTdho8uXcYYfKtbHy36VVyz4o2umld0,1405
|
| 343 |
+
torchvision/transforms/v2/_misc.py,sha256=Y-QjkjKYGMJYQvRP1elB_5gSwsvJR-I2vCEheBLCwuo,19114
|
| 344 |
+
torchvision/transforms/v2/_temporal.py,sha256=ByHqYqy1KO1Rd-Cg-eynHQEnF4y7OaMGIeO44kl8QJw,906
|
| 345 |
+
torchvision/transforms/v2/_transform.py,sha256=008PBMswQWIc7dEmhWqm772_O4ciDY3rycGu08nhcME,8476
|
| 346 |
+
torchvision/transforms/v2/_type_conversion.py,sha256=f3J1wYeB_zTaF8mxIjoudDKCiljmWqLGszSS9DN5EsQ,2860
|
| 347 |
+
torchvision/transforms/v2/_utils.py,sha256=AjGKWomXlDX2I1jCd4ROkJr8nRtr3ofm3MdXRH3YTTo,8652
|
| 348 |
+
torchvision/transforms/v2/functional/__init__.py,sha256=4SDjzgj9e4oM4IUKy9YJAwXFnBoLpygd8sSM_7sMvK0,3546
|
| 349 |
+
torchvision/transforms/v2/functional/__pycache__/__init__.cpython-310.pyc,,
|
| 350 |
+
torchvision/transforms/v2/functional/__pycache__/_augment.cpython-310.pyc,,
|
| 351 |
+
torchvision/transforms/v2/functional/__pycache__/_color.cpython-310.pyc,,
|
| 352 |
+
torchvision/transforms/v2/functional/__pycache__/_deprecated.cpython-310.pyc,,
|
| 353 |
+
torchvision/transforms/v2/functional/__pycache__/_geometry.cpython-310.pyc,,
|
| 354 |
+
torchvision/transforms/v2/functional/__pycache__/_meta.cpython-310.pyc,,
|
| 355 |
+
torchvision/transforms/v2/functional/__pycache__/_misc.cpython-310.pyc,,
|
| 356 |
+
torchvision/transforms/v2/functional/__pycache__/_temporal.cpython-310.pyc,,
|
| 357 |
+
torchvision/transforms/v2/functional/__pycache__/_type_conversion.cpython-310.pyc,,
|
| 358 |
+
torchvision/transforms/v2/functional/__pycache__/_utils.cpython-310.pyc,,
|
| 359 |
+
torchvision/transforms/v2/functional/_augment.py,sha256=MRM8E3_gKfTTC0qFt3cKI4UxTxQtuGI9MeY2mBsrj04,3473
|
| 360 |
+
torchvision/transforms/v2/functional/_color.py,sha256=nUASg1bTHmsf2AT_1Q7CLNXhObrRPbB1w2fDuz9k5e8,30244
|
| 361 |
+
torchvision/transforms/v2/functional/_deprecated.py,sha256=ycYZLDwDyd612aPbTKIV3gqhCRLMdF03MQELct4LeGs,801
|
| 362 |
+
torchvision/transforms/v2/functional/_geometry.py,sha256=5QL4IdQV72PkJX61c4A5M4WLq60ihTQB6g1PE9tMqmM,87520
|
| 363 |
+
torchvision/transforms/v2/functional/_meta.py,sha256=AxTEF6mdybAW1lC_DcjfKlxvSuiVupnqbJJrqS5x4lc,10547
|
| 364 |
+
torchvision/transforms/v2/functional/_misc.py,sha256=OXu4GTCF9i_1lz7T62gKcEs94faBO7wyYmpUOCnkUEY,17517
|
| 365 |
+
torchvision/transforms/v2/functional/_temporal.py,sha256=24CQCXXO12TnW7aUiUQdrk5DRSpTPONjjC4jaGh3lH4,1136
|
| 366 |
+
torchvision/transforms/v2/functional/_type_conversion.py,sha256=78wl0dNPwX08jOCW6KcZSGy8RAQqyxMtdrTUQVQlUTM,869
|
| 367 |
+
torchvision/transforms/v2/functional/_utils.py,sha256=tsmwIF37Z9QnP9x3x4hAs1hLrcvL78GLkuO6Rq1EUTk,5479
|
| 368 |
+
torchvision/tv_tensors/__init__.py,sha256=C6N8p5aulpehsOBBmH1cPIY1xiOSASZVBfnlXgGvR_s,1509
|
| 369 |
+
torchvision/tv_tensors/__pycache__/__init__.cpython-310.pyc,,
|
| 370 |
+
torchvision/tv_tensors/__pycache__/_bounding_boxes.cpython-310.pyc,,
|
| 371 |
+
torchvision/tv_tensors/__pycache__/_dataset_wrapper.cpython-310.pyc,,
|
| 372 |
+
torchvision/tv_tensors/__pycache__/_image.cpython-310.pyc,,
|
| 373 |
+
torchvision/tv_tensors/__pycache__/_mask.cpython-310.pyc,,
|
| 374 |
+
torchvision/tv_tensors/__pycache__/_torch_function_helpers.cpython-310.pyc,,
|
| 375 |
+
torchvision/tv_tensors/__pycache__/_tv_tensor.cpython-310.pyc,,
|
| 376 |
+
torchvision/tv_tensors/__pycache__/_video.cpython-310.pyc,,
|
| 377 |
+
torchvision/tv_tensors/_bounding_boxes.py,sha256=_-bDwN1gnHpfnHXEK0O6bQrcEOv656VOliHOgoNstpw,4493
|
| 378 |
+
torchvision/tv_tensors/_dataset_wrapper.py,sha256=fNnk3CSXipBNFsmnsPpa10DRN0I_Ly4Xib2Y5Zng9Ro,24505
|
| 379 |
+
torchvision/tv_tensors/_image.py,sha256=bwx4n8qObrknE3xEIDJOs0vWJzCg4XISjtXR7ksJTgs,1934
|
| 380 |
+
torchvision/tv_tensors/_mask.py,sha256=s85DdYFK6cyrL0_MnhAC2jTJxZzL7MJ8DTx985JPVhQ,1478
|
| 381 |
+
torchvision/tv_tensors/_torch_function_helpers.py,sha256=81qDZqgzUeSgfSeWhsrw1Ukwltvf97WbwmKWHm7X8X0,2276
|
| 382 |
+
torchvision/tv_tensors/_tv_tensor.py,sha256=dGQJhvOVTjb1LVT5qPZLJxox30uDMmODB26Iz6TjVbc,6248
|
| 383 |
+
torchvision/tv_tensors/_video.py,sha256=4dQ5Rh_0ghPtaLVSOxVWXJv1uWi8ZKXlfbRsBZ3roxw,1416
|
| 384 |
+
torchvision/utils.py,sha256=cGBWrAicxrx1YECsTGm7m_JL1GaGXp_UmAA9rmIQ3t8,26734
|
| 385 |
+
torchvision/version.py,sha256=P_l-ZSRLCCu_2SuJrwuv_07WrX_5RAvKwEbhRkRj9vg,203
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/REQUESTED
ADDED
|
File without changes
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/WHEEL
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Wheel-Version: 1.0
|
| 2 |
+
Generator: setuptools (72.1.0)
|
| 3 |
+
Root-Is-Purelib: false
|
| 4 |
+
Tag: cp310-cp310-linux_x86_64
|
| 5 |
+
|
infer_4_30_0/lib/python3.10/site-packages/torchvision-0.20.1.dist-info/top_level.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
torchvision
|