ZTWHHH commited on
Commit
0b4c6fd
·
verified ·
1 Parent(s): ca89b1a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/__init__.py +75 -0
  2. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/bivariate.py +509 -0
  3. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/decompogen.py +126 -0
  4. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/deutils.py +273 -0
  5. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py +5 -0
  6. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc +0 -0
  7. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py +0 -0
  8. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py +0 -0
  9. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  10. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc +0 -0
  11. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py +1051 -0
  12. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/inequalities.py +986 -0
  13. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/pde.py +971 -0
  14. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/polysys.py +437 -0
  15. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/recurr.py +843 -0
  16. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/simplex.py +1141 -0
  17. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/solvers.py +0 -0
  18. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/solveset.py +0 -0
  19. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__init__.py +0 -0
  20. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_constantsimp.cpython-310.pyc +0 -0
  21. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_inequalities.cpython-310.pyc +0 -0
  22. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_numeric.cpython-310.pyc +0 -0
  23. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_pde.cpython-310.pyc +0 -0
  24. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_simplex.cpython-310.pyc +0 -0
  25. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_constantsimp.py +179 -0
  26. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_decompogen.py +59 -0
  27. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_inequalities.py +500 -0
  28. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_numeric.py +139 -0
  29. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_pde.py +239 -0
  30. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_polysys.py +178 -0
  31. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_recurr.py +295 -0
  32. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_simplex.py +254 -0
  33. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_solvers.py +0 -0
  34. evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_solveset.py +0 -0
  35. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc +0 -0
  36. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc +0 -0
  37. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc +0 -0
  38. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc +0 -0
  39. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc +0 -0
  40. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/mutable_ndim_array.py +13 -0
  41. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/ndim_array.py +600 -0
  42. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/sparse_ndim_array.py +196 -0
  43. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/__init__.py +0 -0
  44. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_array_comprehension.py +78 -0
  45. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_arrayop.py +361 -0
  46. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_mutable_ndim_array.py +374 -0
  47. evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_ndim_array_conversions.py +22 -0
  48. evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/__init__.cpython-310.pyc +0 -0
  49. evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/big_modeling.cpython-310.pyc +0 -0
  50. evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/checkpointing.cpython-310.pyc +0 -0
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/__init__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module for solving all kinds of equations.
2
+
3
+ Examples
4
+ ========
5
+
6
+ >>> from sympy.solvers import solve
7
+ >>> from sympy.abc import x
8
+ >>> solve(((x + 1)**5).expand(), x)
9
+ [-1]
10
+ """
11
+ from sympy.core.assumptions import check_assumptions, failing_assumptions
12
+
13
+ from .solvers import solve, solve_linear_system, solve_linear_system_LU, \
14
+ solve_undetermined_coeffs, nsolve, solve_linear, checksol, \
15
+ det_quick, inv_quick
16
+
17
+ from .diophantine import diophantine
18
+
19
+ from .recurr import rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper
20
+
21
+ from .ode import checkodesol, classify_ode, dsolve, \
22
+ homogeneous_order
23
+
24
+ from .polysys import solve_poly_system, solve_triangulated
25
+
26
+ from .pde import pde_separate, pde_separate_add, pde_separate_mul, \
27
+ pdsolve, classify_pde, checkpdesol
28
+
29
+ from .deutils import ode_order
30
+
31
+ from .inequalities import reduce_inequalities, reduce_abs_inequality, \
32
+ reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality
33
+
34
+ from .decompogen import decompogen
35
+
36
+ from .solveset import solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution
37
+
38
+ from .simplex import lpmin, lpmax, linprog
39
+
40
+ # This is here instead of sympy/sets/__init__.py to avoid circular import issues
41
+ from ..core.singleton import S
42
+ Complexes = S.Complexes
43
+
44
+ __all__ = [
45
+ 'solve', 'solve_linear_system', 'solve_linear_system_LU',
46
+ 'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
47
+ 'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
48
+
49
+ 'diophantine',
50
+
51
+ 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
52
+
53
+ 'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
54
+
55
+ 'solve_poly_system', 'solve_triangulated',
56
+
57
+ 'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve',
58
+ 'classify_pde', 'checkpdesol',
59
+
60
+ 'ode_order',
61
+
62
+ 'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities',
63
+ 'solve_poly_inequality', 'solve_rational_inequalities',
64
+ 'solve_univariate_inequality',
65
+
66
+ 'decompogen',
67
+
68
+ 'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve',
69
+ 'substitution',
70
+
71
+ # This is here instead of sympy/sets/__init__.py to avoid circular import issues
72
+ 'Complexes',
73
+
74
+ 'lpmin', 'lpmax', 'linprog'
75
+ ]
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/bivariate.py ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.exprtools import factor_terms
3
+ from sympy.core.function import expand_log, _mexpand
4
+ from sympy.core.power import Pow
5
+ from sympy.core.singleton import S
6
+ from sympy.core.sorting import ordered
7
+ from sympy.core.symbol import Dummy
8
+ from sympy.functions.elementary.exponential import (LambertW, exp, log)
9
+ from sympy.functions.elementary.miscellaneous import root
10
+ from sympy.polys.polyroots import roots
11
+ from sympy.polys.polytools import Poly, factor
12
+ from sympy.simplify.simplify import separatevars
13
+ from sympy.simplify.radsimp import collect
14
+ from sympy.simplify.simplify import powsimp
15
+ from sympy.solvers.solvers import solve, _invert
16
+ from sympy.utilities.iterables import uniq
17
+
18
+
19
+ def _filtered_gens(poly, symbol):
20
+ """process the generators of ``poly``, returning the set of generators that
21
+ have ``symbol``. If there are two generators that are inverses of each other,
22
+ prefer the one that has no denominator.
23
+
24
+ Examples
25
+ ========
26
+
27
+ >>> from sympy.solvers.bivariate import _filtered_gens
28
+ >>> from sympy import Poly, exp
29
+ >>> from sympy.abc import x
30
+ >>> _filtered_gens(Poly(x + 1/x + exp(x)), x)
31
+ {x, exp(x)}
32
+
33
+ """
34
+ # TODO it would be good to pick the smallest divisible power
35
+ # instead of the base for something like x**4 + x**2 -->
36
+ # return x**2 not x
37
+ gens = {g for g in poly.gens if symbol in g.free_symbols}
38
+ for g in list(gens):
39
+ ag = 1/g
40
+ if g in gens and ag in gens:
41
+ if ag.as_numer_denom()[1] is not S.One:
42
+ g = ag
43
+ gens.remove(g)
44
+ return gens
45
+
46
+
47
+ def _mostfunc(lhs, func, X=None):
48
+ """Returns the term in lhs which contains the most of the
49
+ func-type things e.g. log(log(x)) wins over log(x) if both terms appear.
50
+
51
+ ``func`` can be a function (exp, log, etc...) or any other SymPy object,
52
+ like Pow.
53
+
54
+ If ``X`` is not ``None``, then the function returns the term composed with the
55
+ most ``func`` having the specified variable.
56
+
57
+ Examples
58
+ ========
59
+
60
+ >>> from sympy.solvers.bivariate import _mostfunc
61
+ >>> from sympy import exp
62
+ >>> from sympy.abc import x, y
63
+ >>> _mostfunc(exp(x) + exp(exp(x) + 2), exp)
64
+ exp(exp(x) + 2)
65
+ >>> _mostfunc(exp(x) + exp(exp(y) + 2), exp)
66
+ exp(exp(y) + 2)
67
+ >>> _mostfunc(exp(x) + exp(exp(y) + 2), exp, x)
68
+ exp(x)
69
+ >>> _mostfunc(x, exp, x) is None
70
+ True
71
+ >>> _mostfunc(exp(x) + exp(x*y), exp, x)
72
+ exp(x)
73
+ """
74
+ fterms = [tmp for tmp in lhs.atoms(func) if (not X or
75
+ X.is_Symbol and X in tmp.free_symbols or
76
+ not X.is_Symbol and tmp.has(X))]
77
+ if len(fterms) == 1:
78
+ return fterms[0]
79
+ elif fterms:
80
+ return max(list(ordered(fterms)), key=lambda x: x.count(func))
81
+ return None
82
+
83
+
84
+ def _linab(arg, symbol):
85
+ """Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b``
86
+ where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are
87
+ independent of ``symbol``.
88
+
89
+ Examples
90
+ ========
91
+
92
+ >>> from sympy.solvers.bivariate import _linab
93
+ >>> from sympy.abc import x, y
94
+ >>> from sympy import exp, S
95
+ >>> _linab(S(2), x)
96
+ (2, 0, 1)
97
+ >>> _linab(2*x, x)
98
+ (2, 0, x)
99
+ >>> _linab(y + y*x + 2*x, x)
100
+ (y + 2, y, x)
101
+ >>> _linab(3 + 2*exp(x), x)
102
+ (2, 3, exp(x))
103
+ """
104
+ arg = factor_terms(arg.expand())
105
+ ind, dep = arg.as_independent(symbol)
106
+ if arg.is_Mul and dep.is_Add:
107
+ a, b, x = _linab(dep, symbol)
108
+ return ind*a, ind*b, x
109
+ if not arg.is_Add:
110
+ b = 0
111
+ a, x = ind, dep
112
+ else:
113
+ b = ind
114
+ a, x = separatevars(dep).as_independent(symbol, as_Add=False)
115
+ if x.could_extract_minus_sign():
116
+ a = -a
117
+ x = -x
118
+ return a, b, x
119
+
120
+
121
+ def _lambert(eq, x):
122
+ """
123
+ Given an expression assumed to be in the form
124
+ ``F(X, a..f) = a*log(b*X + c) + d*X + f = 0``
125
+ where X = g(x) and x = g^-1(X), return the Lambert solution,
126
+ ``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``.
127
+ """
128
+ eq = _mexpand(expand_log(eq))
129
+ mainlog = _mostfunc(eq, log, x)
130
+ if not mainlog:
131
+ return [] # violated assumptions
132
+ other = eq.subs(mainlog, 0)
133
+ if isinstance(-other, log):
134
+ eq = (eq - other).subs(mainlog, mainlog.args[0])
135
+ mainlog = mainlog.args[0]
136
+ if not isinstance(mainlog, log):
137
+ return [] # violated assumptions
138
+ other = -(-other).args[0]
139
+ eq += other
140
+ if x not in other.free_symbols:
141
+ return [] # violated assumptions
142
+ d, f, X2 = _linab(other, x)
143
+ logterm = collect(eq - other, mainlog)
144
+ a = logterm.as_coefficient(mainlog)
145
+ if a is None or x in a.free_symbols:
146
+ return [] # violated assumptions
147
+ logarg = mainlog.args[0]
148
+ b, c, X1 = _linab(logarg, x)
149
+ if X1 != X2:
150
+ return [] # violated assumptions
151
+
152
+ # invert the generator X1 so we have x(u)
153
+ u = Dummy('rhs')
154
+ xusolns = solve(X1 - u, x)
155
+
156
+ # There are infinitely many branches for LambertW
157
+ # but only branches for k = -1 and 0 might be real. The k = 0
158
+ # branch is real and the k = -1 branch is real if the LambertW argumen
159
+ # in in range [-1/e, 0]. Since `solve` does not return infinite
160
+ # solutions we will only include the -1 branch if it tests as real.
161
+ # Otherwise, inclusion of any LambertW in the solution indicates to
162
+ # the user that there are imaginary solutions corresponding to
163
+ # different k values.
164
+ lambert_real_branches = [-1, 0]
165
+ sol = []
166
+
167
+ # solution of the given Lambert equation is like
168
+ # sol = -c/b + (a/d)*LambertW(arg, k),
169
+ # where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches.
170
+ # Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`,
171
+ # the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)`
172
+ # as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used.
173
+
174
+ # calculating args for LambertW
175
+ num, den = ((c*d-b*f)/a/b).as_numer_denom()
176
+ p, den = den.as_coeff_Mul()
177
+ e = exp(num/den)
178
+ t = Dummy('t')
179
+ args = [d/(a*b)*t for t in roots(t**p - e, t).keys()]
180
+
181
+ # calculating solutions from args
182
+ for arg in args:
183
+ for k in lambert_real_branches:
184
+ w = LambertW(arg, k)
185
+ if k and not w.is_real:
186
+ continue
187
+ rhs = -c/b + (a/d)*w
188
+
189
+ sol.extend(xu.subs(u, rhs) for xu in xusolns)
190
+ return sol
191
+
192
+
193
+ def _solve_lambert(f, symbol, gens):
194
+ """Return solution to ``f`` if it is a Lambert-type expression
195
+ else raise NotImplementedError.
196
+
197
+ For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution
198
+ for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``.
199
+ There are a variety of forms for `f(X, a..f)` as enumerated below:
200
+
201
+ 1a1)
202
+ if B**B = R for R not in [0, 1] (since those cases would already
203
+ be solved before getting here) then log of both sides gives
204
+ log(B) + log(log(B)) = log(log(R)) and
205
+ X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R))
206
+ 1a2)
207
+ if B*(b*log(B) + c)**a = R then log of both sides gives
208
+ log(B) + a*log(b*log(B) + c) = log(R) and
209
+ X = log(B), d=1, f=log(R)
210
+ 1b)
211
+ if a*log(b*B + c) + d*B = R and
212
+ X = B, f = R
213
+ 2a)
214
+ if (b*B + c)*exp(d*B + g) = R then log of both sides gives
215
+ log(b*B + c) + d*B + g = log(R) and
216
+ X = B, a = 1, f = log(R) - g
217
+ 2b)
218
+ if g*exp(d*B + h) - b*B = c then the log form is
219
+ log(g) + d*B + h - log(b*B + c) = 0 and
220
+ X = B, a = -1, f = -h - log(g)
221
+ 3)
222
+ if d*p**(a*B + g) - b*B = c then the log form is
223
+ log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and
224
+ X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p)
225
+ """
226
+
227
+ def _solve_even_degree_expr(expr, t, symbol):
228
+ """Return the unique solutions of equations derived from
229
+ ``expr`` by replacing ``t`` with ``+/- symbol``.
230
+
231
+ Parameters
232
+ ==========
233
+
234
+ expr : Expr
235
+ The expression which includes a dummy variable t to be
236
+ replaced with +symbol and -symbol.
237
+
238
+ symbol : Symbol
239
+ The symbol for which a solution is being sought.
240
+
241
+ Returns
242
+ =======
243
+
244
+ List of unique solution of the two equations generated by
245
+ replacing ``t`` with positive and negative ``symbol``.
246
+
247
+ Notes
248
+ =====
249
+
250
+ If ``expr = 2*log(t) + x/2` then solutions for
251
+ ``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are
252
+ returned by this function. Though this may seem
253
+ counter-intuitive, one must note that the ``expr`` being
254
+ solved here has been derived from a different expression. For
255
+ an expression like ``eq = x**2*g(x) = 1``, if we take the
256
+ log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If
257
+ x is positive then this simplifies to
258
+ ``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will
259
+ return solutions for this, but we must also consider the
260
+ solutions for ``2*log(-x) + log(g(x))`` since those must also
261
+ be a solution of ``eq`` which has the same value when the ``x``
262
+ in ``x**2`` is negated. If `g(x)` does not have even powers of
263
+ symbol then we do not want to replace the ``x`` there with
264
+ ``-x``. So the role of the ``t`` in the expression received by
265
+ this function is to mark where ``+/-x`` should be inserted
266
+ before obtaining the Lambert solutions.
267
+
268
+ """
269
+ nlhs, plhs = [
270
+ expr.xreplace({t: sgn*symbol}) for sgn in (-1, 1)]
271
+ sols = _solve_lambert(nlhs, symbol, gens)
272
+ if plhs != nlhs:
273
+ sols.extend(_solve_lambert(plhs, symbol, gens))
274
+ # uniq is needed for a case like
275
+ # 2*log(t) - log(-z**2) + log(z + log(x) + log(z))
276
+ # where substituting t with +/-x gives all the same solution;
277
+ # uniq, rather than list(set()), is used to maintain canonical
278
+ # order
279
+ return list(uniq(sols))
280
+
281
+ nrhs, lhs = f.as_independent(symbol, as_Add=True)
282
+ rhs = -nrhs
283
+
284
+ lamcheck = [tmp for tmp in gens
285
+ if (tmp.func in [exp, log] or
286
+ (tmp.is_Pow and symbol in tmp.exp.free_symbols))]
287
+ if not lamcheck:
288
+ raise NotImplementedError()
289
+
290
+ if lhs.is_Add or lhs.is_Mul:
291
+ # replacing all even_degrees of symbol with dummy variable t
292
+ # since these will need special handling; non-Add/Mul do not
293
+ # need this handling
294
+ t = Dummy('t', **symbol.assumptions0)
295
+ lhs = lhs.replace(
296
+ lambda i: # find symbol**even
297
+ i.is_Pow and i.base == symbol and i.exp.is_even,
298
+ lambda i: # replace t**even
299
+ t**i.exp)
300
+
301
+ if lhs.is_Add and lhs.has(t):
302
+ t_indep = lhs.subs(t, 0)
303
+ t_term = lhs - t_indep
304
+ _rhs = rhs - t_indep
305
+ if not t_term.is_Add and _rhs and not (
306
+ t_term.has(S.ComplexInfinity, S.NaN)):
307
+ eq = expand_log(log(t_term) - log(_rhs))
308
+ return _solve_even_degree_expr(eq, t, symbol)
309
+ elif lhs.is_Mul and rhs:
310
+ # this needs to happen whether t is present or not
311
+ lhs = expand_log(log(lhs), force=True)
312
+ rhs = log(rhs)
313
+ if lhs.has(t) and lhs.is_Add:
314
+ # it expanded from Mul to Add
315
+ eq = lhs - rhs
316
+ return _solve_even_degree_expr(eq, t, symbol)
317
+
318
+ # restore symbol in lhs
319
+ lhs = lhs.xreplace({t: symbol})
320
+
321
+ lhs = powsimp(factor(lhs, deep=True))
322
+
323
+ # make sure we have inverted as completely as possible
324
+ r = Dummy()
325
+ i, lhs = _invert(lhs - r, symbol)
326
+ rhs = i.xreplace({r: rhs})
327
+
328
+ # For the first forms:
329
+ #
330
+ # 1a1) B**B = R will arrive here as B*log(B) = log(R)
331
+ # lhs is Mul so take log of both sides:
332
+ # log(B) + log(log(B)) = log(log(R))
333
+ # 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so
334
+ # lhs is Mul, so take log of both sides:
335
+ # log(B) + a*log(b*log(B) + c) = log(R)
336
+ # 1b) d*log(a*B + b) + c*B = R will arrive unchanged so
337
+ # lhs is Add, so isolate c*B and expand log of both sides:
338
+ # log(c) + log(B) = log(R - d*log(a*B + b))
339
+
340
+ soln = []
341
+ if not soln:
342
+ mainlog = _mostfunc(lhs, log, symbol)
343
+ if mainlog:
344
+ if lhs.is_Mul and rhs != 0:
345
+ soln = _lambert(log(lhs) - log(rhs), symbol)
346
+ elif lhs.is_Add:
347
+ other = lhs.subs(mainlog, 0)
348
+ if other and not other.is_Add and [
349
+ tmp for tmp in other.atoms(Pow)
350
+ if symbol in tmp.free_symbols]:
351
+ if not rhs:
352
+ diff = log(other) - log(other - lhs)
353
+ else:
354
+ diff = log(lhs - other) - log(rhs - other)
355
+ soln = _lambert(expand_log(diff), symbol)
356
+ else:
357
+ #it's ready to go
358
+ soln = _lambert(lhs - rhs, symbol)
359
+
360
+ # For the next forms,
361
+ #
362
+ # collect on main exp
363
+ # 2a) (b*B + c)*exp(d*B + g) = R
364
+ # lhs is mul, so take log of both sides:
365
+ # log(b*B + c) + d*B = log(R) - g
366
+ # 2b) g*exp(d*B + h) - b*B = R
367
+ # lhs is add, so add b*B to both sides,
368
+ # take the log of both sides and rearrange to give
369
+ # log(R + b*B) - d*B = log(g) + h
370
+
371
+ if not soln:
372
+ mainexp = _mostfunc(lhs, exp, symbol)
373
+ if mainexp:
374
+ lhs = collect(lhs, mainexp)
375
+ if lhs.is_Mul and rhs != 0:
376
+ soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
377
+ elif lhs.is_Add:
378
+ # move all but mainexp-containing term to rhs
379
+ other = lhs.subs(mainexp, 0)
380
+ mainterm = lhs - other
381
+ rhs = rhs - other
382
+ if (mainterm.could_extract_minus_sign() and
383
+ rhs.could_extract_minus_sign()):
384
+ mainterm *= -1
385
+ rhs *= -1
386
+ diff = log(mainterm) - log(rhs)
387
+ soln = _lambert(expand_log(diff), symbol)
388
+
389
+ # For the last form:
390
+ #
391
+ # 3) d*p**(a*B + g) - b*B = c
392
+ # collect on main pow, add b*B to both sides,
393
+ # take log of both sides and rearrange to give
394
+ # a*B*log(p) - log(b*B + c) = -log(d) - g*log(p)
395
+ if not soln:
396
+ mainpow = _mostfunc(lhs, Pow, symbol)
397
+ if mainpow and symbol in mainpow.exp.free_symbols:
398
+ lhs = collect(lhs, mainpow)
399
+ if lhs.is_Mul and rhs != 0:
400
+ # b*B = 0
401
+ soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
402
+ elif lhs.is_Add:
403
+ # move all but mainpow-containing term to rhs
404
+ other = lhs.subs(mainpow, 0)
405
+ mainterm = lhs - other
406
+ rhs = rhs - other
407
+ diff = log(mainterm) - log(rhs)
408
+ soln = _lambert(expand_log(diff), symbol)
409
+
410
+ if not soln:
411
+ raise NotImplementedError('%s does not appear to have a solution in '
412
+ 'terms of LambertW' % f)
413
+
414
+ return list(ordered(soln))
415
+
416
+
417
+ def bivariate_type(f, x, y, *, first=True):
418
+ """Given an expression, f, 3 tests will be done to see what type
419
+ of composite bivariate it might be, options for u(x, y) are::
420
+
421
+ x*y
422
+ x+y
423
+ x*y+x
424
+ x*y+y
425
+
426
+ If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy
427
+ variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and
428
+ equating the solutions to ``u(x, y)`` and then solving for ``x`` or
429
+ ``y`` is equivalent to solving the original expression for ``x`` or
430
+ ``y``. If ``x`` and ``y`` represent two functions in the same
431
+ variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p``
432
+ can be solved for ``t`` then these represent the solutions to
433
+ ``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``.
434
+
435
+ Only positive values of ``u`` are considered.
436
+
437
+ Examples
438
+ ========
439
+
440
+ >>> from sympy import solve
441
+ >>> from sympy.solvers.bivariate import bivariate_type
442
+ >>> from sympy.abc import x, y
443
+ >>> eq = (x**2 - 3).subs(x, x + y)
444
+ >>> bivariate_type(eq, x, y)
445
+ (x + y, _u**2 - 3, _u)
446
+ >>> uxy, pu, u = _
447
+ >>> usol = solve(pu, u); usol
448
+ [sqrt(3)]
449
+ >>> [solve(uxy - s) for s in solve(pu, u)]
450
+ [[{x: -y + sqrt(3)}]]
451
+ >>> all(eq.subs(s).equals(0) for sol in _ for s in sol)
452
+ True
453
+
454
+ """
455
+
456
+ u = Dummy('u', positive=True)
457
+
458
+ if first:
459
+ p = Poly(f, x, y)
460
+ f = p.as_expr()
461
+ _x = Dummy()
462
+ _y = Dummy()
463
+ rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False)
464
+ if rv:
465
+ reps = {_x: x, _y: y}
466
+ return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2]
467
+ return
468
+
469
+ p = f
470
+ f = p.as_expr()
471
+
472
+ # f(x*y)
473
+ args = Add.make_args(p.as_expr())
474
+ new = []
475
+ for a in args:
476
+ a = _mexpand(a.subs(x, u/y))
477
+ free = a.free_symbols
478
+ if x in free or y in free:
479
+ break
480
+ new.append(a)
481
+ else:
482
+ return x*y, Add(*new), u
483
+
484
+ def ok(f, v, c):
485
+ new = _mexpand(f.subs(v, c))
486
+ free = new.free_symbols
487
+ return None if (x in free or y in free) else new
488
+
489
+ # f(a*x + b*y)
490
+ new = []
491
+ d = p.degree(x)
492
+ if p.degree(y) == d:
493
+ a = root(p.coeff_monomial(x**d), d)
494
+ b = root(p.coeff_monomial(y**d), d)
495
+ new = ok(f, x, (u - b*y)/a)
496
+ if new is not None:
497
+ return a*x + b*y, new, u
498
+
499
+ # f(a*x*y + b*y)
500
+ new = []
501
+ d = p.degree(x)
502
+ if p.degree(y) == d:
503
+ for itry in range(2):
504
+ a = root(p.coeff_monomial(x**d*y**d), d)
505
+ b = root(p.coeff_monomial(y**d), d)
506
+ new = ok(f, x, (u - b*y)/a/y)
507
+ if new is not None:
508
+ return a*x*y + b*y, new, u
509
+ x, y = y, x
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/decompogen.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import (Function, Pow, sympify, Expr)
2
+ from sympy.core.relational import Relational
3
+ from sympy.core.singleton import S
4
+ from sympy.polys import Poly, decompose
5
+ from sympy.utilities.misc import func_name
6
+ from sympy.functions.elementary.miscellaneous import Min, Max
7
+
8
+
9
+ def decompogen(f, symbol):
10
+ """
11
+ Computes General functional decomposition of ``f``.
12
+ Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
13
+ where::
14
+ f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
15
+
16
+ Note: This is a General decomposition function. It also decomposes
17
+ Polynomials. For only Polynomial decomposition see ``decompose`` in polys.
18
+
19
+ Examples
20
+ ========
21
+
22
+ >>> from sympy.abc import x
23
+ >>> from sympy import decompogen, sqrt, sin, cos
24
+ >>> decompogen(sin(cos(x)), x)
25
+ [sin(x), cos(x)]
26
+ >>> decompogen(sin(x)**2 + sin(x) + 1, x)
27
+ [x**2 + x + 1, sin(x)]
28
+ >>> decompogen(sqrt(6*x**2 - 5), x)
29
+ [sqrt(x), 6*x**2 - 5]
30
+ >>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
31
+ [sin(x), sqrt(x), cos(x), x**2 + 1]
32
+ >>> decompogen(x**4 + 2*x**3 - x - 1, x)
33
+ [x**2 - x - 1, x**2 + x]
34
+
35
+ """
36
+ f = sympify(f)
37
+ if not isinstance(f, Expr) or isinstance(f, Relational):
38
+ raise TypeError('expecting Expr but got: `%s`' % func_name(f))
39
+ if symbol not in f.free_symbols:
40
+ return [f]
41
+
42
+
43
+ # ===== Simple Functions ===== #
44
+ if isinstance(f, (Function, Pow)):
45
+ if f.is_Pow and f.base == S.Exp1:
46
+ arg = f.exp
47
+ else:
48
+ arg = f.args[0]
49
+ if arg == symbol:
50
+ return [f]
51
+ return [f.subs(arg, symbol)] + decompogen(arg, symbol)
52
+
53
+ # ===== Min/Max Functions ===== #
54
+ if isinstance(f, (Min, Max)):
55
+ args = list(f.args)
56
+ d0 = None
57
+ for i, a in enumerate(args):
58
+ if not a.has_free(symbol):
59
+ continue
60
+ d = decompogen(a, symbol)
61
+ if len(d) == 1:
62
+ d = [symbol] + d
63
+ if d0 is None:
64
+ d0 = d[1:]
65
+ elif d[1:] != d0:
66
+ # decomposition is not the same for each arg:
67
+ # mark as having no decomposition
68
+ d = [symbol]
69
+ break
70
+ args[i] = d[0]
71
+ if d[0] == symbol:
72
+ return [f]
73
+ return [f.func(*args)] + d0
74
+
75
+ # ===== Convert to Polynomial ===== #
76
+ fp = Poly(f)
77
+ gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens))
78
+
79
+ if len(gens) == 1 and gens[0] != symbol:
80
+ f1 = f.subs(gens[0], symbol)
81
+ f2 = gens[0]
82
+ return [f1] + decompogen(f2, symbol)
83
+
84
+ # ===== Polynomial decompose() ====== #
85
+ try:
86
+ return decompose(f)
87
+ except ValueError:
88
+ return [f]
89
+
90
+
91
+ def compogen(g_s, symbol):
92
+ """
93
+ Returns the composition of functions.
94
+ Given a list of functions ``g_s``, returns their composition ``f``,
95
+ where:
96
+ f = g_1 o g_2 o .. o g_n
97
+
98
+ Note: This is a General composition function. It also composes Polynomials.
99
+ For only Polynomial composition see ``compose`` in polys.
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy.solvers.decompogen import compogen
105
+ >>> from sympy.abc import x
106
+ >>> from sympy import sqrt, sin, cos
107
+ >>> compogen([sin(x), cos(x)], x)
108
+ sin(cos(x))
109
+ >>> compogen([x**2 + x + 1, sin(x)], x)
110
+ sin(x)**2 + sin(x) + 1
111
+ >>> compogen([sqrt(x), 6*x**2 - 5], x)
112
+ sqrt(6*x**2 - 5)
113
+ >>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x)
114
+ sin(sqrt(cos(x**2 + 1)))
115
+ >>> compogen([x**2 - x - 1, x**2 + x], x)
116
+ -x**2 - x + (x**2 + x)**2 - 1
117
+ """
118
+ if len(g_s) == 1:
119
+ return g_s[0]
120
+
121
+ foo = g_s[0].subs(symbol, g_s[1])
122
+
123
+ if len(g_s) == 2:
124
+ return foo
125
+
126
+ return compogen([foo] + g_s[2:], symbol)
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/deutils.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utility functions for classifying and solving
2
+ ordinary and partial differential equations.
3
+
4
+ Contains
5
+ ========
6
+ _preprocess
7
+ ode_order
8
+ _desolve
9
+
10
+ """
11
+ from sympy.core import Pow
12
+ from sympy.core.function import Derivative, AppliedUndef
13
+ from sympy.core.relational import Equality
14
+ from sympy.core.symbol import Wild
15
+
16
+ def _preprocess(expr, func=None, hint='_Integral'):
17
+ """Prepare expr for solving by making sure that differentiation
18
+ is done so that only func remains in unevaluated derivatives and
19
+ (if hint does not end with _Integral) that doit is applied to all
20
+ other derivatives. If hint is None, do not do any differentiation.
21
+ (Currently this may cause some simple differential equations to
22
+ fail.)
23
+
24
+ In case func is None, an attempt will be made to autodetect the
25
+ function to be solved for.
26
+
27
+ >>> from sympy.solvers.deutils import _preprocess
28
+ >>> from sympy import Derivative, Function
29
+ >>> from sympy.abc import x, y, z
30
+ >>> f, g = map(Function, 'fg')
31
+
32
+ If f(x)**p == 0 and p>0 then we can solve for f(x)=0
33
+ >>> _preprocess((f(x).diff(x)-4)**5, f(x))
34
+ (Derivative(f(x), x) - 4, f(x))
35
+
36
+ Apply doit to derivatives that contain more than the function
37
+ of interest:
38
+
39
+ >>> _preprocess(Derivative(f(x) + x, x))
40
+ (Derivative(f(x), x) + 1, f(x))
41
+
42
+ Do others if the differentiation variable(s) intersect with those
43
+ of the function of interest or contain the function of interest:
44
+
45
+ >>> _preprocess(Derivative(g(x), y, z), f(y))
46
+ (0, f(y))
47
+ >>> _preprocess(Derivative(f(y), z), f(y))
48
+ (0, f(y))
49
+
50
+ Do others if the hint does not end in '_Integral' (the default
51
+ assumes that it does):
52
+
53
+ >>> _preprocess(Derivative(g(x), y), f(x))
54
+ (Derivative(g(x), y), f(x))
55
+ >>> _preprocess(Derivative(f(x), y), f(x), hint='')
56
+ (0, f(x))
57
+
58
+ Do not do any derivatives if hint is None:
59
+
60
+ >>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y)
61
+ >>> _preprocess(eq, f(x), hint=None)
62
+ (Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x))
63
+
64
+ If it's not clear what the function of interest is, it must be given:
65
+
66
+ >>> eq = Derivative(f(x) + g(x), x)
67
+ >>> _preprocess(eq, g(x))
68
+ (Derivative(f(x), x) + Derivative(g(x), x), g(x))
69
+ >>> try: _preprocess(eq)
70
+ ... except ValueError: print("A ValueError was raised.")
71
+ A ValueError was raised.
72
+
73
+ """
74
+ if isinstance(expr, Pow):
75
+ # if f(x)**p=0 then f(x)=0 (p>0)
76
+ if (expr.exp).is_positive:
77
+ expr = expr.base
78
+ derivs = expr.atoms(Derivative)
79
+ if not func:
80
+ funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs])
81
+ if len(funcs) != 1:
82
+ raise ValueError('The function cannot be '
83
+ 'automatically detected for %s.' % expr)
84
+ func = funcs.pop()
85
+ fvars = set(func.args)
86
+ if hint is None:
87
+ return expr, func
88
+ reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or
89
+ d.has(func) or set(d.variables) & fvars]
90
+ eq = expr.subs(reps)
91
+ return eq, func
92
+
93
+
94
+ def ode_order(expr, func):
95
+ """
96
+ Returns the order of a given differential
97
+ equation with respect to func.
98
+
99
+ This function is implemented recursively.
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy import Function
105
+ >>> from sympy.solvers.deutils import ode_order
106
+ >>> from sympy.abc import x
107
+ >>> f, g = map(Function, ['f', 'g'])
108
+ >>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 +
109
+ ... f(x).diff(x), f(x))
110
+ 2
111
+ >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
112
+ 2
113
+ >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
114
+ 3
115
+
116
+ """
117
+ a = Wild('a', exclude=[func])
118
+ if expr.match(a):
119
+ return 0
120
+
121
+ if isinstance(expr, Derivative):
122
+ if expr.args[0] == func:
123
+ return len(expr.variables)
124
+ else:
125
+ args = expr.args[0].args
126
+ rv = len(expr.variables)
127
+ if args:
128
+ rv += max(ode_order(_, func) for _ in args)
129
+ return rv
130
+ else:
131
+ return max(ode_order(_, func) for _ in expr.args) if expr.args else 0
132
+
133
+
134
+ def _desolve(eq, func=None, hint="default", ics=None, simplify=True, *, prep=True, **kwargs):
135
+ """This is a helper function to dsolve and pdsolve in the ode
136
+ and pde modules.
137
+
138
+ If the hint provided to the function is "default", then a dict with
139
+ the following keys are returned
140
+
141
+ 'func' - It provides the function for which the differential equation
142
+ has to be solved. This is useful when the expression has
143
+ more than one function in it.
144
+
145
+ 'default' - The default key as returned by classifier functions in ode
146
+ and pde.py
147
+
148
+ 'hint' - The hint given by the user for which the differential equation
149
+ is to be solved. If the hint given by the user is 'default',
150
+ then the value of 'hint' and 'default' is the same.
151
+
152
+ 'order' - The order of the function as returned by ode_order
153
+
154
+ 'match' - It returns the match as given by the classifier functions, for
155
+ the default hint.
156
+
157
+ If the hint provided to the function is not "default" and is not in
158
+ ('all', 'all_Integral', 'best'), then a dict with the above mentioned keys
159
+ is returned along with the keys which are returned when dict in
160
+ classify_ode or classify_pde is set True
161
+
162
+ If the hint given is in ('all', 'all_Integral', 'best'), then this function
163
+ returns a nested dict, with the keys, being the set of classified hints
164
+ returned by classifier functions, and the values being the dict of form
165
+ as mentioned above.
166
+
167
+ Key 'eq' is a common key to all the above mentioned hints which returns an
168
+ expression if eq given by user is an Equality.
169
+
170
+ See Also
171
+ ========
172
+ classify_ode(ode.py)
173
+ classify_pde(pde.py)
174
+ """
175
+ if isinstance(eq, Equality):
176
+ eq = eq.lhs - eq.rhs
177
+
178
+ # preprocess the equation and find func if not given
179
+ if prep or func is None:
180
+ eq, func = _preprocess(eq, func)
181
+ prep = False
182
+
183
+ # type is an argument passed by the solve functions in ode and pde.py
184
+ # that identifies whether the function caller is an ordinary
185
+ # or partial differential equation. Accordingly corresponding
186
+ # changes are made in the function.
187
+ type = kwargs.get('type', None)
188
+ xi = kwargs.get('xi')
189
+ eta = kwargs.get('eta')
190
+ x0 = kwargs.get('x0', 0)
191
+ terms = kwargs.get('n')
192
+
193
+ if type == 'ode':
194
+ from sympy.solvers.ode import classify_ode, allhints
195
+ classifier = classify_ode
196
+ string = 'ODE '
197
+ dummy = ''
198
+
199
+ elif type == 'pde':
200
+ from sympy.solvers.pde import classify_pde, allhints
201
+ classifier = classify_pde
202
+ string = 'PDE '
203
+ dummy = 'p'
204
+
205
+ # Magic that should only be used internally. Prevents classify_ode from
206
+ # being called more than it needs to be by passing its results through
207
+ # recursive calls.
208
+ if kwargs.get('classify', True):
209
+ hints = classifier(eq, func, dict=True, ics=ics, xi=xi, eta=eta,
210
+ n=terms, x0=x0, hint=hint, prep=prep)
211
+
212
+ else:
213
+ # Here is what all this means:
214
+ #
215
+ # hint: The hint method given to _desolve() by the user.
216
+ # hints: The dictionary of hints that match the DE, along with other
217
+ # information (including the internal pass-through magic).
218
+ # default: The default hint to return, the first hint from allhints
219
+ # that matches the hint; obtained from classify_ode().
220
+ # match: Dictionary containing the match dictionary for each hint
221
+ # (the parts of the DE for solving). When going through the
222
+ # hints in "all", this holds the match string for the current
223
+ # hint.
224
+ # order: The order of the DE, as determined by ode_order().
225
+ hints = kwargs.get('hint',
226
+ {'default': hint,
227
+ hint: kwargs['match'],
228
+ 'order': kwargs['order']})
229
+ if not hints['default']:
230
+ # classify_ode will set hints['default'] to None if no hints match.
231
+ if hint not in allhints and hint != 'default':
232
+ raise ValueError("Hint not recognized: " + hint)
233
+ elif hint not in hints['ordered_hints'] and hint != 'default':
234
+ raise ValueError(string + str(eq) + " does not match hint " + hint)
235
+ # If dsolve can't solve the purely algebraic equation then dsolve will raise
236
+ # ValueError
237
+ elif hints['order'] == 0:
238
+ raise ValueError(
239
+ str(eq) + " is not a solvable differential equation in " + str(func))
240
+ else:
241
+ raise NotImplementedError(dummy + "solve" + ": Cannot solve " + str(eq))
242
+ if hint == 'default':
243
+ return _desolve(eq, func, ics=ics, hint=hints['default'], simplify=simplify,
244
+ prep=prep, x0=x0, classify=False, order=hints['order'],
245
+ match=hints[hints['default']], xi=xi, eta=eta, n=terms, type=type)
246
+ elif hint in ('all', 'all_Integral', 'best'):
247
+ retdict = {}
248
+ gethints = set(hints) - {'order', 'default', 'ordered_hints'}
249
+ if hint == 'all_Integral':
250
+ for i in hints:
251
+ if i.endswith('_Integral'):
252
+ gethints.remove(i[:-len('_Integral')])
253
+ # special cases
254
+ for k in ["1st_homogeneous_coeff_best", "1st_power_series",
255
+ "lie_group", "2nd_power_series_ordinary", "2nd_power_series_regular"]:
256
+ if k in gethints:
257
+ gethints.remove(k)
258
+ for i in gethints:
259
+ sol = _desolve(eq, func, ics=ics, hint=i, x0=x0, simplify=simplify, prep=prep,
260
+ classify=False, n=terms, order=hints['order'], match=hints[i], type=type)
261
+ retdict[i] = sol
262
+ retdict['all'] = True
263
+ retdict['eq'] = eq
264
+ return retdict
265
+ elif hint not in allhints: # and hint not in ('default', 'ordered_hints'):
266
+ raise ValueError("Hint not recognized: " + hint)
267
+ elif hint not in hints:
268
+ raise ValueError(string + str(eq) + " does not match hint " + hint)
269
+ else:
270
+ # Key added to identify the hint needed to solve the equation
271
+ hints['hint'] = hint
272
+ hints.update({'func': func, 'eq': eq})
273
+ return hints
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .diophantine import diophantine, classify_diop, diop_solve
2
+
3
+ __all__ = [
4
+ 'diophantine', 'classify_diop', 'diop_solve'
5
+ ]
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (285 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py ADDED
File without changes
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc ADDED
Binary file (46.5 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py ADDED
@@ -0,0 +1,1051 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.numbers import (Rational, oo, pi)
4
+ from sympy.core.relational import Eq
5
+ from sympy.core.singleton import S
6
+ from sympy.core.symbol import symbols
7
+ from sympy.matrices.dense import Matrix
8
+ from sympy.ntheory.factor_ import factorint
9
+ from sympy.simplify.powsimp import powsimp
10
+ from sympy.core.function import _mexpand
11
+ from sympy.core.sorting import default_sort_key, ordered
12
+ from sympy.functions.elementary.trigonometric import sin
13
+ from sympy.solvers.diophantine import diophantine
14
+ from sympy.solvers.diophantine.diophantine import (diop_DN,
15
+ diop_solve, diop_ternary_quadratic_normal,
16
+ diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
17
+ diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
18
+ descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
19
+ reconstruct, partition, power_representation,
20
+ prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
21
+ sum_of_three_squares, transformation_to_DN, transformation_to_normal,
22
+ classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
23
+ check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
24
+ _diop_ternary_quadratic_normal, _nint_or_floor,
25
+ _odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean,
26
+ BinaryQuadratic)
27
+
28
+ from sympy.testing.pytest import slow, raises, XFAIL
29
+ from sympy.utilities.iterables import (
30
+ signed_permutations)
31
+
32
+ a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
33
+ "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
34
+ t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
35
+ m1, m2, m3 = symbols('m1:4', integer=True)
36
+ n1 = symbols('n1', integer=True)
37
+
38
+
39
+ def diop_simplify(eq):
40
+ return _mexpand(powsimp(_mexpand(eq)))
41
+
42
+
43
+ def test_input_format():
44
+ raises(TypeError, lambda: diophantine(sin(x)))
45
+ raises(TypeError, lambda: diophantine(x/pi - 3))
46
+
47
+
48
+ def test_nosols():
49
+ # diophantine should sympify eq so that these are equivalent
50
+ assert diophantine(3) == set()
51
+ assert diophantine(S(3)) == set()
52
+
53
+
54
+ def test_univariate():
55
+ assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
56
+ assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
57
+
58
+
59
+ def test_classify_diop():
60
+ raises(TypeError, lambda: classify_diop(x**2/3 - 1))
61
+ raises(ValueError, lambda: classify_diop(1))
62
+ raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
63
+ raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
64
+ assert classify_diop(14*x**2 + 15*x - 42) == (
65
+ [x], {1: -42, x: 15, x**2: 14}, 'univariate')
66
+ assert classify_diop(x*y + z) == (
67
+ [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
68
+ assert classify_diop(x*y + z + w + x**2) == (
69
+ [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
70
+ assert classify_diop(x*y + x*z + x**2 + 1) == (
71
+ [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
72
+ assert classify_diop(x*y + z + w + 42) == (
73
+ [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
74
+ assert classify_diop(x*y + z*w) == (
75
+ [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
76
+ assert classify_diop(x*y**2 + 1) == (
77
+ [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
78
+ assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
79
+ [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
80
+ assert classify_diop(x**2 + y**2 + z**2) == (
81
+ [x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')
82
+
83
+
84
+ def test_linear():
85
+ assert diop_solve(x) == (0,)
86
+ assert diop_solve(1*x) == (0,)
87
+ assert diop_solve(3*x) == (0,)
88
+ assert diop_solve(x + 1) == (-1,)
89
+ assert diop_solve(2*x + 1) == (None,)
90
+ assert diop_solve(2*x + 4) == (-2,)
91
+ assert diop_solve(y + x) == (t_0, -t_0)
92
+ assert diop_solve(y + x + 0) == (t_0, -t_0)
93
+ assert diop_solve(y + x - 0) == (t_0, -t_0)
94
+ assert diop_solve(0*x - y - 5) == (-5,)
95
+ assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
96
+ assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
97
+ assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
98
+ assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
99
+ assert diop_solve(2*x + 4*y) == (-2*t_0, t_0)
100
+ assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
101
+ assert diop_solve(4*x + 6*y - 3) == (None, None)
102
+ assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
103
+ assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
104
+ assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
105
+ assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
106
+ assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
107
+ assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
108
+ assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
109
+
110
+ # to ignore constant factors, use diophantine
111
+ raises(TypeError, lambda: diop_solve(x/2))
112
+
113
+
114
+ def test_quadratic_simple_hyperbolic_case():
115
+ # Simple Hyperbolic case: A = C = 0 and B != 0
116
+ assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
117
+ {(-133, -11), (5, -57)}
118
+ assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
119
+ assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
120
+ assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
121
+ assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
122
+ (-29, -69), (-27, 64), (-21, 7),
123
+ (-9, 1), (105, -2)}
124
+ assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
125
+ assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
126
+ assert diophantine(48*x*y)
127
+
128
+
129
+ def test_quadratic_elliptical_case():
130
+ # Elliptical case: B**2 - 4AC < 0
131
+
132
+ assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
133
+ assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
134
+ assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
135
+ assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
136
+ assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
137
+ {(-1, -1), (-1, 2), (1, -2), (1, 1)}
138
+
139
+
140
+ def test_quadratic_parabolic_case():
141
+ # Parabolic case: B**2 - 4AC = 0
142
+ assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
143
+ assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
144
+ assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
145
+ assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
146
+ assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
147
+ assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
148
+ assert check_solutions(y**2 - 41*x + 40)
149
+
150
+
151
+ def test_quadratic_perfect_square():
152
+ # B**2 - 4*A*C > 0
153
+ # B**2 - 4*A*C is a perfect square
154
+ assert check_solutions(48*x*y)
155
+ assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
156
+ assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
157
+ assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
158
+ assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
159
+ assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
160
+ assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
161
+ assert check_solutions(x**2 - y**2 - 2*x - 2*y)
162
+ assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
163
+ assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
164
+
165
+
166
+ def test_quadratic_non_perfect_square():
167
+ # B**2 - 4*A*C is not a perfect square
168
+ # Used check_solutions() since the solutions are complex expressions involving
169
+ # square roots and exponents
170
+ assert check_solutions(x**2 - 2*x - 5*y**2)
171
+ assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
172
+ assert check_solutions(x**2 - x*y - y**2 - 3*y)
173
+ assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
174
+ assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)}
175
+
176
+
177
+ def test_issue_9106():
178
+ eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
179
+ v = (x, y)
180
+ for sol in diophantine(eq):
181
+ assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
182
+
183
+
184
+ def test_issue_18138():
185
+ eq = x**2 - x - y**2
186
+ v = (x, y)
187
+ for sol in diophantine(eq):
188
+ assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
189
+
190
+
191
+ @slow
192
+ def test_quadratic_non_perfect_slow():
193
+ assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
194
+ # This leads to very large numbers.
195
+ # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
196
+ assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
197
+ assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
198
+ assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
199
+
200
+
201
+ def test_DN():
202
+ # Most of the test cases were adapted from,
203
+ # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
204
+ # https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
205
+ # others are verified using Wolfram Alpha.
206
+
207
+ # Covers cases where D <= 0 or D > 0 and D is a square or N = 0
208
+ # Solutions are straightforward in these cases.
209
+ assert diop_DN(3, 0) == [(0, 0)]
210
+ assert diop_DN(-17, -5) == []
211
+ assert diop_DN(-19, 23) == [(2, 1)]
212
+ assert diop_DN(-13, 17) == [(2, 1)]
213
+ assert diop_DN(-15, 13) == []
214
+ assert diop_DN(0, 5) == []
215
+ assert diop_DN(0, 9) == [(3, t)]
216
+ assert diop_DN(9, 0) == [(3*t, t)]
217
+ assert diop_DN(16, 24) == []
218
+ assert diop_DN(9, 180) == [(18, 4)]
219
+ assert diop_DN(9, -180) == [(12, 6)]
220
+ assert diop_DN(7, 0) == [(0, 0)]
221
+
222
+ # When equation is x**2 + y**2 = N
223
+ # Solutions are interchangeable
224
+ assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
225
+ assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
226
+
227
+ # D > 0 and D is not a square
228
+
229
+ # N = 1
230
+ assert diop_DN(13, 1) == [(649, 180)]
231
+ assert diop_DN(980, 1) == [(51841, 1656)]
232
+ assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
233
+ assert diop_DN(986, 1) == [(49299, 1570)]
234
+ assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
235
+ assert diop_DN(17, 1) == [(33, 8)]
236
+ assert diop_DN(19, 1) == [(170, 39)]
237
+
238
+ # N = -1
239
+ assert diop_DN(13, -1) == [(18, 5)]
240
+ assert diop_DN(991, -1) == []
241
+ assert diop_DN(41, -1) == [(32, 5)]
242
+ assert diop_DN(290, -1) == [(17, 1)]
243
+ assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
244
+ assert diop_DN(32, -1) == []
245
+
246
+ # |N| > 1
247
+ # Some tests were created using calculator at
248
+ # http://www.numbertheory.org/php/patz.html
249
+
250
+ assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
251
+ # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
252
+ # So (-3, 1) and (393, 109) should be in the same equivalent class
253
+ assert equivalent(-3, 1, 393, 109, 13, -4) == True
254
+
255
+ assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
256
+ assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
257
+ (483790960, 38610722), (26277068347, 2097138361),
258
+ (21950079635497, 1751807067011)}
259
+ assert diop_DN(13, 25) == [(3245, 900)]
260
+ assert diop_DN(192, 18) == []
261
+ assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
262
+ assert diop_DN(167, 2) == [(13, 1)]
263
+ assert diop_DN(167, -2) == []
264
+
265
+ assert diop_DN(123, -2) == [(11, 1)]
266
+ # One calculator returned [(11, 1), (-11, 1)] but both of these are in
267
+ # the same equivalence class
268
+ assert equivalent(11, 1, -11, 1, 123, -2)
269
+
270
+ assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
271
+
272
+ assert diop_DN(0, 0, t) == [(0, t)]
273
+ assert diop_DN(0, -1, t) == []
274
+
275
+
276
+ def test_bf_pell():
277
+ assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
278
+ assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
279
+ assert diop_bf_DN(167, -2) == []
280
+ assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
281
+ assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
282
+ assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
283
+ assert diop_bf_DN(340, -4) == [(756, 41)]
284
+ assert diop_bf_DN(-1, 0, t) == [(0, 0)]
285
+ assert diop_bf_DN(0, 0, t) == [(0, t)]
286
+ assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
287
+ assert diop_bf_DN(3, 0, t) == [(0, 0)]
288
+ assert diop_bf_DN(1, -2, t) == []
289
+
290
+
291
+ def test_length():
292
+ assert length(2, 1, 0) == 1
293
+ assert length(-2, 4, 5) == 3
294
+ assert length(-5, 4, 17) == 4
295
+ assert length(0, 4, 13) == 6
296
+ assert length(7, 13, 11) == 23
297
+ assert length(1, 6, 4) == 2
298
+
299
+
300
+ def is_pell_transformation_ok(eq):
301
+ """
302
+ Test whether X*Y, X, or Y terms are present in the equation
303
+ after transforming the equation using the transformation returned
304
+ by transformation_to_pell(). If they are not present we are good.
305
+ Moreover, coefficient of X**2 should be a divisor of coefficient of
306
+ Y**2 and the constant term.
307
+ """
308
+ A, B = transformation_to_DN(eq)
309
+ u = (A*Matrix([X, Y]) + B)[0]
310
+ v = (A*Matrix([X, Y]) + B)[1]
311
+ simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
312
+
313
+ coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
314
+
315
+ for term in [X*Y, X, Y]:
316
+ if term in coeff.keys():
317
+ return False
318
+
319
+ for term in [X**2, Y**2, 1]:
320
+ if term not in coeff.keys():
321
+ coeff[term] = 0
322
+
323
+ if coeff[X**2] != 0:
324
+ return divisible(coeff[Y**2], coeff[X**2]) and \
325
+ divisible(coeff[1], coeff[X**2])
326
+
327
+ return True
328
+
329
+
330
+ def test_transformation_to_pell():
331
+ assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
332
+ assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
333
+ assert is_pell_transformation_ok(x**2 - y**2 + 17)
334
+ assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
335
+ assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
336
+ assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
337
+ assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
338
+ assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
339
+
340
+
341
+ def test_find_DN():
342
+ assert find_DN(x**2 - 2*x - y**2) == (1, 1)
343
+ assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
344
+ assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
345
+ assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
346
+ assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
347
+ assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
348
+ assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
349
+
350
+
351
+ def test_ldescent():
352
+ # Equations which have solutions
353
+ u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
354
+ (4, 32), (17, 13), (123689, 1), (19, -570)])
355
+ for a, b in u:
356
+ w, x, y = ldescent(a, b)
357
+ assert a*x**2 + b*y**2 == w**2
358
+ assert ldescent(-1, -1) is None
359
+ assert ldescent(2, 6) is None
360
+
361
+
362
+ def test_diop_ternary_quadratic_normal():
363
+ assert check_solutions(234*x**2 - 65601*y**2 - z**2)
364
+ assert check_solutions(23*x**2 + 616*y**2 - z**2)
365
+ assert check_solutions(5*x**2 + 4*y**2 - z**2)
366
+ assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
367
+ assert check_solutions(x**2 + 3*y**2 - z**2)
368
+ assert check_solutions(4*x**2 + 5*y**2 - z**2)
369
+ assert check_solutions(x**2 + y**2 - z**2)
370
+ assert check_solutions(16*x**2 + y**2 - 25*z**2)
371
+ assert check_solutions(6*x**2 - y**2 + 10*z**2)
372
+ assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
373
+ assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
374
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
375
+
376
+
377
+ def is_normal_transformation_ok(eq):
378
+ A = transformation_to_normal(eq)
379
+ X, Y, Z = A*Matrix([x, y, z])
380
+ simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
381
+
382
+ coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
383
+ for term in [X*Y, Y*Z, X*Z]:
384
+ if term in coeff.keys():
385
+ return False
386
+
387
+ return True
388
+
389
+
390
+ def test_transformation_to_normal():
391
+ assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
392
+ assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
393
+ assert is_normal_transformation_ok(x**2 + 23*y*z)
394
+ assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
395
+ assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
396
+ assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
397
+ assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
398
+ assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
399
+ assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
400
+ assert is_normal_transformation_ok(2*x*z + 3*y*z)
401
+
402
+
403
+ def test_diop_ternary_quadratic():
404
+ assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
405
+ assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
406
+ assert check_solutions(3*x**2 - x*y - y*z - x*z)
407
+ assert check_solutions(x**2 - y*z - x*z)
408
+ assert check_solutions(5*x**2 - 3*x*y - x*z)
409
+ assert check_solutions(4*x**2 - 5*y**2 - x*z)
410
+ assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
411
+ assert check_solutions(8*x**2 - 12*y*z)
412
+ assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
413
+ assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
414
+ assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
415
+ assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
416
+ assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
417
+ assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
418
+ assert check_solutions(x*y - 7*y*z + 13*x*z)
419
+
420
+ assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
421
+ assert diop_ternary_quadratic_normal(x**2 + y**2) is None
422
+ raises(ValueError, lambda:
423
+ _diop_ternary_quadratic_normal((x, y, z),
424
+ {x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
425
+ eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
426
+ assert diop_ternary_quadratic(eq) == (7, 2, 0)
427
+ assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
428
+ (1, 0, 2)
429
+ assert diop_ternary_quadratic(x*y + 2*y*z) == \
430
+ (-2, 0, n1)
431
+ eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
432
+ assert parametrize_ternary_quadratic(eq) == \
433
+ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
434
+ # this cannot be tested with diophantine because it will
435
+ # factor into a product
436
+ assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
437
+
438
+
439
+ def test_square_factor():
440
+ assert square_factor(1) == square_factor(-1) == 1
441
+ assert square_factor(0) == 1
442
+ assert square_factor(5) == square_factor(-5) == 1
443
+ assert square_factor(4) == square_factor(-4) == 2
444
+ assert square_factor(12) == square_factor(-12) == 2
445
+ assert square_factor(6) == 1
446
+ assert square_factor(18) == 3
447
+ assert square_factor(52) == 2
448
+ assert square_factor(49) == 7
449
+ assert square_factor(392) == 14
450
+ assert square_factor(factorint(-12)) == 2
451
+
452
+
453
+ def test_parametrize_ternary_quadratic():
454
+ assert check_solutions(x**2 + y**2 - z**2)
455
+ assert check_solutions(x**2 + 2*x*y + z**2)
456
+ assert check_solutions(234*x**2 - 65601*y**2 - z**2)
457
+ assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
458
+ assert check_solutions(x**2 - y**2 - z**2)
459
+ assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
460
+ assert check_solutions(8*x*y + z**2)
461
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
462
+ assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
463
+ assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
464
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
465
+
466
+
467
+ def test_no_square_ternary_quadratic():
468
+ assert check_solutions(2*x*y + y*z - 3*x*z)
469
+ assert check_solutions(189*x*y - 345*y*z - 12*x*z)
470
+ assert check_solutions(23*x*y + 34*y*z)
471
+ assert check_solutions(x*y + y*z + z*x)
472
+ assert check_solutions(23*x*y + 23*y*z + 23*x*z)
473
+
474
+
475
+ def test_descent():
476
+
477
+ u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
478
+ for a, b in u:
479
+ w, x, y = descent(a, b)
480
+ assert a*x**2 + b*y**2 == w**2
481
+ # the docstring warns against bad input, so these are expected results
482
+ # - can't both be negative
483
+ raises(TypeError, lambda: descent(-1, -3))
484
+ # A can't be zero unless B != 1
485
+ raises(ZeroDivisionError, lambda: descent(0, 3))
486
+ # supposed to be square-free
487
+ raises(TypeError, lambda: descent(4, 3))
488
+
489
+
490
+ def test_diophantine():
491
+ assert check_solutions((x - y)*(y - z)*(z - x))
492
+ assert check_solutions((x - y)*(x**2 + y**2 - z**2))
493
+ assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
494
+ assert check_solutions(x**2 - 3*y**2 - 1)
495
+ assert check_solutions(y**2 + 7*x*y)
496
+ assert check_solutions(x**2 - 3*x*y + y**2)
497
+ assert check_solutions(z*(x**2 - y**2 - 15))
498
+ assert check_solutions(x*(2*y - 2*z + 5))
499
+ assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
500
+ assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
501
+ assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
502
+ # Following test case caused problems in parametric representation
503
+ # But this can be solved by factoring out y.
504
+ # No need to use methods for ternary quadratic equations.
505
+ assert check_solutions(y**2 - 7*x*y + 4*y*z)
506
+ assert check_solutions(x**2 - 2*x + 1)
507
+
508
+ assert diophantine(x - y) == diophantine(Eq(x, y))
509
+ # 18196
510
+ eq = x**4 + y**4 - 97
511
+ assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
512
+ assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
513
+ eq = x**2 + y**2 + z**2 - 14
514
+ base_sol = {(1, 2, 3)}
515
+ assert diophantine(eq) == base_sol
516
+ complete_soln = set(signed_permutations(base_sol.pop()))
517
+ assert diophantine(eq, permute=True) == complete_soln
518
+
519
+ assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
520
+ # test issue 11049
521
+ eq = 92*x**2 - 99*y**2 - z**2
522
+ coeff = eq.as_coefficients_dict()
523
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
524
+ {(9, 7, 51)}
525
+ assert diophantine(eq) == {(
526
+ 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
527
+ 5049*p**2 - 1386*p*q - 51*q**2)}
528
+ eq = 2*x**2 + 2*y**2 - z**2
529
+ coeff = eq.as_coefficients_dict()
530
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
531
+ {(1, 1, 2)}
532
+ assert diophantine(eq) == {(
533
+ 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
534
+ 4*p**2 - 4*p*q + 2*q**2)}
535
+ eq = 411*x**2+57*y**2-221*z**2
536
+ coeff = eq.as_coefficients_dict()
537
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
538
+ {(2021, 2645, 3066)}
539
+ assert diophantine(eq) == \
540
+ {(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
541
+ 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
542
+ eq = 573*x**2+267*y**2-984*z**2
543
+ coeff = eq.as_coefficients_dict()
544
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
545
+ {(49, 233, 127)}
546
+ assert diophantine(eq) == \
547
+ {(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
548
+ 11303*p**2 - 41474*p*q + 41656*q**2)}
549
+ # this produces factors during reconstruction
550
+ eq = x**2 + 3*y**2 - 12*z**2
551
+ coeff = eq.as_coefficients_dict()
552
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
553
+ {(0, 2, 1)}
554
+ assert diophantine(eq) == \
555
+ {(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
556
+ # solvers have not been written for every type
557
+ raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
558
+
559
+ # rational expressions
560
+ assert diophantine(1/x) == set()
561
+ assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
562
+ assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
563
+ {(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
564
+
565
+
566
+ #test issue 18186
567
+ assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
568
+ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
569
+ assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
570
+ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
571
+
572
+ # issue 18122
573
+ assert check_solutions(x**2 - y)
574
+ assert check_solutions(y**2 - x)
575
+ assert diophantine((x**2 - y), t) == {(t, t**2)}
576
+ assert diophantine((y**2 - x), t) == {(t**2, t)}
577
+
578
+
579
+ def test_general_pythagorean():
580
+ from sympy.abc import a, b, c, d, e
581
+
582
+ assert check_solutions(a**2 + b**2 + c**2 - d**2)
583
+ assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
584
+ assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
585
+ assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
586
+ assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
587
+ assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
588
+ assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
589
+
590
+ assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \
591
+ {(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)}
592
+
593
+
594
+ def test_diop_general_sum_of_squares_quick():
595
+ for i in range(3, 10):
596
+ assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
597
+
598
+ assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None
599
+ assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set()
600
+ eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
601
+ assert diop_general_sum_of_squares(eq) == \
602
+ {(1, 2, 3)}
603
+ eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
604
+ assert len(diop_general_sum_of_squares(eq, 3)) == 3
605
+ # issue 11016
606
+ var = symbols(':5') + (symbols('6', negative=True),)
607
+ eq = Add(*[i**2 for i in var]) - 112
608
+
609
+ base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
610
+ (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
611
+ (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
612
+ (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
613
+ (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
614
+ assert diophantine(eq) == base_soln
615
+ assert len(diophantine(eq, permute=True)) == 196800
616
+
617
+ # handle negated squares with signsimp
618
+ assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
619
+ # diophantine handles simplification, so classify_diop should
620
+ # not have to look for additional patterns that are removed
621
+ # by diophantine
622
+ eq = a**2 + b**2 + c**2 + d**2 - 4
623
+ raises(NotImplementedError, lambda: classify_diop(-eq))
624
+
625
+
626
+ def test_issue_23807():
627
+ # fixes recursion error
628
+ eq = x**2 + y**2 + z**2 - 1000000
629
+ base_soln = {(0, 0, 1000), (0, 352, 936), (480, 600, 640), (24, 640, 768), (192, 640, 744),
630
+ (192, 480, 856), (168, 224, 960), (0, 600, 800), (280, 576, 768), (152, 480, 864),
631
+ (0, 280, 960), (352, 360, 864), (424, 480, 768), (360, 480, 800), (224, 600, 768),
632
+ (96, 360, 928), (168, 576, 800), (96, 480, 872)}
633
+
634
+ assert diophantine(eq) == base_soln
635
+
636
+
637
+ def test_diop_partition():
638
+ for n in [8, 10]:
639
+ for k in range(1, 8):
640
+ for p in partition(n, k):
641
+ assert len(p) == k
642
+ assert list(partition(3, 5)) == []
643
+ assert [list(p) for p in partition(3, 5, 1)] == [
644
+ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
645
+ assert list(partition(0)) == [()]
646
+ assert list(partition(1, 0)) == [()]
647
+ assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
648
+
649
+
650
+ def test_prime_as_sum_of_two_squares():
651
+ for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
652
+ a, b = prime_as_sum_of_two_squares(i)
653
+ assert a**2 + b**2 == i
654
+ assert prime_as_sum_of_two_squares(7) is None
655
+ ans = prime_as_sum_of_two_squares(800029)
656
+ assert ans == (450, 773) and type(ans[0]) is int
657
+
658
+
659
+ def test_sum_of_three_squares():
660
+ for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
661
+ 800, 801, 802, 803, 804, 805, 806]:
662
+ a, b, c = sum_of_three_squares(i)
663
+ assert a**2 + b**2 + c**2 == i
664
+ assert a >= 0
665
+
666
+ # error
667
+ raises(ValueError, lambda: sum_of_three_squares(-1))
668
+
669
+ assert sum_of_three_squares(7) is None
670
+ assert sum_of_three_squares((4**5)*15) is None
671
+ # if there are two zeros, there might be a solution
672
+ # with only one zero, e.g. 25 => (0, 3, 4) or
673
+ # with no zeros, e.g. 49 => (2, 3, 6)
674
+ assert sum_of_three_squares(25) == (0, 0, 5)
675
+ assert sum_of_three_squares(4) == (0, 0, 2)
676
+
677
+
678
+ def test_sum_of_four_squares():
679
+ from sympy.core.random import randint
680
+
681
+ # this should never fail
682
+ n = randint(1, 100000000000000)
683
+ assert sum(i**2 for i in sum_of_four_squares(n)) == n
684
+
685
+ # error
686
+ raises(ValueError, lambda: sum_of_four_squares(-1))
687
+
688
+ for n in range(1000):
689
+ result = sum_of_four_squares(n)
690
+ assert len(result) == 4
691
+ assert all(r >= 0 for r in result)
692
+ assert sum(r**2 for r in result) == n
693
+ assert list(result) == sorted(result)
694
+
695
+
696
+ def test_power_representation():
697
+ tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
698
+ (32760, 2, 3)]
699
+
700
+ for test in tests:
701
+ n, p, k = test
702
+ f = power_representation(n, p, k)
703
+
704
+ while True:
705
+ try:
706
+ l = next(f)
707
+ assert len(l) == k
708
+
709
+ chk_sum = 0
710
+ for l_i in l:
711
+ chk_sum = chk_sum + l_i**p
712
+ assert chk_sum == n
713
+
714
+ except StopIteration:
715
+ break
716
+
717
+ assert list(power_representation(20, 2, 4, True)) == \
718
+ [(1, 1, 3, 3), (0, 0, 2, 4)]
719
+ raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
720
+ raises(ValueError, lambda: list(power_representation(2, 0, 2)))
721
+ raises(ValueError, lambda: list(power_representation(2, 2, 0)))
722
+ assert list(power_representation(-1, 2, 2)) == []
723
+ assert list(power_representation(1, 1, 1)) == [(1,)]
724
+ assert list(power_representation(3, 2, 1)) == []
725
+ assert list(power_representation(4, 2, 1)) == [(2,)]
726
+ assert list(power_representation(3**4, 4, 6, zeros=True)) == \
727
+ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
728
+ assert list(power_representation(3**4, 4, 5, zeros=False)) == []
729
+ assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
730
+ assert list(power_representation(-2, 4, 2)) == []
731
+ assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
732
+ assert list(power_representation(0, 3, 2, False)) == []
733
+ # when we are dealing with squares, do feasibility checks
734
+ assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
735
+ # there will be a recursion error if these aren't recognized
736
+ big = 2**30
737
+ for i in [13, 10, 7, 5, 4, 2, 1]:
738
+ assert list(sum_of_powers(big, 2, big - i)) == []
739
+
740
+
741
+ def test_assumptions():
742
+ """
743
+ Test whether diophantine respects the assumptions.
744
+ """
745
+ #Test case taken from the below so question regarding assumptions in diophantine module
746
+ #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
747
+ m, n = symbols('m n', integer=True, positive=True)
748
+ diof = diophantine(n**2 + m*n - 500)
749
+ assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
750
+
751
+ a, b = symbols('a b', integer=True, positive=False)
752
+ diof = diophantine(a*b + 2*a + 3*b - 6)
753
+ assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
754
+
755
+
756
+ def check_solutions(eq):
757
+ """
758
+ Determines whether solutions returned by diophantine() satisfy the original
759
+ equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
760
+ check_solutions_normal, check_solutions()
761
+ """
762
+ s = diophantine(eq)
763
+
764
+ factors = Mul.make_args(eq)
765
+
766
+ var = list(eq.free_symbols)
767
+ var.sort(key=default_sort_key)
768
+
769
+ while s:
770
+ solution = s.pop()
771
+ for f in factors:
772
+ if diop_simplify(f.subs(zip(var, solution))) == 0:
773
+ break
774
+ else:
775
+ return False
776
+ return True
777
+
778
+
779
+ def test_diopcoverage():
780
+ eq = (2*x + y + 1)**2
781
+ assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
782
+ eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
783
+ assert diop_solve(eq) == {(t, -t - 3), (-2*t - 3, t)}
784
+ assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, t)}
785
+
786
+ assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
787
+
788
+ assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
789
+ ans = (3*t - 1, -2*t + 1)
790
+ assert base_solution_linear(4, 8, 12, t) == ans
791
+ assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
792
+
793
+ assert cornacchia(1, 1, 20) == set()
794
+ assert cornacchia(1, 1, 5) == {(2, 1)}
795
+ assert cornacchia(1, 2, 17) == {(3, 2)}
796
+
797
+ raises(ValueError, lambda: reconstruct(4, 20, 1))
798
+
799
+ assert gaussian_reduce(4, 1, 3) == (1, 1)
800
+ eq = -w**2 - x**2 - y**2 + z**2
801
+
802
+ assert diop_general_pythagorean(eq) == \
803
+ diop_general_pythagorean(-eq) == \
804
+ (m1**2 + m2**2 - m3**2, 2*m1*m3,
805
+ 2*m2*m3, m1**2 + m2**2 + m3**2)
806
+
807
+ assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0
808
+ assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0
809
+ assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0
810
+
811
+ assert _nint_or_floor(16, 10) == 2
812
+ assert _odd(1) == (not _even(1)) == True
813
+ assert _odd(0) == (not _even(0)) == False
814
+ assert _remove_gcd(2, 4, 6) == (1, 2, 3)
815
+ raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
816
+ assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
817
+ (11, 1, 5)
818
+
819
+ # it's ok if these pass some day when the solvers are implemented
820
+ raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
821
+ raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
822
+ assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
823
+ {(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
824
+
825
+
826
+ def test_holzer():
827
+ # if the input is good, don't let it diverge in holzer()
828
+ # (but see test_fail_holzer below)
829
+ assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
830
+
831
+ # None in uv condition met; solution is not Holzer reduced
832
+ # so this will hopefully change but is here for coverage
833
+ assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
834
+
835
+ raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
836
+
837
+
838
+ @XFAIL
839
+ def test_fail_holzer():
840
+ eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
841
+ a, b, c = 4, 79, 23
842
+ x, y, z = xyz = 26, 1, 11
843
+ X, Y, Z = ans = 2, 7, 13
844
+ assert eq(*xyz) == 0
845
+ assert eq(*ans) == 0
846
+ assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
847
+ assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
848
+ h = holzer(x, y, z, a, b, c)
849
+ assert h == ans # it would be nice to get the smaller soln
850
+
851
+
852
+ def test_issue_9539():
853
+ assert diophantine(6*w + 9*y + 20*x - z) == \
854
+ {(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
855
+
856
+
857
+ def test_issue_8943():
858
+ assert diophantine(
859
+ 3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
860
+ {(0, 0, 0)}
861
+
862
+
863
+ def test_diop_sum_of_even_powers():
864
+ eq = x**4 + y**4 + z**4 - 2673
865
+ assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
866
+ assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
867
+ raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
868
+ neg = symbols('neg', negative=True)
869
+ eq = x**4 + y**4 + neg**4 - 2673
870
+ assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
871
+ assert diophantine(x**4 + y**4 + 2) == set()
872
+ assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
873
+
874
+
875
+ def test_sum_of_squares_powers():
876
+ tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
877
+ (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
878
+ (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
879
+ eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
880
+ ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
881
+ assert len(ans) == 14
882
+ assert ans == tru
883
+
884
+ raises(ValueError, lambda: list(sum_of_squares(10, -1)))
885
+ assert list(sum_of_squares(1, 1)) == [(1,)]
886
+ assert list(sum_of_squares(1, 2)) == []
887
+ assert list(sum_of_squares(1, 2, True)) == [(0, 1)]
888
+ assert list(sum_of_squares(-10, 2)) == []
889
+ assert list(sum_of_squares(2, 3)) == []
890
+ assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
891
+ assert list(sum_of_squares(0, 3)) == []
892
+ assert list(sum_of_squares(4, 1)) == [(2,)]
893
+ assert list(sum_of_squares(5, 1)) == []
894
+ assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
895
+ assert list(sum_of_squares(11, 5, True)) == [
896
+ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
897
+ assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
898
+
899
+ assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
900
+ 1, 1, 1, 1, 2,
901
+ 2, 1, 1, 2, 2,
902
+ 2, 2, 2, 3, 2,
903
+ 1, 3, 3, 3, 3,
904
+ 4, 3, 3, 2, 2,
905
+ 4, 4, 4, 4, 5]
906
+ assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
907
+ 0, 0, 0, 0, 0,
908
+ 1, 0, 0, 1, 0,
909
+ 0, 1, 0, 1, 1,
910
+ 0, 1, 1, 0, 1,
911
+ 2, 1, 1, 1, 1,
912
+ 1, 1, 1, 1, 3]
913
+ for i in range(30):
914
+ s1 = set(sum_of_squares(i, 5, True))
915
+ assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
916
+ s2 = set(sum_of_squares(i, 5))
917
+ assert all(sum(j**2 for j in t) == i for t in s2)
918
+
919
+ raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
920
+ raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
921
+ assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
922
+ assert list(sum_of_powers(-2, 4, 2)) == []
923
+ assert list(sum_of_powers(2, 1, 1)) == [(2,)]
924
+ assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
925
+ assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
926
+ assert list(sum_of_powers(6, 2, 2)) == []
927
+ assert list(sum_of_powers(3**5, 3, 1)) == []
928
+ assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
929
+ assert list(sum_of_powers(2**1000, 5, 2)) == []
930
+
931
+
932
+ def test__can_do_sum_of_squares():
933
+ assert _can_do_sum_of_squares(3, -1) is False
934
+ assert _can_do_sum_of_squares(-3, 1) is False
935
+ assert _can_do_sum_of_squares(0, 1)
936
+ assert _can_do_sum_of_squares(4, 1)
937
+ assert _can_do_sum_of_squares(1, 2)
938
+ assert _can_do_sum_of_squares(2, 2)
939
+ assert _can_do_sum_of_squares(3, 2) is False
940
+
941
+
942
+ def test_diophantine_permute_sign():
943
+ from sympy.abc import a, b, c, d, e
944
+ eq = a**4 + b**4 - (2**4 + 3**4)
945
+ base_sol = {(2, 3)}
946
+ assert diophantine(eq) == base_sol
947
+ complete_soln = set(signed_permutations(base_sol.pop()))
948
+ assert diophantine(eq, permute=True) == complete_soln
949
+
950
+ eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
951
+ assert len(diophantine(eq)) == 35
952
+ assert len(diophantine(eq, permute=True)) == 62000
953
+ soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
954
+ assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
955
+
956
+
957
+ @XFAIL
958
+ def test_not_implemented():
959
+ eq = x**2 + y**4 - 1**2 - 3**4
960
+ assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
961
+
962
+
963
+ def test_issue_9538():
964
+ eq = x - 3*y + 2
965
+ assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
966
+ raises(TypeError, lambda: diophantine(eq, syms={y, x}))
967
+
968
+
969
+ def test_ternary_quadratic():
970
+ # solution with 3 parameters
971
+ s = diophantine(2*x**2 + y**2 - 2*z**2)
972
+ p, q, r = ordered(S(s).free_symbols)
973
+ assert s == {(
974
+ p**2 - 2*q**2,
975
+ -2*p**2 + 4*p*q - 4*p*r - 4*q**2,
976
+ p**2 - 4*p*q + 2*q**2 - 4*q*r)}
977
+ # solution with Mul in solution
978
+ s = diophantine(x**2 + 2*y**2 - 2*z**2)
979
+ assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
980
+ # solution with no Mul in solution
981
+ s = diophantine(2*x**2 + 2*y**2 - z**2)
982
+ assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
983
+ 4*p**2 - 4*p*q + 2*q**2)}
984
+ # reduced form when parametrized
985
+ s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
986
+ assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
987
+ assert parametrize_ternary_quadratic(
988
+ 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
989
+ 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
990
+ 2*p*q + 3*q**2)
991
+ assert parametrize_ternary_quadratic(
992
+ 124*x**2 - 30*y**2 - 7729*z**2) == (
993
+ -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
994
+ 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
995
+
996
+
997
+ def test_diophantine_solution_set():
998
+ s1 = DiophantineSolutionSet([], [])
999
+ assert set(s1) == set()
1000
+ assert s1.symbols == ()
1001
+ assert s1.parameters == ()
1002
+ raises(ValueError, lambda: s1.add((x,)))
1003
+ assert list(s1.dict_iterator()) == []
1004
+
1005
+ s2 = DiophantineSolutionSet([x, y], [t, u])
1006
+ assert s2.symbols == (x, y)
1007
+ assert s2.parameters == (t, u)
1008
+ raises(ValueError, lambda: s2.add((1,)))
1009
+ s2.add((3, 4))
1010
+ assert set(s2) == {(3, 4)}
1011
+ s2.update((3, 4), (-1, u))
1012
+ assert set(s2) == {(3, 4), (-1, u)}
1013
+ raises(ValueError, lambda: s1.update(s2))
1014
+ assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]
1015
+
1016
+ s3 = DiophantineSolutionSet([x, y, z], [t, u])
1017
+ assert len(s3.parameters) == 2
1018
+ s3.add((t**2 + u, t - u, 1))
1019
+ assert set(s3) == {(t**2 + u, t - u, 1)}
1020
+ assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
1021
+ assert s3(2) == {(u + 4, 2 - u, 1)}
1022
+ assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
1023
+ assert s3(7, 8) == {(57, -1, 1)}
1024
+ assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
1025
+ assert s3(5) == {(u + 25, 5 - u, 1)}
1026
+ assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
1027
+ assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
1028
+ assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
1029
+ assert s3(2, 8) == {(12, -6, 1)}
1030
+ assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
1031
+ assert s3(5, -3) == {(22, 8, 1)}
1032
+ raises(ValueError, lambda: s3.subs(x=1))
1033
+ raises(ValueError, lambda: s3.subs(1, 2, 3))
1034
+ raises(ValueError, lambda: s3.add(()))
1035
+ raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
1036
+ raises(ValueError, lambda: s3.add((1, 2)))
1037
+ raises(ValueError, lambda: s3(1, 2, 3))
1038
+ raises(TypeError, lambda: s3(t=1))
1039
+
1040
+ s4 = DiophantineSolutionSet([x, y], [t, u])
1041
+ s4.add((t, 11*t))
1042
+ s4.add((-t, 22*t))
1043
+ assert s4(0, 0) == {(0, 0)}
1044
+
1045
+
1046
+ def test_quadratic_parameter_passing():
1047
+ eq = -33*x*y + 3*y**2
1048
+ solution = BinaryQuadratic(eq).solve(parameters=[t, u])
1049
+ # test that parameters are passed all the way to the final solution
1050
+ assert solution == {(t, 11*t), (t, -22*t)}
1051
+ assert solution(0, 0) == {(0, 0)}
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/inequalities.py ADDED
@@ -0,0 +1,986 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for solving inequalities and systems of inequalities. """
2
+ import itertools
3
+
4
+ from sympy.calculus.util import (continuous_domain, periodicity,
5
+ function_range)
6
+ from sympy.core import sympify
7
+ from sympy.core.exprtools import factor_terms
8
+ from sympy.core.relational import Relational, Lt, Ge, Eq
9
+ from sympy.core.symbol import Symbol, Dummy
10
+ from sympy.sets.sets import Interval, FiniteSet, Union, Intersection
11
+ from sympy.core.singleton import S
12
+ from sympy.core.function import expand_mul
13
+ from sympy.functions.elementary.complexes import Abs
14
+ from sympy.logic import And
15
+ from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
16
+ from sympy.polys.polyutils import _nsort
17
+ from sympy.solvers.solveset import solvify, solveset
18
+ from sympy.utilities.iterables import sift, iterable
19
+ from sympy.utilities.misc import filldedent
20
+
21
+
22
+ def solve_poly_inequality(poly, rel):
23
+ """Solve a polynomial inequality with rational coefficients.
24
+
25
+ Examples
26
+ ========
27
+
28
+ >>> from sympy import solve_poly_inequality, Poly
29
+ >>> from sympy.abc import x
30
+
31
+ >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
32
+ [{0}]
33
+
34
+ >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
35
+ [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
36
+
37
+ >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
38
+ [{-1}, {1}]
39
+
40
+ See Also
41
+ ========
42
+ solve_poly_inequalities
43
+ """
44
+ if not isinstance(poly, Poly):
45
+ raise ValueError(
46
+ 'For efficiency reasons, `poly` should be a Poly instance')
47
+ if poly.as_expr().is_number:
48
+ t = Relational(poly.as_expr(), 0, rel)
49
+ if t is S.true:
50
+ return [S.Reals]
51
+ elif t is S.false:
52
+ return [S.EmptySet]
53
+ else:
54
+ raise NotImplementedError(
55
+ "could not determine truth value of %s" % t)
56
+
57
+ reals, intervals = poly.real_roots(multiple=False), []
58
+
59
+ if rel == '==':
60
+ for root, _ in reals:
61
+ interval = Interval(root, root)
62
+ intervals.append(interval)
63
+ elif rel == '!=':
64
+ left = S.NegativeInfinity
65
+
66
+ for right, _ in reals + [(S.Infinity, 1)]:
67
+ interval = Interval(left, right, True, True)
68
+ intervals.append(interval)
69
+ left = right
70
+ else:
71
+ if poly.LC() > 0:
72
+ sign = +1
73
+ else:
74
+ sign = -1
75
+
76
+ eq_sign, equal = None, False
77
+
78
+ if rel == '>':
79
+ eq_sign = +1
80
+ elif rel == '<':
81
+ eq_sign = -1
82
+ elif rel == '>=':
83
+ eq_sign, equal = +1, True
84
+ elif rel == '<=':
85
+ eq_sign, equal = -1, True
86
+ else:
87
+ raise ValueError("'%s' is not a valid relation" % rel)
88
+
89
+ right, right_open = S.Infinity, True
90
+
91
+ for left, multiplicity in reversed(reals):
92
+ if multiplicity % 2:
93
+ if sign == eq_sign:
94
+ intervals.insert(
95
+ 0, Interval(left, right, not equal, right_open))
96
+
97
+ sign, right, right_open = -sign, left, not equal
98
+ else:
99
+ if sign == eq_sign and not equal:
100
+ intervals.insert(
101
+ 0, Interval(left, right, True, right_open))
102
+ right, right_open = left, True
103
+ elif sign != eq_sign and equal:
104
+ intervals.insert(0, Interval(left, left))
105
+
106
+ if sign == eq_sign:
107
+ intervals.insert(
108
+ 0, Interval(S.NegativeInfinity, right, True, right_open))
109
+
110
+ return intervals
111
+
112
+
113
+ def solve_poly_inequalities(polys):
114
+ """Solve polynomial inequalities with rational coefficients.
115
+
116
+ Examples
117
+ ========
118
+
119
+ >>> from sympy import Poly
120
+ >>> from sympy.solvers.inequalities import solve_poly_inequalities
121
+ >>> from sympy.abc import x
122
+ >>> solve_poly_inequalities(((
123
+ ... Poly(x**2 - 3), ">"), (
124
+ ... Poly(-x**2 + 1), ">")))
125
+ Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
126
+ """
127
+ return Union(*[s for p in polys for s in solve_poly_inequality(*p)])
128
+
129
+
130
+ def solve_rational_inequalities(eqs):
131
+ """Solve a system of rational inequalities with rational coefficients.
132
+
133
+ Examples
134
+ ========
135
+
136
+ >>> from sympy.abc import x
137
+ >>> from sympy import solve_rational_inequalities, Poly
138
+
139
+ >>> solve_rational_inequalities([[
140
+ ... ((Poly(-x + 1), Poly(1, x)), '>='),
141
+ ... ((Poly(-x + 1), Poly(1, x)), '<=')]])
142
+ {1}
143
+
144
+ >>> solve_rational_inequalities([[
145
+ ... ((Poly(x), Poly(1, x)), '!='),
146
+ ... ((Poly(-x + 1), Poly(1, x)), '>=')]])
147
+ Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
148
+
149
+ See Also
150
+ ========
151
+ solve_poly_inequality
152
+ """
153
+ result = S.EmptySet
154
+
155
+ for _eqs in eqs:
156
+ if not _eqs:
157
+ continue
158
+
159
+ global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]
160
+
161
+ for (numer, denom), rel in _eqs:
162
+ numer_intervals = solve_poly_inequality(numer*denom, rel)
163
+ denom_intervals = solve_poly_inequality(denom, '==')
164
+
165
+ intervals = []
166
+
167
+ for numer_interval, global_interval in itertools.product(
168
+ numer_intervals, global_intervals):
169
+ interval = numer_interval.intersect(global_interval)
170
+
171
+ if interval is not S.EmptySet:
172
+ intervals.append(interval)
173
+
174
+ global_intervals = intervals
175
+
176
+ intervals = []
177
+
178
+ for global_interval in global_intervals:
179
+ for denom_interval in denom_intervals:
180
+ global_interval -= denom_interval
181
+
182
+ if global_interval is not S.EmptySet:
183
+ intervals.append(global_interval)
184
+
185
+ global_intervals = intervals
186
+
187
+ if not global_intervals:
188
+ break
189
+
190
+ for interval in global_intervals:
191
+ result = result.union(interval)
192
+
193
+ return result
194
+
195
+
196
+ def reduce_rational_inequalities(exprs, gen, relational=True):
197
+ """Reduce a system of rational inequalities with rational coefficients.
198
+
199
+ Examples
200
+ ========
201
+
202
+ >>> from sympy import Symbol
203
+ >>> from sympy.solvers.inequalities import reduce_rational_inequalities
204
+
205
+ >>> x = Symbol('x', real=True)
206
+
207
+ >>> reduce_rational_inequalities([[x**2 <= 0]], x)
208
+ Eq(x, 0)
209
+
210
+ >>> reduce_rational_inequalities([[x + 2 > 0]], x)
211
+ -2 < x
212
+ >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
213
+ -2 < x
214
+ >>> reduce_rational_inequalities([[x + 2]], x)
215
+ Eq(x, -2)
216
+
217
+ This function find the non-infinite solution set so if the unknown symbol
218
+ is declared as extended real rather than real then the result may include
219
+ finiteness conditions:
220
+
221
+ >>> y = Symbol('y', extended_real=True)
222
+ >>> reduce_rational_inequalities([[y + 2 > 0]], y)
223
+ (-2 < y) & (y < oo)
224
+ """
225
+ exact = True
226
+ eqs = []
227
+ solution = S.EmptySet # add pieces for each group
228
+ for _exprs in exprs:
229
+ if not _exprs:
230
+ continue
231
+ _eqs = []
232
+ _sol = S.Reals
233
+ for expr in _exprs:
234
+ if isinstance(expr, tuple):
235
+ expr, rel = expr
236
+ else:
237
+ if expr.is_Relational:
238
+ expr, rel = expr.lhs - expr.rhs, expr.rel_op
239
+ else:
240
+ expr, rel = expr, '=='
241
+
242
+ if expr is S.true:
243
+ numer, denom, rel = S.Zero, S.One, '=='
244
+ elif expr is S.false:
245
+ numer, denom, rel = S.One, S.One, '=='
246
+ else:
247
+ numer, denom = expr.together().as_numer_denom()
248
+
249
+ try:
250
+ (numer, denom), opt = parallel_poly_from_expr(
251
+ (numer, denom), gen)
252
+ except PolynomialError:
253
+ raise PolynomialError(filldedent('''
254
+ only polynomials and rational functions are
255
+ supported in this context.
256
+ '''))
257
+
258
+ if not opt.domain.is_Exact:
259
+ numer, denom, exact = numer.to_exact(), denom.to_exact(), False
260
+
261
+ domain = opt.domain.get_exact()
262
+
263
+ if not (domain.is_ZZ or domain.is_QQ):
264
+ expr = numer/denom
265
+ expr = Relational(expr, 0, rel)
266
+ _sol &= solve_univariate_inequality(expr, gen, relational=False)
267
+ else:
268
+ _eqs.append(((numer, denom), rel))
269
+
270
+ if _eqs:
271
+ _sol &= solve_rational_inequalities([_eqs])
272
+ exclude = solve_rational_inequalities([[((d, d.one), '==')
273
+ for i in eqs for ((n, d), _) in i if d.has(gen)]])
274
+ _sol -= exclude
275
+
276
+ solution |= _sol
277
+
278
+ if not exact and solution:
279
+ solution = solution.evalf()
280
+
281
+ if relational:
282
+ solution = solution.as_relational(gen)
283
+
284
+ return solution
285
+
286
+
287
+ def reduce_abs_inequality(expr, rel, gen):
288
+ """Reduce an inequality with nested absolute values.
289
+
290
+ Examples
291
+ ========
292
+
293
+ >>> from sympy import reduce_abs_inequality, Abs, Symbol
294
+ >>> x = Symbol('x', real=True)
295
+
296
+ >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
297
+ (2 < x) & (x < 8)
298
+
299
+ >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
300
+ (-19/3 < x) & (x < 7/3)
301
+
302
+ See Also
303
+ ========
304
+
305
+ reduce_abs_inequalities
306
+ """
307
+ if gen.is_extended_real is False:
308
+ raise TypeError(filldedent('''
309
+ Cannot solve inequalities with absolute values containing
310
+ non-real variables.
311
+ '''))
312
+
313
+ def _bottom_up_scan(expr):
314
+ exprs = []
315
+
316
+ if expr.is_Add or expr.is_Mul:
317
+ op = expr.func
318
+
319
+ for arg in expr.args:
320
+ _exprs = _bottom_up_scan(arg)
321
+
322
+ if not exprs:
323
+ exprs = _exprs
324
+ else:
325
+ exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in
326
+ itertools.product(exprs, _exprs)]
327
+ elif expr.is_Pow:
328
+ n = expr.exp
329
+ if not n.is_Integer:
330
+ raise ValueError("Only Integer Powers are allowed on Abs.")
331
+
332
+ exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base))
333
+ elif isinstance(expr, Abs):
334
+ _exprs = _bottom_up_scan(expr.args[0])
335
+
336
+ for expr, conds in _exprs:
337
+ exprs.append(( expr, conds + [Ge(expr, 0)]))
338
+ exprs.append((-expr, conds + [Lt(expr, 0)]))
339
+ else:
340
+ exprs = [(expr, [])]
341
+
342
+ return exprs
343
+
344
+ mapping = {'<': '>', '<=': '>='}
345
+ inequalities = []
346
+
347
+ for expr, conds in _bottom_up_scan(expr):
348
+ if rel not in mapping.keys():
349
+ expr = Relational( expr, 0, rel)
350
+ else:
351
+ expr = Relational(-expr, 0, mapping[rel])
352
+
353
+ inequalities.append([expr] + conds)
354
+
355
+ return reduce_rational_inequalities(inequalities, gen)
356
+
357
+
358
+ def reduce_abs_inequalities(exprs, gen):
359
+ """Reduce a system of inequalities with nested absolute values.
360
+
361
+ Examples
362
+ ========
363
+
364
+ >>> from sympy import reduce_abs_inequalities, Abs, Symbol
365
+ >>> x = Symbol('x', extended_real=True)
366
+
367
+ >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
368
+ ... (Abs(x + 25) - 13, '>')], x)
369
+ (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))
370
+
371
+ >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
372
+ (1/2 < x) & (x < 4)
373
+
374
+ See Also
375
+ ========
376
+
377
+ reduce_abs_inequality
378
+ """
379
+ return And(*[ reduce_abs_inequality(expr, rel, gen)
380
+ for expr, rel in exprs ])
381
+
382
+
383
+ def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
384
+ """Solves a real univariate inequality.
385
+
386
+ Parameters
387
+ ==========
388
+
389
+ expr : Relational
390
+ The target inequality
391
+ gen : Symbol
392
+ The variable for which the inequality is solved
393
+ relational : bool
394
+ A Relational type output is expected or not
395
+ domain : Set
396
+ The domain over which the equation is solved
397
+ continuous: bool
398
+ True if expr is known to be continuous over the given domain
399
+ (and so continuous_domain() does not need to be called on it)
400
+
401
+ Raises
402
+ ======
403
+
404
+ NotImplementedError
405
+ The solution of the inequality cannot be determined due to limitation
406
+ in :func:`sympy.solvers.solveset.solvify`.
407
+
408
+ Notes
409
+ =====
410
+
411
+ Currently, we cannot solve all the inequalities due to limitations in
412
+ :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
413
+ are restricted in its periodic interval.
414
+
415
+ See Also
416
+ ========
417
+
418
+ sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
424
+ >>> x = Symbol('x')
425
+
426
+ >>> solve_univariate_inequality(x**2 >= 4, x)
427
+ ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))
428
+
429
+ >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
430
+ Union(Interval(-oo, -2), Interval(2, oo))
431
+
432
+ >>> domain = Interval(0, S.Infinity)
433
+ >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
434
+ Interval(2, oo)
435
+
436
+ >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
437
+ Interval.open(0, pi)
438
+
439
+ """
440
+ from sympy.solvers.solvers import denoms
441
+
442
+ if domain.is_subset(S.Reals) is False:
443
+ raise NotImplementedError(filldedent('''
444
+ Inequalities in the complex domain are
445
+ not supported. Try the real domain by
446
+ setting domain=S.Reals'''))
447
+ elif domain is not S.Reals:
448
+ rv = solve_univariate_inequality(
449
+ expr, gen, relational=False, continuous=continuous).intersection(domain)
450
+ if relational:
451
+ rv = rv.as_relational(gen)
452
+ return rv
453
+ else:
454
+ pass # continue with attempt to solve in Real domain
455
+
456
+ # This keeps the function independent of the assumptions about `gen`.
457
+ # `solveset` makes sure this function is called only when the domain is
458
+ # real.
459
+ _gen = gen
460
+ _domain = domain
461
+ if gen.is_extended_real is False:
462
+ rv = S.EmptySet
463
+ return rv if not relational else rv.as_relational(_gen)
464
+ elif gen.is_extended_real is None:
465
+ gen = Dummy('gen', extended_real=True)
466
+ try:
467
+ expr = expr.xreplace({_gen: gen})
468
+ except TypeError:
469
+ raise TypeError(filldedent('''
470
+ When gen is real, the relational has a complex part
471
+ which leads to an invalid comparison like I < 0.
472
+ '''))
473
+
474
+ rv = None
475
+
476
+ if expr is S.true:
477
+ rv = domain
478
+
479
+ elif expr is S.false:
480
+ rv = S.EmptySet
481
+
482
+ else:
483
+ e = expr.lhs - expr.rhs
484
+ period = periodicity(e, gen)
485
+ if period == S.Zero:
486
+ e = expand_mul(e)
487
+ const = expr.func(e, 0)
488
+ if const is S.true:
489
+ rv = domain
490
+ elif const is S.false:
491
+ rv = S.EmptySet
492
+ elif period is not None:
493
+ frange = function_range(e, gen, domain)
494
+
495
+ rel = expr.rel_op
496
+ if rel in ('<', '<='):
497
+ if expr.func(frange.sup, 0):
498
+ rv = domain
499
+ elif not expr.func(frange.inf, 0):
500
+ rv = S.EmptySet
501
+
502
+ elif rel in ('>', '>='):
503
+ if expr.func(frange.inf, 0):
504
+ rv = domain
505
+ elif not expr.func(frange.sup, 0):
506
+ rv = S.EmptySet
507
+
508
+ inf, sup = domain.inf, domain.sup
509
+ if sup - inf is S.Infinity:
510
+ domain = Interval(0, period, False, True).intersect(_domain)
511
+ _domain = domain
512
+
513
+ if rv is None:
514
+ n, d = e.as_numer_denom()
515
+ try:
516
+ if gen not in n.free_symbols and len(e.free_symbols) > 1:
517
+ raise ValueError
518
+ # this might raise ValueError on its own
519
+ # or it might give None...
520
+ solns = solvify(e, gen, domain)
521
+ if solns is None:
522
+ # in which case we raise ValueError
523
+ raise ValueError
524
+ except (ValueError, NotImplementedError):
525
+ # replace gen with generic x since it's
526
+ # univariate anyway
527
+ raise NotImplementedError(filldedent('''
528
+ The inequality, %s, cannot be solved using
529
+ solve_univariate_inequality.
530
+ ''' % expr.subs(gen, Symbol('x'))))
531
+
532
+ expanded_e = expand_mul(e)
533
+ def valid(x):
534
+ # this is used to see if gen=x satisfies the
535
+ # relational by substituting it into the
536
+ # expanded form and testing against 0, e.g.
537
+ # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
538
+ # and expanded_e = x**2 + x - 2; the test is
539
+ # whether a given value of x satisfies
540
+ # x**2 + x - 2 < 0
541
+ #
542
+ # expanded_e, expr and gen used from enclosing scope
543
+ v = expanded_e.subs(gen, expand_mul(x))
544
+ try:
545
+ r = expr.func(v, 0)
546
+ except TypeError:
547
+ r = S.false
548
+ if r in (S.true, S.false):
549
+ return r
550
+ if v.is_extended_real is False:
551
+ return S.false
552
+ else:
553
+ v = v.n(2)
554
+ if v.is_comparable:
555
+ return expr.func(v, 0)
556
+ # not comparable or couldn't be evaluated
557
+ raise NotImplementedError(
558
+ 'relationship did not evaluate: %s' % r)
559
+
560
+ singularities = []
561
+ for d in denoms(expr, gen):
562
+ singularities.extend(solvify(d, gen, domain))
563
+ if not continuous:
564
+ domain = continuous_domain(expanded_e, gen, domain)
565
+
566
+ include_x = '=' in expr.rel_op and expr.rel_op != '!='
567
+
568
+ try:
569
+ discontinuities = set(domain.boundary -
570
+ FiniteSet(domain.inf, domain.sup))
571
+ # remove points that are not between inf and sup of domain
572
+ critical_points = FiniteSet(*(solns + singularities + list(
573
+ discontinuities))).intersection(
574
+ Interval(domain.inf, domain.sup,
575
+ domain.inf not in domain, domain.sup not in domain))
576
+ if all(r.is_number for r in critical_points):
577
+ reals = _nsort(critical_points, separated=True)[0]
578
+ else:
579
+ sifted = sift(critical_points, lambda x: x.is_extended_real)
580
+ if sifted[None]:
581
+ # there were some roots that weren't known
582
+ # to be real
583
+ raise NotImplementedError
584
+ try:
585
+ reals = sifted[True]
586
+ if len(reals) > 1:
587
+ reals = sorted(reals)
588
+ except TypeError:
589
+ raise NotImplementedError
590
+ except NotImplementedError:
591
+ raise NotImplementedError('sorting of these roots is not supported')
592
+
593
+ # If expr contains imaginary coefficients, only take real
594
+ # values of x for which the imaginary part is 0
595
+ make_real = S.Reals
596
+ if (coeffI := expanded_e.coeff(S.ImaginaryUnit)) != S.Zero:
597
+ check = True
598
+ im_sol = FiniteSet()
599
+ try:
600
+ a = solveset(coeffI, gen, domain)
601
+ if not isinstance(a, Interval):
602
+ for z in a:
603
+ if z not in singularities and valid(z) and z.is_extended_real:
604
+ im_sol += FiniteSet(z)
605
+ else:
606
+ start, end = a.inf, a.sup
607
+ for z in _nsort(critical_points + FiniteSet(end)):
608
+ valid_start = valid(start)
609
+ if start != end:
610
+ valid_z = valid(z)
611
+ pt = _pt(start, z)
612
+ if pt not in singularities and pt.is_extended_real and valid(pt):
613
+ if valid_start and valid_z:
614
+ im_sol += Interval(start, z)
615
+ elif valid_start:
616
+ im_sol += Interval.Ropen(start, z)
617
+ elif valid_z:
618
+ im_sol += Interval.Lopen(start, z)
619
+ else:
620
+ im_sol += Interval.open(start, z)
621
+ start = z
622
+ for s in singularities:
623
+ im_sol -= FiniteSet(s)
624
+ except (TypeError):
625
+ im_sol = S.Reals
626
+ check = False
627
+
628
+ if im_sol is S.EmptySet:
629
+ raise ValueError(filldedent('''
630
+ %s contains imaginary parts which cannot be
631
+ made 0 for any value of %s satisfying the
632
+ inequality, leading to relations like I < 0.
633
+ ''' % (expr.subs(gen, _gen), _gen)))
634
+
635
+ make_real = make_real.intersect(im_sol)
636
+
637
+ sol_sets = [S.EmptySet]
638
+
639
+ start = domain.inf
640
+ if start in domain and valid(start) and start.is_finite:
641
+ sol_sets.append(FiniteSet(start))
642
+
643
+ for x in reals:
644
+ end = x
645
+
646
+ if valid(_pt(start, end)):
647
+ sol_sets.append(Interval(start, end, True, True))
648
+
649
+ if x in singularities:
650
+ singularities.remove(x)
651
+ else:
652
+ if x in discontinuities:
653
+ discontinuities.remove(x)
654
+ _valid = valid(x)
655
+ else: # it's a solution
656
+ _valid = include_x
657
+ if _valid:
658
+ sol_sets.append(FiniteSet(x))
659
+
660
+ start = end
661
+
662
+ end = domain.sup
663
+ if end in domain and valid(end) and end.is_finite:
664
+ sol_sets.append(FiniteSet(end))
665
+
666
+ if valid(_pt(start, end)):
667
+ sol_sets.append(Interval.open(start, end))
668
+
669
+ if coeffI != S.Zero and check:
670
+ rv = (make_real).intersect(_domain)
671
+ else:
672
+ rv = Intersection(
673
+ (Union(*sol_sets)), make_real, _domain).subs(gen, _gen)
674
+
675
+ return rv if not relational else rv.as_relational(_gen)
676
+
677
+
678
+ def _pt(start, end):
679
+ """Return a point between start and end"""
680
+ if not start.is_infinite and not end.is_infinite:
681
+ pt = (start + end)/2
682
+ elif start.is_infinite and end.is_infinite:
683
+ pt = S.Zero
684
+ else:
685
+ if (start.is_infinite and start.is_extended_positive is None or
686
+ end.is_infinite and end.is_extended_positive is None):
687
+ raise ValueError('cannot proceed with unsigned infinite values')
688
+ if (end.is_infinite and end.is_extended_negative or
689
+ start.is_infinite and start.is_extended_positive):
690
+ start, end = end, start
691
+ # if possible, use a multiple of self which has
692
+ # better behavior when checking assumptions than
693
+ # an expression obtained by adding or subtracting 1
694
+ if end.is_infinite:
695
+ if start.is_extended_positive:
696
+ pt = start*2
697
+ elif start.is_extended_negative:
698
+ pt = start*S.Half
699
+ else:
700
+ pt = start + 1
701
+ elif start.is_infinite:
702
+ if end.is_extended_positive:
703
+ pt = end*S.Half
704
+ elif end.is_extended_negative:
705
+ pt = end*2
706
+ else:
707
+ pt = end - 1
708
+ return pt
709
+
710
+
711
+ def _solve_inequality(ie, s, linear=False):
712
+ """Return the inequality with s isolated on the left, if possible.
713
+ If the relationship is non-linear, a solution involving And or Or
714
+ may be returned. False or True are returned if the relationship
715
+ is never True or always True, respectively.
716
+
717
+ If `linear` is True (default is False) an `s`-dependent expression
718
+ will be isolated on the left, if possible
719
+ but it will not be solved for `s` unless the expression is linear
720
+ in `s`. Furthermore, only "safe" operations which do not change the
721
+ sense of the relationship are applied: no division by an unsigned
722
+ value is attempted unless the relationship involves Eq or Ne and
723
+ no division by a value not known to be nonzero is ever attempted.
724
+
725
+ Examples
726
+ ========
727
+
728
+ >>> from sympy import Eq, Symbol
729
+ >>> from sympy.solvers.inequalities import _solve_inequality as f
730
+ >>> from sympy.abc import x, y
731
+
732
+ For linear expressions, the symbol can be isolated:
733
+
734
+ >>> f(x - 2 < 0, x)
735
+ x < 2
736
+ >>> f(-x - 6 < x, x)
737
+ x > -3
738
+
739
+ Sometimes nonlinear relationships will be False
740
+
741
+ >>> f(x**2 + 4 < 0, x)
742
+ False
743
+
744
+ Or they may involve more than one region of values:
745
+
746
+ >>> f(x**2 - 4 < 0, x)
747
+ (-2 < x) & (x < 2)
748
+
749
+ To restrict the solution to a relational, set linear=True
750
+ and only the x-dependent portion will be isolated on the left:
751
+
752
+ >>> f(x**2 - 4 < 0, x, linear=True)
753
+ x**2 < 4
754
+
755
+ Division of only nonzero quantities is allowed, so x cannot
756
+ be isolated by dividing by y:
757
+
758
+ >>> y.is_nonzero is None # it is unknown whether it is 0 or not
759
+ True
760
+ >>> f(x*y < 1, x)
761
+ x*y < 1
762
+
763
+ And while an equality (or inequality) still holds after dividing by a
764
+ non-zero quantity
765
+
766
+ >>> nz = Symbol('nz', nonzero=True)
767
+ >>> f(Eq(x*nz, 1), x)
768
+ Eq(x, 1/nz)
769
+
770
+ the sign must be known for other inequalities involving > or <:
771
+
772
+ >>> f(x*nz <= 1, x)
773
+ nz*x <= 1
774
+ >>> p = Symbol('p', positive=True)
775
+ >>> f(x*p <= 1, x)
776
+ x <= 1/p
777
+
778
+ When there are denominators in the original expression that
779
+ are removed by expansion, conditions for them will be returned
780
+ as part of the result:
781
+
782
+ >>> f(x < x*(2/x - 1), x)
783
+ (x < 1) & Ne(x, 0)
784
+ """
785
+ from sympy.solvers.solvers import denoms
786
+ if s not in ie.free_symbols:
787
+ return ie
788
+ if ie.rhs == s:
789
+ ie = ie.reversed
790
+ if ie.lhs == s and s not in ie.rhs.free_symbols:
791
+ return ie
792
+
793
+ def classify(ie, s, i):
794
+ # return True or False if ie evaluates when substituting s with
795
+ # i else None (if unevaluated) or NaN (when there is an error
796
+ # in evaluating)
797
+ try:
798
+ v = ie.subs(s, i)
799
+ if v is S.NaN:
800
+ return v
801
+ elif v not in (True, False):
802
+ return
803
+ return v
804
+ except TypeError:
805
+ return S.NaN
806
+
807
+ rv = None
808
+ oo = S.Infinity
809
+ expr = ie.lhs - ie.rhs
810
+ try:
811
+ p = Poly(expr, s)
812
+ if p.degree() == 0:
813
+ rv = ie.func(p.as_expr(), 0)
814
+ elif not linear and p.degree() > 1:
815
+ # handle in except clause
816
+ raise NotImplementedError
817
+ except (PolynomialError, NotImplementedError):
818
+ if not linear:
819
+ try:
820
+ rv = reduce_rational_inequalities([[ie]], s)
821
+ except PolynomialError:
822
+ rv = solve_univariate_inequality(ie, s)
823
+ # remove restrictions wrt +/-oo that may have been
824
+ # applied when using sets to simplify the relationship
825
+ okoo = classify(ie, s, oo)
826
+ if okoo is S.true and classify(rv, s, oo) is S.false:
827
+ rv = rv.subs(s < oo, True)
828
+ oknoo = classify(ie, s, -oo)
829
+ if (oknoo is S.true and
830
+ classify(rv, s, -oo) is S.false):
831
+ rv = rv.subs(-oo < s, True)
832
+ rv = rv.subs(s > -oo, True)
833
+ if rv is S.true:
834
+ rv = (s <= oo) if okoo is S.true else (s < oo)
835
+ if oknoo is not S.true:
836
+ rv = And(-oo < s, rv)
837
+ else:
838
+ p = Poly(expr)
839
+
840
+ conds = []
841
+ if rv is None:
842
+ e = p.as_expr() # this is in expanded form
843
+ # Do a safe inversion of e, moving non-s terms
844
+ # to the rhs and dividing by a nonzero factor if
845
+ # the relational is Eq/Ne; for other relationals
846
+ # the sign must also be positive or negative
847
+ rhs = 0
848
+ b, ax = e.as_independent(s, as_Add=True)
849
+ e -= b
850
+ rhs -= b
851
+ ef = factor_terms(e)
852
+ a, e = ef.as_independent(s, as_Add=False)
853
+ if (a.is_zero != False or # don't divide by potential 0
854
+ a.is_negative ==
855
+ a.is_positive is None and # if sign is not known then
856
+ ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
857
+ e = ef
858
+ a = S.One
859
+ rhs /= a
860
+ if a.is_positive:
861
+ rv = ie.func(e, rhs)
862
+ else:
863
+ rv = ie.reversed.func(e, rhs)
864
+
865
+ # return conditions under which the value is
866
+ # valid, too.
867
+ beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
868
+ current_denoms = denoms(rv)
869
+ for d in beginning_denoms - current_denoms:
870
+ c = _solve_inequality(Eq(d, 0), s, linear=linear)
871
+ if isinstance(c, Eq) and c.lhs == s:
872
+ if classify(rv, s, c.rhs) is S.true:
873
+ # rv is permitting this value but it shouldn't
874
+ conds.append(~c)
875
+ for i in (-oo, oo):
876
+ if (classify(rv, s, i) is S.true and
877
+ classify(ie, s, i) is not S.true):
878
+ conds.append(s < i if i is oo else i < s)
879
+
880
+ conds.append(rv)
881
+ return And(*conds)
882
+
883
+
884
+ def _reduce_inequalities(inequalities, symbols):
885
+ # helper for reduce_inequalities
886
+
887
+ poly_part, abs_part = {}, {}
888
+ other = []
889
+
890
+ for inequality in inequalities:
891
+
892
+ expr, rel = inequality.lhs, inequality.rel_op # rhs is 0
893
+
894
+ # check for gens using atoms which is more strict than free_symbols to
895
+ # guard against EX domain which won't be handled by
896
+ # reduce_rational_inequalities
897
+ gens = expr.atoms(Symbol)
898
+
899
+ if len(gens) == 1:
900
+ gen = gens.pop()
901
+ else:
902
+ common = expr.free_symbols & symbols
903
+ if len(common) == 1:
904
+ gen = common.pop()
905
+ other.append(_solve_inequality(Relational(expr, 0, rel), gen))
906
+ continue
907
+ else:
908
+ raise NotImplementedError(filldedent('''
909
+ inequality has more than one symbol of interest.
910
+ '''))
911
+
912
+ if expr.is_polynomial(gen):
913
+ poly_part.setdefault(gen, []).append((expr, rel))
914
+ else:
915
+ components = expr.find(lambda u:
916
+ u.has(gen) and (
917
+ u.is_Function or u.is_Pow and not u.exp.is_Integer))
918
+ if components and all(isinstance(i, Abs) for i in components):
919
+ abs_part.setdefault(gen, []).append((expr, rel))
920
+ else:
921
+ other.append(_solve_inequality(Relational(expr, 0, rel), gen))
922
+
923
+ poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()]
924
+ abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()]
925
+
926
+ return And(*(poly_reduced + abs_reduced + other))
927
+
928
+
929
+ def reduce_inequalities(inequalities, symbols=[]):
930
+ """Reduce a system of inequalities with rational coefficients.
931
+
932
+ Examples
933
+ ========
934
+
935
+ >>> from sympy.abc import x, y
936
+ >>> from sympy import reduce_inequalities
937
+
938
+ >>> reduce_inequalities(0 <= x + 3, [])
939
+ (-3 <= x) & (x < oo)
940
+
941
+ >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
942
+ (x < oo) & (x >= 1 - 2*y)
943
+ """
944
+ if not iterable(inequalities):
945
+ inequalities = [inequalities]
946
+ inequalities = [sympify(i) for i in inequalities]
947
+
948
+ gens = set().union(*[i.free_symbols for i in inequalities])
949
+
950
+ if not iterable(symbols):
951
+ symbols = [symbols]
952
+ symbols = (set(symbols) or gens) & gens
953
+ if any(i.is_extended_real is False for i in symbols):
954
+ raise TypeError(filldedent('''
955
+ inequalities cannot contain symbols that are not real.
956
+ '''))
957
+
958
+ # make vanilla symbol real
959
+ recast = {i: Dummy(i.name, extended_real=True)
960
+ for i in gens if i.is_extended_real is None}
961
+ inequalities = [i.xreplace(recast) for i in inequalities]
962
+ symbols = {i.xreplace(recast) for i in symbols}
963
+
964
+ # prefilter
965
+ keep = []
966
+ for i in inequalities:
967
+ if isinstance(i, Relational):
968
+ i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
969
+ elif i not in (True, False):
970
+ i = Eq(i, 0)
971
+ if i == True:
972
+ continue
973
+ elif i == False:
974
+ return S.false
975
+ if i.lhs.is_number:
976
+ raise NotImplementedError(
977
+ "could not determine truth value of %s" % i)
978
+ keep.append(i)
979
+ inequalities = keep
980
+ del keep
981
+
982
+ # solve system
983
+ rv = _reduce_inequalities(inequalities, symbols)
984
+
985
+ # restore original symbols and return
986
+ return rv.xreplace({v: k for k, v in recast.items()})
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/pde.py ADDED
@@ -0,0 +1,971 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains pdsolve() and different helper functions that it
3
+ uses. It is heavily inspired by the ode module and hence the basic
4
+ infrastructure remains the same.
5
+
6
+ **Functions in this module**
7
+
8
+ These are the user functions in this module:
9
+
10
+ - pdsolve() - Solves PDE's
11
+ - classify_pde() - Classifies PDEs into possible hints for dsolve().
12
+ - pde_separate() - Separate variables in partial differential equation either by
13
+ additive or multiplicative separation approach.
14
+
15
+ These are the helper functions in this module:
16
+
17
+ - pde_separate_add() - Helper function for searching additive separable solutions.
18
+ - pde_separate_mul() - Helper function for searching multiplicative
19
+ separable solutions.
20
+
21
+ **Currently implemented solver methods**
22
+
23
+ The following methods are implemented for solving partial differential
24
+ equations. See the docstrings of the various pde_hint() functions for
25
+ more information on each (run help(pde)):
26
+
27
+ - 1st order linear homogeneous partial differential equations
28
+ with constant coefficients.
29
+ - 1st order linear general partial differential equations
30
+ with constant coefficients.
31
+ - 1st order linear partial differential equations with
32
+ variable coefficients.
33
+
34
+ """
35
+ from functools import reduce
36
+
37
+ from itertools import combinations_with_replacement
38
+ from sympy.simplify import simplify # type: ignore
39
+ from sympy.core import Add, S
40
+ from sympy.core.function import Function, expand, AppliedUndef, Subs
41
+ from sympy.core.relational import Equality, Eq
42
+ from sympy.core.symbol import Symbol, Wild, symbols
43
+ from sympy.functions import exp
44
+ from sympy.integrals.integrals import Integral, integrate
45
+ from sympy.utilities.iterables import has_dups, is_sequence
46
+ from sympy.utilities.misc import filldedent
47
+
48
+ from sympy.solvers.deutils import _preprocess, ode_order, _desolve
49
+ from sympy.solvers.solvers import solve
50
+ from sympy.simplify.radsimp import collect
51
+
52
+ import operator
53
+
54
+
55
+ allhints = (
56
+ "1st_linear_constant_coeff_homogeneous",
57
+ "1st_linear_constant_coeff",
58
+ "1st_linear_constant_coeff_Integral",
59
+ "1st_linear_variable_coeff"
60
+ )
61
+
62
+
63
+ def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs):
64
+ """
65
+ Solves any (supported) kind of partial differential equation.
66
+
67
+ **Usage**
68
+
69
+ pdsolve(eq, f(x,y), hint) -> Solve partial differential equation
70
+ eq for function f(x,y), using method hint.
71
+
72
+ **Details**
73
+
74
+ ``eq`` can be any supported partial differential equation (see
75
+ the pde docstring for supported methods). This can either
76
+ be an Equality, or an expression, which is assumed to be
77
+ equal to 0.
78
+
79
+ ``f(x,y)`` is a function of two variables whose derivatives in that
80
+ variable make up the partial differential equation. In many
81
+ cases it is not necessary to provide this; it will be autodetected
82
+ (and an error raised if it could not be detected).
83
+
84
+ ``hint`` is the solving method that you want pdsolve to use. Use
85
+ classify_pde(eq, f(x,y)) to get all of the possible hints for
86
+ a PDE. The default hint, 'default', will use whatever hint
87
+ is returned first by classify_pde(). See Hints below for
88
+ more options that you can use for hint.
89
+
90
+ ``solvefun`` is the convention used for arbitrary functions returned
91
+ by the PDE solver. If not set by the user, it is set by default
92
+ to be F.
93
+
94
+ **Hints**
95
+
96
+ Aside from the various solving methods, there are also some
97
+ meta-hints that you can pass to pdsolve():
98
+
99
+ "default":
100
+ This uses whatever hint is returned first by
101
+ classify_pde(). This is the default argument to
102
+ pdsolve().
103
+
104
+ "all":
105
+ To make pdsolve apply all relevant classification hints,
106
+ use pdsolve(PDE, func, hint="all"). This will return a
107
+ dictionary of hint:solution terms. If a hint causes
108
+ pdsolve to raise the NotImplementedError, value of that
109
+ hint's key will be the exception object raised. The
110
+ dictionary will also include some special keys:
111
+
112
+ - order: The order of the PDE. See also ode_order() in
113
+ deutils.py
114
+ - default: The solution that would be returned by
115
+ default. This is the one produced by the hint that
116
+ appears first in the tuple returned by classify_pde().
117
+
118
+ "all_Integral":
119
+ This is the same as "all", except if a hint also has a
120
+ corresponding "_Integral" hint, it only returns the
121
+ "_Integral" hint. This is useful if "all" causes
122
+ pdsolve() to hang because of a difficult or impossible
123
+ integral. This meta-hint will also be much faster than
124
+ "all", because integrate() is an expensive routine.
125
+
126
+ See also the classify_pde() docstring for more info on hints,
127
+ and the pde docstring for a list of all supported hints.
128
+
129
+ **Tips**
130
+ - You can declare the derivative of an unknown function this way:
131
+
132
+ >>> from sympy import Function, Derivative
133
+ >>> from sympy.abc import x, y # x and y are the independent variables
134
+ >>> f = Function("f")(x, y) # f is a function of x and y
135
+ >>> # fx will be the partial derivative of f with respect to x
136
+ >>> fx = Derivative(f, x)
137
+ >>> # fy will be the partial derivative of f with respect to y
138
+ >>> fy = Derivative(f, y)
139
+
140
+ - See test_pde.py for many tests, which serves also as a set of
141
+ examples for how to use pdsolve().
142
+ - pdsolve always returns an Equality class (except for the case
143
+ when the hint is "all" or "all_Integral"). Note that it is not possible
144
+ to get an explicit solution for f(x, y) as in the case of ODE's
145
+ - Do help(pde.pde_hintname) to get help more information on a
146
+ specific hint
147
+
148
+
149
+ Examples
150
+ ========
151
+
152
+ >>> from sympy.solvers.pde import pdsolve
153
+ >>> from sympy import Function, Eq
154
+ >>> from sympy.abc import x, y
155
+ >>> f = Function('f')
156
+ >>> u = f(x, y)
157
+ >>> ux = u.diff(x)
158
+ >>> uy = u.diff(y)
159
+ >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
160
+ >>> pdsolve(eq)
161
+ Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13))
162
+
163
+ """
164
+
165
+ if not solvefun:
166
+ solvefun = Function('F')
167
+
168
+ # See the docstring of _desolve for more details.
169
+ hints = _desolve(eq, func=func, hint=hint, simplify=True,
170
+ type='pde', **kwargs)
171
+ eq = hints.pop('eq', False)
172
+ all_ = hints.pop('all', False)
173
+
174
+ if all_:
175
+ # TODO : 'best' hint should be implemented when adequate
176
+ # number of hints are added.
177
+ pdedict = {}
178
+ failed_hints = {}
179
+ gethints = classify_pde(eq, dict=True)
180
+ pdedict.update({'order': gethints['order'],
181
+ 'default': gethints['default']})
182
+ for hint in hints:
183
+ try:
184
+ rv = _helper_simplify(eq, hint, hints[hint]['func'],
185
+ hints[hint]['order'], hints[hint][hint], solvefun)
186
+ except NotImplementedError as detail:
187
+ failed_hints[hint] = detail
188
+ else:
189
+ pdedict[hint] = rv
190
+ pdedict.update(failed_hints)
191
+ return pdedict
192
+
193
+ else:
194
+ return _helper_simplify(eq, hints['hint'], hints['func'],
195
+ hints['order'], hints[hints['hint']], solvefun)
196
+
197
+
198
+ def _helper_simplify(eq, hint, func, order, match, solvefun):
199
+ """Helper function of pdsolve that calls the respective
200
+ pde functions to solve for the partial differential
201
+ equations. This minimizes the computation in
202
+ calling _desolve multiple times.
203
+ """
204
+
205
+ if hint.endswith("_Integral"):
206
+ solvefunc = globals()[
207
+ "pde_" + hint[:-len("_Integral")]]
208
+ else:
209
+ solvefunc = globals()["pde_" + hint]
210
+ return _handle_Integral(solvefunc(eq, func, order,
211
+ match, solvefun), func, order, hint)
212
+
213
+
214
+ def _handle_Integral(expr, func, order, hint):
215
+ r"""
216
+ Converts a solution with integrals in it into an actual solution.
217
+
218
+ Simplifies the integral mainly using doit()
219
+ """
220
+ if hint.endswith("_Integral"):
221
+ return expr
222
+
223
+ elif hint == "1st_linear_constant_coeff":
224
+ return simplify(expr.doit())
225
+
226
+ else:
227
+ return expr
228
+
229
+
230
+ def classify_pde(eq, func=None, dict=False, *, prep=True, **kwargs):
231
+ """
232
+ Returns a tuple of possible pdsolve() classifications for a PDE.
233
+
234
+ The tuple is ordered so that first item is the classification that
235
+ pdsolve() uses to solve the PDE by default. In general,
236
+ classifications near the beginning of the list will produce
237
+ better solutions faster than those near the end, though there are
238
+ always exceptions. To make pdsolve use a different classification,
239
+ use pdsolve(PDE, func, hint=<classification>). See also the pdsolve()
240
+ docstring for different meta-hints you can use.
241
+
242
+ If ``dict`` is true, classify_pde() will return a dictionary of
243
+ hint:match expression terms. This is intended for internal use by
244
+ pdsolve(). Note that because dictionaries are ordered arbitrarily,
245
+ this will most likely not be in the same order as the tuple.
246
+
247
+ You can get help on different hints by doing help(pde.pde_hintname),
248
+ where hintname is the name of the hint without "_Integral".
249
+
250
+ See sympy.pde.allhints or the sympy.pde docstring for a list of all
251
+ supported hints that can be returned from classify_pde.
252
+
253
+
254
+ Examples
255
+ ========
256
+
257
+ >>> from sympy.solvers.pde import classify_pde
258
+ >>> from sympy import Function, Eq
259
+ >>> from sympy.abc import x, y
260
+ >>> f = Function('f')
261
+ >>> u = f(x, y)
262
+ >>> ux = u.diff(x)
263
+ >>> uy = u.diff(y)
264
+ >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
265
+ >>> classify_pde(eq)
266
+ ('1st_linear_constant_coeff_homogeneous',)
267
+ """
268
+
269
+ if func and len(func.args) != 2:
270
+ raise NotImplementedError("Right now only partial "
271
+ "differential equations of two variables are supported")
272
+
273
+ if prep or func is None:
274
+ prep, func_ = _preprocess(eq, func)
275
+ if func is None:
276
+ func = func_
277
+
278
+ if isinstance(eq, Equality):
279
+ if eq.rhs != 0:
280
+ return classify_pde(eq.lhs - eq.rhs, func)
281
+ eq = eq.lhs
282
+
283
+ f = func.func
284
+ x = func.args[0]
285
+ y = func.args[1]
286
+ fx = f(x,y).diff(x)
287
+ fy = f(x,y).diff(y)
288
+
289
+ # TODO : For now pde.py uses support offered by the ode_order function
290
+ # to find the order with respect to a multi-variable function. An
291
+ # improvement could be to classify the order of the PDE on the basis of
292
+ # individual variables.
293
+ order = ode_order(eq, f(x,y))
294
+
295
+ # hint:matchdict or hint:(tuple of matchdicts)
296
+ # Also will contain "default":<default hint> and "order":order items.
297
+ matching_hints = {'order': order}
298
+
299
+ if not order:
300
+ if dict:
301
+ matching_hints["default"] = None
302
+ return matching_hints
303
+ return ()
304
+
305
+ eq = expand(eq)
306
+
307
+ a = Wild('a', exclude = [f(x,y)])
308
+ b = Wild('b', exclude = [f(x,y), fx, fy, x, y])
309
+ c = Wild('c', exclude = [f(x,y), fx, fy, x, y])
310
+ d = Wild('d', exclude = [f(x,y), fx, fy, x, y])
311
+ e = Wild('e', exclude = [f(x,y), fx, fy])
312
+ n = Wild('n', exclude = [x, y])
313
+ # Try removing the smallest power of f(x,y)
314
+ # from the highest partial derivatives of f(x,y)
315
+ reduced_eq = eq
316
+ if eq.is_Add:
317
+ power = None
318
+ for i in set(combinations_with_replacement((x,y), order)):
319
+ coeff = eq.coeff(f(x,y).diff(*i))
320
+ if coeff == 1:
321
+ continue
322
+ match = coeff.match(a*f(x,y)**n)
323
+ if match and match[a]:
324
+ if power is None or match[n] < power:
325
+ power = match[n]
326
+ if power:
327
+ den = f(x,y)**power
328
+ reduced_eq = Add(*[arg/den for arg in eq.args])
329
+
330
+ if order == 1:
331
+ reduced_eq = collect(reduced_eq, f(x, y))
332
+ r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
333
+ if r:
334
+ if not r[e]:
335
+ ## Linear first-order homogeneous partial-differential
336
+ ## equation with constant coefficients
337
+ r.update({'b': b, 'c': c, 'd': d})
338
+ matching_hints["1st_linear_constant_coeff_homogeneous"] = r
339
+ elif r[b]**2 + r[c]**2 != 0:
340
+ ## Linear first-order general partial-differential
341
+ ## equation with constant coefficients
342
+ r.update({'b': b, 'c': c, 'd': d, 'e': e})
343
+ matching_hints["1st_linear_constant_coeff"] = r
344
+ matching_hints["1st_linear_constant_coeff_Integral"] = r
345
+
346
+ else:
347
+ b = Wild('b', exclude=[f(x, y), fx, fy])
348
+ c = Wild('c', exclude=[f(x, y), fx, fy])
349
+ d = Wild('d', exclude=[f(x, y), fx, fy])
350
+ r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
351
+ if r:
352
+ r.update({'b': b, 'c': c, 'd': d, 'e': e})
353
+ matching_hints["1st_linear_variable_coeff"] = r
354
+
355
+ # Order keys based on allhints.
356
+ rettuple = tuple(i for i in allhints if i in matching_hints)
357
+
358
+ if dict:
359
+ # Dictionaries are ordered arbitrarily, so make note of which
360
+ # hint would come first for pdsolve(). Use an ordered dict in Py 3.
361
+ matching_hints["default"] = None
362
+ matching_hints["ordered_hints"] = rettuple
363
+ for i in allhints:
364
+ if i in matching_hints:
365
+ matching_hints["default"] = i
366
+ break
367
+ return matching_hints
368
+ return rettuple
369
+
370
+
371
+ def checkpdesol(pde, sol, func=None, solve_for_func=True):
372
+ """
373
+ Checks if the given solution satisfies the partial differential
374
+ equation.
375
+
376
+ pde is the partial differential equation which can be given in the
377
+ form of an equation or an expression. sol is the solution for which
378
+ the pde is to be checked. This can also be given in an equation or
379
+ an expression form. If the function is not provided, the helper
380
+ function _preprocess from deutils is used to identify the function.
381
+
382
+ If a sequence of solutions is passed, the same sort of container will be
383
+ used to return the result for each solution.
384
+
385
+ The following methods are currently being implemented to check if the
386
+ solution satisfies the PDE:
387
+
388
+ 1. Directly substitute the solution in the PDE and check. If the
389
+ solution has not been solved for f, then it will solve for f
390
+ provided solve_for_func has not been set to False.
391
+
392
+ If the solution satisfies the PDE, then a tuple (True, 0) is returned.
393
+ Otherwise a tuple (False, expr) where expr is the value obtained
394
+ after substituting the solution in the PDE. However if a known solution
395
+ returns False, it may be due to the inability of doit() to simplify it to zero.
396
+
397
+ Examples
398
+ ========
399
+
400
+ >>> from sympy import Function, symbols
401
+ >>> from sympy.solvers.pde import checkpdesol, pdsolve
402
+ >>> x, y = symbols('x y')
403
+ >>> f = Function('f')
404
+ >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y)
405
+ >>> sol = pdsolve(eq)
406
+ >>> assert checkpdesol(eq, sol)[0]
407
+ >>> eq = x*f(x,y) + f(x,y).diff(x)
408
+ >>> checkpdesol(eq, sol)
409
+ (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25))
410
+ """
411
+
412
+ # Converting the pde into an equation
413
+ if not isinstance(pde, Equality):
414
+ pde = Eq(pde, 0)
415
+
416
+ # If no function is given, try finding the function present.
417
+ if func is None:
418
+ try:
419
+ _, func = _preprocess(pde.lhs)
420
+ except ValueError:
421
+ funcs = [s.atoms(AppliedUndef) for s in (
422
+ sol if is_sequence(sol, set) else [sol])]
423
+ funcs = set().union(funcs)
424
+ if len(funcs) != 1:
425
+ raise ValueError(
426
+ 'must pass func arg to checkpdesol for this case.')
427
+ func = funcs.pop()
428
+
429
+ # If the given solution is in the form of a list or a set
430
+ # then return a list or set of tuples.
431
+ if is_sequence(sol, set):
432
+ return type(sol)([checkpdesol(
433
+ pde, i, func=func,
434
+ solve_for_func=solve_for_func) for i in sol])
435
+
436
+ # Convert solution into an equation
437
+ if not isinstance(sol, Equality):
438
+ sol = Eq(func, sol)
439
+ elif sol.rhs == func:
440
+ sol = sol.reversed
441
+
442
+ # Try solving for the function
443
+ solved = sol.lhs == func and not sol.rhs.has(func)
444
+ if solve_for_func and not solved:
445
+ solved = solve(sol, func)
446
+ if solved:
447
+ if len(solved) == 1:
448
+ return checkpdesol(pde, Eq(func, solved[0]),
449
+ func=func, solve_for_func=False)
450
+ else:
451
+ return checkpdesol(pde, [Eq(func, t) for t in solved],
452
+ func=func, solve_for_func=False)
453
+
454
+ # try direct substitution of the solution into the PDE and simplify
455
+ if sol.lhs == func:
456
+ pde = pde.lhs - pde.rhs
457
+ s = simplify(pde.subs(func, sol.rhs).doit())
458
+ return s is S.Zero, s
459
+
460
+ raise NotImplementedError(filldedent('''
461
+ Unable to test if %s is a solution to %s.''' % (sol, pde)))
462
+
463
+
464
+
465
+ def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun):
466
+ r"""
467
+ Solves a first order linear homogeneous
468
+ partial differential equation with constant coefficients.
469
+
470
+ The general form of this partial differential equation is
471
+
472
+ .. math:: a \frac{\partial f(x,y)}{\partial x}
473
+ + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0
474
+
475
+ where `a`, `b` and `c` are constants.
476
+
477
+ The general solution is of the form:
478
+
479
+ .. math::
480
+ f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}}
481
+
482
+ and can be found in SymPy with ``pdsolve``::
483
+
484
+ >>> from sympy.solvers import pdsolve
485
+ >>> from sympy.abc import x, y, a, b, c
486
+ >>> from sympy import Function, pprint
487
+ >>> f = Function('f')
488
+ >>> u = f(x,y)
489
+ >>> ux = u.diff(x)
490
+ >>> uy = u.diff(y)
491
+ >>> genform = a*ux + b*uy + c*u
492
+ >>> pprint(genform)
493
+ d d
494
+ a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y)
495
+ dx dy
496
+
497
+ >>> pprint(pdsolve(genform))
498
+ -c*(a*x + b*y)
499
+ ---------------
500
+ 2 2
501
+ a + b
502
+ f(x, y) = F(-a*y + b*x)*e
503
+
504
+ Examples
505
+ ========
506
+
507
+ >>> from sympy import pdsolve
508
+ >>> from sympy import Function, pprint
509
+ >>> from sympy.abc import x,y
510
+ >>> f = Function('f')
511
+ >>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))
512
+ Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
513
+ >>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)))
514
+ x y
515
+ - - - -
516
+ 2 2
517
+ f(x, y) = F(x - y)*e
518
+
519
+ References
520
+ ==========
521
+
522
+ - Viktor Grigoryan, "Partial Differential Equations"
523
+ Math 124A - Fall 2010, pp.7
524
+
525
+ """
526
+ # TODO : For now homogeneous first order linear PDE's having
527
+ # two variables are implemented. Once there is support for
528
+ # solving systems of ODE's, this can be extended to n variables.
529
+
530
+ f = func.func
531
+ x = func.args[0]
532
+ y = func.args[1]
533
+ b = match[match['b']]
534
+ c = match[match['c']]
535
+ d = match[match['d']]
536
+ return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y))
537
+
538
+
539
+ def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun):
540
+ r"""
541
+ Solves a first order linear partial differential equation
542
+ with constant coefficients.
543
+
544
+ The general form of this partial differential equation is
545
+
546
+ .. math:: a \frac{\partial f(x,y)}{\partial x}
547
+ + b \frac{\partial f(x,y)}{\partial y}
548
+ + c f(x,y) = G(x,y)
549
+
550
+ where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary
551
+ function in `x` and `y`.
552
+
553
+ The general solution of the PDE is:
554
+
555
+ .. math::
556
+ f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2}
557
+ \int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2},
558
+ \frac{- a \eta + b \xi}{a^2 + b^2} \right)
559
+ e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right]
560
+ e^{- \frac{c \xi}{a^2 + b^2}}
561
+ \right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, ,
562
+
563
+ where `F(\eta)` is an arbitrary single-valued function. The solution
564
+ can be found in SymPy with ``pdsolve``::
565
+
566
+ >>> from sympy.solvers import pdsolve
567
+ >>> from sympy.abc import x, y, a, b, c
568
+ >>> from sympy import Function, pprint
569
+ >>> f = Function('f')
570
+ >>> G = Function('G')
571
+ >>> u = f(x, y)
572
+ >>> ux = u.diff(x)
573
+ >>> uy = u.diff(y)
574
+ >>> genform = a*ux + b*uy + c*u - G(x,y)
575
+ >>> pprint(genform)
576
+ d d
577
+ a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y)
578
+ dx dy
579
+ >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral'))
580
+ // a*x + b*y \ \|
581
+ || / | ||
582
+ || | | ||
583
+ || | c*xi | ||
584
+ || | ------- | ||
585
+ || | 2 2 | ||
586
+ || | /a*xi + b*eta -a*eta + b*xi\ a + b | ||
587
+ || | G|------------, -------------|*e d(xi)| ||
588
+ || | | 2 2 2 2 | | ||
589
+ || | \ a + b a + b / | -c*xi ||
590
+ || | | -------||
591
+ || / | 2 2||
592
+ || | a + b ||
593
+ f(x, y) = ||F(eta) + -------------------------------------------------------|*e ||
594
+ || 2 2 | ||
595
+ \\ a + b / /|eta=-a*y + b*x, xi=a*x + b*y
596
+
597
+ Examples
598
+ ========
599
+
600
+ >>> from sympy.solvers.pde import pdsolve
601
+ >>> from sympy import Function, pprint, exp
602
+ >>> from sympy.abc import x,y
603
+ >>> f = Function('f')
604
+ >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
605
+ >>> pdsolve(eq)
606
+ Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
607
+
608
+ References
609
+ ==========
610
+
611
+ - Viktor Grigoryan, "Partial Differential Equations"
612
+ Math 124A - Fall 2010, pp.7
613
+
614
+ """
615
+
616
+ # TODO : For now homogeneous first order linear PDE's having
617
+ # two variables are implemented. Once there is support for
618
+ # solving systems of ODE's, this can be extended to n variables.
619
+ xi, eta = symbols("xi eta")
620
+ f = func.func
621
+ x = func.args[0]
622
+ y = func.args[1]
623
+ b = match[match['b']]
624
+ c = match[match['c']]
625
+ d = match[match['d']]
626
+ e = -match[match['e']]
627
+ expterm = exp(-S(d)/(b**2 + c**2)*xi)
628
+ functerm = solvefun(eta)
629
+ solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y)
630
+ # Integral should remain as it is in terms of xi,
631
+ # doit() should be done in _handle_Integral.
632
+ genterm = (1/S(b**2 + c**2))*Integral(
633
+ (1/expterm*e).subs(solvedict), (xi, b*x + c*y))
634
+ return Eq(f(x,y), Subs(expterm*(functerm + genterm),
635
+ (eta, xi), (c*x - b*y, b*x + c*y)))
636
+
637
+
638
+ def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun):
639
+ r"""
640
+ Solves a first order linear partial differential equation
641
+ with variable coefficients. The general form of this partial
642
+ differential equation is
643
+
644
+ .. math:: a(x, y) \frac{\partial f(x, y)}{\partial x}
645
+ + b(x, y) \frac{\partial f(x, y)}{\partial y}
646
+ + c(x, y) f(x, y) = G(x, y)
647
+
648
+ where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary
649
+ functions in `x` and `y`. This PDE is converted into an ODE by
650
+ making the following transformation:
651
+
652
+ 1. `\xi` as `x`
653
+
654
+ 2. `\eta` as the constant in the solution to the differential
655
+ equation `\frac{dy}{dx} = -\frac{b}{a}`
656
+
657
+ Making the previous substitutions reduces it to the linear ODE
658
+
659
+ .. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0
660
+
661
+ which can be solved using ``dsolve``.
662
+
663
+ >>> from sympy.abc import x, y
664
+ >>> from sympy import Function, pprint
665
+ >>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']]
666
+ >>> u = f(x,y)
667
+ >>> ux = u.diff(x)
668
+ >>> uy = u.diff(y)
669
+ >>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y)
670
+ >>> pprint(genform)
671
+ d d
672
+ -G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y))
673
+ dx dy
674
+
675
+
676
+ Examples
677
+ ========
678
+
679
+ >>> from sympy.solvers.pde import pdsolve
680
+ >>> from sympy import Function, pprint
681
+ >>> from sympy.abc import x,y
682
+ >>> f = Function('f')
683
+ >>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
684
+ >>> pdsolve(eq)
685
+ Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)
686
+
687
+ References
688
+ ==========
689
+
690
+ - Viktor Grigoryan, "Partial Differential Equations"
691
+ Math 124A - Fall 2010, pp.7
692
+
693
+ """
694
+ from sympy.solvers.ode import dsolve
695
+
696
+ xi, eta = symbols("xi eta")
697
+ f = func.func
698
+ x = func.args[0]
699
+ y = func.args[1]
700
+ b = match[match['b']]
701
+ c = match[match['c']]
702
+ d = match[match['d']]
703
+ e = -match[match['e']]
704
+
705
+
706
+ if not d:
707
+ # To deal with cases like b*ux = e or c*uy = e
708
+ if not (b and c):
709
+ if c:
710
+ try:
711
+ tsol = integrate(e/c, y)
712
+ except NotImplementedError:
713
+ raise NotImplementedError("Unable to find a solution"
714
+ " due to inability of integrate")
715
+ else:
716
+ return Eq(f(x,y), solvefun(x) + tsol)
717
+ if b:
718
+ try:
719
+ tsol = integrate(e/b, x)
720
+ except NotImplementedError:
721
+ raise NotImplementedError("Unable to find a solution"
722
+ " due to inability of integrate")
723
+ else:
724
+ return Eq(f(x,y), solvefun(y) + tsol)
725
+
726
+ if not c:
727
+ # To deal with cases when c is 0, a simpler method is used.
728
+ # The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x
729
+ plode = f(x).diff(x)*b + d*f(x) - e
730
+ sol = dsolve(plode, f(x))
731
+ syms = sol.free_symbols - plode.free_symbols - {x, y}
732
+ rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y)
733
+ return Eq(f(x, y), rhs)
734
+
735
+ if not b:
736
+ # To deal with cases when b is 0, a simpler method is used.
737
+ # The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y
738
+ plode = f(y).diff(y)*c + d*f(y) - e
739
+ sol = dsolve(plode, f(y))
740
+ syms = sol.free_symbols - plode.free_symbols - {x, y}
741
+ rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x)
742
+ return Eq(f(x, y), rhs)
743
+
744
+ dummy = Function('d')
745
+ h = (c/b).subs(y, dummy(x))
746
+ sol = dsolve(dummy(x).diff(x) - h, dummy(x))
747
+ if isinstance(sol, list):
748
+ sol = sol[0]
749
+ solsym = sol.free_symbols - h.free_symbols - {x, y}
750
+ if len(solsym) == 1:
751
+ solsym = solsym.pop()
752
+ etat = (solve(sol, solsym)[0]).subs(dummy(x), y)
753
+ ysub = solve(eta - etat, y)[0]
754
+ deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub)
755
+ final = (dsolve(deq, f(x), hint='1st_linear')).rhs
756
+ if isinstance(final, list):
757
+ final = final[0]
758
+ finsyms = final.free_symbols - deq.free_symbols - {x, y}
759
+ rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat)
760
+ return Eq(f(x, y), rhs)
761
+
762
+ else:
763
+ raise NotImplementedError("Cannot solve the partial differential equation due"
764
+ " to inability of constantsimp")
765
+
766
+
767
+ def _simplify_variable_coeff(sol, syms, func, funcarg):
768
+ r"""
769
+ Helper function to replace constants by functions in 1st_linear_variable_coeff
770
+ """
771
+ eta = Symbol("eta")
772
+ if len(syms) == 1:
773
+ sym = syms.pop()
774
+ final = sol.subs(sym, func(funcarg))
775
+
776
+ else:
777
+ for sym in syms:
778
+ final = sol.subs(sym, func(funcarg))
779
+
780
+ return simplify(final.subs(eta, funcarg))
781
+
782
+
783
+ def pde_separate(eq, fun, sep, strategy='mul'):
784
+ """Separate variables in partial differential equation either by additive
785
+ or multiplicative separation approach. It tries to rewrite an equation so
786
+ that one of the specified variables occurs on a different side of the
787
+ equation than the others.
788
+
789
+ :param eq: Partial differential equation
790
+
791
+ :param fun: Original function F(x, y, z)
792
+
793
+ :param sep: List of separated functions [X(x), u(y, z)]
794
+
795
+ :param strategy: Separation strategy. You can choose between additive
796
+ separation ('add') and multiplicative separation ('mul') which is
797
+ default.
798
+
799
+ Examples
800
+ ========
801
+
802
+ >>> from sympy import E, Eq, Function, pde_separate, Derivative as D
803
+ >>> from sympy.abc import x, t
804
+ >>> u, X, T = map(Function, 'uXT')
805
+
806
+ >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
807
+ >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add')
808
+ [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]
809
+
810
+ >>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2))
811
+ >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul')
812
+ [Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)]
813
+
814
+ See Also
815
+ ========
816
+ pde_separate_add, pde_separate_mul
817
+ """
818
+
819
+ do_add = False
820
+ if strategy == 'add':
821
+ do_add = True
822
+ elif strategy == 'mul':
823
+ do_add = False
824
+ else:
825
+ raise ValueError('Unknown strategy: %s' % strategy)
826
+
827
+ if isinstance(eq, Equality):
828
+ if eq.rhs != 0:
829
+ return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy)
830
+ else:
831
+ return pde_separate(Eq(eq, 0), fun, sep, strategy)
832
+
833
+ if eq.rhs != 0:
834
+ raise ValueError("Value should be 0")
835
+
836
+ # Handle arguments
837
+ orig_args = list(fun.args)
838
+ subs_args = [arg for s in sep for arg in s.args]
839
+
840
+ if do_add:
841
+ functions = reduce(operator.add, sep)
842
+ else:
843
+ functions = reduce(operator.mul, sep)
844
+
845
+ # Check whether variables match
846
+ if len(subs_args) != len(orig_args):
847
+ raise ValueError("Variable counts do not match")
848
+ # Check for duplicate arguments like [X(x), u(x, y)]
849
+ if has_dups(subs_args):
850
+ raise ValueError("Duplicate substitution arguments detected")
851
+ # Check whether the variables match
852
+ if set(orig_args) != set(subs_args):
853
+ raise ValueError("Arguments do not match")
854
+
855
+ # Substitute original function with separated...
856
+ result = eq.lhs.subs(fun, functions).doit()
857
+
858
+ # Divide by terms when doing multiplicative separation
859
+ if not do_add:
860
+ eq = 0
861
+ for i in result.args:
862
+ eq += i/functions
863
+ result = eq
864
+
865
+ svar = subs_args[0]
866
+ dvar = subs_args[1:]
867
+ return _separate(result, svar, dvar)
868
+
869
+
870
+ def pde_separate_add(eq, fun, sep):
871
+ """
872
+ Helper function for searching additive separable solutions.
873
+
874
+ Consider an equation of two independent variables x, y and a dependent
875
+ variable w, we look for the product of two functions depending on different
876
+ arguments:
877
+
878
+ `w(x, y, z) = X(x) + y(y, z)`
879
+
880
+ Examples
881
+ ========
882
+
883
+ >>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D
884
+ >>> from sympy.abc import x, t
885
+ >>> u, X, T = map(Function, 'uXT')
886
+
887
+ >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
888
+ >>> pde_separate_add(eq, u(x, t), [X(x), T(t)])
889
+ [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]
890
+
891
+ """
892
+ return pde_separate(eq, fun, sep, strategy='add')
893
+
894
+
895
+ def pde_separate_mul(eq, fun, sep):
896
+ """
897
+ Helper function for searching multiplicative separable solutions.
898
+
899
+ Consider an equation of two independent variables x, y and a dependent
900
+ variable w, we look for the product of two functions depending on different
901
+ arguments:
902
+
903
+ `w(x, y, z) = X(x)*u(y, z)`
904
+
905
+ Examples
906
+ ========
907
+
908
+ >>> from sympy import Function, Eq, pde_separate_mul, Derivative as D
909
+ >>> from sympy.abc import x, y
910
+ >>> u, X, Y = map(Function, 'uXY')
911
+
912
+ >>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2))
913
+ >>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)])
914
+ [Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)]
915
+
916
+ """
917
+ return pde_separate(eq, fun, sep, strategy='mul')
918
+
919
+
920
+ def _separate(eq, dep, others):
921
+ """Separate expression into two parts based on dependencies of variables."""
922
+
923
+ # FIRST PASS
924
+ # Extract derivatives depending our separable variable...
925
+ terms = set()
926
+ for term in eq.args:
927
+ if term.is_Mul:
928
+ for i in term.args:
929
+ if i.is_Derivative and not i.has(*others):
930
+ terms.add(term)
931
+ continue
932
+ elif term.is_Derivative and not term.has(*others):
933
+ terms.add(term)
934
+ # Find the factor that we need to divide by
935
+ div = set()
936
+ for term in terms:
937
+ ext, sep = term.expand().as_independent(dep)
938
+ # Failed?
939
+ if sep.has(*others):
940
+ return None
941
+ div.add(ext)
942
+ # FIXME: Find lcm() of all the divisors and divide with it, instead of
943
+ # current hack :(
944
+ # https://github.com/sympy/sympy/issues/4597
945
+ if len(div) > 0:
946
+ # double sum required or some tests will fail
947
+ eq = Add(*[simplify(Add(*[term/i for i in div])) for term in eq.args])
948
+ # SECOND PASS - separate the derivatives
949
+ div = set()
950
+ lhs = rhs = 0
951
+ for term in eq.args:
952
+ # Check, whether we have already term with independent variable...
953
+ if not term.has(*others):
954
+ lhs += term
955
+ continue
956
+ # ...otherwise, try to separate
957
+ temp, sep = term.expand().as_independent(dep)
958
+ # Failed?
959
+ if sep.has(*others):
960
+ return None
961
+ # Extract the divisors
962
+ div.add(sep)
963
+ rhs -= term.expand()
964
+ # Do the division
965
+ fulldiv = reduce(operator.add, div)
966
+ lhs = simplify(lhs/fulldiv).expand()
967
+ rhs = simplify(rhs/fulldiv).expand()
968
+ # ...and check whether we were successful :)
969
+ if lhs.has(*others) or rhs.has(dep):
970
+ return None
971
+ return [lhs, rhs]
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/polysys.py ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Solvers of systems of polynomial equations. """
2
+ import itertools
3
+
4
+ from sympy.core import S
5
+ from sympy.core.sorting import default_sort_key
6
+ from sympy.polys import Poly, groebner, roots
7
+ from sympy.polys.polytools import parallel_poly_from_expr
8
+ from sympy.polys.polyerrors import (ComputationFailed,
9
+ PolificationFailed, CoercionFailed)
10
+ from sympy.simplify import rcollect
11
+ from sympy.utilities import postfixes
12
+ from sympy.utilities.misc import filldedent
13
+
14
+
15
+ class SolveFailed(Exception):
16
+ """Raised when solver's conditions were not met. """
17
+
18
+
19
+ def solve_poly_system(seq, *gens, strict=False, **args):
20
+ """
21
+ Return a list of solutions for the system of polynomial equations
22
+ or else None.
23
+
24
+ Parameters
25
+ ==========
26
+
27
+ seq: a list/tuple/set
28
+ Listing all the equations that are needed to be solved
29
+ gens: generators
30
+ generators of the equations in seq for which we want the
31
+ solutions
32
+ strict: a boolean (default is False)
33
+ if strict is True, NotImplementedError will be raised if
34
+ the solution is known to be incomplete (which can occur if
35
+ not all solutions are expressible in radicals)
36
+ args: Keyword arguments
37
+ Special options for solving the equations.
38
+
39
+
40
+ Returns
41
+ =======
42
+
43
+ List[Tuple]
44
+ a list of tuples with elements being solutions for the
45
+ symbols in the order they were passed as gens
46
+ None
47
+ None is returned when the computed basis contains only the ground.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy import solve_poly_system
53
+ >>> from sympy.abc import x, y
54
+
55
+ >>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
56
+ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
57
+
58
+ >>> solve_poly_system([x**5 - x + y**3, y**2 - 1], x, y, strict=True)
59
+ Traceback (most recent call last):
60
+ ...
61
+ UnsolvableFactorError
62
+
63
+ """
64
+ try:
65
+ polys, opt = parallel_poly_from_expr(seq, *gens, **args)
66
+ except PolificationFailed as exc:
67
+ raise ComputationFailed('solve_poly_system', len(seq), exc)
68
+
69
+ if len(polys) == len(opt.gens) == 2:
70
+ f, g = polys
71
+
72
+ if all(i <= 2 for i in f.degree_list() + g.degree_list()):
73
+ try:
74
+ return solve_biquadratic(f, g, opt)
75
+ except SolveFailed:
76
+ pass
77
+
78
+ return solve_generic(polys, opt, strict=strict)
79
+
80
+
81
+ def solve_biquadratic(f, g, opt):
82
+ """Solve a system of two bivariate quadratic polynomial equations.
83
+
84
+ Parameters
85
+ ==========
86
+
87
+ f: a single Expr or Poly
88
+ First equation
89
+ g: a single Expr or Poly
90
+ Second Equation
91
+ opt: an Options object
92
+ For specifying keyword arguments and generators
93
+
94
+ Returns
95
+ =======
96
+
97
+ List[Tuple]
98
+ a list of tuples with elements being solutions for the
99
+ symbols in the order they were passed as gens
100
+ None
101
+ None is returned when the computed basis contains only the ground.
102
+
103
+ Examples
104
+ ========
105
+
106
+ >>> from sympy import Options, Poly
107
+ >>> from sympy.abc import x, y
108
+ >>> from sympy.solvers.polysys import solve_biquadratic
109
+ >>> NewOption = Options((x, y), {'domain': 'ZZ'})
110
+
111
+ >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
112
+ >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
113
+ >>> solve_biquadratic(a, b, NewOption)
114
+ [(1/3, 3), (41/27, 11/9)]
115
+
116
+ >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
117
+ >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
118
+ >>> solve_biquadratic(a, b, NewOption)
119
+ [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
120
+ sqrt(29)/2)]
121
+ """
122
+ G = groebner([f, g])
123
+
124
+ if len(G) == 1 and G[0].is_ground:
125
+ return None
126
+
127
+ if len(G) != 2:
128
+ raise SolveFailed
129
+
130
+ x, y = opt.gens
131
+ p, q = G
132
+ if not p.gcd(q).is_ground:
133
+ # not 0-dimensional
134
+ raise SolveFailed
135
+
136
+ p = Poly(p, x, expand=False)
137
+ p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
138
+
139
+ q = q.ltrim(-1)
140
+ q_roots = list(roots(q).keys())
141
+
142
+ solutions = [(p_root.subs(y, q_root), q_root) for q_root, p_root in
143
+ itertools.product(q_roots, p_roots)]
144
+
145
+ return sorted(solutions, key=default_sort_key)
146
+
147
+
148
+ def solve_generic(polys, opt, strict=False):
149
+ """
150
+ Solve a generic system of polynomial equations.
151
+
152
+ Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
153
+ set F = { f_1, f_2, ..., f_n } of polynomial equations, using
154
+ Groebner basis approach. For now only zero-dimensional systems
155
+ are supported, which means F can have at most a finite number
156
+ of solutions. If the basis contains only the ground, None is
157
+ returned.
158
+
159
+ The algorithm works by the fact that, supposing G is the basis
160
+ of F with respect to an elimination order (here lexicographic
161
+ order is used), G and F generate the same ideal, they have the
162
+ same set of solutions. By the elimination property, if G is a
163
+ reduced, zero-dimensional Groebner basis, then there exists an
164
+ univariate polynomial in G (in its last variable). This can be
165
+ solved by computing its roots. Substituting all computed roots
166
+ for the last (eliminated) variable in other elements of G, new
167
+ polynomial system is generated. Applying the above procedure
168
+ recursively, a finite number of solutions can be found.
169
+
170
+ The ability of finding all solutions by this procedure depends
171
+ on the root finding algorithms. If no solutions were found, it
172
+ means only that roots() failed, but the system is solvable. To
173
+ overcome this difficulty use numerical algorithms instead.
174
+
175
+ Parameters
176
+ ==========
177
+
178
+ polys: a list/tuple/set
179
+ Listing all the polynomial equations that are needed to be solved
180
+ opt: an Options object
181
+ For specifying keyword arguments and generators
182
+ strict: a boolean
183
+ If strict is True, NotImplementedError will be raised if the solution
184
+ is known to be incomplete
185
+
186
+ Returns
187
+ =======
188
+
189
+ List[Tuple]
190
+ a list of tuples with elements being solutions for the
191
+ symbols in the order they were passed as gens
192
+ None
193
+ None is returned when the computed basis contains only the ground.
194
+
195
+ References
196
+ ==========
197
+
198
+ .. [Buchberger01] B. Buchberger, Groebner Bases: A Short
199
+ Introduction for Systems Theorists, In: R. Moreno-Diaz,
200
+ B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
201
+ February, 2001
202
+
203
+ .. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
204
+ and Algorithms, Springer, Second Edition, 1997, pp. 112
205
+
206
+ Raises
207
+ ========
208
+
209
+ NotImplementedError
210
+ If the system is not zero-dimensional (does not have a finite
211
+ number of solutions)
212
+
213
+ UnsolvableFactorError
214
+ If ``strict`` is True and not all solution components are
215
+ expressible in radicals
216
+
217
+ Examples
218
+ ========
219
+
220
+ >>> from sympy import Poly, Options
221
+ >>> from sympy.solvers.polysys import solve_generic
222
+ >>> from sympy.abc import x, y
223
+ >>> NewOption = Options((x, y), {'domain': 'ZZ'})
224
+
225
+ >>> a = Poly(x - y + 5, x, y, domain='ZZ')
226
+ >>> b = Poly(x + y - 3, x, y, domain='ZZ')
227
+ >>> solve_generic([a, b], NewOption)
228
+ [(-1, 4)]
229
+
230
+ >>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
231
+ >>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
232
+ >>> solve_generic([a, b], NewOption)
233
+ [(11/3, 13/3)]
234
+
235
+ >>> a = Poly(x**2 + y, x, y, domain='ZZ')
236
+ >>> b = Poly(x + y*4, x, y, domain='ZZ')
237
+ >>> solve_generic([a, b], NewOption)
238
+ [(0, 0), (1/4, -1/16)]
239
+
240
+ >>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
241
+ >>> b = Poly(y**2 - 1, x, y, domain='ZZ')
242
+ >>> solve_generic([a, b], NewOption, strict=True)
243
+ Traceback (most recent call last):
244
+ ...
245
+ UnsolvableFactorError
246
+
247
+ """
248
+ def _is_univariate(f):
249
+ """Returns True if 'f' is univariate in its last variable. """
250
+ for monom in f.monoms():
251
+ if any(monom[:-1]):
252
+ return False
253
+
254
+ return True
255
+
256
+ def _subs_root(f, gen, zero):
257
+ """Replace generator with a root so that the result is nice. """
258
+ p = f.as_expr({gen: zero})
259
+
260
+ if f.degree(gen) >= 2:
261
+ p = p.expand(deep=False)
262
+
263
+ return p
264
+
265
+ def _solve_reduced_system(system, gens, entry=False):
266
+ """Recursively solves reduced polynomial systems. """
267
+ if len(system) == len(gens) == 1:
268
+ # the below line will produce UnsolvableFactorError if
269
+ # strict=True and the solution from `roots` is incomplete
270
+ zeros = list(roots(system[0], gens[-1], strict=strict).keys())
271
+ return [(zero,) for zero in zeros]
272
+
273
+ basis = groebner(system, gens, polys=True)
274
+
275
+ if len(basis) == 1 and basis[0].is_ground:
276
+ if not entry:
277
+ return []
278
+ else:
279
+ return None
280
+
281
+ univariate = list(filter(_is_univariate, basis))
282
+
283
+ if len(basis) < len(gens):
284
+ raise NotImplementedError(filldedent('''
285
+ only zero-dimensional systems supported
286
+ (finite number of solutions)
287
+ '''))
288
+
289
+ if len(univariate) == 1:
290
+ f = univariate.pop()
291
+ else:
292
+ raise NotImplementedError(filldedent('''
293
+ only zero-dimensional systems supported
294
+ (finite number of solutions)
295
+ '''))
296
+
297
+ gens = f.gens
298
+ gen = gens[-1]
299
+
300
+ # the below line will produce UnsolvableFactorError if
301
+ # strict=True and the solution from `roots` is incomplete
302
+ zeros = list(roots(f.ltrim(gen), strict=strict).keys())
303
+
304
+ if not zeros:
305
+ return []
306
+
307
+ if len(basis) == 1:
308
+ return [(zero,) for zero in zeros]
309
+
310
+ solutions = []
311
+
312
+ for zero in zeros:
313
+ new_system = []
314
+ new_gens = gens[:-1]
315
+
316
+ for b in basis[:-1]:
317
+ eq = _subs_root(b, gen, zero)
318
+
319
+ if eq is not S.Zero:
320
+ new_system.append(eq)
321
+
322
+ for solution in _solve_reduced_system(new_system, new_gens):
323
+ solutions.append(solution + (zero,))
324
+
325
+ if solutions and len(solutions[0]) != len(gens):
326
+ raise NotImplementedError(filldedent('''
327
+ only zero-dimensional systems supported
328
+ (finite number of solutions)
329
+ '''))
330
+ return solutions
331
+
332
+ try:
333
+ result = _solve_reduced_system(polys, opt.gens, entry=True)
334
+ except CoercionFailed:
335
+ raise NotImplementedError
336
+
337
+ if result is not None:
338
+ return sorted(result, key=default_sort_key)
339
+
340
+
341
+ def solve_triangulated(polys, *gens, **args):
342
+ """
343
+ Solve a polynomial system using Gianni-Kalkbrenner algorithm.
344
+
345
+ The algorithm proceeds by computing one Groebner basis in the ground
346
+ domain and then by iteratively computing polynomial factorizations in
347
+ appropriately constructed algebraic extensions of the ground domain.
348
+
349
+ Parameters
350
+ ==========
351
+
352
+ polys: a list/tuple/set
353
+ Listing all the equations that are needed to be solved
354
+ gens: generators
355
+ generators of the equations in polys for which we want the
356
+ solutions
357
+ args: Keyword arguments
358
+ Special options for solving the equations
359
+
360
+ Returns
361
+ =======
362
+
363
+ List[Tuple]
364
+ A List of tuples. Solutions for symbols that satisfy the
365
+ equations listed in polys
366
+
367
+ Examples
368
+ ========
369
+
370
+ >>> from sympy import solve_triangulated
371
+ >>> from sympy.abc import x, y, z
372
+
373
+ >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
374
+
375
+ >>> solve_triangulated(F, x, y, z)
376
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
377
+
378
+ References
379
+ ==========
380
+
381
+ 1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
382
+ Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
383
+ Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
384
+
385
+ """
386
+ G = groebner(polys, gens, polys=True)
387
+ G = list(reversed(G))
388
+
389
+ domain = args.get('domain')
390
+
391
+ if domain is not None:
392
+ for i, g in enumerate(G):
393
+ G[i] = g.set_domain(domain)
394
+
395
+ f, G = G[0].ltrim(-1), G[1:]
396
+ dom = f.get_domain()
397
+
398
+ zeros = f.ground_roots()
399
+ solutions = {((zero,), dom) for zero in zeros}
400
+
401
+ var_seq = reversed(gens[:-1])
402
+ vars_seq = postfixes(gens[1:])
403
+
404
+ for var, vars in zip(var_seq, vars_seq):
405
+ _solutions = set()
406
+
407
+ for values, dom in solutions:
408
+ H, mapping = [], list(zip(vars, values))
409
+
410
+ for g in G:
411
+ _vars = (var,) + vars
412
+
413
+ if g.has_only_gens(*_vars) and g.degree(var) != 0:
414
+ h = g.ltrim(var).eval(dict(mapping))
415
+
416
+ if g.degree(var) == h.degree():
417
+ H.append(h)
418
+
419
+ p = min(H, key=lambda h: h.degree())
420
+ zeros = p.ground_roots()
421
+
422
+ for zero in zeros:
423
+ if not zero.is_Rational:
424
+ dom_zero = dom.algebraic_field(zero)
425
+ else:
426
+ dom_zero = dom
427
+
428
+ _solutions.add(((zero,) + values, dom_zero))
429
+
430
+ solutions = _solutions
431
+
432
+ solutions = list(solutions)
433
+
434
+ for i, (solution, _) in enumerate(solutions):
435
+ solutions[i] = solution
436
+
437
+ return sorted(solutions, key=default_sort_key)
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/recurr.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""
2
+ This module is intended for solving recurrences or, in other words,
3
+ difference equations. Currently supported are linear, inhomogeneous
4
+ equations with polynomial or rational coefficients.
5
+
6
+ The solutions are obtained among polynomials, rational functions,
7
+ hypergeometric terms, or combinations of hypergeometric term which
8
+ are pairwise dissimilar.
9
+
10
+ ``rsolve_X`` functions were meant as a low level interface
11
+ for ``rsolve`` which would use Mathematica's syntax.
12
+
13
+ Given a recurrence relation:
14
+
15
+ .. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) +
16
+ ... + a_{0}(n) y(n) = f(n)
17
+
18
+ where `k > 0` and `a_{i}(n)` are polynomials in `n`. To use
19
+ ``rsolve_X`` we need to put all coefficients in to a list ``L`` of
20
+ `k+1` elements the following way:
21
+
22
+ ``L = [a_{0}(n), ..., a_{k-1}(n), a_{k}(n)]``
23
+
24
+ where ``L[i]``, for `i=0, \ldots, k`, maps to
25
+ `a_{i}(n) y(n+i)` (`y(n+i)` is implicit).
26
+
27
+ For example if we would like to compute `m`-th Bernoulli polynomial
28
+ up to a constant (example was taken from rsolve_poly docstring),
29
+ then we would use `b(n+1) - b(n) = m n^{m-1}` recurrence, which
30
+ has solution `b(n) = B_m + C`.
31
+
32
+ Then ``L = [-1, 1]`` and `f(n) = m n^(m-1)` and finally for `m=4`:
33
+
34
+ >>> from sympy import Symbol, bernoulli, rsolve_poly
35
+ >>> n = Symbol('n', integer=True)
36
+
37
+ >>> rsolve_poly([-1, 1], 4*n**3, n)
38
+ C0 + n**4 - 2*n**3 + n**2
39
+
40
+ >>> bernoulli(4, n)
41
+ n**4 - 2*n**3 + n**2 - 1/30
42
+
43
+ For the sake of completeness, `f(n)` can be:
44
+
45
+ [1] a polynomial -> rsolve_poly
46
+ [2] a rational function -> rsolve_ratio
47
+ [3] a hypergeometric function -> rsolve_hyper
48
+ """
49
+ from collections import defaultdict
50
+
51
+ from sympy.concrete import product
52
+ from sympy.core.singleton import S
53
+ from sympy.core.numbers import Rational, I
54
+ from sympy.core.symbol import Symbol, Wild, Dummy
55
+ from sympy.core.relational import Equality
56
+ from sympy.core.add import Add
57
+ from sympy.core.mul import Mul
58
+ from sympy.core.sorting import default_sort_key
59
+ from sympy.core.sympify import sympify
60
+
61
+ from sympy.simplify import simplify, hypersimp, hypersimilar # type: ignore
62
+ from sympy.solvers import solve, solve_undetermined_coeffs
63
+ from sympy.polys import Poly, quo, gcd, lcm, roots, resultant
64
+ from sympy.functions import binomial, factorial, FallingFactorial, RisingFactorial
65
+ from sympy.matrices import Matrix, casoratian
66
+ from sympy.utilities.iterables import numbered_symbols
67
+
68
+
69
+ def rsolve_poly(coeffs, f, n, shift=0, **hints):
70
+ r"""
71
+ Given linear recurrence operator `\operatorname{L}` of order
72
+ `k` with polynomial coefficients and inhomogeneous equation
73
+ `\operatorname{L} y = f`, where `f` is a polynomial, we seek for
74
+ all polynomial solutions over field `K` of characteristic zero.
75
+
76
+ The algorithm performs two basic steps:
77
+
78
+ (1) Compute degree `N` of the general polynomial solution.
79
+ (2) Find all polynomials of degree `N` or less
80
+ of `\operatorname{L} y = f`.
81
+
82
+ There are two methods for computing the polynomial solutions.
83
+ If the degree bound is relatively small, i.e. it's smaller than
84
+ or equal to the order of the recurrence, then naive method of
85
+ undetermined coefficients is being used. This gives a system
86
+ of algebraic equations with `N+1` unknowns.
87
+
88
+ In the other case, the algorithm performs transformation of the
89
+ initial equation to an equivalent one for which the system of
90
+ algebraic equations has only `r` indeterminates. This method is
91
+ quite sophisticated (in comparison with the naive one) and was
92
+ invented together by Abramov, Bronstein and Petkovsek.
93
+
94
+ It is possible to generalize the algorithm implemented here to
95
+ the case of linear q-difference and differential equations.
96
+
97
+ Lets say that we would like to compute `m`-th Bernoulli polynomial
98
+ up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
99
+ recurrence, which has solution `b(n) = B_m + C`. For example:
100
+
101
+ >>> from sympy import Symbol, rsolve_poly
102
+ >>> n = Symbol('n', integer=True)
103
+
104
+ >>> rsolve_poly([-1, 1], 4*n**3, n)
105
+ C0 + n**4 - 2*n**3 + n**2
106
+
107
+ References
108
+ ==========
109
+
110
+ .. [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial
111
+ solutions of linear operator equations, in: T. Levelt, ed.,
112
+ Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.
113
+
114
+ .. [2] M. Petkovsek, Hypergeometric solutions of linear recurrences
115
+ with polynomial coefficients, J. Symbolic Computation,
116
+ 14 (1992), 243-264.
117
+
118
+ .. [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.
119
+
120
+ """
121
+ f = sympify(f)
122
+
123
+ if not f.is_polynomial(n):
124
+ return None
125
+
126
+ homogeneous = f.is_zero
127
+
128
+ r = len(coeffs) - 1
129
+
130
+ coeffs = [Poly(coeff, n) for coeff in coeffs]
131
+
132
+ polys = [Poly(0, n)]*(r + 1)
133
+ terms = [(S.Zero, S.NegativeInfinity)]*(r + 1)
134
+
135
+ for i in range(r + 1):
136
+ for j in range(i, r + 1):
137
+ polys[i] += coeffs[j]*(binomial(j, i).as_poly(n))
138
+
139
+ if not polys[i].is_zero:
140
+ (exp,), coeff = polys[i].LT()
141
+ terms[i] = (coeff, exp)
142
+
143
+ d = b = terms[0][1]
144
+
145
+ for i in range(1, r + 1):
146
+ if terms[i][1] > d:
147
+ d = terms[i][1]
148
+
149
+ if terms[i][1] - i > b:
150
+ b = terms[i][1] - i
151
+
152
+ d, b = int(d), int(b)
153
+
154
+ x = Dummy('x')
155
+
156
+ degree_poly = S.Zero
157
+
158
+ for i in range(r + 1):
159
+ if terms[i][1] - i == b:
160
+ degree_poly += terms[i][0]*FallingFactorial(x, i)
161
+
162
+ nni_roots = list(roots(degree_poly, x, filter='Z',
163
+ predicate=lambda r: r >= 0).keys())
164
+
165
+ if nni_roots:
166
+ N = [max(nni_roots)]
167
+ else:
168
+ N = []
169
+
170
+ if homogeneous:
171
+ N += [-b - 1]
172
+ else:
173
+ N += [f.as_poly(n).degree() - b, -b - 1]
174
+
175
+ N = int(max(N))
176
+
177
+ if N < 0:
178
+ if homogeneous:
179
+ if hints.get('symbols', False):
180
+ return (S.Zero, [])
181
+ else:
182
+ return S.Zero
183
+ else:
184
+ return None
185
+
186
+ if N <= r:
187
+ C = []
188
+ y = E = S.Zero
189
+
190
+ for i in range(N + 1):
191
+ C.append(Symbol('C' + str(i + shift)))
192
+ y += C[i] * n**i
193
+
194
+ for i in range(r + 1):
195
+ E += coeffs[i].as_expr()*y.subs(n, n + i)
196
+
197
+ solutions = solve_undetermined_coeffs(E - f, C, n)
198
+
199
+ if solutions is not None:
200
+ _C = C
201
+ C = [c for c in C if (c not in solutions)]
202
+ result = y.subs(solutions)
203
+ else:
204
+ return None # TBD
205
+ else:
206
+ A = r
207
+ U = N + A + b + 1
208
+
209
+ nni_roots = list(roots(polys[r], filter='Z',
210
+ predicate=lambda r: r >= 0).keys())
211
+
212
+ if nni_roots != []:
213
+ a = max(nni_roots) + 1
214
+ else:
215
+ a = S.Zero
216
+
217
+ def _zero_vector(k):
218
+ return [S.Zero] * k
219
+
220
+ def _one_vector(k):
221
+ return [S.One] * k
222
+
223
+ def _delta(p, k):
224
+ B = S.One
225
+ D = p.subs(n, a + k)
226
+
227
+ for i in range(1, k + 1):
228
+ B *= Rational(i - k - 1, i)
229
+ D += B * p.subs(n, a + k - i)
230
+
231
+ return D
232
+
233
+ alpha = {}
234
+
235
+ for i in range(-A, d + 1):
236
+ I = _one_vector(d + 1)
237
+
238
+ for k in range(1, d + 1):
239
+ I[k] = I[k - 1] * (x + i - k + 1)/k
240
+
241
+ alpha[i] = S.Zero
242
+
243
+ for j in range(A + 1):
244
+ for k in range(d + 1):
245
+ B = binomial(k, i + j)
246
+ D = _delta(polys[j].as_expr(), k)
247
+
248
+ alpha[i] += I[k]*B*D
249
+
250
+ V = Matrix(U, A, lambda i, j: int(i == j))
251
+
252
+ if homogeneous:
253
+ for i in range(A, U):
254
+ v = _zero_vector(A)
255
+
256
+ for k in range(1, A + b + 1):
257
+ if i - k < 0:
258
+ break
259
+
260
+ B = alpha[k - A].subs(x, i - k)
261
+
262
+ for j in range(A):
263
+ v[j] += B * V[i - k, j]
264
+
265
+ denom = alpha[-A].subs(x, i)
266
+
267
+ for j in range(A):
268
+ V[i, j] = -v[j] / denom
269
+ else:
270
+ G = _zero_vector(U)
271
+
272
+ for i in range(A, U):
273
+ v = _zero_vector(A)
274
+ g = S.Zero
275
+
276
+ for k in range(1, A + b + 1):
277
+ if i - k < 0:
278
+ break
279
+
280
+ B = alpha[k - A].subs(x, i - k)
281
+
282
+ for j in range(A):
283
+ v[j] += B * V[i - k, j]
284
+
285
+ g += B * G[i - k]
286
+
287
+ denom = alpha[-A].subs(x, i)
288
+
289
+ for j in range(A):
290
+ V[i, j] = -v[j] / denom
291
+
292
+ G[i] = (_delta(f, i - A) - g) / denom
293
+
294
+ P, Q = _one_vector(U), _zero_vector(A)
295
+
296
+ for i in range(1, U):
297
+ P[i] = (P[i - 1] * (n - a - i + 1)/i).expand()
298
+
299
+ for i in range(A):
300
+ Q[i] = Add(*[(v*p).expand() for v, p in zip(V[:, i], P)])
301
+
302
+ if not homogeneous:
303
+ h = Add(*[(g*p).expand() for g, p in zip(G, P)])
304
+
305
+ C = [Symbol('C' + str(i + shift)) for i in range(A)]
306
+
307
+ g = lambda i: Add(*[c*_delta(q, i) for c, q in zip(C, Q)])
308
+
309
+ if homogeneous:
310
+ E = [g(i) for i in range(N + 1, U)]
311
+ else:
312
+ E = [g(i) + _delta(h, i) for i in range(N + 1, U)]
313
+
314
+ if E != []:
315
+ solutions = solve(E, *C)
316
+
317
+ if not solutions:
318
+ if homogeneous:
319
+ if hints.get('symbols', False):
320
+ return (S.Zero, [])
321
+ else:
322
+ return S.Zero
323
+ else:
324
+ return None
325
+ else:
326
+ solutions = {}
327
+
328
+ if homogeneous:
329
+ result = S.Zero
330
+ else:
331
+ result = h
332
+
333
+ _C = C[:]
334
+ for c, q in list(zip(C, Q)):
335
+ if c in solutions:
336
+ s = solutions[c]*q
337
+ C.remove(c)
338
+ else:
339
+ s = c*q
340
+
341
+ result += s.expand()
342
+
343
+ if C != _C:
344
+ # renumber so they are contiguous
345
+ result = result.xreplace(dict(zip(C, _C)))
346
+ C = _C[:len(C)]
347
+
348
+ if hints.get('symbols', False):
349
+ return (result, C)
350
+ else:
351
+ return result
352
+
353
+
354
+ def rsolve_ratio(coeffs, f, n, **hints):
355
+ r"""
356
+ Given linear recurrence operator `\operatorname{L}` of order `k`
357
+ with polynomial coefficients and inhomogeneous equation
358
+ `\operatorname{L} y = f`, where `f` is a polynomial, we seek
359
+ for all rational solutions over field `K` of characteristic zero.
360
+
361
+ This procedure accepts only polynomials, however if you are
362
+ interested in solving recurrence with rational coefficients
363
+ then use ``rsolve`` which will pre-process the given equation
364
+ and run this procedure with polynomial arguments.
365
+
366
+ The algorithm performs two basic steps:
367
+
368
+ (1) Compute polynomial `v(n)` which can be used as universal
369
+ denominator of any rational solution of equation
370
+ `\operatorname{L} y = f`.
371
+
372
+ (2) Construct new linear difference equation by substitution
373
+ `y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its
374
+ polynomial solutions. Return ``None`` if none were found.
375
+
376
+ The algorithm implemented here is a revised version of the original
377
+ Abramov's algorithm, developed in 1989. The new approach is much
378
+ simpler to implement and has better overall efficiency. This
379
+ method can be easily adapted to the q-difference equations case.
380
+
381
+ Besides finding rational solutions alone, this functions is
382
+ an important part of Hyper algorithm where it is used to find
383
+ a particular solution for the inhomogeneous part of a recurrence.
384
+
385
+ Examples
386
+ ========
387
+
388
+ >>> from sympy.abc import x
389
+ >>> from sympy.solvers.recurr import rsolve_ratio
390
+ >>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
391
+ ... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
392
+ C0*(2*x - 3)/(2*(x**2 - 1))
393
+
394
+ References
395
+ ==========
396
+
397
+ .. [1] S. A. Abramov, Rational solutions of linear difference
398
+ and q-difference equations with polynomial coefficients,
399
+ in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
400
+ 1995, 285-289
401
+
402
+ See Also
403
+ ========
404
+
405
+ rsolve_hyper
406
+ """
407
+ f = sympify(f)
408
+
409
+ if not f.is_polynomial(n):
410
+ return None
411
+
412
+ coeffs = list(map(sympify, coeffs))
413
+
414
+ r = len(coeffs) - 1
415
+
416
+ A, B = coeffs[r], coeffs[0]
417
+ A = A.subs(n, n - r).expand()
418
+
419
+ h = Dummy('h')
420
+
421
+ res = resultant(A, B.subs(n, n + h), n)
422
+
423
+ if not res.is_polynomial(h):
424
+ p, q = res.as_numer_denom()
425
+ res = quo(p, q, h)
426
+
427
+ nni_roots = list(roots(res, h, filter='Z',
428
+ predicate=lambda r: r >= 0).keys())
429
+
430
+ if not nni_roots:
431
+ return rsolve_poly(coeffs, f, n, **hints)
432
+ else:
433
+ C, numers = S.One, [S.Zero]*(r + 1)
434
+
435
+ for i in range(int(max(nni_roots)), -1, -1):
436
+ d = gcd(A, B.subs(n, n + i), n)
437
+
438
+ A = quo(A, d, n)
439
+ B = quo(B, d.subs(n, n - i), n)
440
+
441
+ C *= Mul(*[d.subs(n, n - j) for j in range(i + 1)])
442
+
443
+ denoms = [C.subs(n, n + i) for i in range(r + 1)]
444
+
445
+ for i in range(r + 1):
446
+ g = gcd(coeffs[i], denoms[i], n)
447
+
448
+ numers[i] = quo(coeffs[i], g, n)
449
+ denoms[i] = quo(denoms[i], g, n)
450
+
451
+ for i in range(r + 1):
452
+ numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:]))
453
+
454
+ result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)
455
+
456
+ if result is not None:
457
+ if hints.get('symbols', False):
458
+ return (simplify(result[0] / C), result[1])
459
+ else:
460
+ return simplify(result / C)
461
+ else:
462
+ return None
463
+
464
+
465
+ def rsolve_hyper(coeffs, f, n, **hints):
466
+ r"""
467
+ Given linear recurrence operator `\operatorname{L}` of order `k`
468
+ with polynomial coefficients and inhomogeneous equation
469
+ `\operatorname{L} y = f` we seek for all hypergeometric solutions
470
+ over field `K` of characteristic zero.
471
+
472
+ The inhomogeneous part can be either hypergeometric or a sum
473
+ of a fixed number of pairwise dissimilar hypergeometric terms.
474
+
475
+ The algorithm performs three basic steps:
476
+
477
+ (1) Group together similar hypergeometric terms in the
478
+ inhomogeneous part of `\operatorname{L} y = f`, and find
479
+ particular solution using Abramov's algorithm.
480
+
481
+ (2) Compute generating set of `\operatorname{L}` and find basis
482
+ in it, so that all solutions are linearly independent.
483
+
484
+ (3) Form final solution with the number of arbitrary
485
+ constants equal to dimension of basis of `\operatorname{L}`.
486
+
487
+ Term `a(n)` is hypergeometric if it is annihilated by first order
488
+ linear difference equations with polynomial coefficients or, in
489
+ simpler words, if consecutive term ratio is a rational function.
490
+
491
+ The output of this procedure is a linear combination of fixed
492
+ number of hypergeometric terms. However the underlying method
493
+ can generate larger class of solutions - D'Alembertian terms.
494
+
495
+ Note also that this method not only computes the kernel of the
496
+ inhomogeneous equation, but also reduces in to a basis so that
497
+ solutions generated by this procedure are linearly independent
498
+
499
+ Examples
500
+ ========
501
+
502
+ >>> from sympy.solvers import rsolve_hyper
503
+ >>> from sympy.abc import x
504
+
505
+ >>> rsolve_hyper([-1, -1, 1], 0, x)
506
+ C0*(1/2 - sqrt(5)/2)**x + C1*(1/2 + sqrt(5)/2)**x
507
+
508
+ >>> rsolve_hyper([-1, 1], 1 + x, x)
509
+ C0 + x*(x + 1)/2
510
+
511
+ References
512
+ ==========
513
+
514
+ .. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences
515
+ with polynomial coefficients, J. Symbolic Computation,
516
+ 14 (1992), 243-264.
517
+
518
+ .. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.
519
+ """
520
+ coeffs = list(map(sympify, coeffs))
521
+
522
+ f = sympify(f)
523
+
524
+ r, kernel, symbols = len(coeffs) - 1, [], set()
525
+
526
+ if not f.is_zero:
527
+ if f.is_Add:
528
+ similar = {}
529
+
530
+ for g in f.expand().args:
531
+ if not g.is_hypergeometric(n):
532
+ return None
533
+
534
+ for h in similar.keys():
535
+ if hypersimilar(g, h, n):
536
+ similar[h] += g
537
+ break
538
+ else:
539
+ similar[g] = S.Zero
540
+
541
+ inhomogeneous = [g + h for g, h in similar.items()]
542
+ elif f.is_hypergeometric(n):
543
+ inhomogeneous = [f]
544
+ else:
545
+ return None
546
+
547
+ for i, g in enumerate(inhomogeneous):
548
+ coeff, polys = S.One, coeffs[:]
549
+ denoms = [S.One]*(r + 1)
550
+
551
+ s = hypersimp(g, n)
552
+
553
+ for j in range(1, r + 1):
554
+ coeff *= s.subs(n, n + j - 1)
555
+
556
+ p, q = coeff.as_numer_denom()
557
+
558
+ polys[j] *= p
559
+ denoms[j] = q
560
+
561
+ for j in range(r + 1):
562
+ polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))
563
+
564
+ # FIXME: The call to rsolve_ratio below should suffice (rsolve_poly
565
+ # call can be removed) but the XFAIL test_rsolve_ratio_missed must
566
+ # be fixed first.
567
+ R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True)
568
+ if R is not None:
569
+ R, syms = R
570
+ if syms:
571
+ R = R.subs(zip(syms, [0]*len(syms)))
572
+ else:
573
+ R = rsolve_poly(polys, Mul(*denoms), n)
574
+
575
+ if R:
576
+ inhomogeneous[i] *= R
577
+ else:
578
+ return None
579
+
580
+ result = Add(*inhomogeneous)
581
+ result = simplify(result)
582
+ else:
583
+ result = S.Zero
584
+
585
+ Z = Dummy('Z')
586
+
587
+ p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)
588
+
589
+ p_factors = list(roots(p, n).keys())
590
+ q_factors = list(roots(q, n).keys())
591
+
592
+ factors = [(S.One, S.One)]
593
+
594
+ for p in p_factors:
595
+ for q in q_factors:
596
+ if p.is_integer and q.is_integer and p <= q:
597
+ continue
598
+ else:
599
+ factors += [(n - p, n - q)]
600
+
601
+ p = [(n - p, S.One) for p in p_factors]
602
+ q = [(S.One, n - q) for q in q_factors]
603
+
604
+ factors = p + factors + q
605
+
606
+ for A, B in factors:
607
+ polys, degrees = [], []
608
+ D = A*B.subs(n, n + r - 1)
609
+
610
+ for i in range(r + 1):
611
+ a = Mul(*[A.subs(n, n + j) for j in range(i)])
612
+ b = Mul(*[B.subs(n, n + j) for j in range(i, r)])
613
+
614
+ poly = quo(coeffs[i]*a*b, D, n)
615
+ polys.append(poly.as_poly(n))
616
+
617
+ if not poly.is_zero:
618
+ degrees.append(polys[i].degree())
619
+
620
+ if degrees:
621
+ d, poly = max(degrees), S.Zero
622
+ else:
623
+ return None
624
+
625
+ for i in range(r + 1):
626
+ coeff = polys[i].nth(d)
627
+
628
+ if coeff is not S.Zero:
629
+ poly += coeff * Z**i
630
+
631
+ for z in roots(poly, Z).keys():
632
+ if z.is_zero:
633
+ continue
634
+
635
+ recurr_coeffs = [polys[i].as_expr()*z**i for i in range(r + 1)]
636
+ if d == 0 and 0 != Add(*[recurr_coeffs[j]*j for j in range(1, r + 1)]):
637
+ # faster inline check (than calling rsolve_poly) for a
638
+ # constant solution to a constant coefficient recurrence.
639
+ sol = [Symbol("C" + str(len(symbols)))]
640
+ else:
641
+ sol, syms = rsolve_poly(recurr_coeffs, 0, n, len(symbols), symbols=True)
642
+ sol = sol.collect(syms)
643
+ sol = [sol.coeff(s) for s in syms]
644
+
645
+ for C in sol:
646
+ ratio = z * A * C.subs(n, n + 1) / B / C
647
+ ratio = simplify(ratio)
648
+ # If there is a nonnegative root in the denominator of the ratio,
649
+ # this indicates that the term y(n_root) is zero, and one should
650
+ # start the product with the term y(n_root + 1).
651
+ n0 = 0
652
+ for n_root in roots(ratio.as_numer_denom()[1], n).keys():
653
+ if n_root.has(I):
654
+ return None
655
+ elif (n0 < (n_root + 1)) == True:
656
+ n0 = n_root + 1
657
+ K = product(ratio, (n, n0, n - 1))
658
+ if K.has(factorial, FallingFactorial, RisingFactorial):
659
+ K = simplify(K)
660
+
661
+ if casoratian(kernel + [K], n, zero=False) != 0:
662
+ kernel.append(K)
663
+
664
+ kernel.sort(key=default_sort_key)
665
+ sk = list(zip(numbered_symbols('C'), kernel))
666
+
667
+ for C, ker in sk:
668
+ result += C * ker
669
+
670
+ if hints.get('symbols', False):
671
+ # XXX: This returns the symbols in a non-deterministic order
672
+ symbols |= {s for s, k in sk}
673
+ return (result, list(symbols))
674
+ else:
675
+ return result
676
+
677
+
678
+ def rsolve(f, y, init=None):
679
+ r"""
680
+ Solve univariate recurrence with rational coefficients.
681
+
682
+ Given `k`-th order linear recurrence `\operatorname{L} y = f`,
683
+ or equivalently:
684
+
685
+ .. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) +
686
+ \cdots + a_{0}(n) y(n) = f(n)
687
+
688
+ where `a_{i}(n)`, for `i=0, \ldots, k`, are polynomials or rational
689
+ functions in `n`, and `f` is a hypergeometric function or a sum
690
+ of a fixed number of pairwise dissimilar hypergeometric terms in
691
+ `n`, finds all solutions or returns ``None``, if none were found.
692
+
693
+ Initial conditions can be given as a dictionary in two forms:
694
+
695
+ (1) ``{ n_0 : v_0, n_1 : v_1, ..., n_m : v_m}``
696
+ (2) ``{y(n_0) : v_0, y(n_1) : v_1, ..., y(n_m) : v_m}``
697
+
698
+ or as a list ``L`` of values:
699
+
700
+ ``L = [v_0, v_1, ..., v_m]``
701
+
702
+ where ``L[i] = v_i``, for `i=0, \ldots, m`, maps to `y(n_i)`.
703
+
704
+ Examples
705
+ ========
706
+
707
+ Lets consider the following recurrence:
708
+
709
+ .. math:: (n - 1) y(n + 2) - (n^2 + 3 n - 2) y(n + 1) +
710
+ 2 n (n + 1) y(n) = 0
711
+
712
+ >>> from sympy import Function, rsolve
713
+ >>> from sympy.abc import n
714
+ >>> y = Function('y')
715
+
716
+ >>> f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)
717
+
718
+ >>> rsolve(f, y(n))
719
+ 2**n*C0 + C1*factorial(n)
720
+
721
+ >>> rsolve(f, y(n), {y(0):0, y(1):3})
722
+ 3*2**n - 3*factorial(n)
723
+
724
+ See Also
725
+ ========
726
+
727
+ rsolve_poly, rsolve_ratio, rsolve_hyper
728
+
729
+ """
730
+ if isinstance(f, Equality):
731
+ f = f.lhs - f.rhs
732
+
733
+ n = y.args[0]
734
+ k = Wild('k', exclude=(n,))
735
+
736
+ # Preprocess user input to allow things like
737
+ # y(n) + a*(y(n + 1) + y(n - 1))/2
738
+ f = f.expand().collect(y.func(Wild('m', integer=True)))
739
+
740
+ h_part = defaultdict(list)
741
+ i_part = []
742
+ for g in Add.make_args(f):
743
+ coeff, dep = g.as_coeff_mul(y.func)
744
+ if not dep:
745
+ i_part.append(coeff)
746
+ continue
747
+ for h in dep:
748
+ if h.is_Function and h.func == y.func:
749
+ result = h.args[0].match(n + k)
750
+ if result is not None:
751
+ h_part[int(result[k])].append(coeff)
752
+ continue
753
+ raise ValueError(
754
+ "'%s(%s + k)' expected, got '%s'" % (y.func, n, h))
755
+ for k in h_part:
756
+ h_part[k] = Add(*h_part[k])
757
+ h_part.default_factory = lambda: 0
758
+ i_part = Add(*i_part)
759
+
760
+ for k, coeff in h_part.items():
761
+ h_part[k] = simplify(coeff)
762
+
763
+ common = S.One
764
+
765
+ if not i_part.is_zero and not i_part.is_hypergeometric(n) and \
766
+ not (i_part.is_Add and all((x.is_hypergeometric(n) for x in i_part.expand().args))):
767
+ raise ValueError("The independent term should be a sum of hypergeometric functions, got '%s'" % i_part)
768
+
769
+ for coeff in h_part.values():
770
+ if coeff.is_rational_function(n):
771
+ if not coeff.is_polynomial(n):
772
+ common = lcm(common, coeff.as_numer_denom()[1], n)
773
+ else:
774
+ raise ValueError(
775
+ "Polynomial or rational function expected, got '%s'" % coeff)
776
+
777
+ i_numer, i_denom = i_part.as_numer_denom()
778
+
779
+ if i_denom.is_polynomial(n):
780
+ common = lcm(common, i_denom, n)
781
+
782
+ if common is not S.One:
783
+ for k, coeff in h_part.items():
784
+ numer, denom = coeff.as_numer_denom()
785
+ h_part[k] = numer*quo(common, denom, n)
786
+
787
+ i_part = i_numer*quo(common, i_denom, n)
788
+
789
+ K_min = min(h_part.keys())
790
+
791
+ if K_min < 0:
792
+ K = abs(K_min)
793
+
794
+ H_part = defaultdict(lambda: S.Zero)
795
+ i_part = i_part.subs(n, n + K).expand()
796
+ common = common.subs(n, n + K).expand()
797
+
798
+ for k, coeff in h_part.items():
799
+ H_part[k + K] = coeff.subs(n, n + K).expand()
800
+ else:
801
+ H_part = h_part
802
+
803
+ K_max = max(H_part.keys())
804
+ coeffs = [H_part[i] for i in range(K_max + 1)]
805
+
806
+ result = rsolve_hyper(coeffs, -i_part, n, symbols=True)
807
+
808
+ if result is None:
809
+ return None
810
+
811
+ solution, symbols = result
812
+
813
+ if init in ({}, []):
814
+ init = None
815
+
816
+ if symbols and init is not None:
817
+ if isinstance(init, list):
818
+ init = {i: init[i] for i in range(len(init))}
819
+
820
+ equations = []
821
+
822
+ for k, v in init.items():
823
+ try:
824
+ i = int(k)
825
+ except TypeError:
826
+ if k.is_Function and k.func == y.func:
827
+ i = int(k.args[0])
828
+ else:
829
+ raise ValueError("Integer or term expected, got '%s'" % k)
830
+
831
+ eq = solution.subs(n, i) - v
832
+ if eq.has(S.NaN):
833
+ eq = solution.limit(n, i) - v
834
+ equations.append(eq)
835
+
836
+ result = solve(equations, *symbols)
837
+
838
+ if not result:
839
+ return None
840
+ else:
841
+ solution = solution.subs(result)
842
+
843
+ return solution
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/simplex.py ADDED
@@ -0,0 +1,1141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for optimizing a linear function for a given simplex.
2
+
3
+ For the linear objective function ``f`` with linear constraints
4
+ expressed using `Le`, `Ge` or `Eq` can be found with ``lpmin`` or
5
+ ``lpmax``. The symbols are **unbounded** unless specifically
6
+ constrained.
7
+
8
+ As an alternative, the matrices describing the objective and the
9
+ constraints, and an optional list of bounds can be passed to
10
+ ``linprog`` which will solve for the minimization of ``C*x``
11
+ under constraints ``A*x <= b`` and/or ``Aeq*x = beq``, and
12
+ individual bounds for variables given as ``(lo, hi)``. The values
13
+ returned are **nonnegative** unless bounds are provided that
14
+ indicate otherwise.
15
+
16
+ Errors that might be raised are UnboundedLPError when there is no
17
+ finite solution for the system or InfeasibleLPError when the
18
+ constraints represent impossible conditions (i.e. a non-existant
19
+ simplex).
20
+
21
+ Here is a simple 1-D system: minimize `x` given that ``x >= 1``.
22
+
23
+ >>> from sympy.solvers.simplex import lpmin, linprog
24
+ >>> from sympy.abc import x
25
+
26
+ The function and a list with the constraint is passed directly
27
+ to `lpmin`:
28
+
29
+ >>> lpmin(x, [x >= 1])
30
+ (1, {x: 1})
31
+
32
+ For `linprog` the matrix for the objective is `[1]` and the
33
+ uivariate constraint can be passed as a bound with None acting
34
+ as infinity:
35
+
36
+ >>> linprog([1], bounds=(1, None))
37
+ (1, [1])
38
+
39
+ Or the matrices, corresponding to ``x >= 1`` expressed as
40
+ ``-x <= -1`` as required by the routine, can be passed:
41
+
42
+ >>> linprog([1], [-1], [-1])
43
+ (1, [1])
44
+
45
+ If there is no limit for the objective, an error is raised.
46
+ In this case there is a valid region of interest (simplex)
47
+ but no limit to how small ``x`` can be:
48
+
49
+ >>> lpmin(x, [])
50
+ Traceback (most recent call last):
51
+ ...
52
+ sympy.solvers.simplex.UnboundedLPError:
53
+ Objective function can assume arbitrarily large values!
54
+
55
+ An error is raised if there is no possible solution:
56
+
57
+ >>> lpmin(x,[x<=1,x>=2])
58
+ Traceback (most recent call last):
59
+ ...
60
+ sympy.solvers.simplex.InfeasibleLPError:
61
+ Inconsistent/False constraint
62
+ """
63
+
64
+ from sympy.core import sympify
65
+ from sympy.core.exprtools import factor_terms
66
+ from sympy.core.relational import Le, Ge, Eq
67
+ from sympy.core.singleton import S
68
+ from sympy.core.symbol import Dummy
69
+ from sympy.core.sorting import ordered
70
+ from sympy.functions.elementary.complexes import sign
71
+ from sympy.matrices.dense import Matrix, zeros
72
+ from sympy.solvers.solveset import linear_eq_to_matrix
73
+ from sympy.utilities.iterables import numbered_symbols
74
+ from sympy.utilities.misc import filldedent
75
+
76
+
77
+ class UnboundedLPError(Exception):
78
+ """
79
+ A linear programing problem is said to be unbounded if its objective
80
+ function can assume arbitrarily large values.
81
+
82
+ Example
83
+ =======
84
+
85
+ Suppose you want to maximize
86
+ 2x
87
+ subject to
88
+ x >= 0
89
+
90
+ There's no upper limit that 2x can take.
91
+ """
92
+
93
+ pass
94
+
95
+
96
+ class InfeasibleLPError(Exception):
97
+ """
98
+ A linear programing problem is considered infeasible if its
99
+ constraint set is empty. That is, if the set of all vectors
100
+ satisfying the contraints is empty, then the problem is infeasible.
101
+
102
+ Example
103
+ =======
104
+
105
+ Suppose you want to maximize
106
+ x
107
+ subject to
108
+ x >= 10
109
+ x <= 9
110
+
111
+ No x can satisfy those constraints.
112
+ """
113
+
114
+ pass
115
+
116
+
117
+ def _pivot(M, i, j):
118
+ """
119
+ The pivot element `M[i, j]` is inverted and the rest of the matrix
120
+ modified and returned as a new matrix; original is left unmodified.
121
+
122
+ Example
123
+ =======
124
+
125
+ >>> from sympy.matrices.dense import Matrix
126
+ >>> from sympy.solvers.simplex import _pivot
127
+ >>> from sympy import var
128
+ >>> Matrix(3, 3, var('a:i'))
129
+ Matrix([
130
+ [a, b, c],
131
+ [d, e, f],
132
+ [g, h, i]])
133
+ >>> _pivot(_, 1, 0)
134
+ Matrix([
135
+ [-a/d, -a*e/d + b, -a*f/d + c],
136
+ [ 1/d, e/d, f/d],
137
+ [-g/d, h - e*g/d, i - f*g/d]])
138
+ """
139
+ Mi, Mj, Mij = M[i, :], M[:, j], M[i, j]
140
+ if Mij == 0:
141
+ raise ZeroDivisionError(
142
+ "Tried to pivot about zero-valued entry.")
143
+ A = M - Mj * (Mi / Mij)
144
+ A[i, :] = Mi / Mij
145
+ A[:, j] = -Mj / Mij
146
+ A[i, j] = 1 / Mij
147
+ return A
148
+
149
+
150
+ def _choose_pivot_row(A, B, candidate_rows, pivot_col, Y):
151
+ # Choose row with smallest ratio
152
+ # If there are ties, pick using Bland's rule
153
+ return min(candidate_rows, key=lambda i: (B[i] / A[i, pivot_col], Y[i]))
154
+
155
+
156
+ def _simplex(A, B, C, D=None, dual=False):
157
+ """Return ``(o, x, y)`` obtained from the two-phase simplex method
158
+ using Bland's rule: ``o`` is the minimum value of primal,
159
+ ``Cx - D``, under constraints ``Ax <= B`` (with ``x >= 0``) and
160
+ the maximum of the dual, ``y^{T}B - D``, under constraints
161
+ ``A^{T}*y >= C^{T}`` (with ``y >= 0``). To compute the dual of
162
+ the system, pass `dual=True` and ``(o, y, x)`` will be returned.
163
+
164
+ Note: the nonnegative constraints for ``x`` and ``y`` supercede
165
+ any values of ``A`` and ``B`` that are inconsistent with that
166
+ assumption, so if a constraint of ``x >= -1`` is represented
167
+ in ``A`` and ``B``, no value will be obtained that is negative; if
168
+ a constraint of ``x <= -1`` is represented, an error will be
169
+ raised since no solution is possible.
170
+
171
+ This routine relies on the ability of determining whether an
172
+ expression is 0 or not. This is guaranteed if the input contains
173
+ only Float or Rational entries. It will raise a TypeError if
174
+ a relationship does not evaluate to True or False.
175
+
176
+ Examples
177
+ ========
178
+
179
+ >>> from sympy.solvers.simplex import _simplex
180
+ >>> from sympy import Matrix
181
+
182
+ Consider the simple minimization of ``f = x + y + 1`` under the
183
+ constraint that ``y + 2*x >= 4``. This is the "standard form" of
184
+ a minimization.
185
+
186
+ In the nonnegative quadrant, this inequality describes a area above
187
+ a triangle with vertices at (0, 4), (0, 0) and (2, 0). The minimum
188
+ of ``f`` occurs at (2, 0). Define A, B, C, D for the standard
189
+ minimization:
190
+
191
+ >>> A = Matrix([[2, 1]])
192
+ >>> B = Matrix([4])
193
+ >>> C = Matrix([[1, 1]])
194
+ >>> D = Matrix([-1])
195
+
196
+ Confirm that this is the system of interest:
197
+
198
+ >>> from sympy.abc import x, y
199
+ >>> X = Matrix([x, y])
200
+ >>> (C*X - D)[0]
201
+ x + y + 1
202
+ >>> [i >= j for i, j in zip(A*X, B)]
203
+ [2*x + y >= 4]
204
+
205
+ Since `_simplex` will do a minimization for constraints given as
206
+ ``A*x <= B``, the signs of ``A`` and ``B`` must be negated since
207
+ the currently correspond to a greater-than inequality:
208
+
209
+ >>> _simplex(-A, -B, C, D)
210
+ (3, [2, 0], [1/2])
211
+
212
+ The dual of minimizing ``f`` is maximizing ``F = c*y - d`` for
213
+ ``a*y <= b`` where ``a``, ``b``, ``c``, ``d`` are derived from the
214
+ transpose of the matrix representation of the standard minimization:
215
+
216
+ >>> tr = lambda a, b, c, d: [i.T for i in (a, c, b, d)]
217
+ >>> a, b, c, d = tr(A, B, C, D)
218
+
219
+ This time ``a*x <= b`` is the expected inequality for the `_simplex`
220
+ method, but to maximize ``F``, the sign of ``c`` and ``d`` must be
221
+ changed (so that minimizing the negative will give the negative of
222
+ the maximum of ``F``):
223
+
224
+ >>> _simplex(a, b, -c, -d)
225
+ (-3, [1/2], [2, 0])
226
+
227
+ The negative of ``F`` and the min of ``f`` are the same. The dual
228
+ point `[1/2]` is the value of ``y`` that minimized ``F = c*y - d``
229
+ under constraints a*x <= b``:
230
+
231
+ >>> y = Matrix(['y'])
232
+ >>> (c*y - d)[0]
233
+ 4*y + 1
234
+ >>> [i <= j for i, j in zip(a*y,b)]
235
+ [2*y <= 1, y <= 1]
236
+
237
+ In this 1-dimensional dual system, the more restrictive contraint is
238
+ the first which limits ``y`` between 0 and 1/2 and the maximum of
239
+ ``F`` is attained at the nonzero value, hence is ``4*(1/2) + 1 = 3``.
240
+
241
+ In this case the values for ``x`` and ``y`` were the same when the
242
+ dual representation was solved. This is not always the case (though
243
+ the value of the function will be the same).
244
+
245
+ >>> l = [[1, 1], [-1, 1], [0, 1], [-1, 0]], [5, 1, 2, -1], [[1, 1]], [-1]
246
+ >>> A, B, C, D = [Matrix(i) for i in l]
247
+ >>> _simplex(A, B, -C, -D)
248
+ (-6, [3, 2], [1, 0, 0, 0])
249
+ >>> _simplex(A, B, -C, -D, dual=True) # [5, 0] != [3, 2]
250
+ (-6, [1, 0, 0, 0], [5, 0])
251
+
252
+ In both cases the function has the same value:
253
+
254
+ >>> Matrix(C)*Matrix([3, 2]) == Matrix(C)*Matrix([5, 0])
255
+ True
256
+
257
+ See Also
258
+ ========
259
+ _lp - poses min/max problem in form compatible with _simplex
260
+ lpmin - minimization which calls _lp
261
+ lpmax - maximimzation which calls _lp
262
+
263
+ References
264
+ ==========
265
+
266
+ .. [1] Thomas S. Ferguson, LINEAR PROGRAMMING: A Concise Introduction
267
+ web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_lp.pdf
268
+
269
+ """
270
+ A, B, C, D = [Matrix(i) for i in (A, B, C, D or [0])]
271
+ if dual:
272
+ _o, d, p = _simplex(-A.T, C.T, B.T, -D)
273
+ return -_o, d, p
274
+
275
+ if A and B:
276
+ M = Matrix([[A, B], [C, D]])
277
+ else:
278
+ if A or B:
279
+ raise ValueError("must give A and B")
280
+ # no constraints given
281
+ M = Matrix([[C, D]])
282
+ n = M.cols - 1
283
+ m = M.rows - 1
284
+
285
+ if not all(i.is_Float or i.is_Rational for i in M):
286
+ # with literal Float and Rational we are guaranteed the
287
+ # ability of determining whether an expression is 0 or not
288
+ raise TypeError(filldedent("""
289
+ Only rationals and floats are allowed.
290
+ """
291
+ )
292
+ )
293
+
294
+ # x variables have priority over y variables during Bland's rule
295
+ # since False < True
296
+ X = [(False, j) for j in range(n)]
297
+ Y = [(True, i) for i in range(m)]
298
+
299
+ # Phase 1: find a feasible solution or determine none exist
300
+
301
+ ## keep track of last pivot row and column
302
+ last = None
303
+
304
+ while True:
305
+ B = M[:-1, -1]
306
+ A = M[:-1, :-1]
307
+ if all(B[i] >= 0 for i in range(B.rows)):
308
+ # We have found a feasible solution
309
+ break
310
+
311
+ # Find k: first row with a negative rightmost entry
312
+ for k in range(B.rows):
313
+ if B[k] < 0:
314
+ break # use current value of k below
315
+ else:
316
+ pass # error will raise below
317
+
318
+ # Choose pivot column, c
319
+ piv_cols = [_ for _ in range(A.cols) if A[k, _] < 0]
320
+ if not piv_cols:
321
+ raise InfeasibleLPError(filldedent("""
322
+ The constraint set is empty!"""))
323
+ _, c = min((X[i], i) for i in piv_cols) # Bland's rule
324
+
325
+ # Choose pivot row, r
326
+ piv_rows = [_ for _ in range(A.rows) if A[_, c] > 0 and B[_] > 0]
327
+ piv_rows.append(k)
328
+ r = _choose_pivot_row(A, B, piv_rows, c, Y)
329
+
330
+ # check for oscillation
331
+ if (r, c) == last:
332
+ # Not sure what to do here; it looks like there will be
333
+ # oscillations; see o1 test added at this commit to
334
+ # see a system with no solution and the o2 for one
335
+ # with a solution. In the case of o2, the solution
336
+ # from linprog is the same as the one from lpmin, but
337
+ # the matrices created in the lpmin case are different
338
+ # than those created without replacements in linprog and
339
+ # the matrices in the linprog case lead to oscillations.
340
+ # If the matrices could be re-written in linprog like
341
+ # lpmin does, this behavior could be avoided and then
342
+ # perhaps the oscillating case would only occur when
343
+ # there is no solution. For now, the output is checked
344
+ # before exit if oscillations were detected and an
345
+ # error is raised there if the solution was invalid.
346
+ #
347
+ # cf section 6 of Ferguson for a non-cycling modification
348
+ last = True
349
+ break
350
+ last = r, c
351
+
352
+ M = _pivot(M, r, c)
353
+ X[c], Y[r] = Y[r], X[c]
354
+
355
+ # Phase 2: from a feasible solution, pivot to optimal
356
+ while True:
357
+ B = M[:-1, -1]
358
+ A = M[:-1, :-1]
359
+ C = M[-1, :-1]
360
+
361
+ # Choose a pivot column, c
362
+ piv_cols = []
363
+ piv_cols = [_ for _ in range(n) if C[_] < 0]
364
+ if not piv_cols:
365
+ break
366
+ _, c = min((X[i], i) for i in piv_cols) # Bland's rule
367
+
368
+ # Choose a pivot row, r
369
+ piv_rows = [_ for _ in range(m) if A[_, c] > 0]
370
+ if not piv_rows:
371
+ raise UnboundedLPError(filldedent("""
372
+ Objective function can assume
373
+ arbitrarily large values!"""))
374
+ r = _choose_pivot_row(A, B, piv_rows, c, Y)
375
+
376
+ M = _pivot(M, r, c)
377
+ X[c], Y[r] = Y[r], X[c]
378
+
379
+ argmax = [None] * n
380
+ argmin_dual = [None] * m
381
+
382
+ for i, (v, n) in enumerate(X):
383
+ if v == False:
384
+ argmax[n] = 0
385
+ else:
386
+ argmin_dual[n] = M[-1, i]
387
+
388
+ for i, (v, n) in enumerate(Y):
389
+ if v == True:
390
+ argmin_dual[n] = 0
391
+ else:
392
+ argmax[n] = M[i, -1]
393
+
394
+ if last and not all(i >= 0 for i in argmax + argmin_dual):
395
+ raise InfeasibleLPError(filldedent("""
396
+ Oscillating system led to invalid solution.
397
+ If you believe there was a valid solution, please
398
+ report this as a bug."""))
399
+ return -M[-1, -1], argmax, argmin_dual
400
+
401
+
402
+ ## routines that use _simplex or support those that do
403
+
404
+
405
+ def _abcd(M, list=False):
406
+ """return parts of M as matrices or lists
407
+
408
+ Examples
409
+ ========
410
+
411
+ >>> from sympy import Matrix
412
+ >>> from sympy.solvers.simplex import _abcd
413
+
414
+ >>> m = Matrix(3, 3, range(9)); m
415
+ Matrix([
416
+ [0, 1, 2],
417
+ [3, 4, 5],
418
+ [6, 7, 8]])
419
+ >>> a, b, c, d = _abcd(m)
420
+ >>> a
421
+ Matrix([
422
+ [0, 1],
423
+ [3, 4]])
424
+ >>> b
425
+ Matrix([
426
+ [2],
427
+ [5]])
428
+ >>> c
429
+ Matrix([[6, 7]])
430
+ >>> d
431
+ Matrix([[8]])
432
+
433
+ The matrices can be returned as compact lists, too:
434
+
435
+ >>> L = a, b, c, d = _abcd(m, list=True); L
436
+ ([[0, 1], [3, 4]], [2, 5], [[6, 7]], [8])
437
+ """
438
+
439
+ def aslist(i):
440
+ l = i.tolist()
441
+ if len(l[0]) == 1: # col vector
442
+ return [i[0] for i in l]
443
+ return l
444
+
445
+ m = M[:-1, :-1], M[:-1, -1], M[-1, :-1], M[-1:, -1:]
446
+ if not list:
447
+ return m
448
+ return tuple([aslist(i) for i in m])
449
+
450
+
451
+ def _m(a, b, c, d=None):
452
+ """return Matrix([[a, b], [c, d]]) from matrices
453
+ in Matrix or list form.
454
+
455
+ Examples
456
+ ========
457
+
458
+ >>> from sympy import Matrix
459
+ >>> from sympy.solvers.simplex import _abcd, _m
460
+ >>> m = Matrix(3, 3, range(9))
461
+ >>> L = _abcd(m, list=True); L
462
+ ([[0, 1], [3, 4]], [2, 5], [[6, 7]], [8])
463
+ >>> _abcd(m)
464
+ (Matrix([
465
+ [0, 1],
466
+ [3, 4]]), Matrix([
467
+ [2],
468
+ [5]]), Matrix([[6, 7]]), Matrix([[8]]))
469
+ >>> assert m == _m(*L) == _m(*_)
470
+ """
471
+ a, b, c, d = [Matrix(i) for i in (a, b, c, d or [0])]
472
+ return Matrix([[a, b], [c, d]])
473
+
474
+
475
+ def _primal_dual(M, factor=True):
476
+ """return primal and dual function and constraints
477
+ assuming that ``M = Matrix([[A, b], [c, d]])`` and the
478
+ function ``c*x - d`` is being minimized with ``Ax >= b``
479
+ for nonnegative values of ``x``. The dual and its
480
+ constraints will be for maximizing `b.T*y - d` subject
481
+ to ``A.T*y <= c.T``.
482
+
483
+ Examples
484
+ ========
485
+
486
+ >>> from sympy.solvers.simplex import _primal_dual, lpmin, lpmax
487
+ >>> from sympy import Matrix
488
+
489
+ The following matrix represents the primal task of
490
+ minimizing x + y + 7 for y >= x + 1 and y >= -2*x + 3.
491
+ The dual task seeks to maximize x + 3*y + 7 with
492
+ 2*y - x <= 1 and and x + y <= 1:
493
+
494
+ >>> M = Matrix([
495
+ ... [-1, 1, 1],
496
+ ... [ 2, 1, 3],
497
+ ... [ 1, 1, -7]])
498
+ >>> p, d = _primal_dual(M)
499
+
500
+ The minimum of the primal and maximum of the dual are the same
501
+ (though they occur at different points):
502
+
503
+ >>> lpmin(*p)
504
+ (28/3, {x1: 2/3, x2: 5/3})
505
+ >>> lpmax(*d)
506
+ (28/3, {y1: 1/3, y2: 2/3})
507
+
508
+ If the equivalent (but canonical) inequalities are
509
+ desired, leave `factor=True`, otherwise the unmodified
510
+ inequalities for M will be returned.
511
+
512
+ >>> m = Matrix([
513
+ ... [-3, -2, 4, -2],
514
+ ... [ 2, 0, 0, -2],
515
+ ... [ 0, 1, -3, 0]])
516
+
517
+ >>> _primal_dual(m, False) # last condition is 2*x1 >= -2
518
+ ((x2 - 3*x3,
519
+ [-3*x1 - 2*x2 + 4*x3 >= -2, 2*x1 >= -2]),
520
+ (-2*y1 - 2*y2,
521
+ [-3*y1 + 2*y2 <= 0, -2*y1 <= 1, 4*y1 <= -3]))
522
+
523
+ >>> _primal_dual(m) # condition now x1 >= -1
524
+ ((x2 - 3*x3,
525
+ [-3*x1 - 2*x2 + 4*x3 >= -2, x1 >= -1]),
526
+ (-2*y1 - 2*y2,
527
+ [-3*y1 + 2*y2 <= 0, -2*y1 <= 1, 4*y1 <= -3]))
528
+
529
+ If you pass the transpose of the matrix, the primal will be
530
+ identified as the standard minimization problem and the
531
+ dual as the standard maximization:
532
+
533
+ >>> _primal_dual(m.T)
534
+ ((-2*x1 - 2*x2,
535
+ [-3*x1 + 2*x2 >= 0, -2*x1 >= 1, 4*x1 >= -3]),
536
+ (y2 - 3*y3,
537
+ [-3*y1 - 2*y2 + 4*y3 <= -2, y1 <= -1]))
538
+
539
+ A matrix must have some size or else None will be returned for
540
+ the functions:
541
+
542
+ >>> _primal_dual(Matrix([[1, 2]]))
543
+ ((x1 - 2, []), (-2, []))
544
+
545
+ >>> _primal_dual(Matrix([]))
546
+ ((None, []), (None, []))
547
+
548
+ References
549
+ ==========
550
+
551
+ .. [1] David Galvin, Relations between Primal and Dual
552
+ www3.nd.edu/~dgalvin1/30210/30210_F07/presentations/dual_opt.pdf
553
+ """
554
+ if not M:
555
+ return (None, []), (None, [])
556
+ if not hasattr(M, "shape"):
557
+ if len(M) not in (3, 4):
558
+ raise ValueError("expecting Matrix or 3 or 4 lists")
559
+ M = _m(*M)
560
+ m, n = [i - 1 for i in M.shape]
561
+ A, b, c, d = _abcd(M)
562
+ d = d[0]
563
+ _ = lambda x: numbered_symbols(x, start=1)
564
+ x = Matrix([i for i, j in zip(_("x"), range(n))])
565
+ yT = Matrix([i for i, j in zip(_("y"), range(m))]).T
566
+
567
+ def ineq(L, r, op):
568
+ rv = []
569
+ for r in (op(i, j) for i, j in zip(L, r)):
570
+ if r == True:
571
+ continue
572
+ elif r == False:
573
+ return [False]
574
+ if factor:
575
+ f = factor_terms(r)
576
+ if f.lhs.is_Mul and f.rhs % f.lhs.args[0] == 0:
577
+ assert len(f.lhs.args) == 2, f.lhs
578
+ k = f.lhs.args[0]
579
+ r = r.func(sign(k) * f.lhs.args[1], f.rhs // abs(k))
580
+ rv.append(r)
581
+ return rv
582
+
583
+ eq = lambda x, d: x[0] - d if x else -d
584
+ F = eq(c * x, d)
585
+ f = eq(yT * b, d)
586
+ return (F, ineq(A * x, b, Ge)), (f, ineq(yT * A, c, Le))
587
+
588
+
589
+ def _rel_as_nonpos(constr, syms):
590
+ """return `(np, d, aux)` where `np` is a list of nonpositive
591
+ expressions that represent the given constraints (possibly
592
+ rewritten in terms of auxilliary variables) expressible with
593
+ nonnegative symbols, and `d` is a dictionary mapping a given
594
+ symbols to an expression with an auxilliary variable. In some
595
+ cases a symbol will be used as part of the change of variables,
596
+ e.g. x: x - z1 instead of x: z1 - z2.
597
+
598
+ If any constraint is False/empty, return None. All variables in
599
+ ``constr`` are assumed to be unbounded unless explicitly indicated
600
+ otherwise with a univariate constraint, e.g. ``x >= 0`` will
601
+ restrict ``x`` to nonnegative values.
602
+
603
+ The ``syms`` must be included so all symbols can be given an
604
+ unbounded assumption if they are not otherwise bound with
605
+ univariate conditions like ``x <= 3``.
606
+
607
+ Examples
608
+ ========
609
+
610
+ >>> from sympy.solvers.simplex import _rel_as_nonpos
611
+ >>> from sympy.abc import x, y
612
+ >>> _rel_as_nonpos([x >= y, x >= 0, y >= 0], (x, y))
613
+ ([-x + y], {}, [])
614
+ >>> _rel_as_nonpos([x >= 3, x <= 5], [x])
615
+ ([_z1 - 2], {x: _z1 + 3}, [_z1])
616
+ >>> _rel_as_nonpos([x <= 5], [x])
617
+ ([], {x: 5 - _z1}, [_z1])
618
+ >>> _rel_as_nonpos([x >= 1], [x])
619
+ ([], {x: _z1 + 1}, [_z1])
620
+ """
621
+ r = {} # replacements to handle change of variables
622
+ np = [] # nonpositive expressions
623
+ aux = [] # auxilliary symbols added
624
+ ui = numbered_symbols("z", start=1, cls=Dummy) # auxilliary symbols
625
+ univariate = {} # {x: interval} for univariate constraints
626
+ unbound = [] # symbols designated as unbound
627
+ syms = set(syms) # the expected syms of the system
628
+
629
+ # separate out univariates
630
+ for i in constr:
631
+ if i == True:
632
+ continue # ignore
633
+ if i == False:
634
+ return # no solution
635
+ if i.has(S.Infinity, S.NegativeInfinity):
636
+ raise ValueError("only finite bounds are permitted")
637
+ if isinstance(i, (Le, Ge)):
638
+ i = i.lts - i.gts
639
+ freei = i.free_symbols
640
+ if freei - syms:
641
+ raise ValueError(
642
+ "unexpected symbol(s) in constraint: %s" % (freei - syms)
643
+ )
644
+ if len(freei) > 1:
645
+ np.append(i)
646
+ elif freei:
647
+ x = freei.pop()
648
+ if x in unbound:
649
+ continue # will handle later
650
+ ivl = Le(i, 0, evaluate=False).as_set()
651
+ if x not in univariate:
652
+ univariate[x] = ivl
653
+ else:
654
+ univariate[x] &= ivl
655
+ elif i:
656
+ return False
657
+ else:
658
+ raise TypeError(filldedent("""
659
+ only equalities like Eq(x, y) or non-strict
660
+ inequalities like x >= y are allowed in lp, not %s""" % i))
661
+
662
+ # introduce auxilliary variables as needed for univariate
663
+ # inequalities
664
+ for x in syms:
665
+ i = univariate.get(x, True)
666
+ if not i:
667
+ return None # no solution possible
668
+ if i == True:
669
+ unbound.append(x)
670
+ continue
671
+ a, b = i.inf, i.sup
672
+ if a.is_infinite:
673
+ u = next(ui)
674
+ r[x] = b - u
675
+ aux.append(u)
676
+ elif b.is_infinite:
677
+ if a:
678
+ u = next(ui)
679
+ r[x] = a + u
680
+ aux.append(u)
681
+ else:
682
+ # standard nonnegative relationship
683
+ pass
684
+ else:
685
+ u = next(ui)
686
+ aux.append(u)
687
+ # shift so u = x - a => x = u + a
688
+ r[x] = u + a
689
+ # add constraint for u <= b - a
690
+ # since when u = b-a then x = u + a = b - a + a = b:
691
+ # the upper limit for x
692
+ np.append(u - (b - a))
693
+
694
+ # make change of variables for unbound variables
695
+ for x in unbound:
696
+ u = next(ui)
697
+ r[x] = u - x # reusing x
698
+ aux.append(u)
699
+
700
+ return np, r, aux
701
+
702
+
703
+ def _lp_matrices(objective, constraints):
704
+ """return A, B, C, D, r, x+X, X for maximizing
705
+ objective = Cx - D with constraints Ax <= B, introducing
706
+ introducing auxilliary variables, X, as necessary to make
707
+ replacements of symbols as given in r, {xi: expression with Xj},
708
+ so all variables in x+X will take on nonnegative values.
709
+
710
+ Every univariate condition creates a semi-infinite
711
+ condition, e.g. a single ``x <= 3`` creates the
712
+ interval ``[-oo, 3]`` while ``x <= 3`` and ``x >= 2``
713
+ create an interval ``[2, 3]``. Variables not in a univariate
714
+ expression will take on nonnegative values.
715
+ """
716
+
717
+ # sympify input and collect free symbols
718
+ F = sympify(objective)
719
+ np = [sympify(i) for i in constraints]
720
+ syms = set.union(*[i.free_symbols for i in [F] + np], set())
721
+
722
+ # change Eq(x, y) to x - y <= 0 and y - x <= 0
723
+ for i in range(len(np)):
724
+ if isinstance(np[i], Eq):
725
+ np[i] = np[i].lhs - np[i].rhs <= 0
726
+ np.append(-np[i].lhs <= 0)
727
+
728
+ # convert constraints to nonpositive expressions
729
+ _ = _rel_as_nonpos(np, syms)
730
+ if _ is None:
731
+ raise InfeasibleLPError(filldedent("""
732
+ Inconsistent/False constraint"""))
733
+ np, r, aux = _
734
+
735
+ # do change of variables
736
+ F = F.xreplace(r)
737
+ np = [i.xreplace(r) for i in np]
738
+
739
+ # convert to matrices
740
+ xx = list(ordered(syms)) + aux
741
+ A, B = linear_eq_to_matrix(np, xx)
742
+ C, D = linear_eq_to_matrix([F], xx)
743
+ return A, B, C, D, r, xx, aux
744
+
745
+
746
+ def _lp(min_max, f, constr):
747
+ """Return the optimization (min or max) of ``f`` with the given
748
+ constraints. All variables are unbounded unless constrained.
749
+
750
+ If `min_max` is 'max' then the results corresponding to the
751
+ maximization of ``f`` will be returned, else the minimization.
752
+ The constraints can be given as Le, Ge or Eq expressions.
753
+
754
+ Examples
755
+ ========
756
+
757
+ >>> from sympy.solvers.simplex import _lp as lp
758
+ >>> from sympy import Eq
759
+ >>> from sympy.abc import x, y, z
760
+ >>> f = x + y - 2*z
761
+ >>> c = [7*x + 4*y - 7*z <= 3, 3*x - y + 10*z <= 6]
762
+ >>> c += [i >= 0 for i in (x, y, z)]
763
+ >>> lp(min, f, c)
764
+ (-6/5, {x: 0, y: 0, z: 3/5})
765
+
766
+ By passing max, the maximum value for f under the constraints
767
+ is returned (if possible):
768
+
769
+ >>> lp(max, f, c)
770
+ (3/4, {x: 0, y: 3/4, z: 0})
771
+
772
+ Constraints that are equalities will require that the solution
773
+ also satisfy them:
774
+
775
+ >>> lp(max, f, c + [Eq(y - 9*x, 1)])
776
+ (5/7, {x: 0, y: 1, z: 1/7})
777
+
778
+ All symbols are reported, even if they are not in the objective
779
+ function:
780
+
781
+ >>> lp(min, x, [y + x >= 3, x >= 0])
782
+ (0, {x: 0, y: 3})
783
+ """
784
+ # get the matrix components for the system expressed
785
+ # in terms of only nonnegative variables
786
+ A, B, C, D, r, xx, aux = _lp_matrices(f, constr)
787
+
788
+ how = str(min_max).lower()
789
+ if "max" in how:
790
+ # _simplex minimizes for Ax <= B so we
791
+ # have to change the sign of the function
792
+ # and negate the optimal value returned
793
+ _o, p, d = _simplex(A, B, -C, -D)
794
+ o = -_o
795
+ elif "min" in how:
796
+ o, p, d = _simplex(A, B, C, D)
797
+ else:
798
+ raise ValueError("expecting min or max")
799
+
800
+ # restore original variables and remove aux from p
801
+ p = dict(zip(xx, p))
802
+ if r: # p has original symbols and auxilliary symbols
803
+ # if r has x: x - z1 use values from p to update
804
+ r = {k: v.xreplace(p) for k, v in r.items()}
805
+ # then use the actual value of x (= x - z1) in p
806
+ p.update(r)
807
+ # don't show aux
808
+ p = {k: p[k] for k in ordered(p) if k not in aux}
809
+
810
+ # not returning dual since there may be extra constraints
811
+ # when a variable has finite bounds
812
+ return o, p
813
+
814
+
815
+ def lpmin(f, constr):
816
+ """return minimum of linear equation ``f`` under
817
+ linear constraints expressed using Ge, Le or Eq.
818
+
819
+ All variables are unbounded unless constrained.
820
+
821
+ Examples
822
+ ========
823
+
824
+ >>> from sympy.solvers.simplex import lpmin
825
+ >>> from sympy import Eq
826
+ >>> from sympy.abc import x, y
827
+ >>> lpmin(x, [2*x - 3*y >= -1, Eq(x + 3*y, 2), x <= 2*y])
828
+ (1/3, {x: 1/3, y: 5/9})
829
+
830
+ Negative values for variables are permitted unless explicitly
831
+ exluding, so minimizing ``x`` for ``x <= 3`` is an
832
+ unbounded problem while the following has a bounded solution:
833
+
834
+ >>> lpmin(x, [x >= 0, x <= 3])
835
+ (0, {x: 0})
836
+
837
+ Without indicating that ``x`` is nonnegative, there
838
+ is no minimum for this objective:
839
+
840
+ >>> lpmin(x, [x <= 3])
841
+ Traceback (most recent call last):
842
+ ...
843
+ sympy.solvers.simplex.UnboundedLPError:
844
+ Objective function can assume arbitrarily large values!
845
+
846
+ See Also
847
+ ========
848
+ linprog, lpmax
849
+ """
850
+ return _lp(min, f, constr)
851
+
852
+
853
+ def lpmax(f, constr):
854
+ """return maximum of linear equation ``f`` under
855
+ linear constraints expressed using Ge, Le or Eq.
856
+
857
+ All variables are unbounded unless constrained.
858
+
859
+ Examples
860
+ ========
861
+
862
+ >>> from sympy.solvers.simplex import lpmax
863
+ >>> from sympy import Eq
864
+ >>> from sympy.abc import x, y
865
+ >>> lpmax(x, [2*x - 3*y >= -1, Eq(x+ 3*y,2), x <= 2*y])
866
+ (4/5, {x: 4/5, y: 2/5})
867
+
868
+ Negative values for variables are permitted unless explicitly
869
+ exluding:
870
+
871
+ >>> lpmax(x, [x <= -1])
872
+ (-1, {x: -1})
873
+
874
+ If a non-negative constraint is added for x, there is no
875
+ possible solution:
876
+
877
+ >>> lpmax(x, [x <= -1, x >= 0])
878
+ Traceback (most recent call last):
879
+ ...
880
+ sympy.solvers.simplex.InfeasibleLPError: inconsistent/False constraint
881
+
882
+ See Also
883
+ ========
884
+ linprog, lpmin
885
+ """
886
+ return _lp(max, f, constr)
887
+
888
+
889
+ def _handle_bounds(bounds):
890
+ # introduce auxilliary variables as needed for univariate
891
+ # inequalities
892
+
893
+ unbound = []
894
+ R = [0] * len(bounds) # a (growing) row of zeros
895
+
896
+ def n():
897
+ return len(R) - 1
898
+
899
+ def Arow(inc=1):
900
+ R.extend([0] * inc)
901
+ return R[:]
902
+
903
+ row = []
904
+ for x, (a, b) in enumerate(bounds):
905
+ if a is None and b is None:
906
+ unbound.append(x)
907
+ elif a is None:
908
+ # r[x] = b - u
909
+ A = Arow()
910
+ A[x] = 1
911
+ A[n()] = 1
912
+ B = [b]
913
+ row.append((A, B))
914
+ A = [0] * len(A)
915
+ A[x] = -1
916
+ A[n()] = -1
917
+ B = [-b]
918
+ row.append((A, B))
919
+ elif b is None:
920
+ if a:
921
+ # r[x] = a + u
922
+ A = Arow()
923
+ A[x] = 1
924
+ A[n()] = -1
925
+ B = [a]
926
+ row.append((A, B))
927
+ A = [0] * len(A)
928
+ A[x] = -1
929
+ A[n()] = 1
930
+ B = [-a]
931
+ row.append((A, B))
932
+ else:
933
+ # standard nonnegative relationship
934
+ pass
935
+ else:
936
+ # r[x] = u + a
937
+ A = Arow()
938
+ A[x] = 1
939
+ A[n()] = -1
940
+ B = [a]
941
+ row.append((A, B))
942
+ A = [0] * len(A)
943
+ A[x] = -1
944
+ A[n()] = 1
945
+ B = [-a]
946
+ row.append((A, B))
947
+ # u <= b - a
948
+ A = [0] * len(A)
949
+ A[x] = 0
950
+ A[n()] = 1
951
+ B = [b - a]
952
+ row.append((A, B))
953
+
954
+ # make change of variables for unbound variables
955
+ for x in unbound:
956
+ # r[x] = u - v
957
+ A = Arow(2)
958
+ B = [0]
959
+ A[x] = 1
960
+ A[n()] = 1
961
+ A[n() - 1] = -1
962
+ row.append((A, B))
963
+ A = [0] * len(A)
964
+ A[x] = -1
965
+ A[n()] = -1
966
+ A[n() - 1] = 1
967
+ row.append((A, B))
968
+
969
+ return Matrix([r+[0]*(len(R) - len(r)) for r,_ in row]
970
+ ), Matrix([i[1] for i in row])
971
+
972
+
973
+ def linprog(c, A=None, b=None, A_eq=None, b_eq=None, bounds=None):
974
+ """Return the minimization of ``c*x`` with the given
975
+ constraints ``A*x <= b`` and ``A_eq*x = b_eq``. Unless bounds
976
+ are given, variables will have nonnegative values in the solution.
977
+
978
+ If ``A`` is not given, then the dimension of the system will
979
+ be determined by the length of ``C``.
980
+
981
+ By default, all variables will be nonnegative. If ``bounds``
982
+ is given as a single tuple, ``(lo, hi)``, then all variables
983
+ will be constrained to be between ``lo`` and ``hi``. Use
984
+ None for a ``lo`` or ``hi`` if it is unconstrained in the
985
+ negative or positive direction, respectively, e.g.
986
+ ``(None, 0)`` indicates nonpositive values. To set
987
+ individual ranges, pass a list with length equal to the
988
+ number of columns in ``A``, each element being a tuple; if
989
+ only a few variables take on non-default values they can be
990
+ passed as a dictionary with keys giving the corresponding
991
+ column to which the variable is assigned, e.g. ``bounds={2:
992
+ (1, 4)}`` would limit the 3rd variable to have a value in
993
+ range ``[1, 4]``.
994
+
995
+ Examples
996
+ ========
997
+
998
+ >>> from sympy.solvers.simplex import linprog
999
+ >>> from sympy import symbols, Eq, linear_eq_to_matrix as M, Matrix
1000
+ >>> x = x1, x2, x3, x4 = symbols('x1:5')
1001
+ >>> X = Matrix(x)
1002
+ >>> c, d = M(5*x2 + x3 + 4*x4 - x1, x)
1003
+ >>> a, b = M([5*x2 + 2*x3 + 5*x4 - (x1 + 5)], x)
1004
+ >>> aeq, beq = M([Eq(3*x2 + x4, 2), Eq(-x1 + x3 + 2*x4, 1)], x)
1005
+ >>> constr = [i <= j for i,j in zip(a*X, b)]
1006
+ >>> constr += [Eq(i, j) for i,j in zip(aeq*X, beq)]
1007
+ >>> linprog(c, a, b, aeq, beq)
1008
+ (9/2, [0, 1/2, 0, 1/2])
1009
+ >>> assert all(i.subs(dict(zip(x, _[1]))) for i in constr)
1010
+
1011
+ See Also
1012
+ ========
1013
+ lpmin, lpmax
1014
+ """
1015
+
1016
+ ## the objective
1017
+ C = Matrix(c)
1018
+ if C.rows != 1 and C.cols == 1:
1019
+ C = C.T
1020
+ if C.rows != 1:
1021
+ raise ValueError("C must be a single row.")
1022
+
1023
+ ## the inequalities
1024
+ if not A:
1025
+ if b:
1026
+ raise ValueError("A and b must both be given")
1027
+ # the governing equations will be simple constraints
1028
+ # on variables
1029
+ A, b = zeros(0, C.cols), zeros(C.cols, 1)
1030
+ else:
1031
+ A, b = [Matrix(i) for i in (A, b)]
1032
+
1033
+ if A.cols != C.cols:
1034
+ raise ValueError("number of columns in A and C must match")
1035
+
1036
+ ## the equalities
1037
+ if A_eq is None:
1038
+ if not b_eq is None:
1039
+ raise ValueError("A_eq and b_eq must both be given")
1040
+ else:
1041
+ A_eq, b_eq = [Matrix(i) for i in (A_eq, b_eq)]
1042
+ # if x == y then x <= y and x >= y (-x <= -y)
1043
+ A = A.col_join(A_eq)
1044
+ A = A.col_join(-A_eq)
1045
+ b = b.col_join(b_eq)
1046
+ b = b.col_join(-b_eq)
1047
+
1048
+ if not (bounds is None or bounds == {} or bounds == (0, None)):
1049
+ ## the bounds are interpreted
1050
+ if type(bounds) is tuple and len(bounds) == 2:
1051
+ bounds = [bounds] * A.cols
1052
+ elif len(bounds) == A.cols and all(
1053
+ type(i) is tuple and len(i) == 2 for i in bounds):
1054
+ pass # individual bounds
1055
+ elif type(bounds) is dict and all(
1056
+ type(i) is tuple and len(i) == 2
1057
+ for i in bounds.values()):
1058
+ # sparse bounds
1059
+ db = bounds
1060
+ bounds = [(0, None)] * A.cols
1061
+ while db:
1062
+ i, j = db.popitem()
1063
+ bounds[i] = j # IndexError if out-of-bounds indices
1064
+ else:
1065
+ raise ValueError("unexpected bounds %s" % bounds)
1066
+ A_, b_ = _handle_bounds(bounds)
1067
+ aux = A_.cols - A.cols
1068
+ if A:
1069
+ A = Matrix([[A, zeros(A.rows, aux)], [A_]])
1070
+ b = b.col_join(b_)
1071
+ else:
1072
+ A = A_
1073
+ b = b_
1074
+ C = C.row_join(zeros(1, aux))
1075
+ else:
1076
+ aux = -A.cols # set so -aux will give all cols below
1077
+
1078
+ o, p, d = _simplex(A, b, C)
1079
+ return o, p[:-aux] # don't include aux values
1080
+
1081
+ def show_linprog(c, A=None, b=None, A_eq=None, b_eq=None, bounds=None):
1082
+ from sympy import symbols
1083
+ ## the objective
1084
+ C = Matrix(c)
1085
+ if C.rows != 1 and C.cols == 1:
1086
+ C = C.T
1087
+ if C.rows != 1:
1088
+ raise ValueError("C must be a single row.")
1089
+
1090
+ ## the inequalities
1091
+ if not A:
1092
+ if b:
1093
+ raise ValueError("A and b must both be given")
1094
+ # the governing equations will be simple constraints
1095
+ # on variables
1096
+ A, b = zeros(0, C.cols), zeros(C.cols, 1)
1097
+ else:
1098
+ A, b = [Matrix(i) for i in (A, b)]
1099
+
1100
+ if A.cols != C.cols:
1101
+ raise ValueError("number of columns in A and C must match")
1102
+
1103
+ ## the equalities
1104
+ if A_eq is None:
1105
+ if not b_eq is None:
1106
+ raise ValueError("A_eq and b_eq must both be given")
1107
+ else:
1108
+ A_eq, b_eq = [Matrix(i) for i in (A_eq, b_eq)]
1109
+
1110
+ if not (bounds is None or bounds == {} or bounds == (0, None)):
1111
+ ## the bounds are interpreted
1112
+ if type(bounds) is tuple and len(bounds) == 2:
1113
+ bounds = [bounds] * A.cols
1114
+ elif len(bounds) == A.cols and all(
1115
+ type(i) is tuple and len(i) == 2 for i in bounds):
1116
+ pass # individual bounds
1117
+ elif type(bounds) is dict and all(
1118
+ type(i) is tuple and len(i) == 2
1119
+ for i in bounds.values()):
1120
+ # sparse bounds
1121
+ db = bounds
1122
+ bounds = [(0, None)] * A.cols
1123
+ while db:
1124
+ i, j = db.popitem()
1125
+ bounds[i] = j # IndexError if out-of-bounds indices
1126
+ else:
1127
+ raise ValueError("unexpected bounds %s" % bounds)
1128
+
1129
+ x = Matrix(symbols('x1:%s' % (A.cols+1)))
1130
+ f,c = (C*x)[0], [i<=j for i,j in zip(A*x, b)] + [Eq(i,j) for i,j in zip(A_eq*x,b_eq)]
1131
+ for i, (lo, hi) in enumerate(bounds):
1132
+ if lo is None and hi is None:
1133
+ continue
1134
+ if lo is None:
1135
+ c.append(x[i]<=hi)
1136
+ elif hi is None:
1137
+ c.append(x[i]>=lo)
1138
+ else:
1139
+ c.append(x[i]>=lo)
1140
+ c.append(x[i]<=hi)
1141
+ return f,c
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/solvers.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/solveset.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__init__.py ADDED
File without changes
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_constantsimp.cpython-310.pyc ADDED
Binary file (7.44 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_inequalities.cpython-310.pyc ADDED
Binary file (19.6 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_numeric.cpython-310.pyc ADDED
Binary file (5.73 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_pde.cpython-310.pyc ADDED
Binary file (9.71 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_simplex.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_constantsimp.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ If the arbitrary constant class from issue 4435 is ever implemented, this
3
+ should serve as a set of test cases.
4
+ """
5
+
6
+ from sympy.core.function import Function
7
+ from sympy.core.numbers import I
8
+ from sympy.core.power import Pow
9
+ from sympy.core.relational import Eq
10
+ from sympy.core.singleton import S
11
+ from sympy.core.symbol import Symbol
12
+ from sympy.functions.elementary.exponential import (exp, log)
13
+ from sympy.functions.elementary.hyperbolic import (cosh, sinh)
14
+ from sympy.functions.elementary.miscellaneous import sqrt
15
+ from sympy.functions.elementary.trigonometric import (acos, cos, sin)
16
+ from sympy.integrals.integrals import Integral
17
+ from sympy.solvers.ode.ode import constantsimp, constant_renumber
18
+ from sympy.testing.pytest import XFAIL
19
+
20
+
21
+ x = Symbol('x')
22
+ y = Symbol('y')
23
+ z = Symbol('z')
24
+ u2 = Symbol('u2')
25
+ _a = Symbol('_a')
26
+ C1 = Symbol('C1')
27
+ C2 = Symbol('C2')
28
+ C3 = Symbol('C3')
29
+ f = Function('f')
30
+
31
+
32
+ def test_constant_mul():
33
+ # We want C1 (Constant) below to absorb the y's, but not the x's
34
+ assert constant_renumber(constantsimp(y*C1, [C1])) == C1*y
35
+ assert constant_renumber(constantsimp(C1*y, [C1])) == C1*y
36
+ assert constant_renumber(constantsimp(x*C1, [C1])) == x*C1
37
+ assert constant_renumber(constantsimp(C1*x, [C1])) == x*C1
38
+ assert constant_renumber(constantsimp(2*C1, [C1])) == C1
39
+ assert constant_renumber(constantsimp(C1*2, [C1])) == C1
40
+ assert constant_renumber(constantsimp(y*C1*x, [C1, y])) == C1*x
41
+ assert constant_renumber(constantsimp(x*y*C1, [C1, y])) == x*C1
42
+ assert constant_renumber(constantsimp(y*x*C1, [C1, y])) == x*C1
43
+ assert constant_renumber(constantsimp(C1*x*y, [C1, y])) == C1*x
44
+ assert constant_renumber(constantsimp(x*C1*y, [C1, y])) == x*C1
45
+ assert constant_renumber(constantsimp(C1*y*(y + 1), [C1])) == C1*y*(y+1)
46
+ assert constant_renumber(constantsimp(y*C1*(y + 1), [C1])) == C1*y*(y+1)
47
+ assert constant_renumber(constantsimp(x*(y*C1), [C1])) == x*y*C1
48
+ assert constant_renumber(constantsimp(x*(C1*y), [C1])) == x*y*C1
49
+ assert constant_renumber(constantsimp(C1*(x*y), [C1, y])) == C1*x
50
+ assert constant_renumber(constantsimp((x*y)*C1, [C1, y])) == x*C1
51
+ assert constant_renumber(constantsimp((y*x)*C1, [C1, y])) == x*C1
52
+ assert constant_renumber(constantsimp(y*(y + 1)*C1, [C1, y])) == C1
53
+ assert constant_renumber(constantsimp((C1*x)*y, [C1, y])) == C1*x
54
+ assert constant_renumber(constantsimp(y*(x*C1), [C1, y])) == x*C1
55
+ assert constant_renumber(constantsimp((x*C1)*y, [C1, y])) == x*C1
56
+ assert constant_renumber(constantsimp(C1*x*y*x*y*2, [C1, y])) == C1*x**2
57
+ assert constant_renumber(constantsimp(C1*x*y*z, [C1, y, z])) == C1*x
58
+ assert constant_renumber(constantsimp(C1*x*y**2*sin(z), [C1, y, z])) == C1*x
59
+ assert constant_renumber(constantsimp(C1*C1, [C1])) == C1
60
+ assert constant_renumber(constantsimp(C1*C2, [C1, C2])) == C1
61
+ assert constant_renumber(constantsimp(C2*C2, [C1, C2])) == C1
62
+ assert constant_renumber(constantsimp(C1*C1*C2, [C1, C2])) == C1
63
+ assert constant_renumber(constantsimp(C1*x*2**x, [C1])) == C1*x*2**x
64
+
65
+ def test_constant_add():
66
+ assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
67
+ assert constant_renumber(constantsimp(C1 + 2, [C1])) == C1
68
+ assert constant_renumber(constantsimp(2 + C1, [C1])) == C1
69
+ assert constant_renumber(constantsimp(C1 + y, [C1, y])) == C1
70
+ assert constant_renumber(constantsimp(C1 + x, [C1])) == C1 + x
71
+ assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
72
+ assert constant_renumber(constantsimp(C1 + C2, [C1, C2])) == C1
73
+ assert constant_renumber(constantsimp(C2 + C1, [C1, C2])) == C1
74
+ assert constant_renumber(constantsimp(C1 + C2 + C1, [C1, C2])) == C1
75
+
76
+
77
+ def test_constant_power_as_base():
78
+ assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
79
+ assert constant_renumber(constantsimp(Pow(C1, C1), [C1])) == C1
80
+ assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
81
+ assert constant_renumber(constantsimp(C1**C2, [C1, C2])) == C1
82
+ assert constant_renumber(constantsimp(C2**C1, [C1, C2])) == C1
83
+ assert constant_renumber(constantsimp(C2**C2, [C1, C2])) == C1
84
+ assert constant_renumber(constantsimp(C1**y, [C1, y])) == C1
85
+ assert constant_renumber(constantsimp(C1**x, [C1])) == C1**x
86
+ assert constant_renumber(constantsimp(C1**2, [C1])) == C1
87
+ assert constant_renumber(
88
+ constantsimp(C1**(x*y), [C1])) == C1**(x*y)
89
+
90
+
91
+ def test_constant_power_as_exp():
92
+ assert constant_renumber(constantsimp(x**C1, [C1])) == x**C1
93
+ assert constant_renumber(constantsimp(y**C1, [C1, y])) == C1
94
+ assert constant_renumber(constantsimp(x**y**C1, [C1, y])) == x**C1
95
+ assert constant_renumber(
96
+ constantsimp((x**y)**C1, [C1])) == (x**y)**C1
97
+ assert constant_renumber(
98
+ constantsimp(x**(y**C1), [C1, y])) == x**C1
99
+ assert constant_renumber(constantsimp(x**C1**y, [C1, y])) == x**C1
100
+ assert constant_renumber(
101
+ constantsimp(x**(C1**y), [C1, y])) == x**C1
102
+ assert constant_renumber(
103
+ constantsimp((x**C1)**y, [C1])) == (x**C1)**y
104
+ assert constant_renumber(constantsimp(2**C1, [C1])) == C1
105
+ assert constant_renumber(constantsimp(S(2)**C1, [C1])) == C1
106
+ assert constant_renumber(constantsimp(exp(C1), [C1])) == C1
107
+ assert constant_renumber(
108
+ constantsimp(exp(C1 + x), [C1])) == C1*exp(x)
109
+ assert constant_renumber(constantsimp(Pow(2, C1), [C1])) == C1
110
+
111
+
112
+ def test_constant_function():
113
+ assert constant_renumber(constantsimp(sin(C1), [C1])) == C1
114
+ assert constant_renumber(constantsimp(f(C1), [C1])) == C1
115
+ assert constant_renumber(constantsimp(f(C1, C1), [C1])) == C1
116
+ assert constant_renumber(constantsimp(f(C1, C2), [C1, C2])) == C1
117
+ assert constant_renumber(constantsimp(f(C2, C1), [C1, C2])) == C1
118
+ assert constant_renumber(constantsimp(f(C2, C2), [C1, C2])) == C1
119
+ assert constant_renumber(
120
+ constantsimp(f(C1, x), [C1])) == f(C1, x)
121
+ assert constant_renumber(constantsimp(f(C1, y), [C1, y])) == C1
122
+ assert constant_renumber(constantsimp(f(y, C1), [C1, y])) == C1
123
+ assert constant_renumber(constantsimp(f(C1, y, C2), [C1, C2, y])) == C1
124
+
125
+
126
+ def test_constant_function_multiple():
127
+ # The rules to not renumber in this case would be too complicated, and
128
+ # dsolve is not likely to ever encounter anything remotely like this.
129
+ assert constant_renumber(
130
+ constantsimp(f(C1, C1, x), [C1])) == f(C1, C1, x)
131
+
132
+
133
+ def test_constant_multiple():
134
+ assert constant_renumber(constantsimp(C1*2 + 2, [C1])) == C1
135
+ assert constant_renumber(constantsimp(x*2/C1, [C1])) == C1*x
136
+ assert constant_renumber(constantsimp(C1**2*2 + 2, [C1])) == C1
137
+ assert constant_renumber(
138
+ constantsimp(sin(2*C1) + x + sqrt(2), [C1])) == C1 + x
139
+ assert constant_renumber(constantsimp(2*C1 + C2, [C1, C2])) == C1
140
+
141
+ def test_constant_repeated():
142
+ assert C1 + C1*x == constant_renumber( C1 + C1*x)
143
+
144
+ def test_ode_solutions():
145
+ # only a few examples here, the rest will be tested in the actual dsolve tests
146
+ assert constant_renumber(constantsimp(C1*exp(2*x) + exp(x)*(C2 + C3), [C1, C2, C3])) == \
147
+ constant_renumber(C1*exp(x) + C2*exp(2*x))
148
+ assert constant_renumber(
149
+ constantsimp(Eq(f(x), I*C1*sinh(x/3) + C2*cosh(x/3)), [C1, C2])
150
+ ) == constant_renumber(Eq(f(x), C1*sinh(x/3) + C2*cosh(x/3)))
151
+ assert constant_renumber(constantsimp(Eq(f(x), acos((-C1)/cos(x))), [C1])) == \
152
+ Eq(f(x), acos(C1/cos(x)))
153
+ assert constant_renumber(
154
+ constantsimp(Eq(log(f(x)/C1) + 2*exp(x/f(x)), 0), [C1])
155
+ ) == Eq(log(C1*f(x)) + 2*exp(x/f(x)), 0)
156
+ assert constant_renumber(constantsimp(Eq(log(x*sqrt(2)*sqrt(1/x)*sqrt(f(x))
157
+ /C1) + x**2/(2*f(x)**2), 0), [C1])) == \
158
+ Eq(log(C1*sqrt(x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
159
+ assert constant_renumber(constantsimp(Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(x/C1) -
160
+ cos(f(x)/x)*exp(-f(x)/x)/2, 0), [C1])) == \
161
+ Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(C1*x) - cos(f(x)/x)*
162
+ exp(-f(x)/x)/2, 0)
163
+ assert constant_renumber(constantsimp(Eq(-Integral(-1/(sqrt(1 - u2**2)*u2),
164
+ (u2, _a, x/f(x))) + log(f(x)/C1), 0), [C1])) == \
165
+ Eq(-Integral(-1/(u2*sqrt(1 - u2**2)), (u2, _a, x/f(x))) +
166
+ log(C1*f(x)), 0)
167
+ assert [constantsimp(i, [C1]) for i in [Eq(f(x), sqrt(-C1*x + x**2)), Eq(f(x), -sqrt(-C1*x + x**2))]] == \
168
+ [Eq(f(x), sqrt(x*(C1 + x))), Eq(f(x), -sqrt(x*(C1 + x)))]
169
+
170
+
171
+ @XFAIL
172
+ def test_nonlocal_simplification():
173
+ assert constantsimp(C1 + C2+x*C2, [C1, C2]) == C1 + C2*x
174
+
175
+
176
+ def test_constant_Eq():
177
+ # C1 on the rhs is well-tested, but the lhs is only tested here
178
+ assert constantsimp(Eq(C1, 3 + f(x)*x), [C1]) == Eq(x*f(x), C1)
179
+ assert constantsimp(Eq(C1, 3 * f(x)*x), [C1]) == Eq(f(x)*x, C1)
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_decompogen.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.solvers.decompogen import decompogen, compogen
2
+ from sympy.core.symbol import symbols
3
+ from sympy.functions.elementary.complexes import Abs
4
+ from sympy.functions.elementary.exponential import exp
5
+ from sympy.functions.elementary.miscellaneous import sqrt, Max
6
+ from sympy.functions.elementary.trigonometric import (cos, sin)
7
+ from sympy.testing.pytest import XFAIL, raises
8
+
9
+ x, y = symbols('x y')
10
+
11
+
12
+ def test_decompogen():
13
+ assert decompogen(sin(cos(x)), x) == [sin(x), cos(x)]
14
+ assert decompogen(sin(x)**2 + sin(x) + 1, x) == [x**2 + x + 1, sin(x)]
15
+ assert decompogen(sqrt(6*x**2 - 5), x) == [sqrt(x), 6*x**2 - 5]
16
+ assert decompogen(sin(sqrt(cos(x**2 + 1))), x) == [sin(x), sqrt(x), cos(x), x**2 + 1]
17
+ assert decompogen(Abs(cos(x)**2 + 3*cos(x) - 4), x) == [Abs(x), x**2 + 3*x - 4, cos(x)]
18
+ assert decompogen(sin(x)**2 + sin(x) - sqrt(3)/2, x) == [x**2 + x - sqrt(3)/2, sin(x)]
19
+ assert decompogen(Abs(cos(y)**2 + 3*cos(x) - 4), x) == [Abs(x), 3*x + cos(y)**2 - 4, cos(x)]
20
+ assert decompogen(x, y) == [x]
21
+ assert decompogen(1, x) == [1]
22
+ assert decompogen(Max(3, x), x) == [Max(3, x)]
23
+ raises(TypeError, lambda: decompogen(x < 5, x))
24
+ u = 2*x + 3
25
+ assert decompogen(Max(sqrt(u),(u)**2), x) == [Max(sqrt(x), x**2), u]
26
+ assert decompogen(Max(u, u**2, y), x) == [Max(x, x**2, y), u]
27
+ assert decompogen(Max(sin(x), u), x) == [Max(2*x + 3, sin(x))]
28
+
29
+
30
+ def test_decompogen_poly():
31
+ assert decompogen(x**4 + 2*x**2 + 1, x) == [x**2 + 2*x + 1, x**2]
32
+ assert decompogen(x**4 + 2*x**3 - x - 1, x) == [x**2 - x - 1, x**2 + x]
33
+
34
+
35
+ @XFAIL
36
+ def test_decompogen_fails():
37
+ A = lambda x: x**2 + 2*x + 3
38
+ B = lambda x: 4*x**2 + 5*x + 6
39
+ assert decompogen(A(x*exp(x)), x) == [x**2 + 2*x + 3, x*exp(x)]
40
+ assert decompogen(A(B(x)), x) == [x**2 + 2*x + 3, 4*x**2 + 5*x + 6]
41
+ assert decompogen(A(1/x + 1/x**2), x) == [x**2 + 2*x + 3, 1/x + 1/x**2]
42
+ assert decompogen(A(1/x + 2/(x + 1)), x) == [x**2 + 2*x + 3, 1/x + 2/(x + 1)]
43
+
44
+
45
+ def test_compogen():
46
+ assert compogen([sin(x), cos(x)], x) == sin(cos(x))
47
+ assert compogen([x**2 + x + 1, sin(x)], x) == sin(x)**2 + sin(x) + 1
48
+ assert compogen([sqrt(x), 6*x**2 - 5], x) == sqrt(6*x**2 - 5)
49
+ assert compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) == sin(sqrt(
50
+ cos(x**2 + 1)))
51
+ assert compogen([Abs(x), x**2 + 3*x - 4, cos(x)], x) == Abs(cos(x)**2 +
52
+ 3*cos(x) - 4)
53
+ assert compogen([x**2 + x - sqrt(3)/2, sin(x)], x) == (sin(x)**2 + sin(x) -
54
+ sqrt(3)/2)
55
+ assert compogen([Abs(x), 3*x + cos(y)**2 - 4, cos(x)], x) == \
56
+ Abs(3*cos(x) + cos(y)**2 - 4)
57
+ assert compogen([x**2 + 2*x + 1, x**2], x) == x**4 + 2*x**2 + 1
58
+ # the result is in unsimplified form
59
+ assert compogen([x**2 - x - 1, x**2 + x], x) == -x**2 - x + (x**2 + x)**2 - 1
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_inequalities.py ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for tools for solving inequalities and systems of inequalities. """
2
+
3
+ from sympy.concrete.summations import Sum
4
+ from sympy.core.function import Function
5
+ from sympy.core.numbers import I, Rational, oo, pi
6
+ from sympy.core.relational import Eq, Ge, Gt, Le, Lt, Ne
7
+ from sympy.core.singleton import S
8
+ from sympy.core.symbol import (Dummy, Symbol)
9
+ from sympy.functions.elementary.complexes import Abs
10
+ from sympy.functions.elementary.exponential import exp, log
11
+ from sympy.functions.elementary.miscellaneous import root, sqrt
12
+ from sympy.functions.elementary.piecewise import Piecewise
13
+ from sympy.functions.elementary.trigonometric import cos, sin, tan
14
+ from sympy.integrals.integrals import Integral
15
+ from sympy.logic.boolalg import And, Or
16
+ from sympy.polys.polytools import Poly, PurePoly
17
+ from sympy.sets.sets import FiniteSet, Interval, Union
18
+ from sympy.solvers.inequalities import (reduce_inequalities,
19
+ solve_poly_inequality as psolve,
20
+ reduce_rational_inequalities,
21
+ solve_univariate_inequality as isolve,
22
+ reduce_abs_inequality,
23
+ _solve_inequality)
24
+ from sympy.polys.rootoftools import rootof
25
+ from sympy.solvers.solvers import solve
26
+ from sympy.solvers.solveset import solveset
27
+ from sympy.core.mod import Mod
28
+ from sympy.abc import x, y
29
+
30
+ from sympy.testing.pytest import raises, XFAIL
31
+
32
+
33
+ inf = oo.evalf()
34
+
35
+
36
+ def test_solve_poly_inequality():
37
+ assert psolve(Poly(0, x), '==') == [S.Reals]
38
+ assert psolve(Poly(1, x), '==') == [S.EmptySet]
39
+ assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
40
+
41
+
42
+ def test_reduce_poly_inequalities_real_interval():
43
+ assert reduce_rational_inequalities(
44
+ [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
45
+ assert reduce_rational_inequalities(
46
+ [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
47
+ assert reduce_rational_inequalities(
48
+ [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
49
+ assert reduce_rational_inequalities(
50
+ [[Ge(x**2, 0)]], x, relational=False) == \
51
+ S.Reals if x.is_real else Interval(-oo, oo)
52
+ assert reduce_rational_inequalities(
53
+ [[Gt(x**2, 0)]], x, relational=False) == \
54
+ FiniteSet(0).complement(S.Reals)
55
+ assert reduce_rational_inequalities(
56
+ [[Ne(x**2, 0)]], x, relational=False) == \
57
+ FiniteSet(0).complement(S.Reals)
58
+
59
+ assert reduce_rational_inequalities(
60
+ [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
61
+ assert reduce_rational_inequalities(
62
+ [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
63
+ assert reduce_rational_inequalities(
64
+ [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
65
+ assert reduce_rational_inequalities(
66
+ [[Ge(x**2, 1)]], x, relational=False) == \
67
+ Union(Interval(-oo, -1), Interval(1, oo))
68
+ assert reduce_rational_inequalities(
69
+ [[Gt(x**2, 1)]], x, relational=False) == \
70
+ Interval(-1, 1).complement(S.Reals)
71
+ assert reduce_rational_inequalities(
72
+ [[Ne(x**2, 1)]], x, relational=False) == \
73
+ FiniteSet(-1, 1).complement(S.Reals)
74
+ assert reduce_rational_inequalities([[Eq(
75
+ x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
76
+ assert reduce_rational_inequalities(
77
+ [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
78
+ assert reduce_rational_inequalities([[Lt(
79
+ x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
80
+ assert reduce_rational_inequalities(
81
+ [[Ge(x**2, 1.0)]], x, relational=False) == \
82
+ Union(Interval(-inf, -1.0), Interval(1.0, inf))
83
+ assert reduce_rational_inequalities(
84
+ [[Gt(x**2, 1.0)]], x, relational=False) == \
85
+ Union(Interval(-inf, -1.0, right_open=True),
86
+ Interval(1.0, inf, left_open=True))
87
+ assert reduce_rational_inequalities([[Ne(
88
+ x**2, 1.0)]], x, relational=False) == \
89
+ FiniteSet(-1.0, 1.0).complement(S.Reals)
90
+
91
+ s = sqrt(2)
92
+
93
+ assert reduce_rational_inequalities([[Lt(
94
+ x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
95
+ assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
96
+ x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
97
+ assert reduce_rational_inequalities(
98
+ [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
99
+ ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
100
+ assert reduce_rational_inequalities(
101
+ [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
102
+ ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
103
+ assert reduce_rational_inequalities(
104
+ [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
105
+ ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
106
+ assert reduce_rational_inequalities(
107
+ [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
108
+ ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
109
+ assert reduce_rational_inequalities(
110
+ [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
111
+ ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
112
+ Interval(1, s, True, True))
113
+
114
+ assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
115
+
116
+
117
+ def test_reduce_poly_inequalities_complex_relational():
118
+ assert reduce_rational_inequalities(
119
+ [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
120
+ assert reduce_rational_inequalities(
121
+ [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
122
+ assert reduce_rational_inequalities(
123
+ [[Lt(x**2, 0)]], x, relational=True) == False
124
+ assert reduce_rational_inequalities(
125
+ [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
126
+ assert reduce_rational_inequalities(
127
+ [[Gt(x**2, 0)]], x, relational=True) == \
128
+ And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
129
+ assert reduce_rational_inequalities(
130
+ [[Ne(x**2, 0)]], x, relational=True) == \
131
+ And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
132
+
133
+ for one in (S.One, S(1.0)):
134
+ inf = one*oo
135
+ assert reduce_rational_inequalities(
136
+ [[Eq(x**2, one)]], x, relational=True) == \
137
+ Or(Eq(x, -one), Eq(x, one))
138
+ assert reduce_rational_inequalities(
139
+ [[Le(x**2, one)]], x, relational=True) == \
140
+ And(And(Le(-one, x), Le(x, one)))
141
+ assert reduce_rational_inequalities(
142
+ [[Lt(x**2, one)]], x, relational=True) == \
143
+ And(And(Lt(-one, x), Lt(x, one)))
144
+ assert reduce_rational_inequalities(
145
+ [[Ge(x**2, one)]], x, relational=True) == \
146
+ And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
147
+ assert reduce_rational_inequalities(
148
+ [[Gt(x**2, one)]], x, relational=True) == \
149
+ And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
150
+ assert reduce_rational_inequalities(
151
+ [[Ne(x**2, one)]], x, relational=True) == \
152
+ Or(And(Lt(-inf, x), Lt(x, -one)),
153
+ And(Lt(-one, x), Lt(x, one)),
154
+ And(Lt(one, x), Lt(x, inf)))
155
+
156
+
157
+ def test_reduce_rational_inequalities_real_relational():
158
+ assert reduce_rational_inequalities([], x) == False
159
+ assert reduce_rational_inequalities(
160
+ [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
161
+ Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
162
+
163
+ assert reduce_rational_inequalities(
164
+ [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
165
+ relational=False) == \
166
+ Union(Interval.open(-5, 2), Interval.open(2, 3))
167
+
168
+ assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
169
+ relational=False) == \
170
+ Interval.Ropen(-1, 5)
171
+
172
+ assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
173
+ relational=False) == \
174
+ Union(Interval.open(-3, -1), Interval.open(1, oo))
175
+
176
+ assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
177
+ relational=False) == \
178
+ Union(Interval.open(-4, 1), Interval.open(1, 4))
179
+
180
+ assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
181
+ relational=False) == \
182
+ Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))
183
+
184
+ assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
185
+ relational=False) == \
186
+ Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
187
+
188
+ # issue sympy/sympy#10237
189
+ assert reduce_rational_inequalities(
190
+ [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
191
+
192
+
193
+ def test_reduce_abs_inequalities():
194
+ e = abs(x - 5) < 3
195
+ ans = And(Lt(2, x), Lt(x, 8))
196
+ assert reduce_inequalities(e) == ans
197
+ assert reduce_inequalities(e, x) == ans
198
+ assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
199
+ assert reduce_inequalities(
200
+ abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
201
+ And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
202
+ assert reduce_inequalities(abs(x - 4) + abs(
203
+ 3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
204
+ assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
205
+ Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))
206
+
207
+ nr = Symbol('nr', extended_real=False)
208
+ raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
209
+ assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
210
+
211
+
212
+ def test_reduce_inequalities_general():
213
+ assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
214
+ assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)
215
+
216
+
217
+ def test_reduce_inequalities_boolean():
218
+ assert reduce_inequalities(
219
+ [Eq(x**2, 0), True]) == Eq(x, 0)
220
+ assert reduce_inequalities([Eq(x**2, 0), False]) == False
221
+ assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
222
+
223
+
224
+ def test_reduce_inequalities_multivariate():
225
+ assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
226
+ Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
227
+ Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
228
+
229
+
230
+ def test_reduce_inequalities_errors():
231
+ raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
232
+ raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
233
+
234
+
235
+ def test__solve_inequalities():
236
+ assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
237
+ assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
238
+ assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
239
+ assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
240
+
241
+
242
+ def test_issue_6343():
243
+ eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
244
+ assert reduce_inequalities(eq) == \
245
+ And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)
246
+
247
+
248
+ def test_issue_8235():
249
+ assert reduce_inequalities(x**2 - 1 < 0) == \
250
+ And(S.NegativeOne < x, x < 1)
251
+ assert reduce_inequalities(x**2 - 1 <= 0) == \
252
+ And(S.NegativeOne <= x, x <= 1)
253
+ assert reduce_inequalities(x**2 - 1 > 0) == \
254
+ Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
255
+ assert reduce_inequalities(x**2 - 1 >= 0) == \
256
+ Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))
257
+
258
+ eq = x**8 + x - 9 # we want CRootOf solns here
259
+ sol = solve(eq >= 0)
260
+ tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
261
+ assert sol == tru
262
+
263
+ # recast vanilla as real
264
+ assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)
265
+
266
+
267
+ def test_issue_5526():
268
+ assert reduce_inequalities(0 <=
269
+ x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
270
+ (x >= -Integral(y**2, (y, 1, 3)) + 1)
271
+ f = Function('f')
272
+ e = Sum(f(x), (x, 1, 3))
273
+ assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
274
+ (x >= -y**2 - Sum(f(x), (x, 1, 3)))
275
+
276
+
277
+ def test_solve_univariate_inequality():
278
+ assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
279
+ Interval(2, oo))
280
+ assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
281
+ Lt(-oo, x)))
282
+ assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
283
+ Union(Interval(1, 2), Interval(3, oo))
284
+ assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
285
+ Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
286
+ assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
287
+ Or(Eq(x, 0), Eq(x, 3))
288
+ # issue 2785:
289
+ assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
290
+ Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
291
+ Interval(S.Half + sqrt(5)/2, oo, True, True))
292
+ # issue 2794:
293
+ assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
294
+ Interval(1, oo, True)
295
+ #issue 13105
296
+ assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
297
+ assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
298
+ assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
299
+ raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
300
+
301
+ # numerical testing in valid() is needed
302
+ assert isolve(x**7 - x - 2 > 0, x) == \
303
+ And(rootof(x**7 - x - 2, 0) < x, x < oo)
304
+
305
+ # handle numerator and denominator; although these would be handled as
306
+ # rational inequalities, these test confirm that the right thing is done
307
+ # when the domain is EX (e.g. when 2 is replaced with sqrt(2))
308
+ assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
309
+ den = ((x - 1)*(x - 2)).expand()
310
+ assert isolve((x - 1)/den <= 0, x) == \
311
+ (x > -oo) & (x < 2) & Ne(x, 1)
312
+
313
+ n = Dummy('n')
314
+ raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
315
+ c1 = Dummy("c1", positive=True)
316
+ raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
317
+ n = Dummy('n', negative=True)
318
+ assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
319
+ assert isolve(n/c1 < 0, c1) == True
320
+ assert isolve(n/c1 > 0, c1) == False
321
+
322
+ zero = cos(1)**2 + sin(1)**2 - 1
323
+ raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
324
+ raises(NotImplementedError, lambda: isolve(
325
+ x**2 < zero*I, x))
326
+ raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
327
+ raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
328
+ raises(TypeError, lambda: isolve(x - I < 0, x))
329
+
330
+ zero = x**2 + x - x*(x + 1)
331
+ assert isolve(zero < 0, x, relational=False) is S.EmptySet
332
+ assert isolve(zero <= 0, x, relational=False) is S.Reals
333
+
334
+ # make sure iter_solutions gets a default value
335
+ raises(NotImplementedError, lambda: isolve(
336
+ Eq(cos(x)**2 + sin(x)**2, 1), x))
337
+
338
+
339
+ def test_trig_inequalities():
340
+ # all the inequalities are solved in a periodic interval.
341
+ assert isolve(sin(x) < S.Half, x, relational=False) == \
342
+ Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
343
+ assert isolve(sin(x) > S.Half, x, relational=False) == \
344
+ Interval(pi/6, pi*Rational(5, 6), True, True)
345
+ assert isolve(cos(x) < S.Zero, x, relational=False) == \
346
+ Interval(pi/2, pi*Rational(3, 2), True, True)
347
+ assert isolve(cos(x) >= S.Zero, x, relational=False) == \
348
+ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
349
+
350
+ assert isolve(tan(x) < S.One, x, relational=False) == \
351
+ Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))
352
+
353
+ assert isolve(sin(x) <= S.Zero, x, relational=False) == \
354
+ Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))
355
+
356
+ assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
357
+ assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
358
+ assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
359
+ assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
360
+
361
+
362
+ def test_issue_9954():
363
+ assert isolve(x**2 >= 0, x, relational=False) == S.Reals
364
+ assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
365
+ assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
366
+ assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
367
+
368
+
369
+ @XFAIL
370
+ def test_slow_general_univariate():
371
+ r = rootof(x**5 - x**2 + 1, 0)
372
+ assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
373
+ Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))
374
+
375
+
376
+ def test_issue_8545():
377
+ eq = 1 - x - abs(1 - x)
378
+ ans = And(Lt(1, x), Lt(x, oo))
379
+ assert reduce_abs_inequality(eq, '<', x) == ans
380
+ eq = 1 - x - sqrt((1 - x)**2)
381
+ assert reduce_inequalities(eq < 0) == ans
382
+
383
+
384
+ def test_issue_8974():
385
+ assert isolve(-oo < x, x) == And(-oo < x, x < oo)
386
+ assert isolve(oo > x, x) == And(-oo < x, x < oo)
387
+
388
+
389
+ def test_issue_10198():
390
+ assert reduce_inequalities(
391
+ -1 + 1/abs(1/x - 1) < 0) == (x > -oo) & (x < S(1)/2) & Ne(x, 0)
392
+
393
+ assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
394
+ assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
395
+ Or(And(-oo < x, x < 0),
396
+ And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
397
+ raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
398
+ 1 - 1/sqrt(x)), '<', x))
399
+
400
+
401
+ def test_issue_10047():
402
+ # issue 10047: this must remain an inequality, not True, since if x
403
+ # is not real the inequality is invalid
404
+ # assert solve(sin(x) < 2) == (x <= oo)
405
+
406
+ # with PR 16956, (x <= oo) autoevaluates when x is extended_real
407
+ # which is assumed in the current implementation of inequality solvers
408
+ assert solve(sin(x) < 2) == True
409
+ assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
410
+
411
+
412
+ def test_issue_10268():
413
+ assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))
414
+
415
+
416
+ @XFAIL
417
+ def test_isolve_Sets():
418
+ n = Dummy('n')
419
+ assert isolve(Abs(x) <= n, x, relational=False) == \
420
+ Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
421
+
422
+
423
+ def test_integer_domain_relational_isolve():
424
+
425
+ dom = FiniteSet(0, 3)
426
+ x = Symbol('x',zero=False)
427
+ assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain=dom) == Eq(x, 3)
428
+
429
+ x = Symbol('x')
430
+ assert isolve(x + 2 < 0, x, domain=S.Integers) == \
431
+ (x <= -3) & (x > -oo) & Eq(Mod(x, 1), 0)
432
+ assert isolve(2 * x + 3 > 0, x, domain=S.Integers) == \
433
+ (x >= -1) & (x < oo) & Eq(Mod(x, 1), 0)
434
+ assert isolve((x ** 2 + 3 * x - 2) < 0, x, domain=S.Integers) == \
435
+ (x >= -3) & (x <= 0) & Eq(Mod(x, 1), 0)
436
+ assert isolve((x ** 2 + 3 * x - 2) > 0, x, domain=S.Integers) == \
437
+ ((x >= 1) & (x < oo) & Eq(Mod(x, 1), 0)) | (
438
+ (x <= -4) & (x > -oo) & Eq(Mod(x, 1), 0))
439
+
440
+
441
+ def test_issue_10671_12466():
442
+ assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
443
+ i = Interval(1, 10)
444
+ assert solveset((1/x).diff(x) < 0, x, i) == i
445
+ assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
446
+ Interval.Lopen(6, 7)
447
+
448
+
449
+ def test__solve_inequality():
450
+ for op in (Gt, Lt, Le, Ge, Eq, Ne):
451
+ assert _solve_inequality(op(x, 1), x).lhs == x
452
+ assert _solve_inequality(op(S.One, x), x).lhs == x
453
+ # don't get tricked by symbol on right: solve it
454
+ assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
455
+ ie = Eq(S.One, y)
456
+ assert _solve_inequality(ie, x) == ie
457
+ for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
458
+ for c in (0, 1):
459
+ e = 2*fx - c > 0
460
+ assert _solve_inequality(e, x, linear=True) == (
461
+ fx > c/S(2))
462
+ assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
463
+ x*(x + 1) < S.Half)
464
+ assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
465
+ nz = Symbol('nz', nonzero=True)
466
+ assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
467
+ assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
468
+ a = Symbol('a', positive=True)
469
+ assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
470
+ assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
471
+ # make sure to include conditions under which solution is valid
472
+ e = Eq(1 - x, x*(1/x - 1))
473
+ assert _solve_inequality(e, x) == Ne(x, 0)
474
+ assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
475
+
476
+
477
+ def test__pt():
478
+ from sympy.solvers.inequalities import _pt
479
+ assert _pt(-oo, oo) == 0
480
+ assert _pt(S.One, S(3)) == 2
481
+ assert _pt(S.One, oo) == _pt(oo, S.One) == 2
482
+ assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
483
+ assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
484
+ assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
485
+ assert _pt(x, oo) == _pt(oo, x) == x + 1
486
+ assert _pt(x, -oo) == _pt(-oo, x) == x - 1
487
+ raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))
488
+
489
+
490
+ def test_issue_25697():
491
+ assert _solve_inequality(log(x, 3) <= 2, x) == (x <= 9) & (S.Zero < x)
492
+
493
+
494
+ def test_issue_25738():
495
+ assert reduce_inequalities(3 < abs(x)
496
+ ) == reduce_inequalities(pi < abs(x)).subs(pi, 3)
497
+
498
+
499
+ def test_issue_25983():
500
+ assert(reduce_inequalities(pi/Abs(x) <= 1) == ((pi <= x) & (x < oo)) | ((-oo < x) & (x <= -pi)))
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_numeric.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import nfloat
2
+ from sympy.core.numbers import (Float, I, Rational, pi)
3
+ from sympy.core.relational import Eq
4
+ from sympy.core.symbol import (Symbol, symbols)
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.functions.elementary.piecewise import Piecewise
7
+ from sympy.functions.elementary.trigonometric import sin
8
+ from sympy.integrals.integrals import Integral
9
+ from sympy.matrices.dense import Matrix
10
+ from mpmath import mnorm, mpf
11
+ from sympy.solvers import nsolve
12
+ from sympy.utilities.lambdify import lambdify
13
+ from sympy.testing.pytest import raises, XFAIL
14
+ from sympy.utilities.decorator import conserve_mpmath_dps
15
+
16
+ @XFAIL
17
+ def test_nsolve_fail():
18
+ x = symbols('x')
19
+ # Sometimes it is better to use the numerator (issue 4829)
20
+ # but sometimes it is not (issue 11768) so leave this to
21
+ # the discretion of the user
22
+ ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0)
23
+ assert ans > 0.46 and ans < 0.47
24
+
25
+
26
+ def test_nsolve_denominator():
27
+ x = symbols('x')
28
+ # Test that nsolve uses the full expression (numerator and denominator).
29
+ ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1)
30
+ # The root -2 was divided out, so make sure we don't find it.
31
+ assert ans == -1.0
32
+
33
+ def test_nsolve():
34
+ # onedimensional
35
+ x = Symbol('x')
36
+ assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
37
+ assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
38
+ # Testing checks on number of inputs
39
+ raises(TypeError, lambda: nsolve(Eq(2*x, 2)))
40
+ raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2))
41
+ # multidimensional
42
+ x1 = Symbol('x1')
43
+ x2 = Symbol('x2')
44
+ f1 = 3 * x1**2 - 2 * x2**2 - 1
45
+ f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
46
+ f = Matrix((f1, f2)).T
47
+ F = lambdify((x1, x2), f.T, modules='mpmath')
48
+ for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
49
+ x = nsolve(f, (x1, x2), x0, tol=1.e-8)
50
+ assert mnorm(F(*x), 1) <= 1.e-10
51
+ # The Chinese mathematician Zhu Shijie was the very first to solve this
52
+ # nonlinear system 700 years ago (z was added to make it 3-dimensional)
53
+ x = Symbol('x')
54
+ y = Symbol('y')
55
+ z = Symbol('z')
56
+ f1 = -x + 2*y
57
+ f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
58
+ f3 = sqrt(x**2 + y**2)*z
59
+ f = Matrix((f1, f2, f3)).T
60
+ F = lambdify((x, y, z), f.T, modules='mpmath')
61
+
62
+ def getroot(x0):
63
+ root = nsolve(f, (x, y, z), x0)
64
+ assert mnorm(F(*root), 1) <= 1.e-8
65
+ return root
66
+ assert list(map(round, getroot((1, 1, 1)))) == [2, 1, 0]
67
+ assert nsolve([Eq(
68
+ f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z], (1, 1, 1)) # just see that it works
69
+ a = Symbol('a')
70
+ assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) -
71
+ mpf('0.31883011387318591')) < 1e-15
72
+
73
+
74
+ def test_issue_6408():
75
+ x = Symbol('x')
76
+ assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0
77
+
78
+
79
+ def test_issue_6408_integral():
80
+ x, y = symbols('x y')
81
+ assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0
82
+
83
+
84
+ @conserve_mpmath_dps
85
+ def test_increased_dps():
86
+ # Issue 8564
87
+ import mpmath
88
+ mpmath.mp.dps = 128
89
+ x = Symbol('x')
90
+ e1 = x**2 - pi
91
+ q = nsolve(e1, x, 3.0)
92
+
93
+ assert abs(sqrt(pi).evalf(128) - q) < 1e-128
94
+
95
+ def test_nsolve_precision():
96
+ x, y = symbols('x y')
97
+ sol = nsolve(x**2 - pi, x, 3, prec=128)
98
+ assert abs(sqrt(pi).evalf(128) - sol) < 1e-128
99
+ assert isinstance(sol, Float)
100
+
101
+ sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128)
102
+ assert isinstance(sols, Matrix)
103
+ assert sols.shape == (2, 1)
104
+ assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128
105
+ assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128
106
+ assert all(isinstance(i, Float) for i in sols)
107
+
108
+ def test_nsolve_complex():
109
+ x, y = symbols('x y')
110
+
111
+ assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I
112
+ assert nsolve(x**2 + 2, I) == sqrt(2.)*I
113
+
114
+ assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
115
+ assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
116
+
117
+ def test_nsolve_dict_kwarg():
118
+ x, y = symbols('x y')
119
+ # one variable
120
+ assert nsolve(x**2 - 2, 1, dict = True) == \
121
+ [{x: sqrt(2.)}]
122
+ # one variable with complex solution
123
+ assert nsolve(x**2 + 2, I, dict = True) == \
124
+ [{x: sqrt(2.)*I}]
125
+ # two variables
126
+ assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \
127
+ [{x: sqrt(2.), y: sqrt(3.)}]
128
+
129
+ def test_nsolve_rational():
130
+ x = symbols('x')
131
+ assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100)
132
+
133
+
134
+ def test_issue_14950():
135
+ x = Matrix(symbols('t s'))
136
+ x0 = Matrix([17, 23])
137
+ eqn = x + x0
138
+ assert nsolve(eqn, x, x0) == nfloat(-x0)
139
+ assert nsolve(eqn.T, x.T, x0.T) == nfloat(-x0)
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_pde.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative as D, Function)
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.exponential import (exp, log)
5
+ from sympy.functions.elementary.trigonometric import (cos, sin)
6
+ from sympy.core import S
7
+ from sympy.solvers.pde import (pde_separate, pde_separate_add, pde_separate_mul,
8
+ pdsolve, classify_pde, checkpdesol)
9
+ from sympy.testing.pytest import raises
10
+
11
+
12
+ a, b, c, x, y = symbols('a b c x y')
13
+
14
+ def test_pde_separate_add():
15
+ x, y, z, t = symbols("x,y,z,t")
16
+ F, T, X, Y, Z, u = map(Function, 'FTXYZu')
17
+
18
+ eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
19
+ res = pde_separate_add(eq, u(x, t), [X(x), T(t)])
20
+ assert res == [D(X(x), x)*exp(-X(x)), D(T(t), t)*exp(T(t))]
21
+
22
+
23
+ def test_pde_separate():
24
+ x, y, z, t = symbols("x,y,z,t")
25
+ F, T, X, Y, Z, u = map(Function, 'FTXYZu')
26
+
27
+ eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
28
+ raises(ValueError, lambda: pde_separate(eq, u(x, t), [X(x), T(t)], 'div'))
29
+
30
+
31
+ def test_pde_separate_mul():
32
+ x, y, z, t = symbols("x,y,z,t")
33
+ c = Symbol("C", real=True)
34
+ Phi = Function('Phi')
35
+ F, R, T, X, Y, Z, u = map(Function, 'FRTXYZu')
36
+ r, theta, z = symbols('r,theta,z')
37
+
38
+ # Something simple :)
39
+ eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z), 0)
40
+
41
+ # Duplicate arguments in functions
42
+ raises(
43
+ ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
44
+ # Wrong number of arguments
45
+ raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
46
+ # Wrong variables: [x, y] -> [x, z]
47
+ raises(
48
+ ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))
49
+
50
+ assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == \
51
+ [D(Y(y), y)/Y(y), -D(u(x, z), x)/u(x, z) - D(u(x, z), z)/u(x, z)]
52
+ assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == \
53
+ [D(X(x), x)/X(x), -D(Z(z), z)/Z(z) - D(Y(y), y)/Y(y)]
54
+
55
+ # wave equation
56
+ wave = Eq(D(u(x, t), t, t), c**2*D(u(x, t), x, x))
57
+ res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
58
+ assert res == [D(X(x), x, x)/X(x), D(T(t), t, t)/(c**2*T(t))]
59
+
60
+ # Laplace equation in cylindrical coords
61
+ eq = Eq(1/r * D(Phi(r, theta, z), r) + D(Phi(r, theta, z), r, 2) +
62
+ 1/r**2 * D(Phi(r, theta, z), theta, 2) + D(Phi(r, theta, z), z, 2), 0)
63
+ # Separate z
64
+ res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
65
+ assert res == [D(Z(z), z, z)/Z(z),
66
+ -D(u(theta, r), r, r)/u(theta, r) -
67
+ D(u(theta, r), r)/(r*u(theta, r)) -
68
+ D(u(theta, r), theta, theta)/(r**2*u(theta, r))]
69
+ # Lets use the result to create a new equation...
70
+ eq = Eq(res[1], c)
71
+ # ...and separate theta...
72
+ res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
73
+ assert res == [D(T(theta), theta, theta)/T(theta),
74
+ -r*D(R(r), r)/R(r) - r**2*D(R(r), r, r)/R(r) - c*r**2]
75
+ # ...or r...
76
+ res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
77
+ assert res == [r*D(R(r), r)/R(r) + r**2*D(R(r), r, r)/R(r) + c*r**2,
78
+ -D(T(theta), theta, theta)/T(theta)]
79
+
80
+
81
+ def test_issue_11726():
82
+ x, t = symbols("x t")
83
+ f = symbols("f", cls=Function)
84
+ X, T = symbols("X T", cls=Function)
85
+
86
+ u = f(x, t)
87
+ eq = u.diff(x, 2) - u.diff(t, 2)
88
+ res = pde_separate(eq, u, [T(x), X(t)])
89
+ assert res == [D(T(x), x, x)/T(x),D(X(t), t, t)/X(t)]
90
+
91
+
92
+ def test_pde_classify():
93
+ # When more number of hints are added, add tests for classifying here.
94
+ f = Function('f')
95
+ eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
96
+ eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
97
+ eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
98
+ eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
99
+ eq5 = x**2*f(x,y) + x*f(x,y).diff(x) + x*y*f(x,y).diff(y)
100
+ eq6 = y*x**2*f(x,y) + y*f(x,y).diff(x) + f(x,y).diff(y)
101
+ for eq in [eq1, eq2, eq3]:
102
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
103
+ for eq in [eq4, eq5, eq6]:
104
+ assert classify_pde(eq) == ('1st_linear_variable_coeff',)
105
+
106
+
107
+ def test_checkpdesol():
108
+ f, F = map(Function, ['f', 'F'])
109
+ eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
110
+ eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
111
+ eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
112
+ for eq in [eq1, eq2, eq3]:
113
+ assert checkpdesol(eq, pdsolve(eq))[0]
114
+ eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
115
+ eq5 = 2*f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
116
+ eq6 = f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
117
+ assert checkpdesol(eq4, [pdsolve(eq5), pdsolve(eq6)]) == [
118
+ (False, (x - 2)*F(3*x - y)*exp(-x/S(5) - 3*y/S(5))),
119
+ (False, (x - 1)*F(3*x - y)*exp(-x/S(10) - 3*y/S(10)))]
120
+ for eq in [eq4, eq5, eq6]:
121
+ assert checkpdesol(eq, pdsolve(eq))[0]
122
+ sol = pdsolve(eq4)
123
+ sol4 = Eq(sol.lhs - sol.rhs, 0)
124
+ raises(NotImplementedError, lambda:
125
+ checkpdesol(eq4, sol4, solve_for_func=False))
126
+
127
+
128
+ def test_solvefun():
129
+ f, F, G, H = map(Function, ['f', 'F', 'G', 'H'])
130
+ eq1 = f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)
131
+ assert pdsolve(eq1) == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
132
+ assert pdsolve(eq1, solvefun=G) == Eq(f(x, y), G(x - y)*exp(-x/2 - y/2))
133
+ assert pdsolve(eq1, solvefun=H) == Eq(f(x, y), H(x - y)*exp(-x/2 - y/2))
134
+
135
+
136
+ def test_pde_1st_linear_constant_coeff_homogeneous():
137
+ f, F = map(Function, ['f', 'F'])
138
+ u = f(x, y)
139
+ eq = 2*u + u.diff(x) + u.diff(y)
140
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
141
+ sol = pdsolve(eq)
142
+ assert sol == Eq(u, F(x - y)*exp(-x - y))
143
+ assert checkpdesol(eq, sol)[0]
144
+
145
+ eq = 4 + (3*u.diff(x)/u) + (2*u.diff(y)/u)
146
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
147
+ sol = pdsolve(eq)
148
+ assert sol == Eq(u, F(2*x - 3*y)*exp(-S(12)*x/13 - S(8)*y/13))
149
+ assert checkpdesol(eq, sol)[0]
150
+
151
+ eq = u + (6*u.diff(x)) + (7*u.diff(y))
152
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
153
+ sol = pdsolve(eq)
154
+ assert sol == Eq(u, F(7*x - 6*y)*exp(-6*x/S(85) - 7*y/S(85)))
155
+ assert checkpdesol(eq, sol)[0]
156
+
157
+ eq = a*u + b*u.diff(x) + c*u.diff(y)
158
+ sol = pdsolve(eq)
159
+ assert checkpdesol(eq, sol)[0]
160
+
161
+
162
+ def test_pde_1st_linear_constant_coeff():
163
+ f, F = map(Function, ['f', 'F'])
164
+ u = f(x,y)
165
+ eq = -2*u.diff(x) + 4*u.diff(y) + 5*u - exp(x + 3*y)
166
+ sol = pdsolve(eq)
167
+ assert sol == Eq(f(x,y),
168
+ (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
169
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
170
+ '1st_linear_constant_coeff_Integral')
171
+ assert checkpdesol(eq, sol)[0]
172
+
173
+ eq = (u.diff(x)/u) + (u.diff(y)/u) + 1 - (exp(x + y)/u)
174
+ sol = pdsolve(eq)
175
+ assert sol == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2) + exp(x + y)/3)
176
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
177
+ '1st_linear_constant_coeff_Integral')
178
+ assert checkpdesol(eq, sol)[0]
179
+
180
+ eq = 2*u + -u.diff(x) + 3*u.diff(y) + sin(x)
181
+ sol = pdsolve(eq)
182
+ assert sol == Eq(f(x, y),
183
+ F(3*x + y)*exp(x/5 - 3*y/5) - 2*sin(x)/5 - cos(x)/5)
184
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
185
+ '1st_linear_constant_coeff_Integral')
186
+ assert checkpdesol(eq, sol)[0]
187
+
188
+ eq = u + u.diff(x) + u.diff(y) + x*y
189
+ sol = pdsolve(eq)
190
+ assert sol.expand() == Eq(f(x, y),
191
+ x + y + (x - y)**2/4 - (x + y)**2/4 + F(x - y)*exp(-x/2 - y/2) - 2).expand()
192
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
193
+ '1st_linear_constant_coeff_Integral')
194
+ assert checkpdesol(eq, sol)[0]
195
+ eq = u + u.diff(x) + u.diff(y) + log(x)
196
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
197
+ '1st_linear_constant_coeff_Integral')
198
+
199
+
200
+ def test_pdsolve_all():
201
+ f, F = map(Function, ['f', 'F'])
202
+ u = f(x,y)
203
+ eq = u + u.diff(x) + u.diff(y) + x**2*y
204
+ sol = pdsolve(eq, hint = 'all')
205
+ keys = ['1st_linear_constant_coeff',
206
+ '1st_linear_constant_coeff_Integral', 'default', 'order']
207
+ assert sorted(sol.keys()) == keys
208
+ assert sol['order'] == 1
209
+ assert sol['default'] == '1st_linear_constant_coeff'
210
+ assert sol['1st_linear_constant_coeff'].expand() == Eq(f(x, y),
211
+ -x**2*y + x**2 + 2*x*y - 4*x - 2*y + F(x - y)*exp(-x/2 - y/2) + 6).expand()
212
+
213
+
214
+ def test_pdsolve_variable_coeff():
215
+ f, F = map(Function, ['f', 'F'])
216
+ u = f(x, y)
217
+ eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
218
+ sol = pdsolve(eq, hint="1st_linear_variable_coeff")
219
+ assert sol == Eq(u, F(x*y)*exp(y**2/2) + 1)
220
+ assert checkpdesol(eq, sol)[0]
221
+
222
+ eq = x**2*u + x*u.diff(x) + x*y*u.diff(y)
223
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
224
+ assert sol == Eq(u, F(y*exp(-x))*exp(-x**2/2))
225
+ assert checkpdesol(eq, sol)[0]
226
+
227
+ eq = y*x**2*u + y*u.diff(x) + u.diff(y)
228
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
229
+ assert sol == Eq(u, F(-2*x + y**2)*exp(-x**3/3))
230
+ assert checkpdesol(eq, sol)[0]
231
+
232
+ eq = exp(x)**2*(u.diff(x)) + y
233
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
234
+ assert sol == Eq(u, y*exp(-2*x)/2 + F(y))
235
+ assert checkpdesol(eq, sol)[0]
236
+
237
+ eq = exp(2*x)*(u.diff(y)) + y*u - u
238
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
239
+ assert sol == Eq(u, F(x)*exp(-y*(y - 2)*exp(-2*x)/2))
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_polysys.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for solvers of systems of polynomial equations. """
2
+ from sympy.core.numbers import (I, Integer, Rational)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import symbols
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.polys.domains.rationalfield import QQ
7
+ from sympy.polys.polyerrors import UnsolvableFactorError
8
+ from sympy.polys.polyoptions import Options
9
+ from sympy.polys.polytools import Poly
10
+ from sympy.solvers.solvers import solve
11
+ from sympy.utilities.iterables import flatten
12
+ from sympy.abc import x, y, z
13
+ from sympy.polys import PolynomialError
14
+ from sympy.solvers.polysys import (solve_poly_system,
15
+ solve_triangulated,
16
+ solve_biquadratic, SolveFailed,
17
+ solve_generic)
18
+ from sympy.polys.polytools import parallel_poly_from_expr
19
+ from sympy.testing.pytest import raises
20
+
21
+
22
+ def test_solve_poly_system():
23
+ assert solve_poly_system([x - 1], x) == [(S.One,)]
24
+
25
+ assert solve_poly_system([y - x, y - x - 1], x, y) is None
26
+
27
+ assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
28
+
29
+ assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
30
+ [(Rational(3, 2), Integer(2), Integer(10))]
31
+
32
+ assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
33
+ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
34
+
35
+ assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
36
+ [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
37
+
38
+ f_1 = x**2 + y + z - 1
39
+ f_2 = x + y**2 + z - 1
40
+ f_3 = x + y + z**2 - 1
41
+
42
+ a, b = sqrt(2) - 1, -sqrt(2) - 1
43
+
44
+ assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
45
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
46
+
47
+ solution = [(1, -1), (1, 1)]
48
+
49
+ assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
50
+ assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
51
+ assert solve_poly_system([x**2 - y**2, x - 1]) == solution
52
+
53
+ assert solve_poly_system(
54
+ [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
55
+
56
+ raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
57
+ raises(NotImplementedError, lambda: solve_poly_system(
58
+ [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
59
+ raises(PolynomialError, lambda: solve_poly_system([1/x], x))
60
+
61
+ raises(NotImplementedError, lambda: solve_poly_system(
62
+ [x-1,], (x, y)))
63
+ raises(NotImplementedError, lambda: solve_poly_system(
64
+ [y-1,], (x, y)))
65
+
66
+ # solve_poly_system should ideally construct solutions using
67
+ # CRootOf for the following four tests
68
+ assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
69
+ raises(UnsolvableFactorError, lambda: solve_poly_system(
70
+ [x**5 - x + 1], [x], strict=True))
71
+
72
+ assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
73
+ strict=False) == [(1, -1), (1, 1)]
74
+ raises(UnsolvableFactorError,
75
+ lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
76
+ [x, y], strict=True))
77
+
78
+
79
+ def test_solve_generic():
80
+ NewOption = Options((x, y), {'domain': 'ZZ'})
81
+ assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
82
+ [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
83
+ (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
84
+ (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
85
+ (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]
86
+
87
+ # solve_generic should ideally construct solutions using
88
+ # CRootOf for the following two tests
89
+ assert solve_generic(
90
+ [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
91
+ [(Rational(1, 2), 1)]
92
+ raises(UnsolvableFactorError, lambda: solve_generic(
93
+ [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))
94
+
95
+
96
+ def test_solve_biquadratic():
97
+ x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
98
+
99
+ f_1 = (x - 1)**2 + (y - 1)**2 - r**2
100
+ f_2 = (x - 2)**2 + (y - 2)**2 - r**2
101
+ s = sqrt(2*r**2 - 1)
102
+ a = (3 - s)/2
103
+ b = (3 + s)/2
104
+ assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
105
+
106
+ f_1 = (x - 1)**2 + (y - 2)**2 - r**2
107
+ f_2 = (x - 1)**2 + (y - 1)**2 - r**2
108
+
109
+ assert solve_poly_system([f_1, f_2], x, y) == \
110
+ [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
111
+ (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
112
+
113
+ query = lambda expr: expr.is_Pow and expr.exp is S.Half
114
+
115
+ f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
116
+ f_2 = (x - x1)**2 + (y - 1)**2 - r**2
117
+
118
+ result = solve_poly_system([f_1, f_2], x, y)
119
+
120
+ assert len(result) == 2 and all(len(r) == 2 for r in result)
121
+ assert all(r.count(query) == 1 for r in flatten(result))
122
+
123
+ f_1 = (x - x0)**2 + (y - y0)**2 - r**2
124
+ f_2 = (x - x1)**2 + (y - y1)**2 - r**2
125
+
126
+ result = solve_poly_system([f_1, f_2], x, y)
127
+
128
+ assert len(result) == 2 and all(len(r) == 2 for r in result)
129
+ assert all(len(r.find(query)) == 1 for r in flatten(result))
130
+
131
+ s1 = (x*y - y, x**2 - x)
132
+ assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
133
+ s2 = (x*y - x, y**2 - y)
134
+ assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
135
+ gens = (x, y)
136
+ for seq in (s1, s2):
137
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
138
+ raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
139
+ seq = (x**2 + y**2 - 2, y**2 - 1)
140
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
141
+ assert solve_biquadratic(f, g, opt) == [
142
+ (-1, -1), (-1, 1), (1, -1), (1, 1)]
143
+ ans = [(0, -1), (0, 1)]
144
+ seq = (x**2 + y**2 - 1, y**2 - 1)
145
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
146
+ assert solve_biquadratic(f, g, opt) == ans
147
+ seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
148
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
149
+ assert solve_biquadratic(f, g, opt) == ans
150
+
151
+
152
+ def test_solve_triangulated():
153
+ f_1 = x**2 + y + z - 1
154
+ f_2 = x + y**2 + z - 1
155
+ f_3 = x + y + z**2 - 1
156
+
157
+ a, b = sqrt(2) - 1, -sqrt(2) - 1
158
+
159
+ assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
160
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
161
+
162
+ dom = QQ.algebraic_field(sqrt(2))
163
+
164
+ assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
165
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
166
+
167
+
168
+ def test_solve_issue_3686():
169
+ roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
170
+ assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
171
+
172
+ roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
173
+ # TODO: does this really have to be so complicated?!
174
+ assert len(roots) == 2
175
+ assert roots[0][0] == 0
176
+ assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
177
+ assert roots[1][0] == 0
178
+ assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_recurr.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Function, Lambda, expand)
2
+ from sympy.core.numbers import (I, Rational)
3
+ from sympy.core.relational import Eq
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import (Symbol, symbols)
6
+ from sympy.functions.combinatorial.factorials import (rf, binomial, factorial)
7
+ from sympy.functions.elementary.complexes import Abs
8
+ from sympy.functions.elementary.miscellaneous import sqrt
9
+ from sympy.functions.elementary.trigonometric import (cos, sin)
10
+ from sympy.polys.polytools import factor
11
+ from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio
12
+ from sympy.testing.pytest import raises, slow, XFAIL
13
+ from sympy.abc import a, b
14
+
15
+ y = Function('y')
16
+ n, k = symbols('n,k', integer=True)
17
+ C0, C1, C2 = symbols('C0,C1,C2')
18
+
19
+
20
+ def test_rsolve_poly():
21
+ assert rsolve_poly([-1, -1, 1], 0, n) == 0
22
+ assert rsolve_poly([-1, -1, 1], 1, n) == -1
23
+
24
+ assert rsolve_poly([-1, n + 1], n, n) == 1
25
+ assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2
26
+ assert rsolve_poly([-n - 1, n], 1, n) == C0*n - 1
27
+ assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1
28
+
29
+ assert rsolve_poly([-1, 1], n**5 + n**3, n) == \
30
+ C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3
31
+
32
+
33
+ def test_rsolve_ratio():
34
+ solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n,
35
+ -2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n)
36
+ assert solution == C0*(2*n - 3)/(n**2 - 1)/2
37
+
38
+
39
+ def test_rsolve_hyper():
40
+ assert rsolve_hyper([-1, -1, 1], 0, n) in [
41
+ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
42
+ C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
43
+ ]
44
+
45
+ assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [
46
+ C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n),
47
+ C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n),
48
+ ]
49
+
50
+ assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [
51
+ C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n),
52
+ C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n),
53
+ ]
54
+
55
+ assert rsolve_hyper(
56
+ [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n
57
+
58
+ assert rsolve_hyper(
59
+ [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == 0
60
+
61
+ assert rsolve_hyper([-n - 1, -1, 1], 0, n) == 0
62
+
63
+ assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2
64
+
65
+ assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2
66
+
67
+ assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n
68
+
69
+ assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n
70
+
71
+ assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2)
72
+
73
+ assert rsolve_hyper([1, 1, 1], 0, n).expand() == \
74
+ C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n
75
+
76
+ assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) == 0
77
+
78
+
79
+ @XFAIL
80
+ def test_rsolve_ratio_missed():
81
+ # this arises during computation
82
+ # assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n
83
+ assert rsolve_ratio([-n, n + 2], n, n) is not None
84
+
85
+
86
+ def recurrence_term(c, f):
87
+ """Compute RHS of recurrence in f(n) with coefficients in c."""
88
+ return sum(c[i]*f.subs(n, n + i) for i in range(len(c)))
89
+
90
+
91
+ def test_rsolve_bulk():
92
+ """Some bulk-generated tests."""
93
+ funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3*
94
+ n**3 + 12*n**4 - 52*n**5 ]
95
+ coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 -
96
+ n + 12, 1] ]
97
+ for p in funcs:
98
+ # compute difference
99
+ for c in coeffs:
100
+ q = recurrence_term(c, p)
101
+ if p.is_polynomial(n):
102
+ assert rsolve_poly(c, q, n) == p
103
+ # See issue 3956:
104
+ if p.is_hypergeometric(n) and len(c) <= 3:
105
+ assert rsolve_hyper(c, q, n).subs(zip(symbols('C:3'), [0, 0, 0])).expand() == p
106
+
107
+
108
+ def test_rsolve_0_sol_homogeneous():
109
+ # fixed by cherry-pick from
110
+ # https://github.com/diofant/diofant/commit/e1d2e52125199eb3df59f12e8944f8a5f24b00a5
111
+ assert rsolve_hyper([n**2 - n + 12, 1], n*(n**2 - n + 12) + n + 1, n) == n
112
+
113
+
114
+ def test_rsolve():
115
+ f = y(n + 2) - y(n + 1) - y(n)
116
+ h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \
117
+ - sqrt(5)*(S.Half - S.Half*sqrt(5))**n
118
+
119
+ assert rsolve(f, y(n)) in [
120
+ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
121
+ C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
122
+ ]
123
+
124
+ assert rsolve(f, y(n), [0, 5]) == h
125
+ assert rsolve(f, y(n), {0: 0, 1: 5}) == h
126
+ assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h
127
+ assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h
128
+ assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h
129
+
130
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
131
+
132
+ f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)
133
+ g = C1*factorial(n) + C0*2**n
134
+ h = -3*factorial(n) + 3*2**n
135
+
136
+ assert rsolve(f, y(n)) == g
137
+ assert rsolve(f, y(n), []) == g
138
+ assert rsolve(f, y(n), {}) == g
139
+
140
+ assert rsolve(f, y(n), [0, 3]) == h
141
+ assert rsolve(f, y(n), {0: 0, 1: 3}) == h
142
+ assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h
143
+
144
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
145
+
146
+ f = y(n) - y(n - 1) - 2
147
+
148
+ assert rsolve(f, y(n), {y(0): 0}) == 2*n
149
+ assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1
150
+ assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None
151
+
152
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
153
+
154
+ f = 3*y(n - 1) - y(n) - 1
155
+
156
+ assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half
157
+ assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half
158
+ assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half
159
+
160
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
161
+
162
+ f = y(n) - 1/n*y(n - 1)
163
+ assert rsolve(f, y(n)) == C0/factorial(n)
164
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
165
+
166
+ f = y(n) - 1/n*y(n - 1) - 1
167
+ assert rsolve(f, y(n)) is None
168
+
169
+ f = 2*y(n - 1) + (1 - n)*y(n)/n
170
+
171
+ assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n
172
+ assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2
173
+ assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3
174
+
175
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
176
+
177
+ f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n)
178
+
179
+ assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2)
180
+ assert rsolve(
181
+ f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n)
182
+
183
+ assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0
184
+
185
+ assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n
186
+
187
+ assert rsolve(y(n) - a*y(n-2),y(n), \
188
+ {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \
189
+ a**(n/2 + 1) - b*(-sqrt(a))**n
190
+
191
+ f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n)
192
+
193
+ yn = rsolve(f, y(n), {y(1): binomial(2*n + 1, 3)})
194
+ sol = 2**(2*n)*n*(2*n - 1)**2*(2*n + 1)/12
195
+ assert factor(expand(yn, func=True)) == sol
196
+
197
+ sol = rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n))
198
+ assert str(sol) == 'C0*((-sqrt(1 - a**2) - 1)/a)**n + C1*((sqrt(1 - a**2) - 1)/a)**n'
199
+
200
+ assert rsolve((k + 1)*y(k), y(k)) is None
201
+ assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k))
202
+ is None)
203
+
204
+ assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n*C0 - 2**n/3 - 3**n/4
205
+
206
+
207
+ def test_rsolve_raises():
208
+ x = Function('x')
209
+ raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n)))
210
+ raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n)))
211
+ raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n)))
212
+ raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n)))
213
+ raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0}))
214
+ raises(ValueError, lambda: rsolve(y(n) + y(n + 1) + 2**n + cos(n), y(n)))
215
+
216
+
217
+ def test_issue_6844():
218
+ f = y(n + 2) - y(n + 1) + y(n)/4
219
+ assert rsolve(f, y(n)) == 2**(-n + 1)*C1*n + 2**(-n)*C0
220
+ assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2**(1 - n)*n
221
+
222
+
223
+ def test_issue_18751():
224
+ r = Symbol('r', positive=True)
225
+ theta = Symbol('theta', real=True)
226
+ f = y(n) - 2 * r * cos(theta) * y(n - 1) + r**2 * y(n - 2)
227
+ assert rsolve(f, y(n)) == \
228
+ C0*(r*(cos(theta) - I*Abs(sin(theta))))**n + C1*(r*(cos(theta) + I*Abs(sin(theta))))**n
229
+
230
+
231
+ def test_constant_naming():
232
+ #issue 8697
233
+ assert rsolve(y(n+3) - y(n+2) - y(n+1) + y(n), y(n)) == (-1)**n*C1 + C0 + C2*n
234
+ assert rsolve(y(n+3)+3*y(n+2)+3*y(n+1)+y(n), y(n)).expand() == (-1)**n*C0 - (-1)**n*C1*n - (-1)**n*C2*n**2
235
+ assert rsolve(y(n) - 2*y(n - 3) + 5*y(n - 2) - 4*y(n - 1),y(n),[1,3,8]) == 3*2**n - n - 2
236
+
237
+ #issue 19630
238
+ assert rsolve(y(n+3) - 3*y(n+1) + 2*y(n), y(n), {y(1):0, y(2):8, y(3):-2}) == (-2)**n + 2*n
239
+
240
+
241
+ @slow
242
+ def test_issue_15751():
243
+ f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8)
244
+ assert rsolve(f, y(n)) is not None
245
+
246
+
247
+ def test_issue_17990():
248
+ f = -10*y(n) + 4*y(n + 1) + 6*y(n + 2) + 46*y(n + 3)
249
+ sol = rsolve(f, y(n))
250
+ expected = C0*((86*18**(S(1)/3)/69 + (-12 + (-1 + sqrt(3)*I)*(290412 +
251
+ 3036*sqrt(9165))**(S(1)/3))*(1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**
252
+ (S(1)/3)/276)/((1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3))
253
+ )**n + C1*((86*18**(S(1)/3)/69 + (-12 + (-1 - sqrt(3)*I)*(290412 + 3036
254
+ *sqrt(9165))**(S(1)/3))*(1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**
255
+ (S(1)/3)/276)/((1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3))
256
+ )**n + C2*(-43*18**(S(1)/3)/(69*(24201 + 253*sqrt(9165))**(S(1)/3)) -
257
+ S(1)/23 + (290412 + 3036*sqrt(9165))**(S(1)/3)/138)**n
258
+ assert sol == expected
259
+ e = sol.subs({C0: 1, C1: 1, C2: 1, n: 1}).evalf()
260
+ assert abs(e + 0.130434782608696) < 1e-13
261
+
262
+
263
+ def test_issue_8697():
264
+ a = Function('a')
265
+ eq = a(n + 3) - a(n + 2) - a(n + 1) + a(n)
266
+ assert rsolve(eq, a(n)) == (-1)**n*C1 + C0 + C2*n
267
+ eq2 = a(n + 3) + 3*a(n + 2) + 3*a(n + 1) + a(n)
268
+ assert (rsolve(eq2, a(n)) ==
269
+ (-1)**n*C0 + (-1)**(n + 1)*C1*n + (-1)**(n + 1)*C2*n**2)
270
+
271
+ assert rsolve(a(n) - 2*a(n - 3) + 5*a(n - 2) - 4*a(n - 1),
272
+ a(n), {a(0): 1, a(1): 3, a(2): 8}) == 3*2**n - n - 2
273
+
274
+ # From issue thread (but fixed by https://github.com/diofant/diofant/commit/da9789c6cd7d0c2ceeea19fbf59645987125b289):
275
+ assert rsolve(a(n) - 2*a(n - 1) - n, a(n), {a(0): 1}) == 3*2**n - n - 2
276
+
277
+
278
+ def test_diofantissue_294():
279
+ f = y(n) - y(n - 1) - 2*y(n - 2) - 2*n
280
+ assert rsolve(f, y(n)) == (-1)**n*C0 + 2**n*C1 - n - Rational(5, 2)
281
+ # issue sympy/sympy#11261
282
+ assert rsolve(f, y(n), {y(0): -1, y(1): 1}) == (-(-1)**n/2 + 2*2**n -
283
+ n - Rational(5, 2))
284
+ # issue sympy/sympy#7055
285
+ assert rsolve(-2*y(n) + y(n + 1) + n - 1, y(n)) == 2**n*C0 + n
286
+
287
+
288
+ def test_issue_15553():
289
+ f = Function("f")
290
+ assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n)) == 2**n*C0 - n - 2
291
+ assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n)) == 2**n*C0 - n**2 - 2*n - 4
292
+ assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n), {f(1): 0}) == 7*2**n/2 - n**2 - 2*n - 4
293
+ assert rsolve(Eq(f(n), 2*f(n - 1) + 3*n**2), f(n)) == 2**n*C0 - 3*n**2 - 12*n - 18
294
+ assert rsolve(Eq(f(n), 2*f(n - 1) + n**2), f(n)) == 2**n*C0 - n**2 - 4*n - 6
295
+ assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n), {f(0): 1}) == 3*2**n - n - 2
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_simplex.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.core.relational import Eq, Ne
3
+ from sympy.core.symbol import symbols
4
+ from sympy.core.sympify import sympify
5
+ from sympy.core.singleton import S
6
+ from sympy.core.random import random, choice
7
+ from sympy.functions.elementary.miscellaneous import sqrt
8
+ from sympy.ntheory.generate import randprime
9
+ from sympy.matrices.dense import Matrix
10
+ from sympy.solvers.solveset import linear_eq_to_matrix
11
+ from sympy.solvers.simplex import (_lp as lp, _primal_dual,
12
+ UnboundedLPError, InfeasibleLPError, lpmin, lpmax,
13
+ _m, _abcd, _simplex, linprog)
14
+
15
+ from sympy.external.importtools import import_module
16
+
17
+ from sympy.testing.pytest import raises
18
+
19
+ from sympy.abc import x, y, z
20
+
21
+
22
+ np = import_module("numpy")
23
+ scipy = import_module("scipy")
24
+
25
+
26
+ def test_lp():
27
+ r1 = y + 2*z <= 3
28
+ r2 = -x - 3*z <= -2
29
+ r3 = 2*x + y + 7*z <= 5
30
+ constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
31
+ objective = -x - y - 5 * z
32
+ ans = optimum, argmax = lp(max, objective, constraints)
33
+ assert ans == lpmax(objective, constraints)
34
+ assert objective.subs(argmax) == optimum
35
+ for constr in constraints:
36
+ assert constr.subs(argmax) == True
37
+
38
+ r1 = x - y + 2*z <= 3
39
+ r2 = -x + 2*y - 3*z <= -2
40
+ r3 = 2*x + y - 7*z <= -5
41
+ constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
42
+ objective = -x - y - 5*z
43
+ ans = optimum, argmax = lp(max, objective, constraints)
44
+ assert ans == lpmax(objective, constraints)
45
+ assert objective.subs(argmax) == optimum
46
+ for constr in constraints:
47
+ assert constr.subs(argmax) == True
48
+
49
+ r1 = x - y + 2*z <= -4
50
+ r2 = -x + 2*y - 3*z <= 8
51
+ r3 = 2*x + y - 7*z <= 10
52
+ constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
53
+ const = 2
54
+ objective = -x-y-5*z+const # has constant term
55
+ ans = optimum, argmax = lp(max, objective, constraints)
56
+ assert ans == lpmax(objective, constraints)
57
+ assert objective.subs(argmax) == optimum
58
+ for constr in constraints:
59
+ assert constr.subs(argmax) == True
60
+
61
+ # Section 4 Problem 1 from
62
+ # http://web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_LP.pdf
63
+ # answer on page 55
64
+ v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
65
+ r1 = x1 - x2 - 2*x3 - x4 <= 4
66
+ r2 = 2*x1 + x3 -4*x4 <= 2
67
+ r3 = -2*x1 + x2 + x4 <= 1
68
+ objective, constraints = x1 - 2*x2 - 3*x3 - x4, [r1, r2, r3] + [
69
+ i >= 0 for i in v]
70
+ ans = optimum, argmax = lp(max, objective, constraints)
71
+ assert ans == lpmax(objective, constraints)
72
+ assert ans == (4, {x1: 7, x2: 0, x3: 0, x4: 3})
73
+
74
+ # input contains Floats
75
+ r1 = x - y + 2.0*z <= -4
76
+ r2 = -x + 2*y - 3.0*z <= 8
77
+ r3 = 2*x + y - 7*z <= 10
78
+ constraints = [r1, r2, r3] + [i >= 0 for i in (x, y, z)]
79
+ objective = -x-y-5*z
80
+ optimum, argmax = lp(max, objective, constraints)
81
+ assert objective.subs(argmax) == optimum
82
+ for constr in constraints:
83
+ assert constr.subs(argmax) == True
84
+
85
+ # input contains non-float or non-Rational
86
+ r1 = x - y + sqrt(2) * z <= -4
87
+ r2 = -x + 2*y - 3*z <= 8
88
+ r3 = 2*x + y - 7*z <= 10
89
+ raises(TypeError, lambda: lp(max, -x-y-5*z, [r1, r2, r3]))
90
+
91
+ r1 = x >= 0
92
+ raises(UnboundedLPError, lambda: lp(max, x, [r1]))
93
+ r2 = x <= -1
94
+ raises(InfeasibleLPError, lambda: lp(max, x, [r1, r2]))
95
+
96
+ # strict inequalities are not allowed
97
+ r1 = x > 0
98
+ raises(TypeError, lambda: lp(max, x, [r1]))
99
+
100
+ # not equals not allowed
101
+ r1 = Ne(x, 0)
102
+ raises(TypeError, lambda: lp(max, x, [r1]))
103
+
104
+ def make_random_problem(nvar=2, num_constraints=2, sparsity=.1):
105
+ def rand():
106
+ if random() < sparsity:
107
+ return sympify(0)
108
+ int1, int2 = [randprime(0, 200) for _ in range(2)]
109
+ return Rational(int1, int2)*choice([-1, 1])
110
+ variables = symbols('x1:%s' % (nvar + 1))
111
+ constraints = [(sum(rand()*x for x in variables) <= rand())
112
+ for _ in range(num_constraints)]
113
+ objective = sum(rand() * x for x in variables)
114
+ return objective, constraints, variables
115
+
116
+ # equality
117
+ r1 = Eq(x, y)
118
+ r2 = Eq(y, z)
119
+ r3 = z <= 3
120
+ constraints = [r1, r2, r3]
121
+ objective = x
122
+ ans = optimum, argmax = lp(max, objective, constraints)
123
+ assert ans == lpmax(objective, constraints)
124
+ assert objective.subs(argmax) == optimum
125
+ for constr in constraints:
126
+ assert constr.subs(argmax) == True
127
+
128
+
129
+ def test_simplex():
130
+ L = [
131
+ [[1, 1], [-1, 1], [0, 1], [-1, 0]],
132
+ [5, 1, 2, -1],
133
+ [[1, 1]],
134
+ [-1]]
135
+ A, B, C, D = _abcd(_m(*L), list=False)
136
+ assert _simplex(A, B, -C, -D) == (-6, [3, 2], [1, 0, 0, 0])
137
+ assert _simplex(A, B, -C, -D, dual=True) == (-6,
138
+ [1, 0, 0, 0], [5, 0])
139
+
140
+ assert _simplex([[]],[],[[1]],[0]) == (0, [0], [])
141
+
142
+ # handling of Eq (or Eq-like x<=y, x>=y conditions)
143
+ assert lpmax(x - y, [x <= y + 2, x >= y + 2, x >= 0, y >= 0]
144
+ ) == (2, {x: 2, y: 0})
145
+ assert lpmax(x - y, [x <= y + 2, Eq(x, y + 2), x >= 0, y >= 0]
146
+ ) == (2, {x: 2, y: 0})
147
+ assert lpmax(x - y, [x <= y + 2, Eq(x, 2)]) == (2, {x: 2, y: 0})
148
+ assert lpmax(y, [Eq(y, 2)]) == (2, {y: 2})
149
+
150
+ # the conditions are equivalent to Eq(x, y + 2)
151
+ assert lpmin(y, [x <= y + 2, x >= y + 2, y >= 0]
152
+ ) == (0, {x: 2, y: 0})
153
+ # equivalent to Eq(y, -2)
154
+ assert lpmax(y, [0 <= y + 2, 0 >= y + 2]) == (-2, {y: -2})
155
+ assert lpmax(y, [0 <= y + 2, 0 >= y + 2, y <= 0]
156
+ ) == (-2, {y: -2})
157
+
158
+ # extra symbols symbols
159
+ assert lpmin(x, [y >= 1, x >= y]) == (1, {x: 1, y: 1})
160
+ assert lpmin(x, [y >= 1, x >= y + z, x >= 0, z >= 0]
161
+ ) == (1, {x: 1, y: 1, z: 0})
162
+
163
+ # detect oscillation
164
+ # o1
165
+ v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
166
+ raises(InfeasibleLPError, lambda: lpmin(
167
+ 9*x2 - 8*x3 + 3*x4 + 6,
168
+ [5*x2 - 2*x3 <= 0,
169
+ -x1 - 8*x2 + 9*x3 <= -3,
170
+ 10*x1 - x2+ 9*x4 <= -4] + [i >= 0 for i in v]))
171
+ # o2 - equations fed to lpmin are changed into a matrix
172
+ # system that doesn't oscillate and has the same solution
173
+ # as below
174
+ M = linear_eq_to_matrix
175
+ f = 5*x2 + x3 + 4*x4 - x1
176
+ L = 5*x2 + 2*x3 + 5*x4 - (x1 + 5)
177
+ cond = [L <= 0] + [Eq(3*x2 + x4, 2), Eq(-x1 + x3 + 2*x4, 1)]
178
+ c, d = M(f, v)
179
+ a, b = M(L, v)
180
+ aeq, beq = M(cond[1:], v)
181
+ ans = (S(9)/2, [0, S(1)/2, 0, S(1)/2])
182
+ assert linprog(c, a, b, aeq, beq, bounds=(0, 1)) == ans
183
+ lpans = lpmin(f, cond + [x1 >= 0, x1 <= 1,
184
+ x2 >= 0, x2 <= 1, x3 >= 0, x3 <= 1, x4 >= 0, x4 <= 1])
185
+ assert (lpans[0], list(lpans[1].values())) == ans
186
+
187
+
188
+ def test_lpmin_lpmax():
189
+ v = x1, x2, y1, y2 = symbols('x1 x2 y1 y2')
190
+ L = [[1, -1]], [1], [[1, 1]], [2]
191
+ a, b, c, d = [Matrix(i) for i in L]
192
+ m = Matrix([[a, b], [c, d]])
193
+ f, constr = _primal_dual(m)[0]
194
+ ans = lpmin(f, constr + [i >= 0 for i in v[:2]])
195
+ assert ans == (-1, {x1: 1, x2: 0}),ans
196
+
197
+ L = [[1, -1], [1, 1]], [1, 1], [[1, 1]], [2]
198
+ a, b, c, d = [Matrix(i) for i in L]
199
+ m = Matrix([[a, b], [c, d]])
200
+ f, constr = _primal_dual(m)[1]
201
+ ans = lpmax(f, constr + [i >= 0 for i in v[-2:]])
202
+ assert ans == (-1, {y1: 1, y2: 0})
203
+
204
+
205
+ def test_linprog():
206
+ for do in range(2):
207
+ if not do:
208
+ M = lambda a, b: linear_eq_to_matrix(a, b)
209
+ else:
210
+ # check matrices as list
211
+ M = lambda a, b: tuple([
212
+ i.tolist() for i in linear_eq_to_matrix(a, b)])
213
+
214
+ v = x, y, z = symbols('x1:4')
215
+ f = x + y - 2*z
216
+ c = M(f, v)[0]
217
+ ineq = [7*x + 4*y - 7*z <= 3,
218
+ 3*x - y + 10*z <= 6,
219
+ x >= 0, y >= 0, z >= 0]
220
+ ab = M([i.lts - i.gts for i in ineq], v)
221
+ ans = (-S(6)/5, [0, 0, S(3)/5])
222
+ assert lpmin(f, ineq) == (ans[0], dict(zip(v, ans[1])))
223
+ assert linprog(c, *ab) == ans
224
+
225
+ f += 1
226
+ c = M(f, v)[0]
227
+ eq = [Eq(y - 9*x, 1)]
228
+ abeq = M([i.lhs - i.rhs for i in eq], v)
229
+ ans = (1 - S(2)/5, [0, 1, S(7)/10])
230
+ assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1])))
231
+ assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1])
232
+
233
+ eq = [z - y <= S.Half]
234
+ abeq = M([i.lhs - i.rhs for i in eq], v)
235
+ ans = (1 - S(10)/9, [0, S(1)/9, S(11)/18])
236
+ assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1])))
237
+ assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1])
238
+
239
+ bounds = [(0, None), (0, None), (None, S.Half)]
240
+ ans = (0, [0, 0, S.Half])
241
+ assert lpmin(f, ineq + [z <= S.Half]) == (
242
+ ans[0], dict(zip(v, ans[1])))
243
+ assert linprog(c, *ab, bounds=bounds) == (ans[0] - 1, ans[1])
244
+ assert linprog(c, *ab, bounds={v.index(z): bounds[-1]}
245
+ ) == (ans[0] - 1, ans[1])
246
+ eq = [z - y <= S.Half]
247
+
248
+ assert linprog([[1]], [], [], bounds=(2, 3)) == (2, [2])
249
+ assert linprog([1], [], [], bounds=(2, 3)) == (2, [2])
250
+ assert linprog([1], bounds=(2, 3)) == (2, [2])
251
+ assert linprog([1, -1], [[1, 1]], [2], bounds={1:(None, None)}
252
+ ) == (-2, [0, 2])
253
+ assert linprog([1, -1], [[1, 1]], [5], bounds={1:(3, None)}
254
+ ) == (-5, [0, 5])
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_solvers.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_internvl/lib/python3.10/site-packages/sympy/solvers/tests/test_solveset.py ADDED
The diff for this file is too large to render. See raw diff
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (943 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc ADDED
Binary file (23.7 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc ADDED
Binary file (9.19 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc ADDED
Binary file (9.82 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/mutable_ndim_array.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.tensor.array.ndim_array import NDimArray
2
+
3
+
4
+ class MutableNDimArray(NDimArray):
5
+
6
+ def as_immutable(self):
7
+ raise NotImplementedError("abstract method")
8
+
9
+ def as_mutable(self):
10
+ return self
11
+
12
+ def _sympy_(self):
13
+ return self.as_immutable()
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/ndim_array.py ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.containers import (Dict, Tuple)
3
+ from sympy.core.expr import Expr
4
+ from sympy.core.kind import Kind, NumberKind, UndefinedKind
5
+ from sympy.core.numbers import Integer
6
+ from sympy.core.singleton import S
7
+ from sympy.core.sympify import sympify
8
+ from sympy.external.gmpy import SYMPY_INTS
9
+ from sympy.printing.defaults import Printable
10
+
11
+ import itertools
12
+ from collections.abc import Iterable
13
+
14
+
15
+ class ArrayKind(Kind):
16
+ """
17
+ Kind for N-dimensional array in SymPy.
18
+
19
+ This kind represents the multidimensional array that algebraic
20
+ operations are defined. Basic class for this kind is ``NDimArray``,
21
+ but any expression representing the array can have this.
22
+
23
+ Parameters
24
+ ==========
25
+
26
+ element_kind : Kind
27
+ Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`,
28
+ which means that the array contains only numbers.
29
+
30
+ Examples
31
+ ========
32
+
33
+ Any instance of array class has ``ArrayKind``.
34
+
35
+ >>> from sympy import NDimArray
36
+ >>> NDimArray([1,2,3]).kind
37
+ ArrayKind(NumberKind)
38
+
39
+ Although expressions representing an array may be not instance of
40
+ array class, it will have ``ArrayKind`` as well.
41
+
42
+ >>> from sympy import Integral
43
+ >>> from sympy.tensor.array import NDimArray
44
+ >>> from sympy.abc import x
45
+ >>> intA = Integral(NDimArray([1,2,3]), x)
46
+ >>> isinstance(intA, NDimArray)
47
+ False
48
+ >>> intA.kind
49
+ ArrayKind(NumberKind)
50
+
51
+ Use ``isinstance()`` to check for ``ArrayKind` without specifying
52
+ the element kind. Use ``is`` with specifying the element kind.
53
+
54
+ >>> from sympy.tensor.array import ArrayKind
55
+ >>> from sympy.core import NumberKind
56
+ >>> boolA = NDimArray([True, False])
57
+ >>> isinstance(boolA.kind, ArrayKind)
58
+ True
59
+ >>> boolA.kind is ArrayKind(NumberKind)
60
+ False
61
+
62
+ See Also
63
+ ========
64
+
65
+ shape : Function to return the shape of objects with ``MatrixKind``.
66
+
67
+ """
68
+ def __new__(cls, element_kind=NumberKind):
69
+ obj = super().__new__(cls, element_kind)
70
+ obj.element_kind = element_kind
71
+ return obj
72
+
73
+ def __repr__(self):
74
+ return "ArrayKind(%s)" % self.element_kind
75
+
76
+ @classmethod
77
+ def _union(cls, kinds) -> 'ArrayKind':
78
+ elem_kinds = {e.kind for e in kinds}
79
+ if len(elem_kinds) == 1:
80
+ elemkind, = elem_kinds
81
+ else:
82
+ elemkind = UndefinedKind
83
+ return ArrayKind(elemkind)
84
+
85
+
86
+ class NDimArray(Printable):
87
+ """N-dimensional array.
88
+
89
+ Examples
90
+ ========
91
+
92
+ Create an N-dim array of zeros:
93
+
94
+ >>> from sympy import MutableDenseNDimArray
95
+ >>> a = MutableDenseNDimArray.zeros(2, 3, 4)
96
+ >>> a
97
+ [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
98
+
99
+ Create an N-dim array from a list;
100
+
101
+ >>> a = MutableDenseNDimArray([[2, 3], [4, 5]])
102
+ >>> a
103
+ [[2, 3], [4, 5]]
104
+
105
+ >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]])
106
+ >>> b
107
+ [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]
108
+
109
+ Create an N-dim array from a flat list with dimension shape:
110
+
111
+ >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
112
+ >>> a
113
+ [[1, 2, 3], [4, 5, 6]]
114
+
115
+ Create an N-dim array from a matrix:
116
+
117
+ >>> from sympy import Matrix
118
+ >>> a = Matrix([[1,2],[3,4]])
119
+ >>> a
120
+ Matrix([
121
+ [1, 2],
122
+ [3, 4]])
123
+ >>> b = MutableDenseNDimArray(a)
124
+ >>> b
125
+ [[1, 2], [3, 4]]
126
+
127
+ Arithmetic operations on N-dim arrays
128
+
129
+ >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2))
130
+ >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2))
131
+ >>> c = a + b
132
+ >>> c
133
+ [[5, 5], [5, 5]]
134
+ >>> a - b
135
+ [[-3, -3], [-3, -3]]
136
+
137
+ """
138
+
139
+ _diff_wrt = True
140
+ is_scalar = False
141
+
142
+ def __new__(cls, iterable, shape=None, **kwargs):
143
+ from sympy.tensor.array import ImmutableDenseNDimArray
144
+ return ImmutableDenseNDimArray(iterable, shape, **kwargs)
145
+
146
+ def __getitem__(self, index):
147
+ raise NotImplementedError("A subclass of NDimArray should implement __getitem__")
148
+
149
+ def _parse_index(self, index):
150
+ if isinstance(index, (SYMPY_INTS, Integer)):
151
+ if index >= self._loop_size:
152
+ raise ValueError("Only a tuple index is accepted")
153
+ return index
154
+
155
+ if self._loop_size == 0:
156
+ raise ValueError("Index not valid with an empty array")
157
+
158
+ if len(index) != self._rank:
159
+ raise ValueError('Wrong number of array axes')
160
+
161
+ real_index = 0
162
+ # check if input index can exist in current indexing
163
+ for i in range(self._rank):
164
+ if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]):
165
+ raise ValueError('Index ' + str(index) + ' out of border')
166
+ if index[i] < 0:
167
+ real_index += 1
168
+ real_index = real_index*self.shape[i] + index[i]
169
+
170
+ return real_index
171
+
172
+ def _get_tuple_index(self, integer_index):
173
+ index = []
174
+ for sh in reversed(self.shape):
175
+ index.append(integer_index % sh)
176
+ integer_index //= sh
177
+ index.reverse()
178
+ return tuple(index)
179
+
180
+ def _check_symbolic_index(self, index):
181
+ # Check if any index is symbolic:
182
+ tuple_index = (index if isinstance(index, tuple) else (index,))
183
+ if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index):
184
+ for i, nth_dim in zip(tuple_index, self.shape):
185
+ if ((i < 0) == True) or ((i >= nth_dim) == True):
186
+ raise ValueError("index out of range")
187
+ from sympy.tensor import Indexed
188
+ return Indexed(self, *tuple_index)
189
+ return None
190
+
191
+ def _setter_iterable_check(self, value):
192
+ from sympy.matrices.matrixbase import MatrixBase
193
+ if isinstance(value, (Iterable, MatrixBase, NDimArray)):
194
+ raise NotImplementedError
195
+
196
+ @classmethod
197
+ def _scan_iterable_shape(cls, iterable):
198
+ def f(pointer):
199
+ if not isinstance(pointer, Iterable):
200
+ return [pointer], ()
201
+
202
+ if len(pointer) == 0:
203
+ return [], (0,)
204
+
205
+ result = []
206
+ elems, shapes = zip(*[f(i) for i in pointer])
207
+ if len(set(shapes)) != 1:
208
+ raise ValueError("could not determine shape unambiguously")
209
+ for i in elems:
210
+ result.extend(i)
211
+ return result, (len(shapes),)+shapes[0]
212
+
213
+ return f(iterable)
214
+
215
+ @classmethod
216
+ def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs):
217
+ from sympy.matrices.matrixbase import MatrixBase
218
+ from sympy.tensor.array import SparseNDimArray
219
+
220
+ if shape is None:
221
+ if iterable is None:
222
+ shape = ()
223
+ iterable = ()
224
+ # Construction of a sparse array from a sparse array
225
+ elif isinstance(iterable, SparseNDimArray):
226
+ return iterable._shape, iterable._sparse_array
227
+
228
+ # Construct N-dim array from another N-dim array:
229
+ elif isinstance(iterable, NDimArray):
230
+ shape = iterable.shape
231
+
232
+ # Construct N-dim array from an iterable (numpy arrays included):
233
+ elif isinstance(iterable, Iterable):
234
+ iterable, shape = cls._scan_iterable_shape(iterable)
235
+
236
+ # Construct N-dim array from a Matrix:
237
+ elif isinstance(iterable, MatrixBase):
238
+ shape = iterable.shape
239
+
240
+ else:
241
+ shape = ()
242
+ iterable = (iterable,)
243
+
244
+ if isinstance(iterable, (Dict, dict)) and shape is not None:
245
+ new_dict = iterable.copy()
246
+ for k in new_dict:
247
+ if isinstance(k, (tuple, Tuple)):
248
+ new_key = 0
249
+ for i, idx in enumerate(k):
250
+ new_key = new_key * shape[i] + idx
251
+ iterable[new_key] = iterable[k]
252
+ del iterable[k]
253
+
254
+ if isinstance(shape, (SYMPY_INTS, Integer)):
255
+ shape = (shape,)
256
+
257
+ if not all(isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape):
258
+ raise TypeError("Shape should contain integers only.")
259
+
260
+ return tuple(shape), iterable
261
+
262
+ def __len__(self):
263
+ """Overload common function len(). Returns number of elements in array.
264
+
265
+ Examples
266
+ ========
267
+
268
+ >>> from sympy import MutableDenseNDimArray
269
+ >>> a = MutableDenseNDimArray.zeros(3, 3)
270
+ >>> a
271
+ [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
272
+ >>> len(a)
273
+ 9
274
+
275
+ """
276
+ return self._loop_size
277
+
278
+ @property
279
+ def shape(self):
280
+ """
281
+ Returns array shape (dimension).
282
+
283
+ Examples
284
+ ========
285
+
286
+ >>> from sympy import MutableDenseNDimArray
287
+ >>> a = MutableDenseNDimArray.zeros(3, 3)
288
+ >>> a.shape
289
+ (3, 3)
290
+
291
+ """
292
+ return self._shape
293
+
294
+ def rank(self):
295
+ """
296
+ Returns rank of array.
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import MutableDenseNDimArray
302
+ >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3)
303
+ >>> a.rank()
304
+ 5
305
+
306
+ """
307
+ return self._rank
308
+
309
+ def diff(self, *args, **kwargs):
310
+ """
311
+ Calculate the derivative of each element in the array.
312
+
313
+ Examples
314
+ ========
315
+
316
+ >>> from sympy import ImmutableDenseNDimArray
317
+ >>> from sympy.abc import x, y
318
+ >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]])
319
+ >>> M.diff(x)
320
+ [[1, 0], [0, y]]
321
+
322
+ """
323
+ from sympy.tensor.array.array_derivatives import ArrayDerivative
324
+ kwargs.setdefault('evaluate', True)
325
+ return ArrayDerivative(self.as_immutable(), *args, **kwargs)
326
+
327
+ def _eval_derivative(self, base):
328
+ # Types are (base: scalar, self: array)
329
+ return self.applyfunc(lambda x: base.diff(x))
330
+
331
+ def _eval_derivative_n_times(self, s, n):
332
+ return Basic._eval_derivative_n_times(self, s, n)
333
+
334
+ def applyfunc(self, f):
335
+ """Apply a function to each element of the N-dim array.
336
+
337
+ Examples
338
+ ========
339
+
340
+ >>> from sympy import ImmutableDenseNDimArray
341
+ >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2))
342
+ >>> m
343
+ [[0, 1], [2, 3]]
344
+ >>> m.applyfunc(lambda i: 2*i)
345
+ [[0, 2], [4, 6]]
346
+ """
347
+ from sympy.tensor.array import SparseNDimArray
348
+ from sympy.tensor.array.arrayop import Flatten
349
+
350
+ if isinstance(self, SparseNDimArray) and f(S.Zero) == 0:
351
+ return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape)
352
+
353
+ return type(self)(map(f, Flatten(self)), self.shape)
354
+
355
+ def _sympystr(self, printer):
356
+ def f(sh, shape_left, i, j):
357
+ if len(shape_left) == 1:
358
+ return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]"
359
+
360
+ sh //= shape_left[0]
361
+ return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left)
362
+
363
+ if self.rank() == 0:
364
+ return printer._print(self[()])
365
+
366
+ return f(self._loop_size, self.shape, 0, self._loop_size)
367
+
368
+ def tolist(self):
369
+ """
370
+ Converting MutableDenseNDimArray to one-dim list
371
+
372
+ Examples
373
+ ========
374
+
375
+ >>> from sympy import MutableDenseNDimArray
376
+ >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
377
+ >>> a
378
+ [[1, 2], [3, 4]]
379
+ >>> b = a.tolist()
380
+ >>> b
381
+ [[1, 2], [3, 4]]
382
+ """
383
+
384
+ def f(sh, shape_left, i, j):
385
+ if len(shape_left) == 1:
386
+ return [self[self._get_tuple_index(e)] for e in range(i, j)]
387
+ result = []
388
+ sh //= shape_left[0]
389
+ for e in range(shape_left[0]):
390
+ result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh))
391
+ return result
392
+
393
+ return f(self._loop_size, self.shape, 0, self._loop_size)
394
+
395
+ def __add__(self, other):
396
+ from sympy.tensor.array.arrayop import Flatten
397
+
398
+ if not isinstance(other, NDimArray):
399
+ return NotImplemented
400
+
401
+ if self.shape != other.shape:
402
+ raise ValueError("array shape mismatch")
403
+ result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))]
404
+
405
+ return type(self)(result_list, self.shape)
406
+
407
+ def __sub__(self, other):
408
+ from sympy.tensor.array.arrayop import Flatten
409
+
410
+ if not isinstance(other, NDimArray):
411
+ return NotImplemented
412
+
413
+ if self.shape != other.shape:
414
+ raise ValueError("array shape mismatch")
415
+ result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))]
416
+
417
+ return type(self)(result_list, self.shape)
418
+
419
+ def __mul__(self, other):
420
+ from sympy.matrices.matrixbase import MatrixBase
421
+ from sympy.tensor.array import SparseNDimArray
422
+ from sympy.tensor.array.arrayop import Flatten
423
+
424
+ if isinstance(other, (Iterable, NDimArray, MatrixBase)):
425
+ raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
426
+
427
+ other = sympify(other)
428
+ if isinstance(self, SparseNDimArray):
429
+ if other.is_zero:
430
+ return type(self)({}, self.shape)
431
+ return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
432
+
433
+ result_list = [i*other for i in Flatten(self)]
434
+ return type(self)(result_list, self.shape)
435
+
436
+ def __rmul__(self, other):
437
+ from sympy.matrices.matrixbase import MatrixBase
438
+ from sympy.tensor.array import SparseNDimArray
439
+ from sympy.tensor.array.arrayop import Flatten
440
+
441
+ if isinstance(other, (Iterable, NDimArray, MatrixBase)):
442
+ raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
443
+
444
+ other = sympify(other)
445
+ if isinstance(self, SparseNDimArray):
446
+ if other.is_zero:
447
+ return type(self)({}, self.shape)
448
+ return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
449
+
450
+ result_list = [other*i for i in Flatten(self)]
451
+ return type(self)(result_list, self.shape)
452
+
453
+ def __truediv__(self, other):
454
+ from sympy.matrices.matrixbase import MatrixBase
455
+ from sympy.tensor.array import SparseNDimArray
456
+ from sympy.tensor.array.arrayop import Flatten
457
+
458
+ if isinstance(other, (Iterable, NDimArray, MatrixBase)):
459
+ raise ValueError("scalar expected")
460
+
461
+ other = sympify(other)
462
+ if isinstance(self, SparseNDimArray) and other != S.Zero:
463
+ return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape)
464
+
465
+ result_list = [i/other for i in Flatten(self)]
466
+ return type(self)(result_list, self.shape)
467
+
468
+ def __rtruediv__(self, other):
469
+ raise NotImplementedError('unsupported operation on NDimArray')
470
+
471
+ def __neg__(self):
472
+ from sympy.tensor.array import SparseNDimArray
473
+ from sympy.tensor.array.arrayop import Flatten
474
+
475
+ if isinstance(self, SparseNDimArray):
476
+ return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape)
477
+
478
+ result_list = [-i for i in Flatten(self)]
479
+ return type(self)(result_list, self.shape)
480
+
481
+ def __iter__(self):
482
+ def iterator():
483
+ if self._shape:
484
+ for i in range(self._shape[0]):
485
+ yield self[i]
486
+ else:
487
+ yield self[()]
488
+
489
+ return iterator()
490
+
491
+ def __eq__(self, other):
492
+ """
493
+ NDimArray instances can be compared to each other.
494
+ Instances equal if they have same shape and data.
495
+
496
+ Examples
497
+ ========
498
+
499
+ >>> from sympy import MutableDenseNDimArray
500
+ >>> a = MutableDenseNDimArray.zeros(2, 3)
501
+ >>> b = MutableDenseNDimArray.zeros(2, 3)
502
+ >>> a == b
503
+ True
504
+ >>> c = a.reshape(3, 2)
505
+ >>> c == b
506
+ False
507
+ >>> a[0,0] = 1
508
+ >>> b[0,0] = 2
509
+ >>> a == b
510
+ False
511
+ """
512
+ from sympy.tensor.array import SparseNDimArray
513
+ if not isinstance(other, NDimArray):
514
+ return False
515
+
516
+ if not self.shape == other.shape:
517
+ return False
518
+
519
+ if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray):
520
+ return dict(self._sparse_array) == dict(other._sparse_array)
521
+
522
+ return list(self) == list(other)
523
+
524
+ def __ne__(self, other):
525
+ return not self == other
526
+
527
+ def _eval_transpose(self):
528
+ if self.rank() != 2:
529
+ raise ValueError("array rank not 2")
530
+ from .arrayop import permutedims
531
+ return permutedims(self, (1, 0))
532
+
533
+ def transpose(self):
534
+ return self._eval_transpose()
535
+
536
+ def _eval_conjugate(self):
537
+ from sympy.tensor.array.arrayop import Flatten
538
+
539
+ return self.func([i.conjugate() for i in Flatten(self)], self.shape)
540
+
541
+ def conjugate(self):
542
+ return self._eval_conjugate()
543
+
544
+ def _eval_adjoint(self):
545
+ return self.transpose().conjugate()
546
+
547
+ def adjoint(self):
548
+ return self._eval_adjoint()
549
+
550
+ def _slice_expand(self, s, dim):
551
+ if not isinstance(s, slice):
552
+ return (s,)
553
+ start, stop, step = s.indices(dim)
554
+ return [start + i*step for i in range((stop-start)//step)]
555
+
556
+ def _get_slice_data_for_array_access(self, index):
557
+ sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
558
+ eindices = itertools.product(*sl_factors)
559
+ return sl_factors, eindices
560
+
561
+ def _get_slice_data_for_array_assignment(self, index, value):
562
+ if not isinstance(value, NDimArray):
563
+ value = type(self)(value)
564
+ sl_factors, eindices = self._get_slice_data_for_array_access(index)
565
+ slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors]
566
+ # TODO: add checks for dimensions for `value`?
567
+ return value, eindices, slice_offsets
568
+
569
+ @classmethod
570
+ def _check_special_bounds(cls, flat_list, shape):
571
+ if shape == () and len(flat_list) != 1:
572
+ raise ValueError("arrays without shape need one scalar value")
573
+ if shape == (0,) and len(flat_list) > 0:
574
+ raise ValueError("if array shape is (0,) there cannot be elements")
575
+
576
+ def _check_index_for_getitem(self, index):
577
+ if isinstance(index, (SYMPY_INTS, Integer, slice)):
578
+ index = (index,)
579
+
580
+ if len(index) < self.rank():
581
+ index = tuple(index) + \
582
+ tuple(slice(None) for i in range(len(index), self.rank()))
583
+
584
+ if len(index) > self.rank():
585
+ raise ValueError('Dimension of index greater than rank of array')
586
+
587
+ return index
588
+
589
+
590
+ class ImmutableNDimArray(NDimArray, Basic):
591
+ _op_priority = 11.0
592
+
593
+ def __hash__(self):
594
+ return Basic.__hash__(self)
595
+
596
+ def as_immutable(self):
597
+ return self
598
+
599
+ def as_mutable(self):
600
+ raise NotImplementedError("abstract method")
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/sparse_ndim_array.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.containers import (Dict, Tuple)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import _sympify
5
+ from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
6
+ from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray
7
+ from sympy.utilities.iterables import flatten
8
+
9
+ import functools
10
+
11
+ class SparseNDimArray(NDimArray):
12
+
13
+ def __new__(self, *args, **kwargs):
14
+ return ImmutableSparseNDimArray(*args, **kwargs)
15
+
16
+ def __getitem__(self, index):
17
+ """
18
+ Get an element from a sparse N-dim array.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import MutableSparseNDimArray
24
+ >>> a = MutableSparseNDimArray(range(4), (2, 2))
25
+ >>> a
26
+ [[0, 1], [2, 3]]
27
+ >>> a[0, 0]
28
+ 0
29
+ >>> a[1, 1]
30
+ 3
31
+ >>> a[0]
32
+ [0, 1]
33
+ >>> a[1]
34
+ [2, 3]
35
+
36
+ Symbolic indexing:
37
+
38
+ >>> from sympy.abc import i, j
39
+ >>> a[i, j]
40
+ [[0, 1], [2, 3]][i, j]
41
+
42
+ Replace `i` and `j` to get element `(0, 0)`:
43
+
44
+ >>> a[i, j].subs({i: 0, j: 0})
45
+ 0
46
+
47
+ """
48
+ syindex = self._check_symbolic_index(index)
49
+ if syindex is not None:
50
+ return syindex
51
+
52
+ index = self._check_index_for_getitem(index)
53
+
54
+ # `index` is a tuple with one or more slices:
55
+ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
56
+ sl_factors, eindices = self._get_slice_data_for_array_access(index)
57
+ array = [self._sparse_array.get(self._parse_index(i), S.Zero) for i in eindices]
58
+ nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
59
+ return type(self)(array, nshape)
60
+ else:
61
+ index = self._parse_index(index)
62
+ return self._sparse_array.get(index, S.Zero)
63
+
64
+ @classmethod
65
+ def zeros(cls, *shape):
66
+ """
67
+ Return a sparse N-dim array of zeros.
68
+ """
69
+ return cls({}, shape)
70
+
71
+ def tomatrix(self):
72
+ """
73
+ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
74
+
75
+ Examples
76
+ ========
77
+
78
+ >>> from sympy import MutableSparseNDimArray
79
+ >>> a = MutableSparseNDimArray([1 for i in range(9)], (3, 3))
80
+ >>> b = a.tomatrix()
81
+ >>> b
82
+ Matrix([
83
+ [1, 1, 1],
84
+ [1, 1, 1],
85
+ [1, 1, 1]])
86
+ """
87
+ from sympy.matrices import SparseMatrix
88
+ if self.rank() != 2:
89
+ raise ValueError('Dimensions must be of size of 2')
90
+
91
+ mat_sparse = {}
92
+ for key, value in self._sparse_array.items():
93
+ mat_sparse[self._get_tuple_index(key)] = value
94
+
95
+ return SparseMatrix(self.shape[0], self.shape[1], mat_sparse)
96
+
97
+ def reshape(self, *newshape):
98
+ new_total_size = functools.reduce(lambda x,y: x*y, newshape)
99
+ if new_total_size != self._loop_size:
100
+ raise ValueError("Invalid reshape parameters " + newshape)
101
+
102
+ return type(self)(self._sparse_array, newshape)
103
+
104
+ class ImmutableSparseNDimArray(SparseNDimArray, ImmutableNDimArray): # type: ignore
105
+
106
+ def __new__(cls, iterable=None, shape=None, **kwargs):
107
+ shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
108
+ shape = Tuple(*map(_sympify, shape))
109
+ cls._check_special_bounds(flat_list, shape)
110
+ loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
111
+
112
+ # Sparse array:
113
+ if isinstance(flat_list, (dict, Dict)):
114
+ sparse_array = Dict(flat_list)
115
+ else:
116
+ sparse_array = {}
117
+ for i, el in enumerate(flatten(flat_list)):
118
+ if el != 0:
119
+ sparse_array[i] = _sympify(el)
120
+
121
+ sparse_array = Dict(sparse_array)
122
+
123
+ self = Basic.__new__(cls, sparse_array, shape, **kwargs)
124
+ self._shape = shape
125
+ self._rank = len(shape)
126
+ self._loop_size = loop_size
127
+ self._sparse_array = sparse_array
128
+
129
+ return self
130
+
131
+ def __setitem__(self, index, value):
132
+ raise TypeError("immutable N-dim array")
133
+
134
+ def as_mutable(self):
135
+ return MutableSparseNDimArray(self)
136
+
137
+
138
+ class MutableSparseNDimArray(MutableNDimArray, SparseNDimArray):
139
+
140
+ def __new__(cls, iterable=None, shape=None, **kwargs):
141
+ shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
142
+ self = object.__new__(cls)
143
+ self._shape = shape
144
+ self._rank = len(shape)
145
+ self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
146
+
147
+ # Sparse array:
148
+ if isinstance(flat_list, (dict, Dict)):
149
+ self._sparse_array = dict(flat_list)
150
+ return self
151
+
152
+ self._sparse_array = {}
153
+
154
+ for i, el in enumerate(flatten(flat_list)):
155
+ if el != 0:
156
+ self._sparse_array[i] = _sympify(el)
157
+
158
+ return self
159
+
160
+ def __setitem__(self, index, value):
161
+ """Allows to set items to MutableDenseNDimArray.
162
+
163
+ Examples
164
+ ========
165
+
166
+ >>> from sympy import MutableSparseNDimArray
167
+ >>> a = MutableSparseNDimArray.zeros(2, 2)
168
+ >>> a[0, 0] = 1
169
+ >>> a[1, 1] = 1
170
+ >>> a
171
+ [[1, 0], [0, 1]]
172
+ """
173
+ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
174
+ value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
175
+ for i in eindices:
176
+ other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
177
+ other_value = value[other_i]
178
+ complete_index = self._parse_index(i)
179
+ if other_value != 0:
180
+ self._sparse_array[complete_index] = other_value
181
+ elif complete_index in self._sparse_array:
182
+ self._sparse_array.pop(complete_index)
183
+ else:
184
+ index = self._parse_index(index)
185
+ value = _sympify(value)
186
+ if value == 0 and index in self._sparse_array:
187
+ self._sparse_array.pop(index)
188
+ else:
189
+ self._sparse_array[index] = value
190
+
191
+ def as_immutable(self):
192
+ return ImmutableSparseNDimArray(self)
193
+
194
+ @property
195
+ def free_symbols(self):
196
+ return {i for j in self._sparse_array.values() for i in j.free_symbols}
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/__init__.py ADDED
File without changes
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_array_comprehension.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.tensor.array.array_comprehension import ArrayComprehension, ArrayComprehensionMap
2
+ from sympy.tensor.array import ImmutableDenseNDimArray
3
+ from sympy.abc import i, j, k, l
4
+ from sympy.testing.pytest import raises
5
+ from sympy.matrices import Matrix
6
+
7
+
8
+ def test_array_comprehension():
9
+ a = ArrayComprehension(i*j, (i, 1, 3), (j, 2, 4))
10
+ b = ArrayComprehension(i, (i, 1, j+1))
11
+ c = ArrayComprehension(i+j+k+l, (i, 1, 2), (j, 1, 3), (k, 1, 4), (l, 1, 5))
12
+ d = ArrayComprehension(k, (i, 1, 5))
13
+ e = ArrayComprehension(i, (j, k+1, k+5))
14
+ assert a.doit().tolist() == [[2, 3, 4], [4, 6, 8], [6, 9, 12]]
15
+ assert a.shape == (3, 3)
16
+ assert a.is_shape_numeric == True
17
+ assert a.tolist() == [[2, 3, 4], [4, 6, 8], [6, 9, 12]]
18
+ assert a.tomatrix() == Matrix([
19
+ [2, 3, 4],
20
+ [4, 6, 8],
21
+ [6, 9, 12]])
22
+ assert len(a) == 9
23
+ assert isinstance(b.doit(), ArrayComprehension)
24
+ assert isinstance(a.doit(), ImmutableDenseNDimArray)
25
+ assert b.subs(j, 3) == ArrayComprehension(i, (i, 1, 4))
26
+ assert b.free_symbols == {j}
27
+ assert b.shape == (j + 1,)
28
+ assert b.rank() == 1
29
+ assert b.is_shape_numeric == False
30
+ assert c.free_symbols == set()
31
+ assert c.function == i + j + k + l
32
+ assert c.limits == ((i, 1, 2), (j, 1, 3), (k, 1, 4), (l, 1, 5))
33
+ assert c.doit().tolist() == [[[[4, 5, 6, 7, 8], [5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11]],
34
+ [[5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12]],
35
+ [[6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13]]],
36
+ [[[5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12]],
37
+ [[6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13]],
38
+ [[7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13], [10, 11, 12, 13, 14]]]]
39
+ assert c.free_symbols == set()
40
+ assert c.variables == [i, j, k, l]
41
+ assert c.bound_symbols == [i, j, k, l]
42
+ assert d.doit().tolist() == [k, k, k, k, k]
43
+ assert len(e) == 5
44
+ raises(TypeError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, [1, 3, 2])))
45
+ raises(ValueError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, 1)))
46
+ raises(ValueError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, j+1)))
47
+ raises(ValueError, lambda: len(ArrayComprehension(i*j, (i, 1, 3), (j, 2, j+4))))
48
+ raises(TypeError, lambda: ArrayComprehension(i*j, (i, 0, i + 1.5), (j, 0, 2)))
49
+ raises(ValueError, lambda: b.tolist())
50
+ raises(ValueError, lambda: b.tomatrix())
51
+ raises(ValueError, lambda: c.tomatrix())
52
+
53
+ def test_arraycomprehensionmap():
54
+ a = ArrayComprehensionMap(lambda i: i+1, (i, 1, 5))
55
+ assert a.doit().tolist() == [2, 3, 4, 5, 6]
56
+ assert a.shape == (5,)
57
+ assert a.is_shape_numeric
58
+ assert a.tolist() == [2, 3, 4, 5, 6]
59
+ assert len(a) == 5
60
+ assert isinstance(a.doit(), ImmutableDenseNDimArray)
61
+ expr = ArrayComprehensionMap(lambda i: i+1, (i, 1, k))
62
+ assert expr.doit() == expr
63
+ assert expr.subs(k, 4) == ArrayComprehensionMap(lambda i: i+1, (i, 1, 4))
64
+ assert expr.subs(k, 4).doit() == ImmutableDenseNDimArray([2, 3, 4, 5])
65
+ b = ArrayComprehensionMap(lambda i: i+1, (i, 1, 2), (i, 1, 3), (i, 1, 4), (i, 1, 5))
66
+ assert b.doit().tolist() == [[[[2, 3, 4, 5, 6], [3, 5, 7, 9, 11], [4, 7, 10, 13, 16], [5, 9, 13, 17, 21]],
67
+ [[3, 5, 7, 9, 11], [5, 9, 13, 17, 21], [7, 13, 19, 25, 31], [9, 17, 25, 33, 41]],
68
+ [[4, 7, 10, 13, 16], [7, 13, 19, 25, 31], [10, 19, 28, 37, 46], [13, 25, 37, 49, 61]]],
69
+ [[[3, 5, 7, 9, 11], [5, 9, 13, 17, 21], [7, 13, 19, 25, 31], [9, 17, 25, 33, 41]],
70
+ [[5, 9, 13, 17, 21], [9, 17, 25, 33, 41], [13, 25, 37, 49, 61], [17, 33, 49, 65, 81]],
71
+ [[7, 13, 19, 25, 31], [13, 25, 37, 49, 61], [19, 37, 55, 73, 91], [25, 49, 73, 97, 121]]]]
72
+
73
+ # tests about lambda expression
74
+ assert ArrayComprehensionMap(lambda: 3, (i, 1, 5)).doit().tolist() == [3, 3, 3, 3, 3]
75
+ assert ArrayComprehensionMap(lambda i: i+1, (i, 1, 5)).doit().tolist() == [2, 3, 4, 5, 6]
76
+ raises(ValueError, lambda: ArrayComprehensionMap(i*j, (i, 1, 3), (j, 2, 4)))
77
+ a = ArrayComprehensionMap(lambda i, j: i+j, (i, 1, 5))
78
+ raises(ValueError, lambda: a.doit())
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_arrayop.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import random
3
+
4
+ from sympy.combinatorics import Permutation
5
+ from sympy.combinatorics.permutations import _af_invert
6
+ from sympy.testing.pytest import raises
7
+
8
+ from sympy.core.function import diff
9
+ from sympy.core.symbol import symbols
10
+ from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose)
11
+ from sympy.functions.elementary.exponential import (exp, log)
12
+ from sympy.functions.elementary.trigonometric import (cos, sin)
13
+ from sympy.tensor.array import Array, ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray
14
+
15
+ from sympy.tensor.array.arrayop import tensorproduct, tensorcontraction, derive_by_array, permutedims, Flatten, \
16
+ tensordiagonal
17
+
18
+
19
+ def test_import_NDimArray():
20
+ from sympy.tensor.array import NDimArray
21
+ del NDimArray
22
+
23
+
24
+ def test_tensorproduct():
25
+ x,y,z,t = symbols('x y z t')
26
+ from sympy.abc import a,b,c,d
27
+ assert tensorproduct() == 1
28
+ assert tensorproduct([x]) == Array([x])
29
+ assert tensorproduct([x], [y]) == Array([[x*y]])
30
+ assert tensorproduct([x], [y], [z]) == Array([[[x*y*z]]])
31
+ assert tensorproduct([x], [y], [z], [t]) == Array([[[[x*y*z*t]]]])
32
+
33
+ assert tensorproduct(x) == x
34
+ assert tensorproduct(x, y) == x*y
35
+ assert tensorproduct(x, y, z) == x*y*z
36
+ assert tensorproduct(x, y, z, t) == x*y*z*t
37
+
38
+ for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
39
+ A = ArrayType([x, y])
40
+ B = ArrayType([1, 2, 3])
41
+ C = ArrayType([a, b, c, d])
42
+
43
+ assert tensorproduct(A, B, C) == ArrayType([[[a*x, b*x, c*x, d*x], [2*a*x, 2*b*x, 2*c*x, 2*d*x], [3*a*x, 3*b*x, 3*c*x, 3*d*x]],
44
+ [[a*y, b*y, c*y, d*y], [2*a*y, 2*b*y, 2*c*y, 2*d*y], [3*a*y, 3*b*y, 3*c*y, 3*d*y]]])
45
+
46
+ assert tensorproduct([x, y], [1, 2, 3]) == tensorproduct(A, B)
47
+
48
+ assert tensorproduct(A, 2) == ArrayType([2*x, 2*y])
49
+ assert tensorproduct(A, [2]) == ArrayType([[2*x], [2*y]])
50
+ assert tensorproduct([2], A) == ArrayType([[2*x, 2*y]])
51
+ assert tensorproduct(a, A) == ArrayType([a*x, a*y])
52
+ assert tensorproduct(a, A, B) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
53
+ assert tensorproduct(A, B, a) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
54
+ assert tensorproduct(B, a, A) == ArrayType([[a*x, a*y], [2*a*x, 2*a*y], [3*a*x, 3*a*y]])
55
+
56
+ # tests for large scale sparse array
57
+ for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
58
+ a = SparseArrayType({1:2, 3:4},(1000, 2000))
59
+ b = SparseArrayType({1:2, 3:4},(1000, 2000))
60
+ assert tensorproduct(a, b) == ImmutableSparseNDimArray({2000001: 4, 2000003: 8, 6000001: 8, 6000003: 16}, (1000, 2000, 1000, 2000))
61
+
62
+
63
+ def test_tensorcontraction():
64
+ from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x
65
+ B = Array(range(18), (2, 3, 3))
66
+ assert tensorcontraction(B, (1, 2)) == Array([12, 39])
67
+ C1 = Array([a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x], (2, 3, 2, 2))
68
+
69
+ assert tensorcontraction(C1, (0, 2)) == Array([[a + o, b + p], [e + s, f + t], [i + w, j + x]])
70
+ assert tensorcontraction(C1, (0, 2, 3)) == Array([a + p, e + t, i + x])
71
+ assert tensorcontraction(C1, (2, 3)) == Array([[a + d, e + h, i + l], [m + p, q + t, u + x]])
72
+
73
+
74
+ def test_derivative_by_array():
75
+ from sympy.abc import i, j, t, x, y, z
76
+
77
+ bexpr = x*y**2*exp(z)*log(t)
78
+ sexpr = sin(bexpr)
79
+ cexpr = cos(bexpr)
80
+
81
+ a = Array([sexpr])
82
+
83
+ assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
84
+ assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
85
+ assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
86
+
87
+ assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
88
+ assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
89
+ assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
90
+ assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
91
+ [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
92
+
93
+ assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
94
+ assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
95
+ assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
96
+
97
+ assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
98
+ assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
99
+ assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
100
+ assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
101
+ [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
102
+
103
+ # test for large scale sparse array
104
+ for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
105
+ b = MutableSparseNDimArray({0:i, 1:j}, (10000, 20000))
106
+ assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000))
107
+ assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000))
108
+
109
+ #https://github.com/sympy/sympy/issues/20655
110
+ U = Array([x, y, z])
111
+ E = 2
112
+ assert derive_by_array(E, U) == ImmutableDenseNDimArray([0, 0, 0])
113
+
114
+
115
+ def test_issue_emerged_while_discussing_10972():
116
+ ua = Array([-1,0])
117
+ Fa = Array([[0, 1], [-1, 0]])
118
+ po = tensorproduct(Fa, ua, Fa, ua)
119
+ assert tensorcontraction(po, (1, 2), (4, 5)) == Array([[0, 0], [0, 1]])
120
+
121
+ sa = symbols('a0:144')
122
+ po = Array(sa, [2, 2, 3, 3, 2, 2])
123
+ assert tensorcontraction(po, (0, 1), (2, 3), (4, 5)) == sa[0] + sa[108] + sa[111] + sa[124] + sa[127] + sa[140] + sa[143] + sa[16] + sa[19] + sa[3] + sa[32] + sa[35]
124
+ assert tensorcontraction(po, (0, 1, 4, 5), (2, 3)) == sa[0] + sa[111] + sa[127] + sa[143] + sa[16] + sa[32]
125
+ assert tensorcontraction(po, (0, 1), (4, 5)) == Array([[sa[0] + sa[108] + sa[111] + sa[3], sa[112] + sa[115] + sa[4] + sa[7],
126
+ sa[11] + sa[116] + sa[119] + sa[8]], [sa[12] + sa[120] + sa[123] + sa[15],
127
+ sa[124] + sa[127] + sa[16] + sa[19], sa[128] + sa[131] + sa[20] + sa[23]],
128
+ [sa[132] + sa[135] + sa[24] + sa[27], sa[136] + sa[139] + sa[28] + sa[31],
129
+ sa[140] + sa[143] + sa[32] + sa[35]]])
130
+ assert tensorcontraction(po, (0, 1), (2, 3)) == Array([[sa[0] + sa[108] + sa[124] + sa[140] + sa[16] + sa[32], sa[1] + sa[109] + sa[125] + sa[141] + sa[17] + sa[33]],
131
+ [sa[110] + sa[126] + sa[142] + sa[18] + sa[2] + sa[34], sa[111] + sa[127] + sa[143] + sa[19] + sa[3] + sa[35]]])
132
+
133
+
134
+ def test_array_permutedims():
135
+ sa = symbols('a0:144')
136
+
137
+ for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
138
+ m1 = ArrayType(sa[:6], (2, 3))
139
+ assert permutedims(m1, (1, 0)) == transpose(m1)
140
+ assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix()
141
+
142
+ assert m1.tomatrix().T == transpose(m1).tomatrix()
143
+ assert m1.tomatrix().C == conjugate(m1).tomatrix()
144
+ assert m1.tomatrix().H == adjoint(m1).tomatrix()
145
+
146
+ assert m1.tomatrix().T == m1.transpose().tomatrix()
147
+ assert m1.tomatrix().C == m1.conjugate().tomatrix()
148
+ assert m1.tomatrix().H == m1.adjoint().tomatrix()
149
+
150
+ raises(ValueError, lambda: permutedims(m1, (0,)))
151
+ raises(ValueError, lambda: permutedims(m1, (0, 0)))
152
+ raises(ValueError, lambda: permutedims(m1, (1, 2, 0)))
153
+
154
+ # Some tests with random arrays:
155
+ dims = 6
156
+ shape = [random.randint(1,5) for i in range(dims)]
157
+ elems = [random.random() for i in range(tensorproduct(*shape))]
158
+ ra = ArrayType(elems, shape)
159
+ perm = list(range(dims))
160
+ # Randomize the permutation:
161
+ random.shuffle(perm)
162
+ # Test inverse permutation:
163
+ assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra
164
+ # Test that permuted shape corresponds to action by `Permutation`:
165
+ assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape))
166
+
167
+ z = ArrayType.zeros(4,5,6,7)
168
+
169
+ assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4)
170
+ assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4)
171
+ assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4)
172
+
173
+ po = ArrayType(sa, [2, 2, 3, 3, 2, 2])
174
+
175
+ raises(ValueError, lambda: permutedims(po, (1, 1)))
176
+ raises(ValueError, lambda: po.transpose())
177
+ raises(ValueError, lambda: po.adjoint())
178
+
179
+ assert permutedims(po, reversed(range(po.rank()))) == ArrayType(
180
+ [[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24],
181
+ sa[96]], [sa[60], sa[132]]]],
182
+ [[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16],
183
+ sa[88]], [sa[52], sa[124]]],
184
+ [[sa[28], sa[100]], [sa[64], sa[136]]]],
185
+ [[[sa[8],
186
+ sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32],
187
+ sa[104]], [sa[68], sa[140]]]]],
188
+ [[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14],
189
+ sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]],
190
+ [[[sa[6],
191
+ sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30],
192
+ sa[102]], [sa[66], sa[138]]]],
193
+ [[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22],
194
+ sa[94]], [sa[58], sa[130]]],
195
+ [[sa[34], sa[106]], [sa[70], sa[142]]]]]],
196
+ [[[[[sa[1],
197
+ sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25],
198
+ sa[97]], [sa[61], sa[133]]]],
199
+ [[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17],
200
+ sa[89]], [sa[53], sa[125]]],
201
+ [[sa[29], sa[101]], [sa[65], sa[137]]]],
202
+ [[[sa[9],
203
+ sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33],
204
+ sa[105]], [sa[69], sa[141]]]]],
205
+ [[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15],
206
+ sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]],
207
+ [[[sa[7],
208
+ sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31],
209
+ sa[103]], [sa[67], sa[139]]]],
210
+ [[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23],
211
+ sa[95]], [sa[59], sa[131]]],
212
+ [[sa[35], sa[107]], [sa[71], sa[143]]]]]]])
213
+
214
+ assert permutedims(po, (1, 0, 2, 3, 4, 5)) == ArrayType(
215
+ [[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10],
216
+ sa[11]]]],
217
+ [[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18],
218
+ sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]],
219
+ [[[sa[24], sa[25]], [sa[26],
220
+ sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34],
221
+ sa[35]]]]],
222
+ [[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78],
223
+ sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]],
224
+ [[[sa[84], sa[85]], [sa[86],
225
+ sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94],
226
+ sa[95]]]],
227
+ [[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102],
228
+ sa[103]]],
229
+ [[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38],
230
+ sa[39]]],
231
+ [[sa[40], sa[41]], [sa[42], sa[43]]],
232
+ [[sa[44], sa[45]], [sa[46],
233
+ sa[47]]]],
234
+ [[[sa[48], sa[49]], [sa[50], sa[51]]],
235
+ [[sa[52], sa[53]], [sa[54],
236
+ sa[55]]],
237
+ [[sa[56], sa[57]], [sa[58], sa[59]]]],
238
+ [[[sa[60], sa[61]], [sa[62],
239
+ sa[63]]],
240
+ [[sa[64], sa[65]], [sa[66], sa[67]]],
241
+ [[sa[68], sa[69]], [sa[70],
242
+ sa[71]]]]], [
243
+ [[[sa[108], sa[109]], [sa[110], sa[111]]],
244
+ [[sa[112], sa[113]], [sa[114],
245
+ sa[115]]],
246
+ [[sa[116], sa[117]], [sa[118], sa[119]]]],
247
+ [[[sa[120], sa[121]], [sa[122],
248
+ sa[123]]],
249
+ [[sa[124], sa[125]], [sa[126], sa[127]]],
250
+ [[sa[128], sa[129]], [sa[130],
251
+ sa[131]]]],
252
+ [[[sa[132], sa[133]], [sa[134], sa[135]]],
253
+ [[sa[136], sa[137]], [sa[138],
254
+ sa[139]]],
255
+ [[sa[140], sa[141]], [sa[142], sa[143]]]]]]])
256
+
257
+ assert permutedims(po, (0, 2, 1, 4, 3, 5)) == ArrayType(
258
+ [[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10],
259
+ sa[11]]]],
260
+ [[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38],
261
+ sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]],
262
+ [[[[sa[12], sa[13]], [sa[16],
263
+ sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22],
264
+ sa[23]]]],
265
+ [[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50],
266
+ sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]],
267
+ [[[[sa[24], sa[25]], [sa[28],
268
+ sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34],
269
+ sa[35]]]],
270
+ [[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62],
271
+ sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]],
272
+ [[[[[sa[72], sa[73]], [sa[76],
273
+ sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82],
274
+ sa[83]]]],
275
+ [[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110],
276
+ sa[111]], [sa[114], sa[115]],
277
+ [sa[118], sa[119]]]]],
278
+ [[[[sa[84], sa[85]], [sa[88],
279
+ sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94],
280
+ sa[95]]]],
281
+ [[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122],
282
+ sa[123]], [sa[126], sa[127]],
283
+ [sa[130], sa[131]]]]],
284
+ [[[[sa[96], sa[97]], [sa[100],
285
+ sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106],
286
+ sa[107]]]],
287
+ [[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134],
288
+ sa[135]], [sa[138], sa[139]],
289
+ [sa[142], sa[143]]]]]]])
290
+
291
+ po2 = po.reshape(4, 9, 2, 2)
292
+ assert po2 == ArrayType([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]])
293
+
294
+ assert permutedims(po2, (3, 2, 0, 1)) == ArrayType([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]])
295
+
296
+ # test for large scale sparse array
297
+ for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
298
+ A = SparseArrayType({1:1, 10000:2}, (10000, 20000, 10000))
299
+ assert permutedims(A, (0, 1, 2)) == A
300
+ assert permutedims(A, (1, 0, 2)) == SparseArrayType({1: 1, 100000000: 2}, (20000, 10000, 10000))
301
+ B = SparseArrayType({1:1, 20000:2}, (10000, 20000))
302
+ assert B.transpose() == SparseArrayType({10000: 1, 1: 2}, (20000, 10000))
303
+
304
+
305
+ def test_permutedims_with_indices():
306
+ A = Array(range(32)).reshape(2, 2, 2, 2, 2)
307
+ indices_new = list("abcde")
308
+ indices_old = list("ebdac")
309
+ new_A = permutedims(A, index_order_new=indices_new, index_order_old=indices_old)
310
+ for a, b, c, d, e in itertools.product(range(2), range(2), range(2), range(2), range(2)):
311
+ assert new_A[a, b, c, d, e] == A[e, b, d, a, c]
312
+ indices_old = list("cabed")
313
+ new_A = permutedims(A, index_order_new=indices_new, index_order_old=indices_old)
314
+ for a, b, c, d, e in itertools.product(range(2), range(2), range(2), range(2), range(2)):
315
+ assert new_A[a, b, c, d, e] == A[c, a, b, e, d]
316
+ raises(ValueError, lambda: permutedims(A, index_order_old=list("aacde"), index_order_new=list("abcde")))
317
+ raises(ValueError, lambda: permutedims(A, index_order_old=list("abcde"), index_order_new=list("abcce")))
318
+ raises(ValueError, lambda: permutedims(A, index_order_old=list("abcde"), index_order_new=list("abce")))
319
+ raises(ValueError, lambda: permutedims(A, index_order_old=list("abce"), index_order_new=list("abce")))
320
+ raises(ValueError, lambda: permutedims(A, [2, 1, 0, 3, 4], index_order_old=list("abcde")))
321
+ raises(ValueError, lambda: permutedims(A, [2, 1, 0, 3, 4], index_order_new=list("abcde")))
322
+
323
+
324
+ def test_flatten():
325
+ from sympy.matrices.dense import Matrix
326
+ for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray, Matrix]:
327
+ A = ArrayType(range(24)).reshape(4, 6)
328
+ assert list(Flatten(A)) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
329
+
330
+ for i, v in enumerate(Flatten(A)):
331
+ assert i == v
332
+
333
+
334
+ def test_tensordiagonal():
335
+ from sympy.matrices.dense import eye
336
+ expr = Array(range(9)).reshape(3, 3)
337
+ raises(ValueError, lambda: tensordiagonal(expr, [0], [1]))
338
+ raises(ValueError, lambda: tensordiagonal(expr, [0, 0]))
339
+ assert tensordiagonal(eye(3), [0, 1]) == Array([1, 1, 1])
340
+ assert tensordiagonal(expr, [0, 1]) == Array([0, 4, 8])
341
+ x, y, z = symbols("x y z")
342
+ expr2 = tensorproduct([x, y, z], expr)
343
+ assert tensordiagonal(expr2, [1, 2]) == Array([[0, 4*x, 8*x], [0, 4*y, 8*y], [0, 4*z, 8*z]])
344
+ assert tensordiagonal(expr2, [0, 1]) == Array([[0, 3*y, 6*z], [x, 4*y, 7*z], [2*x, 5*y, 8*z]])
345
+ assert tensordiagonal(expr2, [0, 1, 2]) == Array([0, 4*y, 8*z])
346
+ # assert tensordiagonal(expr2, [0]) == permutedims(expr2, [1, 2, 0])
347
+ # assert tensordiagonal(expr2, [1]) == permutedims(expr2, [0, 2, 1])
348
+ # assert tensordiagonal(expr2, [2]) == expr2
349
+ # assert tensordiagonal(expr2, [1], [2]) == expr2
350
+ # assert tensordiagonal(expr2, [0], [1]) == permutedims(expr2, [2, 0, 1])
351
+
352
+ a, b, c, X, Y, Z = symbols("a b c X Y Z")
353
+ expr3 = tensorproduct([x, y, z], [1, 2, 3], [a, b, c], [X, Y, Z])
354
+ assert tensordiagonal(expr3, [0, 1, 2, 3]) == Array([x*a*X, 2*y*b*Y, 3*z*c*Z])
355
+ assert tensordiagonal(expr3, [0, 1], [2, 3]) == tensorproduct([x, 2*y, 3*z], [a*X, b*Y, c*Z])
356
+
357
+ # assert tensordiagonal(expr3, [0], [1, 2], [3]) == tensorproduct([x, y, z], [a, 2*b, 3*c], [X, Y, Z])
358
+ assert tensordiagonal(tensordiagonal(expr3, [2, 3]), [0, 1]) == tensorproduct([a*X, b*Y, c*Z], [x, 2*y, 3*z])
359
+
360
+ raises(ValueError, lambda: tensordiagonal([[1, 2, 3], [4, 5, 6]], [0, 1]))
361
+ raises(ValueError, lambda: tensordiagonal(expr3.reshape(3, 3, 9), [1, 2]))
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_mutable_ndim_array.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy import copy
2
+
3
+ from sympy.tensor.array.dense_ndim_array import MutableDenseNDimArray
4
+ from sympy.core.function import diff
5
+ from sympy.core.numbers import Rational
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import Symbol
8
+ from sympy.core.sympify import sympify
9
+ from sympy.matrices import SparseMatrix
10
+ from sympy.matrices import Matrix
11
+ from sympy.tensor.array.sparse_ndim_array import MutableSparseNDimArray
12
+ from sympy.testing.pytest import raises
13
+
14
+
15
+ def test_ndim_array_initiation():
16
+ arr_with_one_element = MutableDenseNDimArray([23])
17
+ assert len(arr_with_one_element) == 1
18
+ assert arr_with_one_element[0] == 23
19
+ assert arr_with_one_element.rank() == 1
20
+ raises(ValueError, lambda: arr_with_one_element[1])
21
+
22
+ arr_with_symbol_element = MutableDenseNDimArray([Symbol('x')])
23
+ assert len(arr_with_symbol_element) == 1
24
+ assert arr_with_symbol_element[0] == Symbol('x')
25
+ assert arr_with_symbol_element.rank() == 1
26
+
27
+ number5 = 5
28
+ vector = MutableDenseNDimArray.zeros(number5)
29
+ assert len(vector) == number5
30
+ assert vector.shape == (number5,)
31
+ assert vector.rank() == 1
32
+ raises(ValueError, lambda: arr_with_one_element[5])
33
+
34
+ vector = MutableSparseNDimArray.zeros(number5)
35
+ assert len(vector) == number5
36
+ assert vector.shape == (number5,)
37
+ assert vector._sparse_array == {}
38
+ assert vector.rank() == 1
39
+
40
+ n_dim_array = MutableDenseNDimArray(range(3**4), (3, 3, 3, 3,))
41
+ assert len(n_dim_array) == 3 * 3 * 3 * 3
42
+ assert n_dim_array.shape == (3, 3, 3, 3)
43
+ assert n_dim_array.rank() == 4
44
+ raises(ValueError, lambda: n_dim_array[0, 0, 0, 3])
45
+ raises(ValueError, lambda: n_dim_array[3, 0, 0, 0])
46
+ raises(ValueError, lambda: n_dim_array[3**4])
47
+
48
+ array_shape = (3, 3, 3, 3)
49
+ sparse_array = MutableSparseNDimArray.zeros(*array_shape)
50
+ assert len(sparse_array._sparse_array) == 0
51
+ assert len(sparse_array) == 3 * 3 * 3 * 3
52
+ assert n_dim_array.shape == array_shape
53
+ assert n_dim_array.rank() == 4
54
+
55
+ one_dim_array = MutableDenseNDimArray([2, 3, 1])
56
+ assert len(one_dim_array) == 3
57
+ assert one_dim_array.shape == (3,)
58
+ assert one_dim_array.rank() == 1
59
+ assert one_dim_array.tolist() == [2, 3, 1]
60
+
61
+ shape = (3, 3)
62
+ array_with_many_args = MutableSparseNDimArray.zeros(*shape)
63
+ assert len(array_with_many_args) == 3 * 3
64
+ assert array_with_many_args.shape == shape
65
+ assert array_with_many_args[0, 0] == 0
66
+ assert array_with_many_args.rank() == 2
67
+
68
+ shape = (int(3), int(3))
69
+ array_with_long_shape = MutableSparseNDimArray.zeros(*shape)
70
+ assert len(array_with_long_shape) == 3 * 3
71
+ assert array_with_long_shape.shape == shape
72
+ assert array_with_long_shape[int(0), int(0)] == 0
73
+ assert array_with_long_shape.rank() == 2
74
+
75
+ vector_with_long_shape = MutableDenseNDimArray(range(5), int(5))
76
+ assert len(vector_with_long_shape) == 5
77
+ assert vector_with_long_shape.shape == (int(5),)
78
+ assert vector_with_long_shape.rank() == 1
79
+ raises(ValueError, lambda: vector_with_long_shape[int(5)])
80
+
81
+ from sympy.abc import x
82
+ for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]:
83
+ rank_zero_array = ArrayType(x)
84
+ assert len(rank_zero_array) == 1
85
+ assert rank_zero_array.shape == ()
86
+ assert rank_zero_array.rank() == 0
87
+ assert rank_zero_array[()] == x
88
+ raises(ValueError, lambda: rank_zero_array[0])
89
+
90
+ def test_sympify():
91
+ from sympy.abc import x, y, z, t
92
+ arr = MutableDenseNDimArray([[x, y], [1, z*t]])
93
+ arr_other = sympify(arr)
94
+ assert arr_other.shape == (2, 2)
95
+ assert arr_other == arr
96
+
97
+
98
+ def test_reshape():
99
+ array = MutableDenseNDimArray(range(50), 50)
100
+ assert array.shape == (50,)
101
+ assert array.rank() == 1
102
+
103
+ array = array.reshape(5, 5, 2)
104
+ assert array.shape == (5, 5, 2)
105
+ assert array.rank() == 3
106
+ assert len(array) == 50
107
+
108
+
109
+ def test_iterator():
110
+ array = MutableDenseNDimArray(range(4), (2, 2))
111
+ assert array[0] == MutableDenseNDimArray([0, 1])
112
+ assert array[1] == MutableDenseNDimArray([2, 3])
113
+
114
+ array = array.reshape(4)
115
+ j = 0
116
+ for i in array:
117
+ assert i == j
118
+ j += 1
119
+
120
+
121
+ def test_getitem():
122
+ for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]:
123
+ array = ArrayType(range(24)).reshape(2, 3, 4)
124
+ assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]
125
+ assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
126
+ assert array[0, 0] == ArrayType([0, 1, 2, 3])
127
+ value = 0
128
+ for i in range(2):
129
+ for j in range(3):
130
+ for k in range(4):
131
+ assert array[i, j, k] == value
132
+ value += 1
133
+
134
+ raises(ValueError, lambda: array[3, 4, 5])
135
+ raises(ValueError, lambda: array[3, 4, 5, 6])
136
+ raises(ValueError, lambda: array[3, 4, 5, 3:4])
137
+
138
+
139
+ def test_sparse():
140
+ sparse_array = MutableSparseNDimArray([0, 0, 0, 1], (2, 2))
141
+ assert len(sparse_array) == 2 * 2
142
+ # dictionary where all data is, only non-zero entries are actually stored:
143
+ assert len(sparse_array._sparse_array) == 1
144
+
145
+ assert sparse_array.tolist() == [[0, 0], [0, 1]]
146
+
147
+ for i, j in zip(sparse_array, [[0, 0], [0, 1]]):
148
+ assert i == MutableSparseNDimArray(j)
149
+
150
+ sparse_array[0, 0] = 123
151
+ assert len(sparse_array._sparse_array) == 2
152
+ assert sparse_array[0, 0] == 123
153
+ assert sparse_array/0 == MutableSparseNDimArray([[S.ComplexInfinity, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2))
154
+
155
+ # when element in sparse array become zero it will disappear from
156
+ # dictionary
157
+ sparse_array[0, 0] = 0
158
+ assert len(sparse_array._sparse_array) == 1
159
+ sparse_array[1, 1] = 0
160
+ assert len(sparse_array._sparse_array) == 0
161
+ assert sparse_array[0, 0] == 0
162
+
163
+ # test for large scale sparse array
164
+ # equality test
165
+ a = MutableSparseNDimArray.zeros(100000, 200000)
166
+ b = MutableSparseNDimArray.zeros(100000, 200000)
167
+ assert a == b
168
+ a[1, 1] = 1
169
+ b[1, 1] = 2
170
+ assert a != b
171
+
172
+ # __mul__ and __rmul__
173
+ assert a * 3 == MutableSparseNDimArray({200001: 3}, (100000, 200000))
174
+ assert 3 * a == MutableSparseNDimArray({200001: 3}, (100000, 200000))
175
+ assert a * 0 == MutableSparseNDimArray({}, (100000, 200000))
176
+ assert 0 * a == MutableSparseNDimArray({}, (100000, 200000))
177
+
178
+ # __truediv__
179
+ assert a/3 == MutableSparseNDimArray({200001: Rational(1, 3)}, (100000, 200000))
180
+
181
+ # __neg__
182
+ assert -a == MutableSparseNDimArray({200001: -1}, (100000, 200000))
183
+
184
+
185
+ def test_calculation():
186
+
187
+ a = MutableDenseNDimArray([1]*9, (3, 3))
188
+ b = MutableDenseNDimArray([9]*9, (3, 3))
189
+
190
+ c = a + b
191
+ for i in c:
192
+ assert i == MutableDenseNDimArray([10, 10, 10])
193
+
194
+ assert c == MutableDenseNDimArray([10]*9, (3, 3))
195
+ assert c == MutableSparseNDimArray([10]*9, (3, 3))
196
+
197
+ c = b - a
198
+ for i in c:
199
+ assert i == MutableSparseNDimArray([8, 8, 8])
200
+
201
+ assert c == MutableDenseNDimArray([8]*9, (3, 3))
202
+ assert c == MutableSparseNDimArray([8]*9, (3, 3))
203
+
204
+
205
+ def test_ndim_array_converting():
206
+ dense_array = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
207
+ alist = dense_array.tolist()
208
+
209
+ assert alist == [[1, 2], [3, 4]]
210
+
211
+ matrix = dense_array.tomatrix()
212
+ assert (isinstance(matrix, Matrix))
213
+
214
+ for i in range(len(dense_array)):
215
+ assert dense_array[dense_array._get_tuple_index(i)] == matrix[i]
216
+ assert matrix.shape == dense_array.shape
217
+
218
+ assert MutableDenseNDimArray(matrix) == dense_array
219
+ assert MutableDenseNDimArray(matrix.as_immutable()) == dense_array
220
+ assert MutableDenseNDimArray(matrix.as_mutable()) == dense_array
221
+
222
+ sparse_array = MutableSparseNDimArray([1, 2, 3, 4], (2, 2))
223
+ alist = sparse_array.tolist()
224
+
225
+ assert alist == [[1, 2], [3, 4]]
226
+
227
+ matrix = sparse_array.tomatrix()
228
+ assert(isinstance(matrix, SparseMatrix))
229
+
230
+ for i in range(len(sparse_array)):
231
+ assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i]
232
+ assert matrix.shape == sparse_array.shape
233
+
234
+ assert MutableSparseNDimArray(matrix) == sparse_array
235
+ assert MutableSparseNDimArray(matrix.as_immutable()) == sparse_array
236
+ assert MutableSparseNDimArray(matrix.as_mutable()) == sparse_array
237
+
238
+
239
+ def test_converting_functions():
240
+ arr_list = [1, 2, 3, 4]
241
+ arr_matrix = Matrix(((1, 2), (3, 4)))
242
+
243
+ # list
244
+ arr_ndim_array = MutableDenseNDimArray(arr_list, (2, 2))
245
+ assert (isinstance(arr_ndim_array, MutableDenseNDimArray))
246
+ assert arr_matrix.tolist() == arr_ndim_array.tolist()
247
+
248
+ # Matrix
249
+ arr_ndim_array = MutableDenseNDimArray(arr_matrix)
250
+ assert (isinstance(arr_ndim_array, MutableDenseNDimArray))
251
+ assert arr_matrix.tolist() == arr_ndim_array.tolist()
252
+ assert arr_matrix.shape == arr_ndim_array.shape
253
+
254
+
255
+ def test_equality():
256
+ first_list = [1, 2, 3, 4]
257
+ second_list = [1, 2, 3, 4]
258
+ third_list = [4, 3, 2, 1]
259
+ assert first_list == second_list
260
+ assert first_list != third_list
261
+
262
+ first_ndim_array = MutableDenseNDimArray(first_list, (2, 2))
263
+ second_ndim_array = MutableDenseNDimArray(second_list, (2, 2))
264
+ third_ndim_array = MutableDenseNDimArray(third_list, (2, 2))
265
+ fourth_ndim_array = MutableDenseNDimArray(first_list, (2, 2))
266
+
267
+ assert first_ndim_array == second_ndim_array
268
+ second_ndim_array[0, 0] = 0
269
+ assert first_ndim_array != second_ndim_array
270
+ assert first_ndim_array != third_ndim_array
271
+ assert first_ndim_array == fourth_ndim_array
272
+
273
+
274
+ def test_arithmetic():
275
+ a = MutableDenseNDimArray([3 for i in range(9)], (3, 3))
276
+ b = MutableDenseNDimArray([7 for i in range(9)], (3, 3))
277
+
278
+ c1 = a + b
279
+ c2 = b + a
280
+ assert c1 == c2
281
+
282
+ d1 = a - b
283
+ d2 = b - a
284
+ assert d1 == d2 * (-1)
285
+
286
+ e1 = a * 5
287
+ e2 = 5 * a
288
+ e3 = copy(a)
289
+ e3 *= 5
290
+ assert e1 == e2 == e3
291
+
292
+ f1 = a / 5
293
+ f2 = copy(a)
294
+ f2 /= 5
295
+ assert f1 == f2
296
+ assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \
297
+ f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5)
298
+
299
+ assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \
300
+ == type(e1) == type(e2) == type(e3) == type(f1)
301
+
302
+ z0 = -a
303
+ assert z0 == MutableDenseNDimArray([-3 for i in range(9)], (3, 3))
304
+
305
+
306
+ def test_higher_dimenions():
307
+ m3 = MutableDenseNDimArray(range(10, 34), (2, 3, 4))
308
+
309
+ assert m3.tolist() == [[[10, 11, 12, 13],
310
+ [14, 15, 16, 17],
311
+ [18, 19, 20, 21]],
312
+
313
+ [[22, 23, 24, 25],
314
+ [26, 27, 28, 29],
315
+ [30, 31, 32, 33]]]
316
+
317
+ assert m3._get_tuple_index(0) == (0, 0, 0)
318
+ assert m3._get_tuple_index(1) == (0, 0, 1)
319
+ assert m3._get_tuple_index(4) == (0, 1, 0)
320
+ assert m3._get_tuple_index(12) == (1, 0, 0)
321
+
322
+ assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]'
323
+
324
+ m3_rebuilt = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]])
325
+ assert m3 == m3_rebuilt
326
+
327
+ m3_other = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4))
328
+
329
+ assert m3 == m3_other
330
+
331
+
332
+ def test_slices():
333
+ md = MutableDenseNDimArray(range(10, 34), (2, 3, 4))
334
+
335
+ assert md[:] == MutableDenseNDimArray(range(10, 34), (2, 3, 4))
336
+ assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
337
+ assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
338
+ assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
339
+ assert md[:, :, :] == md
340
+
341
+ sd = MutableSparseNDimArray(range(10, 34), (2, 3, 4))
342
+ assert sd == MutableSparseNDimArray(md)
343
+
344
+ assert sd[:] == MutableSparseNDimArray(range(10, 34), (2, 3, 4))
345
+ assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
346
+ assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
347
+ assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
348
+ assert sd[:, :, :] == sd
349
+
350
+
351
+ def test_slices_assign():
352
+ a = MutableDenseNDimArray(range(12), shape=(4, 3))
353
+ b = MutableSparseNDimArray(range(12), shape=(4, 3))
354
+
355
+ for i in [a, b]:
356
+ assert i.tolist() == [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
357
+ i[0, :] = [2, 2, 2]
358
+ assert i.tolist() == [[2, 2, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
359
+ i[0, 1:] = [8, 8]
360
+ assert i.tolist() == [[2, 8, 8], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
361
+ i[1:3, 1] = [20, 44]
362
+ assert i.tolist() == [[2, 8, 8], [3, 20, 5], [6, 44, 8], [9, 10, 11]]
363
+
364
+
365
+ def test_diff():
366
+ from sympy.abc import x, y, z
367
+ md = MutableDenseNDimArray([[x, y], [x*z, x*y*z]])
368
+ assert md.diff(x) == MutableDenseNDimArray([[1, 0], [z, y*z]])
369
+ assert diff(md, x) == MutableDenseNDimArray([[1, 0], [z, y*z]])
370
+
371
+ sd = MutableSparseNDimArray(md)
372
+ assert sd == MutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2))
373
+ assert sd.diff(x) == MutableSparseNDimArray([[1, 0], [z, y*z]])
374
+ assert diff(sd, x) == MutableSparseNDimArray([[1, 0], [z, y*z]])
evalkit_internvl/lib/python3.10/site-packages/sympy/tensor/array/tests/test_ndim_array_conversions.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.tensor.array import (ImmutableDenseNDimArray,
2
+ ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray)
3
+ from sympy.abc import x, y, z
4
+
5
+
6
+ def test_NDim_array_conv():
7
+ MD = MutableDenseNDimArray([x, y, z])
8
+ MS = MutableSparseNDimArray([x, y, z])
9
+ ID = ImmutableDenseNDimArray([x, y, z])
10
+ IS = ImmutableSparseNDimArray([x, y, z])
11
+
12
+ assert MD.as_immutable() == ID
13
+ assert MD.as_mutable() == MD
14
+
15
+ assert MS.as_immutable() == IS
16
+ assert MS.as_mutable() == MS
17
+
18
+ assert ID.as_immutable() == ID
19
+ assert ID.as_mutable() == MD
20
+
21
+ assert IS.as_immutable() == IS
22
+ assert IS.as_mutable() == MS
evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/big_modeling.cpython-310.pyc ADDED
Binary file (21.3 kB). View file
 
evalkit_tf437/lib/python3.10/site-packages/accelerate/__pycache__/checkpointing.cpython-310.pyc ADDED
Binary file (6.5 kB). View file