Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/backend.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/ccl.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/comm.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/config.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/constants.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/reduce_op.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/torch.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/utils.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/comm.py +771 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/constants.py +51 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/torch.py +374 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/utils.py +133 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__init__.py +8 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/basic_layer.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/compress.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/config.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/constants.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/helper.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/scheduler.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/utils.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/basic_layer.py +840 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/compress.py +239 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/config.py +452 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/constants.py +188 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/helper.py +322 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/scheduler.py +173 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/utils.py +222 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/__init__.py +5 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/fused_optimizer.py +466 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/loss_scaler.py +270 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/__init__.py +8 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/__pycache__/lamb.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/lamb.py +443 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/zoadam.py +359 -0
- evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/unfused_optimizer.py +427 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__init__.py +4 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/constants.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/errors.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/store.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/utils.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/version.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/constants.py +4 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/errors.py +25 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/store.py +107 -0
- evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/utils.py +38 -0
.gitattributes
CHANGED
|
@@ -1537,3 +1537,4 @@ infer_4_47_1/lib/python3.10/site-packages/msgpack/_cmsgpack.cpython-310-x86_64-l
|
|
| 1537 |
infer_4_47_1/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
| 1538 |
evalkit_tf449/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text
|
| 1539 |
infer_4_47_1/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1537 |
infer_4_47_1/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
| 1538 |
evalkit_tf449/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text
|
| 1539 |
infer_4_47_1/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1540 |
+
infer_4_47_1/lib/python3.10/site-packages/mpl_toolkits/mplot3d/__pycache__/axes3d.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (214 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/backend.cpython-310.pyc
ADDED
|
Binary file (1.6 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/ccl.cpython-310.pyc
ADDED
|
Binary file (6.51 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/comm.cpython-310.pyc
ADDED
|
Binary file (20 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (1.5 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/constants.cpython-310.pyc
ADDED
|
Binary file (1.03 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/reduce_op.cpython-310.pyc
ADDED
|
Binary file (520 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/torch.cpython-310.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (2.72 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/comm.py
ADDED
|
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
"""
|
| 6 |
+
DeepSpeed Communication Package: deepspeed.comm
|
| 7 |
+
deepspeed.comm
|
| 8 |
+
-- import and use deepspeed.ops.comm
|
| 9 |
+
-- use torch.distributed directly if both this package and torch.distributed use the same NCCL version
|
| 10 |
+
-- use custom collectives
|
| 11 |
+
-- can either use torch.dist or ds.ops.comm?
|
| 12 |
+
Note: the old 1-bit compressed allreduce variants that resided in deepspeed.runtime.comm will be moved here as well.
|
| 13 |
+
deepspeed.comm API
|
| 14 |
+
-- must be kept fully compatible (same signatures) as torch.dist API to ensure backward/cross-framework compatibility.
|
| 15 |
+
-- e.g. if a client code used
|
| 16 |
+
from deepspeed import comm as dist
|
| 17 |
+
instead of
|
| 18 |
+
import torch.distributed as dist
|
| 19 |
+
The code should work without breaking any of the public torch.distributed functionality
|
| 20 |
+
Future:
|
| 21 |
+
-- deepspeed groups API should be brought into ds.comm
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT, default_pg_timeout
|
| 28 |
+
from .constants import *
|
| 29 |
+
from .reduce_op import *
|
| 30 |
+
from deepspeed.accelerator import get_accelerator
|
| 31 |
+
from deepspeed.comm.ccl import CCLBackend
|
| 32 |
+
|
| 33 |
+
from deepspeed.utils.comms_logging import CommsLogger
|
| 34 |
+
from deepspeed.utils import timer, get_caller_func
|
| 35 |
+
from deepspeed.comm.torch import TorchBackend
|
| 36 |
+
|
| 37 |
+
from deepspeed import utils
|
| 38 |
+
from datetime import timedelta
|
| 39 |
+
|
| 40 |
+
# Current deepspeed.comm backend (cdb) global object for simple access by client code
|
| 41 |
+
cdb = None
|
| 42 |
+
|
| 43 |
+
# Create global timer for ops
|
| 44 |
+
timers = timer.SynchronizedWallClockTimer()
|
| 45 |
+
timer_summary = {}
|
| 46 |
+
|
| 47 |
+
comms_logger = CommsLogger()
|
| 48 |
+
|
| 49 |
+
# Maintain objects of all initialized ds backends and assign them using the API functions in this file
|
| 50 |
+
nccl_backend = None
|
| 51 |
+
mpi_backend = None
|
| 52 |
+
ccl_backend = None
|
| 53 |
+
hccl_backend = None
|
| 54 |
+
|
| 55 |
+
# This should be set here so all rank/size information from the launcher can be propagated
|
| 56 |
+
from deepspeed.comm.utils import *
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class ProcessGroup():
|
| 60 |
+
|
| 61 |
+
def __init__(self, comm_id, ranks=[]):
|
| 62 |
+
self.ranks = ranks
|
| 63 |
+
self.comm_id = comm_id
|
| 64 |
+
self.size = len(ranks)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def _configure_using_config_file(config):
|
| 68 |
+
if config.comms_logger_enabled:
|
| 69 |
+
comms_logger.configure(config)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def configure(
|
| 73 |
+
deepspeed_config=None,
|
| 74 |
+
enabled=None,
|
| 75 |
+
prof_all=None,
|
| 76 |
+
prof_ops=None,
|
| 77 |
+
verbose=None,
|
| 78 |
+
debug=None,
|
| 79 |
+
):
|
| 80 |
+
|
| 81 |
+
if deepspeed_config is not None:
|
| 82 |
+
_configure_using_config_file(deepspeed_config.comms_config)
|
| 83 |
+
|
| 84 |
+
if enabled is not None:
|
| 85 |
+
comms_logger.enabled = enabled
|
| 86 |
+
|
| 87 |
+
if prof_all is not None:
|
| 88 |
+
comms_logger.prof_all = prof_all
|
| 89 |
+
|
| 90 |
+
if prof_ops is not None:
|
| 91 |
+
comms_logger.prof_ops = prof_ops
|
| 92 |
+
|
| 93 |
+
if verbose is not None:
|
| 94 |
+
comms_logger.verbose = verbose
|
| 95 |
+
|
| 96 |
+
if debug is not None:
|
| 97 |
+
comms_logger.debug = debug
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# Logging wrapper for timing ops
|
| 101 |
+
def timed_op(func):
|
| 102 |
+
|
| 103 |
+
def log_wrapper(*args, **kwargs):
|
| 104 |
+
# Add enabled flag so that overhead to each comm op is two if conditions at most
|
| 105 |
+
if comms_logger.enabled:
|
| 106 |
+
if ('prof' in kwargs
|
| 107 |
+
and kwargs['prof']) or comms_logger.prof_all or ('log_name' in kwargs
|
| 108 |
+
and kwargs['log_name'] in comms_logger.prof_ops):
|
| 109 |
+
# Need func args for their defaults
|
| 110 |
+
func_args = get_default_args(func)
|
| 111 |
+
func_args.update(kwargs)
|
| 112 |
+
msg_size = get_msg_size_from_args(func, *args, **kwargs)
|
| 113 |
+
log_name = get_debug_log_name(func_args, comms_logger.debug)
|
| 114 |
+
timers(log_name).start()
|
| 115 |
+
# Return the op, then stop the op's timer
|
| 116 |
+
try:
|
| 117 |
+
return func(*args, **kwargs)
|
| 118 |
+
finally:
|
| 119 |
+
if comms_logger.enabled:
|
| 120 |
+
# Need to make op blocking for accurate logging
|
| 121 |
+
get_accelerator().synchronize()
|
| 122 |
+
# If we're using MPI, we can't simply sync the stream
|
| 123 |
+
if cdb.using_mpi:
|
| 124 |
+
cdb.barrier()
|
| 125 |
+
if ('prof' in kwargs and kwargs['prof']) or comms_logger.prof_all or (
|
| 126 |
+
'log_name' in kwargs and kwargs['log_name'] in comms_logger.prof_ops):
|
| 127 |
+
log_name = get_debug_log_name(func_args, comms_logger.debug)
|
| 128 |
+
raw_name = func.__name__
|
| 129 |
+
timers(log_name).stop()
|
| 130 |
+
# need temp var since 'elapsed' resets events
|
| 131 |
+
time_elapsed = timers(log_name).elapsed(reset=False)
|
| 132 |
+
comms_logger.append(raw_name, log_name, time_elapsed, msg_size)
|
| 133 |
+
|
| 134 |
+
return log_wrapper
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# For compatibility with torch distributed's init_process_group, we shall retain the signature from PyTorch code.
|
| 138 |
+
# DeepSpeed NCCL/MPI backend may not need all these params as we will have our own implementation.
|
| 139 |
+
# Please read full torch.distributed API docs from https://pytorch.org/docs/stable/distributed.html
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# UNUSED: Future helper function to initialize DS backends
|
| 143 |
+
def init_deepspeed_backend(ds_backend, timeout, init_method):
|
| 144 |
+
global cdb
|
| 145 |
+
global nccl_backend
|
| 146 |
+
global mpi_backend
|
| 147 |
+
global ccl_backend
|
| 148 |
+
global hccl_backend
|
| 149 |
+
|
| 150 |
+
rank = int(os.getenv('RANK', '-1'))
|
| 151 |
+
size = int(os.getenv('WORLD_SIZE', '-1'))
|
| 152 |
+
|
| 153 |
+
if ds_backend == NCCL_BACKEND:
|
| 154 |
+
utils.logger.debug("NCCL backend in DeepSpeed not yet implemented")
|
| 155 |
+
elif ds_backend == MPI_BACKEND:
|
| 156 |
+
utils.logger.debug("MPI backend in DeepSpeed not yet implemented")
|
| 157 |
+
elif ds_backend == GLOO_BACKEND:
|
| 158 |
+
utils.logger.debug("Gloo backend in DeepSpeed not yet implemented")
|
| 159 |
+
elif ds_backend == CCL_BACKEND:
|
| 160 |
+
ccl_backend = CCLBackend(rank=rank, world_size=size, timeout=timeout, init_method=init_method)
|
| 161 |
+
utils.logger.info(f"Initialize {ds_backend} backend")
|
| 162 |
+
elif ds_backend == HCCL_BACKEND:
|
| 163 |
+
utils.logger.warn("HCCL backend in DeepSpeed not yet implemented")
|
| 164 |
+
else:
|
| 165 |
+
utils.logger.debug(f"DeepSpeed does not support {ds_backend} backend")
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def is_initialized():
|
| 169 |
+
#assert cdb is not None, 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 170 |
+
if cdb is None:
|
| 171 |
+
return False
|
| 172 |
+
else:
|
| 173 |
+
return cdb.is_initialized()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def destroy_process_group(group=None):
|
| 177 |
+
global cdb
|
| 178 |
+
return cdb.destroy_process_group(group=group)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def new_group(ranks):
|
| 182 |
+
global cdb
|
| 183 |
+
assert cdb is not None and cdb.is_initialized(
|
| 184 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 185 |
+
return cdb.new_group(ranks)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def is_available() -> bool:
|
| 189 |
+
|
| 190 |
+
# Returns ``True`` if the deepspeed comm package is available.
|
| 191 |
+
|
| 192 |
+
# TODO: load other ops. Clients including deepspeed itself should use deepspeed.comm to import
|
| 193 |
+
# any communication related primitives from this package.
|
| 194 |
+
# use hasattr(deepspeed.csrc.ops, "_comm") or something
|
| 195 |
+
return True
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def set_backend():
|
| 199 |
+
global cdb
|
| 200 |
+
global nccl_backend
|
| 201 |
+
global mpi_backend
|
| 202 |
+
global ccl_backend
|
| 203 |
+
global hccl_backend
|
| 204 |
+
|
| 205 |
+
backend_name = get_accelerator().communication_backend_name()
|
| 206 |
+
|
| 207 |
+
if backend_name == NCCL_BACKEND:
|
| 208 |
+
if nccl_backend is not None and nccl_backend.is_initialized():
|
| 209 |
+
cdb = nccl_backend
|
| 210 |
+
elif backend_name == MPI_BACKEND:
|
| 211 |
+
if mpi_backend is not None and mpi_backend.is_initialized():
|
| 212 |
+
cdb = mpi_backend
|
| 213 |
+
elif backend_name == CCL_BACKEND:
|
| 214 |
+
if ccl_backend is not None and ccl_backend.is_initialized():
|
| 215 |
+
cdb = ccl_backend
|
| 216 |
+
elif backend_name == HCCL_BACKEND:
|
| 217 |
+
if hccl_backend is not None and hccl_backend.is_initialized():
|
| 218 |
+
cdb = hccl_backend
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@timed_op
|
| 222 |
+
def broadcast(tensor, src, group=None, async_op=False, prof=False, log_name='broadcast', debug=get_caller_func()):
|
| 223 |
+
global cdb
|
| 224 |
+
return cdb.broadcast(tensor=tensor, src=src, group=group, async_op=async_op)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
@timed_op
|
| 228 |
+
def all_gather(tensor_list,
|
| 229 |
+
tensor,
|
| 230 |
+
group=None,
|
| 231 |
+
async_op=False,
|
| 232 |
+
prof=False,
|
| 233 |
+
log_name='all_gather',
|
| 234 |
+
debug=get_caller_func()):
|
| 235 |
+
global cdb
|
| 236 |
+
return cdb.all_gather(tensor_list=tensor_list, tensor=tensor, group=group, async_op=async_op)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def has_reduce_scatter_tensor():
|
| 240 |
+
global cdb
|
| 241 |
+
assert cdb is not None and cdb.is_initialized(
|
| 242 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 243 |
+
return cdb.has_reduce_scatter_tensor()
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def reduce_scatter_fn(output_tensor,
|
| 247 |
+
tensor,
|
| 248 |
+
op=ReduceOp.SUM,
|
| 249 |
+
group=None,
|
| 250 |
+
async_op=False,
|
| 251 |
+
prof=False,
|
| 252 |
+
debug=get_caller_func()):
|
| 253 |
+
global cdb
|
| 254 |
+
assert cdb is not None and cdb.is_initialized(
|
| 255 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 256 |
+
if cdb.has_reduce_scatter_tensor():
|
| 257 |
+
return reduce_scatter_tensor(output_tensor,
|
| 258 |
+
tensor,
|
| 259 |
+
op=op,
|
| 260 |
+
group=group,
|
| 261 |
+
async_op=async_op,
|
| 262 |
+
prof=prof,
|
| 263 |
+
debug=debug)
|
| 264 |
+
else:
|
| 265 |
+
if get_rank() == 0:
|
| 266 |
+
utils.logger.warning_once("unable to find torch.distributed.reduce_scatter_tensor. will fall back to "
|
| 267 |
+
"torch.distributed.reduce_scatter which will result in suboptimal performance. "
|
| 268 |
+
"please consider upgrading your pytorch installation.")
|
| 269 |
+
input_tensor_lst = list(torch.chunk(tensor, cdb.get_world_size(group)))
|
| 270 |
+
return reduce_scatter(output_tensor,
|
| 271 |
+
input_tensor_lst,
|
| 272 |
+
op=op,
|
| 273 |
+
group=group,
|
| 274 |
+
async_op=async_op,
|
| 275 |
+
prof=prof,
|
| 276 |
+
debug=debug)
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
@timed_op
|
| 280 |
+
def reduce_scatter_tensor(output_tensor,
|
| 281 |
+
tensor,
|
| 282 |
+
op=ReduceOp.SUM,
|
| 283 |
+
group=None,
|
| 284 |
+
async_op=False,
|
| 285 |
+
prof=False,
|
| 286 |
+
log_name='reduce_scatter_tensor',
|
| 287 |
+
debug=get_caller_func()):
|
| 288 |
+
global cdb
|
| 289 |
+
return cdb.reduce_scatter_tensor(output_tensor=output_tensor,
|
| 290 |
+
input_tensor=tensor,
|
| 291 |
+
op=op,
|
| 292 |
+
group=group,
|
| 293 |
+
async_op=async_op)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
@timed_op
|
| 297 |
+
def all_gather_into_tensor(output_tensor,
|
| 298 |
+
tensor,
|
| 299 |
+
group=None,
|
| 300 |
+
async_op=False,
|
| 301 |
+
prof=False,
|
| 302 |
+
log_name='all_gather_into_tensor',
|
| 303 |
+
debug=get_caller_func()):
|
| 304 |
+
global cdb
|
| 305 |
+
return cdb.all_gather_into_tensor(output_tensor=output_tensor, input_tensor=tensor, group=group, async_op=async_op)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def has_all_gather_into_tensor():
|
| 309 |
+
global cdb
|
| 310 |
+
assert cdb is not None and cdb.is_initialized(
|
| 311 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 312 |
+
return cdb.has_all_gather_into_tensor()
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def allgather_fn(output_tensor, input_tensor, group=None, async_op=False, debug=get_caller_func()):
|
| 316 |
+
global cdb
|
| 317 |
+
assert cdb is not None and cdb.is_initialized(
|
| 318 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 319 |
+
if cdb.has_all_gather_into_tensor():
|
| 320 |
+
return all_gather_into_tensor(output_tensor, input_tensor, group=group, async_op=async_op, debug=debug)
|
| 321 |
+
else:
|
| 322 |
+
if get_rank() == 0:
|
| 323 |
+
utils.logger.warning_once("unable to find torch.distributed.all_gather_into_tensor. will fall back to "
|
| 324 |
+
"torch.distributed.all_gather which will result in suboptimal performance. "
|
| 325 |
+
"please consider upgrading your pytorch installation.")
|
| 326 |
+
output_tensors = list(torch.chunk(output_tensor, cdb.get_world_size(group)))
|
| 327 |
+
return all_gather(output_tensors, input_tensor, group=group, async_op=async_op, debug=debug)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
@timed_op
|
| 331 |
+
def all_to_all_single(output,
|
| 332 |
+
tensor,
|
| 333 |
+
output_split_sizes=None,
|
| 334 |
+
input_split_sizes=None,
|
| 335 |
+
group=None,
|
| 336 |
+
async_op=False,
|
| 337 |
+
prof=False,
|
| 338 |
+
log_name='all_to_all_single',
|
| 339 |
+
debug=get_caller_func()):
|
| 340 |
+
global cdb
|
| 341 |
+
return cdb.all_to_all_single(output=output,
|
| 342 |
+
input=tensor,
|
| 343 |
+
output_split_sizes=output_split_sizes,
|
| 344 |
+
input_split_sizes=input_split_sizes,
|
| 345 |
+
group=group,
|
| 346 |
+
async_op=async_op)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@timed_op
|
| 350 |
+
def all_to_all(output_tensor_list, input_tensor_list, group=None, async_op=False):
|
| 351 |
+
global cdb
|
| 352 |
+
return cdb.all_to_all(output_tensor_list, input_tensor_list, group=group, async_op=async_op)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
@timed_op
|
| 356 |
+
def send(tensor, dst, group=None, tag=0, prof=False, log_name='send', debug=get_caller_func()):
|
| 357 |
+
global cdb
|
| 358 |
+
return cdb.send(tensor=tensor, dst=dst, group=group, tag=tag)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
@timed_op
|
| 362 |
+
def recv(tensor, src=None, group=None, tag=0, prof=False, log_name='recv', debug=get_caller_func()):
|
| 363 |
+
global cdb
|
| 364 |
+
return cdb.recv(tensor=tensor, src=src, group=group, tag=tag)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
@timed_op
|
| 368 |
+
def isend(tensor, dst, group=None, tag=0, prof=False, log_name='isend', debug=get_caller_func()):
|
| 369 |
+
global cdb
|
| 370 |
+
return cdb.send(tensor=tensor, dst=dst, group=group, tag=tag)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
@timed_op
|
| 374 |
+
def irecv(tensor, src=None, group=None, tag=0, prof=False, log_name='irecv', debug=get_caller_func()):
|
| 375 |
+
global cdb
|
| 376 |
+
return cdb.recv(tensor=tensor, src=src, group=group, tag=tag)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
@timed_op
|
| 380 |
+
def gather(tensor,
|
| 381 |
+
gather_list=None,
|
| 382 |
+
dst=0,
|
| 383 |
+
group=None,
|
| 384 |
+
async_op=False,
|
| 385 |
+
prof=False,
|
| 386 |
+
log_name='gather',
|
| 387 |
+
debug=get_caller_func()):
|
| 388 |
+
global cdb
|
| 389 |
+
return cdb.gather(tensor=tensor, gather_list=gather_list, dst=dst, group=group, async_op=async_op)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
@timed_op
|
| 393 |
+
def scatter(tensor,
|
| 394 |
+
scatter_list=None,
|
| 395 |
+
src=0,
|
| 396 |
+
group=None,
|
| 397 |
+
async_op=False,
|
| 398 |
+
prof=False,
|
| 399 |
+
log_name='scatter',
|
| 400 |
+
debug=get_caller_func()):
|
| 401 |
+
global cdb
|
| 402 |
+
return cdb.scatter(tensor=tensor, scatter_list=scatter_list, src=src, group=group, async_op=async_op)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
@timed_op
|
| 406 |
+
def barrier(group=None, async_op=False, device_ids=None, prof=False, log_name='barrier', debug=get_caller_func()):
|
| 407 |
+
global cdb
|
| 408 |
+
return cdb.barrier(group=group, async_op=async_op)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
@timed_op
|
| 412 |
+
def monitored_barrier(group=None,
|
| 413 |
+
timeout=None,
|
| 414 |
+
wait_all_ranks=False,
|
| 415 |
+
prof=False,
|
| 416 |
+
log_name='monitored_barrier',
|
| 417 |
+
debug=get_caller_func()):
|
| 418 |
+
global cdb
|
| 419 |
+
return cdb.monitored_barrier(group=group, timeout=timeout, wait_all_ranks=wait_all_ranks)
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def log_summary(show_straggler=False):
|
| 423 |
+
global cdb
|
| 424 |
+
barrier(log_name='log_summary_barrier')
|
| 425 |
+
if cdb.get_rank() == 0:
|
| 426 |
+
comms_logger.log_all(print_log=True, show_straggler=show_straggler)
|
| 427 |
+
else:
|
| 428 |
+
comms_logger.log_all(print_log=False, show_straggler=show_straggler)
|
| 429 |
+
barrier(log_name='log_summary_barrier')
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
@timed_op
|
| 433 |
+
def reduce(tensor,
|
| 434 |
+
dst,
|
| 435 |
+
op=ReduceOp.SUM,
|
| 436 |
+
group=None,
|
| 437 |
+
async_op=False,
|
| 438 |
+
prof=False,
|
| 439 |
+
log_name='reduce',
|
| 440 |
+
debug=get_caller_func()):
|
| 441 |
+
global cdb
|
| 442 |
+
return cdb.reduce(tensor=tensor, dst=dst, op=op, group=group, async_op=async_op)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
@timed_op
|
| 446 |
+
def reduce_scatter(output,
|
| 447 |
+
input_list,
|
| 448 |
+
op=ReduceOp.SUM,
|
| 449 |
+
group=None,
|
| 450 |
+
async_op=False,
|
| 451 |
+
prof=False,
|
| 452 |
+
log_name='reduce_scatter',
|
| 453 |
+
debug=get_caller_func()):
|
| 454 |
+
global cdb
|
| 455 |
+
return cdb.reduce_scatter(output=output, input_list=input_list, op=op, group=group, async_op=async_op)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def has_all_reduce_coalesced():
|
| 459 |
+
""""""
|
| 460 |
+
global cdb
|
| 461 |
+
assert cdb is not None and cdb.is_initialized(
|
| 462 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 463 |
+
assert cdb.has_all_reduce_coalesced is not None, 'has_all_reduce_coalesced is not yet defined'
|
| 464 |
+
return cdb.has_all_reduce_coalesced
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
def has_coalescing_manager():
|
| 468 |
+
global cdb
|
| 469 |
+
assert cdb is not None and cdb.is_initialized(
|
| 470 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 471 |
+
assert cdb.has_coalescing_manager is not None, 'has_coalescing_manager is not yet defined'
|
| 472 |
+
return cdb.has_coalescing_manager
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def all_gather_coalesced(output_tensors, input_tensors, group=None, async_op=False):
|
| 476 |
+
global cdb
|
| 477 |
+
assert cdb is not None and cdb.is_initialized(
|
| 478 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 479 |
+
return cdb.all_gather_coalesced(output_tensors, input_tensors, group=group, async_op=async_op)
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
@timed_op
|
| 483 |
+
def all_reduce(tensor,
|
| 484 |
+
op=ReduceOp.SUM,
|
| 485 |
+
group=None,
|
| 486 |
+
async_op=False,
|
| 487 |
+
prof=False,
|
| 488 |
+
log_name='all_reduce',
|
| 489 |
+
debug=get_caller_func()):
|
| 490 |
+
#if profile_comm:
|
| 491 |
+
# context of the timers?
|
| 492 |
+
# timers.start()
|
| 493 |
+
# TensorBoard logging for comm calls.?
|
| 494 |
+
global cdb
|
| 495 |
+
#print(f'op = {op}, cdb= {cdb.name}')
|
| 496 |
+
return cdb.all_reduce(tensor, op, group, async_op)
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
@timed_op
|
| 500 |
+
def inference_all_reduce(tensor,
|
| 501 |
+
op=ReduceOp.SUM,
|
| 502 |
+
group=None,
|
| 503 |
+
async_op=False,
|
| 504 |
+
prof=False,
|
| 505 |
+
log_name='all_reduce',
|
| 506 |
+
debug=get_caller_func()):
|
| 507 |
+
global cdb
|
| 508 |
+
return cdb.inference_all_reduce(tensor, op, group, async_op)
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
@timed_op
|
| 512 |
+
def all_reduce_coalesced(tensors,
|
| 513 |
+
op=ReduceOp.SUM,
|
| 514 |
+
group=None,
|
| 515 |
+
async_op=False,
|
| 516 |
+
prof=False,
|
| 517 |
+
log_name='all_reduce',
|
| 518 |
+
debug=get_caller_func()):
|
| 519 |
+
global cdb
|
| 520 |
+
return cdb.all_reduce_coalesced(tensors, op, group, async_op)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def get_world_group():
|
| 524 |
+
global cdb
|
| 525 |
+
assert cdb is not None and cdb.is_initialized(
|
| 526 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 527 |
+
return cdb.get_world_group()
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def get_world_size(group=None) -> int:
|
| 531 |
+
"""
|
| 532 |
+
Returns the number of processes in the current process group
|
| 533 |
+
Args:
|
| 534 |
+
group (ProcessGroup, optional): The process group to work on. If None,
|
| 535 |
+
the default process group will be used.
|
| 536 |
+
Returns:
|
| 537 |
+
The world size of the process group
|
| 538 |
+
-1, if not part of the group
|
| 539 |
+
"""
|
| 540 |
+
global cdb
|
| 541 |
+
|
| 542 |
+
assert cdb is not None and cdb.is_initialized(
|
| 543 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 544 |
+
return cdb.get_world_size(group)
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
def get_rank(group=None):
|
| 548 |
+
"""
|
| 549 |
+
Returns the rank of the current process in the provided ``group`` or the
|
| 550 |
+
default group if none was provided.
|
| 551 |
+
Rank is a unique identifier assigned to each process within a distributed
|
| 552 |
+
process group. They are always consecutive integers ranging from 0 to
|
| 553 |
+
``world_size``.
|
| 554 |
+
Args:
|
| 555 |
+
group (ProcessGroup, optional): The process group to work on. If None,
|
| 556 |
+
the default process group will be used.
|
| 557 |
+
Returns:
|
| 558 |
+
The rank of the process group
|
| 559 |
+
-1, if not part of the group
|
| 560 |
+
"""
|
| 561 |
+
global cdb
|
| 562 |
+
assert cdb is not None and cdb.is_initialized(
|
| 563 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 564 |
+
return cdb.get_rank(group)
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
def get_local_rank():
|
| 568 |
+
"""
|
| 569 |
+
Helper function to get local rank after a backend has been set and initialized
|
| 570 |
+
Args:
|
| 571 |
+
None
|
| 572 |
+
Returns:
|
| 573 |
+
local rank (= GPU device ID)
|
| 574 |
+
"""
|
| 575 |
+
global cdb
|
| 576 |
+
assert cdb is not None and cdb.is_initialized(
|
| 577 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 578 |
+
return get_local_rank_from_launcher()
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
def get_global_rank(group=None, group_rank=0):
|
| 582 |
+
global cdb
|
| 583 |
+
assert cdb is not None and cdb.is_initialized(
|
| 584 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 585 |
+
return cdb.get_global_rank(group, group_rank)
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
def get_all_ranks_from_group(group=None):
|
| 589 |
+
global cdb
|
| 590 |
+
assert cdb is not None and cdb.is_initialized(
|
| 591 |
+
), 'DeepSpeed backend not set, please initialize it using init_process_group()'
|
| 592 |
+
rank = 0
|
| 593 |
+
group_ranks = []
|
| 594 |
+
try:
|
| 595 |
+
while True:
|
| 596 |
+
group_ranks.append(cdb.get_global_rank(group, rank))
|
| 597 |
+
rank += 1
|
| 598 |
+
except RuntimeError:
|
| 599 |
+
pass
|
| 600 |
+
return group_ranks
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
# Main DeepSpeed Comms. public API.
|
| 604 |
+
def init_distributed(dist_backend=None,
|
| 605 |
+
auto_mpi_discovery=True,
|
| 606 |
+
distributed_port=TORCH_DISTRIBUTED_DEFAULT_PORT,
|
| 607 |
+
verbose=True,
|
| 608 |
+
timeout=default_pg_timeout,
|
| 609 |
+
init_method=None,
|
| 610 |
+
dist_init_required=None,
|
| 611 |
+
config=None,
|
| 612 |
+
rank=-1,
|
| 613 |
+
world_size=-1):
|
| 614 |
+
''' Initialize dist backend, potentially performing MPI discovery if needed
|
| 615 |
+
|
| 616 |
+
Arguments:
|
| 617 |
+
dist_backend: Optional (str). torch distributed backend, e.g., nccl, mpi, gloo
|
| 618 |
+
auto_mpi_discovery Optional (bool). if distributed environment variables are not set, attempt to discover them from MPI
|
| 619 |
+
distributed_port: Optional (int). torch distributed backend port
|
| 620 |
+
verbose: Optional (bool). verbose logging
|
| 621 |
+
timeout: Optional (timedelta). Timeout for operations executed against the process group. Default value equals 30 minutes.
|
| 622 |
+
init_method: Optional (string). Torch distributed, URL specifying how to initialize the process group. Default is “env://” if no init_method or store is specified.
|
| 623 |
+
config: Optional (dict). DeepSpeed configuration for setting up comms options (e.g. Comms profiling)
|
| 624 |
+
rank: Optional (int). The current manually specified rank. Some init_method like “tcp://” need the rank and world_size as well (see: https://pytorch.org/docs/stable/distributed.html#tcp-initialization)
|
| 625 |
+
world_size: Optional (int). Desired world_size for the TCP or Shared file-system initialization.
|
| 626 |
+
'''
|
| 627 |
+
global cdb
|
| 628 |
+
|
| 629 |
+
configure(deepspeed_config=config)
|
| 630 |
+
|
| 631 |
+
if dist_init_required is None:
|
| 632 |
+
dist_init_required = cdb is None or not cdb.is_initialized()
|
| 633 |
+
|
| 634 |
+
if cdb is None:
|
| 635 |
+
init_deepspeed_backend(get_accelerator().communication_backend_name(), timeout, init_method)
|
| 636 |
+
set_backend()
|
| 637 |
+
utils.logger.info(f'cdb={cdb}')
|
| 638 |
+
if cdb is None and torch.distributed.is_initialized():
|
| 639 |
+
# The user initialized torch.dist themselves, create cdb and short-circuit
|
| 640 |
+
cdb = TorchBackend(dist_backend, timeout, init_method)
|
| 641 |
+
return
|
| 642 |
+
|
| 643 |
+
if dist_init_required is False:
|
| 644 |
+
assert (
|
| 645 |
+
cdb is not None and cdb.is_initialized() is True
|
| 646 |
+
), "Distributed backend is not initialized. Please set dist_init_required to True or initialize before calling deepspeed.initialize()"
|
| 647 |
+
else:
|
| 648 |
+
# Initialize torch distributed if needed
|
| 649 |
+
required_env = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
| 650 |
+
if auto_mpi_discovery and not all(map(lambda v: v in os.environ, required_env)):
|
| 651 |
+
if verbose:
|
| 652 |
+
utils.logger.info("Not using the DeepSpeed or dist launchers, attempting to detect MPI environment...")
|
| 653 |
+
if in_aml() and not in_dlts():
|
| 654 |
+
patch_aml_env_for_torch_nccl_backend(verbose=verbose)
|
| 655 |
+
elif in_aws_sm():
|
| 656 |
+
patch_aws_sm_env_for_torch_nccl_backend(verbose=verbose)
|
| 657 |
+
else:
|
| 658 |
+
mpi_discovery(distributed_port=distributed_port, verbose=verbose)
|
| 659 |
+
|
| 660 |
+
if cdb is not None and cdb.is_initialized():
|
| 661 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 662 |
+
utils.logger.info('Distributed backend already initialized')
|
| 663 |
+
else:
|
| 664 |
+
assert isinstance(timeout, timedelta)
|
| 665 |
+
if dist_backend is None:
|
| 666 |
+
dist_backend = get_accelerator().communication_backend_name()
|
| 667 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 668 |
+
utils.logger.info('Initializing TorchBackend in DeepSpeed with backend {}'.format(dist_backend))
|
| 669 |
+
# Create a torch backend object, initialize torch distributed, and assign to cdb
|
| 670 |
+
cdb = TorchBackend(dist_backend, timeout, init_method, rank, world_size)
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
def mpi_discovery(distributed_port=TORCH_DISTRIBUTED_DEFAULT_PORT, verbose=True):
|
| 674 |
+
'''
|
| 675 |
+
Discovery MPI environment via mpi4py and map to relevant dist state
|
| 676 |
+
'''
|
| 677 |
+
from mpi4py import MPI
|
| 678 |
+
import subprocess
|
| 679 |
+
comm = MPI.COMM_WORLD
|
| 680 |
+
rank = comm.Get_rank()
|
| 681 |
+
world_size = comm.Get_size()
|
| 682 |
+
|
| 683 |
+
master_addr = None
|
| 684 |
+
if rank == 0:
|
| 685 |
+
hostname_cmd = ["hostname -I"]
|
| 686 |
+
result = subprocess.check_output(hostname_cmd, shell=True)
|
| 687 |
+
master_addr = result.decode('utf-8').split()[0]
|
| 688 |
+
master_addr = comm.bcast(master_addr, root=0)
|
| 689 |
+
|
| 690 |
+
# Determine local rank by assuming hostnames are unique
|
| 691 |
+
proc_name = MPI.Get_processor_name()
|
| 692 |
+
all_procs = comm.allgather(proc_name)
|
| 693 |
+
local_rank = sum([i == proc_name for i in all_procs[:rank]])
|
| 694 |
+
|
| 695 |
+
os.environ['RANK'] = str(rank)
|
| 696 |
+
os.environ['WORLD_SIZE'] = str(world_size)
|
| 697 |
+
os.environ['LOCAL_RANK'] = str(local_rank)
|
| 698 |
+
os.environ['MASTER_ADDR'] = master_addr
|
| 699 |
+
os.environ['MASTER_PORT'] = str(distributed_port)
|
| 700 |
+
|
| 701 |
+
if verbose:
|
| 702 |
+
utils.logger.info(
|
| 703 |
+
"Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}".
|
| 704 |
+
format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'],
|
| 705 |
+
os.environ['MASTER_PORT']))
|
| 706 |
+
|
| 707 |
+
if cdb is not None and cdb.is_initialized():
|
| 708 |
+
assert cdb.get_rank() == rank, "MPI rank {} does not match torch rank {}".format(rank, cdb.get_rank())
|
| 709 |
+
assert cdb.get_world_size() == world_size, "MPI world size {} does not match torch world size {}".format(
|
| 710 |
+
world_size, cdb.get_world_size())
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
def in_aml():
|
| 714 |
+
# Are we running inside an Azure Machine Learning (AML) environment?
|
| 715 |
+
return 'AZUREML_EXPERIMENT_ID' in os.environ
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
def in_aws_sm():
|
| 719 |
+
# Are we running inside an AWS SageMaker environment?
|
| 720 |
+
return 'SM_TRAINING_ENV' in os.environ
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
def in_dlts():
|
| 724 |
+
# Are we running on a DLTS cluster?
|
| 725 |
+
return 'DLTS_JOB_ID' in os.environ
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
def patch_aml_env_for_torch_nccl_backend(master_port=6105, verbose=True):
|
| 729 |
+
"""Helper routine to get and set environment variables.
|
| 730 |
+
This is adapted from Azure ML's documentation available from:
|
| 731 |
+
https://azure.github.io/azureml-web/docs/cheatsheet/distributed-training/#environment-variables-from-openmpi
|
| 732 |
+
"""
|
| 733 |
+
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]
|
| 734 |
+
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
|
| 735 |
+
single_node = int(os.environ["OMPI_COMM_WORLD_LOCAL_SIZE"]) == int(os.environ["WORLD_SIZE"])
|
| 736 |
+
|
| 737 |
+
if not single_node:
|
| 738 |
+
master_node_params = os.environ["AZ_BATCH_MASTER_NODE"].split(":")
|
| 739 |
+
os.environ["MASTER_ADDR"] = master_node_params[0]
|
| 740 |
+
# Do not overwrite master port with that defined in AZ_BATCH_MASTER_NODE
|
| 741 |
+
if "MASTER_PORT" not in os.environ:
|
| 742 |
+
os.environ["MASTER_PORT"] = str(master_port)
|
| 743 |
+
else:
|
| 744 |
+
os.environ["MASTER_ADDR"] = os.environ["AZ_BATCHAI_MPI_MASTER_NODE"]
|
| 745 |
+
os.environ["MASTER_PORT"] = DEFAULT_AML_MASTER_PORT
|
| 746 |
+
|
| 747 |
+
if verbose:
|
| 748 |
+
utils.logger.info("NCCL_SOCKET_IFNAME original value = {}".format(os.environ["NCCL_SOCKET_IFNAME"]))
|
| 749 |
+
|
| 750 |
+
os.environ["NCCL_SOCKET_IFNAME"] = DEFAULT_AML_NCCL_SOCKET_IFNAME
|
| 751 |
+
os.environ['LOCAL_RANK'] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]
|
| 752 |
+
|
| 753 |
+
if verbose:
|
| 754 |
+
utils.logger.info(
|
| 755 |
+
"Discovered AzureML settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
|
| 756 |
+
.format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'],
|
| 757 |
+
os.environ['MASTER_PORT']))
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
def patch_aws_sm_env_for_torch_nccl_backend(verbose=True):
|
| 761 |
+
"""Helper routine to get and set environment variables when running inside an AWS SageMaker environment.
|
| 762 |
+
"""
|
| 763 |
+
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]
|
| 764 |
+
os.environ['LOCAL_RANK'] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]
|
| 765 |
+
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
|
| 766 |
+
|
| 767 |
+
if verbose:
|
| 768 |
+
utils.logger.info(
|
| 769 |
+
"Discovered AWS SageMaker settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
|
| 770 |
+
.format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'],
|
| 771 |
+
os.environ['MASTER_PORT']))
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/constants.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
NCCL_BACKEND = 'nccl'
|
| 7 |
+
CCL_BACKEND = 'ccl'
|
| 8 |
+
MPI_BACKEND = 'mpi'
|
| 9 |
+
GLOO_BACKEND = 'gloo'
|
| 10 |
+
SCCL_BACKEND = 'sccl'
|
| 11 |
+
HCCL_BACKEND = 'hccl'
|
| 12 |
+
|
| 13 |
+
DEFAULT_AML_MASTER_PORT = "54965"
|
| 14 |
+
DEFAULT_AML_NCCL_SOCKET_IFNAME = "^docker0,lo"
|
| 15 |
+
|
| 16 |
+
#########################################
|
| 17 |
+
# Comms Logger
|
| 18 |
+
#########################################
|
| 19 |
+
# Comms Logger. By default, this feature is not enabled.
|
| 20 |
+
# Users can configure in ds_config.json as below example:
|
| 21 |
+
COMMS_LOGGER_FORMAT = '''
|
| 22 |
+
The Comms Logger can be specified as:
|
| 23 |
+
"comms_logger": {
|
| 24 |
+
"enabled": true,
|
| 25 |
+
"verbose": false,
|
| 26 |
+
"prof_all": true,
|
| 27 |
+
"debug": false,
|
| 28 |
+
"prof_ops": ["all_reduce", "custom_all_reduce_name"]
|
| 29 |
+
}
|
| 30 |
+
'''
|
| 31 |
+
COMMS_LOGGER = "comms_logger"
|
| 32 |
+
|
| 33 |
+
# Comms logger enable signal
|
| 34 |
+
COMMS_LOGGER_ENABLED = "enabled"
|
| 35 |
+
COMMS_LOGGER_ENABLED_DEFAULT = False
|
| 36 |
+
|
| 37 |
+
# Comms logger verbose signal
|
| 38 |
+
COMMS_LOGGER_VERBOSE = "verbose"
|
| 39 |
+
COMMS_LOGGER_VERBOSE_DEFAULT = False
|
| 40 |
+
|
| 41 |
+
# comms logger profile all ops signal
|
| 42 |
+
COMMS_LOGGER_PROF_ALL = "prof_all"
|
| 43 |
+
COMMS_LOGGER_PROF_ALL_DEFAULT = True
|
| 44 |
+
|
| 45 |
+
# comms logger show all ops signal
|
| 46 |
+
COMMS_LOGGER_DEBUG = "debug"
|
| 47 |
+
COMMS_LOGGER_DEBUG_DEFAULT = False
|
| 48 |
+
|
| 49 |
+
# comms logger profile specific ops in list
|
| 50 |
+
COMMS_LOGGER_PROF_OPS = "prof_ops"
|
| 51 |
+
COMMS_LOGGER_PROF_OPS_DEFAULT = []
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/torch.py
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
from deepspeed import utils
|
| 7 |
+
|
| 8 |
+
from .utils import *
|
| 9 |
+
from .backend import *
|
| 10 |
+
from .comm import *
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
DS_COMM_ALL_GATHER_OFF = False
|
| 14 |
+
DS_COMM_REDUCE_SCATTER_OFF = False
|
| 15 |
+
DS_COMM_BROADCAST_OFF = False
|
| 16 |
+
DS_COMM_ALL_REDUCE_OFF = False
|
| 17 |
+
DS_COMM_REDUCE_OFF = False
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def is_torch_ver_eq_2_0():
|
| 21 |
+
TORCH_MAJOR, TORCH_MINOR = map(int, torch.__version__.split('.')[:2])
|
| 22 |
+
if TORCH_MAJOR == 2 and TORCH_MINOR == 0:
|
| 23 |
+
return True
|
| 24 |
+
return False
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def is_torch_ver_ge_2_1():
|
| 28 |
+
TORCH_MAJOR, TORCH_MINOR = map(int, torch.__version__.split('.')[:2])
|
| 29 |
+
if TORCH_MAJOR >= 2 and TORCH_MINOR >= 1:
|
| 30 |
+
return True
|
| 31 |
+
return False
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def torch_ver_ge_1_13():
|
| 35 |
+
TORCH_MAJOR, TORCH_MINOR = map(int, torch.__version__.split('.')[:2])
|
| 36 |
+
if TORCH_MAJOR >= 1 and TORCH_MINOR >= 13:
|
| 37 |
+
return True
|
| 38 |
+
return False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def has_coalescing_manager():
|
| 42 |
+
has_c10d = hasattr(torch.distributed, 'distributed_c10d')
|
| 43 |
+
return has_c10d and hasattr(torch.distributed.distributed_c10d, '_coalescing_manager')
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def has_all_reduce_coalesced():
|
| 47 |
+
return hasattr(torch.distributed, "all_reduce_coalesced") and torch_ver_ge_1_13()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_coalescing_manager(group, device, reqs, async_op):
|
| 51 |
+
if is_torch_ver_eq_2_0():
|
| 52 |
+
return torch.distributed.distributed_c10d._coalescing_manager(group, device=device, reqs=reqs)
|
| 53 |
+
elif is_torch_ver_ge_2_1():
|
| 54 |
+
return torch.distributed.distributed_c10d._coalescing_manager(group, device=device, async_ops=async_op)
|
| 55 |
+
else:
|
| 56 |
+
return torch.distributed.distributed_c10d._coalescing_manager(group, reqs)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
##Utilities to turn comm off
|
| 60 |
+
##TODO: move to base comm (wrapper)
|
| 61 |
+
def all_gather_comm_off(flag=False):
|
| 62 |
+
global DS_COMM_ALL_GATHER_OFF
|
| 63 |
+
DS_COMM_ALL_GATHER_OFF = flag
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def reduce_scatter_comm_off(flag=False):
|
| 67 |
+
global DS_COMM_REDUCE_SCATTER_OFF
|
| 68 |
+
DS_COMM_REDUCE_SCATTER_OFF = flag
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def broadcast_comm_off(flag=False):
|
| 72 |
+
global DS_COMM_BROADCAST_OFF
|
| 73 |
+
DS_COMM_BROADCAST_OFF = flag
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def all_reduce_comm_off(flag=False):
|
| 77 |
+
global DS_COMM_ALL_REDUCE_OFF
|
| 78 |
+
DS_COMM_ALL_REDUCE_OFF = flag
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def reduce_comm_off(flag=False):
|
| 82 |
+
global DS_COMM_REDUCE_OFF
|
| 83 |
+
DS_COMM_REDUCE_OFF = flag
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
#assumption: all_gather and reduce scatter
|
| 87 |
+
## are what we care about
|
| 88 |
+
def backward_comm_off(flag=False):
|
| 89 |
+
all_gather_comm_off(flag)
|
| 90 |
+
reduce_scatter_comm_off(flag)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Noop:
|
| 94 |
+
|
| 95 |
+
def wait(self):
|
| 96 |
+
return None
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class TorchBackend(Backend):
|
| 100 |
+
"""
|
| 101 |
+
A light-weight wrapper class for torch.distributed API.
|
| 102 |
+
Only a subset of functions are wrapped. Once the init_process_group
|
| 103 |
+
is initialized, standard torch.distributed.* can be used directly
|
| 104 |
+
so no need to wrap all the functions. We can keep adding wrappers as
|
| 105 |
+
needed.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def __init__(self, backend, timeout, init_method, rank=-1, world_size=-1, name='torch'):
|
| 109 |
+
super(TorchBackend, self).__init__()
|
| 110 |
+
self.has_all_reduce_coalesced = has_all_reduce_coalesced()
|
| 111 |
+
self.has_coalescing_manager = has_coalescing_manager()
|
| 112 |
+
self.all_gather_function = self.get_all_gather_function()
|
| 113 |
+
self.reduce_scatter_function = self.get_reduce_scatter_function()
|
| 114 |
+
self.initialized = True
|
| 115 |
+
self.name = name
|
| 116 |
+
# Future functionality to support ds.initialize() on a single GPU
|
| 117 |
+
# The idea is to fake that dist backend is initialized even when
|
| 118 |
+
# it is not so we can run on a single GPU without doing any init_process_group
|
| 119 |
+
self.single_gpu_mode = True
|
| 120 |
+
self.init_process_group(backend, timeout, init_method, rank, world_size)
|
| 121 |
+
|
| 122 |
+
@classmethod
|
| 123 |
+
def get_all_gather_function(self):
|
| 124 |
+
if hasattr(torch.distributed, "all_gather_into_tensor"):
|
| 125 |
+
return torch.distributed.all_gather_into_tensor
|
| 126 |
+
elif hasattr(torch.distributed, "_all_gather_base"):
|
| 127 |
+
return torch.distributed._all_gather_base
|
| 128 |
+
return None
|
| 129 |
+
|
| 130 |
+
@classmethod
|
| 131 |
+
def get_reduce_scatter_function(self):
|
| 132 |
+
if hasattr(torch.distributed, "reduce_scatter_tensor"):
|
| 133 |
+
return torch.distributed.reduce_scatter_tensor
|
| 134 |
+
elif hasattr(torch.distributed, "_reduce_scatter_base"):
|
| 135 |
+
return torch.distributed._reduce_scatter_base
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
def has_all_gather_into_tensor(self):
|
| 139 |
+
return self.all_gather_function is not None
|
| 140 |
+
|
| 141 |
+
def has_reduce_scatter_tensor(self):
|
| 142 |
+
return self.reduce_scatter_function is not None
|
| 143 |
+
|
| 144 |
+
def init_process_group(self, backend, timeout, init_method, rank, world_size):
|
| 145 |
+
if not torch.distributed.is_initialized():
|
| 146 |
+
torch.distributed.init_process_group(backend,
|
| 147 |
+
timeout=timeout,
|
| 148 |
+
init_method=init_method,
|
| 149 |
+
rank=rank,
|
| 150 |
+
world_size=world_size)
|
| 151 |
+
self.using_mpi = torch.distributed.get_backend() == 'mpi'
|
| 152 |
+
|
| 153 |
+
def all_reduce(self, tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
|
| 154 |
+
op = self._reduce_op(op)
|
| 155 |
+
return torch.distributed.all_reduce(tensor=tensor, op=op, group=group, async_op=async_op)
|
| 156 |
+
|
| 157 |
+
def inference_all_reduce(self, tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
|
| 158 |
+
op = self._reduce_op(op)
|
| 159 |
+
return torch.distributed.all_reduce(tensor=tensor, op=op, group=group, async_op=async_op)
|
| 160 |
+
|
| 161 |
+
def all_reduce_coalesced(self, tensors, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
|
| 162 |
+
""" proxy func to torch.distributed.all_reduce_coalesced,
|
| 163 |
+
which is included in PyTorch 1.13 and above
|
| 164 |
+
"""
|
| 165 |
+
if not self.has_all_reduce_coalesced:
|
| 166 |
+
raise RuntimeError(f"Current torch version does not have all_reduce_coalesced "
|
| 167 |
+
f"api (torch.__version__: {torch.__version__})")
|
| 168 |
+
op = self._reduce_op(op)
|
| 169 |
+
return torch.distributed.all_reduce_coalesced(tensors=tensors, op=op, group=group, async_op=async_op)
|
| 170 |
+
|
| 171 |
+
def reduce(self, tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
|
| 172 |
+
if DS_COMM_REDUCE_OFF:
|
| 173 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 174 |
+
utils.logger.warning("REDUCE is OFF")
|
| 175 |
+
return Noop()
|
| 176 |
+
return torch.distributed.reduce(tensor=tensor, dst=dst, op=self._reduce_op(op), group=group, async_op=async_op)
|
| 177 |
+
|
| 178 |
+
def reduce_scatter(self, output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
|
| 179 |
+
if DS_COMM_REDUCE_SCATTER_OFF:
|
| 180 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 181 |
+
utils.logger.warning("REDUCE SCATTER is OFF")
|
| 182 |
+
return Noop()
|
| 183 |
+
else:
|
| 184 |
+
return torch.distributed.reduce_scatter(output=output,
|
| 185 |
+
input_list=input_list,
|
| 186 |
+
op=self._reduce_op(op),
|
| 187 |
+
group=group,
|
| 188 |
+
async_op=async_op)
|
| 189 |
+
|
| 190 |
+
def broadcast(self, tensor, src, group=None, async_op=False):
|
| 191 |
+
if DS_COMM_BROADCAST_OFF:
|
| 192 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 193 |
+
utils.logger.warning("BROADCAST is OFF")
|
| 194 |
+
return Noop()
|
| 195 |
+
else:
|
| 196 |
+
return torch.distributed.broadcast(tensor=tensor, src=src, group=group, async_op=async_op)
|
| 197 |
+
|
| 198 |
+
def all_gather(self, tensor_list, tensor, group=None, async_op=False):
|
| 199 |
+
if DS_COMM_ALL_GATHER_OFF:
|
| 200 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 201 |
+
utils.logger.warning("All Gather is OFF")
|
| 202 |
+
return Noop()
|
| 203 |
+
else:
|
| 204 |
+
return torch.distributed.all_gather(tensor_list=tensor_list, tensor=tensor, group=group, async_op=async_op)
|
| 205 |
+
|
| 206 |
+
def all_gather_into_tensor(self, output_tensor, input_tensor, group=None, async_op=False):
|
| 207 |
+
if self.has_all_gather_into_tensor():
|
| 208 |
+
return self.all_gather_function(output_tensor=output_tensor,
|
| 209 |
+
input_tensor=input_tensor,
|
| 210 |
+
group=group,
|
| 211 |
+
async_op=async_op)
|
| 212 |
+
|
| 213 |
+
def all_gather_base(self, output_tensor, input_tensor, group=None, async_op=False):
|
| 214 |
+
if DS_COMM_ALL_GATHER_OFF:
|
| 215 |
+
if int(os.getenv('RANK', '0')) == 0:
|
| 216 |
+
utils.logger.warning("All Gather is OFF")
|
| 217 |
+
return Noop()
|
| 218 |
+
else:
|
| 219 |
+
if self.has_allgather_base:
|
| 220 |
+
return torch.distributed.distributed_c10d._all_gather_base(output_tensor=output_tensor,
|
| 221 |
+
input_tensor=input_tensor,
|
| 222 |
+
group=group,
|
| 223 |
+
async_op=async_op)
|
| 224 |
+
else:
|
| 225 |
+
utils.logger.warning("unable to find torch.distributed._all_gather_base. will fall back to "
|
| 226 |
+
"torch.distributed.reduce_scatter which will result in suboptimal performance. "
|
| 227 |
+
"please consider upgrading your pytorch installation.")
|
| 228 |
+
pass
|
| 229 |
+
|
| 230 |
+
def all_gather_coalesced(self, output_tensors, input_tensors, group=None, async_op=False):
|
| 231 |
+
""""""
|
| 232 |
+
assert len(output_tensors) == len(input_tensors), ""
|
| 233 |
+
if hasattr(torch.distributed.distributed_c10d, '_all_gather_base_coalesced'):
|
| 234 |
+
# customized PyTorch
|
| 235 |
+
return torch.distributed.distributed_c10d._all_gather_base_coalesced(output_tensors,
|
| 236 |
+
input_tensors,
|
| 237 |
+
group=group,
|
| 238 |
+
async_op=async_op)
|
| 239 |
+
elif has_coalescing_manager():
|
| 240 |
+
reqs = []
|
| 241 |
+
with get_coalescing_manager(group, input_tensors[0].device, reqs, async_op):
|
| 242 |
+
for output, input in zip(output_tensors, input_tensors):
|
| 243 |
+
handle = torch.distributed.distributed_c10d.all_gather_into_tensor(output,
|
| 244 |
+
input,
|
| 245 |
+
group=group,
|
| 246 |
+
async_op=True)
|
| 247 |
+
reqs.append(handle)
|
| 248 |
+
if async_op:
|
| 249 |
+
return reqs[-1]
|
| 250 |
+
else:
|
| 251 |
+
reqs[-1].wait()
|
| 252 |
+
|
| 253 |
+
def reduce_scatter_tensor(self, output_tensor, input_tensor, op=ReduceOp.SUM, group=None, async_op=False):
|
| 254 |
+
if self.has_reduce_scatter_tensor():
|
| 255 |
+
return self.reduce_scatter_function(output_tensor,
|
| 256 |
+
input_tensor,
|
| 257 |
+
op=self._reduce_op(op),
|
| 258 |
+
group=group,
|
| 259 |
+
async_op=async_op)
|
| 260 |
+
else:
|
| 261 |
+
utils.logger.warning("unable to find torch.distributed.reduce_scatter_tensor. will fall back to "
|
| 262 |
+
"torch.distributed.reduce_scatter which will result in suboptimal performance. "
|
| 263 |
+
"please consider upgrading your pytorch installation.")
|
| 264 |
+
pass
|
| 265 |
+
|
| 266 |
+
def all_to_all_single(self,
|
| 267 |
+
output,
|
| 268 |
+
input,
|
| 269 |
+
output_split_sizes=None,
|
| 270 |
+
input_split_sizes=None,
|
| 271 |
+
group=None,
|
| 272 |
+
async_op=False):
|
| 273 |
+
return torch.distributed.all_to_all_single(output=output,
|
| 274 |
+
input=input,
|
| 275 |
+
output_split_sizes=output_split_sizes,
|
| 276 |
+
input_split_sizes=input_split_sizes,
|
| 277 |
+
group=group,
|
| 278 |
+
async_op=async_op)
|
| 279 |
+
|
| 280 |
+
def all_to_all(self, output_tensor_list, input_tensor_list, group=None, async_op=False):
|
| 281 |
+
return torch.distributed.all_to_all(output_tensor_list, input_tensor_list, group=group, async_op=async_op)
|
| 282 |
+
|
| 283 |
+
def send(self, tensor, dst, group=None, tag=0):
|
| 284 |
+
return torch.distributed.send(tensor=tensor, dst=dst, group=group, tag=tag)
|
| 285 |
+
|
| 286 |
+
def recv(self, tensor, src=None, group=None, tag=0):
|
| 287 |
+
return torch.distributed.recv(tensor=tensor, src=src, group=group, tag=tag)
|
| 288 |
+
|
| 289 |
+
def isend(self, tensor, dst, group=None, tag=0):
|
| 290 |
+
return torch.distributed.isend(tensor=tensor, dst=dst, group=group, tag=tag)
|
| 291 |
+
|
| 292 |
+
def irecv(self, tensor, src=None, group=None, tag=0):
|
| 293 |
+
return torch.distributed.irecv(tensor=tensor, src=src, group=group, tag=tag)
|
| 294 |
+
|
| 295 |
+
def gather(self, tensor, gather_list=None, dst=0, group=None, async_op=False):
|
| 296 |
+
return torch.distributed.gather(tensor=tensor,
|
| 297 |
+
gather_list=gather_list,
|
| 298 |
+
dst=dst,
|
| 299 |
+
group=group,
|
| 300 |
+
async_op=async_op)
|
| 301 |
+
|
| 302 |
+
def scatter(self, tensor, scatter_list=None, src=0, group=None, async_op=False):
|
| 303 |
+
return torch.distributed.scatter(tensor=tensor,
|
| 304 |
+
scatter_list=scatter_list,
|
| 305 |
+
src=src,
|
| 306 |
+
group=group,
|
| 307 |
+
async_op=async_op)
|
| 308 |
+
|
| 309 |
+
def barrier(self, group=torch.distributed.GroupMember.WORLD, async_op=False, device_ids=None):
|
| 310 |
+
if group is None:
|
| 311 |
+
group = torch.distributed.GroupMember.WORLD
|
| 312 |
+
return torch.distributed.barrier(group=group, async_op=async_op, device_ids=device_ids)
|
| 313 |
+
|
| 314 |
+
def monitored_barrier(self, group=torch.distributed.GroupMember.WORLD, timeout=None, wait_all_ranks=False):
|
| 315 |
+
if group is None:
|
| 316 |
+
group = torch.distributed.GroupMember.WORLD
|
| 317 |
+
return torch.distributed.monitored_barrier(group=group, timeout=timeout, wait_all_ranks=wait_all_ranks)
|
| 318 |
+
|
| 319 |
+
def get_rank(self, group=None):
|
| 320 |
+
return torch.distributed.get_rank(group=group)
|
| 321 |
+
|
| 322 |
+
def get_world_size(self, group=None):
|
| 323 |
+
return torch.distributed.get_world_size(group=group)
|
| 324 |
+
|
| 325 |
+
def is_initialized(self):
|
| 326 |
+
return torch.distributed.is_initialized()
|
| 327 |
+
|
| 328 |
+
def get_backend(self, group=None):
|
| 329 |
+
return torch.distributed.get_backend(group=group)
|
| 330 |
+
|
| 331 |
+
def new_group(self, ranks):
|
| 332 |
+
return torch.distributed.new_group(ranks)
|
| 333 |
+
|
| 334 |
+
def get_global_rank(self, group, group_rank):
|
| 335 |
+
if hasattr(torch.distributed.distributed_c10d, "get_global_rank"):
|
| 336 |
+
from torch.distributed.distributed_c10d import get_global_rank as _get_global_rank
|
| 337 |
+
else:
|
| 338 |
+
from torch.distributed.distributed_c10d import _get_global_rank
|
| 339 |
+
return _get_global_rank(group, group_rank)
|
| 340 |
+
|
| 341 |
+
def get_world_group(self):
|
| 342 |
+
return torch.distributed.group.WORLD
|
| 343 |
+
|
| 344 |
+
def destroy_process_group(self, group=None):
|
| 345 |
+
return torch.distributed.destroy_process_group(group=group)
|
| 346 |
+
|
| 347 |
+
def _reduce_op(self, op):
|
| 348 |
+
'''
|
| 349 |
+
Helper function. If the op provided is not a torch.dist.ReduceOp, convert it and return
|
| 350 |
+
'''
|
| 351 |
+
if not isinstance(op, torch.distributed.ReduceOp):
|
| 352 |
+
if op == ReduceOp.SUM:
|
| 353 |
+
op = torch.distributed.ReduceOp.SUM
|
| 354 |
+
elif op == ReduceOp.PRODUCT:
|
| 355 |
+
op = torch.distributed.ReduceOp.PRODUCT
|
| 356 |
+
elif op == ReduceOp.AVG:
|
| 357 |
+
op = torch.distributed.ReduceOp.AVG
|
| 358 |
+
elif op == ReduceOp.MIN:
|
| 359 |
+
op = torch.distributed.ReduceOp.MIN
|
| 360 |
+
elif op == ReduceOp.MAX:
|
| 361 |
+
op = torch.distributed.ReduceOp.MAX
|
| 362 |
+
elif op == ReduceOp.BAND:
|
| 363 |
+
op = torch.distributed.ReduceOp.BAND
|
| 364 |
+
elif op == ReduceOp.BOR:
|
| 365 |
+
op = torch.distributed.ReduceOp.BOR
|
| 366 |
+
elif op == ReduceOp.BXOR:
|
| 367 |
+
op = torch.distributed.ReduceOp.BXOR
|
| 368 |
+
return op
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
# This will become a light-weight wrapper around torch.distributed functions
|
| 372 |
+
# TODO: create some example to show how this wrapper can help profile communication
|
| 373 |
+
# TODO: make sure there is no performance regression with this approach
|
| 374 |
+
# TODO: explore monkey-patching if this does not work
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/comm/utils.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import inspect
|
| 8 |
+
from deepspeed.utils import get_caller_func
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_local_rank_from_launcher():
|
| 12 |
+
|
| 13 |
+
# DeepSpeed launcher will set it so get from there
|
| 14 |
+
rank = os.environ.get('LOCAL_RANK')
|
| 15 |
+
|
| 16 |
+
if rank is None:
|
| 17 |
+
rank = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK')
|
| 18 |
+
|
| 19 |
+
# Make it a single process job and set rank to 0
|
| 20 |
+
if rank is None:
|
| 21 |
+
rank = 0
|
| 22 |
+
|
| 23 |
+
return int(rank)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_world_rank_from_launcher():
|
| 27 |
+
|
| 28 |
+
# DeepSpeed launcher will set it so get from there
|
| 29 |
+
rank = os.environ.get('RANK')
|
| 30 |
+
|
| 31 |
+
if rank is None:
|
| 32 |
+
rank = os.environ.get('OMPI_COMM_WORLD_RANK')
|
| 33 |
+
|
| 34 |
+
# Make it a single process job and set rank to 0
|
| 35 |
+
if rank is None:
|
| 36 |
+
rank = 0
|
| 37 |
+
|
| 38 |
+
return int(rank)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_world_size_from_launcher():
|
| 42 |
+
# DeepSpeed launcher will set it so get from there
|
| 43 |
+
size = os.environ.get('WORLD_SIZE')
|
| 44 |
+
rank = os.environ.get('RANK')
|
| 45 |
+
|
| 46 |
+
if size is None:
|
| 47 |
+
size = os.environ.get('OMPI_COMM_WORLD_SIZE')
|
| 48 |
+
|
| 49 |
+
# Make it a single process job and set size to 1
|
| 50 |
+
if size is None:
|
| 51 |
+
size = 1
|
| 52 |
+
|
| 53 |
+
if rank == 0:
|
| 54 |
+
print(f"set world size to {size}")
|
| 55 |
+
|
| 56 |
+
return int(size)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_default_args(func):
|
| 60 |
+
signature = inspect.signature(func)
|
| 61 |
+
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# We need this hacky function since torch doesn't consistently name or place the input tensor args
|
| 65 |
+
def get_tensor_position(func):
|
| 66 |
+
sig_params = inspect.signature(func).parameters
|
| 67 |
+
arg = None
|
| 68 |
+
# most colls
|
| 69 |
+
if 'tensor' in sig_params:
|
| 70 |
+
arg = 'tensor'
|
| 71 |
+
# all_reduce_coalesced coll
|
| 72 |
+
elif 'tensors' in sig_params:
|
| 73 |
+
arg = 'tensors'
|
| 74 |
+
# reduce scatter coll
|
| 75 |
+
elif 'input_list' in sig_params:
|
| 76 |
+
arg = 'input_list'
|
| 77 |
+
# all_to_all and torch multiGPU colls
|
| 78 |
+
elif 'input_tensor_list' in sig_params:
|
| 79 |
+
arg = 'input_tensor_list'
|
| 80 |
+
if arg is None:
|
| 81 |
+
return -1
|
| 82 |
+
else:
|
| 83 |
+
return list(sig_params).index(arg)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_tensor_kwarg(func, kwargs):
|
| 87 |
+
func_args = get_default_args(func)
|
| 88 |
+
func_args.update(kwargs)
|
| 89 |
+
arg = None
|
| 90 |
+
|
| 91 |
+
if 'tensor' in func_args:
|
| 92 |
+
arg = func_args['tensor']
|
| 93 |
+
elif 'tensors' in func_args:
|
| 94 |
+
arg = func_args['tensors']
|
| 95 |
+
elif 'input_list' in func_args:
|
| 96 |
+
arg = func_args['input_list']
|
| 97 |
+
elif 'input_tensor_list' in func_args:
|
| 98 |
+
arg = func_args['input_tensor_list']
|
| 99 |
+
return arg
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_msg_size_from_args(func, *args, **kwargs):
|
| 103 |
+
# 3 cases:
|
| 104 |
+
# - tensor arg is in args
|
| 105 |
+
# - tensor arg is in kwargs
|
| 106 |
+
# - tensor arg is not present (e.g. barrier)
|
| 107 |
+
tensor_arg_position = -1
|
| 108 |
+
tensor_arg = None
|
| 109 |
+
# check if tensor arg is in args
|
| 110 |
+
if len(args) > 0:
|
| 111 |
+
tensor_arg_position = get_tensor_position(func)
|
| 112 |
+
if tensor_arg_position > -1:
|
| 113 |
+
tensor_arg = args[get_tensor_position(func)]
|
| 114 |
+
# check if tensor arg is in kwargs
|
| 115 |
+
if tensor_arg is None and len(kwargs) > 0:
|
| 116 |
+
tensor_arg = get_tensor_kwarg(func, kwargs)
|
| 117 |
+
# if tensor arg is not present, no data is being transmitted
|
| 118 |
+
if tensor_arg is None:
|
| 119 |
+
return 0
|
| 120 |
+
else:
|
| 121 |
+
# Sum of tensor sizes for list colls such as torch's all_to_all
|
| 122 |
+
# NOTE: msg_size for list colls will not be the actual size transmitted by a given MPI/NCCL call within the coll op. Instead, it's the total amount of data transmitted.
|
| 123 |
+
if type(tensor_arg) is list:
|
| 124 |
+
return sum(x.element_size() * x.nelement() for x in tensor_arg)
|
| 125 |
+
else:
|
| 126 |
+
return tensor_arg.element_size() * tensor_arg.nelement()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_debug_log_name(func_args, debug):
|
| 130 |
+
if debug:
|
| 131 |
+
return func_args['log_name'] + ' | [Caller Func: ' + get_caller_func() + ']'
|
| 132 |
+
else:
|
| 133 |
+
return func_args['log_name']
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
from .compress import init_compression, redundancy_clean
|
| 7 |
+
from .scheduler import compression_scheduler
|
| 8 |
+
from .helper import convert_conv1d_to_linear
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (369 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/basic_layer.cpython-310.pyc
ADDED
|
Binary file (22.8 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/compress.cpython-310.pyc
ADDED
|
Binary file (6.6 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (11.4 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/constants.cpython-310.pyc
ADDED
|
Binary file (5.02 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/helper.cpython-310.pyc
ADDED
|
Binary file (9.92 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/scheduler.cpython-310.pyc
ADDED
|
Binary file (4.63 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (6.08 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/basic_layer.py
ADDED
|
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import math
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import init
|
| 10 |
+
import deepspeed.comm as dist
|
| 11 |
+
from .utils import TopKBinarizer, SymQuantizer, AsymQuantizer, TernaryQuantizer, BinaryQuantizer
|
| 12 |
+
from deepspeed.utils import logger
|
| 13 |
+
|
| 14 |
+
g_mpu = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class QuantAct(nn.Module):
|
| 18 |
+
"""
|
| 19 |
+
Class to quantize given activations. Note that when using this function, the input activation quantization range will be fixed for all
|
| 20 |
+
tokens/images for inference. This generally will affect some accuracy but achieve better latency performance.
|
| 21 |
+
Parameters:
|
| 22 |
+
----------
|
| 23 |
+
act_range_momentum : float, default 0.95
|
| 24 |
+
Momentum for updating the activation quantization range.
|
| 25 |
+
quant_mode : str, default 'symmetric'
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, act_range_momentum=0.95, quant_mode='symmetric'):
|
| 29 |
+
super(QuantAct, self).__init__()
|
| 30 |
+
|
| 31 |
+
self.act_range_momentum = act_range_momentum
|
| 32 |
+
self.quant_mode = quant_mode
|
| 33 |
+
if quant_mode == 'symmetric':
|
| 34 |
+
self.act_function = SymQuantizer.apply
|
| 35 |
+
else:
|
| 36 |
+
self.act_function = AsymQuantizer.apply
|
| 37 |
+
|
| 38 |
+
self.register_buffer('x_min_max', torch.zeros(2))
|
| 39 |
+
|
| 40 |
+
def forward(self, x, num_bits, *args):
|
| 41 |
+
"""
|
| 42 |
+
x: the activation that we need to quantize
|
| 43 |
+
num_bits: the number of bits we need to quantize the activation to
|
| 44 |
+
*args: some extra arguments that are useless but needed for align with the interface of other quantization functions
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
if self.training:
|
| 48 |
+
x_min = x.data.min()
|
| 49 |
+
x_max = x.data.max()
|
| 50 |
+
|
| 51 |
+
# Initialization
|
| 52 |
+
if self.x_min_max[0] == self.x_min_max[1]:
|
| 53 |
+
self.x_min_max[0] = x_min
|
| 54 |
+
self.x_min_max[1] = x_max
|
| 55 |
+
|
| 56 |
+
# if do not need momentum, please set self.act_range_momentum = 0
|
| 57 |
+
self.x_min_max[0] = self.x_min_max[0] * self.act_range_momentum + x_min * (1 - self.act_range_momentum)
|
| 58 |
+
self.x_min_max[1] = self.x_min_max[1] * self.act_range_momentum + x_max * (1 - self.act_range_momentum)
|
| 59 |
+
|
| 60 |
+
x_q = self.act_function(x, num_bits, self.x_min_max[0], self.x_min_max[1])
|
| 61 |
+
|
| 62 |
+
return x_q
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Embedding_Compress(nn.Embedding):
|
| 66 |
+
|
| 67 |
+
def __init__(self, *kargs):
|
| 68 |
+
super(Embedding_Compress, self).__init__(*kargs)
|
| 69 |
+
self.weight.start_bits = None
|
| 70 |
+
self.weight.target_bits = None
|
| 71 |
+
self.weight.q_period = None
|
| 72 |
+
self.weight_quantization_enabled_in_forward = False
|
| 73 |
+
self.weight_quantization_enabled = False
|
| 74 |
+
|
| 75 |
+
def extra_repr(self):
|
| 76 |
+
return 'num_embeddings={}, embedding_dim={}, weight_quantization={}'.format(
|
| 77 |
+
self.num_embeddings, self.embedding_dim, self.weight.target_bits)
|
| 78 |
+
|
| 79 |
+
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
|
| 80 |
+
weight_quantization_enabled_in_forward, quantization_type, num_groups):
|
| 81 |
+
self.weight.start_bits = start_bits
|
| 82 |
+
self.weight.target_bits = target_bits
|
| 83 |
+
self.weight.q_period = quantization_period
|
| 84 |
+
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
|
| 85 |
+
if self.weight_quantization_enabled_in_forward:
|
| 86 |
+
logger.warning(
|
| 87 |
+
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
|
| 88 |
+
)
|
| 89 |
+
if self.weight.target_bits >= 3:
|
| 90 |
+
if quantization_type == 'symmetric':
|
| 91 |
+
self.weight_quantizer = SymQuantizer.apply
|
| 92 |
+
else:
|
| 93 |
+
self.weight_quantizer = AsymQuantizer.apply
|
| 94 |
+
elif self.weight.target_bits == 2:
|
| 95 |
+
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
|
| 96 |
+
self.weight_quantizer = TernaryQuantizer.apply
|
| 97 |
+
elif self.weight.target_bits == 1:
|
| 98 |
+
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
|
| 99 |
+
self.weight_quantizer = BinaryQuantizer.apply
|
| 100 |
+
# for embedding, we always use token-wise quantization
|
| 101 |
+
self.weight_quantize_num_groups = self.weight.size(0)
|
| 102 |
+
|
| 103 |
+
def fix_weight_quantization(self):
|
| 104 |
+
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 105 |
+
self.weight_quantize_num_groups).data
|
| 106 |
+
self.weight_quantization_enabled_in_forward = False
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
+
def forward(self, input):
|
| 110 |
+
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
|
| 111 |
+
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 112 |
+
self.weight_quantize_num_groups)
|
| 113 |
+
else:
|
| 114 |
+
weight = self.weight
|
| 115 |
+
|
| 116 |
+
out = nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type,
|
| 117 |
+
self.scale_grad_by_freq, self.sparse)
|
| 118 |
+
return out
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class LinearLayer_Compress(nn.Linear):
|
| 122 |
+
"""
|
| 123 |
+
Linear layer with compression.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
def __init__(self, *kargs, bias=True):
|
| 127 |
+
super(LinearLayer_Compress, self).__init__(*kargs, bias=bias)
|
| 128 |
+
self.sparse_pruning_method = None
|
| 129 |
+
self.row_pruning_method = None
|
| 130 |
+
self.head_pruning_method = None
|
| 131 |
+
self.activation_quantization_method = None
|
| 132 |
+
self.weight.start_bits = None
|
| 133 |
+
self.weight.target_bits = None
|
| 134 |
+
self.weight.q_period = None
|
| 135 |
+
self.weight_quantization_enabled_in_forward = False
|
| 136 |
+
self.weight_quantization_enabled = False
|
| 137 |
+
self.sparse_pruning_enabled = False
|
| 138 |
+
self.row_pruning_enabled = False
|
| 139 |
+
self.head_pruning_enabled = False
|
| 140 |
+
self.activation_quantization_enabled = False
|
| 141 |
+
|
| 142 |
+
def extra_repr(self):
|
| 143 |
+
return 'in_features={}, out_features={}, bias={}, sparse pruning={}, row pruning={}, head pruning={}, activation quantization={}, weight_quantization={}'.format(
|
| 144 |
+
self.in_features, self.out_features, self.bias is not None, self.sparse_pruning_method is not None, \
|
| 145 |
+
self.row_pruning_method is not None, self.head_pruning_method is not None, self.activation_quantization_method is not None, self.weight.target_bits)
|
| 146 |
+
|
| 147 |
+
def enable_sparse_pruning(self, ratio, method):
|
| 148 |
+
# Here, we support two cases: L1 norm based pruning and topk based pruning
|
| 149 |
+
self.sparse_pruning_ratio = ratio
|
| 150 |
+
self.sparse_pruning_method = method
|
| 151 |
+
if method == 'l1':
|
| 152 |
+
weight_norm = torch.abs(self.weight.data)
|
| 153 |
+
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
|
| 154 |
+
mask = mask.view(self.weight.size())
|
| 155 |
+
mask = mask.to(self.weight.device)
|
| 156 |
+
elif method == 'topk':
|
| 157 |
+
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
|
| 158 |
+
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
|
| 159 |
+
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
|
| 160 |
+
mask = None
|
| 161 |
+
else:
|
| 162 |
+
raise NotImplementedError
|
| 163 |
+
|
| 164 |
+
self.register_buffer('sparse_pruning_mask', mask)
|
| 165 |
+
|
| 166 |
+
def enable_row_pruning(self, ratio, method):
|
| 167 |
+
# Here, we support two cases: L1 norm based pruning and topk based pruning
|
| 168 |
+
self.row_pruning_ratio = ratio
|
| 169 |
+
self.row_pruning_method = method
|
| 170 |
+
|
| 171 |
+
if method == 'l1':
|
| 172 |
+
# compute the l1 norm of each column
|
| 173 |
+
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=1)
|
| 174 |
+
mask = TopKBinarizer.apply(weight_norm, self.row_pruning_ratio, False)
|
| 175 |
+
mask = mask.view(-1, 1)
|
| 176 |
+
mask = mask.to(self.weight.device)
|
| 177 |
+
elif method == 'topk':
|
| 178 |
+
self.row_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1))
|
| 179 |
+
self.row_mask_scores.data = self.row_mask_scores.data.to(self.weight.device)
|
| 180 |
+
init.kaiming_uniform_(self.row_mask_scores, a=math.sqrt(5))
|
| 181 |
+
mask = None
|
| 182 |
+
else:
|
| 183 |
+
raise NotImplementedError
|
| 184 |
+
|
| 185 |
+
self.register_buffer('row_pruning_mask', mask)
|
| 186 |
+
|
| 187 |
+
def enable_head_pruning(self, ratio, method, num_heads):
|
| 188 |
+
# Here, we support only topk based pruning
|
| 189 |
+
self.num_heads = num_heads
|
| 190 |
+
self.head_pruning_ratio = ratio
|
| 191 |
+
self.head_pruning_method = method
|
| 192 |
+
|
| 193 |
+
if method not in ['topk']:
|
| 194 |
+
raise NotImplementedError
|
| 195 |
+
else:
|
| 196 |
+
self.head_pruning_ratio = ratio
|
| 197 |
+
self.head_pruning_scores = nn.Parameter(torch.Tensor(1,
|
| 198 |
+
self.num_heads)) # we apply the pruning to O matrix
|
| 199 |
+
self.head_pruning_scores.data = self.head_pruning_scores.data.to(self.weight.device)
|
| 200 |
+
init.kaiming_uniform_(self.head_pruning_scores, a=math.sqrt(5))
|
| 201 |
+
|
| 202 |
+
def fix_sparse_pruning_helper(self):
|
| 203 |
+
mask = self.get_mask(pruning_type='sparse')
|
| 204 |
+
self.weight.data = self.weight.data * mask
|
| 205 |
+
del self.sparse_pruning_mask
|
| 206 |
+
if self.sparse_pruning_method == 'topk':
|
| 207 |
+
del self.sparse_mask_scores
|
| 208 |
+
self.sparse_pruning_method = None
|
| 209 |
+
self.sparse_pruning_enabled = False
|
| 210 |
+
return None
|
| 211 |
+
|
| 212 |
+
def fix_row_col_pruning_helper(self, mask=None, dim_reduction=False):
|
| 213 |
+
# This function is used for row/col pruning
|
| 214 |
+
# particularly, if we have two back-to-back layers, F1 and F2; when
|
| 215 |
+
# we remove rows from F1, we also need to remove columns from F2
|
| 216 |
+
# However, if we only have one layer, F1, then we only need to mask pruned
|
| 217 |
+
# rows as 0 in F1
|
| 218 |
+
if mask is None:
|
| 219 |
+
mask = self.get_mask(pruning_type='row').bool()
|
| 220 |
+
if dim_reduction:
|
| 221 |
+
start_bits = self.weight.start_bits
|
| 222 |
+
target_bits = self.weight.target_bits
|
| 223 |
+
q_period = self.weight.q_period
|
| 224 |
+
self.weight = nn.Parameter(self.weight.data[mask.view(-1), :])
|
| 225 |
+
self.weight.start_bits = start_bits
|
| 226 |
+
self.weight.target_bits = target_bits
|
| 227 |
+
self.weight.q_period = q_period
|
| 228 |
+
if self.bias is not None:
|
| 229 |
+
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
|
| 230 |
+
self.out_features = self.weight.size(0)
|
| 231 |
+
else:
|
| 232 |
+
self.weight.data = self.weight.data * mask.view(-1, 1)
|
| 233 |
+
if self.bias is not None:
|
| 234 |
+
self.bias.data = self.bias.data * mask.view(-1)
|
| 235 |
+
|
| 236 |
+
del self.row_pruning_mask
|
| 237 |
+
if self.row_pruning_method == 'topk':
|
| 238 |
+
del self.row_mask_scores
|
| 239 |
+
self.row_pruning_method = None
|
| 240 |
+
else:
|
| 241 |
+
# this is generally for column pruning
|
| 242 |
+
start_bits = self.weight.start_bits
|
| 243 |
+
target_bits = self.weight.target_bits
|
| 244 |
+
q_period = self.weight.q_period
|
| 245 |
+
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1)])
|
| 246 |
+
self.weight.start_bits = start_bits
|
| 247 |
+
self.weight.target_bits = target_bits
|
| 248 |
+
self.weight.q_period = q_period
|
| 249 |
+
self.in_features = self.weight.size(1)
|
| 250 |
+
mask = None
|
| 251 |
+
self.row_pruning_enabled = False
|
| 252 |
+
return mask
|
| 253 |
+
|
| 254 |
+
def fix_head_pruning_helper(self, mask=None, num_heads=None, dim_reduction=False):
|
| 255 |
+
# similar as row/col pruning, head pruning also needs to prune QKV which is associated with O matrix
|
| 256 |
+
num_heads = num_heads if num_heads else self.num_heads
|
| 257 |
+
if mask is None:
|
| 258 |
+
if self.head_pruning_method == 'topk':
|
| 259 |
+
mask = self.get_mask(pruning_type='head').bool()
|
| 260 |
+
if dim_reduction:
|
| 261 |
+
shape = self.weight.size(0)
|
| 262 |
+
start_bits = self.weight.start_bits
|
| 263 |
+
target_bits = self.weight.target_bits
|
| 264 |
+
q_period = self.weight.q_period
|
| 265 |
+
self.weight = nn.Parameter(self.weight.data.t().reshape(num_heads,
|
| 266 |
+
-1)[mask.view(-1), :].reshape(-1,
|
| 267 |
+
shape).t())
|
| 268 |
+
self.weight.start_bits = start_bits
|
| 269 |
+
self.weight.target_bits = target_bits
|
| 270 |
+
self.weight.q_period = q_period
|
| 271 |
+
else:
|
| 272 |
+
|
| 273 |
+
shape = self.weight.size()
|
| 274 |
+
self.weight.data = (self.weight.data.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(
|
| 275 |
+
shape[1], shape[0]).t()
|
| 276 |
+
|
| 277 |
+
if self.head_pruning_method == 'topk':
|
| 278 |
+
del self.head_pruning_scores
|
| 279 |
+
self.head_pruning_method = None
|
| 280 |
+
else:
|
| 281 |
+
raise NotImplementedError
|
| 282 |
+
else:
|
| 283 |
+
start_bits = self.weight.start_bits
|
| 284 |
+
target_bits = self.weight.target_bits
|
| 285 |
+
q_period = self.weight.q_period
|
| 286 |
+
shape = self.weight.size(1)
|
| 287 |
+
self.weight = nn.Parameter(self.weight.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1, shape))
|
| 288 |
+
self.weight.start_bits = start_bits
|
| 289 |
+
self.weight.target_bits = target_bits
|
| 290 |
+
self.weight.q_period = q_period
|
| 291 |
+
if self.bias is not None:
|
| 292 |
+
self.bias = nn.Parameter(self.bias.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1))
|
| 293 |
+
self.head_pruning_enabled = False
|
| 294 |
+
return mask
|
| 295 |
+
|
| 296 |
+
def get_mask(self, pruning_type='row'):
|
| 297 |
+
if pruning_type == 'sparse':
|
| 298 |
+
if self.sparse_pruning_method == 'l1':
|
| 299 |
+
return self.sparse_pruning_mask.to(self.weight.device)
|
| 300 |
+
elif self.sparse_pruning_method == 'topk':
|
| 301 |
+
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
|
| 302 |
+
else:
|
| 303 |
+
raise NotImplementedError
|
| 304 |
+
if pruning_type == 'row':
|
| 305 |
+
if self.row_pruning_method == 'l1':
|
| 306 |
+
return self.row_pruning_mask.to(self.weight.device)
|
| 307 |
+
elif self.row_pruning_method == 'topk':
|
| 308 |
+
return TopKBinarizer.apply(self.row_mask_scores, self.row_pruning_ratio, False)
|
| 309 |
+
else:
|
| 310 |
+
raise NotImplementedError
|
| 311 |
+
elif pruning_type == 'head':
|
| 312 |
+
if self.head_pruning_method == 'topk':
|
| 313 |
+
return TopKBinarizer.apply(self.head_pruning_scores, self.head_pruning_ratio, False)
|
| 314 |
+
else:
|
| 315 |
+
raise NotImplementedError
|
| 316 |
+
else:
|
| 317 |
+
raise NotImplementedError
|
| 318 |
+
|
| 319 |
+
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
|
| 320 |
+
weight_quantization_enabled_in_forward, quantization_type, num_groups):
|
| 321 |
+
self.weight.start_bits = start_bits
|
| 322 |
+
self.weight.target_bits = target_bits
|
| 323 |
+
self.weight.q_period = quantization_period
|
| 324 |
+
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
|
| 325 |
+
if self.weight_quantization_enabled_in_forward:
|
| 326 |
+
logger.warning(
|
| 327 |
+
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
|
| 328 |
+
)
|
| 329 |
+
if self.weight.target_bits >= 3:
|
| 330 |
+
if quantization_type == 'symmetric':
|
| 331 |
+
self.weight_quantizer = SymQuantizer.apply
|
| 332 |
+
else:
|
| 333 |
+
self.weight_quantizer = AsymQuantizer.apply
|
| 334 |
+
elif self.weight.target_bits == 2:
|
| 335 |
+
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
|
| 336 |
+
self.weight_quantizer = TernaryQuantizer.apply
|
| 337 |
+
elif self.weight.target_bits == 1:
|
| 338 |
+
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
|
| 339 |
+
self.weight_quantizer = BinaryQuantizer.apply
|
| 340 |
+
self.weight_quantize_num_groups = num_groups
|
| 341 |
+
|
| 342 |
+
def fix_weight_quantization(self):
|
| 343 |
+
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 344 |
+
self.weight_quantize_num_groups).data
|
| 345 |
+
self.weight_quantization_enabled_in_forward = False
|
| 346 |
+
return None
|
| 347 |
+
|
| 348 |
+
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
|
| 349 |
+
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
|
| 350 |
+
self.activation_quantization_bits = bits
|
| 351 |
+
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
|
| 352 |
+
if range_calibration == 'static':
|
| 353 |
+
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
|
| 354 |
+
else:
|
| 355 |
+
if quantization_type == 'symmetric':
|
| 356 |
+
self.activation_quantizer = SymQuantizer.apply
|
| 357 |
+
else:
|
| 358 |
+
self.activation_quantizer = AsymQuantizer.apply
|
| 359 |
+
|
| 360 |
+
def head_pruning_reshape(self, w, mask):
|
| 361 |
+
shape = w.shape
|
| 362 |
+
return (w.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(shape[1], shape[0]).t()
|
| 363 |
+
|
| 364 |
+
def forward(self, input, skip_bias_add=False):
|
| 365 |
+
|
| 366 |
+
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
|
| 367 |
+
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 368 |
+
self.weight_quantize_num_groups)
|
| 369 |
+
bias = self.bias
|
| 370 |
+
else:
|
| 371 |
+
weight = self.weight
|
| 372 |
+
bias = self.bias
|
| 373 |
+
|
| 374 |
+
if self.sparse_pruning_enabled and self.sparse_pruning_method:
|
| 375 |
+
mask = self.get_mask(pruning_type='sparse')
|
| 376 |
+
weight = weight * mask.view(self.weight.size())
|
| 377 |
+
|
| 378 |
+
if self.row_pruning_enabled and self.row_pruning_method:
|
| 379 |
+
mask = self.get_mask(pruning_type='row')
|
| 380 |
+
weight = weight * mask.view(-1, 1)
|
| 381 |
+
if bias is not None:
|
| 382 |
+
bias = bias * mask.view(-1)
|
| 383 |
+
|
| 384 |
+
if self.head_pruning_enabled and self.head_pruning_method:
|
| 385 |
+
mask = self.get_mask(pruning_type='head')
|
| 386 |
+
weight = self.head_pruning_reshape(weight, mask)
|
| 387 |
+
|
| 388 |
+
if self.activation_quantization_enabled:
|
| 389 |
+
if 'dynamic' in self.activation_quantization_method:
|
| 390 |
+
num_groups = input.numel() // input.size(-1)
|
| 391 |
+
else:
|
| 392 |
+
num_groups = 1
|
| 393 |
+
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
|
| 394 |
+
|
| 395 |
+
if skip_bias_add:
|
| 396 |
+
# used for mpu linear layers
|
| 397 |
+
output = nn.functional.linear(input, weight, None)
|
| 398 |
+
return output, bias
|
| 399 |
+
else:
|
| 400 |
+
output = nn.functional.linear(input, weight, bias)
|
| 401 |
+
return output
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
class Conv2dLayer_Compress(nn.Conv2d):
|
| 405 |
+
"""
|
| 406 |
+
Conv2D layer with compression.
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(self, *kargs):
|
| 410 |
+
super(Conv2dLayer_Compress, self).__init__(*kargs)
|
| 411 |
+
self.sparse_pruning_method = None
|
| 412 |
+
self.channel_pruning_method = None
|
| 413 |
+
self.activation_quantization_method = None
|
| 414 |
+
self.weight.start_bits = None
|
| 415 |
+
self.weight.target_bits = None
|
| 416 |
+
self.weight.q_period = None
|
| 417 |
+
self.weight_quantization_enabled_in_forward = False
|
| 418 |
+
self.sparse_pruning_enabled = False
|
| 419 |
+
self.channel_pruning_enabled = False
|
| 420 |
+
self.activation_quantization_enabled = False
|
| 421 |
+
|
| 422 |
+
def __repr__(self):
|
| 423 |
+
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
|
| 424 |
+
', stride={stride}')
|
| 425 |
+
if self.padding != (0, ) * len(self.padding):
|
| 426 |
+
s += ', padding={padding}'
|
| 427 |
+
if self.dilation != (1, ) * len(self.dilation):
|
| 428 |
+
s += ', dilation={dilation}'
|
| 429 |
+
if self.output_padding != (0, ) * len(self.output_padding):
|
| 430 |
+
s += ', output_padding={output_padding}'
|
| 431 |
+
if self.groups != 1:
|
| 432 |
+
s += ', groups={groups}'
|
| 433 |
+
if self.bias is None:
|
| 434 |
+
s += ', bias=False'
|
| 435 |
+
if self.padding_mode != 'zeros':
|
| 436 |
+
s += ', padding_mode={padding_mode}'
|
| 437 |
+
output = s.format(**self.__dict__)
|
| 438 |
+
|
| 439 |
+
return output + ' sparse pruning={}, channel pruning={}, activation quantization={}, weight_quantization={}'.format(
|
| 440 |
+
self.sparse_pruning_method is not None, self.channel_pruning_method is not None,
|
| 441 |
+
self.activation_quantization_method is not None, self.weight.target_bits)
|
| 442 |
+
|
| 443 |
+
def enable_sparse_pruning(self, ratio, method):
|
| 444 |
+
self.sparse_pruning_ratio = ratio
|
| 445 |
+
self.sparse_pruning_method = method
|
| 446 |
+
if method == 'l1':
|
| 447 |
+
weight_norm = torch.abs(self.weight.data)
|
| 448 |
+
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
|
| 449 |
+
mask = mask.view(self.weight.size())
|
| 450 |
+
mask = mask.to(self.weight.device)
|
| 451 |
+
elif method == 'topk':
|
| 452 |
+
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
|
| 453 |
+
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
|
| 454 |
+
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
|
| 455 |
+
mask = None
|
| 456 |
+
else:
|
| 457 |
+
raise NotImplementedError
|
| 458 |
+
|
| 459 |
+
self.register_buffer('sparse_pruning_mask', mask)
|
| 460 |
+
|
| 461 |
+
def enable_channel_pruning(self, ratio, method):
|
| 462 |
+
# Here, we support two cases: L1 norm based pruning and topk based pruning
|
| 463 |
+
self.channel_pruning_ratio = ratio
|
| 464 |
+
self.channel_pruning_method = method
|
| 465 |
+
|
| 466 |
+
if method == 'l1':
|
| 467 |
+
# compute the l1 norm of each conv2d kernel (the last three dimension)
|
| 468 |
+
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=[1, 2, 3])
|
| 469 |
+
mask = TopKBinarizer.apply(weight_norm, self.channel_pruning_ratio, False)
|
| 470 |
+
mask = mask.view(-1, 1, 1, 1)
|
| 471 |
+
mask = mask.to(self.weight.device)
|
| 472 |
+
elif method == 'topk':
|
| 473 |
+
self.channel_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1, 1, 1))
|
| 474 |
+
self.channel_mask_scores.data = self.channel_mask_scores.data.to(self.weight.device)
|
| 475 |
+
init.kaiming_uniform_(self.channel_mask_scores, a=math.sqrt(5))
|
| 476 |
+
mask = None
|
| 477 |
+
else:
|
| 478 |
+
raise NotImplementedError
|
| 479 |
+
|
| 480 |
+
self.register_buffer('channel_pruning_mask', mask)
|
| 481 |
+
|
| 482 |
+
def fix_sparse_pruning_helper(self):
|
| 483 |
+
mask = self.get_mask(pruning_type='sparse')
|
| 484 |
+
self.weight.data = self.weight.data * mask
|
| 485 |
+
del self.sparse_pruning_mask
|
| 486 |
+
if self.sparse_pruning_method == 'topk':
|
| 487 |
+
del self.sparse_mask_scores
|
| 488 |
+
self.sparse_pruning_method = None
|
| 489 |
+
self.sparse_pruning_enabled = False
|
| 490 |
+
return None
|
| 491 |
+
|
| 492 |
+
def fix_channel_pruning_helper(self, mask=None, dim_reduction=False):
|
| 493 |
+
if mask is None:
|
| 494 |
+
if self.channel_pruning_method in ['l1', 'topk']:
|
| 495 |
+
mask = self.get_mask(pruning_type='channel').bool()
|
| 496 |
+
if dim_reduction:
|
| 497 |
+
start_bits = self.weight.start_bits
|
| 498 |
+
target_bits = self.weight.target_bits
|
| 499 |
+
q_period = self.weight.q_period
|
| 500 |
+
self.weight = nn.Parameter(self.weight.data[mask.view(-1), ...])
|
| 501 |
+
self.weight.start_bits = start_bits
|
| 502 |
+
self.weight.target_bits = target_bits
|
| 503 |
+
self.weight.q_period = q_period
|
| 504 |
+
if self.bias is not None:
|
| 505 |
+
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
|
| 506 |
+
else:
|
| 507 |
+
self.weight.data = self.weight.data * mask.view(-1, 1, 1, 1)
|
| 508 |
+
if self.bias is not None:
|
| 509 |
+
self.bias.data = self.bias.data * mask.view(-1)
|
| 510 |
+
del self.channel_pruning_mask
|
| 511 |
+
if self.channel_pruning_method == 'topk':
|
| 512 |
+
del self.channel_mask_scores
|
| 513 |
+
self.channel_pruning_method = None
|
| 514 |
+
else:
|
| 515 |
+
raise NotImplementedError
|
| 516 |
+
else:
|
| 517 |
+
start_bits = self.weight.start_bits
|
| 518 |
+
target_bits = self.weight.target_bits
|
| 519 |
+
q_period = self.weight.q_period
|
| 520 |
+
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1), ...])
|
| 521 |
+
self.weight.start_bits = start_bits
|
| 522 |
+
self.weight.target_bits = target_bits
|
| 523 |
+
self.weight.q_period = q_period
|
| 524 |
+
mask = None
|
| 525 |
+
self.channel_pruning_enabled = False
|
| 526 |
+
return mask
|
| 527 |
+
|
| 528 |
+
def get_mask(self, pruning_type='sparse'):
|
| 529 |
+
if pruning_type == 'sparse':
|
| 530 |
+
if self.sparse_pruning_method == 'l1':
|
| 531 |
+
return self.sparse_pruning_mask.to(self.weight.device)
|
| 532 |
+
elif self.sparse_pruning_method == 'topk':
|
| 533 |
+
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
|
| 534 |
+
else:
|
| 535 |
+
raise NotImplementedError
|
| 536 |
+
elif pruning_type == 'channel':
|
| 537 |
+
if self.channel_pruning_method == 'l1':
|
| 538 |
+
return self.channel_pruning_mask.to(self.weight.device)
|
| 539 |
+
elif self.channel_pruning_method == 'topk':
|
| 540 |
+
return TopKBinarizer.apply(self.channel_mask_scores, self.channel_pruning_ratio, False)
|
| 541 |
+
else:
|
| 542 |
+
raise NotImplementedError
|
| 543 |
+
else:
|
| 544 |
+
raise NotImplementedError
|
| 545 |
+
|
| 546 |
+
def fix_weight_quantization(self):
|
| 547 |
+
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 548 |
+
self.weight_quantize_num_groups).data
|
| 549 |
+
self.weight_quantization_enabled_in_forward = False
|
| 550 |
+
return None
|
| 551 |
+
|
| 552 |
+
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
|
| 553 |
+
weight_quantization_enabled_in_forward, quantization_type, num_groups):
|
| 554 |
+
self.weight.start_bits = start_bits
|
| 555 |
+
self.weight.target_bits = target_bits
|
| 556 |
+
self.weight.q_period = quantization_period
|
| 557 |
+
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
|
| 558 |
+
if self.weight_quantization_enabled_in_forward:
|
| 559 |
+
assert self.weight.target_bits >= 4, 'Only >=4 bits weight quantization are supported during forward pass for now'
|
| 560 |
+
logger.warning(
|
| 561 |
+
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
|
| 562 |
+
)
|
| 563 |
+
if quantization_type == 'symmetric':
|
| 564 |
+
self.weight_quantizer = SymQuantizer.apply
|
| 565 |
+
else:
|
| 566 |
+
self.weight_quantizer = AsymQuantizer.apply
|
| 567 |
+
self.weight_quantize_num_groups = num_groups
|
| 568 |
+
|
| 569 |
+
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
|
| 570 |
+
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
|
| 571 |
+
self.activation_quantization_bits = bits
|
| 572 |
+
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
|
| 573 |
+
if range_calibration == 'static':
|
| 574 |
+
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
|
| 575 |
+
else:
|
| 576 |
+
if quantization_type == 'symmetric':
|
| 577 |
+
self.activation_quantizer = SymQuantizer.apply
|
| 578 |
+
else:
|
| 579 |
+
self.activation_quantizer = AsymQuantizer.apply
|
| 580 |
+
|
| 581 |
+
def forward(self, input):
|
| 582 |
+
|
| 583 |
+
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
|
| 584 |
+
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
|
| 585 |
+
self.weight_quantize_num_groups)
|
| 586 |
+
bias = self.bias
|
| 587 |
+
else:
|
| 588 |
+
weight = self.weight
|
| 589 |
+
bias = self.bias
|
| 590 |
+
|
| 591 |
+
if self.sparse_pruning_enabled and self.sparse_pruning_method:
|
| 592 |
+
mask = self.get_mask(pruning_type='sparse')
|
| 593 |
+
weight = weight * mask.view(self.weight.size())
|
| 594 |
+
|
| 595 |
+
if self.channel_pruning_enabled:
|
| 596 |
+
mask = self.get_mask(pruning_type='channel')
|
| 597 |
+
weight = weight * mask.view(-1, 1, 1, 1)
|
| 598 |
+
if bias is not None:
|
| 599 |
+
bias = bias * mask.view(-1)
|
| 600 |
+
|
| 601 |
+
if self.activation_quantization_enabled:
|
| 602 |
+
if 'dynamic' in self.activation_quantization_method:
|
| 603 |
+
num_groups = input.numel() // input[0].numel()
|
| 604 |
+
else:
|
| 605 |
+
num_groups = 1
|
| 606 |
+
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
|
| 607 |
+
|
| 608 |
+
return nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
class BNLayer_Compress(nn.BatchNorm2d):
|
| 612 |
+
|
| 613 |
+
def fix_channel_pruning_helper(self, mask, dim_reduction=True):
|
| 614 |
+
self.weight = nn.Parameter(self.weight.data[mask.view(-1)])
|
| 615 |
+
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
|
| 616 |
+
self.running_mean = self.running_mean[mask.view(-1)]
|
| 617 |
+
self.running_var = self.running_var[mask.view(-1)]
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
def _reduce(input_):
|
| 621 |
+
"""All-reduce the input tensor across model parallel group."""
|
| 622 |
+
group = g_mpu.get_model_parallel_group()
|
| 623 |
+
|
| 624 |
+
# Bypass the function if we are using only 1 GPU.
|
| 625 |
+
if dist.get_world_size(group=group) == 1:
|
| 626 |
+
return input_
|
| 627 |
+
|
| 628 |
+
# All-reduce.
|
| 629 |
+
dist.all_reduce(input_, group=group)
|
| 630 |
+
|
| 631 |
+
return input_
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
|
| 635 |
+
"""Split a tensor along its last dimension.
|
| 636 |
+
Arguments:
|
| 637 |
+
tensor: input tensor.
|
| 638 |
+
num_partitions: number of partitions to split the tensor
|
| 639 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
| 640 |
+
in memory.
|
| 641 |
+
"""
|
| 642 |
+
# Get the size and dimension.
|
| 643 |
+
last_dim = tensor.dim() - 1
|
| 644 |
+
assert tensor.size()[last_dim] % num_partitions == 0
|
| 645 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
| 646 |
+
# Split.
|
| 647 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
| 648 |
+
# Note: torch.split does not create contiguous tensors by default.
|
| 649 |
+
if contiguous_split_chunks:
|
| 650 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
| 651 |
+
|
| 652 |
+
return tensor_list
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def _split(input_):
|
| 656 |
+
"""Split the tensor along its last dimension and keep the
|
| 657 |
+
corresponding slice."""
|
| 658 |
+
group = g_mpu.get_model_parallel_group()
|
| 659 |
+
|
| 660 |
+
# Bypass the function if we are using only 1 GPU.
|
| 661 |
+
if dist.get_world_size(group=group) == 1:
|
| 662 |
+
return input_
|
| 663 |
+
|
| 664 |
+
# Split along last dimension.
|
| 665 |
+
world_size = dist.get_world_size(group=group)
|
| 666 |
+
input_list = split_tensor_along_last_dim(input_, world_size)
|
| 667 |
+
|
| 668 |
+
# Note: torch.split does not create contiguous tensors by default.
|
| 669 |
+
rank = dist.get_rank(group=group)
|
| 670 |
+
output = input_list[rank].contiguous()
|
| 671 |
+
|
| 672 |
+
return output
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
def _gather(input_):
|
| 676 |
+
"""Gather tensors and concatenate along the last dimension."""
|
| 677 |
+
group = g_mpu.get_model_parallel_group()
|
| 678 |
+
|
| 679 |
+
# Bypass the function if we are using only 1 GPU.
|
| 680 |
+
if dist.get_world_size(group=group) == 1:
|
| 681 |
+
return input_
|
| 682 |
+
|
| 683 |
+
# Size and dimension.
|
| 684 |
+
last_dim = input_.dim() - 1
|
| 685 |
+
rank = dist.get_rank(group=group)
|
| 686 |
+
world_size = dist.get_world_size(group=group)
|
| 687 |
+
|
| 688 |
+
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
| 689 |
+
tensor_list[rank] = input_
|
| 690 |
+
dist.all_gather(tensor_list, input_, group=group)
|
| 691 |
+
|
| 692 |
+
# Note: torch.cat already creates a contiguous tensor.
|
| 693 |
+
output = torch.cat(tensor_list, dim=last_dim).contiguous()
|
| 694 |
+
|
| 695 |
+
return output
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
class _CopyToModelParallelRegion(torch.autograd.Function):
|
| 699 |
+
"""Pass the input to the model parallel region."""
|
| 700 |
+
|
| 701 |
+
@staticmethod
|
| 702 |
+
def forward(ctx, input_):
|
| 703 |
+
return input_
|
| 704 |
+
|
| 705 |
+
@staticmethod
|
| 706 |
+
def backward(ctx, grad_output):
|
| 707 |
+
return _reduce(grad_output)
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
class _ReduceFromModelParallelRegion(torch.autograd.Function):
|
| 711 |
+
"""All-reduce the input from the model parallel region."""
|
| 712 |
+
|
| 713 |
+
@staticmethod
|
| 714 |
+
def forward(ctx, input_):
|
| 715 |
+
return _reduce(input_)
|
| 716 |
+
|
| 717 |
+
@staticmethod
|
| 718 |
+
def backward(ctx, grad_output):
|
| 719 |
+
return grad_output
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
class _ScatterToModelParallelRegion(torch.autograd.Function):
|
| 723 |
+
"""Split the input and keep only the corresponding chuck to the rank."""
|
| 724 |
+
|
| 725 |
+
@staticmethod
|
| 726 |
+
def forward(ctx, input_):
|
| 727 |
+
return _split(input_)
|
| 728 |
+
|
| 729 |
+
@staticmethod
|
| 730 |
+
def backward(ctx, grad_output):
|
| 731 |
+
return _gather(grad_output)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
class _GatherFromModelParallelRegion(torch.autograd.Function):
|
| 735 |
+
"""Gather the input from model parallel region and concatenate."""
|
| 736 |
+
|
| 737 |
+
@staticmethod
|
| 738 |
+
def forward(ctx, input_):
|
| 739 |
+
return _gather(input_)
|
| 740 |
+
|
| 741 |
+
@staticmethod
|
| 742 |
+
def backward(ctx, grad_output):
|
| 743 |
+
return _split(grad_output)
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
# -----------------
|
| 747 |
+
# Helper functions.
|
| 748 |
+
# -----------------
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
def copy_to_model_parallel_region(input_):
|
| 752 |
+
return _CopyToModelParallelRegion.apply(input_)
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
def reduce_from_model_parallel_region(input_):
|
| 756 |
+
return _ReduceFromModelParallelRegion.apply(input_)
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
def scatter_to_model_parallel_region(input_):
|
| 760 |
+
return _ScatterToModelParallelRegion.apply(input_)
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
def gather_from_model_parallel_region(input_):
|
| 764 |
+
return _GatherFromModelParallelRegion.apply(input_)
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class ColumnParallelLinear_Compress(LinearLayer_Compress):
|
| 768 |
+
|
| 769 |
+
def __init__(self, mpu, input_size, output_size, bias=True, gather_output=True, skip_bias_add=False):
|
| 770 |
+
# Keep input parameters
|
| 771 |
+
global g_mpu
|
| 772 |
+
g_mpu = mpu
|
| 773 |
+
self.input_size = input_size
|
| 774 |
+
self.output_size = output_size
|
| 775 |
+
self.gather_output = gather_output
|
| 776 |
+
self.skip_bias_add = skip_bias_add
|
| 777 |
+
|
| 778 |
+
# Divide the weight matrix along the last dimension.
|
| 779 |
+
world_size = mpu.get_model_parallel_world_size()
|
| 780 |
+
assert output_size % world_size == 0
|
| 781 |
+
self.output_size_per_partition = output_size // world_size
|
| 782 |
+
|
| 783 |
+
super(ColumnParallelLinear_Compress, self).__init__(self.input_size, self.output_size_per_partition, bias=bias)
|
| 784 |
+
|
| 785 |
+
def forward(self, input_):
|
| 786 |
+
# Set up backprop all-reduce.
|
| 787 |
+
input_parallel = copy_to_model_parallel_region(input_)
|
| 788 |
+
# Matrix multiply.
|
| 789 |
+
if self.skip_bias_add:
|
| 790 |
+
output_parallel, bias = super().forward(input_parallel, True)
|
| 791 |
+
else:
|
| 792 |
+
output_parallel = super().forward(input_parallel)
|
| 793 |
+
bias = None
|
| 794 |
+
if self.gather_output:
|
| 795 |
+
# All-gather across the partitions.
|
| 796 |
+
output = gather_from_model_parallel_region(output_parallel)
|
| 797 |
+
else:
|
| 798 |
+
output = output_parallel
|
| 799 |
+
return output, bias
|
| 800 |
+
|
| 801 |
+
|
| 802 |
+
class RowParallelLinear_Compress(LinearLayer_Compress):
|
| 803 |
+
|
| 804 |
+
def __init__(self, mpu, input_size, output_size, bias=True, input_is_parallel=False, skip_bias_add=False):
|
| 805 |
+
# Keep input parameters
|
| 806 |
+
global g_mpu
|
| 807 |
+
g_mpu = mpu
|
| 808 |
+
self.input_size = input_size
|
| 809 |
+
self.output_size = output_size
|
| 810 |
+
self.input_is_parallel = input_is_parallel
|
| 811 |
+
self.skip_bias_add = skip_bias_add
|
| 812 |
+
|
| 813 |
+
# Divide the weight matrix along the last dimension.
|
| 814 |
+
world_size = mpu.get_model_parallel_world_size()
|
| 815 |
+
assert input_size % world_size == 0
|
| 816 |
+
self.input_size_per_partition = input_size // world_size
|
| 817 |
+
|
| 818 |
+
super(RowParallelLinear_Compress, self).__init__(self.input_size_per_partition, self.output_size, bias=bias)
|
| 819 |
+
|
| 820 |
+
def forward(self, input_):
|
| 821 |
+
# Set up backprop all-reduce.
|
| 822 |
+
if self.input_is_parallel:
|
| 823 |
+
input_parallel = input_
|
| 824 |
+
else:
|
| 825 |
+
input_parallel = scatter_to_model_parallel_region(input_)
|
| 826 |
+
# Matrix multiply.
|
| 827 |
+
output_parallel, bias = super().forward(input_parallel, True)
|
| 828 |
+
|
| 829 |
+
# All-reduce across all the partitions.
|
| 830 |
+
output_ = reduce_from_model_parallel_region(output_parallel)
|
| 831 |
+
if not self.skip_bias_add:
|
| 832 |
+
if bias is not None:
|
| 833 |
+
output = output_ + bias
|
| 834 |
+
else:
|
| 835 |
+
output = output_
|
| 836 |
+
output_bias = None
|
| 837 |
+
else:
|
| 838 |
+
output = output_
|
| 839 |
+
output_bias = bias
|
| 840 |
+
return output, output_bias
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/compress.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import re
|
| 7 |
+
from .helper import compression_preparation, fix_compression, recursive_getattr, is_module_compressible
|
| 8 |
+
from .config import get_compression_config
|
| 9 |
+
from ..runtime.config_utils import dict_raise_error_on_duplicate_keys
|
| 10 |
+
from .constants import *
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
import neural_compressor as nc
|
| 16 |
+
except ImportError as e:
|
| 17 |
+
nc = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def check_deepspeed_config(config):
|
| 21 |
+
if isinstance(config, dict):
|
| 22 |
+
return config
|
| 23 |
+
elif os.path.exists(config):
|
| 24 |
+
return json.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
|
| 25 |
+
else:
|
| 26 |
+
raise ValueError(
|
| 27 |
+
f"Expected a string path to an existing deepspeed config, or a dictionary. Received: {config}")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_module_name(group_name, model, key_word, exist_module_name, mpu=None, verbose=True):
|
| 31 |
+
'''
|
| 32 |
+
get the associated module name from the model based on the key_word provided by users
|
| 33 |
+
'''
|
| 34 |
+
return_module_name = []
|
| 35 |
+
for name, module in model.named_modules():
|
| 36 |
+
|
| 37 |
+
module_check = is_module_compressible(module, mpu)
|
| 38 |
+
|
| 39 |
+
if re.search(key_word, name) is not None and module_check:
|
| 40 |
+
if name in exist_module_name and verbose:
|
| 41 |
+
# logger.warning
|
| 42 |
+
raise ValueError(
|
| 43 |
+
f"{name} is already added to compression, please check your config file for {group_name}.")
|
| 44 |
+
if name not in exist_module_name:
|
| 45 |
+
exist_module_name.add(name)
|
| 46 |
+
return_module_name.append(name)
|
| 47 |
+
return return_module_name, exist_module_name
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_compress_methods(model, compress_methods, mpu=None):
|
| 51 |
+
# extract the compression module for each method in compress_methods
|
| 52 |
+
layer_added_compress_methods = []
|
| 53 |
+
for method, method_content in compress_methods.items():
|
| 54 |
+
if LAYER_REDUCTION in method:
|
| 55 |
+
continue
|
| 56 |
+
# for loop different methods, i.e., weight quantization, activation quantization etc
|
| 57 |
+
exist_module_name = set()
|
| 58 |
+
shared_parameters = method_content[SHARED_PARAMETERS] # get all the shared parameters
|
| 59 |
+
for group_name, method_parameters in method_content[DIFFERENT_GROUPS].items():
|
| 60 |
+
# for loop different groups, i.e., weight quantization group 1, weight quantization group 2 etc
|
| 61 |
+
module_name_list = []
|
| 62 |
+
related_module_name_list = []
|
| 63 |
+
if method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]:
|
| 64 |
+
# this is used for head/row/channel pruning, if users provide the related module scope, we can shrink the layer dim for them
|
| 65 |
+
# otherwise we just mask those as zeros
|
| 66 |
+
for key_word, related_key_words in zip(method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE],
|
| 67 |
+
method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]):
|
| 68 |
+
module_name, exist_module_name = get_module_name(group_name,
|
| 69 |
+
model,
|
| 70 |
+
key_word,
|
| 71 |
+
exist_module_name,
|
| 72 |
+
mpu=mpu)
|
| 73 |
+
module_name_list.append(module_name)
|
| 74 |
+
tmp_related_module_name_list = []
|
| 75 |
+
for rkw in related_key_words:
|
| 76 |
+
# related key word can be a list, for instance the QKV for O matrix in Attention
|
| 77 |
+
module_name, _ = get_module_name(group_name, model, rkw, set(), mpu=mpu)
|
| 78 |
+
tmp_related_module_name_list.append(module_name)
|
| 79 |
+
related_module_name_list.append(tmp_related_module_name_list)
|
| 80 |
+
else:
|
| 81 |
+
for key_word in method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE]:
|
| 82 |
+
module_name, exist_module_name = get_module_name(group_name,
|
| 83 |
+
model,
|
| 84 |
+
key_word,
|
| 85 |
+
exist_module_name,
|
| 86 |
+
mpu=mpu)
|
| 87 |
+
module_name_list.append(module_name)
|
| 88 |
+
|
| 89 |
+
if module_name_list:
|
| 90 |
+
# combine shared parameters with each group
|
| 91 |
+
combined_method_parameters = {
|
| 92 |
+
**(method_parameters.copy().pop(DIFFERENT_GROUPS_PARAMETERS)),
|
| 93 |
+
**shared_parameters
|
| 94 |
+
}
|
| 95 |
+
compression_item = [module_name_list, related_module_name_list, {method: combined_method_parameters}]
|
| 96 |
+
layer_added_compress_methods.append(compression_item)
|
| 97 |
+
return layer_added_compress_methods
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def init_compression(model, deepspeed_config, teacher_model=None, mpu=None):
|
| 101 |
+
"""
|
| 102 |
+
Compress a model: replace linear/conv2d layer with deepspeed compression-aware modules
|
| 103 |
+
Args:
|
| 104 |
+
model (`torch.nn.Module`)
|
| 105 |
+
The model to compress.
|
| 106 |
+
deepspeed_config (`DeepSpeedConfig`)
|
| 107 |
+
The path of ds_config
|
| 108 |
+
mpu
|
| 109 |
+
The mpu module for Row/Column parallelism
|
| 110 |
+
"""
|
| 111 |
+
compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config))
|
| 112 |
+
if hasattr(model, 'module'):
|
| 113 |
+
c_model = model.module
|
| 114 |
+
else:
|
| 115 |
+
c_model = model
|
| 116 |
+
|
| 117 |
+
# For layer reduction
|
| 118 |
+
if compress_methods[LAYER_REDUCTION][LAYER_REDUCTION_ENABLED]:
|
| 119 |
+
assert teacher_model is not None, "Teacher model is required for layer reduction"
|
| 120 |
+
student_initialization(c_model, teacher_model, deepspeed_config)
|
| 121 |
+
|
| 122 |
+
layer_added_compress_methods = get_compress_methods(c_model, compress_methods, mpu=mpu)
|
| 123 |
+
compression_preparation(c_model, layer_added_compress_methods, mpu)
|
| 124 |
+
|
| 125 |
+
# For sparse pruning snip_momentum method
|
| 126 |
+
shared_parameters = compress_methods[SPARSE_PRUNING][SHARED_PARAMETERS]
|
| 127 |
+
if shared_parameters[SPARSE_PRUNING_ENABLED] and \
|
| 128 |
+
shared_parameters[SPARSE_PRUNING_METHOD] == SPARSE_PRUNING_METHOD_SNIP_MOMENTUM:
|
| 129 |
+
|
| 130 |
+
assert nc is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning"
|
| 131 |
+
|
| 132 |
+
from .helper import generate_pruners, register_on_step_begin
|
| 133 |
+
from nc import WeightPruningConfig
|
| 134 |
+
|
| 135 |
+
config = WeightPruningConfig(target_sparsity=1 - shared_parameters[SPARSE_PRUNING_DENSE_RATIO],
|
| 136 |
+
pattern=shared_parameters[SPARSE_PRUNING_BLOCK_PATTERN],
|
| 137 |
+
pruning_frequency=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE],
|
| 138 |
+
start_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET],
|
| 139 |
+
end_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_END],
|
| 140 |
+
excluded_op_names=shared_parameters[SPARSE_PRUNING_EXCLUDED_MODULES])
|
| 141 |
+
pruners = generate_pruners(config, c_model)
|
| 142 |
+
c_model.pruners = pruners
|
| 143 |
+
register_on_step_begin(c_model)
|
| 144 |
+
|
| 145 |
+
return model
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def redundancy_clean(model, deepspeed_config, mpu=None):
|
| 149 |
+
"""
|
| 150 |
+
Remove the redundancy of a model
|
| 151 |
+
Args:
|
| 152 |
+
model (`torch.nn.Module`)
|
| 153 |
+
The model to compress.
|
| 154 |
+
deepspeed_config (`DeepSpeedConfig`)
|
| 155 |
+
The path of ds_config
|
| 156 |
+
mpu
|
| 157 |
+
The mpu module for Row/Column parallelism
|
| 158 |
+
"""
|
| 159 |
+
compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config))
|
| 160 |
+
if hasattr(model, 'module'):
|
| 161 |
+
c_model = model.module
|
| 162 |
+
else:
|
| 163 |
+
c_model = model
|
| 164 |
+
|
| 165 |
+
layer_added_compress_methods_tmp = get_compress_methods(c_model, compress_methods, mpu=mpu)
|
| 166 |
+
# sort methods
|
| 167 |
+
order_list = [
|
| 168 |
+
WEIGHT_QUANTIZATION, SPARSE_PRUNING, ROW_PRUNING, HEAD_PRUNING, CHANNEL_PRUNING, ACTIVATION_QUANTIZATION
|
| 169 |
+
]
|
| 170 |
+
layer_added_compress_methods = sorted(layer_added_compress_methods_tmp,
|
| 171 |
+
key=lambda x: order_list.index(list(x[2].keys())[0]))
|
| 172 |
+
|
| 173 |
+
for module_name_lists, related_module_name_lists, compression_technique in layer_added_compress_methods:
|
| 174 |
+
stored_mask = []
|
| 175 |
+
need_mask = True if related_module_name_lists else False
|
| 176 |
+
for i, mnl in enumerate(module_name_lists):
|
| 177 |
+
for module_name in mnl:
|
| 178 |
+
mask = fix_compression(c_model, module_name, compression_technique, dim_reduction=need_mask)
|
| 179 |
+
if need_mask:
|
| 180 |
+
stored_mask.append(mask)
|
| 181 |
+
if need_mask:
|
| 182 |
+
for rmnl in related_module_name_lists[i]:
|
| 183 |
+
for j, module_name in enumerate(rmnl):
|
| 184 |
+
mask = fix_compression(c_model,
|
| 185 |
+
module_name,
|
| 186 |
+
compression_technique,
|
| 187 |
+
mask=stored_mask[j],
|
| 188 |
+
dim_reduction=True)
|
| 189 |
+
return model
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def student_initialization(student_model, teacher_model, deepspeed_config):
|
| 193 |
+
'''
|
| 194 |
+
Given a student model and a teacher model, select the
|
| 195 |
+
Args:
|
| 196 |
+
student_model (`torch.nn.Module`)
|
| 197 |
+
The model we will update weight
|
| 198 |
+
teacher_model (`torch.nn.Module`)
|
| 199 |
+
The model guide the student to learn
|
| 200 |
+
deepspeed_config (`DeepSpeedConfig`)
|
| 201 |
+
The path of ds_config
|
| 202 |
+
'''
|
| 203 |
+
config = get_compression_config(check_deepspeed_config(deepspeed_config))
|
| 204 |
+
compress_methods = config[LAYER_REDUCTION]
|
| 205 |
+
|
| 206 |
+
module_name_prefix = compress_methods[MODULE_NAME_PREFIX]
|
| 207 |
+
teacher_layer = compress_methods[TEACHER_LAYER]
|
| 208 |
+
student_layer = [i for i in range(len(teacher_layer))]
|
| 209 |
+
other_module_name = compress_methods[OTHER_MODULE_NAME]
|
| 210 |
+
'''
|
| 211 |
+
name_prefix (`str`)
|
| 212 |
+
The prefix name before the layer #.
|
| 213 |
+
Example 1: bert.encoder.layer, for BERT_base model's prefix name
|
| 214 |
+
Example 2: transformer.h, for GPT-2 hugging face prefix name
|
| 215 |
+
teacher_layer (`list of integers`)
|
| 216 |
+
The layer of teacher will be used for student's reinitialization
|
| 217 |
+
Example 1: [1,3,5,7,9], means we want to matches the 2nd/4th/6th/8th/10th layer of teacher to the first 5 layers of student
|
| 218 |
+
student_layer (`list` or None)
|
| 219 |
+
The layer of student need to be re-initialized
|
| 220 |
+
Example 1: None, means we want to reinitialize all the layers
|
| 221 |
+
Example 1: [0,1,2,3,4], means we want to reinitialize the first 5 layers
|
| 222 |
+
other_module_name (`list of string`)
|
| 223 |
+
The modules will be used for student's reinitialization
|
| 224 |
+
Example 1: ['bert.pooler', 'bert.embeddings', 'classifier'], means we want to apply the weight in teacher's embedding/pooler/classier module to the student
|
| 225 |
+
Example 2: ['transformer.w', 'transformer.ln_f', 'lm_head'], means we want to apply the weight in teacher's embedding layers module to the student
|
| 226 |
+
Note that teacher_layer should matches student layer
|
| 227 |
+
'''
|
| 228 |
+
assert len(student_layer) == len(teacher_layer)
|
| 229 |
+
for s_name, t_name in zip(student_layer, teacher_layer):
|
| 230 |
+
s_module = recursive_getattr(student_model, module_name_prefix + '.' + str(s_name))
|
| 231 |
+
t_module = recursive_getattr(teacher_model, module_name_prefix + '.' + str(t_name))
|
| 232 |
+
for s_param, t_param in zip(s_module.parameters(), t_module.parameters()):
|
| 233 |
+
s_param.data.copy_(t_param.data)
|
| 234 |
+
for name in other_module_name:
|
| 235 |
+
s_module = recursive_getattr(student_model, name)
|
| 236 |
+
t_module = recursive_getattr(teacher_model, name)
|
| 237 |
+
print(name)
|
| 238 |
+
for s_param, t_param in zip(s_module.parameters(), t_module.parameters()):
|
| 239 |
+
s_param.data.copy_(t_param.data)
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/config.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
from .constants import *
|
| 7 |
+
import copy
|
| 8 |
+
from ..runtime.config_utils import get_scalar_param, get_list_param
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_compression_config(param_dict):
|
| 12 |
+
#
|
| 13 |
+
output = {}
|
| 14 |
+
|
| 15 |
+
if COMPRESSION_TRAINING not in param_dict.keys():
|
| 16 |
+
param_dict[COMPRESSION_TRAINING] = {}
|
| 17 |
+
sub_param_dict = param_dict[COMPRESSION_TRAINING]
|
| 18 |
+
output[WEIGHT_QUANTIZATION] = get_weight_quantization(sub_param_dict)
|
| 19 |
+
output[ACTIVATION_QUANTIZATION] = get_activation_quantization(sub_param_dict)
|
| 20 |
+
output[SPARSE_PRUNING] = get_sparse_pruning(sub_param_dict)
|
| 21 |
+
output[ROW_PRUNING] = get_row_pruning(sub_param_dict)
|
| 22 |
+
output[HEAD_PRUNING] = get_head_pruning(sub_param_dict)
|
| 23 |
+
output[CHANNEL_PRUNING] = get_channel_pruning(sub_param_dict)
|
| 24 |
+
|
| 25 |
+
output[LAYER_REDUCTION] = get_layer_reduction(sub_param_dict)
|
| 26 |
+
|
| 27 |
+
return output
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_layer_reduction(param_dict):
|
| 31 |
+
output = {}
|
| 32 |
+
output[LAYER_REDUCTION_ENABLED] = LAYER_REDUCTION_ENABLED_DEFAULT
|
| 33 |
+
if get_layer_reduction_enabled(param_dict):
|
| 34 |
+
output[LAYER_REDUCTION_ENABLED] = get_layer_reduction_enabled(param_dict)
|
| 35 |
+
for key, val in get_layer_reduction_params(param_dict).items():
|
| 36 |
+
output[key] = val
|
| 37 |
+
return output
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_layer_reduction_enabled(param_dict):
|
| 41 |
+
if LAYER_REDUCTION in param_dict.keys():
|
| 42 |
+
return get_scalar_param(param_dict[LAYER_REDUCTION], LAYER_REDUCTION_ENABLED, LAYER_REDUCTION_ENABLED_DEFAULT)
|
| 43 |
+
else:
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_layer_reduction_params(param_dict):
|
| 48 |
+
if LAYER_REDUCTION in param_dict.keys():
|
| 49 |
+
layer_reduction_params = copy.copy(param_dict[LAYER_REDUCTION])
|
| 50 |
+
layer_reduction_params.pop(LAYER_REDUCTION_ENABLED)
|
| 51 |
+
return layer_reduction_params
|
| 52 |
+
else:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_quantize_enabled(param_dict):
|
| 57 |
+
if COMPRESSION_TRAINING not in param_dict.keys():
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
sub_param_dict = param_dict[COMPRESSION_TRAINING]
|
| 61 |
+
output = get_weight_quantization_shared_parameters(sub_param_dict)
|
| 62 |
+
return output[WEIGHT_QUANTIZE_ENABLED]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_weight_quantization(param_dict):
|
| 66 |
+
output = {}
|
| 67 |
+
if WEIGHT_QUANTIZATION not in param_dict.keys():
|
| 68 |
+
param_dict[WEIGHT_QUANTIZATION] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 69 |
+
sub_param_dict = param_dict[WEIGHT_QUANTIZATION]
|
| 70 |
+
# shared parameters
|
| 71 |
+
output[SHARED_PARAMETERS] = get_weight_quantization_shared_parameters(sub_param_dict)
|
| 72 |
+
# each sub-groups
|
| 73 |
+
if output[SHARED_PARAMETERS][WEIGHT_QUANTIZE_ENABLED]:
|
| 74 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 75 |
+
), f"Weigh Quantization is enabled, {DIFFERENT_GROUPS} must be specified"
|
| 76 |
+
output[DIFFERENT_GROUPS] = get_weight_quantization_different_groups(sub_param_dict)
|
| 77 |
+
return output
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_weight_quantization_shared_parameters(param_dict):
|
| 81 |
+
output = {}
|
| 82 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 83 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 84 |
+
output[WEIGHT_QUANTIZE_ENABLED] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_ENABLED,
|
| 85 |
+
WEIGHT_QUANTIZE_ENABLED_DEFAULT)
|
| 86 |
+
output[WEIGHT_QUANTIZE_KERNEL] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_KERNEL,
|
| 87 |
+
WEIGHT_QUANTIZE_KERNEL_DEFAULT)
|
| 88 |
+
output[WEIGHT_QUANTIZE_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_SCHEDULE_OFFSET,
|
| 89 |
+
WEIGHT_QUANTIZE_SCHEDULE_OFFSET_DEFAULT)
|
| 90 |
+
output[WEIGHT_QUANTIZE_GROUPS] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_GROUPS,
|
| 91 |
+
WEIGHT_QUANTIZE_GROUPS_DEFAULT)
|
| 92 |
+
output[WEIGHT_QUANTIZE_VERBOSE] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_VERBOSE,
|
| 93 |
+
WEIGHT_QUANTIZE_VERBOSE_DEFAULT)
|
| 94 |
+
output[WEIGHT_QUANTIZE_TYPE] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_TYPE,
|
| 95 |
+
WEIGHT_QUANTIZE_TYPE_DEFAULT)
|
| 96 |
+
output[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED] = get_scalar_param(sub_param_dict,
|
| 97 |
+
WEIGHT_QUANTIZE_IN_FORWARD_ENABLED,
|
| 98 |
+
WEIGHT_QUANTIZE_IN_FORWARD_ENABLED_DEFAULT)
|
| 99 |
+
assert output[WEIGHT_QUANTIZE_TYPE] in [
|
| 100 |
+
WEIGHT_QUANTIZE_SYMMETRIC, WEIGHT_QUANTIZE_ASYMMETRIC
|
| 101 |
+
], f"Invalid weight quantize type. Supported types: [{WEIGHT_QUANTIZE_SYMMETRIC}, {WEIGHT_QUANTIZE_ASYMMETRIC}]"
|
| 102 |
+
output[WEIGHT_QUANTIZE_ROUNDING] = get_scalar_param(sub_param_dict, WEIGHT_QUANTIZE_ROUNDING,
|
| 103 |
+
WEIGHT_QUANTIZE_ROUNDING_DEFAULT)
|
| 104 |
+
assert output[WEIGHT_QUANTIZE_ROUNDING] in [
|
| 105 |
+
WEIGHT_QUANTIZE_NEAREST_ROUNDING, WEIGHT_QUANTIZE_STOCHASTIC_ROUNDING
|
| 106 |
+
], f"Invalid weight quantize rounding. Supported types: [{WEIGHT_QUANTIZE_NEAREST_ROUNDING}, {WEIGHT_QUANTIZE_STOCHASTIC_ROUNDING}]"
|
| 107 |
+
if WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE in sub_param_dict.keys():
|
| 108 |
+
output[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE] = get_scalar_param(
|
| 109 |
+
sub_param_dict[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE], WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED,
|
| 110 |
+
WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED_DEFAULT)
|
| 111 |
+
output[WEIGHT_QUANTIZE_CHANGE_RATIO] = get_scalar_param(
|
| 112 |
+
sub_param_dict[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE], WEIGHT_QUANTIZE_CHANGE_RATIO,
|
| 113 |
+
WEIGHT_QUANTIZE_CHANGE_RATIO_DEFAULT)
|
| 114 |
+
else:
|
| 115 |
+
output[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE] = WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED_DEFAULT
|
| 116 |
+
output[WEIGHT_QUANTIZE_CHANGE_RATIO] = WEIGHT_QUANTIZE_CHANGE_RATIO_DEFAULT
|
| 117 |
+
else:
|
| 118 |
+
output[WEIGHT_QUANTIZE_ENABLED] = WEIGHT_QUANTIZE_ENABLED_DEFAULT
|
| 119 |
+
output[WEIGHT_QUANTIZE_KERNEL] = WEIGHT_QUANTIZE_KERNEL_DEFAULT
|
| 120 |
+
output[WEIGHT_QUANTIZE_SCHEDULE_OFFSET] = WEIGHT_QUANTIZE_SCHEDULE_OFFSET_DEFAULT
|
| 121 |
+
output[WEIGHT_QUANTIZE_GROUPS] = WEIGHT_QUANTIZE_GROUPS_DEFAULT
|
| 122 |
+
output[WEIGHT_QUANTIZE_VERBOSE] = WEIGHT_QUANTIZE_VERBOSE_DEFAULT
|
| 123 |
+
output[WEIGHT_QUANTIZE_TYPE] = WEIGHT_QUANTIZE_TYPE_DEFAULT
|
| 124 |
+
output[WEIGHT_QUANTIZE_ROUNDING] = WEIGHT_QUANTIZE_ROUNDING_DEFAULT
|
| 125 |
+
output[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE] = WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED_DEFAULT
|
| 126 |
+
output[WEIGHT_QUANTIZE_CHANGE_RATIO] = WEIGHT_QUANTIZE_CHANGE_RATIO_DEFAULT
|
| 127 |
+
return output
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def get_weight_quantization_different_groups(param_dict):
|
| 131 |
+
output = {}
|
| 132 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 133 |
+
|
| 134 |
+
def get_params(name, group_dict):
|
| 135 |
+
assert WEIGHT_QUANTIZE_START_BITS in group_dict.keys(
|
| 136 |
+
), f"{WEIGHT_QUANTIZE_START_BITS} must be specified for weight quantization group {name}"
|
| 137 |
+
assert WEIGHT_QUANTIZE_TARGET_BITS in group_dict.keys(
|
| 138 |
+
), f"{WEIGHT_QUANTIZE_TARGET_BITS} must be specified for weight quantization group {name}"
|
| 139 |
+
group_dict[WEIGHT_QUANTIZATION_PERIOD] = get_scalar_param(group_dict, WEIGHT_QUANTIZATION_PERIOD,
|
| 140 |
+
WEIGHT_QUANTIZATION_PERIOD_DEFAULT)
|
| 141 |
+
return group_dict
|
| 142 |
+
|
| 143 |
+
for k, v in sub_param_dict.items():
|
| 144 |
+
output[k] = {}
|
| 145 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 146 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 147 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 148 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 149 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 150 |
+
|
| 151 |
+
return output
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_activation_quantization(param_dict):
|
| 155 |
+
output = {}
|
| 156 |
+
if ACTIVATION_QUANTIZATION not in param_dict.keys():
|
| 157 |
+
param_dict[ACTIVATION_QUANTIZATION] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 158 |
+
sub_param_dict = param_dict[ACTIVATION_QUANTIZATION]
|
| 159 |
+
# shared parameters
|
| 160 |
+
output[SHARED_PARAMETERS] = get_activation_quantization_shared_parameters(sub_param_dict)
|
| 161 |
+
# each sub-groups
|
| 162 |
+
if output[SHARED_PARAMETERS][ACTIVATION_QUANTIZATION_ENABLED]:
|
| 163 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 164 |
+
), f"Activation Quantization is enabled, {DIFFERENT_GROUPS} must be specified"
|
| 165 |
+
output[DIFFERENT_GROUPS] = get_activation_quantization_different_groups(sub_param_dict)
|
| 166 |
+
return output
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def get_activation_quantization_shared_parameters(param_dict):
|
| 170 |
+
output = {}
|
| 171 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 172 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 173 |
+
output[ACTIVATION_QUANTIZATION_ENABLED] = get_scalar_param(sub_param_dict, ACTIVATION_QUANTIZATION_ENABLED,
|
| 174 |
+
ACTIVATION_QUANTIZATION_ENABLED_DEFAULT)
|
| 175 |
+
output[ACTIVATION_QUANTIZE_TYPE] = get_scalar_param(sub_param_dict, ACTIVATION_QUANTIZE_TYPE,
|
| 176 |
+
ACTIVATION_QUANTIZE_TYPE_DEFAULT)
|
| 177 |
+
assert output[ACTIVATION_QUANTIZE_TYPE] in [
|
| 178 |
+
ACTIVATION_QUANTIZE_SYMMETRIC, ACTIVATION_QUANTIZE_ASYMMETRIC
|
| 179 |
+
], f"Invalid activation quantize type. Supported types: [{ACTIVATION_QUANTIZE_SYMMETRIC}, {ACTIVATION_QUANTIZE_ASYMMETRIC}]"
|
| 180 |
+
output[ACTIVATION_QUANTIZE_RANGE] = get_scalar_param(sub_param_dict, ACTIVATION_QUANTIZE_RANGE,
|
| 181 |
+
ACTIVATION_QUANTIZE_RANGE_DEFAULT)
|
| 182 |
+
assert output[ACTIVATION_QUANTIZE_RANGE] in [
|
| 183 |
+
ACTIVATION_QUANTIZE_RANGE_DYNAMIC, ACTIVATION_QUANTIZE_RANGE_STATIC
|
| 184 |
+
], f"Invalid activation quantize range calibration. Supported types: [{ACTIVATION_QUANTIZE_RANGE_DYNAMIC}, {ACTIVATION_QUANTIZE_RANGE_STATIC}]"
|
| 185 |
+
output[ACTIVATION_QUANTIZE_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict,
|
| 186 |
+
ACTIVATION_QUANTIZE_SCHEDULE_OFFSET,
|
| 187 |
+
ACTIVATION_QUANTIZE_SCHEDULE_OFFSET_DEFAULT)
|
| 188 |
+
else:
|
| 189 |
+
output[ACTIVATION_QUANTIZATION_ENABLED] = ACTIVATION_QUANTIZATION_ENABLED_DEFAULT
|
| 190 |
+
output[ACTIVATION_QUANTIZE_TYPE] = ACTIVATION_QUANTIZE_TYPE_DEFAULT
|
| 191 |
+
output[ACTIVATION_QUANTIZE_RANGE] = ACTIVATION_QUANTIZE_RANGE_DEFAULT
|
| 192 |
+
output[ACTIVATION_QUANTIZE_SCHEDULE_OFFSET] = ACTIVATION_QUANTIZE_SCHEDULE_OFFSET_DEFAULT
|
| 193 |
+
return output
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def get_activation_quantization_different_groups(param_dict):
|
| 197 |
+
output = {}
|
| 198 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 199 |
+
|
| 200 |
+
def get_params(name, group_dict):
|
| 201 |
+
assert ACTIVATION_QUANTIZE_BITS in group_dict.keys(
|
| 202 |
+
), f"{ACTIVATION_QUANTIZE_BITS} must be specified for activation quantization group {name}"
|
| 203 |
+
return group_dict
|
| 204 |
+
|
| 205 |
+
for k, v in sub_param_dict.items():
|
| 206 |
+
output[k] = {}
|
| 207 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 208 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 209 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 210 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 211 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 212 |
+
|
| 213 |
+
return output
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def get_sparse_pruning(param_dict):
|
| 217 |
+
output = {}
|
| 218 |
+
if SPARSE_PRUNING not in param_dict.keys():
|
| 219 |
+
param_dict[SPARSE_PRUNING] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 220 |
+
sub_param_dict = param_dict[SPARSE_PRUNING]
|
| 221 |
+
# shared parameters
|
| 222 |
+
output[SHARED_PARAMETERS] = get_sparse_pruning_shared_parameters(sub_param_dict)
|
| 223 |
+
# each sub-groups
|
| 224 |
+
if output[SHARED_PARAMETERS][SPARSE_PRUNING_ENABLED] and output[SHARED_PARAMETERS][
|
| 225 |
+
SPARSE_PRUNING_METHOD] != SPARSE_PRUNING_METHOD_SNIP_MOMENTUM:
|
| 226 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 227 |
+
), f"Sparse Pruning is enabled and not snip_momentum method, {DIFFERENT_GROUPS} must be specified"
|
| 228 |
+
output[DIFFERENT_GROUPS] = get_sparse_pruning_different_groups(sub_param_dict)
|
| 229 |
+
return output
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def get_sparse_pruning_shared_parameters(param_dict):
|
| 233 |
+
output = {}
|
| 234 |
+
|
| 235 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 236 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 237 |
+
output[SPARSE_PRUNING_ENABLED] = get_scalar_param(sub_param_dict, SPARSE_PRUNING_ENABLED,
|
| 238 |
+
SPARSE_PRUNING_ENABLED_DEFAULT)
|
| 239 |
+
output[SPARSE_PRUNING_METHOD] = get_scalar_param(sub_param_dict, SPARSE_PRUNING_METHOD,
|
| 240 |
+
SPARSE_PRUNING_METHOD_DEFAULT)
|
| 241 |
+
assert output[SPARSE_PRUNING_METHOD] in [
|
| 242 |
+
SPARSE_PRUNING_METHOD_L1, SPARSE_PRUNING_METHOD_TOPK, SPARSE_PRUNING_METHOD_SNIP_MOMENTUM
|
| 243 |
+
], f"Invalid sparse pruning method. Supported types: [{SPARSE_PRUNING_METHOD_L1}, {SPARSE_PRUNING_METHOD_TOPK}, {SPARSE_PRUNING_METHOD_SNIP_MOMENTUM}]"
|
| 244 |
+
output[SPARSE_PRUNING_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict, SPARSE_PRUNING_SCHEDULE_OFFSET,
|
| 245 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_DEFAULT)
|
| 246 |
+
if output[SPARSE_PRUNING_METHOD] == SPARSE_PRUNING_METHOD_SNIP_MOMENTUM:
|
| 247 |
+
output[SPARSE_PRUNING_BLOCK_PATTERN] = get_scalar_param(sub_param_dict, SPARSE_PRUNING_BLOCK_PATTERN,
|
| 248 |
+
SPARSE_PRUNING_BLOCK_PATTERN_DEFAULT)
|
| 249 |
+
output[SPARSE_PRUNING_DENSE_RATIO] = get_scalar_param(sub_param_dict, SPARSE_PRUNING_DENSE_RATIO,
|
| 250 |
+
SPARSE_PRUNING_DENSE_RATIO_DEFAULT)
|
| 251 |
+
assert output[SPARSE_PRUNING_DENSE_RATIO] > 0 and output[
|
| 252 |
+
SPARSE_PRUNING_DENSE_RATIO] < 1, f"Invalid dense_ratio value. Must be less than 1"
|
| 253 |
+
output[SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE] = get_scalar_param(
|
| 254 |
+
sub_param_dict, SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE, SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE_DEFAULT)
|
| 255 |
+
output[SPARSE_PRUNING_EXCLUDED_MODULES] = get_list_param(sub_param_dict, SPARSE_PRUNING_EXCLUDED_MODULES,
|
| 256 |
+
SPARSE_PRUNING_EXCLUDED_MODULES_DEFAULT)
|
| 257 |
+
output[SPARSE_PRUNING_SCHEDULE_OFFSET_END] = get_scalar_param(sub_param_dict,
|
| 258 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_END,
|
| 259 |
+
output[SPARSE_PRUNING_SCHEDULE_OFFSET])
|
| 260 |
+
assert output[SPARSE_PRUNING_SCHEDULE_OFFSET] <= output[
|
| 261 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_END], f"Invalid schedule_offset and schedule_offset_end values"
|
| 262 |
+
else:
|
| 263 |
+
output[SPARSE_PRUNING_ENABLED] = SPARSE_PRUNING_ENABLED_DEFAULT
|
| 264 |
+
output[SPARSE_PRUNING_METHOD] = SPARSE_PRUNING_METHOD_DEFAULT
|
| 265 |
+
output[SPARSE_PRUNING_SCHEDULE_OFFSET] = SPARSE_PRUNING_SCHEDULE_OFFSET_DEFAULT
|
| 266 |
+
return output
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def get_sparse_pruning_different_groups(param_dict):
|
| 270 |
+
output = {}
|
| 271 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 272 |
+
|
| 273 |
+
def get_params(name, group_dict):
|
| 274 |
+
assert SPARSE_PRUNING_DENSE_RATIO in group_dict.keys(
|
| 275 |
+
), f"{SPARSE_PRUNING_DENSE_RATIO} must be specified for sparse pruning group {name}"
|
| 276 |
+
return group_dict
|
| 277 |
+
|
| 278 |
+
for k, v in sub_param_dict.items():
|
| 279 |
+
output[k] = {}
|
| 280 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 281 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 282 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 283 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 284 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 285 |
+
|
| 286 |
+
return output
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def get_row_pruning(param_dict):
|
| 290 |
+
output = {}
|
| 291 |
+
if ROW_PRUNING not in param_dict.keys():
|
| 292 |
+
param_dict[ROW_PRUNING] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 293 |
+
sub_param_dict = param_dict[ROW_PRUNING]
|
| 294 |
+
# shared parameters
|
| 295 |
+
output[SHARED_PARAMETERS] = get_row_pruning_shared_parameters(sub_param_dict)
|
| 296 |
+
# each sub-groups
|
| 297 |
+
if output[SHARED_PARAMETERS][ROW_PRUNING_ENABLED]:
|
| 298 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 299 |
+
), f"Row Pruning is enabled, {DIFFERENT_GROUPS} must be specified"
|
| 300 |
+
output[DIFFERENT_GROUPS] = get_row_pruning_different_groups(sub_param_dict)
|
| 301 |
+
return output
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def get_row_pruning_shared_parameters(param_dict):
|
| 305 |
+
output = {}
|
| 306 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 307 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 308 |
+
output[ROW_PRUNING_ENABLED] = get_scalar_param(sub_param_dict, ROW_PRUNING_ENABLED,
|
| 309 |
+
ROW_PRUNING_ENABLED_DEFAULT)
|
| 310 |
+
output[ROW_PRUNING_METHOD] = get_scalar_param(sub_param_dict, ROW_PRUNING_METHOD, ROW_PRUNING_METHOD_DEFAULT)
|
| 311 |
+
assert output[ROW_PRUNING_METHOD] in [
|
| 312 |
+
ROW_PRUNING_METHOD_L1, ROW_PRUNING_METHOD_TOPK
|
| 313 |
+
], f"Invalid row pruning method. Supported types: [{ROW_PRUNING_METHOD_L1}, {ROW_PRUNING_METHOD_TOPK}]"
|
| 314 |
+
output[ROW_PRUNING_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict, ROW_PRUNING_SCHEDULE_OFFSET,
|
| 315 |
+
ROW_PRUNING_SCHEDULE_OFFSET_DEFAULT)
|
| 316 |
+
else:
|
| 317 |
+
output[ROW_PRUNING_ENABLED] = ROW_PRUNING_ENABLED_DEFAULT
|
| 318 |
+
output[ROW_PRUNING_METHOD] = ROW_PRUNING_METHOD_DEFAULT
|
| 319 |
+
output[ROW_PRUNING_SCHEDULE_OFFSET] = ROW_PRUNING_SCHEDULE_OFFSET_DEFAULT
|
| 320 |
+
return output
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def get_row_pruning_different_groups(param_dict):
|
| 324 |
+
output = {}
|
| 325 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 326 |
+
|
| 327 |
+
def get_params(name, group_dict):
|
| 328 |
+
assert ROW_PRUNING_DENSE_RATIO in group_dict.keys(
|
| 329 |
+
), f"{ROW_PRUNING_DENSE_RATIO} must be specified for row pruning group {name}"
|
| 330 |
+
return group_dict
|
| 331 |
+
|
| 332 |
+
for k, v in sub_param_dict.items():
|
| 333 |
+
output[k] = {}
|
| 334 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 335 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 336 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 337 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 338 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 339 |
+
return output
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def get_head_pruning(param_dict):
|
| 343 |
+
output = {}
|
| 344 |
+
if HEAD_PRUNING not in param_dict.keys():
|
| 345 |
+
param_dict[HEAD_PRUNING] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 346 |
+
sub_param_dict = param_dict[HEAD_PRUNING]
|
| 347 |
+
# shared parameters
|
| 348 |
+
output[SHARED_PARAMETERS] = get_head_pruning_shared_parameters(sub_param_dict)
|
| 349 |
+
# each sub-groups
|
| 350 |
+
if output[SHARED_PARAMETERS][HEAD_PRUNING_ENABLED]:
|
| 351 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 352 |
+
), f"Head Pruning is enabled, {DIFFERENT_GROUPS} must be specified"
|
| 353 |
+
output[DIFFERENT_GROUPS] = get_head_pruning_different_groups(sub_param_dict)
|
| 354 |
+
return output
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def get_head_pruning_shared_parameters(param_dict):
|
| 358 |
+
output = {}
|
| 359 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 360 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 361 |
+
output[HEAD_PRUNING_ENABLED] = get_scalar_param(sub_param_dict, HEAD_PRUNING_ENABLED,
|
| 362 |
+
HEAD_PRUNING_ENABLED_DEFAULT)
|
| 363 |
+
output[HEAD_PRUNING_METHOD] = get_scalar_param(sub_param_dict, HEAD_PRUNING_METHOD,
|
| 364 |
+
HEAD_PRUNING_METHOD_DEFAULT)
|
| 365 |
+
assert output[HEAD_PRUNING_METHOD] in [
|
| 366 |
+
HEAD_PRUNING_METHOD_L1, HEAD_PRUNING_METHOD_TOPK
|
| 367 |
+
], f"Invalid head pruning method. Supported types: [{HEAD_PRUNING_METHOD_L1}, {HEAD_PRUNING_METHOD_TOPK}]"
|
| 368 |
+
output[HEAD_PRUNING_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict, HEAD_PRUNING_SCHEDULE_OFFSET,
|
| 369 |
+
HEAD_PRUNING_SCHEDULE_OFFSET_DEFAULT)
|
| 370 |
+
if output[HEAD_PRUNING_ENABLED]:
|
| 371 |
+
assert HEAD_PRUNING_NUM_HEADS in sub_param_dict.keys(
|
| 372 |
+
), f"{HEAD_PRUNING_NUM_HEADS} must be specified for head pruning"
|
| 373 |
+
output[HEAD_PRUNING_NUM_HEADS] = sub_param_dict[HEAD_PRUNING_NUM_HEADS]
|
| 374 |
+
else:
|
| 375 |
+
output[HEAD_PRUNING_ENABLED] = HEAD_PRUNING_ENABLED_DEFAULT
|
| 376 |
+
output[HEAD_PRUNING_METHOD] = HEAD_PRUNING_METHOD_DEFAULT
|
| 377 |
+
output[HEAD_PRUNING_SCHEDULE_OFFSET] = HEAD_PRUNING_SCHEDULE_OFFSET_DEFAULT
|
| 378 |
+
return output
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def get_head_pruning_different_groups(param_dict):
|
| 382 |
+
output = {}
|
| 383 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 384 |
+
|
| 385 |
+
def get_params(name, group_dict):
|
| 386 |
+
assert HEAD_PRUNING_DENSE_RATIO in group_dict.keys(
|
| 387 |
+
), f"dense_ratio must be specified for head pruning group {name}"
|
| 388 |
+
return group_dict
|
| 389 |
+
|
| 390 |
+
for k, v in sub_param_dict.items():
|
| 391 |
+
output[k] = {}
|
| 392 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 393 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 394 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 395 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 396 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 397 |
+
return output
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def get_channel_pruning(param_dict):
|
| 401 |
+
output = {}
|
| 402 |
+
if CHANNEL_PRUNING not in param_dict.keys():
|
| 403 |
+
param_dict[CHANNEL_PRUNING] = {SHARED_PARAMETERS: {}, DIFFERENT_GROUPS: {}}
|
| 404 |
+
sub_param_dict = param_dict[CHANNEL_PRUNING]
|
| 405 |
+
# shared parameters
|
| 406 |
+
output[SHARED_PARAMETERS] = get_channel_pruning_shared_parameters(sub_param_dict)
|
| 407 |
+
# each sub-groups
|
| 408 |
+
if output[SHARED_PARAMETERS][CHANNEL_PRUNING_ENABLED]:
|
| 409 |
+
assert DIFFERENT_GROUPS in sub_param_dict.keys(
|
| 410 |
+
), f"Sparse Pruning is enabled, {DIFFERENT_GROUPS} must be specified"
|
| 411 |
+
output[DIFFERENT_GROUPS] = get_channel_pruning_different_groups(sub_param_dict)
|
| 412 |
+
return output
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def get_channel_pruning_shared_parameters(param_dict):
|
| 416 |
+
output = {}
|
| 417 |
+
if SHARED_PARAMETERS in param_dict.keys():
|
| 418 |
+
sub_param_dict = param_dict[SHARED_PARAMETERS]
|
| 419 |
+
output[CHANNEL_PRUNING_ENABLED] = get_scalar_param(sub_param_dict, CHANNEL_PRUNING_ENABLED,
|
| 420 |
+
CHANNEL_PRUNING_ENABLED_DEFAULT)
|
| 421 |
+
output[CHANNEL_PRUNING_METHOD] = get_scalar_param(sub_param_dict, CHANNEL_PRUNING_METHOD,
|
| 422 |
+
CHANNEL_PRUNING_METHOD_DEFAULT)
|
| 423 |
+
assert output[CHANNEL_PRUNING_METHOD] in [
|
| 424 |
+
CHANNEL_PRUNING_METHOD_L1, CHANNEL_PRUNING_METHOD_TOPK
|
| 425 |
+
], f"Invalid channel pruning method. Supported types: [{CHANNEL_PRUNING_METHOD_L1}, {CHANNEL_PRUNING_METHOD_TOPK}]"
|
| 426 |
+
output[CHANNEL_PRUNING_SCHEDULE_OFFSET] = get_scalar_param(sub_param_dict, CHANNEL_PRUNING_SCHEDULE_OFFSET,
|
| 427 |
+
CHANNEL_PRUNING_SCHEDULE_OFFSET_DEFAULT)
|
| 428 |
+
else:
|
| 429 |
+
output[CHANNEL_PRUNING_ENABLED] = CHANNEL_PRUNING_ENABLED_DEFAULT
|
| 430 |
+
output[CHANNEL_PRUNING_METHOD] = CHANNEL_PRUNING_METHOD_DEFAULT
|
| 431 |
+
output[CHANNEL_PRUNING_SCHEDULE_OFFSET] = CHANNEL_PRUNING_SCHEDULE_OFFSET_DEFAULT
|
| 432 |
+
return output
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def get_channel_pruning_different_groups(param_dict):
|
| 436 |
+
output = {}
|
| 437 |
+
sub_param_dict = param_dict[DIFFERENT_GROUPS]
|
| 438 |
+
|
| 439 |
+
def get_params(name, group_dict):
|
| 440 |
+
assert CHANNEL_PRUNING_DENSE_RATIO in group_dict.keys(
|
| 441 |
+
), f"{CHANNEL_PRUNING_DENSE_RATIO} must be specified for channel pruning group {name}"
|
| 442 |
+
return group_dict
|
| 443 |
+
|
| 444 |
+
for k, v in sub_param_dict.items():
|
| 445 |
+
output[k] = {}
|
| 446 |
+
output[k][DIFFERENT_GROUPS_PARAMETERS] = get_params(k, sub_param_dict[k][DIFFERENT_GROUPS_PARAMETERS])
|
| 447 |
+
output[k][DIFFERENT_GROUPS_MODULE_SCOPE] = get_scalar_param(sub_param_dict[k], DIFFERENT_GROUPS_MODULE_SCOPE,
|
| 448 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT)
|
| 449 |
+
output[k][DIFFERENT_GROUPS_RELATED_MODULE_SCOPE] = get_scalar_param(
|
| 450 |
+
sub_param_dict[k], DIFFERENT_GROUPS_RELATED_MODULE_SCOPE, DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT)
|
| 451 |
+
|
| 452 |
+
return output
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/constants.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
#########################################
|
| 7 |
+
# Compression Methods
|
| 8 |
+
# It has several sub-components
|
| 9 |
+
# #########################################
|
| 10 |
+
COMPRESSION_TRAINING = "compression_training"
|
| 11 |
+
SHARED_PARAMETERS = "shared_parameters"
|
| 12 |
+
DIFFERENT_GROUPS = "different_groups"
|
| 13 |
+
TECHNIQUE_ENABLED = "enabled"
|
| 14 |
+
TECHNIQUE_SCHEDULE_OFFSET = "schedule_offset"
|
| 15 |
+
TECHNIQUE_SCHEDULE_OFFSET_END = "schedule_offset_end"
|
| 16 |
+
DIFFERENT_GROUPS_PARAMETERS = "params"
|
| 17 |
+
DIFFERENT_GROUPS_MODULE_SCOPE = "modules"
|
| 18 |
+
DIFFERENT_GROUPS_MODULE_SCOPE_DEFAULT = "*"
|
| 19 |
+
DIFFERENT_GROUPS_RELATED_MODULE_SCOPE = "related_modules"
|
| 20 |
+
DIFFERENT_GROUPS_RELATED_MODULE_SCOPE_DEFAULT = None
|
| 21 |
+
# COMPRESSION_TRAINING_ENABLED = "enabled"
|
| 22 |
+
# COMPRESSION_TRAINING_ENABLED_DEFAULT = False
|
| 23 |
+
|
| 24 |
+
####
|
| 25 |
+
# Layer Reduction
|
| 26 |
+
####
|
| 27 |
+
LAYER_REDUCTION = "layer_reduction"
|
| 28 |
+
LAYER_REDUCTION_ENABLED = "enabled"
|
| 29 |
+
LAYER_REDUCTION_ENABLED_DEFAULT = False
|
| 30 |
+
KEEP_NUMBER_LAYER = "keep_number_layer"
|
| 31 |
+
MODULE_NAME_PREFIX = "module_name_prefix"
|
| 32 |
+
TEACHER_LAYER = "teacher_layer"
|
| 33 |
+
OTHER_MODULE_NAME = "other_module_name"
|
| 34 |
+
|
| 35 |
+
####
|
| 36 |
+
# Weight Quantization
|
| 37 |
+
####
|
| 38 |
+
WEIGHT_QUANTIZATION = "weight_quantization"
|
| 39 |
+
|
| 40 |
+
WEIGHT_QUANTIZATION_PERIOD = "quantization_period"
|
| 41 |
+
WEIGHT_QUANTIZATION_PERIOD_DEFAULT = 1
|
| 42 |
+
|
| 43 |
+
WEIGHT_QUANTIZE_IN_FORWARD_ENABLED = "quantize_weight_in_forward"
|
| 44 |
+
WEIGHT_QUANTIZE_IN_FORWARD_ENABLED_DEFAULT = False
|
| 45 |
+
|
| 46 |
+
WEIGHT_QUANTIZE_ENABLED = TECHNIQUE_ENABLED
|
| 47 |
+
WEIGHT_QUANTIZE_ENABLED_DEFAULT = False
|
| 48 |
+
|
| 49 |
+
WEIGHT_QUANTIZE_KERNEL = "quantizer_kernel"
|
| 50 |
+
WEIGHT_QUANTIZE_KERNEL_DEFAULT = False
|
| 51 |
+
|
| 52 |
+
WEIGHT_QUANTIZE_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 53 |
+
WEIGHT_QUANTIZE_SCHEDULE_OFFSET_DEFAULT = 0
|
| 54 |
+
|
| 55 |
+
WEIGHT_QUANTIZE_GROUPS = "quantize_groups"
|
| 56 |
+
WEIGHT_QUANTIZE_GROUPS_DEFAULT = 1
|
| 57 |
+
|
| 58 |
+
WEIGHT_QUANTIZE_VERBOSE = "quantize_verbose"
|
| 59 |
+
WEIGHT_QUANTIZE_VERBOSE_DEFAULT = False
|
| 60 |
+
|
| 61 |
+
WEIGHT_QUANTIZE_TYPE = "quantization_type"
|
| 62 |
+
WEIGHT_QUANTIZE_TYPE_DEFAULT = "symmetric"
|
| 63 |
+
WEIGHT_QUANTIZE_SYMMETRIC = "symmetric"
|
| 64 |
+
WEIGHT_QUANTIZE_ASYMMETRIC = "asymmetric"
|
| 65 |
+
|
| 66 |
+
WEIGHT_QUANTIZE_ROUNDING = "rounding"
|
| 67 |
+
WEIGHT_QUANTIZE_ROUNDING_DEFAULT = "nearest"
|
| 68 |
+
WEIGHT_QUANTIZE_STOCHASTIC_ROUNDING = "stochastic"
|
| 69 |
+
WEIGHT_QUANTIZE_NEAREST_ROUNDING = "nearest"
|
| 70 |
+
# maybe deleted for a cleaner version
|
| 71 |
+
WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE = "fp16_mixed_quantize"
|
| 72 |
+
|
| 73 |
+
WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED = "enabled"
|
| 74 |
+
WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE_ENABLED_DEFAULT = False
|
| 75 |
+
|
| 76 |
+
WEIGHT_QUANTIZE_CHANGE_RATIO = "quantize_change_ratio"
|
| 77 |
+
WEIGHT_QUANTIZE_CHANGE_RATIO_DEFAULT = 0.001
|
| 78 |
+
|
| 79 |
+
WEIGHT_QUANTIZE_START_BITS = "start_bits"
|
| 80 |
+
WEIGHT_QUANTIZE_TARGET_BITS = "target_bits"
|
| 81 |
+
###
|
| 82 |
+
# Activation Quantization
|
| 83 |
+
###
|
| 84 |
+
ACTIVATION_QUANTIZATION = "activation_quantization"
|
| 85 |
+
|
| 86 |
+
ACTIVATION_QUANTIZATION_ENABLED = TECHNIQUE_ENABLED
|
| 87 |
+
ACTIVATION_QUANTIZATION_ENABLED_DEFAULT = False
|
| 88 |
+
|
| 89 |
+
ACTIVATION_QUANTIZE_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 90 |
+
ACTIVATION_QUANTIZE_SCHEDULE_OFFSET_DEFAULT = 1000
|
| 91 |
+
|
| 92 |
+
ACTIVATION_QUANTIZE_TYPE = "quantization_type"
|
| 93 |
+
ACTIVATION_QUANTIZE_TYPE_DEFAULT = "symmetric"
|
| 94 |
+
ACTIVATION_QUANTIZE_SYMMETRIC = "symmetric"
|
| 95 |
+
ACTIVATION_QUANTIZE_ASYMMETRIC = "asymmetric"
|
| 96 |
+
|
| 97 |
+
ACTIVATION_QUANTIZE_RANGE = 'range_calibration'
|
| 98 |
+
ACTIVATION_QUANTIZE_RANGE_DEFAULT = 'dynamic'
|
| 99 |
+
ACTIVATION_QUANTIZE_RANGE_STATIC = 'static'
|
| 100 |
+
ACTIVATION_QUANTIZE_RANGE_DYNAMIC = 'dynamic'
|
| 101 |
+
|
| 102 |
+
ACTIVATION_QUANTIZE_BITS = "bits"
|
| 103 |
+
###
|
| 104 |
+
# Sparse Pruning
|
| 105 |
+
###
|
| 106 |
+
SPARSE_PRUNING = "sparse_pruning"
|
| 107 |
+
|
| 108 |
+
SPARSE_PRUNING_ENABLED = TECHNIQUE_ENABLED
|
| 109 |
+
SPARSE_PRUNING_ENABLED_DEFAULT = False
|
| 110 |
+
|
| 111 |
+
SPARSE_PRUNING_METHOD = "method"
|
| 112 |
+
SPARSE_PRUNING_METHOD_DEFAULT = "l1"
|
| 113 |
+
SPARSE_PRUNING_METHOD_L1 = "l1"
|
| 114 |
+
SPARSE_PRUNING_METHOD_TOPK = "topk"
|
| 115 |
+
SPARSE_PRUNING_METHOD_SNIP_MOMENTUM = "snip_momentum"
|
| 116 |
+
|
| 117 |
+
SPARSE_PRUNING_BLOCK_PATTERN = "block_pattern"
|
| 118 |
+
SPARSE_PRUNING_BLOCK_PATTERN_DEFAULT = "4x1"
|
| 119 |
+
|
| 120 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE = "schedule_offset_stride"
|
| 121 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE_DEFAULT = 1
|
| 122 |
+
|
| 123 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 124 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_DEFAULT = 1000
|
| 125 |
+
|
| 126 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_END = TECHNIQUE_SCHEDULE_OFFSET_END
|
| 127 |
+
SPARSE_PRUNING_SCHEDULE_OFFSET_END_DEFAULT = SPARSE_PRUNING_SCHEDULE_OFFSET_DEFAULT
|
| 128 |
+
|
| 129 |
+
SPARSE_PRUNING_DENSE_RATIO = "dense_ratio"
|
| 130 |
+
SPARSE_PRUNING_DENSE_RATIO_DEFAULT = 0.1
|
| 131 |
+
|
| 132 |
+
SPARSE_PRUNING_EXCLUDED_MODULES = "excluded_modules"
|
| 133 |
+
SPARSE_PRUNING_EXCLUDED_MODULES_DEFAULT = []
|
| 134 |
+
###
|
| 135 |
+
# Row Pruning
|
| 136 |
+
###
|
| 137 |
+
ROW_PRUNING = "row_pruning"
|
| 138 |
+
|
| 139 |
+
ROW_PRUNING_ENABLED = TECHNIQUE_ENABLED
|
| 140 |
+
ROW_PRUNING_ENABLED_DEFAULT = False
|
| 141 |
+
|
| 142 |
+
ROW_PRUNING_METHOD = "method"
|
| 143 |
+
ROW_PRUNING_METHOD_DEFAULT = "l1"
|
| 144 |
+
ROW_PRUNING_METHOD_L1 = "l1"
|
| 145 |
+
ROW_PRUNING_METHOD_TOPK = "topk"
|
| 146 |
+
|
| 147 |
+
ROW_PRUNING_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 148 |
+
ROW_PRUNING_SCHEDULE_OFFSET_DEFAULT = 1000
|
| 149 |
+
|
| 150 |
+
ROW_PRUNING_DENSE_RATIO = "dense_ratio"
|
| 151 |
+
|
| 152 |
+
###
|
| 153 |
+
# Head Pruning
|
| 154 |
+
###
|
| 155 |
+
HEAD_PRUNING = "head_pruning"
|
| 156 |
+
|
| 157 |
+
HEAD_PRUNING_ENABLED = TECHNIQUE_ENABLED
|
| 158 |
+
HEAD_PRUNING_ENABLED_DEFAULT = False
|
| 159 |
+
|
| 160 |
+
HEAD_PRUNING_METHOD = "method"
|
| 161 |
+
HEAD_PRUNING_METHOD_DEFAULT = "topk"
|
| 162 |
+
HEAD_PRUNING_METHOD_L1 = "l1"
|
| 163 |
+
HEAD_PRUNING_METHOD_TOPK = "topk"
|
| 164 |
+
|
| 165 |
+
HEAD_PRUNING_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 166 |
+
HEAD_PRUNING_SCHEDULE_OFFSET_DEFAULT = 1000
|
| 167 |
+
|
| 168 |
+
HEAD_PRUNING_NUM_HEADS = "num_heads"
|
| 169 |
+
|
| 170 |
+
HEAD_PRUNING_DENSE_RATIO = "dense_ratio"
|
| 171 |
+
|
| 172 |
+
###
|
| 173 |
+
# Channel Pruning
|
| 174 |
+
###
|
| 175 |
+
CHANNEL_PRUNING = "channel_pruning"
|
| 176 |
+
|
| 177 |
+
CHANNEL_PRUNING_ENABLED = TECHNIQUE_ENABLED
|
| 178 |
+
CHANNEL_PRUNING_ENABLED_DEFAULT = False
|
| 179 |
+
|
| 180 |
+
CHANNEL_PRUNING_METHOD = "method"
|
| 181 |
+
CHANNEL_PRUNING_METHOD_DEFAULT = "l1"
|
| 182 |
+
CHANNEL_PRUNING_METHOD_L1 = "l1"
|
| 183 |
+
CHANNEL_PRUNING_METHOD_TOPK = "topk"
|
| 184 |
+
|
| 185 |
+
CHANNEL_PRUNING_SCHEDULE_OFFSET = TECHNIQUE_SCHEDULE_OFFSET
|
| 186 |
+
CHANNEL_PRUNING_SCHEDULE_OFFSET_DEFAULT = 1000
|
| 187 |
+
|
| 188 |
+
CHANNEL_PRUNING_DENSE_RATIO = "dense_ratio"
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/helper.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from .basic_layer import Embedding_Compress, LinearLayer_Compress, Conv2dLayer_Compress, BNLayer_Compress, ColumnParallelLinear_Compress, RowParallelLinear_Compress
|
| 8 |
+
from .constants import *
|
| 9 |
+
from deepspeed.utils import logger
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from neural_compressor.compression import pruner as nc_pruner
|
| 13 |
+
except ImportError as e:
|
| 14 |
+
nc_pruner = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def recursive_getattr(model, module_name):
|
| 18 |
+
"""
|
| 19 |
+
Recursively get the attribute of a module.
|
| 20 |
+
Args:
|
| 21 |
+
model (`torch.nn.Module`)
|
| 22 |
+
The model to get the attribute from.
|
| 23 |
+
module_name (`str`)
|
| 24 |
+
The name of the module to get the attribute from.
|
| 25 |
+
"""
|
| 26 |
+
split_list = module_name.split('.')
|
| 27 |
+
output = model
|
| 28 |
+
for name in split_list:
|
| 29 |
+
output = getattr(output, name)
|
| 30 |
+
return output
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def recursive_setattr(model, module_name, module):
|
| 34 |
+
"""
|
| 35 |
+
Recursively set the attribute of a module.
|
| 36 |
+
Args:
|
| 37 |
+
model (`torch.nn.Module`)
|
| 38 |
+
The model to set the attribute in.
|
| 39 |
+
module_name (`str`)
|
| 40 |
+
The name of the module to set the attribute in.
|
| 41 |
+
module (`torch.nn.Module`)
|
| 42 |
+
The module to set the attribute to.
|
| 43 |
+
"""
|
| 44 |
+
split_list = module_name.split('.')
|
| 45 |
+
output = model
|
| 46 |
+
for name in split_list[:-1]:
|
| 47 |
+
output = getattr(output, name)
|
| 48 |
+
output.__setattr__(split_list[-1], module)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def module_replacement(model, module_name, compression_technique=None, mpu=None):
|
| 52 |
+
"""
|
| 53 |
+
Replace a module with a new module.
|
| 54 |
+
Args:
|
| 55 |
+
model (`torch.nn.Module`)
|
| 56 |
+
The model to replace the module in.
|
| 57 |
+
module_name (`str`)
|
| 58 |
+
The name of the module to replace.
|
| 59 |
+
compression_technique (`str`)
|
| 60 |
+
The compression technique to use for the new module.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
# Get the old module
|
| 64 |
+
old_module = recursive_getattr(model, module_name)
|
| 65 |
+
|
| 66 |
+
need_bias = False
|
| 67 |
+
if hasattr(old_module, 'bias') and old_module.bias is not None:
|
| 68 |
+
need_bias = True
|
| 69 |
+
|
| 70 |
+
# Initialize the new module
|
| 71 |
+
if isinstance(old_module, LinearLayer_Compress) or isinstance(old_module, torch.nn.Linear):
|
| 72 |
+
if isinstance(old_module, LinearLayer_Compress):
|
| 73 |
+
new_module = old_module
|
| 74 |
+
else:
|
| 75 |
+
new_module = LinearLayer_Compress(old_module.in_features, old_module.out_features,
|
| 76 |
+
bias=need_bias).to(device=old_module.weight.device,
|
| 77 |
+
dtype=old_module.weight.dtype)
|
| 78 |
+
new_module.weight.data = old_module.weight.data
|
| 79 |
+
if need_bias:
|
| 80 |
+
new_module.bias.data = old_module.bias.data
|
| 81 |
+
elif isinstance(old_module, Conv2dLayer_Compress) or isinstance(old_module, torch.nn.Conv2d):
|
| 82 |
+
if isinstance(old_module, Conv2dLayer_Compress):
|
| 83 |
+
new_module = old_module
|
| 84 |
+
else:
|
| 85 |
+
new_module = Conv2dLayer_Compress(old_module.in_channels, old_module.out_channels, old_module.kernel_size, old_module.stride, old_module.padding, \
|
| 86 |
+
old_module.dilation, old_module.groups, need_bias, \
|
| 87 |
+
old_module.padding_mode).to(device=old_module.weight.device, dtype=old_module.weight.dtype)
|
| 88 |
+
new_module.weight.data = old_module.weight.data
|
| 89 |
+
if need_bias:
|
| 90 |
+
new_module.bias.data = old_module.bias.data
|
| 91 |
+
elif isinstance(old_module, torch.nn.BatchNorm2d):
|
| 92 |
+
new_module = BNLayer_Compress(old_module.num_features, old_module.eps, old_module.momentum, old_module.affine,
|
| 93 |
+
old_module.track_running_stats).to(old_module.weight.device,
|
| 94 |
+
old_module.weight.dtype)
|
| 95 |
+
new_module.weight.data = old_module.weight.data
|
| 96 |
+
if need_bias:
|
| 97 |
+
new_module.bias.data = old_module.bias.data
|
| 98 |
+
new_module.running_mean.data = old_module.running_mean.data
|
| 99 |
+
new_module.running_var.data = old_module.running_var.data
|
| 100 |
+
elif isinstance(old_module, Embedding_Compress) or isinstance(old_module, torch.nn.Embedding):
|
| 101 |
+
if isinstance(old_module, Embedding_Compress):
|
| 102 |
+
new_module = old_module
|
| 103 |
+
else:
|
| 104 |
+
new_module = Embedding_Compress(old_module.num_embeddings, old_module.embedding_dim, old_module.padding_idx, old_module.max_norm, old_module.norm_type, \
|
| 105 |
+
old_module.scale_grad_by_freq, old_module.sparse).to(device=old_module.weight.device, dtype=old_module.weight.dtype)
|
| 106 |
+
new_module.weight.data = old_module.weight.data
|
| 107 |
+
elif mpu is not None and (isinstance(old_module, ColumnParallelLinear_Compress)
|
| 108 |
+
or isinstance(old_module, mpu.ColumnParallelLinear)):
|
| 109 |
+
if isinstance(old_module, ColumnParallelLinear_Compress):
|
| 110 |
+
new_module = old_module
|
| 111 |
+
else:
|
| 112 |
+
new_module = ColumnParallelLinear_Compress(mpu,
|
| 113 |
+
old_module.input_size,
|
| 114 |
+
old_module.output_size,
|
| 115 |
+
gather_output=old_module.gather_output,
|
| 116 |
+
skip_bias_add=old_module.skip_bias_add,
|
| 117 |
+
bias=need_bias).to(device=old_module.weight.device,
|
| 118 |
+
dtype=old_module.weight.dtype)
|
| 119 |
+
new_module.weight.data = old_module.weight.data
|
| 120 |
+
if need_bias:
|
| 121 |
+
new_module.bias.data = old_module.bias.data
|
| 122 |
+
elif mpu is not None and (isinstance(old_module, RowParallelLinear_Compress)
|
| 123 |
+
or isinstance(old_module, mpu.RowParallelLinear)):
|
| 124 |
+
if isinstance(old_module, RowParallelLinear_Compress):
|
| 125 |
+
new_module = old_module
|
| 126 |
+
else:
|
| 127 |
+
new_module = RowParallelLinear_Compress(mpu,
|
| 128 |
+
old_module.input_size,
|
| 129 |
+
old_module.output_size,
|
| 130 |
+
input_is_parallel=old_module.input_is_parallel,
|
| 131 |
+
skip_bias_add=old_module.skip_bias_add,
|
| 132 |
+
bias=need_bias).to(device=old_module.weight.device,
|
| 133 |
+
dtype=old_module.weight.dtype)
|
| 134 |
+
new_module.weight.data = old_module.weight.data
|
| 135 |
+
if need_bias:
|
| 136 |
+
new_module.bias.data = old_module.bias.data
|
| 137 |
+
else:
|
| 138 |
+
new_module = None
|
| 139 |
+
|
| 140 |
+
if compression_technique is not None:
|
| 141 |
+
for k, v in compression_technique.items():
|
| 142 |
+
if k == SPARSE_PRUNING:
|
| 143 |
+
if v[SPARSE_PRUNING_ENABLED]:
|
| 144 |
+
new_module.enable_sparse_pruning(v[SPARSE_PRUNING_DENSE_RATIO], v[SPARSE_PRUNING_METHOD])
|
| 145 |
+
elif k == ROW_PRUNING:
|
| 146 |
+
if v[ROW_PRUNING_ENABLED]:
|
| 147 |
+
new_module.enable_row_pruning(v[ROW_PRUNING_DENSE_RATIO], v[ROW_PRUNING_METHOD])
|
| 148 |
+
elif k == HEAD_PRUNING:
|
| 149 |
+
if v[HEAD_PRUNING_ENABLED]:
|
| 150 |
+
new_module.enable_head_pruning(v[HEAD_PRUNING_DENSE_RATIO], v[HEAD_PRUNING_METHOD],
|
| 151 |
+
v[HEAD_PRUNING_NUM_HEADS])
|
| 152 |
+
elif k == ACTIVATION_QUANTIZATION:
|
| 153 |
+
if v[ACTIVATION_QUANTIZATION_ENABLED]:
|
| 154 |
+
new_module.enable_activation_quantization(v[ACTIVATION_QUANTIZE_BITS], v[ACTIVATION_QUANTIZE_TYPE],
|
| 155 |
+
v[ACTIVATION_QUANTIZE_RANGE])
|
| 156 |
+
elif k == WEIGHT_QUANTIZATION:
|
| 157 |
+
if v[WEIGHT_QUANTIZE_ENABLED]:
|
| 158 |
+
new_module.enable_weight_quantization(v[WEIGHT_QUANTIZE_START_BITS],
|
| 159 |
+
v[WEIGHT_QUANTIZE_TARGET_BITS],
|
| 160 |
+
v[WEIGHT_QUANTIZATION_PERIOD],
|
| 161 |
+
v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED],
|
| 162 |
+
v[WEIGHT_QUANTIZE_TYPE], v[WEIGHT_QUANTIZE_GROUPS])
|
| 163 |
+
elif k == CHANNEL_PRUNING:
|
| 164 |
+
if v[CHANNEL_PRUNING_ENABLED]:
|
| 165 |
+
new_module.enable_channel_pruning(v[CHANNEL_PRUNING_DENSE_RATIO], v[CHANNEL_PRUNING_METHOD])
|
| 166 |
+
else:
|
| 167 |
+
raise NotImplementedError('Compression technique {} is not implemented'.format(k))
|
| 168 |
+
|
| 169 |
+
# Replace the old module with the new one
|
| 170 |
+
recursive_setattr(model, module_name, new_module)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def is_module_compressible(module, mpu=None):
|
| 174 |
+
ret = isinstance(module, torch.nn.Linear) or \
|
| 175 |
+
isinstance(module, torch.nn.Conv2d) or \
|
| 176 |
+
isinstance(module, torch.nn.Embedding) or \
|
| 177 |
+
isinstance(module, torch.nn.BatchNorm2d)
|
| 178 |
+
|
| 179 |
+
if mpu is not None:
|
| 180 |
+
ret = ret or isinstance(module, mpu.RowParallelLinear) or isinstance(module, mpu.ColumnParallelLinear)
|
| 181 |
+
|
| 182 |
+
return ret
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def compression_preparation(model, compression_technique_list, mpu):
|
| 186 |
+
"""
|
| 187 |
+
Prepare the compression techniques of a model.
|
| 188 |
+
Args:
|
| 189 |
+
model (`torch.nn.Module`)
|
| 190 |
+
The model to prepare the compression techniques of.
|
| 191 |
+
compression_technique_list (`list`)
|
| 192 |
+
The list of compression techniques to prepare the model to.
|
| 193 |
+
list[]
|
| 194 |
+
"""
|
| 195 |
+
# Here we first replace all module with our linear wrapper
|
| 196 |
+
for module_name, module in model.named_modules():
|
| 197 |
+
if is_module_compressible(module, mpu):
|
| 198 |
+
module_replacement(model, module_name, mpu=mpu)
|
| 199 |
+
for module_name_lists, _, compression_technique in compression_technique_list:
|
| 200 |
+
for mnl in module_name_lists:
|
| 201 |
+
for module_name in mnl:
|
| 202 |
+
module_replacement(model, module_name, compression_technique)
|
| 203 |
+
|
| 204 |
+
return model
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def fix_compression(model, module_name, compression_technique, mask=None, dim_reduction=False):
|
| 208 |
+
"""
|
| 209 |
+
Fix the compression technique of a module.
|
| 210 |
+
Args:
|
| 211 |
+
model (`torch.nn.Module`)
|
| 212 |
+
The model to fix the compression technique of.
|
| 213 |
+
module_name (`str`)
|
| 214 |
+
The name of the module to fix the compression technique of.
|
| 215 |
+
compression_technique (`str`)
|
| 216 |
+
The compression technique to fix the module to.
|
| 217 |
+
"""
|
| 218 |
+
# Here we can make things much simpler by just replacing the module
|
| 219 |
+
module = recursive_getattr(model, module_name)
|
| 220 |
+
for k, v in compression_technique.items():
|
| 221 |
+
if k == WEIGHT_QUANTIZATION and v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED] and v[WEIGHT_QUANTIZE_ENABLED]:
|
| 222 |
+
return module.fix_weight_quantization()
|
| 223 |
+
elif k == SPARSE_PRUNING and v[SPARSE_PRUNING_ENABLED]:
|
| 224 |
+
return module.fix_sparse_pruning_helper()
|
| 225 |
+
elif k == ROW_PRUNING and (v[ROW_PRUNING_ENABLED] or mask is not None):
|
| 226 |
+
return module.fix_row_col_pruning_helper(mask, dim_reduction=dim_reduction)
|
| 227 |
+
elif k == HEAD_PRUNING and (v[HEAD_PRUNING_ENABLED] or mask is not None):
|
| 228 |
+
return module.fix_head_pruning_helper(mask, v[HEAD_PRUNING_NUM_HEADS], dim_reduction=dim_reduction)
|
| 229 |
+
elif k == CHANNEL_PRUNING and (v[CHANNEL_PRUNING_ENABLED] or mask is not None):
|
| 230 |
+
return module.fix_channel_pruning_helper(mask, dim_reduction=dim_reduction)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def convert_conv1d_to_linear(model, convert_type):
|
| 234 |
+
'''
|
| 235 |
+
This is a help function to convert conv1d to linear (e.g., convert GPT2 from HF)
|
| 236 |
+
'''
|
| 237 |
+
if hasattr(model, 'module'):
|
| 238 |
+
c_model = model.module
|
| 239 |
+
else:
|
| 240 |
+
c_model = model
|
| 241 |
+
|
| 242 |
+
for name, module in c_model.named_modules():
|
| 243 |
+
if isinstance(module, convert_type):
|
| 244 |
+
old_module = recursive_getattr(c_model, name)
|
| 245 |
+
new_module = torch.nn.Linear(old_module.weight.data.size(0),
|
| 246 |
+
old_module.weight.data.size(1),
|
| 247 |
+
bias=True if old_module.bias is not None else False)
|
| 248 |
+
new_module.weight.data = old_module.weight.data.t().contiguous()
|
| 249 |
+
if new_module.bias is not None:
|
| 250 |
+
new_module.bias.data = old_module.bias.data.view(-1)
|
| 251 |
+
|
| 252 |
+
recursive_setattr(c_model, name, new_module)
|
| 253 |
+
|
| 254 |
+
return model
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def generate_pruners(config, model):
|
| 258 |
+
"""Generate pruners.
|
| 259 |
+
Args:
|
| 260 |
+
config (`neural_compressor.WeightPruningConfig`)
|
| 261 |
+
The object to the class WeightPruningConfig.
|
| 262 |
+
model (`torch.nn.module`)
|
| 263 |
+
The torch module object to be pruned.
|
| 264 |
+
"""
|
| 265 |
+
assert nc_pruner is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning"
|
| 266 |
+
from nc_pruner.utils import process_config, parse_to_prune
|
| 267 |
+
from nc_pruner.pruners import get_pruner
|
| 268 |
+
assert isinstance(model, torch.nn.Module)
|
| 269 |
+
pruners_info = process_config(config)
|
| 270 |
+
pruners = []
|
| 271 |
+
for info in pruners_info:
|
| 272 |
+
modules = parse_to_prune(info, model)
|
| 273 |
+
if modules == {}:
|
| 274 |
+
logger.warning("one pruner hooks no layers, please have a check")
|
| 275 |
+
|
| 276 |
+
pruners.append(get_pruner(info, modules))
|
| 277 |
+
info['modules'] = [key for key in modules.keys()]
|
| 278 |
+
info['len_of_modules'] = len(info['modules'])
|
| 279 |
+
logger.info(info)
|
| 280 |
+
return pruners
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def register_on_step_begin(model):
|
| 284 |
+
"""Mount on_step_begin to the model.
|
| 285 |
+
Args:
|
| 286 |
+
model (`torch.nn.module`)
|
| 287 |
+
The torch module object to be pruned.
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
def hook(module, input):
|
| 291 |
+
for pruner in module.pruners:
|
| 292 |
+
pruner.on_step_begin(0)
|
| 293 |
+
|
| 294 |
+
hook_handle = model.register_forward_pre_hook(hook)
|
| 295 |
+
return hook_handle
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def rewrite_optimizer_step(opt: torch.optim.Optimizer):
|
| 299 |
+
"""Mount on_before/after_optimizer_step to the optimizer.
|
| 300 |
+
Args:
|
| 301 |
+
model (`torch.opt.Optimizer`)
|
| 302 |
+
The torch optimizer object to be hooked.
|
| 303 |
+
"""
|
| 304 |
+
|
| 305 |
+
def new_step(self, closure=None):
|
| 306 |
+
if hasattr(self, "pruners"):
|
| 307 |
+
for pruner in self.pruners:
|
| 308 |
+
pruner.on_before_optimizer_step()
|
| 309 |
+
|
| 310 |
+
if closure is not None:
|
| 311 |
+
res = self.orig_step(closure)
|
| 312 |
+
else:
|
| 313 |
+
res = self.orig_step()
|
| 314 |
+
if hasattr(self, "pruners"):
|
| 315 |
+
for pruner in self.pruners:
|
| 316 |
+
pruner.on_after_optimizer_step()
|
| 317 |
+
return res
|
| 318 |
+
|
| 319 |
+
opt.orig_step = opt.step
|
| 320 |
+
import types
|
| 321 |
+
opt.step = types.MethodType(new_step, opt)
|
| 322 |
+
return opt
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/scheduler.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
from .compress import get_module_name
|
| 7 |
+
from .constants import *
|
| 8 |
+
from .helper import recursive_getattr
|
| 9 |
+
from deepspeed.utils import logger
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class compression_scheduler():
|
| 13 |
+
'''
|
| 14 |
+
Used to schedule different compression methods
|
| 15 |
+
'''
|
| 16 |
+
|
| 17 |
+
def __init__(self, model, compression_config):
|
| 18 |
+
self.model = model
|
| 19 |
+
self.compression_config = compression_config
|
| 20 |
+
self.make_init()
|
| 21 |
+
self.training_steps = 0
|
| 22 |
+
self.weight_quantization_enabled = False
|
| 23 |
+
|
| 24 |
+
self.verbose = {
|
| 25 |
+
WEIGHT_QUANTIZATION: False,
|
| 26 |
+
ACTIVATION_QUANTIZATION: False,
|
| 27 |
+
SPARSE_PRUNING: False,
|
| 28 |
+
HEAD_PRUNING: False,
|
| 29 |
+
ROW_PRUNING: False,
|
| 30 |
+
CHANNEL_PRUNING: False
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
def make_init(self):
|
| 34 |
+
self.different_compression_methods = {}
|
| 35 |
+
for method, method_content in self.compression_config.items():
|
| 36 |
+
if LAYER_REDUCTION in method:
|
| 37 |
+
continue
|
| 38 |
+
self.different_compression_methods[method] = {
|
| 39 |
+
TECHNIQUE_ENABLED: False,
|
| 40 |
+
SHARED_PARAMETERS: None,
|
| 41 |
+
DIFFERENT_GROUPS: []
|
| 42 |
+
}
|
| 43 |
+
exist_module_name = set()
|
| 44 |
+
shared_parameters = method_content[SHARED_PARAMETERS]
|
| 45 |
+
self.different_compression_methods[method][TECHNIQUE_ENABLED] = shared_parameters[TECHNIQUE_ENABLED]
|
| 46 |
+
self.different_compression_methods[method][SHARED_PARAMETERS] = shared_parameters
|
| 47 |
+
|
| 48 |
+
for group_name, method_parameters in method_content[DIFFERENT_GROUPS].items():
|
| 49 |
+
module_name_list = []
|
| 50 |
+
for key_word in method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE]:
|
| 51 |
+
module_name, exist_module_name = get_module_name(group_name,
|
| 52 |
+
self.model,
|
| 53 |
+
key_word,
|
| 54 |
+
exist_module_name,
|
| 55 |
+
verbose=False)
|
| 56 |
+
module_name_list.extend(module_name)
|
| 57 |
+
if module_name_list:
|
| 58 |
+
self.different_compression_methods[method][DIFFERENT_GROUPS].append(
|
| 59 |
+
[group_name, module_name_list,
|
| 60 |
+
method_parameters.copy().pop('params')])
|
| 61 |
+
|
| 62 |
+
def check_weight_quantization(self):
|
| 63 |
+
# check weight quantization
|
| 64 |
+
wq = self.different_compression_methods[WEIGHT_QUANTIZATION]
|
| 65 |
+
if not wq[TECHNIQUE_ENABLED]:
|
| 66 |
+
return
|
| 67 |
+
else:
|
| 68 |
+
shared_parameters = wq[SHARED_PARAMETERS]
|
| 69 |
+
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]:
|
| 70 |
+
for group_name, module_name_list, method_parameters in wq[DIFFERENT_GROUPS]:
|
| 71 |
+
for module_name in module_name_list:
|
| 72 |
+
module = recursive_getattr(self.model, module_name)
|
| 73 |
+
module.weight_quantization_enabled = True
|
| 74 |
+
|
| 75 |
+
if not self.verbose[WEIGHT_QUANTIZATION]:
|
| 76 |
+
logger.info(f'Weight quantization is enabled at step {self.training_steps}')
|
| 77 |
+
self.weight_quantization_enabled = True
|
| 78 |
+
self.verbose[WEIGHT_QUANTIZATION] = True
|
| 79 |
+
|
| 80 |
+
def check_activation_quantization(self):
|
| 81 |
+
# check activation quantization
|
| 82 |
+
aq = self.different_compression_methods[ACTIVATION_QUANTIZATION]
|
| 83 |
+
if not aq[TECHNIQUE_ENABLED]:
|
| 84 |
+
return
|
| 85 |
+
else:
|
| 86 |
+
shared_parameters = aq[SHARED_PARAMETERS]
|
| 87 |
+
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]:
|
| 88 |
+
for group_name, module_name_list, method_parameters in aq[DIFFERENT_GROUPS]:
|
| 89 |
+
for module_name in module_name_list:
|
| 90 |
+
module = recursive_getattr(self.model, module_name)
|
| 91 |
+
module.activation_quantization_enabled = True
|
| 92 |
+
if not self.verbose[ACTIVATION_QUANTIZATION]:
|
| 93 |
+
logger.info(f'Activation quantization is enabled at step {self.training_steps}')
|
| 94 |
+
self.verbose[ACTIVATION_QUANTIZATION] = True
|
| 95 |
+
|
| 96 |
+
def check_sparse_pruning(self):
|
| 97 |
+
# check sparse pruning
|
| 98 |
+
sp = self.different_compression_methods[SPARSE_PRUNING]
|
| 99 |
+
if not sp[TECHNIQUE_ENABLED]:
|
| 100 |
+
return
|
| 101 |
+
else:
|
| 102 |
+
shared_parameters = sp[SHARED_PARAMETERS]
|
| 103 |
+
if shared_parameters[TECHNIQUE_SCHEDULE_OFFSET] <= self.training_steps <= shared_parameters[
|
| 104 |
+
TECHNIQUE_SCHEDULE_OFFSET_END]:
|
| 105 |
+
for group_name, module_name_list, method_parameters in sp[DIFFERENT_GROUPS]:
|
| 106 |
+
for module_name in module_name_list:
|
| 107 |
+
module = recursive_getattr(self.model, module_name)
|
| 108 |
+
module.sparse_pruning_enabled = True
|
| 109 |
+
if not self.verbose[SPARSE_PRUNING]:
|
| 110 |
+
logger.info(f'Sparse pruning is enabled at step {self.training_steps}')
|
| 111 |
+
self.verbose[SPARSE_PRUNING] = True
|
| 112 |
+
|
| 113 |
+
def check_head_pruning(self):
|
| 114 |
+
# check head pruning
|
| 115 |
+
hp = self.different_compression_methods[HEAD_PRUNING]
|
| 116 |
+
if not hp[TECHNIQUE_ENABLED]:
|
| 117 |
+
return
|
| 118 |
+
else:
|
| 119 |
+
shared_parameters = hp[SHARED_PARAMETERS]
|
| 120 |
+
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]:
|
| 121 |
+
for group_name, module_name_list, method_parameters in hp[DIFFERENT_GROUPS]:
|
| 122 |
+
for module_name in module_name_list:
|
| 123 |
+
module = recursive_getattr(self.model, module_name)
|
| 124 |
+
module.head_pruning_enabled = True
|
| 125 |
+
if not self.verbose[HEAD_PRUNING]:
|
| 126 |
+
logger.info(f'Head pruning is enabled at step {self.training_steps}')
|
| 127 |
+
self.verbose[HEAD_PRUNING] = True
|
| 128 |
+
|
| 129 |
+
def check_row_pruning(self):
|
| 130 |
+
# check row pruning
|
| 131 |
+
rp = self.different_compression_methods[ROW_PRUNING]
|
| 132 |
+
if not rp[TECHNIQUE_ENABLED]:
|
| 133 |
+
return
|
| 134 |
+
else:
|
| 135 |
+
shared_parameters = rp[SHARED_PARAMETERS]
|
| 136 |
+
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]:
|
| 137 |
+
for group_name, module_name_list, method_parameters in rp[DIFFERENT_GROUPS]:
|
| 138 |
+
for module_name in module_name_list:
|
| 139 |
+
module = recursive_getattr(self.model, module_name)
|
| 140 |
+
module.row_pruning_enabled = True
|
| 141 |
+
if not self.verbose[ROW_PRUNING]:
|
| 142 |
+
logger.info(f'Row pruning is enabled at step {self.training_steps}')
|
| 143 |
+
self.verbose[ROW_PRUNING] = True
|
| 144 |
+
|
| 145 |
+
def check_channel_pruning(self):
|
| 146 |
+
# check channel pruning
|
| 147 |
+
cp = self.different_compression_methods[CHANNEL_PRUNING]
|
| 148 |
+
if not cp[TECHNIQUE_ENABLED]:
|
| 149 |
+
return
|
| 150 |
+
else:
|
| 151 |
+
shared_parameters = cp[SHARED_PARAMETERS]
|
| 152 |
+
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]:
|
| 153 |
+
for group_name, module_name_list, method_parameters in cp[DIFFERENT_GROUPS]:
|
| 154 |
+
for module_name in module_name_list:
|
| 155 |
+
module = recursive_getattr(self.model, module_name)
|
| 156 |
+
module.channel_pruning_enabled = True
|
| 157 |
+
if not self.verbose[CHANNEL_PRUNING]:
|
| 158 |
+
logger.info(f'Channel pruning is enabled at step {self.training_steps}')
|
| 159 |
+
self.verbose[CHANNEL_PRUNING] = True
|
| 160 |
+
|
| 161 |
+
def check_all_modules(self):
|
| 162 |
+
# check all different compression methods we have
|
| 163 |
+
self.check_weight_quantization()
|
| 164 |
+
self.check_activation_quantization()
|
| 165 |
+
self.check_sparse_pruning()
|
| 166 |
+
self.check_head_pruning()
|
| 167 |
+
self.check_row_pruning()
|
| 168 |
+
self.check_channel_pruning()
|
| 169 |
+
|
| 170 |
+
def step(self, step_zero_check=False):
|
| 171 |
+
if not step_zero_check:
|
| 172 |
+
self.training_steps += 1
|
| 173 |
+
self.check_all_modules()
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/compression/utils.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import autograd
|
| 8 |
+
import math
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TopKBinarizer(autograd.Function):
|
| 12 |
+
"""
|
| 13 |
+
Top-k Binarizer.
|
| 14 |
+
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}`
|
| 15 |
+
is among the k% highest values of S.
|
| 16 |
+
Implementation is inspired from:
|
| 17 |
+
https://github.com/yaozhewei/MLPruning
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
@staticmethod
|
| 21 |
+
def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool):
|
| 22 |
+
"""
|
| 23 |
+
Args:
|
| 24 |
+
inputs (`torch.FloatTensor`)
|
| 25 |
+
The input matrix from which the binarizer computes the binary mask.
|
| 26 |
+
threshold (`float`)
|
| 27 |
+
The percentage of weights to keep (the rest is pruned).
|
| 28 |
+
`threshold` is a float between 0 and 1.
|
| 29 |
+
sigmoid (`bool`)
|
| 30 |
+
Whether to apply a sigmoid on the threshold
|
| 31 |
+
Returns:
|
| 32 |
+
mask (`torch.FloatTensor`)
|
| 33 |
+
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
|
| 34 |
+
retained, 0 - the associated weight is pruned).
|
| 35 |
+
"""
|
| 36 |
+
# Get the subnetwork by sorting the inputs and using the top threshold
|
| 37 |
+
if sigmoid:
|
| 38 |
+
threshold = torch.sigmoid(threshold).item()
|
| 39 |
+
ctx.sigmoid = sigmoid
|
| 40 |
+
mask = inputs.clone()
|
| 41 |
+
|
| 42 |
+
_, idx = inputs.flatten().sort(descending=True)
|
| 43 |
+
j = math.ceil(threshold * inputs.numel())
|
| 44 |
+
|
| 45 |
+
# flat_out and mask access the same memory.
|
| 46 |
+
flat_out = mask.flatten()
|
| 47 |
+
flat_out[idx[j:]] = 0.
|
| 48 |
+
flat_out[idx[:j]] = 1.
|
| 49 |
+
ctx.save_for_backward(mask)
|
| 50 |
+
|
| 51 |
+
return mask
|
| 52 |
+
|
| 53 |
+
@staticmethod
|
| 54 |
+
def backward(ctx, gradOutput):
|
| 55 |
+
mask, = ctx.saved_tensors
|
| 56 |
+
if ctx.sigmoid:
|
| 57 |
+
return gradOutput.clone(), ((gradOutput * mask).sum()).view(-1), None
|
| 58 |
+
else:
|
| 59 |
+
return gradOutput.clone(), None, None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SymQuantizer(torch.autograd.Function):
|
| 63 |
+
"""
|
| 64 |
+
Symmetric quantization
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
@staticmethod
|
| 68 |
+
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1):
|
| 69 |
+
"""
|
| 70 |
+
Args:
|
| 71 |
+
inputs (`torch.FloatTensor`)
|
| 72 |
+
The input which needs to be quantized
|
| 73 |
+
num_bits (int, >=4)
|
| 74 |
+
Number of bits to use for quantization
|
| 75 |
+
min_value/max_value (torch.FloatTensor)
|
| 76 |
+
Used for static activation quantization
|
| 77 |
+
num_groups (int)
|
| 78 |
+
How many groups to partition the quantization into
|
| 79 |
+
Returns:
|
| 80 |
+
quantized_input (`torch.FloatTensor`)
|
| 81 |
+
Quantized input
|
| 82 |
+
"""
|
| 83 |
+
assert (min_value is None and max_value is None) or (min_value is not None and max_value is not None
|
| 84 |
+
and num_groups == 1)
|
| 85 |
+
q_range = 2**num_bits
|
| 86 |
+
input_shape = input.shape
|
| 87 |
+
if min_value is None:
|
| 88 |
+
input = input.reshape(num_groups, -1)
|
| 89 |
+
max_input = torch.amax(torch.abs(input), dim=-1).view(num_groups, -1)
|
| 90 |
+
else:
|
| 91 |
+
max_input = torch.max(min_value.abs(), max_value).view(-1)
|
| 92 |
+
|
| 93 |
+
scale = 2 * max_input / q_range
|
| 94 |
+
output = (input / scale).round().clamp(-q_range // 2, q_range // 2 - 1) * scale
|
| 95 |
+
output = output.reshape(input_shape).contiguous()
|
| 96 |
+
return output
|
| 97 |
+
|
| 98 |
+
@staticmethod
|
| 99 |
+
def backward(ctx, grad_output):
|
| 100 |
+
grad_input = grad_output.clone()
|
| 101 |
+
return grad_input, None, None, None, None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class AsymQuantizer(torch.autograd.Function):
|
| 105 |
+
"""
|
| 106 |
+
Asymmetric quantization
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
@staticmethod
|
| 110 |
+
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1):
|
| 111 |
+
"""
|
| 112 |
+
Args:
|
| 113 |
+
inputs (`torch.FloatTensor`)
|
| 114 |
+
The input which needs to be quantized
|
| 115 |
+
num_bits (int, >=4)
|
| 116 |
+
Number of bits to use for quantization
|
| 117 |
+
min_value/max_value (torch.FloatTensor)
|
| 118 |
+
Used for static activation quantization
|
| 119 |
+
num_groups (int)
|
| 120 |
+
How many groups to partition the quantization into
|
| 121 |
+
Returns:
|
| 122 |
+
quantized_input (`torch.FloatTensor`)
|
| 123 |
+
Quantized input
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
assert (min_value is None and max_value is None) or (min_value is not None and max_value is not None
|
| 127 |
+
and num_groups == 1)
|
| 128 |
+
q_range = 2**num_bits
|
| 129 |
+
input_shape = input.shape
|
| 130 |
+
if min_value is None:
|
| 131 |
+
input = input.reshape(num_groups, -1)
|
| 132 |
+
min_value = input.amin(dim=-1, keepdim=True)
|
| 133 |
+
max_value = input.amax(dim=-1, keepdim=True)
|
| 134 |
+
|
| 135 |
+
scale = (max_value - min_value) / q_range
|
| 136 |
+
zero_point = (min_value / scale).round() * scale
|
| 137 |
+
|
| 138 |
+
output = ((input - zero_point) / scale).round().clamp(0, q_range - 1) * scale + zero_point
|
| 139 |
+
output = output.reshape(input_shape).contiguous()
|
| 140 |
+
return output
|
| 141 |
+
|
| 142 |
+
@staticmethod
|
| 143 |
+
def backward(ctx, grad_output):
|
| 144 |
+
grad_input = grad_output.clone()
|
| 145 |
+
return grad_input, None, None, None, None
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class TernaryQuantizer(torch.autograd.Function):
|
| 149 |
+
"""
|
| 150 |
+
Ternary quantization
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
@staticmethod
|
| 154 |
+
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1):
|
| 155 |
+
"""
|
| 156 |
+
Args:
|
| 157 |
+
inputs (`torch.FloatTensor`)
|
| 158 |
+
The input which needs to be quantized
|
| 159 |
+
num_bits (int)
|
| 160 |
+
Dummy variable
|
| 161 |
+
min_value/max_value (torch.FloatTensor)
|
| 162 |
+
Used for static activation quantization; for now they are dummy variable
|
| 163 |
+
num_groups (int)
|
| 164 |
+
How many groups to partition the quantization into
|
| 165 |
+
Returns:
|
| 166 |
+
quantized_input (`torch.FloatTensor`)
|
| 167 |
+
Quantized input
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
assert (min_value is None and max_value is None)
|
| 171 |
+
input_flat = input.reshape(num_groups, -1)
|
| 172 |
+
n = input_flat.shape[1]
|
| 173 |
+
m = input_flat.norm(p=1, dim=1).div(n)
|
| 174 |
+
thres = (0.7 * m).view(-1, 1)
|
| 175 |
+
pos = (input_flat > thres).type(input.type())
|
| 176 |
+
neg = (input_flat < -thres).type(input.type())
|
| 177 |
+
mask = (input_flat.abs() > thres).type(input.type())
|
| 178 |
+
alpha = ((mask * input_flat).abs().sum(dim=1) / mask.sum(dim=1)).view(-1, 1)
|
| 179 |
+
output = alpha * pos - alpha * neg
|
| 180 |
+
output = output.reshape(input.shape).contiguous()
|
| 181 |
+
return output
|
| 182 |
+
|
| 183 |
+
@staticmethod
|
| 184 |
+
def backward(ctx, grad_output):
|
| 185 |
+
grad_input = grad_output.clone()
|
| 186 |
+
return grad_input, None, None, None, None
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class BinaryQuantizer(torch.autograd.Function):
|
| 190 |
+
"""
|
| 191 |
+
Binary quantization
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
@staticmethod
|
| 195 |
+
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1):
|
| 196 |
+
"""
|
| 197 |
+
Args:
|
| 198 |
+
inputs (`torch.FloatTensor`)
|
| 199 |
+
The input which needs to be quantized
|
| 200 |
+
num_bits (int)
|
| 201 |
+
Dummy variable
|
| 202 |
+
min_value/max_value (torch.FloatTensor)
|
| 203 |
+
Used for static activation quantization; for now they are dummy variable
|
| 204 |
+
num_groups (int)
|
| 205 |
+
How many groups to partition the quantization into
|
| 206 |
+
Returns:
|
| 207 |
+
quantized_input (`torch.FloatTensor`)
|
| 208 |
+
Quantized input
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
assert (min_value is None and max_value is None)
|
| 212 |
+
input_flat = input.reshape(num_groups, -1)
|
| 213 |
+
n = input_flat.shape[1]
|
| 214 |
+
m = input_flat.norm(p=1, dim=1, keepdim=True).div(n)
|
| 215 |
+
output = input_flat.sign().mul(m)
|
| 216 |
+
output = output.reshape(input.shape).contiguous()
|
| 217 |
+
return output
|
| 218 |
+
|
| 219 |
+
@staticmethod
|
| 220 |
+
def backward(ctx, grad_output):
|
| 221 |
+
grad_input = grad_output.clone()
|
| 222 |
+
return grad_input, None, None, None, None
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (241 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/fused_optimizer.py
ADDED
|
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
"""
|
| 6 |
+
Copyright NVIDIA/apex
|
| 7 |
+
This file is adapted from FP16_Optimizer in NVIDIA/apex
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
| 12 |
+
|
| 13 |
+
from deepspeed.runtime import DeepSpeedOptimizer
|
| 14 |
+
from deepspeed.runtime.utils import get_global_norm, get_grad_norm, CheckOverflow, get_weight_norm, required_torch_version
|
| 15 |
+
from deepspeed.runtime.fp16.loss_scaler import INITIAL_LOSS_SCALE, SCALE_WINDOW, MIN_LOSS_SCALE
|
| 16 |
+
from deepspeed.utils import groups, logger, log_dist
|
| 17 |
+
from deepspeed import comm as dist
|
| 18 |
+
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT, CLIP_GRAD
|
| 19 |
+
from deepspeed.accelerator import get_accelerator
|
| 20 |
+
|
| 21 |
+
OVERFLOW_CHECK_TIMER = 'overflow_check'
|
| 22 |
+
COMPUTE_NORM_TIMER = 'compute_norm'
|
| 23 |
+
UNSCALE_AND_CLIP_TIMER = 'unscale_and_clip'
|
| 24 |
+
BASIC_STEP_TIMER = 'basic_step'
|
| 25 |
+
UPDATE_FP16_TIMER = 'update_fp16'
|
| 26 |
+
|
| 27 |
+
OVERFLOW_TIMERS = [COMPUTE_NORM_TIMER, OVERFLOW_CHECK_TIMER]
|
| 28 |
+
STEP_TIMERS = OVERFLOW_TIMERS + [UNSCALE_AND_CLIP_TIMER, BASIC_STEP_TIMER, UPDATE_FP16_TIMER]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class FP16_Optimizer(DeepSpeedOptimizer):
|
| 32 |
+
"""
|
| 33 |
+
FP16 Optimizer for training fp16 models. Handles loss scaling.
|
| 34 |
+
|
| 35 |
+
For usage example please see, TODO: DeepSpeed V2 Tutorial
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self,
|
| 39 |
+
init_optimizer,
|
| 40 |
+
deepspeed=None,
|
| 41 |
+
static_loss_scale=1.0,
|
| 42 |
+
dynamic_loss_scale=False,
|
| 43 |
+
initial_dynamic_scale=2**32,
|
| 44 |
+
dynamic_loss_args=None,
|
| 45 |
+
verbose=True,
|
| 46 |
+
mpu=None,
|
| 47 |
+
clip_grad=0.0,
|
| 48 |
+
fused_adam_legacy=False,
|
| 49 |
+
has_moe_layers=False,
|
| 50 |
+
timers=None):
|
| 51 |
+
|
| 52 |
+
self.fused_adam_legacy = fused_adam_legacy
|
| 53 |
+
self.timers = timers
|
| 54 |
+
self.deepspeed = deepspeed
|
| 55 |
+
self.has_moe_layers = has_moe_layers
|
| 56 |
+
self.using_pipeline = self.deepspeed.pipeline_parallelism
|
| 57 |
+
if not get_accelerator().is_available():
|
| 58 |
+
raise SystemError("Cannot use fp16 without accelerator.")
|
| 59 |
+
self.optimizer = init_optimizer
|
| 60 |
+
|
| 61 |
+
# param flattened by groups
|
| 62 |
+
self.fp16_groups = []
|
| 63 |
+
self.fp16_groups_flat = []
|
| 64 |
+
self.fp32_groups_flat = []
|
| 65 |
+
|
| 66 |
+
self._global_grad_norm = 0.
|
| 67 |
+
|
| 68 |
+
# loop to deal with groups
|
| 69 |
+
for i, param_group in enumerate(self.optimizer.param_groups):
|
| 70 |
+
# push this group to list before modify
|
| 71 |
+
self.fp16_groups.append(param_group['params'])
|
| 72 |
+
# init fp16 weight buffer, flattened
|
| 73 |
+
self.fp16_groups_flat.append(_flatten_dense_tensors([p.clone().detach() for p in self.fp16_groups[i]]))
|
| 74 |
+
# set model fp16 weight to slices of flattened buffer
|
| 75 |
+
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i], self.fp16_groups[i])
|
| 76 |
+
for p, q in zip(self.fp16_groups[i], updated_params):
|
| 77 |
+
p.data = q.data
|
| 78 |
+
# init master weight, flattened
|
| 79 |
+
self.fp32_groups_flat.append(self.fp16_groups_flat[i].clone().float().detach())
|
| 80 |
+
# modify optimizer of have flat master weight
|
| 81 |
+
self.fp32_groups_flat[i].requires_grad = True # keep this in case internal optimizer uses it
|
| 82 |
+
param_group['params'] = [self.fp32_groups_flat[i]]
|
| 83 |
+
|
| 84 |
+
# we may have a way of fusing dynamic scale. Do not support for now
|
| 85 |
+
if dynamic_loss_scale:
|
| 86 |
+
self.dynamic_loss_scale = True
|
| 87 |
+
self.cur_iter = 0
|
| 88 |
+
self.last_overflow_iter = -1
|
| 89 |
+
self.scale_factor = 2
|
| 90 |
+
|
| 91 |
+
if dynamic_loss_args is None:
|
| 92 |
+
self.cur_scale = initial_dynamic_scale
|
| 93 |
+
self.scale_window = 1000
|
| 94 |
+
self.min_loss_scale = 1
|
| 95 |
+
else:
|
| 96 |
+
self.cur_scale = dynamic_loss_args[INITIAL_LOSS_SCALE]
|
| 97 |
+
self.scale_window = dynamic_loss_args[SCALE_WINDOW]
|
| 98 |
+
self.min_loss_scale = dynamic_loss_args[MIN_LOSS_SCALE]
|
| 99 |
+
else:
|
| 100 |
+
self.dynamic_loss_scale = False
|
| 101 |
+
self.cur_iter = 0
|
| 102 |
+
self.cur_scale = static_loss_scale
|
| 103 |
+
self.verbose = verbose
|
| 104 |
+
|
| 105 |
+
self.custom_loss_scaler = False
|
| 106 |
+
self.external_loss_scale = None
|
| 107 |
+
|
| 108 |
+
self.clip_grad = clip_grad
|
| 109 |
+
self.norm_type = 2
|
| 110 |
+
|
| 111 |
+
if required_torch_version(max_version=0.4):
|
| 112 |
+
self.clip_grad_norm = torch.nn.utils.clip_grad_norm
|
| 113 |
+
else:
|
| 114 |
+
self.clip_grad_norm = torch.nn.utils.clip_grad_norm_
|
| 115 |
+
|
| 116 |
+
#model parallel object
|
| 117 |
+
self.mpu = mpu
|
| 118 |
+
|
| 119 |
+
self.overflow = False
|
| 120 |
+
self.overflow_checker = CheckOverflow(self.fp16_groups, mpu=self.mpu, deepspeed=deepspeed)
|
| 121 |
+
self.initialize_optimizer_states()
|
| 122 |
+
|
| 123 |
+
def initialize_optimizer_states(self):
|
| 124 |
+
for i, group in enumerate(self.fp16_groups):
|
| 125 |
+
self.fp32_groups_flat[i].grad = torch.zeros(self.fp32_groups_flat[i].size(),
|
| 126 |
+
device=self.fp32_groups_flat[i].device)
|
| 127 |
+
|
| 128 |
+
self.optimizer.step()
|
| 129 |
+
|
| 130 |
+
for i, group in enumerate(self.fp16_groups):
|
| 131 |
+
self.fp32_groups_flat[i].grad = None
|
| 132 |
+
|
| 133 |
+
return
|
| 134 |
+
|
| 135 |
+
def zero_grad(self, set_to_none=True):
|
| 136 |
+
"""
|
| 137 |
+
Zero FP16 parameter grads.
|
| 138 |
+
"""
|
| 139 |
+
# For speed, set model fp16 grad to None by default
|
| 140 |
+
for group in self.fp16_groups:
|
| 141 |
+
for p in group:
|
| 142 |
+
if set_to_none:
|
| 143 |
+
p.grad = None
|
| 144 |
+
else:
|
| 145 |
+
if p.grad is not None:
|
| 146 |
+
p.grad.detach_()
|
| 147 |
+
p.grad.zero_()
|
| 148 |
+
|
| 149 |
+
def step_fused_adam(self, closure=None):
|
| 150 |
+
"""
|
| 151 |
+
Not supporting closure.
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
# First compute norm for all group so we know if there is overflow
|
| 155 |
+
grads_groups_flat = []
|
| 156 |
+
norm_groups = []
|
| 157 |
+
for i, group in enumerate(self.fp16_groups):
|
| 158 |
+
grads_groups_flat.append(
|
| 159 |
+
_flatten_dense_tensors([
|
| 160 |
+
torch.zeros(p.size(), dtype=p.dtype, device=p.device) if p.grad is None else p.grad for p in group
|
| 161 |
+
]))
|
| 162 |
+
norm_groups.append(get_weight_norm(grads_groups_flat[i], mpu=self.mpu))
|
| 163 |
+
|
| 164 |
+
self.overflow = self.overflow_checker.check_using_norm(norm_groups)
|
| 165 |
+
prev_scale = self.cur_scale
|
| 166 |
+
self._update_scale(self.overflow)
|
| 167 |
+
|
| 168 |
+
if self.overflow:
|
| 169 |
+
if self.verbose:
|
| 170 |
+
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
|
| 171 |
+
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
|
| 172 |
+
return self.overflow
|
| 173 |
+
|
| 174 |
+
scaled_grad_norm = get_global_norm(norm_list=norm_groups)
|
| 175 |
+
|
| 176 |
+
combined_scale = self.unscale_and_clip_grads(grads_groups_flat, scaled_grad_norm, apply_scale=False)
|
| 177 |
+
|
| 178 |
+
# Stash unscaled gradient norm
|
| 179 |
+
self._global_grad_norm = scaled_grad_norm / self.cur_scale
|
| 180 |
+
|
| 181 |
+
# norm is in fact norm*cur_scale
|
| 182 |
+
self.optimizer.step(grads=[[g] for g in grads_groups_flat],
|
| 183 |
+
output_params=[[p] for p in self.fp16_groups_flat],
|
| 184 |
+
scale=combined_scale,
|
| 185 |
+
grad_norms=norm_groups)
|
| 186 |
+
# TODO: we probably don't need this? just to be safe
|
| 187 |
+
for i in range(len(norm_groups)):
|
| 188 |
+
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i], self.fp16_groups[i])
|
| 189 |
+
for p, q in zip(self.fp16_groups[i], updated_params):
|
| 190 |
+
p.data = q.data
|
| 191 |
+
return self.overflow
|
| 192 |
+
|
| 193 |
+
def set_lr(self, lr):
|
| 194 |
+
"""Set the learning rate."""
|
| 195 |
+
for param_group in self.optimizer.param_groups:
|
| 196 |
+
param_group["lr"] = lr
|
| 197 |
+
|
| 198 |
+
def get_lr(self):
|
| 199 |
+
"""Return the current learning rate."""
|
| 200 |
+
return self.optimizer.param_groups[0]["lr"]
|
| 201 |
+
|
| 202 |
+
def override_loss_scale(self, loss_scale):
|
| 203 |
+
if loss_scale != self.external_loss_scale:
|
| 204 |
+
logger.info(f'[deepspeed] setting loss scale from {self.external_loss_scale} -> {loss_scale}')
|
| 205 |
+
self.custom_loss_scaler = True
|
| 206 |
+
self.external_loss_scale = loss_scale
|
| 207 |
+
|
| 208 |
+
def step(self, closure=None):
|
| 209 |
+
"""
|
| 210 |
+
Not supporting closure.
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
if self.fused_adam_legacy:
|
| 214 |
+
return self.step_fused_adam()
|
| 215 |
+
|
| 216 |
+
# First determine if there is overflow.
|
| 217 |
+
self.timers(OVERFLOW_CHECK_TIMER).start()
|
| 218 |
+
fp16_params = []
|
| 219 |
+
for i, group in enumerate(self.fp16_groups):
|
| 220 |
+
fp16_params.extend([p for p in group if p.grad is not None])
|
| 221 |
+
self.overflow = self.overflow_checker.has_overflow(fp16_params)
|
| 222 |
+
self.timers(OVERFLOW_CHECK_TIMER).stop()
|
| 223 |
+
prev_scale = self.cur_scale
|
| 224 |
+
self._update_scale(self.overflow)
|
| 225 |
+
if self.overflow:
|
| 226 |
+
if self.verbose:
|
| 227 |
+
log_dist(
|
| 228 |
+
"Overflow detected. Skipping step. Attempted loss "
|
| 229 |
+
f"scale: {prev_scale}, reducing to {self.cur_scale}",
|
| 230 |
+
ranks=[0])
|
| 231 |
+
# Clear gradients
|
| 232 |
+
for i, group in enumerate(self.fp16_groups):
|
| 233 |
+
for p in group:
|
| 234 |
+
p.grad = None
|
| 235 |
+
|
| 236 |
+
self.timers.log(OVERFLOW_TIMERS)
|
| 237 |
+
return self.overflow
|
| 238 |
+
|
| 239 |
+
grads_groups_flat = []
|
| 240 |
+
for i, group in enumerate(self.fp16_groups):
|
| 241 |
+
data_type = self.fp32_groups_flat[i].dtype
|
| 242 |
+
|
| 243 |
+
grads_groups_flat.append(
|
| 244 |
+
_flatten_dense_tensors([
|
| 245 |
+
torch.zeros(p.size(), dtype=data_type, device=p.device) if p.grad is None else p.grad.to(data_type)
|
| 246 |
+
for p in group
|
| 247 |
+
]))
|
| 248 |
+
|
| 249 |
+
for p in group:
|
| 250 |
+
p.grad = None
|
| 251 |
+
|
| 252 |
+
self.fp32_groups_flat[i].grad = grads_groups_flat[i]
|
| 253 |
+
|
| 254 |
+
self.timers(COMPUTE_NORM_TIMER).start()
|
| 255 |
+
|
| 256 |
+
all_groups_norm = get_grad_norm(self.fp32_groups_flat, mpu=self.mpu)
|
| 257 |
+
|
| 258 |
+
self.timers(COMPUTE_NORM_TIMER).stop()
|
| 259 |
+
|
| 260 |
+
if self.has_moe_layers:
|
| 261 |
+
all_groups_norm = self._get_norm_with_moe_layers(all_groups_norm)
|
| 262 |
+
|
| 263 |
+
scaled_global_grad_norm = get_global_norm(norm_list=[all_groups_norm])
|
| 264 |
+
|
| 265 |
+
# Stash unscaled gradient norm
|
| 266 |
+
self._global_grad_norm = scaled_global_grad_norm / self.cur_scale
|
| 267 |
+
|
| 268 |
+
self.timers(UNSCALE_AND_CLIP_TIMER).start()
|
| 269 |
+
self.unscale_and_clip_grads(grads_groups_flat, scaled_global_grad_norm)
|
| 270 |
+
self.timers(UNSCALE_AND_CLIP_TIMER).stop()
|
| 271 |
+
|
| 272 |
+
self.timers(BASIC_STEP_TIMER).start()
|
| 273 |
+
self.optimizer.step()
|
| 274 |
+
self.timers(BASIC_STEP_TIMER).stop()
|
| 275 |
+
|
| 276 |
+
#get rid of the fp32 gradients. Not needed anymore
|
| 277 |
+
for group in self.fp32_groups_flat:
|
| 278 |
+
group.grad = None
|
| 279 |
+
|
| 280 |
+
self.timers(UPDATE_FP16_TIMER).start()
|
| 281 |
+
|
| 282 |
+
for i in range(len(self.fp16_groups)):
|
| 283 |
+
updated_params = _unflatten_dense_tensors(self.fp32_groups_flat[i], self.fp16_groups[i])
|
| 284 |
+
for p, q in zip(self.fp16_groups[i], updated_params):
|
| 285 |
+
p.data.copy_(q.data)
|
| 286 |
+
|
| 287 |
+
self.timers(UPDATE_FP16_TIMER).stop()
|
| 288 |
+
|
| 289 |
+
self.timers.log(STEP_TIMERS)
|
| 290 |
+
|
| 291 |
+
return self.overflow
|
| 292 |
+
|
| 293 |
+
def _get_norm_with_moe_layers(self, all_groups_norm):
|
| 294 |
+
#all_groups_norm_old = all_groups_norm
|
| 295 |
+
# Need to allreduce (avg) the norms across different ranks because moe params will not be synced during allreduce
|
| 296 |
+
if self.using_pipeline:
|
| 297 |
+
pg = self.deepspeed.mpu.get_data_parallel_group()
|
| 298 |
+
else:
|
| 299 |
+
pg = groups._get_data_parallel_group()
|
| 300 |
+
scaled_norm = all_groups_norm * 1.0 / float(dist.get_world_size(group=pg))
|
| 301 |
+
scaled_norm_tensor = torch.tensor(scaled_norm, device=self.fp32_groups_flat[0].device, dtype=torch.float)
|
| 302 |
+
dist.all_reduce(scaled_norm_tensor, group=pg)
|
| 303 |
+
all_groups_norm = scaled_norm_tensor.item()
|
| 304 |
+
#print(f"old = {all_groups_norm_old} and new = {all_groups_norm} at rank: {deepspeed.comm.get_rank()}")
|
| 305 |
+
return all_groups_norm
|
| 306 |
+
|
| 307 |
+
def unscale_and_clip_grads(self, grad_groups_flat, total_norm, apply_scale=True):
|
| 308 |
+
# compute combined scale factor for this group
|
| 309 |
+
combined_scale = self.cur_scale
|
| 310 |
+
if self.clip_grad > 0.:
|
| 311 |
+
# norm is in fact norm*scale
|
| 312 |
+
clip = ((total_norm / self.cur_scale) + 1e-6) / self.clip_grad
|
| 313 |
+
if clip > 1:
|
| 314 |
+
combined_scale = clip * self.cur_scale
|
| 315 |
+
|
| 316 |
+
if apply_scale:
|
| 317 |
+
for grad in grad_groups_flat:
|
| 318 |
+
grad.data.mul_(1. / combined_scale)
|
| 319 |
+
|
| 320 |
+
return combined_scale
|
| 321 |
+
|
| 322 |
+
def backward(self, loss, create_graph=False, retain_graph=False):
|
| 323 |
+
"""
|
| 324 |
+
:attr:`backward` performs the following steps:
|
| 325 |
+
|
| 326 |
+
1. fp32_loss = loss.float()
|
| 327 |
+
2. scaled_loss = fp32_loss*loss_scale
|
| 328 |
+
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
|
| 329 |
+
"""
|
| 330 |
+
if self.custom_loss_scaler:
|
| 331 |
+
scaled_loss = self.external_loss_scale * loss
|
| 332 |
+
scaled_loss.backward()
|
| 333 |
+
else:
|
| 334 |
+
scaled_loss = (loss.float()) * self.cur_scale
|
| 335 |
+
scaled_loss.backward(create_graph=create_graph, retain_graph=retain_graph)
|
| 336 |
+
|
| 337 |
+
def _update_scale(self, skip):
|
| 338 |
+
if self.dynamic_loss_scale:
|
| 339 |
+
prev_scale = self.cur_scale
|
| 340 |
+
if skip:
|
| 341 |
+
self.cur_scale = max(self.cur_scale / self.scale_factor, self.min_loss_scale)
|
| 342 |
+
self.last_overflow_iter = self.cur_iter
|
| 343 |
+
if self.verbose:
|
| 344 |
+
logger.info(f"\nGrad overflow on iteration {self.cur_iter}")
|
| 345 |
+
logger.info(f"Reducing dynamic loss scale from {prev_scale} to {self.cur_scale}")
|
| 346 |
+
else:
|
| 347 |
+
# Ensure self.scale_window updates since last overflow
|
| 348 |
+
stable_interval = (self.cur_iter - self.last_overflow_iter) - 1
|
| 349 |
+
if (stable_interval > 0) and (stable_interval % self.scale_window == 0):
|
| 350 |
+
self.cur_scale *= self.scale_factor
|
| 351 |
+
if self.verbose:
|
| 352 |
+
logger.info(f"No Grad overflow for {self.scale_window} iterations")
|
| 353 |
+
logger.info(f"Increasing dynamic loss scale from {prev_scale} to {self.cur_scale}")
|
| 354 |
+
else:
|
| 355 |
+
if skip:
|
| 356 |
+
logger.info("Grad overflow on iteration: %s", self.cur_iter)
|
| 357 |
+
logger.info("Using static loss scale of: %s", self.cur_scale)
|
| 358 |
+
self.cur_iter += 1
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
|
| 362 |
+
def _get_state(self):
|
| 363 |
+
return self.optimizer.state
|
| 364 |
+
|
| 365 |
+
def _set_state(self, value):
|
| 366 |
+
self.optimizer.state = value
|
| 367 |
+
|
| 368 |
+
state = property(_get_state, _set_state)
|
| 369 |
+
|
| 370 |
+
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
|
| 371 |
+
# (for example, to adjust the learning rate)
|
| 372 |
+
def _get_param_groups(self):
|
| 373 |
+
return self.optimizer.param_groups
|
| 374 |
+
|
| 375 |
+
def _set_param_groups(self, value):
|
| 376 |
+
self.optimizer.param_groups = value
|
| 377 |
+
|
| 378 |
+
param_groups = property(_get_param_groups, _set_param_groups)
|
| 379 |
+
|
| 380 |
+
def state_dict(self):
|
| 381 |
+
"""
|
| 382 |
+
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
|
| 383 |
+
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
|
| 384 |
+
of the contained Pytorch optimizer.
|
| 385 |
+
Example::
|
| 386 |
+
checkpoint = {}
|
| 387 |
+
checkpoint['model'] = model.state_dict()
|
| 388 |
+
checkpoint['optimizer'] = optimizer.state_dict()
|
| 389 |
+
torch.save(checkpoint, "saved.pth")
|
| 390 |
+
"""
|
| 391 |
+
state_dict = {}
|
| 392 |
+
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
|
| 393 |
+
state_dict['cur_scale'] = self.cur_scale
|
| 394 |
+
state_dict['cur_iter'] = self.cur_iter
|
| 395 |
+
if state_dict['dynamic_loss_scale']:
|
| 396 |
+
state_dict['last_overflow_iter'] = self.last_overflow_iter
|
| 397 |
+
state_dict['scale_factor'] = self.scale_factor
|
| 398 |
+
state_dict['scale_window'] = self.scale_window
|
| 399 |
+
state_dict[OPTIMIZER_STATE_DICT] = self.optimizer.state_dict()
|
| 400 |
+
state_dict['fp32_groups_flat'] = self.fp32_groups_flat
|
| 401 |
+
state_dict[CLIP_GRAD] = self.clip_grad
|
| 402 |
+
return state_dict
|
| 403 |
+
|
| 404 |
+
# Refresh fp32 master params from fp16 copies
|
| 405 |
+
def refresh_fp32_params(self):
|
| 406 |
+
for current, saved in zip(self.fp32_groups_flat, self.fp16_groups_flat):
|
| 407 |
+
current.data.copy_(saved.data)
|
| 408 |
+
|
| 409 |
+
def load_state_dict(self, state_dict, load_optimizer_states=True):
|
| 410 |
+
"""
|
| 411 |
+
Loads a state_dict created by an earlier call to state_dict().
|
| 412 |
+
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
|
| 413 |
+
whose parameters in turn came from ``model``, it is expected that the user
|
| 414 |
+
will call ``model.load_state_dict()`` before
|
| 415 |
+
``fp16_optimizer_instance.load_state_dict()`` is called.
|
| 416 |
+
Example::
|
| 417 |
+
model = torch.nn.Linear(D_in, D_out).to(get_accelerator().device_name()).half()
|
| 418 |
+
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
|
| 419 |
+
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
|
| 420 |
+
...
|
| 421 |
+
checkpoint = torch.load("saved.pth")
|
| 422 |
+
model.load_state_dict(checkpoint['model'])
|
| 423 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
| 424 |
+
"""
|
| 425 |
+
# I think it should actually be ok to reload the optimizer before the model.
|
| 426 |
+
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
|
| 427 |
+
self.cur_scale = state_dict['cur_scale']
|
| 428 |
+
self.cur_iter = state_dict['cur_iter']
|
| 429 |
+
if state_dict['dynamic_loss_scale']:
|
| 430 |
+
self.last_overflow_iter = state_dict['last_overflow_iter']
|
| 431 |
+
self.scale_factor = state_dict['scale_factor']
|
| 432 |
+
self.scale_window = state_dict['scale_window']
|
| 433 |
+
if load_optimizer_states:
|
| 434 |
+
self.optimizer.load_state_dict(state_dict[OPTIMIZER_STATE_DICT])
|
| 435 |
+
self.clip_grad = state_dict[CLIP_GRAD]
|
| 436 |
+
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
|
| 437 |
+
# The optimizer's hyperparameters and internal buffers are also up to date.
|
| 438 |
+
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
|
| 439 |
+
# out of date. There are two options.
|
| 440 |
+
# 1: Refresh the master params from the model's fp16 params.
|
| 441 |
+
# This requires less storage but incurs precision loss.
|
| 442 |
+
# 2: Save and restore the fp32 master copies separately.
|
| 443 |
+
# We choose option 2.
|
| 444 |
+
#
|
| 445 |
+
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
|
| 446 |
+
# of their associated parameters, because it's possible those buffers might not exist yet in
|
| 447 |
+
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
|
| 448 |
+
# constructed in the same way as the one whose state_dict we are loading, the same master params
|
| 449 |
+
# are guaranteed to exist, so we can just copy_() from the saved master params.
|
| 450 |
+
for current, saved in zip(self.fp32_groups_flat, state_dict['fp32_groups_flat']):
|
| 451 |
+
current.data.copy_(saved.data)
|
| 452 |
+
|
| 453 |
+
def __repr__(self):
|
| 454 |
+
return repr(self.optimizer)
|
| 455 |
+
|
| 456 |
+
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
|
| 457 |
+
def _get_loss_scale(self):
|
| 458 |
+
if self.custom_loss_scaler:
|
| 459 |
+
return self.external_loss_scale
|
| 460 |
+
else:
|
| 461 |
+
return self.cur_scale
|
| 462 |
+
|
| 463 |
+
def _set_loss_scale(self, value):
|
| 464 |
+
self.loss_scaler.cur_scale = value
|
| 465 |
+
|
| 466 |
+
loss_scale = property(_get_loss_scale, _set_loss_scale)
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/loss_scaler.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
"""
|
| 6 |
+
Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
| 7 |
+
|
| 8 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 9 |
+
you may not use this file except in compliance with the License.
|
| 10 |
+
You may obtain a copy of the License at
|
| 11 |
+
|
| 12 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 13 |
+
|
| 14 |
+
Unless required by applicable law or agreed to in writing, software
|
| 15 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 16 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 17 |
+
See the License for the specific language governing permissions and
|
| 18 |
+
limitations under the License.
|
| 19 |
+
Taken and modified for DeepSpeed from:
|
| 20 |
+
https://github.com/NVIDIA/Megatron-LM/blob/master/fp16/loss_scaler.py
|
| 21 |
+
Commit: 93ab4bea59dc5cbf97c079d313741866af4deac9
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
from deepspeed import comm as dist
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
|
| 28 |
+
INITIAL_LOSS_SCALE = 'init_scale'
|
| 29 |
+
SCALE_WINDOW = 'scale_window'
|
| 30 |
+
DELAYED_SHIFT = 'delayed_shift'
|
| 31 |
+
CONSECUTIVE_HYSTERESIS = 'consecutive_hysteresis'
|
| 32 |
+
MIN_LOSS_SCALE = 'min_scale'
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# item() is a recent addition, so this helps with backward compatibility.
|
| 36 |
+
def to_python_float(t):
|
| 37 |
+
if hasattr(t, 'item'):
|
| 38 |
+
return t.item()
|
| 39 |
+
return t[0]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class LossScalerBase:
|
| 43 |
+
"""LossScalarBase
|
| 44 |
+
Base class for a loss scaler
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def __init__(self, cur_scale):
|
| 48 |
+
self.cur_scale = cur_scale
|
| 49 |
+
self.dynamic = False
|
| 50 |
+
|
| 51 |
+
@property
|
| 52 |
+
def loss_scale(self):
|
| 53 |
+
return self.cur_scale
|
| 54 |
+
|
| 55 |
+
def scale_gradient(self, module, grad_in, grad_out):
|
| 56 |
+
return tuple(self.loss_scale * g for g in grad_in)
|
| 57 |
+
|
| 58 |
+
def update_scale(self, overflow):
|
| 59 |
+
pass
|
| 60 |
+
|
| 61 |
+
def backward(self, loss, retain_graph=False):
|
| 62 |
+
scaled_loss = loss * self.loss_scale
|
| 63 |
+
scaled_loss.backward(retain_graph=retain_graph)
|
| 64 |
+
# print(f'LossScalerBackward: {scaled_loss=}')
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class LossScaler(LossScalerBase):
|
| 68 |
+
"""
|
| 69 |
+
Class that manages a static loss scale. This class is intended to interact with
|
| 70 |
+
:class:`FP16_Optimizer`, and should not be directly manipulated by the user.
|
| 71 |
+
|
| 72 |
+
Use of :class:`LossScaler` is enabled via the ``static_loss_scale`` argument to
|
| 73 |
+
:class:`FP16_Optimizer`'s constructor.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
scale (float, optional, default=1.0): The loss scale.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def __init__(self, scale=1):
|
| 80 |
+
super(LossScaler, self).__init__(scale)
|
| 81 |
+
|
| 82 |
+
# `params` is a list / generator of torch.Variable
|
| 83 |
+
def has_overflow(self, params):
|
| 84 |
+
return False
|
| 85 |
+
|
| 86 |
+
# `x` is a torch.Tensor
|
| 87 |
+
def _has_inf_or_nan(x):
|
| 88 |
+
return False
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class DynamicLossScaler(LossScalerBase):
|
| 92 |
+
"""
|
| 93 |
+
Class that manages dynamic loss scaling. It is recommended to use :class:`DynamicLossScaler`
|
| 94 |
+
indirectly, by supplying ``dynamic_loss_scale=True`` to the constructor of
|
| 95 |
+
:class:`FP16_Optimizer`. However, it's important to understand how :class:`DynamicLossScaler`
|
| 96 |
+
operates, because the default options can be changed using the
|
| 97 |
+
the ``dynamic_loss_args`` argument to :class:`FP16_Optimizer`'s constructor.
|
| 98 |
+
|
| 99 |
+
Loss scaling is designed to combat the problem of underflowing gradients encountered at long
|
| 100 |
+
times when training fp16 networks. Dynamic loss scaling begins by attempting a very high loss
|
| 101 |
+
scale. Ironically, this may result in OVERflowing gradients. If overflowing gradients are
|
| 102 |
+
encountered, :class:`DynamicLossScaler` informs :class:`FP16_Optimizer` that an overflow has
|
| 103 |
+
occurred.
|
| 104 |
+
:class:`FP16_Optimizer` then skips the update step for this particular iteration/minibatch,
|
| 105 |
+
and :class:`DynamicLossScaler` adjusts the loss scale to a lower value.
|
| 106 |
+
If a certain number of iterations occur without overflowing gradients detected,
|
| 107 |
+
:class:`DynamicLossScaler` increases the loss scale once more.
|
| 108 |
+
In this way :class:`DynamicLossScaler` attempts to "ride the edge" of
|
| 109 |
+
always using the highest loss scale possible without incurring overflow.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
init_scale (float, optional, default=2**32): Initial loss scale attempted by :class:`DynamicLossScaler.`
|
| 113 |
+
scale_factor (float, optional, default=2.0): Factor used when adjusting the loss scale. If an overflow is encountered, the loss scale is readjusted to loss scale/``scale_factor``. If ``scale_window`` consecutive iterations take place without an overflow, the loss scale is readjusted to loss_scale*``scale_factor``.
|
| 114 |
+
scale_window (int, optional, default=1000): Number of consecutive iterations without an overflow to wait before increasing the loss scale.
|
| 115 |
+
consecutive_hysteresis (bool, optional, default=False): Whether to refill hysteresis if we reach an iteration that doesn't overflow
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
def __init__(self,
|
| 119 |
+
init_scale=2**32,
|
| 120 |
+
scale_factor=2.,
|
| 121 |
+
scale_window=1000,
|
| 122 |
+
min_scale=1,
|
| 123 |
+
delayed_shift=1,
|
| 124 |
+
consecutive_hysteresis=False,
|
| 125 |
+
raise_error_at_min_scale=True,
|
| 126 |
+
dtype=torch.half):
|
| 127 |
+
super(DynamicLossScaler, self).__init__(init_scale)
|
| 128 |
+
self.cur_iter = 0
|
| 129 |
+
self.last_overflow_iter = -1
|
| 130 |
+
self.scale_factor = scale_factor
|
| 131 |
+
self.scale_window = scale_window
|
| 132 |
+
self.min_scale = min_scale
|
| 133 |
+
self.delayed_shift = delayed_shift
|
| 134 |
+
self.cur_hysteresis = delayed_shift
|
| 135 |
+
self.consecutive_hysteresis = consecutive_hysteresis
|
| 136 |
+
self.raise_error_at_min_scale = raise_error_at_min_scale
|
| 137 |
+
self.dynamic = True
|
| 138 |
+
self.dtype = dtype
|
| 139 |
+
|
| 140 |
+
# `params` is a list / generator of torch.Variable
|
| 141 |
+
def has_overflow_serial(self, params):
|
| 142 |
+
for p in params:
|
| 143 |
+
if p.grad is not None and self._has_inf_or_nan(p.grad.data):
|
| 144 |
+
return True
|
| 145 |
+
|
| 146 |
+
return False
|
| 147 |
+
|
| 148 |
+
# `x` is a torch.Tensor
|
| 149 |
+
def _has_inf_or_nan(x):
|
| 150 |
+
try:
|
| 151 |
+
# if x is half, the .float() incurs an additional deep copy, but it's necessary if
|
| 152 |
+
# Pytorch's .sum() creates a one-element tensor of the same type as x
|
| 153 |
+
# (which is true for some recent version of pytorch).
|
| 154 |
+
cpu_sum = float(x.float().sum())
|
| 155 |
+
# More efficient version that can be used if .sum() returns a Python scalar
|
| 156 |
+
# cpu_sum = float(x.sum())
|
| 157 |
+
except RuntimeError as instance:
|
| 158 |
+
# We want to check if inst is actually an overflow exception.
|
| 159 |
+
# RuntimeError could come from a different error.
|
| 160 |
+
# If so, we still want the exception to propagate.
|
| 161 |
+
if "value cannot be converted" not in instance.args[0]:
|
| 162 |
+
raise
|
| 163 |
+
return True
|
| 164 |
+
else:
|
| 165 |
+
if cpu_sum in [float('inf'), -float('inf')] or cpu_sum != cpu_sum:
|
| 166 |
+
return True
|
| 167 |
+
return False
|
| 168 |
+
|
| 169 |
+
# `overflow` is boolean indicating whether the gradient overflowed
|
| 170 |
+
def update_scale(self, overflow):
|
| 171 |
+
if overflow:
|
| 172 |
+
# self.cur_scale /= self.scale_factor
|
| 173 |
+
if self.delayed_shift == 1 or self.cur_hysteresis == 1:
|
| 174 |
+
if (self.cur_scale == self.min_scale) and self.raise_error_at_min_scale:
|
| 175 |
+
raise Exception(
|
| 176 |
+
"Current loss scale already at minimum - cannot decrease scale anymore. Exiting run.")
|
| 177 |
+
else:
|
| 178 |
+
next_scale = max(self.cur_scale / self.scale_factor, self.min_scale)
|
| 179 |
+
if dist.get_rank() == 0:
|
| 180 |
+
overflow_msg = f"[deepspeed] OVERFLOW! Rank {dist.get_rank()} Skipping step."
|
| 181 |
+
if self.dtype == torch.half:
|
| 182 |
+
overflow_msg += f" Attempted loss scale: {int(self.cur_scale)}, reducing to {int(next_scale)}"
|
| 183 |
+
logger.info(overflow_msg)
|
| 184 |
+
self.cur_scale = next_scale
|
| 185 |
+
else:
|
| 186 |
+
if dist.get_rank() == 0:
|
| 187 |
+
overflow_msg = f"[deepspeed] OVERFLOW! Rank {dist.get_rank()} Skipping step."
|
| 188 |
+
if self.dtype == torch.half:
|
| 189 |
+
overflow_msg += f" Attempted loss scale: {int(self.cur_scale)}, but hysteresis is {self.cur_hysteresis}. Reducing hysteresis to {self.cur_hysteresis-1}"
|
| 190 |
+
logger.info(overflow_msg)
|
| 191 |
+
self.cur_hysteresis -= 1
|
| 192 |
+
self.last_overflow_iter = self.cur_iter
|
| 193 |
+
else:
|
| 194 |
+
if self.consecutive_hysteresis:
|
| 195 |
+
if dist.get_rank() == 0:
|
| 196 |
+
hysteresis_msg = f"Consecutive hysteresis is enabled. Restoring hysteresis to {self.delayed_shift}"
|
| 197 |
+
logger.info(hysteresis_msg)
|
| 198 |
+
self.cur_hysteresis = self.delayed_shift
|
| 199 |
+
if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0:
|
| 200 |
+
if not self.consecutive_hysteresis:
|
| 201 |
+
self.cur_hysteresis = self.delayed_shift
|
| 202 |
+
self.cur_scale *= self.scale_factor
|
| 203 |
+
self.cur_iter += 1
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
# Although loss scaling is only defined for fp16, yet for backwards compatibility
|
| 207 |
+
# we still create a scaler for other dtypes (fp32, bf16) which does not perform any scaling.
|
| 208 |
+
def CreateLossScaler(dtype, static_loss_scale, dynamic_scaling, dynamic_loss_args):
|
| 209 |
+
if dtype == torch.half and dynamic_scaling:
|
| 210 |
+
if dynamic_loss_args is None:
|
| 211 |
+
return DynamicLossScaler(dtype=dtype)
|
| 212 |
+
return DynamicLossScaler(dtype=dtype, **dynamic_loss_args)
|
| 213 |
+
|
| 214 |
+
loss_scale_value = static_loss_scale if dtype == torch.half else 1.0
|
| 215 |
+
return LossScaler(scale=loss_scale_value)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
##############################################################
|
| 219 |
+
# Example usage below here -- assuming it's in a separate file
|
| 220 |
+
##############################################################
|
| 221 |
+
"""
|
| 222 |
+
TO-DO separate out into an example.
|
| 223 |
+
if __name__ == "__main__":
|
| 224 |
+
import torch
|
| 225 |
+
from torch.autograd import Variable
|
| 226 |
+
from dynamic_loss_scaler import DynamicLossScaler
|
| 227 |
+
|
| 228 |
+
# N is batch size; D_in is input dimension;
|
| 229 |
+
# H is hidden dimension; D_out is output dimension.
|
| 230 |
+
N, D_in, H, D_out = 64, 1000, 100, 10
|
| 231 |
+
|
| 232 |
+
# Create random Tensors to hold inputs and outputs, and wrap them in Variables.
|
| 233 |
+
x = Variable(torch.randn(N, D_in), requires_grad=False)
|
| 234 |
+
y = Variable(torch.randn(N, D_out), requires_grad=False)
|
| 235 |
+
|
| 236 |
+
w1 = Variable(torch.randn(D_in, H), requires_grad=True)
|
| 237 |
+
w2 = Variable(torch.randn(H, D_out), requires_grad=True)
|
| 238 |
+
parameters = [w1, w2]
|
| 239 |
+
|
| 240 |
+
learning_rate = 1e-6
|
| 241 |
+
optimizer = torch.optim.SGD(parameters, lr=learning_rate)
|
| 242 |
+
loss_scaler = DynamicLossScaler()
|
| 243 |
+
|
| 244 |
+
for t in range(500):
|
| 245 |
+
y_pred = x.mm(w1).clamp(min=0).mm(w2)
|
| 246 |
+
loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale
|
| 247 |
+
print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale))
|
| 248 |
+
print('Iter {} scaled loss: {}'.format(t, loss.data[0]))
|
| 249 |
+
print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale))
|
| 250 |
+
|
| 251 |
+
# Run backprop
|
| 252 |
+
optimizer.zero_grad()
|
| 253 |
+
loss.backward()
|
| 254 |
+
|
| 255 |
+
# Check for overflow
|
| 256 |
+
has_overflow = DynamicLossScaler.has_overflow(parameters)
|
| 257 |
+
|
| 258 |
+
# If no overflow, unscale grad and update as usual
|
| 259 |
+
if not has_overflow:
|
| 260 |
+
for param in parameters:
|
| 261 |
+
param.grad.data.mul_(1. / loss_scaler.loss_scale)
|
| 262 |
+
optimizer.step()
|
| 263 |
+
# Otherwise, don't do anything -- ie, skip iteration
|
| 264 |
+
else:
|
| 265 |
+
print('fp16 dynamic loss scale overflow!')
|
| 266 |
+
|
| 267 |
+
# Update loss scale for next iteration
|
| 268 |
+
loss_scaler.update_scale(has_overflow)
|
| 269 |
+
|
| 270 |
+
"""
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
from .adam import OnebitAdam
|
| 7 |
+
from .lamb import OnebitLamb
|
| 8 |
+
from .zoadam import ZeroOneAdam
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/__pycache__/lamb.cpython-310.pyc
ADDED
|
Binary file (12.3 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/lamb.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import types
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
from deepspeed import comm as dist
|
| 10 |
+
from deepspeed.runtime.utils import required_torch_version
|
| 11 |
+
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
| 12 |
+
from deepspeed.accelerator import get_accelerator
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class OnebitLamb(torch.optim.Optimizer):
|
| 16 |
+
"""Implements the 1-bit Lamb algorithm. Currently GPU-only.
|
| 17 |
+
For usage example please see https://www.deepspeed.ai/tutorials/onebit-lamb/
|
| 18 |
+
For technical details please see our paper https://arxiv.org/abs/2104.06069.
|
| 19 |
+
|
| 20 |
+
Arguments:
|
| 21 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
| 22 |
+
parameter groups.
|
| 23 |
+
lr (float, optional): learning rate. (default: 1e-3)
|
| 24 |
+
freeze_step (int, optional): Number of steps for warmup (uncompressed)
|
| 25 |
+
stage before we start using compressed communication. (default 100000)
|
| 26 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
| 27 |
+
running averages of gradient and its square. (default: (0.9, 0.999))
|
| 28 |
+
eps (float, optional): term added to the denominator to improve
|
| 29 |
+
numerical stability. (default: 1e-8)
|
| 30 |
+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
| 31 |
+
max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0)
|
| 32 |
+
min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01)
|
| 33 |
+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
| 34 |
+
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
| 35 |
+
(default: False) NOT SUPPORTED in 1-bit Lamb!
|
| 36 |
+
eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
|
| 37 |
+
adds eps to the bias-corrected second moment estimate before
|
| 38 |
+
evaluating square root instead of adding it to the square root of
|
| 39 |
+
second moment estimate as in the original paper. (default: False)
|
| 40 |
+
cuda_aware (boolean, required): Set True if the underlying MPI implementation
|
| 41 |
+
supports CUDA-Aware communication. (default: False)
|
| 42 |
+
comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl')
|
| 43 |
+
coeff_beta (float, optional): coefficient used for computing
|
| 44 |
+
running averages of lamb coefficient (default: 0.9) note that you may want to
|
| 45 |
+
increase or decrease this beta depending on the freeze_step you choose, as
|
| 46 |
+
1/(1 - coeff_beta) should be smaller than or equal to freeze_step
|
| 47 |
+
factor_max (float, optional): maximum value of scaling factor to the frozen lamb
|
| 48 |
+
coefficient during compression stage (default: 4.0)
|
| 49 |
+
factor_min (float, optional): minimum value of scaling factor to the frozen lamb
|
| 50 |
+
coefficient during compression stage (default: 0.5)
|
| 51 |
+
factor_threshold (float, optional): threshold of how much the scaling factor can
|
| 52 |
+
fluctuate between steps (default: 0.1)
|
| 53 |
+
.. _Large Batch Optimization for Deep Learning\\: Training BERT in 76 minutes:
|
| 54 |
+
https://arxiv.org/abs/1904.00962
|
| 55 |
+
.. _Adam\\: A Method for Stochastic Optimization:
|
| 56 |
+
https://arxiv.org/abs/1412.6980
|
| 57 |
+
.. _On the Convergence of Adam and Beyond:
|
| 58 |
+
https://openreview.net/forum?id=ryQu7f-RZ
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(self,
|
| 62 |
+
params,
|
| 63 |
+
deepspeed=None,
|
| 64 |
+
lr=1e-3,
|
| 65 |
+
freeze_step=100000,
|
| 66 |
+
bias_correction=True,
|
| 67 |
+
betas=(0.9, 0.999),
|
| 68 |
+
eps=1e-8,
|
| 69 |
+
eps_inside_sqrt=False,
|
| 70 |
+
weight_decay=0.,
|
| 71 |
+
max_grad_norm=0.,
|
| 72 |
+
max_coeff=10.0,
|
| 73 |
+
min_coeff=0.01,
|
| 74 |
+
amsgrad=False,
|
| 75 |
+
cuda_aware=False,
|
| 76 |
+
comm_backend_name='nccl',
|
| 77 |
+
coeff_beta=0.9,
|
| 78 |
+
factor_max=4.0,
|
| 79 |
+
factor_min=0.5,
|
| 80 |
+
factor_threshold=0.1):
|
| 81 |
+
|
| 82 |
+
if amsgrad:
|
| 83 |
+
raise RuntimeError('1-bit Lamb does not support the AMSGrad variant.')
|
| 84 |
+
|
| 85 |
+
defaults = dict(lr=lr,
|
| 86 |
+
bias_correction=bias_correction,
|
| 87 |
+
betas=betas,
|
| 88 |
+
eps=eps,
|
| 89 |
+
weight_decay=weight_decay,
|
| 90 |
+
max_grad_norm=max_grad_norm,
|
| 91 |
+
max_coeff=max_coeff,
|
| 92 |
+
min_coeff=min_coeff)
|
| 93 |
+
|
| 94 |
+
super(OnebitLamb, self).__init__(params, defaults)
|
| 95 |
+
self.eps_mode = 0 if eps_inside_sqrt else 1
|
| 96 |
+
self.deepspeed = deepspeed
|
| 97 |
+
self.lamb_freeze_key = False
|
| 98 |
+
self.initialize = False
|
| 99 |
+
self.freeze_step = freeze_step
|
| 100 |
+
self.cuda_aware = cuda_aware
|
| 101 |
+
self.coeff_beta = coeff_beta
|
| 102 |
+
self.factor_max = factor_max
|
| 103 |
+
self.factor_min = factor_min
|
| 104 |
+
self.factor_threshold = factor_threshold
|
| 105 |
+
self.using_pipeline = False
|
| 106 |
+
|
| 107 |
+
self.comm_backend_name = comm_backend_name
|
| 108 |
+
|
| 109 |
+
assert dist.is_initialized(), "Please initialize the torch distributed backend."
|
| 110 |
+
# Empty initializer. Set handle based on the comm backend as follows.
|
| 111 |
+
self.comm_backend_handle = None
|
| 112 |
+
if self.comm_backend_name == 'nccl':
|
| 113 |
+
assert (
|
| 114 |
+
required_torch_version(min_version=1.8)
|
| 115 |
+
), "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend"
|
| 116 |
+
from deepspeed.runtime.comm.nccl import NcclBackend
|
| 117 |
+
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
|
| 118 |
+
self.comm_backend_handle = NcclBackend(self.deepspeed.mpu)
|
| 119 |
+
elif self.comm_backend_name == 'mpi':
|
| 120 |
+
from deepspeed.runtime.comm.mpi import MpiBackend
|
| 121 |
+
self.comm_backend_handle = MpiBackend(cuda_aware)
|
| 122 |
+
elif self.comm_backend_name == 'hccl':
|
| 123 |
+
from deepspeed.runtime.comm.hccl import HcclBackend
|
| 124 |
+
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
|
| 125 |
+
self.comm_backend_handle = HcclBackend(self.deepspeed.mpu)
|
| 126 |
+
|
| 127 |
+
self.size = self.comm_backend_handle.size
|
| 128 |
+
|
| 129 |
+
self.divider = int(self.size * 8 / np.gcd(self.size, 8))
|
| 130 |
+
|
| 131 |
+
self.exp_avg_flat = []
|
| 132 |
+
self.dummy_exp_avg = {}
|
| 133 |
+
self.corrected_tensor_sizes = []
|
| 134 |
+
self.server_chunk_sizes = []
|
| 135 |
+
self.worker_errors = []
|
| 136 |
+
self.server_errors = []
|
| 137 |
+
|
| 138 |
+
self.lamb_coeffs = []
|
| 139 |
+
|
| 140 |
+
def step(self, closure=None, grads=None):
|
| 141 |
+
"""Performs a single optimization step.
|
| 142 |
+
Arguments:
|
| 143 |
+
closure (callable, optional): A closure that reevaluates the model
|
| 144 |
+
and returns the loss.
|
| 145 |
+
grads (list of tensors, optional): weight gradient to use for the
|
| 146 |
+
optimizer update. If gradients have type torch.half, parameters
|
| 147 |
+
are expected to be in type torch.float. (default: None)
|
| 148 |
+
"""
|
| 149 |
+
loss = None
|
| 150 |
+
if closure is not None:
|
| 151 |
+
loss = closure()
|
| 152 |
+
|
| 153 |
+
if grads is None:
|
| 154 |
+
grads_group = [None] * len(self.param_groups)
|
| 155 |
+
# backward compatibility
|
| 156 |
+
# assuming a list/generator of parameter means single group
|
| 157 |
+
elif isinstance(grads, types.GeneratorType):
|
| 158 |
+
grads_group = [grads]
|
| 159 |
+
elif type(grads[0]) != list:
|
| 160 |
+
grads_group = [grads]
|
| 161 |
+
else:
|
| 162 |
+
grads_group = grads
|
| 163 |
+
|
| 164 |
+
# remove the previous stats
|
| 165 |
+
del self.lamb_coeffs[:]
|
| 166 |
+
|
| 167 |
+
if self.lamb_freeze_key:
|
| 168 |
+
exp_avg_last_step = []
|
| 169 |
+
for group in self.param_groups:
|
| 170 |
+
exp_avg_last_step.append([self.state[p]['exp_avg'].detach().clone() for p in group['params']])
|
| 171 |
+
if 'scaling_coeff' not in self.state[self.param_groups[0]['params'][0]]:
|
| 172 |
+
# Compute the scaling_coeff for each momentum at the end of warmup stage.
|
| 173 |
+
# This is used to reduce compression error during compression stage.
|
| 174 |
+
momentum_scales = []
|
| 175 |
+
for group in self.param_groups:
|
| 176 |
+
momentum_scales.append([(torch.linalg.norm(self.state[p]['exp_avg']) /
|
| 177 |
+
np.sqrt(torch.numel(self.state[p]['exp_avg']))).item()
|
| 178 |
+
for p in group['params']])
|
| 179 |
+
united_scale = sum([sum(x) for x in momentum_scales]) / sum([len(x) for x in momentum_scales])
|
| 180 |
+
for i, group in enumerate(self.param_groups):
|
| 181 |
+
for j, p in enumerate(group['params']):
|
| 182 |
+
self.state[p]['scaling_coeff'] = united_scale / momentum_scales[i][j]
|
| 183 |
+
|
| 184 |
+
for group, grads_this_group in zip(self.param_groups, grads_group):
|
| 185 |
+
if grads_this_group is None:
|
| 186 |
+
grads_this_group = [None] * len(group['params'])
|
| 187 |
+
|
| 188 |
+
bias_correction = 1 if group['bias_correction'] else 0
|
| 189 |
+
|
| 190 |
+
for p, grad in zip(group['params'], grads_this_group):
|
| 191 |
+
if p.grad is None and grad is None:
|
| 192 |
+
continue
|
| 193 |
+
if grad is None:
|
| 194 |
+
grad = p.grad.data
|
| 195 |
+
if grad.is_sparse:
|
| 196 |
+
raise RuntimeError('1-bit Lamb does not support sparse gradients')
|
| 197 |
+
|
| 198 |
+
state = self.state[p]
|
| 199 |
+
|
| 200 |
+
# State initialization
|
| 201 |
+
if len(state) == 0 or (len(state) == 1 and 'scaling_coeff' in state.keys()):
|
| 202 |
+
state['step'] = 0
|
| 203 |
+
state['lamb_coeff_freeze'] = 0.0
|
| 204 |
+
state['last_factor'] = 1.0
|
| 205 |
+
# Exponential moving average of gradient values
|
| 206 |
+
state['exp_avg'] = torch.zeros_like(p.data)
|
| 207 |
+
# Exponential moving average of squared gradient values
|
| 208 |
+
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
| 209 |
+
state['exp_avg_sq_fresh'] = torch.zeros_like(p.data)
|
| 210 |
+
|
| 211 |
+
if not self.initialize:
|
| 212 |
+
self.lamb_freeze_key = True
|
| 213 |
+
|
| 214 |
+
exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[
|
| 215 |
+
'exp_avg_sq_fresh']
|
| 216 |
+
beta1, beta2 = group['betas']
|
| 217 |
+
max_coeff = group['max_coeff']
|
| 218 |
+
min_coeff = group['min_coeff']
|
| 219 |
+
|
| 220 |
+
state['step'] += 1
|
| 221 |
+
|
| 222 |
+
if self.lamb_freeze_key is False:
|
| 223 |
+
# warmup stage, baseline Lamb optimization
|
| 224 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
| 225 |
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
| 226 |
+
if state['step'] == self.freeze_step:
|
| 227 |
+
exp_avg_sq_fresh.data = exp_avg_sq.detach().clone()
|
| 228 |
+
grad = None
|
| 229 |
+
if self.initialize:
|
| 230 |
+
weight_norm = p.data.pow(2).sum().sqrt()
|
| 231 |
+
update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
|
| 232 |
+
if group['weight_decay'] > 0.0:
|
| 233 |
+
update += group['weight_decay'] * p.data
|
| 234 |
+
update_norm = update.pow(2).sum().sqrt()
|
| 235 |
+
lamb_coeff = 1.0
|
| 236 |
+
if weight_norm != 0 and update_norm != 0:
|
| 237 |
+
lamb_coeff = (weight_norm / update_norm).item()
|
| 238 |
+
if lamb_coeff > max_coeff:
|
| 239 |
+
lamb_coeff = max_coeff
|
| 240 |
+
if lamb_coeff < min_coeff:
|
| 241 |
+
lamb_coeff = min_coeff
|
| 242 |
+
if lamb_coeff != 1.0:
|
| 243 |
+
state['lamb_coeff_freeze'] = self.coeff_beta * state['lamb_coeff_freeze'] + (
|
| 244 |
+
1 - self.coeff_beta) * lamb_coeff
|
| 245 |
+
self.lamb_coeffs.append(lamb_coeff)
|
| 246 |
+
with torch.no_grad():
|
| 247 |
+
p.add_(-group['lr'] * lamb_coeff * update)
|
| 248 |
+
else:
|
| 249 |
+
# compression stage, update each momentum locally, then
|
| 250 |
+
# communicate based on the compressed_allreduce below
|
| 251 |
+
if self.initialize:
|
| 252 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
| 253 |
+
exp_avg.mul_(self.state[p]['scaling_coeff'])
|
| 254 |
+
grad = None
|
| 255 |
+
|
| 256 |
+
# init fused momentum
|
| 257 |
+
if len(self.exp_avg_flat) == 0:
|
| 258 |
+
momentum_groups = []
|
| 259 |
+
tensor_size = 0
|
| 260 |
+
for group in self.param_groups:
|
| 261 |
+
for p in group['params']:
|
| 262 |
+
momentum_groups.append(self.state[p]['exp_avg'])
|
| 263 |
+
tensor_size += torch.numel(p.data)
|
| 264 |
+
corrected_tensor_size = tensor_size
|
| 265 |
+
if tensor_size % (self.size * self.divider) != 0:
|
| 266 |
+
difference = ((self.size * self.divider) - (tensor_size % (self.size * self.divider)))
|
| 267 |
+
corrected_tensor_size += difference
|
| 268 |
+
self.dummy_exp_avg[0] = torch.zeros(difference, device=momentum_groups[0].data.device)
|
| 269 |
+
momentum_groups.append(self.dummy_exp_avg[0])
|
| 270 |
+
self.corrected_tensor_sizes.append(corrected_tensor_size)
|
| 271 |
+
self.server_chunk_sizes.append(corrected_tensor_size // self.size)
|
| 272 |
+
|
| 273 |
+
self.exp_avg_flat.append(_flatten_dense_tensors([p.detach().clone() for p in momentum_groups]))
|
| 274 |
+
updated_params = _unflatten_dense_tensors(self.exp_avg_flat[0], momentum_groups)
|
| 275 |
+
for p, q in zip(momentum_groups, updated_params):
|
| 276 |
+
p.data = q.data
|
| 277 |
+
|
| 278 |
+
if self.initialize and len(self.worker_errors) == 0:
|
| 279 |
+
get_accelerator().empty_cache()
|
| 280 |
+
for i in range(len(self.exp_avg_flat)):
|
| 281 |
+
self.worker_errors.append(
|
| 282 |
+
torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device))
|
| 283 |
+
self.server_errors.append(torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device))
|
| 284 |
+
get_accelerator().empty_cache()
|
| 285 |
+
|
| 286 |
+
if self.lamb_freeze_key:
|
| 287 |
+
if self.size > 1:
|
| 288 |
+
for i in range(len(self.exp_avg_flat)):
|
| 289 |
+
if not self.initialize:
|
| 290 |
+
get_accelerator().empty_cache()
|
| 291 |
+
self.worker_errors.append(
|
| 292 |
+
torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device))
|
| 293 |
+
self.server_errors.append(
|
| 294 |
+
torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device))
|
| 295 |
+
get_accelerator().empty_cache()
|
| 296 |
+
if dist.get_rank() == 0:
|
| 297 |
+
print("Cupy Buffers Initialized Successfully.")
|
| 298 |
+
|
| 299 |
+
self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[0],
|
| 300 |
+
self.server_errors[0], self.deepspeed.local_rank)
|
| 301 |
+
|
| 302 |
+
if dist.get_rank() == 0:
|
| 303 |
+
print('Pop out errors', flush=True)
|
| 304 |
+
del self.worker_errors[:]
|
| 305 |
+
del self.server_errors[:]
|
| 306 |
+
else:
|
| 307 |
+
self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[i],
|
| 308 |
+
self.server_errors[i], self.deepspeed.local_rank)
|
| 309 |
+
|
| 310 |
+
if self.lamb_freeze_key and self.initialize:
|
| 311 |
+
for i, group in enumerate(self.param_groups):
|
| 312 |
+
bias_correction = 1 if group['bias_correction'] else 0
|
| 313 |
+
|
| 314 |
+
for j, p in enumerate(group['params']):
|
| 315 |
+
state = self.state[p]
|
| 316 |
+
exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[
|
| 317 |
+
'exp_avg_sq_fresh']
|
| 318 |
+
beta1, beta2 = group['betas']
|
| 319 |
+
exp_avg.div_(self.state[p]['scaling_coeff'])
|
| 320 |
+
# Because 1-bit compression cannot represent exact zero, it is required to
|
| 321 |
+
# provide a momentum mask for those params that have constant exact zeros in their
|
| 322 |
+
# momentums, otherwise the compression error would keep accumulating.
|
| 323 |
+
# For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight
|
| 324 |
+
# always have exact zeros in its momentum for row 129 to 512, because it only
|
| 325 |
+
# learns up to seq length 128 while the model supports up to 512 seq length.
|
| 326 |
+
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py about how
|
| 327 |
+
# to add this exp_avg_mask for BERT pre-training.)
|
| 328 |
+
if 'exp_avg_mask' in group:
|
| 329 |
+
if exp_avg.device != group['exp_avg_mask'].device:
|
| 330 |
+
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=exp_avg.device)
|
| 331 |
+
exp_avg.mul_(group['exp_avg_mask'])
|
| 332 |
+
|
| 333 |
+
grad_reconstruct = ((exp_avg - exp_avg_last_step[i][j] * beta1) / (1 - beta1))
|
| 334 |
+
exp_avg_sq_fresh.mul_(beta2).addcmul_(1 - beta2, grad_reconstruct, grad_reconstruct)
|
| 335 |
+
denom = exp_avg_sq.sqrt() + group['eps']
|
| 336 |
+
update_prelim = exp_avg / denom
|
| 337 |
+
|
| 338 |
+
if group['weight_decay'] > 0.0:
|
| 339 |
+
update = update_prelim + group['weight_decay'] * p.data
|
| 340 |
+
else:
|
| 341 |
+
update = update_prelim
|
| 342 |
+
|
| 343 |
+
lamb_coeff = 1.0
|
| 344 |
+
update_norm = update.pow(2).sum().sqrt()
|
| 345 |
+
denom_real = exp_avg_sq_fresh.sqrt() + group['eps']
|
| 346 |
+
factor = (denom / denom_real).max().item()
|
| 347 |
+
if group['weight_decay'] > 0.0:
|
| 348 |
+
update_ratio = min(1.0, (update_prelim.pow(2).sum().sqrt() / update_norm).item())
|
| 349 |
+
factor = factor * update_ratio + (1.0 - update_ratio)
|
| 350 |
+
if factor > self.factor_max:
|
| 351 |
+
factor = self.factor_max
|
| 352 |
+
if factor < self.factor_min:
|
| 353 |
+
factor = self.factor_min
|
| 354 |
+
if factor > state['last_factor'] * (1.0 + self.factor_threshold):
|
| 355 |
+
factor = state['last_factor'] * (1.0 + self.factor_threshold)
|
| 356 |
+
if factor < state['last_factor'] * (1.0 - self.factor_threshold):
|
| 357 |
+
factor = state['last_factor'] * (1.0 - self.factor_threshold)
|
| 358 |
+
state['last_factor'] = factor
|
| 359 |
+
lamb_coeff = state['lamb_coeff_freeze'] * factor
|
| 360 |
+
self.lamb_coeffs.append(lamb_coeff)
|
| 361 |
+
with torch.no_grad():
|
| 362 |
+
p.add_(-group['lr'] * lamb_coeff * update)
|
| 363 |
+
del exp_avg_last_step[:]
|
| 364 |
+
exp_avg_last_step = None
|
| 365 |
+
|
| 366 |
+
if not self.initialize:
|
| 367 |
+
self.lamb_freeze_key = False
|
| 368 |
+
self.initialize = True
|
| 369 |
+
print(f"Finished the initialization step at rank {dist.get_rank()}")
|
| 370 |
+
return loss
|
| 371 |
+
|
| 372 |
+
if self.lamb_freeze_key is False:
|
| 373 |
+
if state['step'] >= self.freeze_step:
|
| 374 |
+
print('OnebitLamb - starting compressed communication')
|
| 375 |
+
self.lamb_freeze_key = True
|
| 376 |
+
if self.using_pipeline:
|
| 377 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 378 |
+
else:
|
| 379 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 380 |
+
|
| 381 |
+
return loss
|
| 382 |
+
|
| 383 |
+
def load_state_dict(self, state_dict):
|
| 384 |
+
"""
|
| 385 |
+
Overrides load_state_dict() to add special handling when loading checkpoints
|
| 386 |
+
"""
|
| 387 |
+
# Because at different stage exp_avg_mask may change (e.g.,
|
| 388 |
+
# BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask
|
| 389 |
+
# in checkpoints but always use the one user provided in training script.
|
| 390 |
+
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
|
| 391 |
+
# Thus here we keep the exp_avg_mask unchanged when loading checkpoint
|
| 392 |
+
for i, group in enumerate(self.param_groups):
|
| 393 |
+
if 'exp_avg_mask' in group:
|
| 394 |
+
state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask']
|
| 395 |
+
elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]:
|
| 396 |
+
state_dict['param_groups'][i].pop('exp_avg_mask')
|
| 397 |
+
super().load_state_dict(state_dict)
|
| 398 |
+
# need to reset the fused momentum since loading states will break the linking
|
| 399 |
+
del self.exp_avg_flat[:]
|
| 400 |
+
self.dummy_exp_avg.clear()
|
| 401 |
+
del self.corrected_tensor_sizes[:]
|
| 402 |
+
del self.server_chunk_sizes[:]
|
| 403 |
+
if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step:
|
| 404 |
+
if dist.get_rank() == 0:
|
| 405 |
+
print("Checkpoint loaded and OnebitLamb warmup stage starts/continues.")
|
| 406 |
+
if self.lamb_freeze_key is True:
|
| 407 |
+
self.lamb_freeze_key = False
|
| 408 |
+
if self.using_pipeline:
|
| 409 |
+
self.deepspeed.pipeline_enable_backward_allreduce = True
|
| 410 |
+
else:
|
| 411 |
+
self.deepspeed.enable_backward_allreduce = True
|
| 412 |
+
for group in self.param_groups:
|
| 413 |
+
for p in group['params']:
|
| 414 |
+
self.state[p]['lamb_coeff_freeze'] = 0.0
|
| 415 |
+
self.state[p]['last_factor'] = 1.0
|
| 416 |
+
if 'scaling_coeff' in self.state[p]:
|
| 417 |
+
self.state[p].pop('scaling_coeff')
|
| 418 |
+
else:
|
| 419 |
+
if dist.get_rank() == 0:
|
| 420 |
+
print("Checkpoint loaded and OnebitLamb compression stage starts/continues.")
|
| 421 |
+
if self.lamb_freeze_key is False:
|
| 422 |
+
self.lamb_freeze_key = True
|
| 423 |
+
if self.using_pipeline:
|
| 424 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 425 |
+
else:
|
| 426 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 427 |
+
# We reset the compression errors when loading checkpoints for 3 reasons:
|
| 428 |
+
# 1) The worker and server error at each GPU are distinct, so in current implementation
|
| 429 |
+
# only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors.
|
| 430 |
+
# If we want to save them correctly we need O(num_gpu*model_size) memory in order to
|
| 431 |
+
# gather all the error, which is a very large memory requirement. It's possible to save
|
| 432 |
+
# them in a distributed way, but it will make the checkpoint saving/loading much more complicated.
|
| 433 |
+
# 2) Even if we are able to save the compression errors correctly, you need to have the
|
| 434 |
+
# exact same number of GPUs in order to load them correctly.
|
| 435 |
+
# 3) We verified on BERT pre-training that occasionally resetting the compression error
|
| 436 |
+
# at checkpoint loading does not affect the convergence.
|
| 437 |
+
# However, please avoid frequent checkpoint loading which could break the error
|
| 438 |
+
# compensation mechanism thus affect the convergence.
|
| 439 |
+
del self.worker_errors[:]
|
| 440 |
+
del self.server_errors[:]
|
| 441 |
+
|
| 442 |
+
def get_lamb_coeffs(self):
|
| 443 |
+
return self.lamb_coeffs
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/onebit/zoadam.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
|
| 6 |
+
import types
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
from deepspeed.accelerator import get_accelerator
|
| 10 |
+
from deepspeed.runtime.utils import required_torch_version
|
| 11 |
+
from deepspeed import comm as dist
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ZeroOneAdam(torch.optim.Optimizer):
|
| 15 |
+
"""Implements the 0/1 Adam algorithm. Currently GPU-only.
|
| 16 |
+
For usage example please see https://www.deepspeed.ai/tutorials/zero-one-adam/
|
| 17 |
+
For technical details please read https://arxiv.org/abs/2202.06009
|
| 18 |
+
Arguments:
|
| 19 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
| 20 |
+
parameter groups.
|
| 21 |
+
lr (float, optional): learning rate. (default: 1e-3)
|
| 22 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
| 23 |
+
running averages of gradient and its square. (default: (0.9, 0.999))
|
| 24 |
+
eps (float, optional): term added to the denominator to improve
|
| 25 |
+
numerical stability. (default: 1e-8)
|
| 26 |
+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
| 27 |
+
var_freeze_step (int, optional): The latest step to update the variance,
|
| 28 |
+
using the notation from https://arxiv.org/abs/2202.06009, it denotes the
|
| 29 |
+
max{i|i in T_v}. Note that this is different from the freeze step from the
|
| 30 |
+
1-bit Adam. The var_freeze_step is usually the end of the learning rate warmup
|
| 31 |
+
and thus does not require tuning. (default: 100000)
|
| 32 |
+
var_update_scaler (int, optional): The interval to update the variance. Note that
|
| 33 |
+
the update policy for variance follows an exponential rule, where var_update_scaler
|
| 34 |
+
denotes the kappa in the 0/1 Adam paper. (default: 16)
|
| 35 |
+
local_step_scaler (int, optional): The interval to scale the local steps interval
|
| 36 |
+
according to the learning rate policy. (default: 32678)
|
| 37 |
+
local_step_clipper (int, optional): The largest interval for local steps with
|
| 38 |
+
learning rate policy. This corresponds to the variable H in the 0/1 Adam paper.
|
| 39 |
+
(default: 16)
|
| 40 |
+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
| 41 |
+
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
| 42 |
+
(default: False) NOT SUPPORTED in 0/1 Adam!
|
| 43 |
+
eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
|
| 44 |
+
adds eps to the bias-corrected second moment estimate before
|
| 45 |
+
evaluating square root instead of adding it to the square root of
|
| 46 |
+
second moment estimate as in the original paper. (default: False)
|
| 47 |
+
cuda_aware (boolean, required): Set True if the underlying MPI implementation
|
| 48 |
+
supports CUDA-Aware communication. (default: False)
|
| 49 |
+
comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl')
|
| 50 |
+
.. _Adam\\: A Method for Stochastic Optimization:
|
| 51 |
+
https://arxiv.org/abs/1412.6980
|
| 52 |
+
.. _On the Convergence of Adam and Beyond:
|
| 53 |
+
https://openreview.net/forum?id=ryQu7f-RZ
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def __init__(self,
|
| 57 |
+
params,
|
| 58 |
+
deepspeed=None,
|
| 59 |
+
lr=1e-3,
|
| 60 |
+
bias_correction=True,
|
| 61 |
+
betas=(0.9, 0.999),
|
| 62 |
+
eps=1e-8,
|
| 63 |
+
eps_inside_sqrt=False,
|
| 64 |
+
weight_decay=0.,
|
| 65 |
+
max_grad_norm=0.,
|
| 66 |
+
var_freeze_step=100000,
|
| 67 |
+
var_update_scaler=16,
|
| 68 |
+
local_step_scaler=32678,
|
| 69 |
+
local_step_clipper=16,
|
| 70 |
+
amsgrad=False,
|
| 71 |
+
cuda_aware=False,
|
| 72 |
+
comm_backend_name='nccl'):
|
| 73 |
+
|
| 74 |
+
if amsgrad:
|
| 75 |
+
raise RuntimeError('0/1 Adam does not support the AMSGrad variant.')
|
| 76 |
+
|
| 77 |
+
defaults = dict(lr=lr,
|
| 78 |
+
bias_correction=bias_correction,
|
| 79 |
+
betas=betas,
|
| 80 |
+
eps=eps,
|
| 81 |
+
weight_decay=weight_decay,
|
| 82 |
+
max_grad_norm=max_grad_norm)
|
| 83 |
+
|
| 84 |
+
super(ZeroOneAdam, self).__init__(params, defaults)
|
| 85 |
+
self.eps_mode = 0 if eps_inside_sqrt else 1
|
| 86 |
+
self.deepspeed = deepspeed
|
| 87 |
+
self.initialize = False
|
| 88 |
+
self.cuda_aware = cuda_aware
|
| 89 |
+
self.using_pipeline = False
|
| 90 |
+
|
| 91 |
+
self.var_freeze_step = var_freeze_step
|
| 92 |
+
self.var_update_scaler = var_update_scaler
|
| 93 |
+
self.local_step_scaler = local_step_scaler
|
| 94 |
+
self.local_step_clipper = local_step_clipper
|
| 95 |
+
self.freeze_key = False
|
| 96 |
+
self.reinitial_error_buffer = False
|
| 97 |
+
|
| 98 |
+
self.comm_backend_name = comm_backend_name
|
| 99 |
+
|
| 100 |
+
assert dist.is_initialized(), "Please initialize the torch distributed backend."
|
| 101 |
+
# Empty initializer. Set handle based on the comm backend as follows.
|
| 102 |
+
self.comm_backend_handle = None
|
| 103 |
+
if self.comm_backend_name == 'nccl':
|
| 104 |
+
assert (
|
| 105 |
+
required_torch_version(min_version=1.8)
|
| 106 |
+
), "Please use torch 1.8 or greater to enable NCCL backend in 0/1 Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend"
|
| 107 |
+
from deepspeed.runtime.comm.nccl import NcclBackend
|
| 108 |
+
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
|
| 109 |
+
self.comm_backend_handle = NcclBackend(self.deepspeed.mpu)
|
| 110 |
+
elif self.comm_backend_name == 'mpi':
|
| 111 |
+
from deepspeed.runtime.comm.mpi import MpiBackend
|
| 112 |
+
self.comm_backend_handle = MpiBackend(cuda_aware)
|
| 113 |
+
elif self.comm_backend_name == 'hccl':
|
| 114 |
+
from deepspeed.runtime.comm.hccl import HcclBackend
|
| 115 |
+
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
|
| 116 |
+
self.comm_backend_handle = HcclBackend(self.deepspeed.mpu)
|
| 117 |
+
self.size = self.comm_backend_handle.size
|
| 118 |
+
|
| 119 |
+
self.divider = int(self.size * 8 / np.gcd(self.size, 8))
|
| 120 |
+
|
| 121 |
+
def step(self, closure=None, grads=None):
|
| 122 |
+
"""Performs a single optimization step.
|
| 123 |
+
Arguments:
|
| 124 |
+
closure (callable, optional): A closure that reevaluates the model
|
| 125 |
+
and returns the loss.
|
| 126 |
+
grads (list of tensors, optional): weight gradient to use for the
|
| 127 |
+
optimizer update. If gradients have type torch.half, parameters
|
| 128 |
+
are expected to be in type torch.float. (default: None)
|
| 129 |
+
output params (list of tensors, optional): A reduced precision copy
|
| 130 |
+
of the updated weights written out in addition to the regular
|
| 131 |
+
updated weights. Have to be of same type as gradients. (default: None)
|
| 132 |
+
scale (float, optional): factor to divide gradient tensor values
|
| 133 |
+
by before applying to weights. (default: 1)
|
| 134 |
+
"""
|
| 135 |
+
loss = None
|
| 136 |
+
if closure is not None:
|
| 137 |
+
loss = closure()
|
| 138 |
+
|
| 139 |
+
if grads is None:
|
| 140 |
+
grads_group = [None] * len(self.param_groups)
|
| 141 |
+
# backward compatibility
|
| 142 |
+
# assuming a list/generator of parameter means single group
|
| 143 |
+
elif isinstance(grads, types.GeneratorType):
|
| 144 |
+
grads_group = [grads]
|
| 145 |
+
elif type(grads[0]) != list:
|
| 146 |
+
grads_group = [grads]
|
| 147 |
+
else:
|
| 148 |
+
grads_group = grads
|
| 149 |
+
|
| 150 |
+
for group, grads_this_group in zip(self.param_groups, grads_group):
|
| 151 |
+
if grads_this_group is None:
|
| 152 |
+
grads_this_group = [None] * len(group['params'])
|
| 153 |
+
|
| 154 |
+
bias_correction = 1 if group['bias_correction'] else 0
|
| 155 |
+
|
| 156 |
+
for p, grad in zip(group['params'], grads_this_group):
|
| 157 |
+
if p.grad is None and grad is None:
|
| 158 |
+
continue
|
| 159 |
+
if grad is None:
|
| 160 |
+
grad = p.grad.data
|
| 161 |
+
if grad.is_sparse:
|
| 162 |
+
raise RuntimeError('0/1 Adam does not support sparse gradients')
|
| 163 |
+
|
| 164 |
+
state = self.state[p]
|
| 165 |
+
|
| 166 |
+
# State initialization
|
| 167 |
+
if len(state) == 0:
|
| 168 |
+
state['step'] = 0
|
| 169 |
+
# Exponential moving average of gradient values
|
| 170 |
+
state['exp_avg'] = torch.zeros_like(p.data)
|
| 171 |
+
# Exponential moving average of squared gradient values
|
| 172 |
+
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
| 173 |
+
|
| 174 |
+
if not self.initialize or 'worker_error' not in state.keys():
|
| 175 |
+
# Some scalars to help scale the variance update/local step policies
|
| 176 |
+
state['var_interval'] = 1
|
| 177 |
+
state['var_counter'] = 0
|
| 178 |
+
state['local_step_interval'] = 1
|
| 179 |
+
state['local_step_counter'] = 0
|
| 180 |
+
state['lrs'] = 0
|
| 181 |
+
state['tensor_size'] = torch.numel(p.data)
|
| 182 |
+
state['corrected_tensor_size'] = state['tensor_size']
|
| 183 |
+
|
| 184 |
+
if state['tensor_size'] % (self.size * self.divider) != 0:
|
| 185 |
+
state['corrected_tensor_size'] += ((self.size * self.divider) - (state['tensor_size'] %
|
| 186 |
+
(self.size * self.divider)))
|
| 187 |
+
state['server_chunk_size'] = state['corrected_tensor_size'] // self.size
|
| 188 |
+
get_accelerator().empty_cache()
|
| 189 |
+
state['worker_error'] = torch.zeros(state['corrected_tensor_size'], device=p.device)
|
| 190 |
+
state['server_error'] = torch.zeros(state['server_chunk_size'], device=p.device)
|
| 191 |
+
# Accumulation of momentum, i.e., the u variable in the 0/1 Adam paper
|
| 192 |
+
state['momentum_accumulator'] = torch.zeros_like(p.data)
|
| 193 |
+
get_accelerator().empty_cache()
|
| 194 |
+
# self.freeze_key = True
|
| 195 |
+
if not self.initialize and dist.get_rank() == 0:
|
| 196 |
+
print("Cupy Buffers Initialized Successfully.")
|
| 197 |
+
|
| 198 |
+
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
| 199 |
+
comm_buffer = state['momentum_accumulator']
|
| 200 |
+
beta1, beta2 = group['betas']
|
| 201 |
+
|
| 202 |
+
state['step'] += 1
|
| 203 |
+
|
| 204 |
+
if self.initialize:
|
| 205 |
+
if self.freeze_key is False:
|
| 206 |
+
if state['step'] % state['var_interval'] == 0:
|
| 207 |
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
| 208 |
+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
| 209 |
+
else:
|
| 210 |
+
if self.size > 1:
|
| 211 |
+
with torch.no_grad():
|
| 212 |
+
grad_onebit = self.comm_backend_handle.compressed_allreduce(
|
| 213 |
+
grad, state['worker_error'], state['server_error'], self.deepspeed.local_rank)
|
| 214 |
+
if 'exp_avg_mask' in group:
|
| 215 |
+
if grad_onebit.device != group['exp_avg_mask'].device:
|
| 216 |
+
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=grad_onebit.device)
|
| 217 |
+
grad_onebit.mul_(group['exp_avg_mask'])
|
| 218 |
+
exp_avg.mul_(beta1).add_(1 - beta1, grad_onebit)
|
| 219 |
+
else:
|
| 220 |
+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
| 221 |
+
state['lrs'] += group['lr']
|
| 222 |
+
grad = None
|
| 223 |
+
|
| 224 |
+
if not self.initialize:
|
| 225 |
+
if self.size > 1:
|
| 226 |
+
comm_buffer.set_(
|
| 227 |
+
self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'],
|
| 228 |
+
state['server_error'],
|
| 229 |
+
self.deepspeed.local_rank))
|
| 230 |
+
if 'exp_avg_mask' in group:
|
| 231 |
+
if comm_buffer.device != group['exp_avg_mask'].device:
|
| 232 |
+
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device)
|
| 233 |
+
comm_buffer.mul_(group['exp_avg_mask'])
|
| 234 |
+
|
| 235 |
+
if self.initialize:
|
| 236 |
+
update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
|
| 237 |
+
if group['weight_decay'] > 0.0:
|
| 238 |
+
update += group['weight_decay'] * p.data
|
| 239 |
+
with torch.no_grad():
|
| 240 |
+
p.data.add_(-group['lr'] * update)
|
| 241 |
+
if self.freeze_key is True:
|
| 242 |
+
comm_buffer.add_(-group['lr'] * update)
|
| 243 |
+
if state['step'] % state['local_step_interval'] == 0 and self.freeze_key:
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
p.data.add_(-1 * comm_buffer)
|
| 246 |
+
comm_buffer.mul_(exp_avg_sq.sqrt() + group['eps'])
|
| 247 |
+
if self.size > 1:
|
| 248 |
+
comm_buffer.copy_(
|
| 249 |
+
self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'],
|
| 250 |
+
state['server_error'],
|
| 251 |
+
self.deepspeed.local_rank))
|
| 252 |
+
if 'exp_avg_mask' in group:
|
| 253 |
+
if comm_buffer.device != group['exp_avg_mask'].device:
|
| 254 |
+
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device)
|
| 255 |
+
comm_buffer.mul_(group['exp_avg_mask'])
|
| 256 |
+
exp_avg.zero_().add_(comm_buffer / state['lrs'], alpha=-1)
|
| 257 |
+
p.data.add_(comm_buffer / (exp_avg_sq.sqrt() + group['eps']))
|
| 258 |
+
comm_buffer.zero_()
|
| 259 |
+
|
| 260 |
+
state['lrs'] = 0
|
| 261 |
+
|
| 262 |
+
# According to 0/1 Adam theory, a fixed variance would allow more accurate estimation of momentum
|
| 263 |
+
# However, in practice, we can also disable the manual freezing of variance, since the interval of
|
| 264 |
+
# updating variance will increase exponentially, so that it has negligible effect on the estimation.
|
| 265 |
+
if self.freeze_key is False:
|
| 266 |
+
if state['step'] % state['var_interval'] == 0:
|
| 267 |
+
state['var_counter'] += 1
|
| 268 |
+
if state['var_counter'] == self.var_update_scaler:
|
| 269 |
+
state['var_counter'] = 0
|
| 270 |
+
state['var_interval'] *= 2
|
| 271 |
+
if (state['step'] + 1) % state['var_interval'] == 0:
|
| 272 |
+
if self.using_pipeline:
|
| 273 |
+
self.deepspeed.pipeline_enable_backward_allreduce = True
|
| 274 |
+
else:
|
| 275 |
+
self.deepspeed.enable_backward_allreduce = True
|
| 276 |
+
else:
|
| 277 |
+
if self.using_pipeline:
|
| 278 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 279 |
+
else:
|
| 280 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 281 |
+
else:
|
| 282 |
+
state['local_step_counter'] += 1
|
| 283 |
+
if state['local_step_counter'] == self.local_step_scaler:
|
| 284 |
+
state['local_step_counter'] = 0
|
| 285 |
+
state['local_step_interval'] = min(self.local_step_clipper,
|
| 286 |
+
state['local_step_interval'] * 2)
|
| 287 |
+
|
| 288 |
+
if not self.initialize:
|
| 289 |
+
print('Pop out errors', flush=True)
|
| 290 |
+
self.freeze_key = False
|
| 291 |
+
state.pop('worker_error')
|
| 292 |
+
state.pop('server_error')
|
| 293 |
+
|
| 294 |
+
if not self.initialize:
|
| 295 |
+
self.initialize = True
|
| 296 |
+
print(f"Finished the initialization step at rank {dist.get_rank()}")
|
| 297 |
+
return loss
|
| 298 |
+
|
| 299 |
+
if self.state[self.param_groups[0]['params'][0]]['step'] > self.var_freeze_step:
|
| 300 |
+
self.freeze_key = True
|
| 301 |
+
if self.using_pipeline:
|
| 302 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 303 |
+
else:
|
| 304 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 305 |
+
|
| 306 |
+
if self.freeze_key is True and self.reinitial_error_buffer is False:
|
| 307 |
+
# We need to reinitialize the error buffers when local step > 1 since
|
| 308 |
+
# the errors will be logged for different metrics (gradient vs. accumulated momentum).
|
| 309 |
+
for group in self.param_groups:
|
| 310 |
+
for p in group['params']:
|
| 311 |
+
self.state[p]['worker_error'].zero_()
|
| 312 |
+
self.state[p]['server_error'].zero_()
|
| 313 |
+
self.reinitial_error_buffer = True
|
| 314 |
+
|
| 315 |
+
return loss
|
| 316 |
+
|
| 317 |
+
def load_state_dict(self, state_dict):
|
| 318 |
+
"""
|
| 319 |
+
Overrides load_state_dict() to add special handling when loading checkpoints
|
| 320 |
+
"""
|
| 321 |
+
# Because at different stage exp_avg_mask may change (e.g.,
|
| 322 |
+
# BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask
|
| 323 |
+
# in checkpoints but always use the one user provided in training script.
|
| 324 |
+
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
|
| 325 |
+
# Thus here we keep the exp_avg_mask unchanged when loading checkpoint
|
| 326 |
+
for i, group in enumerate(self.param_groups):
|
| 327 |
+
if 'exp_avg_mask' in group:
|
| 328 |
+
state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask']
|
| 329 |
+
elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]:
|
| 330 |
+
state_dict['param_groups'][i].pop('exp_avg_mask')
|
| 331 |
+
super().load_state_dict(state_dict)
|
| 332 |
+
if self.state[self.param_groups[0]['params'][0]]['step'] < self.var_freeze_step:
|
| 333 |
+
self.var_freeze_key = False
|
| 334 |
+
if (self.state[self.param_groups[0]['params'][0]]['step'] +
|
| 335 |
+
1) % self.state[self.param_groups[0]['params'][0]]['var_interval'] == 0:
|
| 336 |
+
if self.using_pipeline:
|
| 337 |
+
self.deepspeed.pipeline_enable_backward_allreduce = True
|
| 338 |
+
else:
|
| 339 |
+
self.deepspeed.enable_backward_allreduce = True
|
| 340 |
+
else:
|
| 341 |
+
if self.using_pipeline:
|
| 342 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 343 |
+
else:
|
| 344 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 345 |
+
else:
|
| 346 |
+
self.var_freeze_key = True
|
| 347 |
+
if self.using_pipeline:
|
| 348 |
+
self.deepspeed.pipeline_enable_backward_allreduce = False
|
| 349 |
+
else:
|
| 350 |
+
self.deepspeed.enable_backward_allreduce = False
|
| 351 |
+
self.reinitial_error_buffer = False
|
| 352 |
+
for group in self.param_groups:
|
| 353 |
+
for p in group['params']:
|
| 354 |
+
if 'worker_error' in self.state[p]:
|
| 355 |
+
self.state[p].pop('worker_error')
|
| 356 |
+
if 'server_error' in self.state[p]:
|
| 357 |
+
self.state[p].pop('server_error')
|
| 358 |
+
if 'momentum_accumulator' in self.state[p]:
|
| 359 |
+
self.state[p].pop('momentum_accumulator')
|
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/fp16/unfused_optimizer.py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# DeepSpeed Team
|
| 5 |
+
"""
|
| 6 |
+
Copyright NVIDIA/apex
|
| 7 |
+
This file is adapted from FP16_Optimizer in NVIDIA/apex
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from deepspeed.moe.utils import split_params_grads_into_shared_and_expert_params
|
| 11 |
+
import torch
|
| 12 |
+
from torch._utils import _flatten_dense_tensors
|
| 13 |
+
|
| 14 |
+
from deepspeed.runtime import DeepSpeedOptimizer
|
| 15 |
+
from deepspeed.runtime.utils import get_global_norm, CheckOverflow, get_weight_norm, required_torch_version
|
| 16 |
+
from deepspeed.runtime.fp16.loss_scaler import INITIAL_LOSS_SCALE, SCALE_WINDOW, MIN_LOSS_SCALE
|
| 17 |
+
from deepspeed.utils import logger
|
| 18 |
+
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT
|
| 19 |
+
from deepspeed.accelerator import get_accelerator
|
| 20 |
+
from deepspeed import comm as dist
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class FP16_UnfusedOptimizer(DeepSpeedOptimizer):
|
| 24 |
+
"""
|
| 25 |
+
FP16 Optimizer without weight fusion to support LAMB optimizer
|
| 26 |
+
|
| 27 |
+
For usage example please see, TODO: DeepSpeed V2 Tutorial
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self,
|
| 31 |
+
init_optimizer,
|
| 32 |
+
deepspeed=None,
|
| 33 |
+
static_loss_scale=1.0,
|
| 34 |
+
dynamic_loss_scale=False,
|
| 35 |
+
dynamic_loss_args=None,
|
| 36 |
+
verbose=True,
|
| 37 |
+
mpu=None,
|
| 38 |
+
clip_grad=0.0,
|
| 39 |
+
fused_lamb_legacy=False):
|
| 40 |
+
|
| 41 |
+
self.fused_lamb_legacy = fused_lamb_legacy
|
| 42 |
+
self._global_grad_norm = 0.
|
| 43 |
+
|
| 44 |
+
if dist.get_rank() == 0:
|
| 45 |
+
logger.info(f'Fused Lamb Legacy : {self.fused_lamb_legacy} ')
|
| 46 |
+
|
| 47 |
+
if not get_accelerator().is_available():
|
| 48 |
+
raise SystemError("Cannot use fp16 without accelerator.")
|
| 49 |
+
self.optimizer = init_optimizer
|
| 50 |
+
|
| 51 |
+
# param groups
|
| 52 |
+
self.fp16_groups = []
|
| 53 |
+
self.fp32_groups = []
|
| 54 |
+
|
| 55 |
+
# loop to deal with groups
|
| 56 |
+
for i, param_group in enumerate(self.optimizer.param_groups):
|
| 57 |
+
#fp16 weights that represents the actual model weights
|
| 58 |
+
self.fp16_groups.append(param_group['params'])
|
| 59 |
+
|
| 60 |
+
#creating a fp32 copy of the weights that will be updated first then
|
| 61 |
+
#copied to fp16 weights
|
| 62 |
+
fp32_group = [p.clone().float().detach() for p in param_group['params']]
|
| 63 |
+
|
| 64 |
+
#in case the internal optimizer needs it
|
| 65 |
+
for p in fp32_group:
|
| 66 |
+
p.requires_grad = True
|
| 67 |
+
|
| 68 |
+
#setting the param groups in the optimizer to point to fp32
|
| 69 |
+
#note these are not the weights used by the model
|
| 70 |
+
#the model uses the fp16 version that we added to fp16_group
|
| 71 |
+
self.fp32_groups.append(fp32_group)
|
| 72 |
+
param_group['params'] = self.fp32_groups[i]
|
| 73 |
+
|
| 74 |
+
# we may have a way of fusing dynamic scale. Do not support for now
|
| 75 |
+
if dynamic_loss_scale:
|
| 76 |
+
self.dynamic_loss_scale = True
|
| 77 |
+
self.cur_iter = 0
|
| 78 |
+
self.last_overflow_iter = -1
|
| 79 |
+
self.scale_factor = 2.0
|
| 80 |
+
if dynamic_loss_args is None:
|
| 81 |
+
self.cur_scale = 1.0 * 2**16
|
| 82 |
+
self.scale_window = 1000
|
| 83 |
+
self.min_loss_scale = 0.25
|
| 84 |
+
else:
|
| 85 |
+
self.cur_scale = dynamic_loss_args[INITIAL_LOSS_SCALE]
|
| 86 |
+
self.scale_window = dynamic_loss_args[SCALE_WINDOW]
|
| 87 |
+
self.min_loss_scale = dynamic_loss_args[MIN_LOSS_SCALE]
|
| 88 |
+
else:
|
| 89 |
+
self.dynamic_loss_scale = False
|
| 90 |
+
self.cur_iter = 0
|
| 91 |
+
self.cur_scale = static_loss_scale
|
| 92 |
+
|
| 93 |
+
self.custom_loss_scaler = False
|
| 94 |
+
self.external_loss_scale = None
|
| 95 |
+
|
| 96 |
+
self.verbose = verbose
|
| 97 |
+
|
| 98 |
+
self.clip_grad = clip_grad
|
| 99 |
+
self.norm_type = 2
|
| 100 |
+
|
| 101 |
+
if required_torch_version(max_version=0.4):
|
| 102 |
+
self.clip_grad_norm = torch.nn.utils.clip_grad_norm
|
| 103 |
+
else:
|
| 104 |
+
self.clip_grad_norm = torch.nn.utils.clip_grad_norm_
|
| 105 |
+
|
| 106 |
+
self.mpu = mpu
|
| 107 |
+
|
| 108 |
+
self.overflow = False
|
| 109 |
+
self.overflow_checker = CheckOverflow(self.fp16_groups, mpu=self.mpu, deepspeed=deepspeed)
|
| 110 |
+
|
| 111 |
+
self.initialize_optimizer_states()
|
| 112 |
+
|
| 113 |
+
def zero_grad(self, set_to_none=True):
|
| 114 |
+
"""
|
| 115 |
+
Zero FP16 parameter grads.
|
| 116 |
+
"""
|
| 117 |
+
# FP32 grad should never exist outside of the step function
|
| 118 |
+
# For speed, set model fp16 grad to None by default
|
| 119 |
+
for group in self.fp16_groups:
|
| 120 |
+
for p in group:
|
| 121 |
+
if set_to_none:
|
| 122 |
+
p.grad = None
|
| 123 |
+
else:
|
| 124 |
+
if p.grad is not None:
|
| 125 |
+
p.grad.detach_()
|
| 126 |
+
p.grad.zero_()
|
| 127 |
+
|
| 128 |
+
def step_fused_lamb(self, closure=None):
|
| 129 |
+
"""
|
| 130 |
+
Not supporting closure.
|
| 131 |
+
"""
|
| 132 |
+
# First compute norm for all group so we know if there is overflow
|
| 133 |
+
grads_groups_flat = []
|
| 134 |
+
grads_groups = []
|
| 135 |
+
norm_groups = []
|
| 136 |
+
expert_norm_groups = []
|
| 137 |
+
for i, group in enumerate(self.fp16_groups):
|
| 138 |
+
grads = [
|
| 139 |
+
torch.zeros(p.size(), dtype=p.dtype, device=p.device) if p.grad is None else p.grad for p in group
|
| 140 |
+
]
|
| 141 |
+
grads_groups.append(grads)
|
| 142 |
+
grads_groups_flat.append(_flatten_dense_tensors(grads))
|
| 143 |
+
grads_for_norm, expert_grads_for_norm = split_params_grads_into_shared_and_expert_params(group)
|
| 144 |
+
norm_group_value = 0.0
|
| 145 |
+
if len(grads_for_norm) > 0:
|
| 146 |
+
norm_group_value = get_weight_norm(_flatten_dense_tensors(grads_for_norm), mpu=self.mpu)
|
| 147 |
+
norm_groups.append(norm_group_value)
|
| 148 |
+
expert_norm_group_value = 0.0
|
| 149 |
+
if len(expert_grads_for_norm) > 0:
|
| 150 |
+
expert_norm_group_value = get_weight_norm(_flatten_dense_tensors(expert_grads_for_norm), mpu=self.mpu)
|
| 151 |
+
expert_norm_groups.append(expert_norm_group_value)
|
| 152 |
+
|
| 153 |
+
self.overflow = self.overflow_checker.check_using_norm(norm_groups + expert_norm_groups)
|
| 154 |
+
prev_scale = self.cur_scale
|
| 155 |
+
|
| 156 |
+
self._update_scale(self.overflow)
|
| 157 |
+
if self.overflow:
|
| 158 |
+
if self.verbose:
|
| 159 |
+
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
|
| 160 |
+
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
|
| 161 |
+
return self.overflow
|
| 162 |
+
|
| 163 |
+
self._global_grad_norm = get_global_norm(norm_list=norm_groups)
|
| 164 |
+
combined_scale = self.unscale_and_clip_grads(self._global_grad_norm, apply_scale=False)
|
| 165 |
+
self.optimizer.step(grads=grads_groups, output_params=self.fp16_groups, scale=combined_scale)
|
| 166 |
+
|
| 167 |
+
for fp32_group, fp16_group in zip(self.fp32_groups, self.fp16_groups):
|
| 168 |
+
for idx, (fp32_param, fp16_param) in enumerate(zip(fp32_group, fp16_group)):
|
| 169 |
+
|
| 170 |
+
#remove the fp32 grad
|
| 171 |
+
fp32_param.grad = None
|
| 172 |
+
|
| 173 |
+
#copy data from fp32 to fp16
|
| 174 |
+
fp16_param.data.copy_(fp32_param.data)
|
| 175 |
+
|
| 176 |
+
return self.overflow
|
| 177 |
+
|
| 178 |
+
def set_lr(self, lr):
|
| 179 |
+
"""Set the learning rate."""
|
| 180 |
+
for param_group in self.optimizer.param_groups:
|
| 181 |
+
param_group["lr"] = lr
|
| 182 |
+
|
| 183 |
+
def get_lr(self):
|
| 184 |
+
"""Return the current learning rate."""
|
| 185 |
+
return self.optimizer.param_groups[0]["lr"]
|
| 186 |
+
|
| 187 |
+
def override_loss_scale(self, loss_scale):
|
| 188 |
+
if loss_scale != self.external_loss_scale:
|
| 189 |
+
logger.info(f'[deepspeed] setting loss scale from {self.external_loss_scale} -> {loss_scale}')
|
| 190 |
+
self.custom_loss_scaler = True
|
| 191 |
+
self.external_loss_scale = loss_scale
|
| 192 |
+
|
| 193 |
+
def step(self, closure=None):
|
| 194 |
+
"""
|
| 195 |
+
Not supporting closure.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
if self.fused_lamb_legacy:
|
| 199 |
+
return self.step_fused_lamb()
|
| 200 |
+
|
| 201 |
+
self.overflow = self.overflow_checker.check()
|
| 202 |
+
prev_scale = self.cur_scale
|
| 203 |
+
|
| 204 |
+
self._update_scale(self.overflow)
|
| 205 |
+
if self.overflow:
|
| 206 |
+
if self.verbose:
|
| 207 |
+
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
|
| 208 |
+
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
|
| 209 |
+
return self.overflow
|
| 210 |
+
|
| 211 |
+
norm_groups = []
|
| 212 |
+
for i, group in enumerate(self.fp16_groups):
|
| 213 |
+
grads_for_norm, _ = split_params_grads_into_shared_and_expert_params(group)
|
| 214 |
+
norm_group_value = 0.0
|
| 215 |
+
if len(grads_for_norm) > 0:
|
| 216 |
+
norm_group_value = get_weight_norm(grads_for_norm, mpu=self.mpu)
|
| 217 |
+
norm_groups.append(norm_group_value)
|
| 218 |
+
|
| 219 |
+
# copying gradients to fp32 to work with fp32 parameters
|
| 220 |
+
for fp32_param, fp16_param in zip(self.fp32_groups[i], self.fp16_groups[i]):
|
| 221 |
+
if fp16_param.grad is None:
|
| 222 |
+
fp32_param.grad = torch.zeros(fp16_param.size(), dtype=fp32_param.dtype, device=fp32_param.device)
|
| 223 |
+
else:
|
| 224 |
+
fp32_param.grad = fp16_param.grad.to(fp32_param.dtype)
|
| 225 |
+
|
| 226 |
+
self._global_grad_norm = get_global_norm(norm_list=norm_groups)
|
| 227 |
+
self.unscale_and_clip_grads(self._global_grad_norm)
|
| 228 |
+
|
| 229 |
+
self.optimizer.step()
|
| 230 |
+
|
| 231 |
+
for fp32_group, fp16_group in zip(self.fp32_groups, self.fp16_groups):
|
| 232 |
+
for idx, (fp32_param, fp16_param) in enumerate(zip(fp32_group, fp16_group)):
|
| 233 |
+
|
| 234 |
+
#remove the fp32 grad
|
| 235 |
+
fp32_param.grad = None
|
| 236 |
+
|
| 237 |
+
#copy data from fp32 to fp16
|
| 238 |
+
fp16_param.data.copy_(fp32_param.data)
|
| 239 |
+
|
| 240 |
+
return self.overflow
|
| 241 |
+
|
| 242 |
+
def unscale_and_clip_grads(self, total_norm, apply_scale=True):
|
| 243 |
+
# compute combined scale factor for this group
|
| 244 |
+
combined_scale = self.cur_scale
|
| 245 |
+
if self.clip_grad > 0.:
|
| 246 |
+
# norm is in fact norm*scale
|
| 247 |
+
clip = ((total_norm / self.cur_scale) + 1e-6) / self.clip_grad
|
| 248 |
+
if clip > 1:
|
| 249 |
+
combined_scale = clip * self.cur_scale
|
| 250 |
+
|
| 251 |
+
if apply_scale:
|
| 252 |
+
for group in self.fp32_groups:
|
| 253 |
+
for param in group:
|
| 254 |
+
if param.grad is not None:
|
| 255 |
+
param.grad.data.mul_(1. / combined_scale)
|
| 256 |
+
|
| 257 |
+
return combined_scale
|
| 258 |
+
|
| 259 |
+
def backward(self, loss, create_graph=False, retain_graph=False):
|
| 260 |
+
"""
|
| 261 |
+
:attr:`backward` performs the following steps:
|
| 262 |
+
|
| 263 |
+
1. fp32_loss = loss.float()
|
| 264 |
+
2. scaled_loss = fp32_loss*loss_scale
|
| 265 |
+
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
|
| 266 |
+
"""
|
| 267 |
+
if self.custom_loss_scaler:
|
| 268 |
+
scaled_loss = self.external_loss_scale * loss
|
| 269 |
+
scaled_loss.backward()
|
| 270 |
+
else:
|
| 271 |
+
scaled_loss = (loss.float()) * self.cur_scale
|
| 272 |
+
scaled_loss.backward(create_graph=create_graph, retain_graph=retain_graph)
|
| 273 |
+
|
| 274 |
+
def _update_scale(self, skip):
|
| 275 |
+
if self.dynamic_loss_scale:
|
| 276 |
+
prev_scale = self.cur_scale
|
| 277 |
+
if skip:
|
| 278 |
+
self.cur_scale = max(self.cur_scale / self.scale_factor, self.min_loss_scale)
|
| 279 |
+
self.last_overflow_iter = self.cur_iter
|
| 280 |
+
if self.verbose:
|
| 281 |
+
logger.info("Grad overflow on iteration: %s", self.cur_iter)
|
| 282 |
+
logger.info(f"Reducing dynamic loss scale from {prev_scale} to {self.cur_scale}")
|
| 283 |
+
else:
|
| 284 |
+
# Ensure self.scale_window updates since last overflow
|
| 285 |
+
stable_interval = (self.cur_iter - self.last_overflow_iter) - 1
|
| 286 |
+
if (stable_interval > 0) and (stable_interval % self.scale_window == 0):
|
| 287 |
+
self.cur_scale *= self.scale_factor
|
| 288 |
+
if self.verbose:
|
| 289 |
+
logger.info(f"No Grad overflow for {self.scale_window} iterations")
|
| 290 |
+
logger.info(f"Increasing dynamic loss scale from {prev_scale} to {self.cur_scale}")
|
| 291 |
+
else:
|
| 292 |
+
if skip:
|
| 293 |
+
logger.info("Grad overflow on iteration %s", self.cur_iter)
|
| 294 |
+
logger.info("Using static loss scale of %s", self.cur_scale)
|
| 295 |
+
self.cur_iter += 1
|
| 296 |
+
return
|
| 297 |
+
|
| 298 |
+
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
|
| 299 |
+
def _get_state(self):
|
| 300 |
+
return self.optimizer.state
|
| 301 |
+
|
| 302 |
+
def _set_state(self, value):
|
| 303 |
+
self.optimizer.state = value
|
| 304 |
+
|
| 305 |
+
state = property(_get_state, _set_state)
|
| 306 |
+
|
| 307 |
+
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
|
| 308 |
+
# (for example, to adjust the learning rate)
|
| 309 |
+
def _get_param_groups(self):
|
| 310 |
+
return self.optimizer.param_groups
|
| 311 |
+
|
| 312 |
+
def _set_param_groups(self, value):
|
| 313 |
+
self.optimizer.param_groups = value
|
| 314 |
+
|
| 315 |
+
param_groups = property(_get_param_groups, _set_param_groups)
|
| 316 |
+
|
| 317 |
+
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
|
| 318 |
+
def _get_loss_scale(self):
|
| 319 |
+
if self.custom_loss_scaler:
|
| 320 |
+
return self.external_loss_scale
|
| 321 |
+
else:
|
| 322 |
+
return self.cur_scale
|
| 323 |
+
|
| 324 |
+
def _set_loss_scale(self, value):
|
| 325 |
+
self.loss_scaler.cur_scale = value
|
| 326 |
+
|
| 327 |
+
loss_scale = property(_get_loss_scale, _set_loss_scale)
|
| 328 |
+
|
| 329 |
+
def state_dict(self):
|
| 330 |
+
"""
|
| 331 |
+
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
|
| 332 |
+
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
|
| 333 |
+
of the contained Pytorch optimizer.
|
| 334 |
+
Example::
|
| 335 |
+
checkpoint = {}
|
| 336 |
+
checkpoint['model'] = model.state_dict()
|
| 337 |
+
checkpoint['optimizer'] = optimizer.state_dict()
|
| 338 |
+
torch.save(checkpoint, "saved.pth")
|
| 339 |
+
"""
|
| 340 |
+
state_dict = {}
|
| 341 |
+
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
|
| 342 |
+
state_dict['cur_scale'] = self.cur_scale
|
| 343 |
+
state_dict['cur_iter'] = self.cur_iter
|
| 344 |
+
if state_dict['dynamic_loss_scale']:
|
| 345 |
+
state_dict['last_overflow_iter'] = self.last_overflow_iter
|
| 346 |
+
state_dict['scale_factor'] = self.scale_factor
|
| 347 |
+
state_dict['scale_window'] = self.scale_window
|
| 348 |
+
state_dict[OPTIMIZER_STATE_DICT] = self.optimizer.state_dict()
|
| 349 |
+
state_dict['fp32_groups'] = self.fp32_groups
|
| 350 |
+
return state_dict
|
| 351 |
+
|
| 352 |
+
# Refresh fp32 master params from fp16 copies
|
| 353 |
+
def refresh_fp32_params(self):
|
| 354 |
+
for current_group, saved_group in zip(self.fp32_groups, self.fp16_groups):
|
| 355 |
+
for current, saved in zip(current_group, saved_group):
|
| 356 |
+
current.data.copy_(saved.data)
|
| 357 |
+
|
| 358 |
+
def load_state_dict(self, state_dict, load_optimizer_states=True):
|
| 359 |
+
"""
|
| 360 |
+
Loads a state_dict created by an earlier call to state_dict().
|
| 361 |
+
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
|
| 362 |
+
whose parameters in turn came from ``model``, it is expected that the user
|
| 363 |
+
will call ``model.load_state_dict()`` before
|
| 364 |
+
``fp16_optimizer_instance.load_state_dict()`` is called.
|
| 365 |
+
Example::
|
| 366 |
+
model = torch.nn.Linear(D_in, D_out).to(get_accelerator().device_name()).half()
|
| 367 |
+
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
|
| 368 |
+
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
|
| 369 |
+
...
|
| 370 |
+
checkpoint = torch.load("saved.pth")
|
| 371 |
+
model.load_state_dict(checkpoint['model'])
|
| 372 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
| 373 |
+
"""
|
| 374 |
+
# I think it should actually be ok to reload the optimizer before the model.
|
| 375 |
+
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
|
| 376 |
+
self.cur_scale = state_dict['cur_scale']
|
| 377 |
+
self.cur_iter = state_dict['cur_iter']
|
| 378 |
+
if state_dict['dynamic_loss_scale']:
|
| 379 |
+
self.last_overflow_iter = state_dict['last_overflow_iter']
|
| 380 |
+
self.scale_factor = state_dict['scale_factor']
|
| 381 |
+
self.scale_window = state_dict['scale_window']
|
| 382 |
+
|
| 383 |
+
if load_optimizer_states:
|
| 384 |
+
self.optimizer.load_state_dict(state_dict[OPTIMIZER_STATE_DICT])
|
| 385 |
+
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
|
| 386 |
+
# The optimizer's hyperparameters and internal buffers are also up to date.
|
| 387 |
+
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
|
| 388 |
+
# out of date. There are two options.
|
| 389 |
+
# 1: Refresh the master params from the model's fp16 params.
|
| 390 |
+
# This requires less storage but incurs precision loss.
|
| 391 |
+
# 2: Save and restore the fp32 master copies separately.
|
| 392 |
+
# We choose option 2.
|
| 393 |
+
#
|
| 394 |
+
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
|
| 395 |
+
# of their associated parameters, because it's possible those buffers might not exist yet in
|
| 396 |
+
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
|
| 397 |
+
# constructed in the same way as the one whose state_dict we are loading, the same master params
|
| 398 |
+
# are guaranteed to exist, so we can just copy_() from the saved master params.
|
| 399 |
+
for current_group, saved_group in zip(self.fp32_groups, state_dict['fp32_groups']):
|
| 400 |
+
for current, saved in zip(current_group, saved_group):
|
| 401 |
+
current.data.copy_(saved.data)
|
| 402 |
+
|
| 403 |
+
def __repr__(self):
|
| 404 |
+
return repr(self.optimizer)
|
| 405 |
+
|
| 406 |
+
def initialize_optimizer_states(self):
|
| 407 |
+
for i, group in enumerate(self.fp16_groups):
|
| 408 |
+
for param in group:
|
| 409 |
+
param.grad = torch.zeros(param.size(),
|
| 410 |
+
dtype=param.dtype,
|
| 411 |
+
device=get_accelerator().current_device_name())
|
| 412 |
+
|
| 413 |
+
for i, group in enumerate(self.fp32_groups):
|
| 414 |
+
for param in group:
|
| 415 |
+
param.grad = torch.zeros(param.size(),
|
| 416 |
+
dtype=param.dtype,
|
| 417 |
+
device=get_accelerator().current_device_name())
|
| 418 |
+
|
| 419 |
+
self.optimizer.step()
|
| 420 |
+
|
| 421 |
+
for i, group in enumerate(self.fp16_groups):
|
| 422 |
+
for param in group:
|
| 423 |
+
param.grad = None
|
| 424 |
+
|
| 425 |
+
for i, group in enumerate(self.fp32_groups):
|
| 426 |
+
for param in group:
|
| 427 |
+
param.grad = None
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# flake8: noqa
|
| 2 |
+
from .store import Store
|
| 3 |
+
from .errors import StoreError, CredentialsNotFound
|
| 4 |
+
from .constants import *
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (307 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/constants.cpython-310.pyc
ADDED
|
Binary file (329 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/errors.cpython-310.pyc
ADDED
|
Binary file (960 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/store.cpython-310.pyc
ADDED
|
Binary file (3.21 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (1.12 kB). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/__pycache__/version.cpython-310.pyc
ADDED
|
Binary file (380 Bytes). View file
|
|
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/constants.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROGRAM_PREFIX = 'docker-credential-'
|
| 2 |
+
DEFAULT_LINUX_STORE = 'secretservice'
|
| 3 |
+
DEFAULT_OSX_STORE = 'osxkeychain'
|
| 4 |
+
DEFAULT_WIN32_STORE = 'wincred'
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/errors.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class StoreError(RuntimeError):
|
| 2 |
+
pass
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class CredentialsNotFound(StoreError):
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class InitializationError(StoreError):
|
| 10 |
+
pass
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def process_store_error(cpe, program):
|
| 14 |
+
message = cpe.output.decode('utf-8')
|
| 15 |
+
if 'credentials not found in native keychain' in message:
|
| 16 |
+
return CredentialsNotFound(
|
| 17 |
+
'No matching credentials in {0}'.format(
|
| 18 |
+
program
|
| 19 |
+
)
|
| 20 |
+
)
|
| 21 |
+
return StoreError(
|
| 22 |
+
'Credentials store {0} exited with "{1}".'.format(
|
| 23 |
+
program, cpe.output.decode('utf-8').strip()
|
| 24 |
+
)
|
| 25 |
+
)
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/store.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
|
| 5 |
+
import six
|
| 6 |
+
|
| 7 |
+
from . import constants
|
| 8 |
+
from . import errors
|
| 9 |
+
from .utils import create_environment_dict
|
| 10 |
+
from .utils import find_executable
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Store(object):
|
| 14 |
+
def __init__(self, program, environment=None):
|
| 15 |
+
""" Create a store object that acts as an interface to
|
| 16 |
+
perform the basic operations for storing, retrieving
|
| 17 |
+
and erasing credentials using `program`.
|
| 18 |
+
"""
|
| 19 |
+
self.program = constants.PROGRAM_PREFIX + program
|
| 20 |
+
self.exe = find_executable(self.program)
|
| 21 |
+
self.environment = environment
|
| 22 |
+
if self.exe is None:
|
| 23 |
+
raise errors.InitializationError(
|
| 24 |
+
'{0} not installed or not available in PATH'.format(
|
| 25 |
+
self.program
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def get(self, server):
|
| 30 |
+
""" Retrieve credentials for `server`. If no credentials are found,
|
| 31 |
+
a `StoreError` will be raised.
|
| 32 |
+
"""
|
| 33 |
+
if not isinstance(server, six.binary_type):
|
| 34 |
+
server = server.encode('utf-8')
|
| 35 |
+
data = self._execute('get', server)
|
| 36 |
+
result = json.loads(data.decode('utf-8'))
|
| 37 |
+
|
| 38 |
+
# docker-credential-pass will return an object for inexistent servers
|
| 39 |
+
# whereas other helpers will exit with returncode != 0. For
|
| 40 |
+
# consistency, if no significant data is returned,
|
| 41 |
+
# raise CredentialsNotFound
|
| 42 |
+
if result['Username'] == '' and result['Secret'] == '':
|
| 43 |
+
raise errors.CredentialsNotFound(
|
| 44 |
+
'No matching credentials in {}'.format(self.program)
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
return result
|
| 48 |
+
|
| 49 |
+
def store(self, server, username, secret):
|
| 50 |
+
""" Store credentials for `server`. Raises a `StoreError` if an error
|
| 51 |
+
occurs.
|
| 52 |
+
"""
|
| 53 |
+
data_input = json.dumps({
|
| 54 |
+
'ServerURL': server,
|
| 55 |
+
'Username': username,
|
| 56 |
+
'Secret': secret
|
| 57 |
+
}).encode('utf-8')
|
| 58 |
+
return self._execute('store', data_input)
|
| 59 |
+
|
| 60 |
+
def erase(self, server):
|
| 61 |
+
""" Erase credentials for `server`. Raises a `StoreError` if an error
|
| 62 |
+
occurs.
|
| 63 |
+
"""
|
| 64 |
+
if not isinstance(server, six.binary_type):
|
| 65 |
+
server = server.encode('utf-8')
|
| 66 |
+
self._execute('erase', server)
|
| 67 |
+
|
| 68 |
+
def list(self):
|
| 69 |
+
""" List stored credentials. Requires v0.4.0+ of the helper.
|
| 70 |
+
"""
|
| 71 |
+
data = self._execute('list', None)
|
| 72 |
+
return json.loads(data.decode('utf-8'))
|
| 73 |
+
|
| 74 |
+
def _execute(self, subcmd, data_input):
|
| 75 |
+
output = None
|
| 76 |
+
env = create_environment_dict(self.environment)
|
| 77 |
+
try:
|
| 78 |
+
if six.PY3:
|
| 79 |
+
output = subprocess.check_output(
|
| 80 |
+
[self.exe, subcmd], input=data_input, env=env,
|
| 81 |
+
)
|
| 82 |
+
else:
|
| 83 |
+
process = subprocess.Popen(
|
| 84 |
+
[self.exe, subcmd], stdin=subprocess.PIPE,
|
| 85 |
+
stdout=subprocess.PIPE, env=env,
|
| 86 |
+
)
|
| 87 |
+
output, err = process.communicate(data_input)
|
| 88 |
+
if process.returncode != 0:
|
| 89 |
+
raise subprocess.CalledProcessError(
|
| 90 |
+
returncode=process.returncode, cmd='', output=output
|
| 91 |
+
)
|
| 92 |
+
except subprocess.CalledProcessError as e:
|
| 93 |
+
raise errors.process_store_error(e, self.program)
|
| 94 |
+
except OSError as e:
|
| 95 |
+
if e.errno == os.errno.ENOENT:
|
| 96 |
+
raise errors.StoreError(
|
| 97 |
+
'{0} not installed or not available in PATH'.format(
|
| 98 |
+
self.program
|
| 99 |
+
)
|
| 100 |
+
)
|
| 101 |
+
else:
|
| 102 |
+
raise errors.StoreError(
|
| 103 |
+
'Unexpected OS error "{0}", errno={1}'.format(
|
| 104 |
+
e.strerror, e.errno
|
| 105 |
+
)
|
| 106 |
+
)
|
| 107 |
+
return output
|
evalkit_cambrian/lib/python3.10/site-packages/dockerpycreds/utils.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import distutils.spawn
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def find_executable(executable, path=None):
|
| 7 |
+
"""
|
| 8 |
+
As distutils.spawn.find_executable, but on Windows, look up
|
| 9 |
+
every extension declared in PATHEXT instead of just `.exe`
|
| 10 |
+
"""
|
| 11 |
+
if sys.platform != 'win32':
|
| 12 |
+
return distutils.spawn.find_executable(executable, path)
|
| 13 |
+
|
| 14 |
+
if path is None:
|
| 15 |
+
path = os.environ['PATH']
|
| 16 |
+
|
| 17 |
+
paths = path.split(os.pathsep)
|
| 18 |
+
extensions = os.environ.get('PATHEXT', '.exe').split(os.pathsep)
|
| 19 |
+
base, ext = os.path.splitext(executable)
|
| 20 |
+
|
| 21 |
+
if not os.path.isfile(executable):
|
| 22 |
+
for p in paths:
|
| 23 |
+
for ext in extensions:
|
| 24 |
+
f = os.path.join(p, base + ext)
|
| 25 |
+
if os.path.isfile(f):
|
| 26 |
+
return f
|
| 27 |
+
return None
|
| 28 |
+
else:
|
| 29 |
+
return executable
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def create_environment_dict(overrides):
|
| 33 |
+
"""
|
| 34 |
+
Create and return a copy of os.environ with the specified overrides
|
| 35 |
+
"""
|
| 36 |
+
result = os.environ.copy()
|
| 37 |
+
result.update(overrides or {})
|
| 38 |
+
return result
|