ZTWHHH commited on
Commit
0d1d6ed
·
verified ·
1 Parent(s): 8479326

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +8 -0
  2. evalkit_tf440/lib/libbz2.so.1.0.8 +3 -0
  3. evalkit_tf440/lib/libncurses++.a +3 -0
  4. evalkit_tf440/lib/libsqlite3.so.0 +3 -0
  5. evalkit_tf440/lib/libsqlite3.so.0.8.6 +3 -0
  6. evalkit_tf440/lib/libstdc++.so +3 -0
  7. evalkit_tf440/lib/libstdc++.so.6.0.29 +3 -0
  8. evalkit_tf440/lib/libtinfo.so +3 -0
  9. evalkit_tf440/lib/libtinfow.so.6.4 +3 -0
  10. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/__init__.py +0 -0
  11. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/client_feature_flags.py +113 -0
  12. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/empty_path_redirect.py +46 -0
  13. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/data_ingester.py +277 -0
  14. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_accumulator.py +951 -0
  15. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_file_inspector.py +465 -0
  16. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_file_loader.py +293 -0
  17. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_multiplexer.py +523 -0
  18. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_util.py +68 -0
  19. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/plugin_asset_util.py +105 -0
  20. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/plugin_event_accumulator.py +722 -0
  21. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/json_util.py +72 -0
  22. infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/path_prefix.py +68 -0
  23. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__init__.py +0 -0
  24. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/__init__.cpython-310.pyc +0 -0
  25. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/allocation_description_pb2.cpython-310.pyc +0 -0
  26. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/api_def_pb2.cpython-310.pyc +0 -0
  27. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/attr_value_pb2.cpython-310.pyc +0 -0
  28. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cluster_pb2.cpython-310.pyc +0 -0
  29. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/config_pb2.cpython-310.pyc +0 -0
  30. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/coordination_config_pb2.cpython-310.pyc +0 -0
  31. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cost_graph_pb2.cpython-310.pyc +0 -0
  32. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cpp_shape_inference_pb2.cpython-310.pyc +0 -0
  33. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/debug_pb2.cpython-310.pyc +0 -0
  34. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/event_pb2.cpython-310.pyc +0 -0
  35. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/full_type_pb2.cpython-310.pyc +0 -0
  36. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/function_pb2.cpython-310.pyc +0 -0
  37. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/graph_debug_info_pb2.cpython-310.pyc +0 -0
  38. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/graph_pb2.cpython-310.pyc +0 -0
  39. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/histogram_pb2.cpython-310.pyc +0 -0
  40. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/meta_graph_pb2.cpython-310.pyc +0 -0
  41. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/node_def_pb2.cpython-310.pyc +0 -0
  42. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/op_def_pb2.cpython-310.pyc +0 -0
  43. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/resource_handle_pb2.cpython-310.pyc +0 -0
  44. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/rewriter_config_pb2.cpython-310.pyc +0 -0
  45. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/rpc_options_pb2.cpython-310.pyc +0 -0
  46. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/saved_object_graph_pb2.cpython-310.pyc +0 -0
  47. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/saver_pb2.cpython-310.pyc +0 -0
  48. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/step_stats_pb2.cpython-310.pyc +0 -0
  49. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/struct_pb2.cpython-310.pyc +0 -0
  50. infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/summary_pb2.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -756,3 +756,11 @@ deepseekvl2/lib/python3.10/lib-dynload/_codecs_tw.cpython-310-x86_64-linux-gnu.s
756
  deepseekvl2/lib/python3.10/lib-dynload/_socket.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
757
  evalkit_tf440/lib/libreadline.a filter=lfs diff=lfs merge=lfs -text
758
  infer_4_33_0/lib/python3.10/site-packages/h5py/defs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
756
  deepseekvl2/lib/python3.10/lib-dynload/_socket.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
757
  evalkit_tf440/lib/libreadline.a filter=lfs diff=lfs merge=lfs -text
758
  infer_4_33_0/lib/python3.10/site-packages/h5py/defs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
759
+ evalkit_tf440/lib/libtinfow.so.6.4 filter=lfs diff=lfs merge=lfs -text
760
+ evalkit_tf440/lib/libsqlite3.so.0 filter=lfs diff=lfs merge=lfs -text
761
+ evalkit_tf440/lib/libbz2.so.1.0.8 filter=lfs diff=lfs merge=lfs -text
762
+ evalkit_tf440/lib/libstdc++.so.6.0.29 filter=lfs diff=lfs merge=lfs -text
763
+ evalkit_tf440/lib/libsqlite3.so.0.8.6 filter=lfs diff=lfs merge=lfs -text
764
+ evalkit_tf440/lib/libstdc++.so filter=lfs diff=lfs merge=lfs -text
765
+ evalkit_tf440/lib/libtinfo.so filter=lfs diff=lfs merge=lfs -text
766
+ evalkit_tf440/lib/libncurses++.a filter=lfs diff=lfs merge=lfs -text
evalkit_tf440/lib/libbz2.so.1.0.8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4979469ae49ac144f62202f75bbdd69b17197aedb879d633337c8cf7e4aba301
3
+ size 229016
evalkit_tf440/lib/libncurses++.a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93b48c40f5d7b07e1a8c4bd9419df55c28e250cca1166be4aafd2fc7caf18823
3
+ size 187604
evalkit_tf440/lib/libsqlite3.so.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71932eb5bf89092fbd2c900601fc9f24aa184d65038aaec2445fd11b1d923327
3
+ size 1543808
evalkit_tf440/lib/libsqlite3.so.0.8.6 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71932eb5bf89092fbd2c900601fc9f24aa184d65038aaec2445fd11b1d923327
3
+ size 1543808
evalkit_tf440/lib/libstdc++.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f045231ff3a95c2fbfde450575f0ef45d23e95be15193c8729b521fc363ece4
3
+ size 17981480
evalkit_tf440/lib/libstdc++.so.6.0.29 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f045231ff3a95c2fbfde450575f0ef45d23e95be15193c8729b521fc363ece4
3
+ size 17981480
evalkit_tf440/lib/libtinfo.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2024856ea882d3151c1de53fcc7c66af037565fb8b387e4db35fb80b61ca49b4
3
+ size 287080
evalkit_tf440/lib/libtinfow.so.6.4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2024856ea882d3151c1de53fcc7c66af037565fb8b387e4db35fb80b61ca49b4
3
+ size 287080
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/__init__.py ADDED
File without changes
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/client_feature_flags.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Middleware for injecting client-side feature flags into the Context."""
16
+
17
+ import json
18
+ import urllib.parse
19
+
20
+ from tensorboard import context
21
+ from tensorboard import errors
22
+
23
+
24
+ class ClientFeatureFlagsMiddleware:
25
+ """Middleware for injecting client-side feature flags into the Context.
26
+
27
+ The client webapp is expected to include a json-serialized version of its
28
+ FeatureFlags in the `X-TensorBoard-Feature-Flags` header or the
29
+ `tensorBoardFeatureFlags` query parameter. This middleware extracts the
30
+ header or query parameter value and converts it into the client_feature_flags
31
+ property for the DataProvider's Context object, where client_feature_flags
32
+ is a Dict of string keys and arbitrary value types.
33
+
34
+ In the event that both the header and query parameter are specified, the
35
+ values from the header will take precedence.
36
+ """
37
+
38
+ def __init__(self, application):
39
+ """Initializes this middleware.
40
+
41
+ Args:
42
+ application: The WSGI application to wrap (see PEP 3333).
43
+ """
44
+ self._application = application
45
+
46
+ def __call__(self, environ, start_response):
47
+ header_feature_flags = self._parse_potential_header_param_flags(
48
+ environ.get("HTTP_X_TENSORBOARD_FEATURE_FLAGS")
49
+ )
50
+ query_string_feature_flags = self._parse_potential_query_param_flags(
51
+ environ.get("QUERY_STRING")
52
+ )
53
+
54
+ if not header_feature_flags and not query_string_feature_flags:
55
+ return self._application(environ, start_response)
56
+
57
+ # header flags take precedence
58
+ for flag, value in header_feature_flags.items():
59
+ query_string_feature_flags[flag] = value
60
+
61
+ ctx = context.from_environ(environ).replace(
62
+ client_feature_flags=query_string_feature_flags
63
+ )
64
+ context.set_in_environ(environ, ctx)
65
+
66
+ return self._application(environ, start_response)
67
+
68
+ def _parse_potential_header_param_flags(self, header_string):
69
+ if not header_string:
70
+ return {}
71
+
72
+ try:
73
+ header_feature_flags = json.loads(header_string)
74
+ except json.JSONDecodeError:
75
+ raise errors.InvalidArgumentError(
76
+ "X-TensorBoard-Feature-Flags cannot be JSON decoded."
77
+ )
78
+
79
+ if not isinstance(header_feature_flags, dict):
80
+ raise errors.InvalidArgumentError(
81
+ "X-TensorBoard-Feature-Flags cannot be decoded to a dict."
82
+ )
83
+
84
+ return header_feature_flags
85
+
86
+ def _parse_potential_query_param_flags(self, query_string):
87
+ if not query_string:
88
+ return {}
89
+
90
+ try:
91
+ query_string_json = urllib.parse.parse_qs(query_string)
92
+ except ValueError:
93
+ return {}
94
+
95
+ # parse_qs returns the dictionary values as lists for each name.
96
+ potential_feature_flags = query_string_json.get(
97
+ "tensorBoardFeatureFlags", []
98
+ )
99
+ if not potential_feature_flags:
100
+ return {}
101
+ try:
102
+ client_feature_flags = json.loads(potential_feature_flags[0])
103
+ except json.JSONDecodeError:
104
+ raise errors.InvalidArgumentError(
105
+ "tensorBoardFeatureFlags cannot be JSON decoded."
106
+ )
107
+
108
+ if not isinstance(client_feature_flags, dict):
109
+ raise errors.InvalidArgumentError(
110
+ "tensorBoardFeatureFlags cannot be decoded to a dict."
111
+ )
112
+
113
+ return client_feature_flags
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/empty_path_redirect.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Redirect from an empty path to the virtual application root.
16
+
17
+ Sometimes, middleware transformations will make the path empty: for
18
+ example, navigating to "/foo" (no trailing slash) when the path prefix
19
+ is exactly "/foo". In such cases, relative links on the frontend would
20
+ break. Instead of handling this special case in each relevant
21
+ middleware, we install a top-level redirect handler from "" to "/".
22
+
23
+ This middleware respects `SCRIPT_NAME` as described by the WSGI spec. If
24
+ `SCRIPT_NAME` is set to "/foo", then an empty `PATH_INFO` corresponds to
25
+ the actual path "/foo", and so will be redirected to "/foo/".
26
+ """
27
+
28
+
29
+ class EmptyPathRedirectMiddleware:
30
+ """WSGI middleware to redirect from "" to "/"."""
31
+
32
+ def __init__(self, application):
33
+ """Initializes this middleware.
34
+
35
+ Args:
36
+ application: The WSGI application to wrap (see PEP 3333).
37
+ """
38
+ self._application = application
39
+
40
+ def __call__(self, environ, start_response):
41
+ path = environ.get("PATH_INFO", "")
42
+ if path:
43
+ return self._application(environ, start_response)
44
+ location = environ.get("SCRIPT_NAME", "") + "/"
45
+ start_response("301 Moved Permanently", [("Location", location)])
46
+ return []
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/data_ingester.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Provides data ingestion logic backed by local event processing."""
16
+
17
+ import os
18
+ import re
19
+ import threading
20
+ import time
21
+
22
+
23
+ from tensorboard.backend.event_processing import data_provider
24
+ from tensorboard.backend.event_processing import plugin_event_multiplexer
25
+ from tensorboard.backend.event_processing import tag_types
26
+ from tensorboard.compat import tf
27
+ from tensorboard.data import ingester
28
+ from tensorboard.plugins.audio import metadata as audio_metadata
29
+ from tensorboard.plugins.histogram import metadata as histogram_metadata
30
+ from tensorboard.plugins.image import metadata as image_metadata
31
+ from tensorboard.plugins.pr_curve import metadata as pr_curve_metadata
32
+ from tensorboard.plugins.scalar import metadata as scalar_metadata
33
+ from tensorboard.util import tb_logging
34
+
35
+
36
+ DEFAULT_SIZE_GUIDANCE = {
37
+ tag_types.TENSORS: 10,
38
+ }
39
+
40
+ # TODO(@wchargin): Replace with something that works for third-party plugins.
41
+ DEFAULT_TENSOR_SIZE_GUIDANCE = {
42
+ scalar_metadata.PLUGIN_NAME: 1000,
43
+ image_metadata.PLUGIN_NAME: 10,
44
+ audio_metadata.PLUGIN_NAME: 10,
45
+ histogram_metadata.PLUGIN_NAME: 500,
46
+ pr_curve_metadata.PLUGIN_NAME: 100,
47
+ }
48
+
49
+ logger = tb_logging.get_logger()
50
+
51
+
52
+ class LocalDataIngester(ingester.DataIngester):
53
+ """Data ingestion implementation to use when running locally."""
54
+
55
+ def __init__(self, flags):
56
+ """Initializes a `LocalDataIngester` from `flags`.
57
+
58
+ Args:
59
+ flags: An argparse.Namespace containing TensorBoard CLI flags.
60
+
61
+ Returns:
62
+ The new `LocalDataIngester`.
63
+ """
64
+ tensor_size_guidance = dict(DEFAULT_TENSOR_SIZE_GUIDANCE)
65
+ tensor_size_guidance.update(flags.samples_per_plugin)
66
+ self._multiplexer = plugin_event_multiplexer.EventMultiplexer(
67
+ size_guidance=DEFAULT_SIZE_GUIDANCE,
68
+ tensor_size_guidance=tensor_size_guidance,
69
+ purge_orphaned_data=flags.purge_orphaned_data,
70
+ max_reload_threads=flags.max_reload_threads,
71
+ event_file_active_filter=_get_event_file_active_filter(flags),
72
+ detect_file_replacement=flags.detect_file_replacement,
73
+ )
74
+ self._data_provider = data_provider.MultiplexerDataProvider(
75
+ self._multiplexer, flags.logdir or flags.logdir_spec
76
+ )
77
+ self._reload_interval = flags.reload_interval
78
+ self._reload_task = flags.reload_task
79
+ if flags.logdir:
80
+ self._path_to_run = {os.path.expanduser(flags.logdir): None}
81
+ else:
82
+ self._path_to_run = _parse_event_files_spec(flags.logdir_spec)
83
+
84
+ # Conditionally import tensorflow_io.
85
+ if getattr(tf, "__version__", "stub") != "stub":
86
+ _check_filesystem_support(self._path_to_run.keys())
87
+
88
+ @property
89
+ def data_provider(self):
90
+ return self._data_provider
91
+
92
+ @property
93
+ def deprecated_multiplexer(self):
94
+ return self._multiplexer
95
+
96
+ def start(self):
97
+ """Starts ingesting data based on the ingester flag configuration."""
98
+
99
+ def _reload():
100
+ while True:
101
+ start = time.time()
102
+ logger.info("TensorBoard reload process beginning")
103
+ for path, name in self._path_to_run.items():
104
+ self._multiplexer.AddRunsFromDirectory(path, name)
105
+ logger.info(
106
+ "TensorBoard reload process: Reload the whole Multiplexer"
107
+ )
108
+ self._multiplexer.Reload()
109
+ duration = time.time() - start
110
+ logger.info(
111
+ "TensorBoard done reloading. Load took %0.3f secs", duration
112
+ )
113
+ if self._reload_interval == 0:
114
+ # Only load the multiplexer once. Do not continuously reload.
115
+ break
116
+ time.sleep(self._reload_interval)
117
+
118
+ if self._reload_task == "process":
119
+ logger.info("Launching reload in a child process")
120
+ import multiprocessing
121
+
122
+ process = multiprocessing.Process(target=_reload, name="Reloader")
123
+ # Best-effort cleanup; on exit, the main TB parent process will attempt to
124
+ # kill all its daemonic children.
125
+ process.daemon = True
126
+ process.start()
127
+ elif self._reload_task in ("thread", "auto"):
128
+ logger.info("Launching reload in a daemon thread")
129
+ thread = threading.Thread(target=_reload, name="Reloader")
130
+ # Make this a daemon thread, which won't block TB from exiting.
131
+ thread.daemon = True
132
+ thread.start()
133
+ elif self._reload_task == "blocking":
134
+ if self._reload_interval != 0:
135
+ raise ValueError(
136
+ "blocking reload only allowed with load_interval=0"
137
+ )
138
+ _reload()
139
+ else:
140
+ raise ValueError("unrecognized reload_task: %s" % self._reload_task)
141
+
142
+
143
+ def _get_event_file_active_filter(flags):
144
+ """Returns a predicate for whether an event file load timestamp is active.
145
+
146
+ Returns:
147
+ A predicate function accepting a single UNIX timestamp float argument, or
148
+ None if multi-file loading is not enabled.
149
+ """
150
+ if not flags.reload_multifile:
151
+ return None
152
+ inactive_secs = flags.reload_multifile_inactive_secs
153
+ if inactive_secs == 0:
154
+ return None
155
+ if inactive_secs < 0:
156
+ return lambda timestamp: True
157
+ return lambda timestamp: timestamp + inactive_secs >= time.time()
158
+
159
+
160
+ def _parse_event_files_spec(logdir_spec):
161
+ """Parses `logdir_spec` into a map from paths to run group names.
162
+
163
+ The `--logdir_spec` flag format is a comma-separated list of path
164
+ specifications. A path spec looks like 'group_name:/path/to/directory' or
165
+ '/path/to/directory'; in the latter case, the group is unnamed. Group names
166
+ cannot start with a forward slash: /foo:bar/baz will be interpreted as a spec
167
+ with no name and path '/foo:bar/baz'.
168
+
169
+ Globs are not supported.
170
+
171
+ Args:
172
+ logdir: A comma-separated list of run specifications.
173
+ Returns:
174
+ A dict mapping directory paths to names like {'/path/to/directory': 'name'}.
175
+ Groups without an explicit name are named after their path. If logdir is
176
+ None, returns an empty dict, which is helpful for testing things that don't
177
+ require any valid runs.
178
+ """
179
+ files = {}
180
+ if logdir_spec is None:
181
+ return files
182
+ # Make sure keeping consistent with ParseURI in core/lib/io/path.cc
183
+ uri_pattern = re.compile("[a-zA-Z][0-9a-zA-Z.]*://.*")
184
+ for specification in logdir_spec.split(","):
185
+ # Check if the spec contains group. A spec start with xyz:// is regarded as
186
+ # URI path spec instead of group spec. If the spec looks like /foo:bar/baz,
187
+ # then we assume it's a path with a colon. If the spec looks like
188
+ # [a-zA-z]:\foo then we assume its a Windows path and not a single letter
189
+ # group
190
+ if (
191
+ uri_pattern.match(specification) is None
192
+ and ":" in specification
193
+ and specification[0] != "/"
194
+ and not os.path.splitdrive(specification)[0]
195
+ ):
196
+ # We split at most once so run_name:/path:with/a/colon will work.
197
+ run_name, _, path = specification.partition(":")
198
+ else:
199
+ run_name = None
200
+ path = specification
201
+ if uri_pattern.match(path) is None:
202
+ path = os.path.realpath(os.path.expanduser(path))
203
+ files[path] = run_name
204
+ return files
205
+
206
+
207
+ def _get_filesystem_scheme(path):
208
+ """Extracts filesystem scheme from a given path.
209
+
210
+ The filesystem scheme is usually separated by `://` from the local filesystem
211
+ path if given. For example, the scheme of `file://tmp/tf` is `file`.
212
+
213
+ Args:
214
+ path: A strings representing an input log directory.
215
+ Returns:
216
+ Filesystem scheme, None if the path doesn't contain one.
217
+ """
218
+ if "://" not in path:
219
+ return None
220
+ return path.split("://")[0]
221
+
222
+
223
+ def _check_filesystem_support(paths):
224
+ """Examines the list of filesystems user requested.
225
+
226
+ If TF I/O schemes are requested, try to import tensorflow_io module.
227
+
228
+ Args:
229
+ paths: A list of strings representing input log directories.
230
+ """
231
+ get_registered_schemes = getattr(
232
+ tf.io.gfile, "get_registered_schemes", None
233
+ )
234
+ registered_schemes = (
235
+ None if get_registered_schemes is None else get_registered_schemes()
236
+ )
237
+
238
+ # Only need to check one path for each scheme.
239
+ scheme_to_path = {_get_filesystem_scheme(path): path for path in paths}
240
+ missing_scheme = None
241
+ for scheme, path in scheme_to_path.items():
242
+ if scheme is None:
243
+ continue
244
+ # Use `tf.io.gfile.exists.get_registered_schemes` if possible.
245
+ if registered_schemes is not None:
246
+ if scheme not in registered_schemes:
247
+ missing_scheme = scheme
248
+ break
249
+ else:
250
+ # Fall back to `tf.io.gfile.exists`.
251
+ try:
252
+ tf.io.gfile.exists(path)
253
+ except tf.errors.UnimplementedError:
254
+ missing_scheme = scheme
255
+ break
256
+ except tf.errors.OpError:
257
+ # Swallow other errors; we aren't concerned about them at this point.
258
+ pass
259
+
260
+ if missing_scheme:
261
+ try:
262
+ import tensorflow_io # noqa: F401
263
+ except ImportError as e:
264
+ supported_schemes_msg = (
265
+ " (supported schemes: {})".format(registered_schemes)
266
+ if registered_schemes
267
+ else ""
268
+ )
269
+ raise tf.errors.UnimplementedError(
270
+ None,
271
+ None,
272
+ (
273
+ "Error: Unsupported filename scheme '{}'{}. For additional"
274
+ + " filesystem support, consider installing TensorFlow I/O"
275
+ + " (https://www.tensorflow.org/io) via `pip install tensorflow-io`."
276
+ ).format(missing_scheme, supported_schemes_msg),
277
+ ) from e
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_accumulator.py ADDED
@@ -0,0 +1,951 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Takes a generator of values, and accumulates them for a frontend."""
16
+
17
+ import collections
18
+ import dataclasses
19
+ import threading
20
+
21
+ from typing import Optional, Sequence, Tuple
22
+
23
+ from tensorboard.backend.event_processing import directory_watcher
24
+ from tensorboard.backend.event_processing import event_file_loader
25
+ from tensorboard.backend.event_processing import event_util
26
+ from tensorboard.backend.event_processing import io_wrapper
27
+ from tensorboard.backend.event_processing import plugin_asset_util
28
+ from tensorboard.backend.event_processing import reservoir
29
+ from tensorboard.backend.event_processing import tag_types
30
+ from tensorboard.compat.proto import config_pb2
31
+ from tensorboard.compat.proto import event_pb2
32
+ from tensorboard.compat.proto import graph_pb2
33
+ from tensorboard.compat.proto import meta_graph_pb2
34
+ from tensorboard.compat.proto import tensor_pb2
35
+ from tensorboard.plugins.distribution import compressor
36
+ from tensorboard.util import tb_logging
37
+
38
+
39
+ logger = tb_logging.get_logger()
40
+
41
+
42
+ @dataclasses.dataclass(frozen=True)
43
+ class ScalarEvent:
44
+ """Contains information of a scalar event.
45
+
46
+ Attributes:
47
+ wall_time: Timestamp of the event in seconds.
48
+ step: Global step of the event.
49
+ value: A float or int value of the scalar.
50
+ """
51
+
52
+ wall_time: float
53
+ step: int
54
+ value: float
55
+
56
+
57
+ @dataclasses.dataclass(frozen=True)
58
+ class CompressedHistogramEvent:
59
+ """Contains information of a compressed histogram event.
60
+
61
+ Attributes:
62
+ wall_time: Timestamp of the event in seconds.
63
+ step: Global step of the event.
64
+ compressed_histogram_values: A sequence of tuples of basis points and
65
+ associated values in a compressed histogram.
66
+ """
67
+
68
+ wall_time: float
69
+ step: int
70
+ compressed_histogram_values: Sequence[Tuple[float, float]]
71
+
72
+
73
+ @dataclasses.dataclass(frozen=True)
74
+ class HistogramValue:
75
+ """Holds the information of the histogram values.
76
+
77
+ Attributes:
78
+ min: A float or int min value.
79
+ max: A float or int max value.
80
+ num: Total number of values.
81
+ sum: Sum of all values.
82
+ sum_squares: Sum of squares for all values.
83
+ bucket_limit: Upper values per bucket.
84
+ bucket: Numbers of values per bucket.
85
+ """
86
+
87
+ min: float
88
+ max: float
89
+ num: int
90
+ sum: float
91
+ sum_squares: float
92
+ bucket_limit: Sequence[float]
93
+ bucket: Sequence[int]
94
+
95
+
96
+ @dataclasses.dataclass(frozen=True)
97
+ class HistogramEvent:
98
+ """Contains information of a histogram event.
99
+
100
+ Attributes:
101
+ wall_time: Timestamp of the event in seconds.
102
+ step: Global step of the event.
103
+ histogram_value: Information of the histogram values.
104
+ """
105
+
106
+ wall_time: float
107
+ step: int
108
+ histogram_value: HistogramValue
109
+
110
+
111
+ @dataclasses.dataclass(frozen=True)
112
+ class ImageEvent:
113
+ """Contains information of an image event.
114
+
115
+ Attributes:
116
+ wall_time: Timestamp of the event in seconds.
117
+ step: Global step of the event.
118
+ encoded_image_string: Image content encoded in bytes.
119
+ width: Width of the image.
120
+ height: Height of the image.
121
+ """
122
+
123
+ wall_time: float
124
+ step: int
125
+ encoded_image_string: bytes
126
+ width: int
127
+ height: int
128
+
129
+
130
+ @dataclasses.dataclass(frozen=True)
131
+ class AudioEvent:
132
+ """Contains information of an audio event.
133
+
134
+ Attributes:
135
+ wall_time: Timestamp of the event in seconds.
136
+ step: Global step of the event.
137
+ encoded_audio_string: Audio content encoded in bytes.
138
+ content_type: A string describes the type of the audio content.
139
+ sample_rate: Sample rate of the audio in Hz. Must be positive.
140
+ length_frames: Length of the audio in frames (samples per channel).
141
+ """
142
+
143
+ wall_time: float
144
+ step: int
145
+ encoded_audio_string: bytes
146
+ content_type: str
147
+ sample_rate: float
148
+ length_frames: int
149
+
150
+
151
+ @dataclasses.dataclass(frozen=True)
152
+ class TensorEvent:
153
+ """A tensor event.
154
+
155
+ Attributes:
156
+ wall_time: Timestamp of the event in seconds.
157
+ step: Global step of the event.
158
+ tensor_proto: A `TensorProto`.
159
+ """
160
+
161
+ wall_time: float
162
+ step: int
163
+ tensor_proto: tensor_pb2.TensorProto
164
+
165
+
166
+ ## Different types of summary events handled by the event_accumulator
167
+ SUMMARY_TYPES = {
168
+ "simple_value": "_ProcessScalar",
169
+ "histo": "_ProcessHistogram",
170
+ "image": "_ProcessImage",
171
+ "audio": "_ProcessAudio",
172
+ "tensor": "_ProcessTensor",
173
+ }
174
+
175
+ # Legacy aliases
176
+ COMPRESSED_HISTOGRAMS = tag_types.COMPRESSED_HISTOGRAMS
177
+ HISTOGRAMS = tag_types.HISTOGRAMS
178
+ IMAGES = tag_types.IMAGES
179
+ AUDIO = tag_types.AUDIO
180
+ SCALARS = tag_types.SCALARS
181
+ TENSORS = tag_types.TENSORS
182
+ GRAPH = tag_types.GRAPH
183
+ META_GRAPH = tag_types.META_GRAPH
184
+ RUN_METADATA = tag_types.RUN_METADATA
185
+
186
+ ## Normal CDF for std_devs: (-Inf, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, Inf)
187
+ ## naturally gives bands around median of width 1 std dev, 2 std dev, 3 std dev,
188
+ ## and then the long tail.
189
+ NORMAL_HISTOGRAM_BPS = (0, 668, 1587, 3085, 5000, 6915, 8413, 9332, 10000)
190
+
191
+ DEFAULT_SIZE_GUIDANCE = {
192
+ COMPRESSED_HISTOGRAMS: 500,
193
+ IMAGES: 4,
194
+ AUDIO: 4,
195
+ SCALARS: 10000,
196
+ HISTOGRAMS: 1,
197
+ TENSORS: 10,
198
+ }
199
+
200
+ STORE_EVERYTHING_SIZE_GUIDANCE = {
201
+ COMPRESSED_HISTOGRAMS: 0,
202
+ IMAGES: 0,
203
+ AUDIO: 0,
204
+ SCALARS: 0,
205
+ HISTOGRAMS: 0,
206
+ TENSORS: 0,
207
+ }
208
+
209
+
210
+ class EventAccumulator:
211
+ """An `EventAccumulator` takes an event generator, and accumulates the
212
+ values.
213
+
214
+ The `EventAccumulator` is intended to provide a convenient Python interface
215
+ for loading Event data written during a TensorFlow run. TensorFlow writes out
216
+ `Event` protobuf objects, which have a timestamp and step number, and often
217
+ contain a `Summary`. Summaries can have different kinds of data like an image,
218
+ a scalar value, or a histogram. The Summaries also have a tag, which we use to
219
+ organize logically related data. The `EventAccumulator` supports retrieving
220
+ the `Event` and `Summary` data by its tag.
221
+
222
+ Calling `Tags()` gets a map from `tagType` (e.g. `'images'`,
223
+ `'compressedHistograms'`, `'scalars'`, etc) to the associated tags for those
224
+ data types. Then, various functional endpoints (eg
225
+ `Accumulator.Scalars(tag)`) allow for the retrieval of all data
226
+ associated with that tag.
227
+
228
+ The `Reload()` method synchronously loads all of the data written so far.
229
+
230
+ Histograms, audio, and images are very large, so storing all of them is not
231
+ recommended.
232
+
233
+ Fields:
234
+ audios: A reservoir.Reservoir of audio summaries.
235
+ compressed_histograms: A reservoir.Reservoir of compressed
236
+ histogram summaries.
237
+ histograms: A reservoir.Reservoir of histogram summaries.
238
+ images: A reservoir.Reservoir of image summaries.
239
+ most_recent_step: Step of last Event proto added. This should only
240
+ be accessed from the thread that calls Reload. This is -1 if
241
+ nothing has been loaded yet.
242
+ most_recent_wall_time: Timestamp of last Event proto added. This is
243
+ a float containing seconds from the UNIX epoch, or -1 if
244
+ nothing has been loaded yet. This should only be accessed from
245
+ the thread that calls Reload.
246
+ path: A file path to a directory containing tf events files, or a single
247
+ tf events file. The accumulator will load events from this path.
248
+ scalars: A reservoir.Reservoir of scalar summaries.
249
+ tensors: A reservoir.Reservoir of tensor summaries.
250
+
251
+ @@Tensors
252
+ """
253
+
254
+ def __init__(
255
+ self,
256
+ path,
257
+ size_guidance=None,
258
+ compression_bps=NORMAL_HISTOGRAM_BPS,
259
+ purge_orphaned_data=True,
260
+ ):
261
+ """Construct the `EventAccumulator`.
262
+
263
+ Args:
264
+ path: A file path to a directory containing tf events files, or a single
265
+ tf events file. The accumulator will load events from this path.
266
+ size_guidance: Information on how much data the EventAccumulator should
267
+ store in memory. The DEFAULT_SIZE_GUIDANCE tries not to store too much
268
+ so as to avoid OOMing the client. The size_guidance should be a map
269
+ from a `tagType` string to an integer representing the number of
270
+ items to keep per tag for items of that `tagType`. If the size is 0,
271
+ all events are stored.
272
+ compression_bps: Information on how the `EventAccumulator` should compress
273
+ histogram data for the `CompressedHistograms` tag (for details see
274
+ `ProcessCompressedHistogram`).
275
+ purge_orphaned_data: Whether to discard any events that were "orphaned" by
276
+ a TensorFlow restart.
277
+ """
278
+ size_guidance = size_guidance or DEFAULT_SIZE_GUIDANCE
279
+ sizes = {}
280
+ for key in DEFAULT_SIZE_GUIDANCE:
281
+ if key in size_guidance:
282
+ sizes[key] = size_guidance[key]
283
+ else:
284
+ sizes[key] = DEFAULT_SIZE_GUIDANCE[key]
285
+
286
+ self._first_event_timestamp = None
287
+ self.scalars = reservoir.Reservoir(size=sizes[SCALARS])
288
+
289
+ self._graph = None
290
+ self._graph_from_metagraph = False
291
+ self._meta_graph = None
292
+ self._tagged_metadata = {}
293
+ self.summary_metadata = {}
294
+ self.histograms = reservoir.Reservoir(size=sizes[HISTOGRAMS])
295
+ self.compressed_histograms = reservoir.Reservoir(
296
+ size=sizes[COMPRESSED_HISTOGRAMS], always_keep_last=False
297
+ )
298
+ self.images = reservoir.Reservoir(size=sizes[IMAGES])
299
+ self.audios = reservoir.Reservoir(size=sizes[AUDIO])
300
+ self.tensors = reservoir.Reservoir(size=sizes[TENSORS])
301
+
302
+ # Keep a mapping from plugin name to a dict mapping from tag to plugin data
303
+ # content obtained from the SummaryMetadata (metadata field of Value) for
304
+ # that plugin (This is not the entire SummaryMetadata proto - only the
305
+ # content for that plugin). The SummaryWriter only keeps the content on the
306
+ # first event encountered per tag, so we must store that first instance of
307
+ # content for each tag.
308
+ self._plugin_to_tag_to_content = collections.defaultdict(dict)
309
+
310
+ self._generator_mutex = threading.Lock()
311
+ self.path = path
312
+ self._generator = _GeneratorFromPath(path)
313
+
314
+ self._compression_bps = compression_bps
315
+ self.purge_orphaned_data = purge_orphaned_data
316
+
317
+ self.most_recent_step = -1
318
+ self.most_recent_wall_time = -1
319
+ self.file_version = None
320
+
321
+ # Name of the source writer that writes the event.
322
+ self._source_writer = None
323
+
324
+ # The attributes that get built up by the accumulator
325
+ self.accumulated_attrs = (
326
+ "scalars",
327
+ "histograms",
328
+ "compressed_histograms",
329
+ "images",
330
+ "audios",
331
+ )
332
+ self._tensor_summaries = {}
333
+
334
+ def Reload(self):
335
+ """Loads all events added since the last call to `Reload`.
336
+
337
+ If `Reload` was never called, loads all events in the file.
338
+
339
+ Returns:
340
+ The `EventAccumulator`.
341
+ """
342
+ with self._generator_mutex:
343
+ for event in self._generator.Load():
344
+ self._ProcessEvent(event)
345
+ return self
346
+
347
+ def PluginAssets(self, plugin_name):
348
+ """Return a list of all plugin assets for the given plugin.
349
+
350
+ Args:
351
+ plugin_name: The string name of a plugin to retrieve assets for.
352
+
353
+ Returns:
354
+ A list of string plugin asset names, or empty list if none are available.
355
+ If the plugin was not registered, an empty list is returned.
356
+ """
357
+ return plugin_asset_util.ListAssets(self.path, plugin_name)
358
+
359
+ def RetrievePluginAsset(self, plugin_name, asset_name):
360
+ """Return the contents of a given plugin asset.
361
+
362
+ Args:
363
+ plugin_name: The string name of a plugin.
364
+ asset_name: The string name of an asset.
365
+
366
+ Returns:
367
+ The string contents of the plugin asset.
368
+
369
+ Raises:
370
+ KeyError: If the asset is not available.
371
+ """
372
+ return plugin_asset_util.RetrieveAsset(
373
+ self.path, plugin_name, asset_name
374
+ )
375
+
376
+ def FirstEventTimestamp(self):
377
+ """Returns the timestamp in seconds of the first event.
378
+
379
+ If the first event has been loaded (either by this method or by `Reload`,
380
+ this returns immediately. Otherwise, it will load in the first event. Note
381
+ that this means that calling `Reload` will cause this to block until
382
+ `Reload` has finished.
383
+
384
+ Returns:
385
+ The timestamp in seconds of the first event that was loaded.
386
+
387
+ Raises:
388
+ ValueError: If no events have been loaded and there were no events found
389
+ on disk.
390
+ """
391
+ if self._first_event_timestamp is not None:
392
+ return self._first_event_timestamp
393
+ with self._generator_mutex:
394
+ try:
395
+ event = next(self._generator.Load())
396
+ self._ProcessEvent(event)
397
+ return self._first_event_timestamp
398
+
399
+ except StopIteration:
400
+ raise ValueError("No event timestamp could be found")
401
+
402
+ def GetSourceWriter(self) -> Optional[str]:
403
+ """Returns the name of the event writer."""
404
+ if self._source_writer is not None:
405
+ return self._source_writer
406
+ with self._generator_mutex:
407
+ try:
408
+ event = next(self._generator.Load())
409
+ self._ProcessEvent(event)
410
+ return self._source_writer
411
+ except StopIteration:
412
+ logger.info(
413
+ "End of file in %s, no source writer was found.", self.path
414
+ )
415
+
416
+ def PluginTagToContent(self, plugin_name):
417
+ """Returns a dict mapping tags to content specific to that plugin.
418
+
419
+ Args:
420
+ plugin_name: The name of the plugin for which to fetch plugin-specific
421
+ content.
422
+
423
+ Raises:
424
+ KeyError: if the plugin name is not found.
425
+
426
+ Returns:
427
+ A dict mapping tag names to bytestrings of plugin-specific content-- by
428
+ convention, in the form of binary serialized protos.
429
+ """
430
+ if plugin_name not in self._plugin_to_tag_to_content:
431
+ raise KeyError("Plugin %r could not be found." % plugin_name)
432
+ return self._plugin_to_tag_to_content[plugin_name]
433
+
434
+ def SummaryMetadata(self, tag):
435
+ """Given a summary tag name, return the associated metadata object.
436
+
437
+ Args:
438
+ tag: The name of a tag, as a string.
439
+
440
+ Raises:
441
+ KeyError: If the tag is not found.
442
+
443
+ Returns:
444
+ A `SummaryMetadata` protobuf.
445
+ """
446
+ return self.summary_metadata[tag]
447
+
448
+ def _ProcessEvent(self, event):
449
+ """Called whenever an event is loaded."""
450
+ if self._first_event_timestamp is None:
451
+ self._first_event_timestamp = event.wall_time
452
+
453
+ if event.HasField("source_metadata"):
454
+ new_source_writer = event_util.GetSourceWriter(
455
+ event.source_metadata
456
+ )
457
+ if self._source_writer and self._source_writer != new_source_writer:
458
+ logger.info(
459
+ (
460
+ "Found new source writer for event.proto. "
461
+ "Old: {0}, New: {1}"
462
+ ).format(self._source_writer, new_source_writer)
463
+ )
464
+ self._source_writer = new_source_writer
465
+
466
+ if event.HasField("file_version"):
467
+ new_file_version = event_util.ParseFileVersion(event.file_version)
468
+ if self.file_version and self.file_version != new_file_version:
469
+ ## This should not happen.
470
+ logger.warning(
471
+ (
472
+ "Found new file_version for event.proto. This will "
473
+ "affect purging logic for TensorFlow restarts. "
474
+ "Old: {0} New: {1}"
475
+ ).format(self.file_version, new_file_version)
476
+ )
477
+ self.file_version = new_file_version
478
+
479
+ self._MaybePurgeOrphanedData(event)
480
+
481
+ ## Process the event.
482
+ # GraphDef and MetaGraphDef are handled in a special way:
483
+ # If no graph_def Event is available, but a meta_graph_def is, and it
484
+ # contains a graph_def, then use the meta_graph_def.graph_def as our graph.
485
+ # If a graph_def Event is available, always prefer it to the graph_def
486
+ # inside the meta_graph_def.
487
+ if event.HasField("graph_def"):
488
+ if self._graph is not None:
489
+ logger.warning(
490
+ (
491
+ "Found more than one graph event per run, or there was "
492
+ "a metagraph containing a graph_def, as well as one or "
493
+ "more graph events. Overwriting the graph with the "
494
+ "newest event."
495
+ )
496
+ )
497
+ self._graph = event.graph_def
498
+ self._graph_from_metagraph = False
499
+ elif event.HasField("meta_graph_def"):
500
+ if self._meta_graph is not None:
501
+ logger.warning(
502
+ (
503
+ "Found more than one metagraph event per run. "
504
+ "Overwriting the metagraph with the newest event."
505
+ )
506
+ )
507
+ self._meta_graph = event.meta_graph_def
508
+ if self._graph is None or self._graph_from_metagraph:
509
+ # We may have a graph_def in the metagraph. If so, and no
510
+ # graph_def is directly available, use this one instead.
511
+ meta_graph = meta_graph_pb2.MetaGraphDef()
512
+ meta_graph.ParseFromString(self._meta_graph)
513
+ if meta_graph.graph_def:
514
+ if self._graph is not None:
515
+ logger.warning(
516
+ (
517
+ "Found multiple metagraphs containing graph_defs,"
518
+ "but did not find any graph events. Overwriting the "
519
+ "graph with the newest metagraph version."
520
+ )
521
+ )
522
+ self._graph_from_metagraph = True
523
+ self._graph = meta_graph.graph_def.SerializeToString()
524
+ elif event.HasField("tagged_run_metadata"):
525
+ tag = event.tagged_run_metadata.tag
526
+ if tag in self._tagged_metadata:
527
+ logger.warning(
528
+ 'Found more than one "run metadata" event with tag '
529
+ + tag
530
+ + ". Overwriting it with the newest event."
531
+ )
532
+ self._tagged_metadata[tag] = event.tagged_run_metadata.run_metadata
533
+ elif event.HasField("summary"):
534
+ for value in event.summary.value:
535
+ if value.HasField("metadata"):
536
+ tag = value.tag
537
+ # We only store the first instance of the metadata. This check
538
+ # is important: the `FileWriter` does strip metadata from all
539
+ # values except the first one per each tag, but a new
540
+ # `FileWriter` is created every time a training job stops and
541
+ # restarts. Hence, we must also ignore non-initial metadata in
542
+ # this logic.
543
+ if tag not in self.summary_metadata:
544
+ self.summary_metadata[tag] = value.metadata
545
+ plugin_data = value.metadata.plugin_data
546
+ if plugin_data.plugin_name:
547
+ self._plugin_to_tag_to_content[
548
+ plugin_data.plugin_name
549
+ ][tag] = plugin_data.content
550
+ else:
551
+ logger.warning(
552
+ (
553
+ "This summary with tag %r is oddly not associated with a "
554
+ "plugin."
555
+ ),
556
+ tag,
557
+ )
558
+
559
+ for summary_type, summary_func in SUMMARY_TYPES.items():
560
+ if value.HasField(summary_type):
561
+ datum = getattr(value, summary_type)
562
+ tag = value.tag
563
+ if summary_type == "tensor" and not tag:
564
+ # This tensor summary was created using the old method that used
565
+ # plugin assets. We must still continue to support it.
566
+ tag = value.node_name
567
+ getattr(self, summary_func)(
568
+ tag, event.wall_time, event.step, datum
569
+ )
570
+
571
+ def Tags(self):
572
+ """Return all tags found in the value stream.
573
+
574
+ Returns:
575
+ A `{tagType: ['list', 'of', 'tags']}` dictionary.
576
+ """
577
+ return {
578
+ IMAGES: self.images.Keys(),
579
+ AUDIO: self.audios.Keys(),
580
+ HISTOGRAMS: self.histograms.Keys(),
581
+ SCALARS: self.scalars.Keys(),
582
+ COMPRESSED_HISTOGRAMS: self.compressed_histograms.Keys(),
583
+ TENSORS: self.tensors.Keys(),
584
+ # Use a heuristic: if the metagraph is available, but
585
+ # graph is not, then we assume the metagraph contains the graph.
586
+ GRAPH: self._graph is not None,
587
+ META_GRAPH: self._meta_graph is not None,
588
+ RUN_METADATA: list(self._tagged_metadata.keys()),
589
+ }
590
+
591
+ def Scalars(self, tag):
592
+ """Given a summary tag, return all associated `ScalarEvent`s.
593
+
594
+ Args:
595
+ tag: A string tag associated with the events.
596
+
597
+ Raises:
598
+ KeyError: If the tag is not found.
599
+
600
+ Returns:
601
+ An array of `ScalarEvent`s.
602
+ """
603
+ return self.scalars.Items(tag)
604
+
605
+ def Graph(self):
606
+ """Return the graph definition, if there is one.
607
+
608
+ If the graph is stored directly, return that. If no graph is stored
609
+ directly but a metagraph is stored containing a graph, return that.
610
+
611
+ Raises:
612
+ ValueError: If there is no graph for this run.
613
+
614
+ Returns:
615
+ The `graph_def` proto.
616
+ """
617
+ graph = graph_pb2.GraphDef()
618
+ if self._graph is not None:
619
+ graph.ParseFromString(self._graph)
620
+ return graph
621
+ raise ValueError("There is no graph in this EventAccumulator")
622
+
623
+ def MetaGraph(self):
624
+ """Return the metagraph definition, if there is one.
625
+
626
+ Raises:
627
+ ValueError: If there is no metagraph for this run.
628
+
629
+ Returns:
630
+ The `meta_graph_def` proto.
631
+ """
632
+ if self._meta_graph is None:
633
+ raise ValueError("There is no metagraph in this EventAccumulator")
634
+ meta_graph = meta_graph_pb2.MetaGraphDef()
635
+ meta_graph.ParseFromString(self._meta_graph)
636
+ return meta_graph
637
+
638
+ def RunMetadata(self, tag):
639
+ """Given a tag, return the associated session.run() metadata.
640
+
641
+ Args:
642
+ tag: A string tag associated with the event.
643
+
644
+ Raises:
645
+ ValueError: If the tag is not found.
646
+
647
+ Returns:
648
+ The metadata in form of `RunMetadata` proto.
649
+ """
650
+ if tag not in self._tagged_metadata:
651
+ raise ValueError("There is no run metadata with this tag name")
652
+
653
+ run_metadata = config_pb2.RunMetadata()
654
+ run_metadata.ParseFromString(self._tagged_metadata[tag])
655
+ return run_metadata
656
+
657
+ def Histograms(self, tag):
658
+ """Given a summary tag, return all associated histograms.
659
+
660
+ Args:
661
+ tag: A string tag associated with the events.
662
+
663
+ Raises:
664
+ KeyError: If the tag is not found.
665
+
666
+ Returns:
667
+ An array of `HistogramEvent`s.
668
+ """
669
+ return self.histograms.Items(tag)
670
+
671
+ def CompressedHistograms(self, tag):
672
+ """Given a summary tag, return all associated compressed histograms.
673
+
674
+ Args:
675
+ tag: A string tag associated with the events.
676
+
677
+ Raises:
678
+ KeyError: If the tag is not found.
679
+
680
+ Returns:
681
+ An array of `CompressedHistogramEvent`s.
682
+ """
683
+ return self.compressed_histograms.Items(tag)
684
+
685
+ def Images(self, tag):
686
+ """Given a summary tag, return all associated images.
687
+
688
+ Args:
689
+ tag: A string tag associated with the events.
690
+
691
+ Raises:
692
+ KeyError: If the tag is not found.
693
+
694
+ Returns:
695
+ An array of `ImageEvent`s.
696
+ """
697
+ return self.images.Items(tag)
698
+
699
+ def Audio(self, tag):
700
+ """Given a summary tag, return all associated audio.
701
+
702
+ Args:
703
+ tag: A string tag associated with the events.
704
+
705
+ Raises:
706
+ KeyError: If the tag is not found.
707
+
708
+ Returns:
709
+ An array of `AudioEvent`s.
710
+ """
711
+ return self.audios.Items(tag)
712
+
713
+ def Tensors(self, tag):
714
+ """Given a summary tag, return all associated tensors.
715
+
716
+ Args:
717
+ tag: A string tag associated with the events.
718
+
719
+ Raises:
720
+ KeyError: If the tag is not found.
721
+
722
+ Returns:
723
+ An array of `TensorEvent`s.
724
+ """
725
+ return self.tensors.Items(tag)
726
+
727
+ def _MaybePurgeOrphanedData(self, event):
728
+ """Maybe purge orphaned data due to a TensorFlow crash.
729
+
730
+ When TensorFlow crashes at step T+O and restarts at step T, any events
731
+ written after step T are now "orphaned" and will be at best misleading if
732
+ they are included in TensorBoard.
733
+
734
+ This logic attempts to determine if there is orphaned data, and purge it
735
+ if it is found.
736
+
737
+ Args:
738
+ event: The event to use as a reference, to determine if a purge is needed.
739
+ """
740
+ if not self.purge_orphaned_data:
741
+ return
742
+ ## Check if the event happened after a crash, and purge expired tags.
743
+ if self.file_version and self.file_version >= 2:
744
+ ## If the file_version is recent enough, use the SessionLog enum
745
+ ## to check for restarts.
746
+ self._CheckForRestartAndMaybePurge(event)
747
+ else:
748
+ ## If there is no file version, default to old logic of checking for
749
+ ## out of order steps.
750
+ self._CheckForOutOfOrderStepAndMaybePurge(event)
751
+
752
+ def _CheckForRestartAndMaybePurge(self, event):
753
+ """Check and discard expired events using SessionLog.START.
754
+
755
+ Check for a SessionLog.START event and purge all previously seen events
756
+ with larger steps, because they are out of date. Because of supervisor
757
+ threading, it is possible that this logic will cause the first few event
758
+ messages to be discarded since supervisor threading does not guarantee
759
+ that the START message is deterministically written first.
760
+
761
+ This method is preferred over _CheckForOutOfOrderStepAndMaybePurge which
762
+ can inadvertently discard events due to supervisor threading.
763
+
764
+ Args:
765
+ event: The event to use as reference. If the event is a START event, all
766
+ previously seen events with a greater event.step will be purged.
767
+ """
768
+ if (
769
+ event.HasField("session_log")
770
+ and event.session_log.status == event_pb2.SessionLog.START
771
+ ):
772
+ self._Purge(event, by_tags=False)
773
+
774
+ def _CheckForOutOfOrderStepAndMaybePurge(self, event):
775
+ """Check for out-of-order event.step and discard expired events for
776
+ tags.
777
+
778
+ Check if the event is out of order relative to the global most recent step.
779
+ If it is, purge outdated summaries for tags that the event contains.
780
+
781
+ Args:
782
+ event: The event to use as reference. If the event is out-of-order, all
783
+ events with the same tags, but with a greater event.step will be purged.
784
+ """
785
+ if event.step < self.most_recent_step and event.HasField("summary"):
786
+ self._Purge(event, by_tags=True)
787
+ else:
788
+ self.most_recent_step = event.step
789
+ self.most_recent_wall_time = event.wall_time
790
+
791
+ def _ConvertHistogramProtoToPopo(self, histo):
792
+ """Converts histogram proto to Python object."""
793
+ return HistogramValue(
794
+ min=histo.min,
795
+ max=histo.max,
796
+ num=histo.num,
797
+ sum=histo.sum,
798
+ sum_squares=histo.sum_squares,
799
+ bucket_limit=list(histo.bucket_limit),
800
+ bucket=list(histo.bucket),
801
+ )
802
+
803
+ def _ProcessHistogram(self, tag, wall_time, step, histo):
804
+ """Processes a proto histogram by adding it to accumulated state."""
805
+ histo = self._ConvertHistogramProtoToPopo(histo)
806
+ histo_ev = HistogramEvent(wall_time, step, histo)
807
+ self.histograms.AddItem(tag, histo_ev)
808
+ self.compressed_histograms.AddItem(
809
+ tag, histo_ev, self._CompressHistogram
810
+ )
811
+
812
+ def _CompressHistogram(self, histo_ev):
813
+ """Callback for _ProcessHistogram."""
814
+ return CompressedHistogramEvent(
815
+ histo_ev.wall_time,
816
+ histo_ev.step,
817
+ compressor.compress_histogram_proto(
818
+ histo_ev.histogram_value, self._compression_bps
819
+ ),
820
+ )
821
+
822
+ def _ProcessImage(self, tag, wall_time, step, image):
823
+ """Processes an image by adding it to accumulated state."""
824
+ event = ImageEvent(
825
+ wall_time=wall_time,
826
+ step=step,
827
+ encoded_image_string=image.encoded_image_string,
828
+ width=image.width,
829
+ height=image.height,
830
+ )
831
+ self.images.AddItem(tag, event)
832
+
833
+ def _ProcessAudio(self, tag, wall_time, step, audio):
834
+ """Processes a audio by adding it to accumulated state."""
835
+ event = AudioEvent(
836
+ wall_time=wall_time,
837
+ step=step,
838
+ encoded_audio_string=audio.encoded_audio_string,
839
+ content_type=audio.content_type,
840
+ sample_rate=audio.sample_rate,
841
+ length_frames=audio.length_frames,
842
+ )
843
+ self.audios.AddItem(tag, event)
844
+
845
+ def _ProcessScalar(self, tag, wall_time, step, scalar):
846
+ """Processes a simple value by adding it to accumulated state."""
847
+ sv = ScalarEvent(wall_time=wall_time, step=step, value=scalar)
848
+ self.scalars.AddItem(tag, sv)
849
+
850
+ def _ProcessTensor(self, tag, wall_time, step, tensor):
851
+ tv = TensorEvent(wall_time=wall_time, step=step, tensor_proto=tensor)
852
+ self.tensors.AddItem(tag, tv)
853
+
854
+ def _Purge(self, event, by_tags):
855
+ """Purge all events that have occurred after the given event.step.
856
+
857
+ If by_tags is True, purge all events that occurred after the given
858
+ event.step, but only for the tags that the event has. Non-sequential
859
+ event.steps suggest that a TensorFlow restart occurred, and we discard
860
+ the out-of-order events to display a consistent view in TensorBoard.
861
+
862
+ Discarding by tags is the safer method, when we are unsure whether a restart
863
+ has occurred, given that threading in supervisor can cause events of
864
+ different tags to arrive with unsynchronized step values.
865
+
866
+ If by_tags is False, then purge all events with event.step greater than the
867
+ given event.step. This can be used when we are certain that a TensorFlow
868
+ restart has occurred and these events can be discarded.
869
+
870
+ Args:
871
+ event: The event to use as reference for the purge. All events with
872
+ the same tags, but with a greater event.step will be purged.
873
+ by_tags: Bool to dictate whether to discard all out-of-order events or
874
+ only those that are associated with the given reference event.
875
+ """
876
+ ## Keep data in reservoirs that has a step less than event.step
877
+ _NotExpired = lambda x: x.step < event.step
878
+
879
+ if by_tags:
880
+
881
+ def _ExpiredPerTag(value):
882
+ return [
883
+ getattr(self, x).FilterItems(_NotExpired, value.tag)
884
+ for x in self.accumulated_attrs
885
+ ]
886
+
887
+ expired_per_tags = [
888
+ _ExpiredPerTag(value) for value in event.summary.value
889
+ ]
890
+ expired_per_type = [sum(x) for x in zip(*expired_per_tags)]
891
+ else:
892
+ expired_per_type = [
893
+ getattr(self, x).FilterItems(_NotExpired)
894
+ for x in self.accumulated_attrs
895
+ ]
896
+
897
+ if sum(expired_per_type) > 0:
898
+ purge_msg = _GetPurgeMessage(
899
+ self.most_recent_step,
900
+ self.most_recent_wall_time,
901
+ event.step,
902
+ event.wall_time,
903
+ *expired_per_type,
904
+ )
905
+ logger.warning(purge_msg)
906
+
907
+
908
+ def _GetPurgeMessage(
909
+ most_recent_step,
910
+ most_recent_wall_time,
911
+ event_step,
912
+ event_wall_time,
913
+ num_expired_scalars,
914
+ num_expired_histos,
915
+ num_expired_comp_histos,
916
+ num_expired_images,
917
+ num_expired_audio,
918
+ ):
919
+ """Return the string message associated with TensorBoard purges."""
920
+ return (
921
+ "Detected out of order event.step likely caused by "
922
+ "a TensorFlow restart. Purging expired events from Tensorboard"
923
+ " display between the previous step: {} (timestamp: {}) and "
924
+ "current step: {} (timestamp: {}). Removing {} scalars, {} "
925
+ "histograms, {} compressed histograms, {} images, "
926
+ "and {} audio."
927
+ ).format(
928
+ most_recent_step,
929
+ most_recent_wall_time,
930
+ event_step,
931
+ event_wall_time,
932
+ num_expired_scalars,
933
+ num_expired_histos,
934
+ num_expired_comp_histos,
935
+ num_expired_images,
936
+ num_expired_audio,
937
+ )
938
+
939
+
940
+ def _GeneratorFromPath(path):
941
+ """Create an event generator for file or directory at given path string."""
942
+ if not path:
943
+ raise ValueError("path must be a valid string")
944
+ if io_wrapper.IsSummaryEventsFile(path):
945
+ return event_file_loader.LegacyEventFileLoader(path)
946
+ else:
947
+ return directory_watcher.DirectoryWatcher(
948
+ path,
949
+ event_file_loader.LegacyEventFileLoader,
950
+ io_wrapper.IsSummaryEventsFile,
951
+ )
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_file_inspector.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Logic for TensorBoard inspector to help humans investigate event files.
17
+
18
+ Example usages:
19
+ tensorboard --inspect --event_file myevents.out
20
+ tensorboard --inspect --event_file myevents.out --tag loss
21
+ tensorboard --inspect --logdir mylogdir
22
+ tensorboard --inspect --logdir mylogdir --tag loss
23
+
24
+
25
+ This script runs over a logdir and creates an InspectionUnit for every
26
+ subdirectory with event files. If running over an event file, it creates only
27
+ one InspectionUnit. One block of output is printed to console for each
28
+ InspectionUnit.
29
+
30
+ The primary content of an InspectionUnit is the dict field_to_obs that maps
31
+ fields (e.g. "scalar", "histogram", "session_log:start", etc.) to a list of
32
+ Observations for the field. Observations correspond one-to-one with Events in an
33
+ event file but contain less information because they only store what is
34
+ necessary to generate the final console output.
35
+
36
+ The final output is rendered to console by applying some aggregating function
37
+ to the lists of Observations. Different functions are applied depending on the
38
+ type of field. For instance, for "scalar" fields, the inspector shows aggregate
39
+ statistics. For other fields like "session_log:start", all observed steps are
40
+ printed in order to aid debugging.
41
+
42
+
43
+ [1] Query a logdir or an event file for its logged tags and summary statistics
44
+ using --logdir or --event_file.
45
+
46
+ [[event_file]] contains these tags:
47
+ histograms
48
+ binary/Sign/Activations
49
+ binary/nn_tanh/act/Activations
50
+ binary/nn_tanh/biases
51
+ binary/nn_tanh/biases:gradient
52
+ binary/nn_tanh/weights
53
+ binary/nn_tanh/weights:gradient
54
+ images
55
+ input_images/image/0
56
+ input_images/image/1
57
+ input_images/image/2
58
+ scalars
59
+ Learning Rate
60
+ Total Cost
61
+ Total Cost (raw)
62
+
63
+ Debug output aggregated over all tags:
64
+ graph
65
+ first_step 0
66
+ last_step 0
67
+ max_step 0
68
+ min_step 0
69
+ num_steps 1
70
+ outoforder_steps []
71
+ histograms
72
+ first_step 491
73
+ last_step 659823
74
+ max_step 659823
75
+ min_step 491
76
+ num_steps 993
77
+ outoforder_steps []
78
+ images -
79
+ scalars
80
+ first_step 0
81
+ last_step 659823
82
+ max_step 659823
83
+ min_step 0
84
+ num_steps 1985
85
+ outoforder_steps []
86
+ sessionlog:checkpoint
87
+ first_step 7129
88
+ last_step 657167
89
+ max_step 657167
90
+ min_step 7129
91
+ num_steps 99
92
+ outoforder_steps []
93
+ sessionlog:start
94
+ outoforder_steps []
95
+ steps [0L]
96
+ sessionlog:stop -
97
+
98
+
99
+ [2] Drill down into a particular tag using --tag.
100
+
101
+ Debug output for binary/Sign/Activations:
102
+ histograms
103
+ first_step 491
104
+ last_step 659823
105
+ max_step 659823
106
+ min_step 491
107
+ num_steps 993
108
+ outoforder_steps []
109
+ """
110
+
111
+
112
+ import dataclasses
113
+ import itertools
114
+ import os
115
+
116
+ from typing import Any, Generator, Mapping
117
+
118
+ from tensorboard.backend.event_processing import event_accumulator
119
+ from tensorboard.backend.event_processing import event_file_loader
120
+ from tensorboard.backend.event_processing import io_wrapper
121
+ from tensorboard.compat import tf
122
+ from tensorboard.compat.proto import event_pb2
123
+
124
+
125
+ # Map of field names within summary.proto to the user-facing names that this
126
+ # script outputs.
127
+ SUMMARY_TYPE_TO_FIELD = {
128
+ "simple_value": "scalars",
129
+ "histo": "histograms",
130
+ "image": "images",
131
+ "audio": "audio",
132
+ }
133
+ for summary_type in event_accumulator.SUMMARY_TYPES:
134
+ if summary_type not in SUMMARY_TYPE_TO_FIELD:
135
+ SUMMARY_TYPE_TO_FIELD[summary_type] = summary_type
136
+
137
+ # Types of summaries that we may want to query for by tag.
138
+ TAG_FIELDS = list(SUMMARY_TYPE_TO_FIELD.values())
139
+
140
+ # Summaries that we want to see every instance of.
141
+ LONG_FIELDS = ["sessionlog:start", "sessionlog:stop"]
142
+
143
+ # Summaries that we only want an abridged digest of, since they would
144
+ # take too much screen real estate otherwise.
145
+ SHORT_FIELDS = ["graph", "sessionlog:checkpoint"] + TAG_FIELDS
146
+
147
+ # All summary types that we can inspect.
148
+ TRACKED_FIELDS = SHORT_FIELDS + LONG_FIELDS
149
+
150
+ PRINT_SEPARATOR = "=" * 70 + "\n"
151
+
152
+
153
+ @dataclasses.dataclass(frozen=True)
154
+ class Observation:
155
+ """Contains the data within each Event file that the inspector cares about.
156
+
157
+ The inspector accumulates Observations as it processes events.
158
+
159
+ Attributes:
160
+ step: Global step of the event.
161
+ wall_time: Timestamp of the event in seconds.
162
+ tag: Tag name associated with the event.
163
+ """
164
+
165
+ step: int
166
+ wall_time: float
167
+ tag: str
168
+
169
+
170
+ @dataclasses.dataclass(frozen=True)
171
+ class InspectionUnit:
172
+ """Created for each organizational structure in the event files.
173
+
174
+ An InspectionUnit is visible in the final terminal output. For instance, one
175
+ InspectionUnit is created for each subdirectory in logdir. When asked to inspect
176
+ a single event file, there may only be one InspectionUnit.
177
+
178
+ Attributes:
179
+ name: Name of the organizational unit that will be printed to console.
180
+ generator: A generator that yields `Event` protos.
181
+ field_to_obs: A mapping from string fields to `Observations` that the inspector
182
+ creates.
183
+ """
184
+
185
+ name: str
186
+ generator: Generator[event_pb2.Event, Any, Any]
187
+ field_to_obs: Mapping[str, Observation]
188
+
189
+
190
+ def get_field_to_observations_map(generator, query_for_tag=""):
191
+ """Return a field to `Observations` dict for the event generator.
192
+
193
+ Args:
194
+ generator: A generator over event protos.
195
+ query_for_tag: A string that if specified, only create observations for
196
+ events with this tag name.
197
+
198
+ Returns:
199
+ A dict mapping keys in `TRACKED_FIELDS` to an `Observation` list.
200
+ """
201
+
202
+ def increment(stat, event, tag=""):
203
+ assert stat in TRACKED_FIELDS
204
+ field_to_obs[stat].append(
205
+ dataclasses.asdict(
206
+ Observation(step=event.step, wall_time=event.wall_time, tag=tag)
207
+ )
208
+ )
209
+
210
+ field_to_obs = dict([(t, []) for t in TRACKED_FIELDS])
211
+
212
+ for event in generator:
213
+ ## Process the event
214
+ if event.HasField("graph_def") and (not query_for_tag):
215
+ increment("graph", event)
216
+ if event.HasField("session_log") and (not query_for_tag):
217
+ status = event.session_log.status
218
+ if status == event_pb2.SessionLog.START:
219
+ increment("sessionlog:start", event)
220
+ elif status == event_pb2.SessionLog.STOP:
221
+ increment("sessionlog:stop", event)
222
+ elif status == event_pb2.SessionLog.CHECKPOINT:
223
+ increment("sessionlog:checkpoint", event)
224
+ elif event.HasField("summary"):
225
+ for value in event.summary.value:
226
+ if query_for_tag and value.tag != query_for_tag:
227
+ continue
228
+
229
+ for proto_name, display_name in SUMMARY_TYPE_TO_FIELD.items():
230
+ if value.HasField(proto_name):
231
+ increment(display_name, event, value.tag)
232
+ return field_to_obs
233
+
234
+
235
+ def get_unique_tags(field_to_obs):
236
+ """Returns a dictionary of tags that a user could query over.
237
+
238
+ Args:
239
+ field_to_obs: Dict that maps string field to `Observation` list.
240
+
241
+ Returns:
242
+ A dict that maps keys in `TAG_FIELDS` to a list of string tags present in
243
+ the event files. If the dict does not have any observations of the type,
244
+ maps to an empty list so that we can render this to console.
245
+ """
246
+ return {
247
+ field: sorted(set([x.get("tag", "") for x in observations]))
248
+ for field, observations in field_to_obs.items()
249
+ if field in TAG_FIELDS
250
+ }
251
+
252
+
253
+ def print_dict(d, show_missing=True):
254
+ """Prints a shallow dict to console.
255
+
256
+ Args:
257
+ d: Dict to print.
258
+ show_missing: Whether to show keys with empty values.
259
+ """
260
+ for k, v in sorted(d.items()):
261
+ if (not v) and show_missing:
262
+ # No instances of the key, so print missing symbol.
263
+ print("{} -".format(k))
264
+ elif isinstance(v, list):
265
+ # Value is a list, so print each item of the list.
266
+ print(k)
267
+ for item in v:
268
+ print(" {}".format(item))
269
+ elif isinstance(v, dict):
270
+ # Value is a dict, so print each (key, value) pair of the dict.
271
+ print(k)
272
+ for kk, vv in sorted(v.items()):
273
+ print(" {:<20} {}".format(kk, vv))
274
+
275
+
276
+ def get_dict_to_print(field_to_obs):
277
+ """Transform the field-to-obs mapping into a printable dictionary.
278
+
279
+ Args:
280
+ field_to_obs: Dict that maps string field to `Observation` list.
281
+
282
+ Returns:
283
+ A dict with the keys and values to print to console.
284
+ """
285
+
286
+ def compressed_steps(steps):
287
+ return {
288
+ "num_steps": len(set(steps)),
289
+ "min_step": min(steps),
290
+ "max_step": max(steps),
291
+ "last_step": steps[-1],
292
+ "first_step": steps[0],
293
+ "outoforder_steps": get_out_of_order(steps),
294
+ }
295
+
296
+ def full_steps(steps):
297
+ return {"steps": steps, "outoforder_steps": get_out_of_order(steps)}
298
+
299
+ output = {}
300
+ for field, observations in field_to_obs.items():
301
+ if not observations:
302
+ output[field] = None
303
+ continue
304
+
305
+ steps = [x["step"] for x in observations]
306
+ if field in SHORT_FIELDS:
307
+ output[field] = compressed_steps(steps)
308
+ if field in LONG_FIELDS:
309
+ output[field] = full_steps(steps)
310
+
311
+ return output
312
+
313
+
314
+ def get_out_of_order(list_of_numbers):
315
+ """Returns elements that break the monotonically non-decreasing trend.
316
+
317
+ This is used to find instances of global step values that are "out-of-order",
318
+ which may trigger TensorBoard event discarding logic.
319
+
320
+ Args:
321
+ list_of_numbers: A list of numbers.
322
+
323
+ Returns:
324
+ A list of tuples in which each tuple are two elements are adjacent, but the
325
+ second element is lower than the first.
326
+ """
327
+ # TODO: Consider changing this to only check for out-of-order
328
+ # steps within a particular tag.
329
+ result = []
330
+ # pylint: disable=consider-using-enumerate
331
+ for i in range(len(list_of_numbers)):
332
+ if i == 0:
333
+ continue
334
+ if list_of_numbers[i] < list_of_numbers[i - 1]:
335
+ result.append((list_of_numbers[i - 1], list_of_numbers[i]))
336
+ return result
337
+
338
+
339
+ def generators_from_logdir(logdir):
340
+ """Returns a list of event generators for subdirectories with event files.
341
+
342
+ The number of generators returned should equal the number of directories
343
+ within logdir that contain event files. If only logdir contains event files,
344
+ returns a list of length one.
345
+
346
+ Args:
347
+ logdir: A log directory that contains event files.
348
+
349
+ Returns:
350
+ List of event generators for each subdirectory with event files.
351
+ """
352
+ subdirs = io_wrapper.GetLogdirSubdirectories(logdir)
353
+ generators = [
354
+ itertools.chain(
355
+ *[
356
+ generator_from_event_file(os.path.join(subdir, f))
357
+ for f in tf.io.gfile.listdir(subdir)
358
+ if io_wrapper.IsTensorFlowEventsFile(os.path.join(subdir, f))
359
+ ]
360
+ )
361
+ for subdir in subdirs
362
+ ]
363
+ return generators
364
+
365
+
366
+ def generator_from_event_file(event_file):
367
+ """Returns a generator that yields events from an event file."""
368
+ return event_file_loader.LegacyEventFileLoader(event_file).Load()
369
+
370
+
371
+ def get_inspection_units(logdir="", event_file="", tag=""):
372
+ """Returns a list of InspectionUnit objects given either logdir or
373
+ event_file.
374
+
375
+ If logdir is given, the number of InspectionUnits should equal the
376
+ number of directories or subdirectories that contain event files.
377
+
378
+ If event_file is given, the number of InspectionUnits should be 1.
379
+
380
+ Args:
381
+ logdir: A log directory that contains event files.
382
+ event_file: Or, a particular event file path.
383
+ tag: An optional tag name to query for.
384
+
385
+ Returns:
386
+ A list of InspectionUnit objects.
387
+ """
388
+ if logdir:
389
+ subdirs = io_wrapper.GetLogdirSubdirectories(logdir)
390
+ inspection_units = []
391
+ for subdir in subdirs:
392
+ generator = itertools.chain(
393
+ *[
394
+ generator_from_event_file(os.path.join(subdir, f))
395
+ for f in tf.io.gfile.listdir(subdir)
396
+ if io_wrapper.IsTensorFlowEventsFile(
397
+ os.path.join(subdir, f)
398
+ )
399
+ ]
400
+ )
401
+ inspection_units.append(
402
+ InspectionUnit(
403
+ name=subdir,
404
+ generator=generator,
405
+ field_to_obs=get_field_to_observations_map(generator, tag),
406
+ )
407
+ )
408
+ if inspection_units:
409
+ print(
410
+ "Found event files in:\n{}\n".format(
411
+ "\n".join([u.name for u in inspection_units])
412
+ )
413
+ )
414
+ elif io_wrapper.IsTensorFlowEventsFile(logdir):
415
+ print(
416
+ "It seems that {} may be an event file instead of a logdir. If this "
417
+ "is the case, use --event_file instead of --logdir to pass "
418
+ "it in.".format(logdir)
419
+ )
420
+ else:
421
+ print("No event files found within logdir {}".format(logdir))
422
+ return inspection_units
423
+ elif event_file:
424
+ generator = generator_from_event_file(event_file)
425
+ return [
426
+ InspectionUnit(
427
+ name=event_file,
428
+ generator=generator,
429
+ field_to_obs=get_field_to_observations_map(generator, tag),
430
+ )
431
+ ]
432
+ return []
433
+
434
+
435
+ def inspect(logdir="", event_file="", tag=""):
436
+ """Main function for inspector that prints out a digest of event files.
437
+
438
+ Args:
439
+ logdir: A log directory that contains event files.
440
+ event_file: Or, a particular event file path.
441
+ tag: An optional tag name to query for.
442
+
443
+ Raises:
444
+ ValueError: If neither logdir and event_file are given, or both are given.
445
+ """
446
+ print(
447
+ PRINT_SEPARATOR
448
+ + "Processing event files... (this can take a few minutes)\n"
449
+ + PRINT_SEPARATOR
450
+ )
451
+ inspection_units = get_inspection_units(logdir, event_file, tag)
452
+
453
+ for unit in inspection_units:
454
+ if tag:
455
+ print("Event statistics for tag {} in {}:".format(tag, unit.name))
456
+ else:
457
+ # If the user is not inspecting a particular tag, also print the list of
458
+ # all available tags that they can query.
459
+ print("These tags are in {}:".format(unit.name))
460
+ print_dict(get_unique_tags(unit.field_to_obs))
461
+ print(PRINT_SEPARATOR)
462
+ print("Event statistics for {}:".format(unit.name))
463
+
464
+ print_dict(get_dict_to_print(unit.field_to_obs), show_missing=(not tag))
465
+ print(PRINT_SEPARATOR)
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_file_loader.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Functionality for loading events from a record file."""
17
+
18
+ import contextlib
19
+
20
+ from tensorboard import data_compat
21
+ from tensorboard import dataclass_compat
22
+ from tensorboard.compat import tf
23
+ from tensorboard.compat.proto import event_pb2
24
+ from tensorboard.util import platform_util
25
+ from tensorboard.util import tb_logging
26
+
27
+
28
+ logger = tb_logging.get_logger()
29
+
30
+
31
+ @contextlib.contextmanager
32
+ def _nullcontext():
33
+ """Pre-Python-3.7-compatible standin for contextlib.nullcontext."""
34
+ yield
35
+
36
+
37
+ # Might as well make this a singleton.
38
+ _NULLCONTEXT = _nullcontext()
39
+
40
+
41
+ def _silence_deprecation_warnings():
42
+ """Context manager that best-effort silences TF deprecation warnings."""
43
+ try:
44
+ # Learn this one weird trick to make TF deprecation warnings go away.
45
+ from tensorflow.python.util import deprecation
46
+
47
+ return deprecation.silence()
48
+ except (ImportError, AttributeError):
49
+ return _NULLCONTEXT
50
+
51
+
52
+ def _make_tf_record_iterator(file_path):
53
+ """Returns an iterator over TF records for the given tfrecord file."""
54
+ # If we don't have TF at all, use the stub implementation.
55
+ if tf.__version__ == "stub":
56
+ # TODO(#1711): Reshape stub implementation to fit tf_record_iterator API
57
+ # rather than needlessly emulating the old PyRecordReader_New API.
58
+ logger.debug("Opening a stub record reader pointing at %s", file_path)
59
+ return _PyRecordReaderIterator(
60
+ tf.pywrap_tensorflow.PyRecordReader_New, file_path
61
+ )
62
+ # If PyRecordReader exists, use it, otherwise use tf_record_iterator().
63
+ # Check old first, then new, since tf_record_iterator existed previously but
64
+ # only gained the semantics we need at the time PyRecordReader was removed.
65
+ #
66
+ # TODO(#1711): Eventually remove PyRecordReader fallback once we can drop
67
+ # support for TF 2.1 and prior, and find a non-deprecated replacement for
68
+ # tf.compat.v1.io.tf_record_iterator.
69
+ try:
70
+ from tensorflow.python import pywrap_tensorflow
71
+
72
+ py_record_reader_new = pywrap_tensorflow.PyRecordReader_New
73
+ except (ImportError, AttributeError):
74
+ py_record_reader_new = None
75
+ if py_record_reader_new:
76
+ logger.debug("Opening a PyRecordReader pointing at %s", file_path)
77
+ return _PyRecordReaderIterator(py_record_reader_new, file_path)
78
+ else:
79
+ logger.debug("Opening a tf_record_iterator pointing at %s", file_path)
80
+ # TODO(#1711): Find non-deprecated replacement for tf_record_iterator.
81
+ with _silence_deprecation_warnings():
82
+ return tf.compat.v1.io.tf_record_iterator(file_path)
83
+
84
+
85
+ class _PyRecordReaderIterator:
86
+ """Python iterator for TF Records based on PyRecordReader."""
87
+
88
+ def __init__(self, py_record_reader_new, file_path):
89
+ """Constructs a _PyRecordReaderIterator for the given file path.
90
+
91
+ Args:
92
+ py_record_reader_new: pywrap_tensorflow.PyRecordReader_New
93
+ file_path: file path of the tfrecord file to read
94
+ """
95
+ with tf.compat.v1.errors.raise_exception_on_not_ok_status() as status:
96
+ self._reader = py_record_reader_new(
97
+ tf.compat.as_bytes(file_path), 0, tf.compat.as_bytes(""), status
98
+ )
99
+ if not self._reader:
100
+ raise IOError(
101
+ "Failed to open a record reader pointing to %s" % file_path
102
+ )
103
+
104
+ def __iter__(self):
105
+ return self
106
+
107
+ def __next__(self):
108
+ try:
109
+ self._reader.GetNext()
110
+ except tf.errors.OutOfRangeError as e:
111
+ raise StopIteration
112
+ return self._reader.record()
113
+
114
+ next = __next__ # for python2 compatibility
115
+
116
+
117
+ class RawEventFileLoader:
118
+ """An iterator that yields Event protos as serialized bytestrings."""
119
+
120
+ def __init__(self, file_path, detect_file_replacement=False):
121
+ """Constructs a RawEventFileLoader for the given file path.
122
+
123
+ Args:
124
+ file_path: the event file path to read from
125
+ detect_file_replacement: if True, when Load() is called, the loader
126
+ will make a stat() call to check the size of the file. If it sees
127
+ that the file has grown, it will reopen the file entirely (while
128
+ preserving the current offset) before attempting to read from it.
129
+ Otherwise, Load() will simply poll at EOF for new data.
130
+ """
131
+ if file_path is None:
132
+ raise ValueError("A file path is required")
133
+ self._file_path = platform_util.readahead_file_path(file_path)
134
+ self._detect_file_replacement = detect_file_replacement
135
+ self._file_size = None
136
+ self._iterator = _make_tf_record_iterator(self._file_path)
137
+ if self._detect_file_replacement and not hasattr(
138
+ self._iterator, "reopen"
139
+ ):
140
+ logger.warning(
141
+ "File replacement detection requested, but not enabled because "
142
+ "TF record iterator impl does not support reopening. This "
143
+ "functionality requires TensorFlow 2.9+"
144
+ )
145
+ self._detect_file_replacement = False
146
+
147
+ def Load(self):
148
+ """Loads all new events from disk as raw serialized proto bytestrings.
149
+
150
+ Calling Load multiple times in a row will not 'drop' events as long as the
151
+ return value is not iterated over.
152
+
153
+ Yields:
154
+ All event proto bytestrings in the file that have not been yielded yet.
155
+ """
156
+ logger.debug("Loading events from %s", self._file_path)
157
+ if self._detect_file_replacement:
158
+ has_increased = self.CheckForIncreasedFileSize()
159
+ # Only act on the file size information if we got a concrete result.
160
+ if has_increased is not None:
161
+ if has_increased:
162
+ logger.debug(
163
+ "Reopening %s since file size has changed",
164
+ self._file_path,
165
+ )
166
+ self._iterator.close()
167
+ self._iterator.reopen()
168
+ else:
169
+ logger.debug(
170
+ "Skipping attempt to poll %s since file size has not "
171
+ "changed (still %d)",
172
+ self._file_path,
173
+ self._file_size,
174
+ )
175
+ return
176
+ while True:
177
+ try:
178
+ yield next(self._iterator)
179
+ except StopIteration:
180
+ logger.debug("End of file in %s", self._file_path)
181
+ break
182
+ except tf.errors.DataLossError as e:
183
+ # We swallow partial read exceptions; if the record was truncated
184
+ # and a later update completes it, retrying can then resume from
185
+ # the same point in the file since the iterator holds the offset.
186
+ logger.debug("Truncated record in %s (%s)", self._file_path, e)
187
+ break
188
+ logger.debug("No more events in %s", self._file_path)
189
+
190
+ def CheckForIncreasedFileSize(self):
191
+ """Stats the file to get its updated size, returning True if it grew.
192
+
193
+ If the stat call fails or reports a smaller size than was previously
194
+ seen, then any previously cached size is left unchanged.
195
+
196
+ Returns:
197
+ boolean or None: True if the file size increased; False if it was
198
+ the same or decreased; or None if neither case could be detected
199
+ (either because the previous size had not been recorded yet, or
200
+ because the stat call for the current size failed).
201
+ """
202
+ previous_size = self._file_size
203
+ try:
204
+ self._file_size = tf.io.gfile.stat(self._file_path).length
205
+ except tf.errors.OpError as e:
206
+ logger.error("Failed to stat %s: %s", self._file_path, e)
207
+ return None
208
+ logger.debug(
209
+ "Stat on %s got size %d, previous size %s",
210
+ self._file_path,
211
+ self._file_size,
212
+ previous_size,
213
+ )
214
+ if previous_size is None:
215
+ return None
216
+ if self._file_size > previous_size:
217
+ return True
218
+ if self._file_size < previous_size:
219
+ logger.warning(
220
+ "File %s shrank from previous size %d to size %d",
221
+ self._file_path,
222
+ previous_size,
223
+ self._file_size,
224
+ )
225
+ # In case this was transient, preserve the previously cached size,
226
+ # to avoid reporting a spurious increase next time. If the file was
227
+ # actually truncated, we can't recover anyway, so just ignore it.
228
+ self._file_size = previous_size
229
+ return False
230
+
231
+
232
+ class LegacyEventFileLoader(RawEventFileLoader):
233
+ """An iterator that yields parsed Event protos."""
234
+
235
+ def Load(self):
236
+ """Loads all new events from disk.
237
+
238
+ Calling Load multiple times in a row will not 'drop' events as long as the
239
+ return value is not iterated over.
240
+
241
+ Yields:
242
+ All events in the file that have not been yielded yet.
243
+ """
244
+ for record in super().Load():
245
+ yield event_pb2.Event.FromString(record)
246
+
247
+
248
+ class EventFileLoader(LegacyEventFileLoader):
249
+ """An iterator that passes events through read-time compat layers.
250
+
251
+ Specifically, this includes `data_compat` and `dataclass_compat`.
252
+ """
253
+
254
+ def __init__(self, *args, **kwargs):
255
+ super().__init__(*args, **kwargs)
256
+ # Track initial metadata for each tag, for `dataclass_compat`.
257
+ # This is meant to be tracked per run, not per event file, so
258
+ # there is a potential failure case when the second event file
259
+ # in a single run has no summary metadata. This only occurs when
260
+ # all of the following hold: (a) the events were written with
261
+ # the TensorFlow 1.x (not 2.x) writer, (b) the summaries were
262
+ # created by `tensorboard.summary.v1` ops and so do not undergo
263
+ # `data_compat` transformation, and (c) the file writer was
264
+ # reopened by calling `.reopen()` on it, which creates a new
265
+ # file but does not clear the tag cache. This is considered
266
+ # sufficiently improbable that we don't take extra mitigations.
267
+ self._initial_metadata = {} # from tag name to `SummaryMetadata`
268
+
269
+ def Load(self):
270
+ for event in super().Load():
271
+ event = data_compat.migrate_event(event)
272
+ events = dataclass_compat.migrate_event(
273
+ event, self._initial_metadata
274
+ )
275
+ for event in events:
276
+ yield event
277
+
278
+
279
+ class TimestampedEventFileLoader(EventFileLoader):
280
+ """An iterator that yields (UNIX timestamp float, Event proto) pairs."""
281
+
282
+ def Load(self):
283
+ """Loads all new events and their wall time values from disk.
284
+
285
+ Calling Load multiple times in a row will not 'drop' events as long as the
286
+ return value is not iterated over.
287
+
288
+ Yields:
289
+ Pairs of (UNIX timestamp float, Event proto) for all events in the file
290
+ that have not been yielded yet.
291
+ """
292
+ for event in super().Load():
293
+ yield (event.wall_time, event)
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_multiplexer.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Provides an interface for working with multiple event files."""
16
+
17
+
18
+ import os
19
+ import threading
20
+
21
+ from typing import Optional
22
+
23
+ from tensorboard.backend.event_processing import directory_watcher
24
+ from tensorboard.backend.event_processing import event_accumulator
25
+ from tensorboard.backend.event_processing import io_wrapper
26
+ from tensorboard.util import tb_logging
27
+
28
+
29
+ logger = tb_logging.get_logger()
30
+
31
+
32
+ class EventMultiplexer:
33
+ """An `EventMultiplexer` manages access to multiple `EventAccumulator`s.
34
+
35
+ Each `EventAccumulator` is associated with a `run`, which is a self-contained
36
+ TensorFlow execution. The `EventMultiplexer` provides methods for extracting
37
+ information about events from multiple `run`s.
38
+
39
+ Example usage for loading specific runs from files:
40
+
41
+ ```python
42
+ x = EventMultiplexer({'run1': 'path/to/run1', 'run2': 'path/to/run2'})
43
+ x.Reload()
44
+ ```
45
+
46
+ Example usage for loading a directory where each subdirectory is a run
47
+
48
+ ```python
49
+ (eg:) /parent/directory/path/
50
+ /parent/directory/path/run1/
51
+ /parent/directory/path/run1/events.out.tfevents.1001
52
+ /parent/directory/path/run1/events.out.tfevents.1002
53
+
54
+ /parent/directory/path/run2/
55
+ /parent/directory/path/run2/events.out.tfevents.9232
56
+
57
+ /parent/directory/path/run3/
58
+ /parent/directory/path/run3/events.out.tfevents.9232
59
+ x = EventMultiplexer().AddRunsFromDirectory('/parent/directory/path')
60
+ (which is equivalent to:)
61
+ x = EventMultiplexer({'run1': '/parent/directory/path/run1', 'run2':...}
62
+ ```
63
+
64
+ If you would like to watch `/parent/directory/path`, wait for it to be created
65
+ (if necessary) and then periodically pick up new runs, use
66
+ `AutoloadingMultiplexer`
67
+ @@Tensors
68
+ """
69
+
70
+ def __init__(
71
+ self, run_path_map=None, size_guidance=None, purge_orphaned_data=True
72
+ ):
73
+ """Constructor for the `EventMultiplexer`.
74
+
75
+ Args:
76
+ run_path_map: Dict `{run: path}` which specifies the
77
+ name of a run, and the path to find the associated events. If it is
78
+ None, then the EventMultiplexer initializes without any runs.
79
+ size_guidance: A dictionary mapping from `tagType` to the number of items
80
+ to store for each tag of that type. See
81
+ `event_accumulator.EventAccumulator` for details.
82
+ purge_orphaned_data: Whether to discard any events that were "orphaned" by
83
+ a TensorFlow restart.
84
+ """
85
+ logger.info("Event Multiplexer initializing.")
86
+ self._accumulators_mutex = threading.Lock()
87
+ self._accumulators = {}
88
+ self._paths = {}
89
+ self._reload_called = False
90
+ self._size_guidance = (
91
+ size_guidance or event_accumulator.DEFAULT_SIZE_GUIDANCE
92
+ )
93
+ self.purge_orphaned_data = purge_orphaned_data
94
+ if run_path_map is not None:
95
+ logger.info(
96
+ "Event Multplexer doing initialization load for %s",
97
+ run_path_map,
98
+ )
99
+ for run, path in run_path_map.items():
100
+ self.AddRun(path, run)
101
+ logger.info("Event Multiplexer done initializing")
102
+
103
+ def AddRun(self, path, name=None):
104
+ """Add a run to the multiplexer.
105
+
106
+ If the name is not specified, it is the same as the path.
107
+
108
+ If a run by that name exists, and we are already watching the right path,
109
+ do nothing. If we are watching a different path, replace the event
110
+ accumulator.
111
+
112
+ If `Reload` has been called, it will `Reload` the newly created
113
+ accumulators.
114
+
115
+ Args:
116
+ path: Path to the event files (or event directory) for given run.
117
+ name: Name of the run to add. If not provided, is set to path.
118
+
119
+ Returns:
120
+ The `EventMultiplexer`.
121
+ """
122
+ name = name or path
123
+ accumulator = None
124
+ with self._accumulators_mutex:
125
+ if name not in self._accumulators or self._paths[name] != path:
126
+ if name in self._paths and self._paths[name] != path:
127
+ # TODO(@decentralion) - Make it impossible to overwrite an old path
128
+ # with a new path (just give the new path a distinct name)
129
+ logger.warning(
130
+ "Conflict for name %s: old path %s, new path %s",
131
+ name,
132
+ self._paths[name],
133
+ path,
134
+ )
135
+ logger.info("Constructing EventAccumulator for %s", path)
136
+ accumulator = event_accumulator.EventAccumulator(
137
+ path,
138
+ size_guidance=self._size_guidance,
139
+ purge_orphaned_data=self.purge_orphaned_data,
140
+ )
141
+ self._accumulators[name] = accumulator
142
+ self._paths[name] = path
143
+ if accumulator:
144
+ if self._reload_called:
145
+ accumulator.Reload()
146
+ return self
147
+
148
+ def AddRunsFromDirectory(self, path, name=None):
149
+ """Load runs from a directory; recursively walks subdirectories.
150
+
151
+ If path doesn't exist, no-op. This ensures that it is safe to call
152
+ `AddRunsFromDirectory` multiple times, even before the directory is made.
153
+
154
+ If path is a directory, load event files in the directory (if any exist) and
155
+ recursively call AddRunsFromDirectory on any subdirectories. This mean you
156
+ can call AddRunsFromDirectory at the root of a tree of event logs and
157
+ TensorBoard will load them all.
158
+
159
+ If the `EventMultiplexer` is already loaded this will cause
160
+ the newly created accumulators to `Reload()`.
161
+ Args:
162
+ path: A string path to a directory to load runs from.
163
+ name: Optionally, what name to apply to the runs. If name is provided
164
+ and the directory contains run subdirectories, the name of each subrun
165
+ is the concatenation of the parent name and the subdirectory name. If
166
+ name is provided and the directory contains event files, then a run
167
+ is added called "name" and with the events from the path.
168
+
169
+ Raises:
170
+ ValueError: If the path exists and isn't a directory.
171
+
172
+ Returns:
173
+ The `EventMultiplexer`.
174
+ """
175
+ logger.info("Starting AddRunsFromDirectory: %s", path)
176
+ for subdir in io_wrapper.GetLogdirSubdirectories(path):
177
+ logger.info("Adding events from directory %s", subdir)
178
+ rpath = os.path.relpath(subdir, path)
179
+ subname = os.path.join(name, rpath) if name else rpath
180
+ self.AddRun(subdir, name=subname)
181
+ logger.info("Done with AddRunsFromDirectory: %s", path)
182
+ return self
183
+
184
+ def Reload(self):
185
+ """Call `Reload` on every `EventAccumulator`."""
186
+ logger.info("Beginning EventMultiplexer.Reload()")
187
+ self._reload_called = True
188
+ # Build a list so we're safe even if the list of accumulators is modified
189
+ # even while we're reloading.
190
+ with self._accumulators_mutex:
191
+ items = list(self._accumulators.items())
192
+
193
+ names_to_delete = set()
194
+ for name, accumulator in items:
195
+ try:
196
+ accumulator.Reload()
197
+ except (OSError, IOError) as e:
198
+ logger.error("Unable to reload accumulator '%s': %s", name, e)
199
+ except directory_watcher.DirectoryDeletedError:
200
+ names_to_delete.add(name)
201
+
202
+ with self._accumulators_mutex:
203
+ for name in names_to_delete:
204
+ logger.warning("Deleting accumulator '%s'", name)
205
+ del self._accumulators[name]
206
+ logger.info("Finished with EventMultiplexer.Reload()")
207
+ return self
208
+
209
+ def PluginAssets(self, plugin_name):
210
+ """Get index of runs and assets for a given plugin.
211
+
212
+ Args:
213
+ plugin_name: Name of the plugin we are checking for.
214
+
215
+ Returns:
216
+ A dictionary that maps from run_name to a list of plugin
217
+ assets for that run.
218
+ """
219
+ with self._accumulators_mutex:
220
+ # To avoid nested locks, we construct a copy of the run-accumulator map
221
+ items = list(self._accumulators.items())
222
+
223
+ return {run: accum.PluginAssets(plugin_name) for run, accum in items}
224
+
225
+ def RetrievePluginAsset(self, run, plugin_name, asset_name):
226
+ """Return the contents for a specific plugin asset from a run.
227
+
228
+ Args:
229
+ run: The string name of the run.
230
+ plugin_name: The string name of a plugin.
231
+ asset_name: The string name of an asset.
232
+
233
+ Returns:
234
+ The string contents of the plugin asset.
235
+
236
+ Raises:
237
+ KeyError: If the asset is not available.
238
+ """
239
+ accumulator = self.GetAccumulator(run)
240
+ return accumulator.RetrievePluginAsset(plugin_name, asset_name)
241
+
242
+ def FirstEventTimestamp(self, run):
243
+ """Return the timestamp of the first event of the given run.
244
+
245
+ This may perform I/O if no events have been loaded yet for the run.
246
+
247
+ Args:
248
+ run: A string name of the run for which the timestamp is retrieved.
249
+
250
+ Returns:
251
+ The wall_time of the first event of the run, which will typically be
252
+ seconds since the epoch.
253
+
254
+ Raises:
255
+ KeyError: If the run is not found.
256
+ ValueError: If the run has no events loaded and there are no events on
257
+ disk to load.
258
+ """
259
+ accumulator = self.GetAccumulator(run)
260
+ return accumulator.FirstEventTimestamp()
261
+
262
+ def GetSourceWriter(self, run) -> Optional[str]:
263
+ """Returns the source writer name from the first event of the given run.
264
+
265
+ Assuming each run has only one source writer.
266
+
267
+ Args:
268
+ run: A string name of the run from which the event source information
269
+ is retrieved.
270
+
271
+ Returns:
272
+ Name of the writer that wrote the events in the run.
273
+ """
274
+ accumulator = self.GetAccumulator(run)
275
+ return accumulator.GetSourceWriter()
276
+
277
+ def Scalars(self, run, tag):
278
+ """Retrieve the scalar events associated with a run and tag.
279
+
280
+ Args:
281
+ run: A string name of the run for which values are retrieved.
282
+ tag: A string name of the tag for which values are retrieved.
283
+
284
+ Raises:
285
+ KeyError: If the run is not found, or the tag is not available for
286
+ the given run.
287
+
288
+ Returns:
289
+ An array of `event_accumulator.ScalarEvents`.
290
+ """
291
+ accumulator = self.GetAccumulator(run)
292
+ return accumulator.Scalars(tag)
293
+
294
+ def Graph(self, run):
295
+ """Retrieve the graph associated with the provided run.
296
+
297
+ Args:
298
+ run: A string name of a run to load the graph for.
299
+
300
+ Raises:
301
+ KeyError: If the run is not found.
302
+ ValueError: If the run does not have an associated graph.
303
+
304
+ Returns:
305
+ The `GraphDef` protobuf data structure.
306
+ """
307
+ accumulator = self.GetAccumulator(run)
308
+ return accumulator.Graph()
309
+
310
+ def SerializedGraph(self, run):
311
+ """Retrieve the serialized graph associated with the provided run.
312
+
313
+ Args:
314
+ run: A string name of a run to load the graph for.
315
+
316
+ Raises:
317
+ KeyError: If the run is not found.
318
+ ValueError: If the run does not have an associated graph.
319
+
320
+ Returns:
321
+ The serialized form of the `GraphDef` protobuf data structure.
322
+ """
323
+ accumulator = self.GetAccumulator(run)
324
+ return accumulator.SerializedGraph()
325
+
326
+ def MetaGraph(self, run):
327
+ """Retrieve the metagraph associated with the provided run.
328
+
329
+ Args:
330
+ run: A string name of a run to load the graph for.
331
+
332
+ Raises:
333
+ KeyError: If the run is not found.
334
+ ValueError: If the run does not have an associated graph.
335
+
336
+ Returns:
337
+ The `MetaGraphDef` protobuf data structure.
338
+ """
339
+ accumulator = self.GetAccumulator(run)
340
+ return accumulator.MetaGraph()
341
+
342
+ def RunMetadata(self, run, tag):
343
+ """Get the session.run() metadata associated with a TensorFlow run and
344
+ tag.
345
+
346
+ Args:
347
+ run: A string name of a TensorFlow run.
348
+ tag: A string name of the tag associated with a particular session.run().
349
+
350
+ Raises:
351
+ KeyError: If the run is not found, or the tag is not available for the
352
+ given run.
353
+
354
+ Returns:
355
+ The metadata in the form of `RunMetadata` protobuf data structure.
356
+ """
357
+ accumulator = self.GetAccumulator(run)
358
+ return accumulator.RunMetadata(tag)
359
+
360
+ def Histograms(self, run, tag):
361
+ """Retrieve the histogram events associated with a run and tag.
362
+
363
+ Args:
364
+ run: A string name of the run for which values are retrieved.
365
+ tag: A string name of the tag for which values are retrieved.
366
+
367
+ Raises:
368
+ KeyError: If the run is not found, or the tag is not available for
369
+ the given run.
370
+
371
+ Returns:
372
+ An array of `event_accumulator.HistogramEvents`.
373
+ """
374
+ accumulator = self.GetAccumulator(run)
375
+ return accumulator.Histograms(tag)
376
+
377
+ def CompressedHistograms(self, run, tag):
378
+ """Retrieve the compressed histogram events associated with a run and
379
+ tag.
380
+
381
+ Args:
382
+ run: A string name of the run for which values are retrieved.
383
+ tag: A string name of the tag for which values are retrieved.
384
+
385
+ Raises:
386
+ KeyError: If the run is not found, or the tag is not available for
387
+ the given run.
388
+
389
+ Returns:
390
+ An array of `event_accumulator.CompressedHistogramEvents`.
391
+ """
392
+ accumulator = self.GetAccumulator(run)
393
+ return accumulator.CompressedHistograms(tag)
394
+
395
+ def Images(self, run, tag):
396
+ """Retrieve the image events associated with a run and tag.
397
+
398
+ Args:
399
+ run: A string name of the run for which values are retrieved.
400
+ tag: A string name of the tag for which values are retrieved.
401
+
402
+ Raises:
403
+ KeyError: If the run is not found, or the tag is not available for
404
+ the given run.
405
+
406
+ Returns:
407
+ An array of `event_accumulator.ImageEvents`.
408
+ """
409
+ accumulator = self.GetAccumulator(run)
410
+ return accumulator.Images(tag)
411
+
412
+ def Audio(self, run, tag):
413
+ """Retrieve the audio events associated with a run and tag.
414
+
415
+ Args:
416
+ run: A string name of the run for which values are retrieved.
417
+ tag: A string name of the tag for which values are retrieved.
418
+
419
+ Raises:
420
+ KeyError: If the run is not found, or the tag is not available for
421
+ the given run.
422
+
423
+ Returns:
424
+ An array of `event_accumulator.AudioEvents`.
425
+ """
426
+ accumulator = self.GetAccumulator(run)
427
+ return accumulator.Audio(tag)
428
+
429
+ def Tensors(self, run, tag):
430
+ """Retrieve the tensor events associated with a run and tag.
431
+
432
+ Args:
433
+ run: A string name of the run for which values are retrieved.
434
+ tag: A string name of the tag for which values are retrieved.
435
+
436
+ Raises:
437
+ KeyError: If the run is not found, or the tag is not available for
438
+ the given run.
439
+
440
+ Returns:
441
+ An array of `event_accumulator.TensorEvent`s.
442
+ """
443
+ accumulator = self.GetAccumulator(run)
444
+ return accumulator.Tensors(tag)
445
+
446
+ def PluginRunToTagToContent(self, plugin_name):
447
+ """Returns a 2-layer dictionary of the form {run: {tag: content}}.
448
+
449
+ The `content` referred above is the content field of the PluginData proto
450
+ for the specified plugin within a Summary.Value proto.
451
+
452
+ Args:
453
+ plugin_name: The name of the plugin for which to fetch content.
454
+
455
+ Returns:
456
+ A dictionary of the form {run: {tag: content}}.
457
+ """
458
+ mapping = {}
459
+ for run in self.Runs():
460
+ try:
461
+ tag_to_content = self.GetAccumulator(run).PluginTagToContent(
462
+ plugin_name
463
+ )
464
+ except KeyError:
465
+ # This run lacks content for the plugin. Try the next run.
466
+ continue
467
+ mapping[run] = tag_to_content
468
+ return mapping
469
+
470
+ def SummaryMetadata(self, run, tag):
471
+ """Return the summary metadata for the given tag on the given run.
472
+
473
+ Args:
474
+ run: A string name of the run for which summary metadata is to be
475
+ retrieved.
476
+ tag: A string name of the tag whose summary metadata is to be
477
+ retrieved.
478
+
479
+ Raises:
480
+ KeyError: If the run is not found, or the tag is not available for
481
+ the given run.
482
+
483
+ Returns:
484
+ A `SummaryMetadata` protobuf.
485
+ """
486
+ accumulator = self.GetAccumulator(run)
487
+ return accumulator.SummaryMetadata(tag)
488
+
489
+ def Runs(self):
490
+ """Return all the run names in the `EventMultiplexer`.
491
+
492
+ Returns:
493
+ ```
494
+ {runName: { images: [tag1, tag2, tag3],
495
+ scalarValues: [tagA, tagB, tagC],
496
+ histograms: [tagX, tagY, tagZ],
497
+ compressedHistograms: [tagX, tagY, tagZ],
498
+ graph: true, meta_graph: true}}
499
+ ```
500
+ """
501
+ with self._accumulators_mutex:
502
+ # To avoid nested locks, we construct a copy of the run-accumulator map
503
+ items = list(self._accumulators.items())
504
+ return {run_name: accumulator.Tags() for run_name, accumulator in items}
505
+
506
+ def RunPaths(self):
507
+ """Returns a dict mapping run names to event file paths."""
508
+ return self._paths
509
+
510
+ def GetAccumulator(self, run):
511
+ """Returns EventAccumulator for a given run.
512
+
513
+ Args:
514
+ run: String name of run.
515
+
516
+ Returns:
517
+ An EventAccumulator object.
518
+
519
+ Raises:
520
+ KeyError: If run does not exist.
521
+ """
522
+ with self._accumulators_mutex:
523
+ return self._accumulators[run]
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/event_util.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Functionality for processing events."""
17
+
18
+ from typing import Optional
19
+
20
+ from tensorboard.compat.proto import event_pb2
21
+ from tensorboard.util import tb_logging
22
+
23
+ logger = tb_logging.get_logger()
24
+
25
+ # Maxmimum length for event writer name.
26
+ _MAX_WRITER_NAME_LEN = 128
27
+
28
+
29
+ def ParseFileVersion(file_version: str) -> float:
30
+ """Convert the string file_version in event.proto into a float.
31
+
32
+ Args:
33
+ file_version: String file_version from event.proto
34
+
35
+ Returns:
36
+ Version number as a float.
37
+ """
38
+ tokens = file_version.split("brain.Event:")
39
+ try:
40
+ return float(tokens[-1])
41
+ except ValueError:
42
+ ## This should never happen according to the definition of file_version
43
+ ## specified in event.proto.
44
+ logger.warning(
45
+ (
46
+ "Invalid event.proto file_version. Defaulting to use of "
47
+ "out-of-order event.step logic for purging expired events."
48
+ )
49
+ )
50
+ return -1
51
+
52
+
53
+ def GetSourceWriter(
54
+ source_metadata: event_pb2.SourceMetadata,
55
+ ) -> Optional[str]:
56
+ """Gets the source writer name from the source metadata proto."""
57
+ writer_name = source_metadata.writer
58
+ if not writer_name:
59
+ return None
60
+ # Checks the length of the writer name.
61
+ if len(writer_name) > _MAX_WRITER_NAME_LEN:
62
+ logger.error(
63
+ "Source writer name `%s` is too long, maximum allowed length is %d.",
64
+ writer_name,
65
+ _MAX_WRITER_NAME_LEN,
66
+ )
67
+ return None
68
+ return writer_name
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/plugin_asset_util.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Load plugin assets from disk."""
16
+
17
+ import os.path
18
+
19
+ from tensorboard.compat import tf
20
+
21
+
22
+ _PLUGINS_DIR = "plugins"
23
+
24
+
25
+ def _IsDirectory(parent, item):
26
+ """Helper that returns if parent/item is a directory."""
27
+ return tf.io.gfile.isdir(os.path.join(parent, item))
28
+
29
+
30
+ def PluginDirectory(logdir, plugin_name):
31
+ """Returns the plugin directory for plugin_name."""
32
+ return os.path.join(logdir, _PLUGINS_DIR, plugin_name)
33
+
34
+
35
+ def ListPlugins(logdir):
36
+ """List all the plugins that have registered assets in logdir.
37
+
38
+ If the plugins_dir does not exist, it returns an empty list. This maintains
39
+ compatibility with old directories that have no plugins written.
40
+
41
+ Args:
42
+ logdir: A directory that was created by a TensorFlow events writer.
43
+
44
+ Returns:
45
+ a list of plugin names, as strings
46
+ """
47
+ plugins_dir = os.path.join(logdir, _PLUGINS_DIR)
48
+ try:
49
+ entries = tf.io.gfile.listdir(plugins_dir)
50
+ except tf.errors.NotFoundError:
51
+ return []
52
+ # Strip trailing slashes, which listdir() includes for some filesystems
53
+ # for subdirectories, after using them to bypass IsDirectory().
54
+ return [
55
+ x.rstrip("/")
56
+ for x in entries
57
+ if x.endswith("/") or _IsDirectory(plugins_dir, x)
58
+ ]
59
+
60
+
61
+ def ListAssets(logdir, plugin_name):
62
+ """List all the assets that are available for given plugin in a logdir.
63
+
64
+ Args:
65
+ logdir: A directory that was created by a TensorFlow summary.FileWriter.
66
+ plugin_name: A string name of a plugin to list assets for.
67
+
68
+ Returns:
69
+ A string list of available plugin assets. If the plugin subdirectory does
70
+ not exist (either because the logdir doesn't exist, or because the plugin
71
+ didn't register) an empty list is returned.
72
+ """
73
+ plugin_dir = PluginDirectory(logdir, plugin_name)
74
+ try:
75
+ # Strip trailing slashes, which listdir() includes for some filesystems.
76
+ return [x.rstrip("/") for x in tf.io.gfile.listdir(plugin_dir)]
77
+ except tf.errors.NotFoundError:
78
+ return []
79
+
80
+
81
+ def RetrieveAsset(logdir, plugin_name, asset_name):
82
+ """Retrieve a particular plugin asset from a logdir.
83
+
84
+ Args:
85
+ logdir: A directory that was created by a TensorFlow summary.FileWriter.
86
+ plugin_name: The plugin we want an asset from.
87
+ asset_name: The name of the requested asset.
88
+
89
+ Returns:
90
+ string contents of the plugin asset.
91
+
92
+ Raises:
93
+ KeyError: if the asset does not exist.
94
+ """
95
+
96
+ asset_path = os.path.join(PluginDirectory(logdir, plugin_name), asset_name)
97
+ try:
98
+ with tf.io.gfile.GFile(asset_path, "r") as f:
99
+ return f.read()
100
+ except tf.errors.NotFoundError:
101
+ raise KeyError("Asset path %s not found" % asset_path)
102
+ except tf.errors.OpError as e:
103
+ raise KeyError(
104
+ "Couldn't read asset path: %s, OpError %s" % (asset_path, e)
105
+ )
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/event_processing/plugin_event_accumulator.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Takes a generator of values, and accumulates them for a frontend."""
16
+
17
+ import collections
18
+ import dataclasses
19
+ import threading
20
+
21
+ from typing import Optional
22
+
23
+ from tensorboard.backend.event_processing import directory_loader
24
+ from tensorboard.backend.event_processing import directory_watcher
25
+ from tensorboard.backend.event_processing import event_file_loader
26
+ from tensorboard.backend.event_processing import event_util
27
+ from tensorboard.backend.event_processing import io_wrapper
28
+ from tensorboard.backend.event_processing import plugin_asset_util
29
+ from tensorboard.backend.event_processing import reservoir
30
+ from tensorboard.backend.event_processing import tag_types
31
+ from tensorboard.compat.proto import config_pb2
32
+ from tensorboard.compat.proto import event_pb2
33
+ from tensorboard.compat.proto import graph_pb2
34
+ from tensorboard.compat.proto import meta_graph_pb2
35
+ from tensorboard.compat.proto import tensor_pb2
36
+ from tensorboard.util import tb_logging
37
+
38
+
39
+ logger = tb_logging.get_logger()
40
+
41
+
42
+ # Legacy aliases
43
+ TENSORS = tag_types.TENSORS
44
+ GRAPH = tag_types.GRAPH
45
+ META_GRAPH = tag_types.META_GRAPH
46
+ RUN_METADATA = tag_types.RUN_METADATA
47
+
48
+ DEFAULT_SIZE_GUIDANCE = {
49
+ TENSORS: 500,
50
+ }
51
+
52
+ STORE_EVERYTHING_SIZE_GUIDANCE = {
53
+ TENSORS: 0,
54
+ }
55
+
56
+ _TENSOR_RESERVOIR_KEY = "." # arbitrary
57
+
58
+
59
+ @dataclasses.dataclass(frozen=True)
60
+ class TensorEvent:
61
+ """A tensor event.
62
+
63
+ Attributes:
64
+ wall_time: Timestamp of the event in seconds.
65
+ step: Global step of the event.
66
+ tensor_proto: A `TensorProto`.
67
+ """
68
+
69
+ wall_time: float
70
+ step: int
71
+ tensor_proto: tensor_pb2.TensorProto
72
+
73
+
74
+ class EventAccumulator:
75
+ """An `EventAccumulator` takes an event generator, and accumulates the
76
+ values.
77
+
78
+ The `EventAccumulator` is intended to provide a convenient Python
79
+ interface for loading Event data written during a TensorFlow run.
80
+ TensorFlow writes out `Event` protobuf objects, which have a timestamp
81
+ and step number, and often contain a `Summary`. Summaries can have
82
+ different kinds of data stored as arbitrary tensors. The Summaries
83
+ also have a tag, which we use to organize logically related data. The
84
+ `EventAccumulator` supports retrieving the `Event` and `Summary` data
85
+ by its tag.
86
+
87
+ Calling `Tags()` gets a map from `tagType` (i.e., `tensors`) to the
88
+ associated tags for those data types. Then, the functional endpoint
89
+ (i.g., `Accumulator.Tensors(tag)`) allows for the retrieval of all
90
+ data associated with that tag.
91
+
92
+ The `Reload()` method synchronously loads all of the data written so far.
93
+
94
+ Fields:
95
+ most_recent_step: Step of last Event proto added. This should only
96
+ be accessed from the thread that calls Reload. This is -1 if
97
+ nothing has been loaded yet.
98
+ most_recent_wall_time: Timestamp of last Event proto added. This is
99
+ a float containing seconds from the UNIX epoch, or -1 if
100
+ nothing has been loaded yet. This should only be accessed from
101
+ the thread that calls Reload.
102
+ path: A file path to a directory containing tf events files, or a single
103
+ tf events file. The accumulator will load events from this path.
104
+ tensors_by_tag: A dictionary mapping each tag name to a
105
+ reservoir.Reservoir of tensor summaries. Each such reservoir will
106
+ only use a single key, given by `_TENSOR_RESERVOIR_KEY`.
107
+
108
+ @@Tensors
109
+ """
110
+
111
+ def __init__(
112
+ self,
113
+ path,
114
+ size_guidance=None,
115
+ tensor_size_guidance=None,
116
+ purge_orphaned_data=True,
117
+ event_file_active_filter=None,
118
+ detect_file_replacement=None,
119
+ ):
120
+ """Construct the `EventAccumulator`.
121
+
122
+ Args:
123
+ path: A file path to a directory containing tf events files, or a single
124
+ tf events file. The accumulator will load events from this path.
125
+ size_guidance: Information on how much data the EventAccumulator should
126
+ store in memory. The DEFAULT_SIZE_GUIDANCE tries not to store too much
127
+ so as to avoid OOMing the client. The size_guidance should be a map
128
+ from a `tagType` string to an integer representing the number of
129
+ items to keep per tag for items of that `tagType`. If the size is 0,
130
+ all events are stored.
131
+ tensor_size_guidance: Like `size_guidance`, but allowing finer
132
+ granularity for tensor summaries. Should be a map from the
133
+ `plugin_name` field on the `PluginData` proto to an integer
134
+ representing the number of items to keep per tag. Plugins for
135
+ which there is no entry in this map will default to the value of
136
+ `size_guidance[event_accumulator.TENSORS]`. Defaults to `{}`.
137
+ purge_orphaned_data: Whether to discard any events that were "orphaned" by
138
+ a TensorFlow restart.
139
+ event_file_active_filter: Optional predicate for determining whether an
140
+ event file latest load timestamp should be considered active. If passed,
141
+ this will enable multifile directory loading.
142
+ detect_file_replacement: Optional boolean; if True, event file loading
143
+ will try to detect when a file has been replaced with a new version
144
+ that contains additional data, by monitoring the file size.
145
+ """
146
+ size_guidance = dict(size_guidance or DEFAULT_SIZE_GUIDANCE)
147
+ sizes = {}
148
+ for key in DEFAULT_SIZE_GUIDANCE:
149
+ if key in size_guidance:
150
+ sizes[key] = size_guidance[key]
151
+ else:
152
+ sizes[key] = DEFAULT_SIZE_GUIDANCE[key]
153
+ self._size_guidance = size_guidance
154
+ self._tensor_size_guidance = dict(tensor_size_guidance or {})
155
+
156
+ self._first_event_timestamp = None
157
+
158
+ self._graph = None
159
+ self._graph_from_metagraph = False
160
+ self._meta_graph = None
161
+ self._tagged_metadata = {}
162
+ self.summary_metadata = {}
163
+ self.tensors_by_tag = {}
164
+ self._tensors_by_tag_lock = threading.Lock()
165
+
166
+ # Keep a mapping from plugin name to a dict mapping from tag to plugin data
167
+ # content obtained from the SummaryMetadata (metadata field of Value) for
168
+ # that plugin (This is not the entire SummaryMetadata proto - only the
169
+ # content for that plugin). The SummaryWriter only keeps the content on the
170
+ # first event encountered per tag, so we must store that first instance of
171
+ # content for each tag.
172
+ self._plugin_to_tag_to_content = collections.defaultdict(dict)
173
+ # Locks the dict `_plugin_to_tag_to_content` as well as the
174
+ # dicts `_plugin_to_tag_to_content[p]` for each `p`.
175
+ self._plugin_tag_lock = threading.Lock()
176
+
177
+ self.path = path
178
+ self._generator = _GeneratorFromPath(
179
+ path, event_file_active_filter, detect_file_replacement
180
+ )
181
+ self._generator_mutex = threading.Lock()
182
+
183
+ self.purge_orphaned_data = purge_orphaned_data
184
+ self._seen_session_start = False
185
+
186
+ self.most_recent_step = -1
187
+ self.most_recent_wall_time = -1
188
+ self.file_version = None
189
+
190
+ # Name of the source writer that writes the event.
191
+ self._source_writer = None
192
+
193
+ def Reload(self):
194
+ """Loads all events added since the last call to `Reload`.
195
+
196
+ If `Reload` was never called, loads all events in the file.
197
+
198
+ Returns:
199
+ The `EventAccumulator`.
200
+ """
201
+ with self._generator_mutex:
202
+ for event in self._generator.Load():
203
+ self._ProcessEvent(event)
204
+ return self
205
+
206
+ def PluginAssets(self, plugin_name):
207
+ """Return a list of all plugin assets for the given plugin.
208
+
209
+ Args:
210
+ plugin_name: The string name of a plugin to retrieve assets for.
211
+
212
+ Returns:
213
+ A list of string plugin asset names, or empty list if none are available.
214
+ If the plugin was not registered, an empty list is returned.
215
+ """
216
+ return plugin_asset_util.ListAssets(self.path, plugin_name)
217
+
218
+ def RetrievePluginAsset(self, plugin_name, asset_name):
219
+ """Return the contents of a given plugin asset.
220
+
221
+ Args:
222
+ plugin_name: The string name of a plugin.
223
+ asset_name: The string name of an asset.
224
+
225
+ Returns:
226
+ The string contents of the plugin asset.
227
+
228
+ Raises:
229
+ KeyError: If the asset is not available.
230
+ """
231
+ return plugin_asset_util.RetrieveAsset(
232
+ self.path, plugin_name, asset_name
233
+ )
234
+
235
+ def FirstEventTimestamp(self):
236
+ """Returns the timestamp in seconds of the first event.
237
+
238
+ If the first event has been loaded (either by this method or by `Reload`,
239
+ this returns immediately. Otherwise, it will load in the first event. Note
240
+ that this means that calling `Reload` will cause this to block until
241
+ `Reload` has finished.
242
+
243
+ Returns:
244
+ The timestamp in seconds of the first event that was loaded.
245
+
246
+ Raises:
247
+ ValueError: If no events have been loaded and there were no events found
248
+ on disk.
249
+ """
250
+ if self._first_event_timestamp is not None:
251
+ return self._first_event_timestamp
252
+ with self._generator_mutex:
253
+ try:
254
+ event = next(self._generator.Load())
255
+ self._ProcessEvent(event)
256
+ return self._first_event_timestamp
257
+
258
+ except StopIteration:
259
+ raise ValueError("No event timestamp could be found")
260
+
261
+ def GetSourceWriter(self) -> Optional[str]:
262
+ """Returns the name of the event writer."""
263
+ if self._source_writer is not None:
264
+ return self._source_writer
265
+ with self._generator_mutex:
266
+ try:
267
+ event = next(self._generator.Load())
268
+ self._ProcessEvent(event)
269
+ return self._source_writer
270
+ except StopIteration:
271
+ logger.info(
272
+ "End of file in %s, no source writer was found.", self.path
273
+ )
274
+
275
+ def PluginTagToContent(self, plugin_name):
276
+ """Returns a dict mapping tags to content specific to that plugin.
277
+
278
+ Args:
279
+ plugin_name: The name of the plugin for which to fetch plugin-specific
280
+ content.
281
+
282
+ Raises:
283
+ KeyError: if the plugin name is not found.
284
+
285
+ Returns:
286
+ A dict mapping tag names to bytestrings of plugin-specific content-- by
287
+ convention, in the form of binary serialized protos.
288
+ """
289
+ with self._plugin_tag_lock:
290
+ if plugin_name not in self._plugin_to_tag_to_content:
291
+ raise KeyError("Plugin %r could not be found." % plugin_name)
292
+ # Return a snapshot to avoid concurrent mutation and iteration issues.
293
+ return dict(self._plugin_to_tag_to_content[plugin_name])
294
+
295
+ def ActivePlugins(self):
296
+ """Return a set of plugins with summary data.
297
+
298
+ Returns:
299
+ The distinct union of `plugin_data.plugin_name` fields from
300
+ all the `SummaryMetadata` protos stored in this accumulator.
301
+ """
302
+ with self._plugin_tag_lock:
303
+ return frozenset(self._plugin_to_tag_to_content)
304
+
305
+ def SummaryMetadata(self, tag):
306
+ """Given a summary tag name, return the associated metadata object.
307
+
308
+ Args:
309
+ tag: The name of a tag, as a string.
310
+
311
+ Raises:
312
+ KeyError: If the tag is not found.
313
+
314
+ Returns:
315
+ A `SummaryMetadata` protobuf.
316
+ """
317
+ return self.summary_metadata[tag]
318
+
319
+ def AllSummaryMetadata(self):
320
+ """Return summary metadata for all tags.
321
+
322
+ Returns:
323
+ A dict `d` such that `d[tag]` is a `SummaryMetadata` proto for
324
+ the keyed tag.
325
+ """
326
+ return dict(self.summary_metadata)
327
+
328
+ def _ProcessEvent(self, event):
329
+ """Called whenever an event is loaded."""
330
+ if self._first_event_timestamp is None:
331
+ self._first_event_timestamp = event.wall_time
332
+
333
+ if event.HasField("source_metadata"):
334
+ new_source_writer = event_util.GetSourceWriter(
335
+ event.source_metadata
336
+ )
337
+ if self._source_writer and self._source_writer != new_source_writer:
338
+ logger.info(
339
+ (
340
+ "Found new source writer for event.proto. "
341
+ "Old: {0}, New: {1}"
342
+ ).format(self._source_writer, new_source_writer)
343
+ )
344
+ self._source_writer = new_source_writer
345
+
346
+ if event.HasField("file_version"):
347
+ new_file_version = event_util.ParseFileVersion(event.file_version)
348
+ if self.file_version and self.file_version != new_file_version:
349
+ ## This should not happen.
350
+ logger.warning(
351
+ (
352
+ "Found new file_version for event.proto. This will "
353
+ "affect purging logic for TensorFlow restarts. "
354
+ "Old: {0} New: {1}"
355
+ ).format(self.file_version, new_file_version)
356
+ )
357
+ self.file_version = new_file_version
358
+
359
+ self._MaybePurgeOrphanedData(event)
360
+
361
+ ## Process the event.
362
+ # GraphDef and MetaGraphDef are handled in a special way:
363
+ # If no graph_def Event is available, but a meta_graph_def is, and it
364
+ # contains a graph_def, then use the meta_graph_def.graph_def as our graph.
365
+ # If a graph_def Event is available, always prefer it to the graph_def
366
+ # inside the meta_graph_def.
367
+ if event.HasField("graph_def"):
368
+ if self._graph is not None:
369
+ logger.warning(
370
+ (
371
+ "Found more than one graph event per run, or there was "
372
+ "a metagraph containing a graph_def, as well as one or "
373
+ "more graph events. Overwriting the graph with the "
374
+ "newest event."
375
+ )
376
+ )
377
+ self._graph = event.graph_def
378
+ self._graph_from_metagraph = False
379
+ elif event.HasField("meta_graph_def"):
380
+ if self._meta_graph is not None:
381
+ logger.warning(
382
+ (
383
+ "Found more than one metagraph event per run. "
384
+ "Overwriting the metagraph with the newest event."
385
+ )
386
+ )
387
+ self._meta_graph = event.meta_graph_def
388
+ if self._graph is None or self._graph_from_metagraph:
389
+ # We may have a graph_def in the metagraph. If so, and no
390
+ # graph_def is directly available, use this one instead.
391
+ meta_graph = meta_graph_pb2.MetaGraphDef()
392
+ meta_graph.ParseFromString(self._meta_graph)
393
+ if meta_graph.graph_def:
394
+ if self._graph is not None:
395
+ logger.warning(
396
+ (
397
+ "Found multiple metagraphs containing graph_defs,"
398
+ "but did not find any graph events. Overwriting the "
399
+ "graph with the newest metagraph version."
400
+ )
401
+ )
402
+ self._graph_from_metagraph = True
403
+ self._graph = meta_graph.graph_def.SerializeToString()
404
+ elif event.HasField("tagged_run_metadata"):
405
+ tag = event.tagged_run_metadata.tag
406
+ if tag in self._tagged_metadata:
407
+ logger.warning(
408
+ 'Found more than one "run metadata" event with tag '
409
+ + tag
410
+ + ". Overwriting it with the newest event."
411
+ )
412
+ self._tagged_metadata[tag] = event.tagged_run_metadata.run_metadata
413
+ elif event.HasField("summary"):
414
+ for value in event.summary.value:
415
+ if value.HasField("metadata"):
416
+ tag = value.tag
417
+ # We only store the first instance of the metadata. This check
418
+ # is important: the `FileWriter` does strip metadata from all
419
+ # values except the first one per each tag, but a new
420
+ # `FileWriter` is created every time a training job stops and
421
+ # restarts. Hence, we must also ignore non-initial metadata in
422
+ # this logic.
423
+ if tag not in self.summary_metadata:
424
+ self.summary_metadata[tag] = value.metadata
425
+ plugin_data = value.metadata.plugin_data
426
+ if plugin_data.plugin_name:
427
+ with self._plugin_tag_lock:
428
+ self._plugin_to_tag_to_content[
429
+ plugin_data.plugin_name
430
+ ][tag] = plugin_data.content
431
+ else:
432
+ logger.warning(
433
+ (
434
+ "This summary with tag %r is oddly not associated with a "
435
+ "plugin."
436
+ ),
437
+ tag,
438
+ )
439
+
440
+ if value.HasField("tensor"):
441
+ datum = value.tensor
442
+ tag = value.tag
443
+ if not tag:
444
+ # This tensor summary was created using the old method that used
445
+ # plugin assets. We must still continue to support it.
446
+ tag = value.node_name
447
+ self._ProcessTensor(tag, event.wall_time, event.step, datum)
448
+
449
+ def Tags(self):
450
+ """Return all tags found in the value stream.
451
+
452
+ Returns:
453
+ A `{tagType: ['list', 'of', 'tags']}` dictionary.
454
+ """
455
+ return {
456
+ TENSORS: list(self.tensors_by_tag.keys()),
457
+ # Use a heuristic: if the metagraph is available, but
458
+ # graph is not, then we assume the metagraph contains the graph.
459
+ GRAPH: self._graph is not None,
460
+ META_GRAPH: self._meta_graph is not None,
461
+ RUN_METADATA: list(self._tagged_metadata.keys()),
462
+ }
463
+
464
+ def Graph(self):
465
+ """Return the graph definition, if there is one.
466
+
467
+ If the graph is stored directly, return that. If no graph is stored
468
+ directly but a metagraph is stored containing a graph, return that.
469
+
470
+ Raises:
471
+ ValueError: If there is no graph for this run.
472
+
473
+ Returns:
474
+ The `graph_def` proto.
475
+ """
476
+ graph = graph_pb2.GraphDef()
477
+ if self._graph is not None:
478
+ graph.ParseFromString(self._graph)
479
+ return graph
480
+ raise ValueError("There is no graph in this EventAccumulator")
481
+
482
+ def SerializedGraph(self):
483
+ """Return the graph definition in serialized form, if there is one."""
484
+ return self._graph
485
+
486
+ def MetaGraph(self):
487
+ """Return the metagraph definition, if there is one.
488
+
489
+ Raises:
490
+ ValueError: If there is no metagraph for this run.
491
+
492
+ Returns:
493
+ The `meta_graph_def` proto.
494
+ """
495
+ if self._meta_graph is None:
496
+ raise ValueError("There is no metagraph in this EventAccumulator")
497
+ meta_graph = meta_graph_pb2.MetaGraphDef()
498
+ meta_graph.ParseFromString(self._meta_graph)
499
+ return meta_graph
500
+
501
+ def RunMetadata(self, tag):
502
+ """Given a tag, return the associated session.run() metadata.
503
+
504
+ Args:
505
+ tag: A string tag associated with the event.
506
+
507
+ Raises:
508
+ ValueError: If the tag is not found.
509
+
510
+ Returns:
511
+ The metadata in form of `RunMetadata` proto.
512
+ """
513
+ if tag not in self._tagged_metadata:
514
+ raise ValueError("There is no run metadata with this tag name")
515
+
516
+ run_metadata = config_pb2.RunMetadata()
517
+ run_metadata.ParseFromString(self._tagged_metadata[tag])
518
+ return run_metadata
519
+
520
+ def Tensors(self, tag):
521
+ """Given a summary tag, return all associated tensors.
522
+
523
+ Args:
524
+ tag: A string tag associated with the events.
525
+
526
+ Raises:
527
+ KeyError: If the tag is not found.
528
+
529
+ Returns:
530
+ An array of `TensorEvent`s.
531
+ """
532
+ return self.tensors_by_tag[tag].Items(_TENSOR_RESERVOIR_KEY)
533
+
534
+ def _MaybePurgeOrphanedData(self, event):
535
+ """Maybe purge orphaned data due to a TensorFlow crash.
536
+
537
+ When TensorFlow crashes at step T+O and restarts at step T, any events
538
+ written after step T are now "orphaned" and will be at best misleading if
539
+ they are included in TensorBoard.
540
+
541
+ This logic attempts to determine if there is orphaned data, and purge it
542
+ if it is found.
543
+
544
+ Args:
545
+ event: The event to use as a reference, to determine if a purge is needed.
546
+ """
547
+ if not self.purge_orphaned_data:
548
+ return
549
+ ## Check if the event happened after a crash, and purge expired tags.
550
+ if self.file_version and self.file_version >= 2:
551
+ ## If the file_version is recent enough, use the SessionLog enum
552
+ ## to check for restarts.
553
+ self._CheckForRestartAndMaybePurge(event)
554
+ else:
555
+ ## If there is no file version, default to old logic of checking for
556
+ ## out of order steps.
557
+ self._CheckForOutOfOrderStepAndMaybePurge(event)
558
+ # After checking, update the most recent summary step and wall time.
559
+ if event.HasField("summary"):
560
+ self.most_recent_step = event.step
561
+ self.most_recent_wall_time = event.wall_time
562
+
563
+ def _CheckForRestartAndMaybePurge(self, event):
564
+ """Check and discard expired events using SessionLog.START.
565
+
566
+ The first SessionLog.START event in a run indicates the start of a
567
+ supervisor session. Subsequent SessionLog.START events indicate a
568
+ *restart*, which may need to preempt old events. This method checks
569
+ for a session restart event and purges all previously seen events whose
570
+ step is larger than or equal to this event's step.
571
+
572
+ Because of supervisor threading, it is possible that this logic will
573
+ cause the first few event messages to be discarded since supervisor
574
+ threading does not guarantee that the START message is deterministically
575
+ written first.
576
+
577
+ This method is preferred over _CheckForOutOfOrderStepAndMaybePurge which
578
+ can inadvertently discard events due to supervisor threading.
579
+
580
+ Args:
581
+ event: The event to use as reference. If the event is a START event, all
582
+ previously seen events with a greater event.step will be purged.
583
+ """
584
+ if event.session_log.status != event_pb2.SessionLog.START:
585
+ return
586
+ if not self._seen_session_start:
587
+ # Initial start event: does not indicate a restart.
588
+ self._seen_session_start = True
589
+ return
590
+ self._Purge(event, by_tags=False)
591
+
592
+ def _CheckForOutOfOrderStepAndMaybePurge(self, event):
593
+ """Check for out-of-order event.step and discard expired events for
594
+ tags.
595
+
596
+ Check if the event is out of order relative to the global most recent step.
597
+ If it is, purge outdated summaries for tags that the event contains.
598
+
599
+ Args:
600
+ event: The event to use as reference. If the event is out-of-order, all
601
+ events with the same tags, but with a greater event.step will be purged.
602
+ """
603
+ if event.step < self.most_recent_step and event.HasField("summary"):
604
+ self._Purge(event, by_tags=True)
605
+
606
+ def _ProcessTensor(self, tag, wall_time, step, tensor):
607
+ tv = TensorEvent(wall_time=wall_time, step=step, tensor_proto=tensor)
608
+ with self._tensors_by_tag_lock:
609
+ if tag not in self.tensors_by_tag:
610
+ reservoir_size = self._GetTensorReservoirSize(tag)
611
+ self.tensors_by_tag[tag] = reservoir.Reservoir(reservoir_size)
612
+ self.tensors_by_tag[tag].AddItem(_TENSOR_RESERVOIR_KEY, tv)
613
+
614
+ def _GetTensorReservoirSize(self, tag):
615
+ default = self._size_guidance[TENSORS]
616
+ summary_metadata = self.summary_metadata.get(tag)
617
+ if summary_metadata is None:
618
+ return default
619
+ return self._tensor_size_guidance.get(
620
+ summary_metadata.plugin_data.plugin_name, default
621
+ )
622
+
623
+ def _Purge(self, event, by_tags):
624
+ """Purge all events that have occurred after the given event.step.
625
+
626
+ If by_tags is True, purge all events that occurred after the given
627
+ event.step, but only for the tags that the event has. Non-sequential
628
+ event.steps suggest that a TensorFlow restart occurred, and we discard
629
+ the out-of-order events to display a consistent view in TensorBoard.
630
+
631
+ Discarding by tags is the safer method, when we are unsure whether a restart
632
+ has occurred, given that threading in supervisor can cause events of
633
+ different tags to arrive with unsynchronized step values.
634
+
635
+ If by_tags is False, then purge all events with event.step greater than the
636
+ given event.step. This can be used when we are certain that a TensorFlow
637
+ restart has occurred and these events can be discarded.
638
+
639
+ Args:
640
+ event: The event to use as reference for the purge. All events with
641
+ the same tags, but with a greater event.step will be purged.
642
+ by_tags: Bool to dictate whether to discard all out-of-order events or
643
+ only those that are associated with the given reference event.
644
+ """
645
+ ## Keep data in reservoirs that has a step less than event.step
646
+ _NotExpired = lambda x: x.step < event.step
647
+
648
+ num_expired = 0
649
+ if by_tags:
650
+ for value in event.summary.value:
651
+ if value.tag in self.tensors_by_tag:
652
+ tag_reservoir = self.tensors_by_tag[value.tag]
653
+ num_expired += tag_reservoir.FilterItems(
654
+ _NotExpired, _TENSOR_RESERVOIR_KEY
655
+ )
656
+ else:
657
+ for tag_reservoir in self.tensors_by_tag.values():
658
+ num_expired += tag_reservoir.FilterItems(
659
+ _NotExpired, _TENSOR_RESERVOIR_KEY
660
+ )
661
+ if num_expired > 0:
662
+ purge_msg = _GetPurgeMessage(
663
+ self.most_recent_step,
664
+ self.most_recent_wall_time,
665
+ event.step,
666
+ event.wall_time,
667
+ num_expired,
668
+ )
669
+ logger.warning(purge_msg)
670
+
671
+
672
+ def _GetPurgeMessage(
673
+ most_recent_step,
674
+ most_recent_wall_time,
675
+ event_step,
676
+ event_wall_time,
677
+ num_expired,
678
+ ):
679
+ """Return the string message associated with TensorBoard purges."""
680
+ return (
681
+ "Detected out of order event.step likely caused by a TensorFlow "
682
+ "restart. Purging {} expired tensor events from Tensorboard display "
683
+ "between the previous step: {} (timestamp: {}) and current step: {} "
684
+ "(timestamp: {})."
685
+ ).format(
686
+ num_expired,
687
+ most_recent_step,
688
+ most_recent_wall_time,
689
+ event_step,
690
+ event_wall_time,
691
+ )
692
+
693
+
694
+ def _GeneratorFromPath(
695
+ path, event_file_active_filter=None, detect_file_replacement=None
696
+ ):
697
+ """Create an event generator for file or directory at given path string."""
698
+ if not path:
699
+ raise ValueError("path must be a valid string")
700
+ if io_wrapper.IsSummaryEventsFile(path):
701
+ return event_file_loader.EventFileLoader(path, detect_file_replacement)
702
+ elif event_file_active_filter:
703
+ loader_factory = (
704
+ lambda path: event_file_loader.TimestampedEventFileLoader(
705
+ path, detect_file_replacement
706
+ )
707
+ )
708
+ return directory_loader.DirectoryLoader(
709
+ path,
710
+ loader_factory,
711
+ path_filter=io_wrapper.IsSummaryEventsFile,
712
+ active_filter=event_file_active_filter,
713
+ )
714
+ else:
715
+ loader_factory = lambda path: event_file_loader.EventFileLoader(
716
+ path, detect_file_replacement
717
+ )
718
+ return directory_watcher.DirectoryWatcher(
719
+ path,
720
+ loader_factory,
721
+ io_wrapper.IsSummaryEventsFile,
722
+ )
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/json_util.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """A module providing a function for serializing JSON values with Infinity.
17
+
18
+ Python provides no way to override how json.dumps serializes
19
+ Infinity/-Infinity/NaN; if allow_nan is true, it encodes them as
20
+ Infinity/-Infinity/NaN, in violation of the JSON spec and in violation
21
+ of what JSON.parse accepts. If it's false, it throws a ValueError,
22
+ Neither subclassing JSONEncoder nor passing a function in the |default|
23
+ keyword argument overrides this.
24
+ """
25
+
26
+
27
+ import collections
28
+ import math
29
+
30
+
31
+ _INFINITY = float("inf")
32
+ _NEGATIVE_INFINITY = float("-inf")
33
+
34
+
35
+ def Cleanse(obj, encoding="utf-8"):
36
+ """Makes Python object appropriate for JSON serialization.
37
+
38
+ - Replaces instances of Infinity/-Infinity/NaN with strings.
39
+ - Turns byte strings into unicode strings.
40
+ - Turns sets into sorted lists.
41
+ - Turns tuples into lists.
42
+
43
+ Args:
44
+ obj: Python data structure.
45
+ encoding: Charset used to decode byte strings.
46
+
47
+ Returns:
48
+ Unicode JSON data structure.
49
+ """
50
+ if isinstance(obj, int):
51
+ return obj
52
+ elif isinstance(obj, float):
53
+ if obj == _INFINITY:
54
+ return "Infinity"
55
+ elif obj == _NEGATIVE_INFINITY:
56
+ return "-Infinity"
57
+ elif math.isnan(obj):
58
+ return "NaN"
59
+ else:
60
+ return obj
61
+ elif isinstance(obj, bytes):
62
+ return obj.decode(encoding)
63
+ elif isinstance(obj, (list, tuple)):
64
+ return [Cleanse(i, encoding) for i in obj]
65
+ elif isinstance(obj, set):
66
+ return [Cleanse(i, encoding) for i in sorted(obj)]
67
+ elif isinstance(obj, dict):
68
+ return collections.OrderedDict(
69
+ (Cleanse(k, encoding), Cleanse(v, encoding)) for k, v in obj.items()
70
+ )
71
+ else:
72
+ return obj
infer_4_33_0/lib/python3.10/site-packages/tensorboard/backend/path_prefix.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Internal path prefix support for TensorBoard.
16
+
17
+ Using a path prefix of `/foo/bar` enables TensorBoard to serve from
18
+ `http://localhost:6006/foo/bar/` rather than `http://localhost:6006/`.
19
+ See the `--path_prefix` flag docs for more details.
20
+ """
21
+
22
+
23
+ from tensorboard import errors
24
+
25
+
26
+ class PathPrefixMiddleware:
27
+ """WSGI middleware for path prefixes.
28
+
29
+ All requests to this middleware must begin with the specified path
30
+ prefix (otherwise, a 404 will be returned immediately). Requests
31
+ will be forwarded to the underlying application with the path prefix
32
+ stripped and appended to `SCRIPT_NAME` (see the WSGI spec, PEP 3333,
33
+ for details).
34
+ """
35
+
36
+ def __init__(self, application, path_prefix):
37
+ """Initializes this middleware.
38
+
39
+ Args:
40
+ application: The WSGI application to wrap (see PEP 3333).
41
+ path_prefix: A string path prefix to be stripped from incoming
42
+ requests. If empty, this middleware is a no-op. If non-empty,
43
+ the path prefix must start with a slash and not end with one
44
+ (e.g., "/tensorboard").
45
+ """
46
+ if path_prefix.endswith("/"):
47
+ raise ValueError(
48
+ "Path prefix must not end with slash: %r" % path_prefix
49
+ )
50
+ if path_prefix and not path_prefix.startswith("/"):
51
+ raise ValueError(
52
+ "Non-empty path prefix must start with slash: %r" % path_prefix
53
+ )
54
+ self._application = application
55
+ self._path_prefix = path_prefix
56
+ self._strict_prefix = self._path_prefix + "/"
57
+
58
+ def __call__(self, environ, start_response):
59
+ path = environ.get("PATH_INFO", "")
60
+ if path != self._path_prefix and not path.startswith(
61
+ self._strict_prefix
62
+ ):
63
+ raise errors.NotFoundError()
64
+ environ["PATH_INFO"] = path[len(self._path_prefix) :]
65
+ environ["SCRIPT_NAME"] = (
66
+ environ.get("SCRIPT_NAME", "") + self._path_prefix
67
+ )
68
+ return self._application(environ, start_response)
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__init__.py ADDED
File without changes
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (182 Bytes). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/allocation_description_pb2.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/api_def_pb2.cpython-310.pyc ADDED
Binary file (2.77 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/attr_value_pb2.cpython-310.pyc ADDED
Binary file (2.99 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cluster_pb2.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/config_pb2.cpython-310.pyc ADDED
Binary file (11.3 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/coordination_config_pb2.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cost_graph_pb2.cpython-310.pyc ADDED
Binary file (3.18 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/cpp_shape_inference_pb2.cpython-310.pyc ADDED
Binary file (2.69 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/debug_pb2.cpython-310.pyc ADDED
Binary file (2.12 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/event_pb2.cpython-310.pyc ADDED
Binary file (4.67 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/full_type_pb2.cpython-310.pyc ADDED
Binary file (3 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/function_pb2.cpython-310.pyc ADDED
Binary file (4.28 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/graph_debug_info_pb2.cpython-310.pyc ADDED
Binary file (3.13 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/graph_pb2.cpython-310.pyc ADDED
Binary file (2.08 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/histogram_pb2.cpython-310.pyc ADDED
Binary file (1.45 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/meta_graph_pb2.cpython-310.pyc ADDED
Binary file (7.47 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/node_def_pb2.cpython-310.pyc ADDED
Binary file (2.27 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/op_def_pb2.cpython-310.pyc ADDED
Binary file (3.28 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/resource_handle_pb2.cpython-310.pyc ADDED
Binary file (2.09 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/rewriter_config_pb2.cpython-310.pyc ADDED
Binary file (5.6 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/rpc_options_pb2.cpython-310.pyc ADDED
Binary file (1.37 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/saved_object_graph_pb2.cpython-310.pyc ADDED
Binary file (6.79 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/saver_pb2.cpython-310.pyc ADDED
Binary file (1.66 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/step_stats_pb2.cpython-310.pyc ADDED
Binary file (4.16 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/struct_pb2.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
infer_4_33_0/lib/python3.10/site-packages/tensorboard/compat/proto/__pycache__/summary_pb2.cpython-310.pyc ADDED
Binary file (3.66 kB). View file