Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- emu3/lib/python3.10/site-packages/pandas/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/__pycache__/_typing.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/__pycache__/_version.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/__pycache__/_version_meson.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/__pycache__/conftest.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/__pycache__/testing.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__init__.py +57 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/config.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/dates.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/display.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/localization.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_config/config.py +948 -0
- emu3/lib/python3.10/site-packages/pandas/_config/dates.py +25 -0
- emu3/lib/python3.10/site-packages/pandas/_config/display.py +62 -0
- emu3/lib/python3.10/site-packages/pandas/_config/localization.py +172 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__init__.py +639 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_hypothesis.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_io.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_warnings.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/asserters.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/compat.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/contexts.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/_hypothesis.py +93 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/_io.py +170 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/_warnings.py +232 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/asserters.py +1435 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/compat.py +29 -0
- emu3/lib/python3.10/site-packages/pandas/_testing/contexts.py +257 -0
- emu3/lib/python3.10/site-packages/pandas/api/__init__.py +16 -0
- emu3/lib/python3.10/site-packages/pandas/api/interchange/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/api/types/__init__.py +23 -0
- emu3/lib/python3.10/site-packages/pandas/api/types/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/api/typing/__init__.py +55 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__init__.py +199 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/_constants.py +30 -0
- emu3/lib/python3.10/site-packages/pandas/compat/_optional.py +168 -0
- emu3/lib/python3.10/site-packages/pandas/compat/compressors.py +77 -0
- emu3/lib/python3.10/site-packages/pandas/compat/pickle_compat.py +262 -0
- emu3/lib/python3.10/site-packages/pandas/compat/pyarrow.py +29 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/__init__.py +0 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_compat.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_eval.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/test_compat.py +32 -0
- emu3/lib/python3.10/site-packages/pandas/tests/computation/test_eval.py +2001 -0
- emu3/lib/python3.10/site-packages/pandas/tests/series/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_api.cpython-310.pyc +0 -0
emu3/lib/python3.10/site-packages/pandas/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (6.95 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/__pycache__/_typing.cpython-310.pyc
ADDED
|
Binary file (11.5 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/__pycache__/_version.cpython-310.pyc
ADDED
|
Binary file (14.5 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/__pycache__/_version_meson.cpython-310.pyc
ADDED
|
Binary file (248 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/__pycache__/conftest.cpython-310.pyc
ADDED
|
Binary file (46.1 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/__pycache__/testing.cpython-310.pyc
ADDED
|
Binary file (404 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/__init__.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
pandas._config is considered explicitly upstream of everything else in pandas,
|
| 3 |
+
should have no intra-pandas dependencies.
|
| 4 |
+
|
| 5 |
+
importing `dates` and `display` ensures that keys needed by _libs
|
| 6 |
+
are initialized.
|
| 7 |
+
"""
|
| 8 |
+
__all__ = [
|
| 9 |
+
"config",
|
| 10 |
+
"detect_console_encoding",
|
| 11 |
+
"get_option",
|
| 12 |
+
"set_option",
|
| 13 |
+
"reset_option",
|
| 14 |
+
"describe_option",
|
| 15 |
+
"option_context",
|
| 16 |
+
"options",
|
| 17 |
+
"using_copy_on_write",
|
| 18 |
+
"warn_copy_on_write",
|
| 19 |
+
]
|
| 20 |
+
from pandas._config import config
|
| 21 |
+
from pandas._config import dates # pyright: ignore[reportUnusedImport] # noqa: F401
|
| 22 |
+
from pandas._config.config import (
|
| 23 |
+
_global_config,
|
| 24 |
+
describe_option,
|
| 25 |
+
get_option,
|
| 26 |
+
option_context,
|
| 27 |
+
options,
|
| 28 |
+
reset_option,
|
| 29 |
+
set_option,
|
| 30 |
+
)
|
| 31 |
+
from pandas._config.display import detect_console_encoding
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def using_copy_on_write() -> bool:
|
| 35 |
+
_mode_options = _global_config["mode"]
|
| 36 |
+
return (
|
| 37 |
+
_mode_options["copy_on_write"] is True
|
| 38 |
+
and _mode_options["data_manager"] == "block"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def warn_copy_on_write() -> bool:
|
| 43 |
+
_mode_options = _global_config["mode"]
|
| 44 |
+
return (
|
| 45 |
+
_mode_options["copy_on_write"] == "warn"
|
| 46 |
+
and _mode_options["data_manager"] == "block"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def using_nullable_dtypes() -> bool:
|
| 51 |
+
_mode_options = _global_config["mode"]
|
| 52 |
+
return _mode_options["nullable_dtypes"]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def using_pyarrow_string_dtype() -> bool:
|
| 56 |
+
_mode_options = _global_config["future"]
|
| 57 |
+
return _mode_options["infer_string"]
|
emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.49 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (26.4 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/dates.cpython-310.pyc
ADDED
|
Binary file (730 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/display.cpython-310.pyc
ADDED
|
Binary file (1.38 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/__pycache__/localization.cpython-310.pyc
ADDED
|
Binary file (4.81 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_config/config.py
ADDED
|
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
The config module holds package-wide configurables and provides
|
| 3 |
+
a uniform API for working with them.
|
| 4 |
+
|
| 5 |
+
Overview
|
| 6 |
+
========
|
| 7 |
+
|
| 8 |
+
This module supports the following requirements:
|
| 9 |
+
- options are referenced using keys in dot.notation, e.g. "x.y.option - z".
|
| 10 |
+
- keys are case-insensitive.
|
| 11 |
+
- functions should accept partial/regex keys, when unambiguous.
|
| 12 |
+
- options can be registered by modules at import time.
|
| 13 |
+
- options can be registered at init-time (via core.config_init)
|
| 14 |
+
- options have a default value, and (optionally) a description and
|
| 15 |
+
validation function associated with them.
|
| 16 |
+
- options can be deprecated, in which case referencing them
|
| 17 |
+
should produce a warning.
|
| 18 |
+
- deprecated options can optionally be rerouted to a replacement
|
| 19 |
+
so that accessing a deprecated option reroutes to a differently
|
| 20 |
+
named option.
|
| 21 |
+
- options can be reset to their default value.
|
| 22 |
+
- all option can be reset to their default value at once.
|
| 23 |
+
- all options in a certain sub - namespace can be reset at once.
|
| 24 |
+
- the user can set / get / reset or ask for the description of an option.
|
| 25 |
+
- a developer can register and mark an option as deprecated.
|
| 26 |
+
- you can register a callback to be invoked when the option value
|
| 27 |
+
is set or reset. Changing the stored value is considered misuse, but
|
| 28 |
+
is not verboten.
|
| 29 |
+
|
| 30 |
+
Implementation
|
| 31 |
+
==============
|
| 32 |
+
|
| 33 |
+
- Data is stored using nested dictionaries, and should be accessed
|
| 34 |
+
through the provided API.
|
| 35 |
+
|
| 36 |
+
- "Registered options" and "Deprecated options" have metadata associated
|
| 37 |
+
with them, which are stored in auxiliary dictionaries keyed on the
|
| 38 |
+
fully-qualified key, e.g. "x.y.z.option".
|
| 39 |
+
|
| 40 |
+
- the config_init module is imported by the package's __init__.py file.
|
| 41 |
+
placing any register_option() calls there will ensure those options
|
| 42 |
+
are available as soon as pandas is loaded. If you use register_option
|
| 43 |
+
in a module, it will only be available after that module is imported,
|
| 44 |
+
which you should be aware of.
|
| 45 |
+
|
| 46 |
+
- `config_prefix` is a context_manager (for use with the `with` keyword)
|
| 47 |
+
which can save developers some typing, see the docstring.
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
from __future__ import annotations
|
| 52 |
+
|
| 53 |
+
from contextlib import (
|
| 54 |
+
ContextDecorator,
|
| 55 |
+
contextmanager,
|
| 56 |
+
)
|
| 57 |
+
import re
|
| 58 |
+
from typing import (
|
| 59 |
+
TYPE_CHECKING,
|
| 60 |
+
Any,
|
| 61 |
+
Callable,
|
| 62 |
+
Generic,
|
| 63 |
+
NamedTuple,
|
| 64 |
+
cast,
|
| 65 |
+
)
|
| 66 |
+
import warnings
|
| 67 |
+
|
| 68 |
+
from pandas._typing import (
|
| 69 |
+
F,
|
| 70 |
+
T,
|
| 71 |
+
)
|
| 72 |
+
from pandas.util._exceptions import find_stack_level
|
| 73 |
+
|
| 74 |
+
if TYPE_CHECKING:
|
| 75 |
+
from collections.abc import (
|
| 76 |
+
Generator,
|
| 77 |
+
Iterable,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class DeprecatedOption(NamedTuple):
|
| 82 |
+
key: str
|
| 83 |
+
msg: str | None
|
| 84 |
+
rkey: str | None
|
| 85 |
+
removal_ver: str | None
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class RegisteredOption(NamedTuple):
|
| 89 |
+
key: str
|
| 90 |
+
defval: object
|
| 91 |
+
doc: str
|
| 92 |
+
validator: Callable[[object], Any] | None
|
| 93 |
+
cb: Callable[[str], Any] | None
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# holds deprecated option metadata
|
| 97 |
+
_deprecated_options: dict[str, DeprecatedOption] = {}
|
| 98 |
+
|
| 99 |
+
# holds registered option metadata
|
| 100 |
+
_registered_options: dict[str, RegisteredOption] = {}
|
| 101 |
+
|
| 102 |
+
# holds the current values for registered options
|
| 103 |
+
_global_config: dict[str, Any] = {}
|
| 104 |
+
|
| 105 |
+
# keys which have a special meaning
|
| 106 |
+
_reserved_keys: list[str] = ["all"]
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class OptionError(AttributeError, KeyError):
|
| 110 |
+
"""
|
| 111 |
+
Exception raised for pandas.options.
|
| 112 |
+
|
| 113 |
+
Backwards compatible with KeyError checks.
|
| 114 |
+
|
| 115 |
+
Examples
|
| 116 |
+
--------
|
| 117 |
+
>>> pd.options.context
|
| 118 |
+
Traceback (most recent call last):
|
| 119 |
+
OptionError: No such option
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
#
|
| 124 |
+
# User API
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def _get_single_key(pat: str, silent: bool) -> str:
|
| 128 |
+
keys = _select_options(pat)
|
| 129 |
+
if len(keys) == 0:
|
| 130 |
+
if not silent:
|
| 131 |
+
_warn_if_deprecated(pat)
|
| 132 |
+
raise OptionError(f"No such keys(s): {repr(pat)}")
|
| 133 |
+
if len(keys) > 1:
|
| 134 |
+
raise OptionError("Pattern matched multiple keys")
|
| 135 |
+
key = keys[0]
|
| 136 |
+
|
| 137 |
+
if not silent:
|
| 138 |
+
_warn_if_deprecated(key)
|
| 139 |
+
|
| 140 |
+
key = _translate_key(key)
|
| 141 |
+
|
| 142 |
+
return key
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def _get_option(pat: str, silent: bool = False) -> Any:
|
| 146 |
+
key = _get_single_key(pat, silent)
|
| 147 |
+
|
| 148 |
+
# walk the nested dict
|
| 149 |
+
root, k = _get_root(key)
|
| 150 |
+
return root[k]
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def _set_option(*args, **kwargs) -> None:
|
| 154 |
+
# must at least 1 arg deal with constraints later
|
| 155 |
+
nargs = len(args)
|
| 156 |
+
if not nargs or nargs % 2 != 0:
|
| 157 |
+
raise ValueError("Must provide an even number of non-keyword arguments")
|
| 158 |
+
|
| 159 |
+
# default to false
|
| 160 |
+
silent = kwargs.pop("silent", False)
|
| 161 |
+
|
| 162 |
+
if kwargs:
|
| 163 |
+
kwarg = next(iter(kwargs.keys()))
|
| 164 |
+
raise TypeError(f'_set_option() got an unexpected keyword argument "{kwarg}"')
|
| 165 |
+
|
| 166 |
+
for k, v in zip(args[::2], args[1::2]):
|
| 167 |
+
key = _get_single_key(k, silent)
|
| 168 |
+
|
| 169 |
+
o = _get_registered_option(key)
|
| 170 |
+
if o and o.validator:
|
| 171 |
+
o.validator(v)
|
| 172 |
+
|
| 173 |
+
# walk the nested dict
|
| 174 |
+
root, k_root = _get_root(key)
|
| 175 |
+
root[k_root] = v
|
| 176 |
+
|
| 177 |
+
if o.cb:
|
| 178 |
+
if silent:
|
| 179 |
+
with warnings.catch_warnings(record=True):
|
| 180 |
+
o.cb(key)
|
| 181 |
+
else:
|
| 182 |
+
o.cb(key)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def _describe_option(pat: str = "", _print_desc: bool = True) -> str | None:
|
| 186 |
+
keys = _select_options(pat)
|
| 187 |
+
if len(keys) == 0:
|
| 188 |
+
raise OptionError("No such keys(s)")
|
| 189 |
+
|
| 190 |
+
s = "\n".join([_build_option_description(k) for k in keys])
|
| 191 |
+
|
| 192 |
+
if _print_desc:
|
| 193 |
+
print(s)
|
| 194 |
+
return None
|
| 195 |
+
return s
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _reset_option(pat: str, silent: bool = False) -> None:
|
| 199 |
+
keys = _select_options(pat)
|
| 200 |
+
|
| 201 |
+
if len(keys) == 0:
|
| 202 |
+
raise OptionError("No such keys(s)")
|
| 203 |
+
|
| 204 |
+
if len(keys) > 1 and len(pat) < 4 and pat != "all":
|
| 205 |
+
raise ValueError(
|
| 206 |
+
"You must specify at least 4 characters when "
|
| 207 |
+
"resetting multiple keys, use the special keyword "
|
| 208 |
+
'"all" to reset all the options to their default value'
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
for k in keys:
|
| 212 |
+
_set_option(k, _registered_options[k].defval, silent=silent)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def get_default_val(pat: str):
|
| 216 |
+
key = _get_single_key(pat, silent=True)
|
| 217 |
+
return _get_registered_option(key).defval
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class DictWrapper:
|
| 221 |
+
"""provide attribute-style access to a nested dict"""
|
| 222 |
+
|
| 223 |
+
d: dict[str, Any]
|
| 224 |
+
|
| 225 |
+
def __init__(self, d: dict[str, Any], prefix: str = "") -> None:
|
| 226 |
+
object.__setattr__(self, "d", d)
|
| 227 |
+
object.__setattr__(self, "prefix", prefix)
|
| 228 |
+
|
| 229 |
+
def __setattr__(self, key: str, val: Any) -> None:
|
| 230 |
+
prefix = object.__getattribute__(self, "prefix")
|
| 231 |
+
if prefix:
|
| 232 |
+
prefix += "."
|
| 233 |
+
prefix += key
|
| 234 |
+
# you can't set new keys
|
| 235 |
+
# can you can't overwrite subtrees
|
| 236 |
+
if key in self.d and not isinstance(self.d[key], dict):
|
| 237 |
+
_set_option(prefix, val)
|
| 238 |
+
else:
|
| 239 |
+
raise OptionError("You can only set the value of existing options")
|
| 240 |
+
|
| 241 |
+
def __getattr__(self, key: str):
|
| 242 |
+
prefix = object.__getattribute__(self, "prefix")
|
| 243 |
+
if prefix:
|
| 244 |
+
prefix += "."
|
| 245 |
+
prefix += key
|
| 246 |
+
try:
|
| 247 |
+
v = object.__getattribute__(self, "d")[key]
|
| 248 |
+
except KeyError as err:
|
| 249 |
+
raise OptionError("No such option") from err
|
| 250 |
+
if isinstance(v, dict):
|
| 251 |
+
return DictWrapper(v, prefix)
|
| 252 |
+
else:
|
| 253 |
+
return _get_option(prefix)
|
| 254 |
+
|
| 255 |
+
def __dir__(self) -> list[str]:
|
| 256 |
+
return list(self.d.keys())
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# For user convenience, we'd like to have the available options described
|
| 260 |
+
# in the docstring. For dev convenience we'd like to generate the docstrings
|
| 261 |
+
# dynamically instead of maintaining them by hand. To this, we use the
|
| 262 |
+
# class below which wraps functions inside a callable, and converts
|
| 263 |
+
# __doc__ into a property function. The doctsrings below are templates
|
| 264 |
+
# using the py2.6+ advanced formatting syntax to plug in a concise list
|
| 265 |
+
# of options, and option descriptions.
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class CallableDynamicDoc(Generic[T]):
|
| 269 |
+
def __init__(self, func: Callable[..., T], doc_tmpl: str) -> None:
|
| 270 |
+
self.__doc_tmpl__ = doc_tmpl
|
| 271 |
+
self.__func__ = func
|
| 272 |
+
|
| 273 |
+
def __call__(self, *args, **kwds) -> T:
|
| 274 |
+
return self.__func__(*args, **kwds)
|
| 275 |
+
|
| 276 |
+
# error: Signature of "__doc__" incompatible with supertype "object"
|
| 277 |
+
@property
|
| 278 |
+
def __doc__(self) -> str: # type: ignore[override]
|
| 279 |
+
opts_desc = _describe_option("all", _print_desc=False)
|
| 280 |
+
opts_list = pp_options_list(list(_registered_options.keys()))
|
| 281 |
+
return self.__doc_tmpl__.format(opts_desc=opts_desc, opts_list=opts_list)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
_get_option_tmpl = """
|
| 285 |
+
get_option(pat)
|
| 286 |
+
|
| 287 |
+
Retrieves the value of the specified option.
|
| 288 |
+
|
| 289 |
+
Available options:
|
| 290 |
+
|
| 291 |
+
{opts_list}
|
| 292 |
+
|
| 293 |
+
Parameters
|
| 294 |
+
----------
|
| 295 |
+
pat : str
|
| 296 |
+
Regexp which should match a single option.
|
| 297 |
+
Note: partial matches are supported for convenience, but unless you use the
|
| 298 |
+
full option name (e.g. x.y.z.option_name), your code may break in future
|
| 299 |
+
versions if new options with similar names are introduced.
|
| 300 |
+
|
| 301 |
+
Returns
|
| 302 |
+
-------
|
| 303 |
+
result : the value of the option
|
| 304 |
+
|
| 305 |
+
Raises
|
| 306 |
+
------
|
| 307 |
+
OptionError : if no such option exists
|
| 308 |
+
|
| 309 |
+
Notes
|
| 310 |
+
-----
|
| 311 |
+
Please reference the :ref:`User Guide <options>` for more information.
|
| 312 |
+
|
| 313 |
+
The available options with its descriptions:
|
| 314 |
+
|
| 315 |
+
{opts_desc}
|
| 316 |
+
|
| 317 |
+
Examples
|
| 318 |
+
--------
|
| 319 |
+
>>> pd.get_option('display.max_columns') # doctest: +SKIP
|
| 320 |
+
4
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
_set_option_tmpl = """
|
| 324 |
+
set_option(pat, value)
|
| 325 |
+
|
| 326 |
+
Sets the value of the specified option.
|
| 327 |
+
|
| 328 |
+
Available options:
|
| 329 |
+
|
| 330 |
+
{opts_list}
|
| 331 |
+
|
| 332 |
+
Parameters
|
| 333 |
+
----------
|
| 334 |
+
pat : str
|
| 335 |
+
Regexp which should match a single option.
|
| 336 |
+
Note: partial matches are supported for convenience, but unless you use the
|
| 337 |
+
full option name (e.g. x.y.z.option_name), your code may break in future
|
| 338 |
+
versions if new options with similar names are introduced.
|
| 339 |
+
value : object
|
| 340 |
+
New value of option.
|
| 341 |
+
|
| 342 |
+
Returns
|
| 343 |
+
-------
|
| 344 |
+
None
|
| 345 |
+
|
| 346 |
+
Raises
|
| 347 |
+
------
|
| 348 |
+
OptionError if no such option exists
|
| 349 |
+
|
| 350 |
+
Notes
|
| 351 |
+
-----
|
| 352 |
+
Please reference the :ref:`User Guide <options>` for more information.
|
| 353 |
+
|
| 354 |
+
The available options with its descriptions:
|
| 355 |
+
|
| 356 |
+
{opts_desc}
|
| 357 |
+
|
| 358 |
+
Examples
|
| 359 |
+
--------
|
| 360 |
+
>>> pd.set_option('display.max_columns', 4)
|
| 361 |
+
>>> df = pd.DataFrame([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
|
| 362 |
+
>>> df
|
| 363 |
+
0 1 ... 3 4
|
| 364 |
+
0 1 2 ... 4 5
|
| 365 |
+
1 6 7 ... 9 10
|
| 366 |
+
[2 rows x 5 columns]
|
| 367 |
+
>>> pd.reset_option('display.max_columns')
|
| 368 |
+
"""
|
| 369 |
+
|
| 370 |
+
_describe_option_tmpl = """
|
| 371 |
+
describe_option(pat, _print_desc=False)
|
| 372 |
+
|
| 373 |
+
Prints the description for one or more registered options.
|
| 374 |
+
|
| 375 |
+
Call with no arguments to get a listing for all registered options.
|
| 376 |
+
|
| 377 |
+
Available options:
|
| 378 |
+
|
| 379 |
+
{opts_list}
|
| 380 |
+
|
| 381 |
+
Parameters
|
| 382 |
+
----------
|
| 383 |
+
pat : str
|
| 384 |
+
Regexp pattern. All matching keys will have their description displayed.
|
| 385 |
+
_print_desc : bool, default True
|
| 386 |
+
If True (default) the description(s) will be printed to stdout.
|
| 387 |
+
Otherwise, the description(s) will be returned as a unicode string
|
| 388 |
+
(for testing).
|
| 389 |
+
|
| 390 |
+
Returns
|
| 391 |
+
-------
|
| 392 |
+
None by default, the description(s) as a unicode string if _print_desc
|
| 393 |
+
is False
|
| 394 |
+
|
| 395 |
+
Notes
|
| 396 |
+
-----
|
| 397 |
+
Please reference the :ref:`User Guide <options>` for more information.
|
| 398 |
+
|
| 399 |
+
The available options with its descriptions:
|
| 400 |
+
|
| 401 |
+
{opts_desc}
|
| 402 |
+
|
| 403 |
+
Examples
|
| 404 |
+
--------
|
| 405 |
+
>>> pd.describe_option('display.max_columns') # doctest: +SKIP
|
| 406 |
+
display.max_columns : int
|
| 407 |
+
If max_cols is exceeded, switch to truncate view...
|
| 408 |
+
"""
|
| 409 |
+
|
| 410 |
+
_reset_option_tmpl = """
|
| 411 |
+
reset_option(pat)
|
| 412 |
+
|
| 413 |
+
Reset one or more options to their default value.
|
| 414 |
+
|
| 415 |
+
Pass "all" as argument to reset all options.
|
| 416 |
+
|
| 417 |
+
Available options:
|
| 418 |
+
|
| 419 |
+
{opts_list}
|
| 420 |
+
|
| 421 |
+
Parameters
|
| 422 |
+
----------
|
| 423 |
+
pat : str/regex
|
| 424 |
+
If specified only options matching `prefix*` will be reset.
|
| 425 |
+
Note: partial matches are supported for convenience, but unless you
|
| 426 |
+
use the full option name (e.g. x.y.z.option_name), your code may break
|
| 427 |
+
in future versions if new options with similar names are introduced.
|
| 428 |
+
|
| 429 |
+
Returns
|
| 430 |
+
-------
|
| 431 |
+
None
|
| 432 |
+
|
| 433 |
+
Notes
|
| 434 |
+
-----
|
| 435 |
+
Please reference the :ref:`User Guide <options>` for more information.
|
| 436 |
+
|
| 437 |
+
The available options with its descriptions:
|
| 438 |
+
|
| 439 |
+
{opts_desc}
|
| 440 |
+
|
| 441 |
+
Examples
|
| 442 |
+
--------
|
| 443 |
+
>>> pd.reset_option('display.max_columns') # doctest: +SKIP
|
| 444 |
+
"""
|
| 445 |
+
|
| 446 |
+
# bind the functions with their docstrings into a Callable
|
| 447 |
+
# and use that as the functions exposed in pd.api
|
| 448 |
+
get_option = CallableDynamicDoc(_get_option, _get_option_tmpl)
|
| 449 |
+
set_option = CallableDynamicDoc(_set_option, _set_option_tmpl)
|
| 450 |
+
reset_option = CallableDynamicDoc(_reset_option, _reset_option_tmpl)
|
| 451 |
+
describe_option = CallableDynamicDoc(_describe_option, _describe_option_tmpl)
|
| 452 |
+
options = DictWrapper(_global_config)
|
| 453 |
+
|
| 454 |
+
#
|
| 455 |
+
# Functions for use by pandas developers, in addition to User - api
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
class option_context(ContextDecorator):
|
| 459 |
+
"""
|
| 460 |
+
Context manager to temporarily set options in the `with` statement context.
|
| 461 |
+
|
| 462 |
+
You need to invoke as ``option_context(pat, val, [(pat, val), ...])``.
|
| 463 |
+
|
| 464 |
+
Examples
|
| 465 |
+
--------
|
| 466 |
+
>>> from pandas import option_context
|
| 467 |
+
>>> with option_context('display.max_rows', 10, 'display.max_columns', 5):
|
| 468 |
+
... pass
|
| 469 |
+
"""
|
| 470 |
+
|
| 471 |
+
def __init__(self, *args) -> None:
|
| 472 |
+
if len(args) % 2 != 0 or len(args) < 2:
|
| 473 |
+
raise ValueError(
|
| 474 |
+
"Need to invoke as option_context(pat, val, [(pat, val), ...])."
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
self.ops = list(zip(args[::2], args[1::2]))
|
| 478 |
+
|
| 479 |
+
def __enter__(self) -> None:
|
| 480 |
+
self.undo = [(pat, _get_option(pat)) for pat, val in self.ops]
|
| 481 |
+
|
| 482 |
+
for pat, val in self.ops:
|
| 483 |
+
_set_option(pat, val, silent=True)
|
| 484 |
+
|
| 485 |
+
def __exit__(self, *args) -> None:
|
| 486 |
+
if self.undo:
|
| 487 |
+
for pat, val in self.undo:
|
| 488 |
+
_set_option(pat, val, silent=True)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def register_option(
|
| 492 |
+
key: str,
|
| 493 |
+
defval: object,
|
| 494 |
+
doc: str = "",
|
| 495 |
+
validator: Callable[[object], Any] | None = None,
|
| 496 |
+
cb: Callable[[str], Any] | None = None,
|
| 497 |
+
) -> None:
|
| 498 |
+
"""
|
| 499 |
+
Register an option in the package-wide pandas config object
|
| 500 |
+
|
| 501 |
+
Parameters
|
| 502 |
+
----------
|
| 503 |
+
key : str
|
| 504 |
+
Fully-qualified key, e.g. "x.y.option - z".
|
| 505 |
+
defval : object
|
| 506 |
+
Default value of the option.
|
| 507 |
+
doc : str
|
| 508 |
+
Description of the option.
|
| 509 |
+
validator : Callable, optional
|
| 510 |
+
Function of a single argument, should raise `ValueError` if
|
| 511 |
+
called with a value which is not a legal value for the option.
|
| 512 |
+
cb
|
| 513 |
+
a function of a single argument "key", which is called
|
| 514 |
+
immediately after an option value is set/reset. key is
|
| 515 |
+
the full name of the option.
|
| 516 |
+
|
| 517 |
+
Raises
|
| 518 |
+
------
|
| 519 |
+
ValueError if `validator` is specified and `defval` is not a valid value.
|
| 520 |
+
|
| 521 |
+
"""
|
| 522 |
+
import keyword
|
| 523 |
+
import tokenize
|
| 524 |
+
|
| 525 |
+
key = key.lower()
|
| 526 |
+
|
| 527 |
+
if key in _registered_options:
|
| 528 |
+
raise OptionError(f"Option '{key}' has already been registered")
|
| 529 |
+
if key in _reserved_keys:
|
| 530 |
+
raise OptionError(f"Option '{key}' is a reserved key")
|
| 531 |
+
|
| 532 |
+
# the default value should be legal
|
| 533 |
+
if validator:
|
| 534 |
+
validator(defval)
|
| 535 |
+
|
| 536 |
+
# walk the nested dict, creating dicts as needed along the path
|
| 537 |
+
path = key.split(".")
|
| 538 |
+
|
| 539 |
+
for k in path:
|
| 540 |
+
if not re.match("^" + tokenize.Name + "$", k):
|
| 541 |
+
raise ValueError(f"{k} is not a valid identifier")
|
| 542 |
+
if keyword.iskeyword(k):
|
| 543 |
+
raise ValueError(f"{k} is a python keyword")
|
| 544 |
+
|
| 545 |
+
cursor = _global_config
|
| 546 |
+
msg = "Path prefix to option '{option}' is already an option"
|
| 547 |
+
|
| 548 |
+
for i, p in enumerate(path[:-1]):
|
| 549 |
+
if not isinstance(cursor, dict):
|
| 550 |
+
raise OptionError(msg.format(option=".".join(path[:i])))
|
| 551 |
+
if p not in cursor:
|
| 552 |
+
cursor[p] = {}
|
| 553 |
+
cursor = cursor[p]
|
| 554 |
+
|
| 555 |
+
if not isinstance(cursor, dict):
|
| 556 |
+
raise OptionError(msg.format(option=".".join(path[:-1])))
|
| 557 |
+
|
| 558 |
+
cursor[path[-1]] = defval # initialize
|
| 559 |
+
|
| 560 |
+
# save the option metadata
|
| 561 |
+
_registered_options[key] = RegisteredOption(
|
| 562 |
+
key=key, defval=defval, doc=doc, validator=validator, cb=cb
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
def deprecate_option(
|
| 567 |
+
key: str,
|
| 568 |
+
msg: str | None = None,
|
| 569 |
+
rkey: str | None = None,
|
| 570 |
+
removal_ver: str | None = None,
|
| 571 |
+
) -> None:
|
| 572 |
+
"""
|
| 573 |
+
Mark option `key` as deprecated, if code attempts to access this option,
|
| 574 |
+
a warning will be produced, using `msg` if given, or a default message
|
| 575 |
+
if not.
|
| 576 |
+
if `rkey` is given, any access to the key will be re-routed to `rkey`.
|
| 577 |
+
|
| 578 |
+
Neither the existence of `key` nor that if `rkey` is checked. If they
|
| 579 |
+
do not exist, any subsequence access will fail as usual, after the
|
| 580 |
+
deprecation warning is given.
|
| 581 |
+
|
| 582 |
+
Parameters
|
| 583 |
+
----------
|
| 584 |
+
key : str
|
| 585 |
+
Name of the option to be deprecated.
|
| 586 |
+
must be a fully-qualified option name (e.g "x.y.z.rkey").
|
| 587 |
+
msg : str, optional
|
| 588 |
+
Warning message to output when the key is referenced.
|
| 589 |
+
if no message is given a default message will be emitted.
|
| 590 |
+
rkey : str, optional
|
| 591 |
+
Name of an option to reroute access to.
|
| 592 |
+
If specified, any referenced `key` will be
|
| 593 |
+
re-routed to `rkey` including set/get/reset.
|
| 594 |
+
rkey must be a fully-qualified option name (e.g "x.y.z.rkey").
|
| 595 |
+
used by the default message if no `msg` is specified.
|
| 596 |
+
removal_ver : str, optional
|
| 597 |
+
Specifies the version in which this option will
|
| 598 |
+
be removed. used by the default message if no `msg` is specified.
|
| 599 |
+
|
| 600 |
+
Raises
|
| 601 |
+
------
|
| 602 |
+
OptionError
|
| 603 |
+
If the specified key has already been deprecated.
|
| 604 |
+
"""
|
| 605 |
+
key = key.lower()
|
| 606 |
+
|
| 607 |
+
if key in _deprecated_options:
|
| 608 |
+
raise OptionError(f"Option '{key}' has already been defined as deprecated.")
|
| 609 |
+
|
| 610 |
+
_deprecated_options[key] = DeprecatedOption(key, msg, rkey, removal_ver)
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
#
|
| 614 |
+
# functions internal to the module
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def _select_options(pat: str) -> list[str]:
|
| 618 |
+
"""
|
| 619 |
+
returns a list of keys matching `pat`
|
| 620 |
+
|
| 621 |
+
if pat=="all", returns all registered options
|
| 622 |
+
"""
|
| 623 |
+
# short-circuit for exact key
|
| 624 |
+
if pat in _registered_options:
|
| 625 |
+
return [pat]
|
| 626 |
+
|
| 627 |
+
# else look through all of them
|
| 628 |
+
keys = sorted(_registered_options.keys())
|
| 629 |
+
if pat == "all": # reserved key
|
| 630 |
+
return keys
|
| 631 |
+
|
| 632 |
+
return [k for k in keys if re.search(pat, k, re.I)]
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
def _get_root(key: str) -> tuple[dict[str, Any], str]:
|
| 636 |
+
path = key.split(".")
|
| 637 |
+
cursor = _global_config
|
| 638 |
+
for p in path[:-1]:
|
| 639 |
+
cursor = cursor[p]
|
| 640 |
+
return cursor, path[-1]
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
def _is_deprecated(key: str) -> bool:
|
| 644 |
+
"""Returns True if the given option has been deprecated"""
|
| 645 |
+
key = key.lower()
|
| 646 |
+
return key in _deprecated_options
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
def _get_deprecated_option(key: str):
|
| 650 |
+
"""
|
| 651 |
+
Retrieves the metadata for a deprecated option, if `key` is deprecated.
|
| 652 |
+
|
| 653 |
+
Returns
|
| 654 |
+
-------
|
| 655 |
+
DeprecatedOption (namedtuple) if key is deprecated, None otherwise
|
| 656 |
+
"""
|
| 657 |
+
try:
|
| 658 |
+
d = _deprecated_options[key]
|
| 659 |
+
except KeyError:
|
| 660 |
+
return None
|
| 661 |
+
else:
|
| 662 |
+
return d
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
def _get_registered_option(key: str):
|
| 666 |
+
"""
|
| 667 |
+
Retrieves the option metadata if `key` is a registered option.
|
| 668 |
+
|
| 669 |
+
Returns
|
| 670 |
+
-------
|
| 671 |
+
RegisteredOption (namedtuple) if key is deprecated, None otherwise
|
| 672 |
+
"""
|
| 673 |
+
return _registered_options.get(key)
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
def _translate_key(key: str) -> str:
|
| 677 |
+
"""
|
| 678 |
+
if key id deprecated and a replacement key defined, will return the
|
| 679 |
+
replacement key, otherwise returns `key` as - is
|
| 680 |
+
"""
|
| 681 |
+
d = _get_deprecated_option(key)
|
| 682 |
+
if d:
|
| 683 |
+
return d.rkey or key
|
| 684 |
+
else:
|
| 685 |
+
return key
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def _warn_if_deprecated(key: str) -> bool:
|
| 689 |
+
"""
|
| 690 |
+
Checks if `key` is a deprecated option and if so, prints a warning.
|
| 691 |
+
|
| 692 |
+
Returns
|
| 693 |
+
-------
|
| 694 |
+
bool - True if `key` is deprecated, False otherwise.
|
| 695 |
+
"""
|
| 696 |
+
d = _get_deprecated_option(key)
|
| 697 |
+
if d:
|
| 698 |
+
if d.msg:
|
| 699 |
+
warnings.warn(
|
| 700 |
+
d.msg,
|
| 701 |
+
FutureWarning,
|
| 702 |
+
stacklevel=find_stack_level(),
|
| 703 |
+
)
|
| 704 |
+
else:
|
| 705 |
+
msg = f"'{key}' is deprecated"
|
| 706 |
+
if d.removal_ver:
|
| 707 |
+
msg += f" and will be removed in {d.removal_ver}"
|
| 708 |
+
if d.rkey:
|
| 709 |
+
msg += f", please use '{d.rkey}' instead."
|
| 710 |
+
else:
|
| 711 |
+
msg += ", please refrain from using it."
|
| 712 |
+
|
| 713 |
+
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
|
| 714 |
+
return True
|
| 715 |
+
return False
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
def _build_option_description(k: str) -> str:
|
| 719 |
+
"""Builds a formatted description of a registered option and prints it"""
|
| 720 |
+
o = _get_registered_option(k)
|
| 721 |
+
d = _get_deprecated_option(k)
|
| 722 |
+
|
| 723 |
+
s = f"{k} "
|
| 724 |
+
|
| 725 |
+
if o.doc:
|
| 726 |
+
s += "\n".join(o.doc.strip().split("\n"))
|
| 727 |
+
else:
|
| 728 |
+
s += "No description available."
|
| 729 |
+
|
| 730 |
+
if o:
|
| 731 |
+
s += f"\n [default: {o.defval}] [currently: {_get_option(k, True)}]"
|
| 732 |
+
|
| 733 |
+
if d:
|
| 734 |
+
rkey = d.rkey or ""
|
| 735 |
+
s += "\n (Deprecated"
|
| 736 |
+
s += f", use `{rkey}` instead."
|
| 737 |
+
s += ")"
|
| 738 |
+
|
| 739 |
+
return s
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
def pp_options_list(keys: Iterable[str], width: int = 80, _print: bool = False):
|
| 743 |
+
"""Builds a concise listing of available options, grouped by prefix"""
|
| 744 |
+
from itertools import groupby
|
| 745 |
+
from textwrap import wrap
|
| 746 |
+
|
| 747 |
+
def pp(name: str, ks: Iterable[str]) -> list[str]:
|
| 748 |
+
pfx = "- " + name + ".[" if name else ""
|
| 749 |
+
ls = wrap(
|
| 750 |
+
", ".join(ks),
|
| 751 |
+
width,
|
| 752 |
+
initial_indent=pfx,
|
| 753 |
+
subsequent_indent=" ",
|
| 754 |
+
break_long_words=False,
|
| 755 |
+
)
|
| 756 |
+
if ls and ls[-1] and name:
|
| 757 |
+
ls[-1] = ls[-1] + "]"
|
| 758 |
+
return ls
|
| 759 |
+
|
| 760 |
+
ls: list[str] = []
|
| 761 |
+
singles = [x for x in sorted(keys) if x.find(".") < 0]
|
| 762 |
+
if singles:
|
| 763 |
+
ls += pp("", singles)
|
| 764 |
+
keys = [x for x in keys if x.find(".") >= 0]
|
| 765 |
+
|
| 766 |
+
for k, g in groupby(sorted(keys), lambda x: x[: x.rfind(".")]):
|
| 767 |
+
ks = [x[len(k) + 1 :] for x in list(g)]
|
| 768 |
+
ls += pp(k, ks)
|
| 769 |
+
s = "\n".join(ls)
|
| 770 |
+
if _print:
|
| 771 |
+
print(s)
|
| 772 |
+
else:
|
| 773 |
+
return s
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
#
|
| 777 |
+
# helpers
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
@contextmanager
|
| 781 |
+
def config_prefix(prefix: str) -> Generator[None, None, None]:
|
| 782 |
+
"""
|
| 783 |
+
contextmanager for multiple invocations of API with a common prefix
|
| 784 |
+
|
| 785 |
+
supported API functions: (register / get / set )__option
|
| 786 |
+
|
| 787 |
+
Warning: This is not thread - safe, and won't work properly if you import
|
| 788 |
+
the API functions into your module using the "from x import y" construct.
|
| 789 |
+
|
| 790 |
+
Example
|
| 791 |
+
-------
|
| 792 |
+
import pandas._config.config as cf
|
| 793 |
+
with cf.config_prefix("display.font"):
|
| 794 |
+
cf.register_option("color", "red")
|
| 795 |
+
cf.register_option("size", " 5 pt")
|
| 796 |
+
cf.set_option(size, " 6 pt")
|
| 797 |
+
cf.get_option(size)
|
| 798 |
+
...
|
| 799 |
+
|
| 800 |
+
etc'
|
| 801 |
+
|
| 802 |
+
will register options "display.font.color", "display.font.size", set the
|
| 803 |
+
value of "display.font.size"... and so on.
|
| 804 |
+
"""
|
| 805 |
+
# Note: reset_option relies on set_option, and on key directly
|
| 806 |
+
# it does not fit in to this monkey-patching scheme
|
| 807 |
+
|
| 808 |
+
global register_option, get_option, set_option
|
| 809 |
+
|
| 810 |
+
def wrap(func: F) -> F:
|
| 811 |
+
def inner(key: str, *args, **kwds):
|
| 812 |
+
pkey = f"{prefix}.{key}"
|
| 813 |
+
return func(pkey, *args, **kwds)
|
| 814 |
+
|
| 815 |
+
return cast(F, inner)
|
| 816 |
+
|
| 817 |
+
_register_option = register_option
|
| 818 |
+
_get_option = get_option
|
| 819 |
+
_set_option = set_option
|
| 820 |
+
set_option = wrap(set_option)
|
| 821 |
+
get_option = wrap(get_option)
|
| 822 |
+
register_option = wrap(register_option)
|
| 823 |
+
try:
|
| 824 |
+
yield
|
| 825 |
+
finally:
|
| 826 |
+
set_option = _set_option
|
| 827 |
+
get_option = _get_option
|
| 828 |
+
register_option = _register_option
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
# These factories and methods are handy for use as the validator
|
| 832 |
+
# arg in register_option
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
def is_type_factory(_type: type[Any]) -> Callable[[Any], None]:
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
Parameters
|
| 839 |
+
----------
|
| 840 |
+
`_type` - a type to be compared against (e.g. type(x) == `_type`)
|
| 841 |
+
|
| 842 |
+
Returns
|
| 843 |
+
-------
|
| 844 |
+
validator - a function of a single argument x , which raises
|
| 845 |
+
ValueError if type(x) is not equal to `_type`
|
| 846 |
+
|
| 847 |
+
"""
|
| 848 |
+
|
| 849 |
+
def inner(x) -> None:
|
| 850 |
+
if type(x) != _type:
|
| 851 |
+
raise ValueError(f"Value must have type '{_type}'")
|
| 852 |
+
|
| 853 |
+
return inner
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
def is_instance_factory(_type) -> Callable[[Any], None]:
|
| 857 |
+
"""
|
| 858 |
+
|
| 859 |
+
Parameters
|
| 860 |
+
----------
|
| 861 |
+
`_type` - the type to be checked against
|
| 862 |
+
|
| 863 |
+
Returns
|
| 864 |
+
-------
|
| 865 |
+
validator - a function of a single argument x , which raises
|
| 866 |
+
ValueError if x is not an instance of `_type`
|
| 867 |
+
|
| 868 |
+
"""
|
| 869 |
+
if isinstance(_type, (tuple, list)):
|
| 870 |
+
_type = tuple(_type)
|
| 871 |
+
type_repr = "|".join(map(str, _type))
|
| 872 |
+
else:
|
| 873 |
+
type_repr = f"'{_type}'"
|
| 874 |
+
|
| 875 |
+
def inner(x) -> None:
|
| 876 |
+
if not isinstance(x, _type):
|
| 877 |
+
raise ValueError(f"Value must be an instance of {type_repr}")
|
| 878 |
+
|
| 879 |
+
return inner
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
def is_one_of_factory(legal_values) -> Callable[[Any], None]:
|
| 883 |
+
callables = [c for c in legal_values if callable(c)]
|
| 884 |
+
legal_values = [c for c in legal_values if not callable(c)]
|
| 885 |
+
|
| 886 |
+
def inner(x) -> None:
|
| 887 |
+
if x not in legal_values:
|
| 888 |
+
if not any(c(x) for c in callables):
|
| 889 |
+
uvals = [str(lval) for lval in legal_values]
|
| 890 |
+
pp_values = "|".join(uvals)
|
| 891 |
+
msg = f"Value must be one of {pp_values}"
|
| 892 |
+
if len(callables):
|
| 893 |
+
msg += " or a callable"
|
| 894 |
+
raise ValueError(msg)
|
| 895 |
+
|
| 896 |
+
return inner
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
def is_nonnegative_int(value: object) -> None:
|
| 900 |
+
"""
|
| 901 |
+
Verify that value is None or a positive int.
|
| 902 |
+
|
| 903 |
+
Parameters
|
| 904 |
+
----------
|
| 905 |
+
value : None or int
|
| 906 |
+
The `value` to be checked.
|
| 907 |
+
|
| 908 |
+
Raises
|
| 909 |
+
------
|
| 910 |
+
ValueError
|
| 911 |
+
When the value is not None or is a negative integer
|
| 912 |
+
"""
|
| 913 |
+
if value is None:
|
| 914 |
+
return
|
| 915 |
+
|
| 916 |
+
elif isinstance(value, int):
|
| 917 |
+
if value >= 0:
|
| 918 |
+
return
|
| 919 |
+
|
| 920 |
+
msg = "Value must be a nonnegative integer or None"
|
| 921 |
+
raise ValueError(msg)
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
# common type validators, for convenience
|
| 925 |
+
# usage: register_option(... , validator = is_int)
|
| 926 |
+
is_int = is_type_factory(int)
|
| 927 |
+
is_bool = is_type_factory(bool)
|
| 928 |
+
is_float = is_type_factory(float)
|
| 929 |
+
is_str = is_type_factory(str)
|
| 930 |
+
is_text = is_instance_factory((str, bytes))
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
def is_callable(obj) -> bool:
|
| 934 |
+
"""
|
| 935 |
+
|
| 936 |
+
Parameters
|
| 937 |
+
----------
|
| 938 |
+
`obj` - the object to be checked
|
| 939 |
+
|
| 940 |
+
Returns
|
| 941 |
+
-------
|
| 942 |
+
validator - returns True if object is callable
|
| 943 |
+
raises ValueError otherwise.
|
| 944 |
+
|
| 945 |
+
"""
|
| 946 |
+
if not callable(obj):
|
| 947 |
+
raise ValueError("Value must be a callable")
|
| 948 |
+
return True
|
emu3/lib/python3.10/site-packages/pandas/_config/dates.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
config for datetime formatting
|
| 3 |
+
"""
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from pandas._config import config as cf
|
| 7 |
+
|
| 8 |
+
pc_date_dayfirst_doc = """
|
| 9 |
+
: boolean
|
| 10 |
+
When True, prints and parses dates with the day first, eg 20/01/2005
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
pc_date_yearfirst_doc = """
|
| 14 |
+
: boolean
|
| 15 |
+
When True, prints and parses dates with the year first, eg 2005/01/20
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
with cf.config_prefix("display"):
|
| 19 |
+
# Needed upstream of `_libs` because these are used in tslibs.parsing
|
| 20 |
+
cf.register_option(
|
| 21 |
+
"date_dayfirst", False, pc_date_dayfirst_doc, validator=cf.is_bool
|
| 22 |
+
)
|
| 23 |
+
cf.register_option(
|
| 24 |
+
"date_yearfirst", False, pc_date_yearfirst_doc, validator=cf.is_bool
|
| 25 |
+
)
|
emu3/lib/python3.10/site-packages/pandas/_config/display.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Unopinionated display configuration.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
|
| 7 |
+
import locale
|
| 8 |
+
import sys
|
| 9 |
+
|
| 10 |
+
from pandas._config import config as cf
|
| 11 |
+
|
| 12 |
+
# -----------------------------------------------------------------------------
|
| 13 |
+
# Global formatting options
|
| 14 |
+
_initial_defencoding: str | None = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def detect_console_encoding() -> str:
|
| 18 |
+
"""
|
| 19 |
+
Try to find the most capable encoding supported by the console.
|
| 20 |
+
slightly modified from the way IPython handles the same issue.
|
| 21 |
+
"""
|
| 22 |
+
global _initial_defencoding
|
| 23 |
+
|
| 24 |
+
encoding = None
|
| 25 |
+
try:
|
| 26 |
+
encoding = sys.stdout.encoding or sys.stdin.encoding
|
| 27 |
+
except (AttributeError, OSError):
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
# try again for something better
|
| 31 |
+
if not encoding or "ascii" in encoding.lower():
|
| 32 |
+
try:
|
| 33 |
+
encoding = locale.getpreferredencoding()
|
| 34 |
+
except locale.Error:
|
| 35 |
+
# can be raised by locale.setlocale(), which is
|
| 36 |
+
# called by getpreferredencoding
|
| 37 |
+
# (on some systems, see stdlib locale docs)
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
# when all else fails. this will usually be "ascii"
|
| 41 |
+
if not encoding or "ascii" in encoding.lower():
|
| 42 |
+
encoding = sys.getdefaultencoding()
|
| 43 |
+
|
| 44 |
+
# GH#3360, save the reported defencoding at import time
|
| 45 |
+
# MPL backends may change it. Make available for debugging.
|
| 46 |
+
if not _initial_defencoding:
|
| 47 |
+
_initial_defencoding = sys.getdefaultencoding()
|
| 48 |
+
|
| 49 |
+
return encoding
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
pc_encoding_doc = """
|
| 53 |
+
: str/unicode
|
| 54 |
+
Defaults to the detected encoding of the console.
|
| 55 |
+
Specifies the encoding to be used for strings returned by to_string,
|
| 56 |
+
these are generally strings meant to be displayed on the console.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
with cf.config_prefix("display"):
|
| 60 |
+
cf.register_option(
|
| 61 |
+
"encoding", detect_console_encoding(), pc_encoding_doc, validator=cf.is_text
|
| 62 |
+
)
|
emu3/lib/python3.10/site-packages/pandas/_config/localization.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helpers for configuring locale settings.
|
| 3 |
+
|
| 4 |
+
Name `localization` is chosen to avoid overlap with builtin `locale` module.
|
| 5 |
+
"""
|
| 6 |
+
from __future__ import annotations
|
| 7 |
+
|
| 8 |
+
from contextlib import contextmanager
|
| 9 |
+
import locale
|
| 10 |
+
import platform
|
| 11 |
+
import re
|
| 12 |
+
import subprocess
|
| 13 |
+
from typing import TYPE_CHECKING
|
| 14 |
+
|
| 15 |
+
from pandas._config.config import options
|
| 16 |
+
|
| 17 |
+
if TYPE_CHECKING:
|
| 18 |
+
from collections.abc import Generator
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@contextmanager
|
| 22 |
+
def set_locale(
|
| 23 |
+
new_locale: str | tuple[str, str], lc_var: int = locale.LC_ALL
|
| 24 |
+
) -> Generator[str | tuple[str, str], None, None]:
|
| 25 |
+
"""
|
| 26 |
+
Context manager for temporarily setting a locale.
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
new_locale : str or tuple
|
| 31 |
+
A string of the form <language_country>.<encoding>. For example to set
|
| 32 |
+
the current locale to US English with a UTF8 encoding, you would pass
|
| 33 |
+
"en_US.UTF-8".
|
| 34 |
+
lc_var : int, default `locale.LC_ALL`
|
| 35 |
+
The category of the locale being set.
|
| 36 |
+
|
| 37 |
+
Notes
|
| 38 |
+
-----
|
| 39 |
+
This is useful when you want to run a particular block of code under a
|
| 40 |
+
particular locale, without globally setting the locale. This probably isn't
|
| 41 |
+
thread-safe.
|
| 42 |
+
"""
|
| 43 |
+
# getlocale is not always compliant with setlocale, use setlocale. GH#46595
|
| 44 |
+
current_locale = locale.setlocale(lc_var)
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
locale.setlocale(lc_var, new_locale)
|
| 48 |
+
normalized_code, normalized_encoding = locale.getlocale()
|
| 49 |
+
if normalized_code is not None and normalized_encoding is not None:
|
| 50 |
+
yield f"{normalized_code}.{normalized_encoding}"
|
| 51 |
+
else:
|
| 52 |
+
yield new_locale
|
| 53 |
+
finally:
|
| 54 |
+
locale.setlocale(lc_var, current_locale)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def can_set_locale(lc: str, lc_var: int = locale.LC_ALL) -> bool:
|
| 58 |
+
"""
|
| 59 |
+
Check to see if we can set a locale, and subsequently get the locale,
|
| 60 |
+
without raising an Exception.
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
lc : str
|
| 65 |
+
The locale to attempt to set.
|
| 66 |
+
lc_var : int, default `locale.LC_ALL`
|
| 67 |
+
The category of the locale being set.
|
| 68 |
+
|
| 69 |
+
Returns
|
| 70 |
+
-------
|
| 71 |
+
bool
|
| 72 |
+
Whether the passed locale can be set
|
| 73 |
+
"""
|
| 74 |
+
try:
|
| 75 |
+
with set_locale(lc, lc_var=lc_var):
|
| 76 |
+
pass
|
| 77 |
+
except (ValueError, locale.Error):
|
| 78 |
+
# horrible name for a Exception subclass
|
| 79 |
+
return False
|
| 80 |
+
else:
|
| 81 |
+
return True
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def _valid_locales(locales: list[str] | str, normalize: bool) -> list[str]:
|
| 85 |
+
"""
|
| 86 |
+
Return a list of normalized locales that do not throw an ``Exception``
|
| 87 |
+
when set.
|
| 88 |
+
|
| 89 |
+
Parameters
|
| 90 |
+
----------
|
| 91 |
+
locales : str
|
| 92 |
+
A string where each locale is separated by a newline.
|
| 93 |
+
normalize : bool
|
| 94 |
+
Whether to call ``locale.normalize`` on each locale.
|
| 95 |
+
|
| 96 |
+
Returns
|
| 97 |
+
-------
|
| 98 |
+
valid_locales : list
|
| 99 |
+
A list of valid locales.
|
| 100 |
+
"""
|
| 101 |
+
return [
|
| 102 |
+
loc
|
| 103 |
+
for loc in (
|
| 104 |
+
locale.normalize(loc.strip()) if normalize else loc.strip()
|
| 105 |
+
for loc in locales
|
| 106 |
+
)
|
| 107 |
+
if can_set_locale(loc)
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_locales(
|
| 112 |
+
prefix: str | None = None,
|
| 113 |
+
normalize: bool = True,
|
| 114 |
+
) -> list[str]:
|
| 115 |
+
"""
|
| 116 |
+
Get all the locales that are available on the system.
|
| 117 |
+
|
| 118 |
+
Parameters
|
| 119 |
+
----------
|
| 120 |
+
prefix : str
|
| 121 |
+
If not ``None`` then return only those locales with the prefix
|
| 122 |
+
provided. For example to get all English language locales (those that
|
| 123 |
+
start with ``"en"``), pass ``prefix="en"``.
|
| 124 |
+
normalize : bool
|
| 125 |
+
Call ``locale.normalize`` on the resulting list of available locales.
|
| 126 |
+
If ``True``, only locales that can be set without throwing an
|
| 127 |
+
``Exception`` are returned.
|
| 128 |
+
|
| 129 |
+
Returns
|
| 130 |
+
-------
|
| 131 |
+
locales : list of strings
|
| 132 |
+
A list of locale strings that can be set with ``locale.setlocale()``.
|
| 133 |
+
For example::
|
| 134 |
+
|
| 135 |
+
locale.setlocale(locale.LC_ALL, locale_string)
|
| 136 |
+
|
| 137 |
+
On error will return an empty list (no locale available, e.g. Windows)
|
| 138 |
+
|
| 139 |
+
"""
|
| 140 |
+
if platform.system() in ("Linux", "Darwin"):
|
| 141 |
+
raw_locales = subprocess.check_output(["locale", "-a"])
|
| 142 |
+
else:
|
| 143 |
+
# Other platforms e.g. windows platforms don't define "locale -a"
|
| 144 |
+
# Note: is_platform_windows causes circular import here
|
| 145 |
+
return []
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
# raw_locales is "\n" separated list of locales
|
| 149 |
+
# it may contain non-decodable parts, so split
|
| 150 |
+
# extract what we can and then rejoin.
|
| 151 |
+
split_raw_locales = raw_locales.split(b"\n")
|
| 152 |
+
out_locales = []
|
| 153 |
+
for x in split_raw_locales:
|
| 154 |
+
try:
|
| 155 |
+
out_locales.append(str(x, encoding=options.display.encoding))
|
| 156 |
+
except UnicodeError:
|
| 157 |
+
# 'locale -a' is used to populated 'raw_locales' and on
|
| 158 |
+
# Redhat 7 Linux (and maybe others) prints locale names
|
| 159 |
+
# using windows-1252 encoding. Bug only triggered by
|
| 160 |
+
# a few special characters and when there is an
|
| 161 |
+
# extensive list of installed locales.
|
| 162 |
+
out_locales.append(str(x, encoding="windows-1252"))
|
| 163 |
+
|
| 164 |
+
except TypeError:
|
| 165 |
+
pass
|
| 166 |
+
|
| 167 |
+
if prefix is None:
|
| 168 |
+
return _valid_locales(out_locales, normalize)
|
| 169 |
+
|
| 170 |
+
pattern = re.compile(f"{prefix}.*")
|
| 171 |
+
found = pattern.findall("\n".join(out_locales))
|
| 172 |
+
return _valid_locales(found, normalize)
|
emu3/lib/python3.10/site-packages/pandas/_testing/__init__.py
ADDED
|
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from decimal import Decimal
|
| 4 |
+
import operator
|
| 5 |
+
import os
|
| 6 |
+
from sys import byteorder
|
| 7 |
+
from typing import (
|
| 8 |
+
TYPE_CHECKING,
|
| 9 |
+
Callable,
|
| 10 |
+
ContextManager,
|
| 11 |
+
cast,
|
| 12 |
+
)
|
| 13 |
+
import warnings
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from pandas._config.localization import (
|
| 18 |
+
can_set_locale,
|
| 19 |
+
get_locales,
|
| 20 |
+
set_locale,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
from pandas.compat import pa_version_under10p1
|
| 24 |
+
|
| 25 |
+
from pandas.core.dtypes.common import is_string_dtype
|
| 26 |
+
|
| 27 |
+
import pandas as pd
|
| 28 |
+
from pandas import (
|
| 29 |
+
ArrowDtype,
|
| 30 |
+
DataFrame,
|
| 31 |
+
Index,
|
| 32 |
+
MultiIndex,
|
| 33 |
+
RangeIndex,
|
| 34 |
+
Series,
|
| 35 |
+
)
|
| 36 |
+
from pandas._testing._io import (
|
| 37 |
+
round_trip_localpath,
|
| 38 |
+
round_trip_pathlib,
|
| 39 |
+
round_trip_pickle,
|
| 40 |
+
write_to_compressed,
|
| 41 |
+
)
|
| 42 |
+
from pandas._testing._warnings import (
|
| 43 |
+
assert_produces_warning,
|
| 44 |
+
maybe_produces_warning,
|
| 45 |
+
)
|
| 46 |
+
from pandas._testing.asserters import (
|
| 47 |
+
assert_almost_equal,
|
| 48 |
+
assert_attr_equal,
|
| 49 |
+
assert_categorical_equal,
|
| 50 |
+
assert_class_equal,
|
| 51 |
+
assert_contains_all,
|
| 52 |
+
assert_copy,
|
| 53 |
+
assert_datetime_array_equal,
|
| 54 |
+
assert_dict_equal,
|
| 55 |
+
assert_equal,
|
| 56 |
+
assert_extension_array_equal,
|
| 57 |
+
assert_frame_equal,
|
| 58 |
+
assert_index_equal,
|
| 59 |
+
assert_indexing_slices_equivalent,
|
| 60 |
+
assert_interval_array_equal,
|
| 61 |
+
assert_is_sorted,
|
| 62 |
+
assert_is_valid_plot_return_object,
|
| 63 |
+
assert_metadata_equivalent,
|
| 64 |
+
assert_numpy_array_equal,
|
| 65 |
+
assert_period_array_equal,
|
| 66 |
+
assert_series_equal,
|
| 67 |
+
assert_sp_array_equal,
|
| 68 |
+
assert_timedelta_array_equal,
|
| 69 |
+
raise_assert_detail,
|
| 70 |
+
)
|
| 71 |
+
from pandas._testing.compat import (
|
| 72 |
+
get_dtype,
|
| 73 |
+
get_obj,
|
| 74 |
+
)
|
| 75 |
+
from pandas._testing.contexts import (
|
| 76 |
+
assert_cow_warning,
|
| 77 |
+
decompress_file,
|
| 78 |
+
ensure_clean,
|
| 79 |
+
raises_chained_assignment_error,
|
| 80 |
+
set_timezone,
|
| 81 |
+
use_numexpr,
|
| 82 |
+
with_csv_dialect,
|
| 83 |
+
)
|
| 84 |
+
from pandas.core.arrays import (
|
| 85 |
+
BaseMaskedArray,
|
| 86 |
+
ExtensionArray,
|
| 87 |
+
NumpyExtensionArray,
|
| 88 |
+
)
|
| 89 |
+
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
|
| 90 |
+
from pandas.core.construction import extract_array
|
| 91 |
+
|
| 92 |
+
if TYPE_CHECKING:
|
| 93 |
+
from pandas._typing import (
|
| 94 |
+
Dtype,
|
| 95 |
+
NpDtype,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
from pandas.core.arrays import ArrowExtensionArray
|
| 99 |
+
|
| 100 |
+
UNSIGNED_INT_NUMPY_DTYPES: list[NpDtype] = ["uint8", "uint16", "uint32", "uint64"]
|
| 101 |
+
UNSIGNED_INT_EA_DTYPES: list[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"]
|
| 102 |
+
SIGNED_INT_NUMPY_DTYPES: list[NpDtype] = [int, "int8", "int16", "int32", "int64"]
|
| 103 |
+
SIGNED_INT_EA_DTYPES: list[Dtype] = ["Int8", "Int16", "Int32", "Int64"]
|
| 104 |
+
ALL_INT_NUMPY_DTYPES = UNSIGNED_INT_NUMPY_DTYPES + SIGNED_INT_NUMPY_DTYPES
|
| 105 |
+
ALL_INT_EA_DTYPES = UNSIGNED_INT_EA_DTYPES + SIGNED_INT_EA_DTYPES
|
| 106 |
+
ALL_INT_DTYPES: list[Dtype] = [*ALL_INT_NUMPY_DTYPES, *ALL_INT_EA_DTYPES]
|
| 107 |
+
|
| 108 |
+
FLOAT_NUMPY_DTYPES: list[NpDtype] = [float, "float32", "float64"]
|
| 109 |
+
FLOAT_EA_DTYPES: list[Dtype] = ["Float32", "Float64"]
|
| 110 |
+
ALL_FLOAT_DTYPES: list[Dtype] = [*FLOAT_NUMPY_DTYPES, *FLOAT_EA_DTYPES]
|
| 111 |
+
|
| 112 |
+
COMPLEX_DTYPES: list[Dtype] = [complex, "complex64", "complex128"]
|
| 113 |
+
STRING_DTYPES: list[Dtype] = [str, "str", "U"]
|
| 114 |
+
COMPLEX_FLOAT_DTYPES: list[Dtype] = [*COMPLEX_DTYPES, *FLOAT_NUMPY_DTYPES]
|
| 115 |
+
|
| 116 |
+
DATETIME64_DTYPES: list[Dtype] = ["datetime64[ns]", "M8[ns]"]
|
| 117 |
+
TIMEDELTA64_DTYPES: list[Dtype] = ["timedelta64[ns]", "m8[ns]"]
|
| 118 |
+
|
| 119 |
+
BOOL_DTYPES: list[Dtype] = [bool, "bool"]
|
| 120 |
+
BYTES_DTYPES: list[Dtype] = [bytes, "bytes"]
|
| 121 |
+
OBJECT_DTYPES: list[Dtype] = [object, "object"]
|
| 122 |
+
|
| 123 |
+
ALL_REAL_NUMPY_DTYPES = FLOAT_NUMPY_DTYPES + ALL_INT_NUMPY_DTYPES
|
| 124 |
+
ALL_REAL_EXTENSION_DTYPES = FLOAT_EA_DTYPES + ALL_INT_EA_DTYPES
|
| 125 |
+
ALL_REAL_DTYPES: list[Dtype] = [*ALL_REAL_NUMPY_DTYPES, *ALL_REAL_EXTENSION_DTYPES]
|
| 126 |
+
ALL_NUMERIC_DTYPES: list[Dtype] = [*ALL_REAL_DTYPES, *COMPLEX_DTYPES]
|
| 127 |
+
|
| 128 |
+
ALL_NUMPY_DTYPES = (
|
| 129 |
+
ALL_REAL_NUMPY_DTYPES
|
| 130 |
+
+ COMPLEX_DTYPES
|
| 131 |
+
+ STRING_DTYPES
|
| 132 |
+
+ DATETIME64_DTYPES
|
| 133 |
+
+ TIMEDELTA64_DTYPES
|
| 134 |
+
+ BOOL_DTYPES
|
| 135 |
+
+ OBJECT_DTYPES
|
| 136 |
+
+ BYTES_DTYPES
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
NARROW_NP_DTYPES = [
|
| 140 |
+
np.float16,
|
| 141 |
+
np.float32,
|
| 142 |
+
np.int8,
|
| 143 |
+
np.int16,
|
| 144 |
+
np.int32,
|
| 145 |
+
np.uint8,
|
| 146 |
+
np.uint16,
|
| 147 |
+
np.uint32,
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
PYTHON_DATA_TYPES = [
|
| 151 |
+
str,
|
| 152 |
+
int,
|
| 153 |
+
float,
|
| 154 |
+
complex,
|
| 155 |
+
list,
|
| 156 |
+
tuple,
|
| 157 |
+
range,
|
| 158 |
+
dict,
|
| 159 |
+
set,
|
| 160 |
+
frozenset,
|
| 161 |
+
bool,
|
| 162 |
+
bytes,
|
| 163 |
+
bytearray,
|
| 164 |
+
memoryview,
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
+
ENDIAN = {"little": "<", "big": ">"}[byteorder]
|
| 168 |
+
|
| 169 |
+
NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA, Decimal("NaN")]
|
| 170 |
+
NP_NAT_OBJECTS = [
|
| 171 |
+
cls("NaT", unit)
|
| 172 |
+
for cls in [np.datetime64, np.timedelta64]
|
| 173 |
+
for unit in [
|
| 174 |
+
"Y",
|
| 175 |
+
"M",
|
| 176 |
+
"W",
|
| 177 |
+
"D",
|
| 178 |
+
"h",
|
| 179 |
+
"m",
|
| 180 |
+
"s",
|
| 181 |
+
"ms",
|
| 182 |
+
"us",
|
| 183 |
+
"ns",
|
| 184 |
+
"ps",
|
| 185 |
+
"fs",
|
| 186 |
+
"as",
|
| 187 |
+
]
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
if not pa_version_under10p1:
|
| 191 |
+
import pyarrow as pa
|
| 192 |
+
|
| 193 |
+
UNSIGNED_INT_PYARROW_DTYPES = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
|
| 194 |
+
SIGNED_INT_PYARROW_DTYPES = [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
|
| 195 |
+
ALL_INT_PYARROW_DTYPES = UNSIGNED_INT_PYARROW_DTYPES + SIGNED_INT_PYARROW_DTYPES
|
| 196 |
+
ALL_INT_PYARROW_DTYPES_STR_REPR = [
|
| 197 |
+
str(ArrowDtype(typ)) for typ in ALL_INT_PYARROW_DTYPES
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
# pa.float16 doesn't seem supported
|
| 201 |
+
# https://github.com/apache/arrow/blob/master/python/pyarrow/src/arrow/python/helpers.cc#L86
|
| 202 |
+
FLOAT_PYARROW_DTYPES = [pa.float32(), pa.float64()]
|
| 203 |
+
FLOAT_PYARROW_DTYPES_STR_REPR = [
|
| 204 |
+
str(ArrowDtype(typ)) for typ in FLOAT_PYARROW_DTYPES
|
| 205 |
+
]
|
| 206 |
+
DECIMAL_PYARROW_DTYPES = [pa.decimal128(7, 3)]
|
| 207 |
+
STRING_PYARROW_DTYPES = [pa.string()]
|
| 208 |
+
BINARY_PYARROW_DTYPES = [pa.binary()]
|
| 209 |
+
|
| 210 |
+
TIME_PYARROW_DTYPES = [
|
| 211 |
+
pa.time32("s"),
|
| 212 |
+
pa.time32("ms"),
|
| 213 |
+
pa.time64("us"),
|
| 214 |
+
pa.time64("ns"),
|
| 215 |
+
]
|
| 216 |
+
DATE_PYARROW_DTYPES = [pa.date32(), pa.date64()]
|
| 217 |
+
DATETIME_PYARROW_DTYPES = [
|
| 218 |
+
pa.timestamp(unit=unit, tz=tz)
|
| 219 |
+
for unit in ["s", "ms", "us", "ns"]
|
| 220 |
+
for tz in [None, "UTC", "US/Pacific", "US/Eastern"]
|
| 221 |
+
]
|
| 222 |
+
TIMEDELTA_PYARROW_DTYPES = [pa.duration(unit) for unit in ["s", "ms", "us", "ns"]]
|
| 223 |
+
|
| 224 |
+
BOOL_PYARROW_DTYPES = [pa.bool_()]
|
| 225 |
+
|
| 226 |
+
# TODO: Add container like pyarrow types:
|
| 227 |
+
# https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
|
| 228 |
+
ALL_PYARROW_DTYPES = (
|
| 229 |
+
ALL_INT_PYARROW_DTYPES
|
| 230 |
+
+ FLOAT_PYARROW_DTYPES
|
| 231 |
+
+ DECIMAL_PYARROW_DTYPES
|
| 232 |
+
+ STRING_PYARROW_DTYPES
|
| 233 |
+
+ BINARY_PYARROW_DTYPES
|
| 234 |
+
+ TIME_PYARROW_DTYPES
|
| 235 |
+
+ DATE_PYARROW_DTYPES
|
| 236 |
+
+ DATETIME_PYARROW_DTYPES
|
| 237 |
+
+ TIMEDELTA_PYARROW_DTYPES
|
| 238 |
+
+ BOOL_PYARROW_DTYPES
|
| 239 |
+
)
|
| 240 |
+
ALL_REAL_PYARROW_DTYPES_STR_REPR = (
|
| 241 |
+
ALL_INT_PYARROW_DTYPES_STR_REPR + FLOAT_PYARROW_DTYPES_STR_REPR
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
FLOAT_PYARROW_DTYPES_STR_REPR = []
|
| 245 |
+
ALL_INT_PYARROW_DTYPES_STR_REPR = []
|
| 246 |
+
ALL_PYARROW_DTYPES = []
|
| 247 |
+
ALL_REAL_PYARROW_DTYPES_STR_REPR = []
|
| 248 |
+
|
| 249 |
+
ALL_REAL_NULLABLE_DTYPES = (
|
| 250 |
+
FLOAT_NUMPY_DTYPES + ALL_REAL_EXTENSION_DTYPES + ALL_REAL_PYARROW_DTYPES_STR_REPR
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
arithmetic_dunder_methods = [
|
| 254 |
+
"__add__",
|
| 255 |
+
"__radd__",
|
| 256 |
+
"__sub__",
|
| 257 |
+
"__rsub__",
|
| 258 |
+
"__mul__",
|
| 259 |
+
"__rmul__",
|
| 260 |
+
"__floordiv__",
|
| 261 |
+
"__rfloordiv__",
|
| 262 |
+
"__truediv__",
|
| 263 |
+
"__rtruediv__",
|
| 264 |
+
"__pow__",
|
| 265 |
+
"__rpow__",
|
| 266 |
+
"__mod__",
|
| 267 |
+
"__rmod__",
|
| 268 |
+
]
|
| 269 |
+
|
| 270 |
+
comparison_dunder_methods = ["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# -----------------------------------------------------------------------------
|
| 274 |
+
# Comparators
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def box_expected(expected, box_cls, transpose: bool = True):
|
| 278 |
+
"""
|
| 279 |
+
Helper function to wrap the expected output of a test in a given box_class.
|
| 280 |
+
|
| 281 |
+
Parameters
|
| 282 |
+
----------
|
| 283 |
+
expected : np.ndarray, Index, Series
|
| 284 |
+
box_cls : {Index, Series, DataFrame}
|
| 285 |
+
|
| 286 |
+
Returns
|
| 287 |
+
-------
|
| 288 |
+
subclass of box_cls
|
| 289 |
+
"""
|
| 290 |
+
if box_cls is pd.array:
|
| 291 |
+
if isinstance(expected, RangeIndex):
|
| 292 |
+
# pd.array would return an IntegerArray
|
| 293 |
+
expected = NumpyExtensionArray(np.asarray(expected._values))
|
| 294 |
+
else:
|
| 295 |
+
expected = pd.array(expected, copy=False)
|
| 296 |
+
elif box_cls is Index:
|
| 297 |
+
with warnings.catch_warnings():
|
| 298 |
+
warnings.filterwarnings("ignore", "Dtype inference", category=FutureWarning)
|
| 299 |
+
expected = Index(expected)
|
| 300 |
+
elif box_cls is Series:
|
| 301 |
+
with warnings.catch_warnings():
|
| 302 |
+
warnings.filterwarnings("ignore", "Dtype inference", category=FutureWarning)
|
| 303 |
+
expected = Series(expected)
|
| 304 |
+
elif box_cls is DataFrame:
|
| 305 |
+
with warnings.catch_warnings():
|
| 306 |
+
warnings.filterwarnings("ignore", "Dtype inference", category=FutureWarning)
|
| 307 |
+
expected = Series(expected).to_frame()
|
| 308 |
+
if transpose:
|
| 309 |
+
# for vector operations, we need a DataFrame to be a single-row,
|
| 310 |
+
# not a single-column, in order to operate against non-DataFrame
|
| 311 |
+
# vectors of the same length. But convert to two rows to avoid
|
| 312 |
+
# single-row special cases in datetime arithmetic
|
| 313 |
+
expected = expected.T
|
| 314 |
+
expected = pd.concat([expected] * 2, ignore_index=True)
|
| 315 |
+
elif box_cls is np.ndarray or box_cls is np.array:
|
| 316 |
+
expected = np.array(expected)
|
| 317 |
+
elif box_cls is to_array:
|
| 318 |
+
expected = to_array(expected)
|
| 319 |
+
else:
|
| 320 |
+
raise NotImplementedError(box_cls)
|
| 321 |
+
return expected
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def to_array(obj):
|
| 325 |
+
"""
|
| 326 |
+
Similar to pd.array, but does not cast numpy dtypes to nullable dtypes.
|
| 327 |
+
"""
|
| 328 |
+
# temporary implementation until we get pd.array in place
|
| 329 |
+
dtype = getattr(obj, "dtype", None)
|
| 330 |
+
|
| 331 |
+
if dtype is None:
|
| 332 |
+
return np.asarray(obj)
|
| 333 |
+
|
| 334 |
+
return extract_array(obj, extract_numpy=True)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
class SubclassedSeries(Series):
|
| 338 |
+
_metadata = ["testattr", "name"]
|
| 339 |
+
|
| 340 |
+
@property
|
| 341 |
+
def _constructor(self):
|
| 342 |
+
# For testing, those properties return a generic callable, and not
|
| 343 |
+
# the actual class. In this case that is equivalent, but it is to
|
| 344 |
+
# ensure we don't rely on the property returning a class
|
| 345 |
+
# See https://github.com/pandas-dev/pandas/pull/46018 and
|
| 346 |
+
# https://github.com/pandas-dev/pandas/issues/32638 and linked issues
|
| 347 |
+
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
|
| 348 |
+
|
| 349 |
+
@property
|
| 350 |
+
def _constructor_expanddim(self):
|
| 351 |
+
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class SubclassedDataFrame(DataFrame):
|
| 355 |
+
_metadata = ["testattr"]
|
| 356 |
+
|
| 357 |
+
@property
|
| 358 |
+
def _constructor(self):
|
| 359 |
+
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
|
| 360 |
+
|
| 361 |
+
@property
|
| 362 |
+
def _constructor_sliced(self):
|
| 363 |
+
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def convert_rows_list_to_csv_str(rows_list: list[str]) -> str:
|
| 367 |
+
"""
|
| 368 |
+
Convert list of CSV rows to single CSV-formatted string for current OS.
|
| 369 |
+
|
| 370 |
+
This method is used for creating expected value of to_csv() method.
|
| 371 |
+
|
| 372 |
+
Parameters
|
| 373 |
+
----------
|
| 374 |
+
rows_list : List[str]
|
| 375 |
+
Each element represents the row of csv.
|
| 376 |
+
|
| 377 |
+
Returns
|
| 378 |
+
-------
|
| 379 |
+
str
|
| 380 |
+
Expected output of to_csv() in current OS.
|
| 381 |
+
"""
|
| 382 |
+
sep = os.linesep
|
| 383 |
+
return sep.join(rows_list) + sep
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def external_error_raised(expected_exception: type[Exception]) -> ContextManager:
|
| 387 |
+
"""
|
| 388 |
+
Helper function to mark pytest.raises that have an external error message.
|
| 389 |
+
|
| 390 |
+
Parameters
|
| 391 |
+
----------
|
| 392 |
+
expected_exception : Exception
|
| 393 |
+
Expected error to raise.
|
| 394 |
+
|
| 395 |
+
Returns
|
| 396 |
+
-------
|
| 397 |
+
Callable
|
| 398 |
+
Regular `pytest.raises` function with `match` equal to `None`.
|
| 399 |
+
"""
|
| 400 |
+
import pytest
|
| 401 |
+
|
| 402 |
+
return pytest.raises(expected_exception, match=None)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
cython_table = pd.core.common._cython_table.items()
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def get_cython_table_params(ndframe, func_names_and_expected):
|
| 409 |
+
"""
|
| 410 |
+
Combine frame, functions from com._cython_table
|
| 411 |
+
keys and expected result.
|
| 412 |
+
|
| 413 |
+
Parameters
|
| 414 |
+
----------
|
| 415 |
+
ndframe : DataFrame or Series
|
| 416 |
+
func_names_and_expected : Sequence of two items
|
| 417 |
+
The first item is a name of a NDFrame method ('sum', 'prod') etc.
|
| 418 |
+
The second item is the expected return value.
|
| 419 |
+
|
| 420 |
+
Returns
|
| 421 |
+
-------
|
| 422 |
+
list
|
| 423 |
+
List of three items (DataFrame, function, expected result)
|
| 424 |
+
"""
|
| 425 |
+
results = []
|
| 426 |
+
for func_name, expected in func_names_and_expected:
|
| 427 |
+
results.append((ndframe, func_name, expected))
|
| 428 |
+
results += [
|
| 429 |
+
(ndframe, func, expected)
|
| 430 |
+
for func, name in cython_table
|
| 431 |
+
if name == func_name
|
| 432 |
+
]
|
| 433 |
+
return results
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def get_op_from_name(op_name: str) -> Callable:
|
| 437 |
+
"""
|
| 438 |
+
The operator function for a given op name.
|
| 439 |
+
|
| 440 |
+
Parameters
|
| 441 |
+
----------
|
| 442 |
+
op_name : str
|
| 443 |
+
The op name, in form of "add" or "__add__".
|
| 444 |
+
|
| 445 |
+
Returns
|
| 446 |
+
-------
|
| 447 |
+
function
|
| 448 |
+
A function performing the operation.
|
| 449 |
+
"""
|
| 450 |
+
short_opname = op_name.strip("_")
|
| 451 |
+
try:
|
| 452 |
+
op = getattr(operator, short_opname)
|
| 453 |
+
except AttributeError:
|
| 454 |
+
# Assume it is the reverse operator
|
| 455 |
+
rop = getattr(operator, short_opname[1:])
|
| 456 |
+
op = lambda x, y: rop(y, x)
|
| 457 |
+
|
| 458 |
+
return op
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
# -----------------------------------------------------------------------------
|
| 462 |
+
# Indexing test helpers
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def getitem(x):
|
| 466 |
+
return x
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def setitem(x):
|
| 470 |
+
return x
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def loc(x):
|
| 474 |
+
return x.loc
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def iloc(x):
|
| 478 |
+
return x.iloc
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def at(x):
|
| 482 |
+
return x.at
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def iat(x):
|
| 486 |
+
return x.iat
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
# -----------------------------------------------------------------------------
|
| 490 |
+
|
| 491 |
+
_UNITS = ["s", "ms", "us", "ns"]
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def get_finest_unit(left: str, right: str):
|
| 495 |
+
"""
|
| 496 |
+
Find the higher of two datetime64 units.
|
| 497 |
+
"""
|
| 498 |
+
if _UNITS.index(left) >= _UNITS.index(right):
|
| 499 |
+
return left
|
| 500 |
+
return right
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def shares_memory(left, right) -> bool:
|
| 504 |
+
"""
|
| 505 |
+
Pandas-compat for np.shares_memory.
|
| 506 |
+
"""
|
| 507 |
+
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
|
| 508 |
+
return np.shares_memory(left, right)
|
| 509 |
+
elif isinstance(left, np.ndarray):
|
| 510 |
+
# Call with reversed args to get to unpacking logic below.
|
| 511 |
+
return shares_memory(right, left)
|
| 512 |
+
|
| 513 |
+
if isinstance(left, RangeIndex):
|
| 514 |
+
return False
|
| 515 |
+
if isinstance(left, MultiIndex):
|
| 516 |
+
return shares_memory(left._codes, right)
|
| 517 |
+
if isinstance(left, (Index, Series)):
|
| 518 |
+
return shares_memory(left._values, right)
|
| 519 |
+
|
| 520 |
+
if isinstance(left, NDArrayBackedExtensionArray):
|
| 521 |
+
return shares_memory(left._ndarray, right)
|
| 522 |
+
if isinstance(left, pd.core.arrays.SparseArray):
|
| 523 |
+
return shares_memory(left.sp_values, right)
|
| 524 |
+
if isinstance(left, pd.core.arrays.IntervalArray):
|
| 525 |
+
return shares_memory(left._left, right) or shares_memory(left._right, right)
|
| 526 |
+
|
| 527 |
+
if (
|
| 528 |
+
isinstance(left, ExtensionArray)
|
| 529 |
+
and is_string_dtype(left.dtype)
|
| 530 |
+
and left.dtype.storage in ("pyarrow", "pyarrow_numpy") # type: ignore[attr-defined]
|
| 531 |
+
):
|
| 532 |
+
# https://github.com/pandas-dev/pandas/pull/43930#discussion_r736862669
|
| 533 |
+
left = cast("ArrowExtensionArray", left)
|
| 534 |
+
if (
|
| 535 |
+
isinstance(right, ExtensionArray)
|
| 536 |
+
and is_string_dtype(right.dtype)
|
| 537 |
+
and right.dtype.storage in ("pyarrow", "pyarrow_numpy") # type: ignore[attr-defined]
|
| 538 |
+
):
|
| 539 |
+
right = cast("ArrowExtensionArray", right)
|
| 540 |
+
left_pa_data = left._pa_array
|
| 541 |
+
right_pa_data = right._pa_array
|
| 542 |
+
left_buf1 = left_pa_data.chunk(0).buffers()[1]
|
| 543 |
+
right_buf1 = right_pa_data.chunk(0).buffers()[1]
|
| 544 |
+
return left_buf1 == right_buf1
|
| 545 |
+
|
| 546 |
+
if isinstance(left, BaseMaskedArray) and isinstance(right, BaseMaskedArray):
|
| 547 |
+
# By convention, we'll say these share memory if they share *either*
|
| 548 |
+
# the _data or the _mask
|
| 549 |
+
return np.shares_memory(left._data, right._data) or np.shares_memory(
|
| 550 |
+
left._mask, right._mask
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
if isinstance(left, DataFrame) and len(left._mgr.arrays) == 1:
|
| 554 |
+
arr = left._mgr.arrays[0]
|
| 555 |
+
return shares_memory(arr, right)
|
| 556 |
+
|
| 557 |
+
raise NotImplementedError(type(left), type(right))
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
__all__ = [
|
| 561 |
+
"ALL_INT_EA_DTYPES",
|
| 562 |
+
"ALL_INT_NUMPY_DTYPES",
|
| 563 |
+
"ALL_NUMPY_DTYPES",
|
| 564 |
+
"ALL_REAL_NUMPY_DTYPES",
|
| 565 |
+
"assert_almost_equal",
|
| 566 |
+
"assert_attr_equal",
|
| 567 |
+
"assert_categorical_equal",
|
| 568 |
+
"assert_class_equal",
|
| 569 |
+
"assert_contains_all",
|
| 570 |
+
"assert_copy",
|
| 571 |
+
"assert_datetime_array_equal",
|
| 572 |
+
"assert_dict_equal",
|
| 573 |
+
"assert_equal",
|
| 574 |
+
"assert_extension_array_equal",
|
| 575 |
+
"assert_frame_equal",
|
| 576 |
+
"assert_index_equal",
|
| 577 |
+
"assert_indexing_slices_equivalent",
|
| 578 |
+
"assert_interval_array_equal",
|
| 579 |
+
"assert_is_sorted",
|
| 580 |
+
"assert_is_valid_plot_return_object",
|
| 581 |
+
"assert_metadata_equivalent",
|
| 582 |
+
"assert_numpy_array_equal",
|
| 583 |
+
"assert_period_array_equal",
|
| 584 |
+
"assert_produces_warning",
|
| 585 |
+
"assert_series_equal",
|
| 586 |
+
"assert_sp_array_equal",
|
| 587 |
+
"assert_timedelta_array_equal",
|
| 588 |
+
"assert_cow_warning",
|
| 589 |
+
"at",
|
| 590 |
+
"BOOL_DTYPES",
|
| 591 |
+
"box_expected",
|
| 592 |
+
"BYTES_DTYPES",
|
| 593 |
+
"can_set_locale",
|
| 594 |
+
"COMPLEX_DTYPES",
|
| 595 |
+
"convert_rows_list_to_csv_str",
|
| 596 |
+
"DATETIME64_DTYPES",
|
| 597 |
+
"decompress_file",
|
| 598 |
+
"ENDIAN",
|
| 599 |
+
"ensure_clean",
|
| 600 |
+
"external_error_raised",
|
| 601 |
+
"FLOAT_EA_DTYPES",
|
| 602 |
+
"FLOAT_NUMPY_DTYPES",
|
| 603 |
+
"get_cython_table_params",
|
| 604 |
+
"get_dtype",
|
| 605 |
+
"getitem",
|
| 606 |
+
"get_locales",
|
| 607 |
+
"get_finest_unit",
|
| 608 |
+
"get_obj",
|
| 609 |
+
"get_op_from_name",
|
| 610 |
+
"iat",
|
| 611 |
+
"iloc",
|
| 612 |
+
"loc",
|
| 613 |
+
"maybe_produces_warning",
|
| 614 |
+
"NARROW_NP_DTYPES",
|
| 615 |
+
"NP_NAT_OBJECTS",
|
| 616 |
+
"NULL_OBJECTS",
|
| 617 |
+
"OBJECT_DTYPES",
|
| 618 |
+
"raise_assert_detail",
|
| 619 |
+
"raises_chained_assignment_error",
|
| 620 |
+
"round_trip_localpath",
|
| 621 |
+
"round_trip_pathlib",
|
| 622 |
+
"round_trip_pickle",
|
| 623 |
+
"setitem",
|
| 624 |
+
"set_locale",
|
| 625 |
+
"set_timezone",
|
| 626 |
+
"shares_memory",
|
| 627 |
+
"SIGNED_INT_EA_DTYPES",
|
| 628 |
+
"SIGNED_INT_NUMPY_DTYPES",
|
| 629 |
+
"STRING_DTYPES",
|
| 630 |
+
"SubclassedDataFrame",
|
| 631 |
+
"SubclassedSeries",
|
| 632 |
+
"TIMEDELTA64_DTYPES",
|
| 633 |
+
"to_array",
|
| 634 |
+
"UNSIGNED_INT_EA_DTYPES",
|
| 635 |
+
"UNSIGNED_INT_NUMPY_DTYPES",
|
| 636 |
+
"use_numexpr",
|
| 637 |
+
"with_csv_dialect",
|
| 638 |
+
"write_to_compressed",
|
| 639 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (14.3 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_hypothesis.cpython-310.pyc
ADDED
|
Binary file (1.75 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_io.cpython-310.pyc
ADDED
|
Binary file (4.37 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/_warnings.cpython-310.pyc
ADDED
|
Binary file (6.49 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/asserters.cpython-310.pyc
ADDED
|
Binary file (32.9 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/compat.cpython-310.pyc
ADDED
|
Binary file (935 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/__pycache__/contexts.cpython-310.pyc
ADDED
|
Binary file (6.23 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/_testing/_hypothesis.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hypothesis data generator helpers.
|
| 3 |
+
"""
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
from hypothesis import strategies as st
|
| 7 |
+
from hypothesis.extra.dateutil import timezones as dateutil_timezones
|
| 8 |
+
from hypothesis.extra.pytz import timezones as pytz_timezones
|
| 9 |
+
|
| 10 |
+
from pandas.compat import is_platform_windows
|
| 11 |
+
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
from pandas.tseries.offsets import (
|
| 15 |
+
BMonthBegin,
|
| 16 |
+
BMonthEnd,
|
| 17 |
+
BQuarterBegin,
|
| 18 |
+
BQuarterEnd,
|
| 19 |
+
BYearBegin,
|
| 20 |
+
BYearEnd,
|
| 21 |
+
MonthBegin,
|
| 22 |
+
MonthEnd,
|
| 23 |
+
QuarterBegin,
|
| 24 |
+
QuarterEnd,
|
| 25 |
+
YearBegin,
|
| 26 |
+
YearEnd,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
OPTIONAL_INTS = st.lists(st.one_of(st.integers(), st.none()), max_size=10, min_size=3)
|
| 30 |
+
|
| 31 |
+
OPTIONAL_FLOATS = st.lists(st.one_of(st.floats(), st.none()), max_size=10, min_size=3)
|
| 32 |
+
|
| 33 |
+
OPTIONAL_TEXT = st.lists(st.one_of(st.none(), st.text()), max_size=10, min_size=3)
|
| 34 |
+
|
| 35 |
+
OPTIONAL_DICTS = st.lists(
|
| 36 |
+
st.one_of(st.none(), st.dictionaries(st.text(), st.integers())),
|
| 37 |
+
max_size=10,
|
| 38 |
+
min_size=3,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
OPTIONAL_LISTS = st.lists(
|
| 42 |
+
st.one_of(st.none(), st.lists(st.text(), max_size=10, min_size=3)),
|
| 43 |
+
max_size=10,
|
| 44 |
+
min_size=3,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
OPTIONAL_ONE_OF_ALL = st.one_of(
|
| 48 |
+
OPTIONAL_DICTS, OPTIONAL_FLOATS, OPTIONAL_INTS, OPTIONAL_LISTS, OPTIONAL_TEXT
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
if is_platform_windows():
|
| 52 |
+
DATETIME_NO_TZ = st.datetimes(min_value=datetime(1900, 1, 1))
|
| 53 |
+
else:
|
| 54 |
+
DATETIME_NO_TZ = st.datetimes()
|
| 55 |
+
|
| 56 |
+
DATETIME_JAN_1_1900_OPTIONAL_TZ = st.datetimes(
|
| 57 |
+
min_value=pd.Timestamp(
|
| 58 |
+
1900, 1, 1
|
| 59 |
+
).to_pydatetime(), # pyright: ignore[reportGeneralTypeIssues]
|
| 60 |
+
max_value=pd.Timestamp(
|
| 61 |
+
1900, 1, 1
|
| 62 |
+
).to_pydatetime(), # pyright: ignore[reportGeneralTypeIssues]
|
| 63 |
+
timezones=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()),
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
DATETIME_IN_PD_TIMESTAMP_RANGE_NO_TZ = st.datetimes(
|
| 67 |
+
min_value=pd.Timestamp.min.to_pydatetime(warn=False),
|
| 68 |
+
max_value=pd.Timestamp.max.to_pydatetime(warn=False),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
INT_NEG_999_TO_POS_999 = st.integers(-999, 999)
|
| 72 |
+
|
| 73 |
+
# The strategy for each type is registered in conftest.py, as they don't carry
|
| 74 |
+
# enough runtime information (e.g. type hints) to infer how to build them.
|
| 75 |
+
YQM_OFFSET = st.one_of(
|
| 76 |
+
*map(
|
| 77 |
+
st.from_type,
|
| 78 |
+
[
|
| 79 |
+
MonthBegin,
|
| 80 |
+
MonthEnd,
|
| 81 |
+
BMonthBegin,
|
| 82 |
+
BMonthEnd,
|
| 83 |
+
QuarterBegin,
|
| 84 |
+
QuarterEnd,
|
| 85 |
+
BQuarterBegin,
|
| 86 |
+
BQuarterEnd,
|
| 87 |
+
YearBegin,
|
| 88 |
+
YearEnd,
|
| 89 |
+
BYearBegin,
|
| 90 |
+
BYearEnd,
|
| 91 |
+
],
|
| 92 |
+
)
|
| 93 |
+
)
|
emu3/lib/python3.10/site-packages/pandas/_testing/_io.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import gzip
|
| 4 |
+
import io
|
| 5 |
+
import pathlib
|
| 6 |
+
import tarfile
|
| 7 |
+
from typing import (
|
| 8 |
+
TYPE_CHECKING,
|
| 9 |
+
Any,
|
| 10 |
+
Callable,
|
| 11 |
+
)
|
| 12 |
+
import uuid
|
| 13 |
+
import zipfile
|
| 14 |
+
|
| 15 |
+
from pandas.compat import (
|
| 16 |
+
get_bz2_file,
|
| 17 |
+
get_lzma_file,
|
| 18 |
+
)
|
| 19 |
+
from pandas.compat._optional import import_optional_dependency
|
| 20 |
+
|
| 21 |
+
import pandas as pd
|
| 22 |
+
from pandas._testing.contexts import ensure_clean
|
| 23 |
+
|
| 24 |
+
if TYPE_CHECKING:
|
| 25 |
+
from pandas._typing import (
|
| 26 |
+
FilePath,
|
| 27 |
+
ReadPickleBuffer,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
from pandas import (
|
| 31 |
+
DataFrame,
|
| 32 |
+
Series,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# ------------------------------------------------------------------
|
| 36 |
+
# File-IO
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def round_trip_pickle(
|
| 40 |
+
obj: Any, path: FilePath | ReadPickleBuffer | None = None
|
| 41 |
+
) -> DataFrame | Series:
|
| 42 |
+
"""
|
| 43 |
+
Pickle an object and then read it again.
|
| 44 |
+
|
| 45 |
+
Parameters
|
| 46 |
+
----------
|
| 47 |
+
obj : any object
|
| 48 |
+
The object to pickle and then re-read.
|
| 49 |
+
path : str, path object or file-like object, default None
|
| 50 |
+
The path where the pickled object is written and then read.
|
| 51 |
+
|
| 52 |
+
Returns
|
| 53 |
+
-------
|
| 54 |
+
pandas object
|
| 55 |
+
The original object that was pickled and then re-read.
|
| 56 |
+
"""
|
| 57 |
+
_path = path
|
| 58 |
+
if _path is None:
|
| 59 |
+
_path = f"__{uuid.uuid4()}__.pickle"
|
| 60 |
+
with ensure_clean(_path) as temp_path:
|
| 61 |
+
pd.to_pickle(obj, temp_path)
|
| 62 |
+
return pd.read_pickle(temp_path)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def round_trip_pathlib(writer, reader, path: str | None = None):
|
| 66 |
+
"""
|
| 67 |
+
Write an object to file specified by a pathlib.Path and read it back
|
| 68 |
+
|
| 69 |
+
Parameters
|
| 70 |
+
----------
|
| 71 |
+
writer : callable bound to pandas object
|
| 72 |
+
IO writing function (e.g. DataFrame.to_csv )
|
| 73 |
+
reader : callable
|
| 74 |
+
IO reading function (e.g. pd.read_csv )
|
| 75 |
+
path : str, default None
|
| 76 |
+
The path where the object is written and then read.
|
| 77 |
+
|
| 78 |
+
Returns
|
| 79 |
+
-------
|
| 80 |
+
pandas object
|
| 81 |
+
The original object that was serialized and then re-read.
|
| 82 |
+
"""
|
| 83 |
+
Path = pathlib.Path
|
| 84 |
+
if path is None:
|
| 85 |
+
path = "___pathlib___"
|
| 86 |
+
with ensure_clean(path) as path:
|
| 87 |
+
writer(Path(path)) # type: ignore[arg-type]
|
| 88 |
+
obj = reader(Path(path)) # type: ignore[arg-type]
|
| 89 |
+
return obj
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def round_trip_localpath(writer, reader, path: str | None = None):
|
| 93 |
+
"""
|
| 94 |
+
Write an object to file specified by a py.path LocalPath and read it back.
|
| 95 |
+
|
| 96 |
+
Parameters
|
| 97 |
+
----------
|
| 98 |
+
writer : callable bound to pandas object
|
| 99 |
+
IO writing function (e.g. DataFrame.to_csv )
|
| 100 |
+
reader : callable
|
| 101 |
+
IO reading function (e.g. pd.read_csv )
|
| 102 |
+
path : str, default None
|
| 103 |
+
The path where the object is written and then read.
|
| 104 |
+
|
| 105 |
+
Returns
|
| 106 |
+
-------
|
| 107 |
+
pandas object
|
| 108 |
+
The original object that was serialized and then re-read.
|
| 109 |
+
"""
|
| 110 |
+
import pytest
|
| 111 |
+
|
| 112 |
+
LocalPath = pytest.importorskip("py.path").local
|
| 113 |
+
if path is None:
|
| 114 |
+
path = "___localpath___"
|
| 115 |
+
with ensure_clean(path) as path:
|
| 116 |
+
writer(LocalPath(path))
|
| 117 |
+
obj = reader(LocalPath(path))
|
| 118 |
+
return obj
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def write_to_compressed(compression, path, data, dest: str = "test") -> None:
|
| 122 |
+
"""
|
| 123 |
+
Write data to a compressed file.
|
| 124 |
+
|
| 125 |
+
Parameters
|
| 126 |
+
----------
|
| 127 |
+
compression : {'gzip', 'bz2', 'zip', 'xz', 'zstd'}
|
| 128 |
+
The compression type to use.
|
| 129 |
+
path : str
|
| 130 |
+
The file path to write the data.
|
| 131 |
+
data : str
|
| 132 |
+
The data to write.
|
| 133 |
+
dest : str, default "test"
|
| 134 |
+
The destination file (for ZIP only)
|
| 135 |
+
|
| 136 |
+
Raises
|
| 137 |
+
------
|
| 138 |
+
ValueError : An invalid compression value was passed in.
|
| 139 |
+
"""
|
| 140 |
+
args: tuple[Any, ...] = (data,)
|
| 141 |
+
mode = "wb"
|
| 142 |
+
method = "write"
|
| 143 |
+
compress_method: Callable
|
| 144 |
+
|
| 145 |
+
if compression == "zip":
|
| 146 |
+
compress_method = zipfile.ZipFile
|
| 147 |
+
mode = "w"
|
| 148 |
+
args = (dest, data)
|
| 149 |
+
method = "writestr"
|
| 150 |
+
elif compression == "tar":
|
| 151 |
+
compress_method = tarfile.TarFile
|
| 152 |
+
mode = "w"
|
| 153 |
+
file = tarfile.TarInfo(name=dest)
|
| 154 |
+
bytes = io.BytesIO(data)
|
| 155 |
+
file.size = len(data)
|
| 156 |
+
args = (file, bytes)
|
| 157 |
+
method = "addfile"
|
| 158 |
+
elif compression == "gzip":
|
| 159 |
+
compress_method = gzip.GzipFile
|
| 160 |
+
elif compression == "bz2":
|
| 161 |
+
compress_method = get_bz2_file()
|
| 162 |
+
elif compression == "zstd":
|
| 163 |
+
compress_method = import_optional_dependency("zstandard").open
|
| 164 |
+
elif compression == "xz":
|
| 165 |
+
compress_method = get_lzma_file()
|
| 166 |
+
else:
|
| 167 |
+
raise ValueError(f"Unrecognized compression type: {compression}")
|
| 168 |
+
|
| 169 |
+
with compress_method(path, mode=mode) as f:
|
| 170 |
+
getattr(f, method)(*args)
|
emu3/lib/python3.10/site-packages/pandas/_testing/_warnings.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from contextlib import (
|
| 4 |
+
contextmanager,
|
| 5 |
+
nullcontext,
|
| 6 |
+
)
|
| 7 |
+
import inspect
|
| 8 |
+
import re
|
| 9 |
+
import sys
|
| 10 |
+
from typing import (
|
| 11 |
+
TYPE_CHECKING,
|
| 12 |
+
Literal,
|
| 13 |
+
cast,
|
| 14 |
+
)
|
| 15 |
+
import warnings
|
| 16 |
+
|
| 17 |
+
from pandas.compat import PY311
|
| 18 |
+
|
| 19 |
+
if TYPE_CHECKING:
|
| 20 |
+
from collections.abc import (
|
| 21 |
+
Generator,
|
| 22 |
+
Sequence,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@contextmanager
|
| 27 |
+
def assert_produces_warning(
|
| 28 |
+
expected_warning: type[Warning] | bool | tuple[type[Warning], ...] | None = Warning,
|
| 29 |
+
filter_level: Literal[
|
| 30 |
+
"error", "ignore", "always", "default", "module", "once"
|
| 31 |
+
] = "always",
|
| 32 |
+
check_stacklevel: bool = True,
|
| 33 |
+
raise_on_extra_warnings: bool = True,
|
| 34 |
+
match: str | None = None,
|
| 35 |
+
) -> Generator[list[warnings.WarningMessage], None, None]:
|
| 36 |
+
"""
|
| 37 |
+
Context manager for running code expected to either raise a specific warning,
|
| 38 |
+
multiple specific warnings, or not raise any warnings. Verifies that the code
|
| 39 |
+
raises the expected warning(s), and that it does not raise any other unexpected
|
| 40 |
+
warnings. It is basically a wrapper around ``warnings.catch_warnings``.
|
| 41 |
+
|
| 42 |
+
Parameters
|
| 43 |
+
----------
|
| 44 |
+
expected_warning : {Warning, False, tuple[Warning, ...], None}, default Warning
|
| 45 |
+
The type of Exception raised. ``exception.Warning`` is the base
|
| 46 |
+
class for all warnings. To raise multiple types of exceptions,
|
| 47 |
+
pass them as a tuple. To check that no warning is returned,
|
| 48 |
+
specify ``False`` or ``None``.
|
| 49 |
+
filter_level : str or None, default "always"
|
| 50 |
+
Specifies whether warnings are ignored, displayed, or turned
|
| 51 |
+
into errors.
|
| 52 |
+
Valid values are:
|
| 53 |
+
|
| 54 |
+
* "error" - turns matching warnings into exceptions
|
| 55 |
+
* "ignore" - discard the warning
|
| 56 |
+
* "always" - always emit a warning
|
| 57 |
+
* "default" - print the warning the first time it is generated
|
| 58 |
+
from each location
|
| 59 |
+
* "module" - print the warning the first time it is generated
|
| 60 |
+
from each module
|
| 61 |
+
* "once" - print the warning the first time it is generated
|
| 62 |
+
|
| 63 |
+
check_stacklevel : bool, default True
|
| 64 |
+
If True, displays the line that called the function containing
|
| 65 |
+
the warning to show were the function is called. Otherwise, the
|
| 66 |
+
line that implements the function is displayed.
|
| 67 |
+
raise_on_extra_warnings : bool, default True
|
| 68 |
+
Whether extra warnings not of the type `expected_warning` should
|
| 69 |
+
cause the test to fail.
|
| 70 |
+
match : str, optional
|
| 71 |
+
Match warning message.
|
| 72 |
+
|
| 73 |
+
Examples
|
| 74 |
+
--------
|
| 75 |
+
>>> import warnings
|
| 76 |
+
>>> with assert_produces_warning():
|
| 77 |
+
... warnings.warn(UserWarning())
|
| 78 |
+
...
|
| 79 |
+
>>> with assert_produces_warning(False):
|
| 80 |
+
... warnings.warn(RuntimeWarning())
|
| 81 |
+
...
|
| 82 |
+
Traceback (most recent call last):
|
| 83 |
+
...
|
| 84 |
+
AssertionError: Caused unexpected warning(s): ['RuntimeWarning'].
|
| 85 |
+
>>> with assert_produces_warning(UserWarning):
|
| 86 |
+
... warnings.warn(RuntimeWarning())
|
| 87 |
+
Traceback (most recent call last):
|
| 88 |
+
...
|
| 89 |
+
AssertionError: Did not see expected warning of class 'UserWarning'.
|
| 90 |
+
|
| 91 |
+
..warn:: This is *not* thread-safe.
|
| 92 |
+
"""
|
| 93 |
+
__tracebackhide__ = True
|
| 94 |
+
|
| 95 |
+
with warnings.catch_warnings(record=True) as w:
|
| 96 |
+
warnings.simplefilter(filter_level)
|
| 97 |
+
try:
|
| 98 |
+
yield w
|
| 99 |
+
finally:
|
| 100 |
+
if expected_warning:
|
| 101 |
+
expected_warning = cast(type[Warning], expected_warning)
|
| 102 |
+
_assert_caught_expected_warning(
|
| 103 |
+
caught_warnings=w,
|
| 104 |
+
expected_warning=expected_warning,
|
| 105 |
+
match=match,
|
| 106 |
+
check_stacklevel=check_stacklevel,
|
| 107 |
+
)
|
| 108 |
+
if raise_on_extra_warnings:
|
| 109 |
+
_assert_caught_no_extra_warnings(
|
| 110 |
+
caught_warnings=w,
|
| 111 |
+
expected_warning=expected_warning,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def maybe_produces_warning(warning: type[Warning], condition: bool, **kwargs):
|
| 116 |
+
"""
|
| 117 |
+
Return a context manager that possibly checks a warning based on the condition
|
| 118 |
+
"""
|
| 119 |
+
if condition:
|
| 120 |
+
return assert_produces_warning(warning, **kwargs)
|
| 121 |
+
else:
|
| 122 |
+
return nullcontext()
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def _assert_caught_expected_warning(
|
| 126 |
+
*,
|
| 127 |
+
caught_warnings: Sequence[warnings.WarningMessage],
|
| 128 |
+
expected_warning: type[Warning],
|
| 129 |
+
match: str | None,
|
| 130 |
+
check_stacklevel: bool,
|
| 131 |
+
) -> None:
|
| 132 |
+
"""Assert that there was the expected warning among the caught warnings."""
|
| 133 |
+
saw_warning = False
|
| 134 |
+
matched_message = False
|
| 135 |
+
unmatched_messages = []
|
| 136 |
+
|
| 137 |
+
for actual_warning in caught_warnings:
|
| 138 |
+
if issubclass(actual_warning.category, expected_warning):
|
| 139 |
+
saw_warning = True
|
| 140 |
+
|
| 141 |
+
if check_stacklevel:
|
| 142 |
+
_assert_raised_with_correct_stacklevel(actual_warning)
|
| 143 |
+
|
| 144 |
+
if match is not None:
|
| 145 |
+
if re.search(match, str(actual_warning.message)):
|
| 146 |
+
matched_message = True
|
| 147 |
+
else:
|
| 148 |
+
unmatched_messages.append(actual_warning.message)
|
| 149 |
+
|
| 150 |
+
if not saw_warning:
|
| 151 |
+
raise AssertionError(
|
| 152 |
+
f"Did not see expected warning of class "
|
| 153 |
+
f"{repr(expected_warning.__name__)}"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if match and not matched_message:
|
| 157 |
+
raise AssertionError(
|
| 158 |
+
f"Did not see warning {repr(expected_warning.__name__)} "
|
| 159 |
+
f"matching '{match}'. The emitted warning messages are "
|
| 160 |
+
f"{unmatched_messages}"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def _assert_caught_no_extra_warnings(
|
| 165 |
+
*,
|
| 166 |
+
caught_warnings: Sequence[warnings.WarningMessage],
|
| 167 |
+
expected_warning: type[Warning] | bool | tuple[type[Warning], ...] | None,
|
| 168 |
+
) -> None:
|
| 169 |
+
"""Assert that no extra warnings apart from the expected ones are caught."""
|
| 170 |
+
extra_warnings = []
|
| 171 |
+
|
| 172 |
+
for actual_warning in caught_warnings:
|
| 173 |
+
if _is_unexpected_warning(actual_warning, expected_warning):
|
| 174 |
+
# GH#38630 pytest.filterwarnings does not suppress these.
|
| 175 |
+
if actual_warning.category == ResourceWarning:
|
| 176 |
+
# GH 44732: Don't make the CI flaky by filtering SSL-related
|
| 177 |
+
# ResourceWarning from dependencies
|
| 178 |
+
if "unclosed <ssl.SSLSocket" in str(actual_warning.message):
|
| 179 |
+
continue
|
| 180 |
+
# GH 44844: Matplotlib leaves font files open during the entire process
|
| 181 |
+
# upon import. Don't make CI flaky if ResourceWarning raised
|
| 182 |
+
# due to these open files.
|
| 183 |
+
if any("matplotlib" in mod for mod in sys.modules):
|
| 184 |
+
continue
|
| 185 |
+
if PY311 and actual_warning.category == EncodingWarning:
|
| 186 |
+
# EncodingWarnings are checked in the CI
|
| 187 |
+
# pyproject.toml errors on EncodingWarnings in pandas
|
| 188 |
+
# Ignore EncodingWarnings from other libraries
|
| 189 |
+
continue
|
| 190 |
+
extra_warnings.append(
|
| 191 |
+
(
|
| 192 |
+
actual_warning.category.__name__,
|
| 193 |
+
actual_warning.message,
|
| 194 |
+
actual_warning.filename,
|
| 195 |
+
actual_warning.lineno,
|
| 196 |
+
)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
if extra_warnings:
|
| 200 |
+
raise AssertionError(f"Caused unexpected warning(s): {repr(extra_warnings)}")
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def _is_unexpected_warning(
|
| 204 |
+
actual_warning: warnings.WarningMessage,
|
| 205 |
+
expected_warning: type[Warning] | bool | tuple[type[Warning], ...] | None,
|
| 206 |
+
) -> bool:
|
| 207 |
+
"""Check if the actual warning issued is unexpected."""
|
| 208 |
+
if actual_warning and not expected_warning:
|
| 209 |
+
return True
|
| 210 |
+
expected_warning = cast(type[Warning], expected_warning)
|
| 211 |
+
return bool(not issubclass(actual_warning.category, expected_warning))
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def _assert_raised_with_correct_stacklevel(
|
| 215 |
+
actual_warning: warnings.WarningMessage,
|
| 216 |
+
) -> None:
|
| 217 |
+
# https://stackoverflow.com/questions/17407119/python-inspect-stack-is-slow
|
| 218 |
+
frame = inspect.currentframe()
|
| 219 |
+
for _ in range(4):
|
| 220 |
+
frame = frame.f_back # type: ignore[union-attr]
|
| 221 |
+
try:
|
| 222 |
+
caller_filename = inspect.getfile(frame) # type: ignore[arg-type]
|
| 223 |
+
finally:
|
| 224 |
+
# See note in
|
| 225 |
+
# https://docs.python.org/3/library/inspect.html#inspect.Traceback
|
| 226 |
+
del frame
|
| 227 |
+
msg = (
|
| 228 |
+
"Warning not set with correct stacklevel. "
|
| 229 |
+
f"File where warning is raised: {actual_warning.filename} != "
|
| 230 |
+
f"{caller_filename}. Warning message: {actual_warning.message}"
|
| 231 |
+
)
|
| 232 |
+
assert actual_warning.filename == caller_filename, msg
|
emu3/lib/python3.10/site-packages/pandas/_testing/asserters.py
ADDED
|
@@ -0,0 +1,1435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import operator
|
| 4 |
+
from typing import (
|
| 5 |
+
TYPE_CHECKING,
|
| 6 |
+
Literal,
|
| 7 |
+
NoReturn,
|
| 8 |
+
cast,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
from pandas._libs import lib
|
| 14 |
+
from pandas._libs.missing import is_matching_na
|
| 15 |
+
from pandas._libs.sparse import SparseIndex
|
| 16 |
+
import pandas._libs.testing as _testing
|
| 17 |
+
from pandas._libs.tslibs.np_datetime import compare_mismatched_resolutions
|
| 18 |
+
|
| 19 |
+
from pandas.core.dtypes.common import (
|
| 20 |
+
is_bool,
|
| 21 |
+
is_float_dtype,
|
| 22 |
+
is_integer_dtype,
|
| 23 |
+
is_number,
|
| 24 |
+
is_numeric_dtype,
|
| 25 |
+
needs_i8_conversion,
|
| 26 |
+
)
|
| 27 |
+
from pandas.core.dtypes.dtypes import (
|
| 28 |
+
CategoricalDtype,
|
| 29 |
+
DatetimeTZDtype,
|
| 30 |
+
ExtensionDtype,
|
| 31 |
+
NumpyEADtype,
|
| 32 |
+
)
|
| 33 |
+
from pandas.core.dtypes.missing import array_equivalent
|
| 34 |
+
|
| 35 |
+
import pandas as pd
|
| 36 |
+
from pandas import (
|
| 37 |
+
Categorical,
|
| 38 |
+
DataFrame,
|
| 39 |
+
DatetimeIndex,
|
| 40 |
+
Index,
|
| 41 |
+
IntervalDtype,
|
| 42 |
+
IntervalIndex,
|
| 43 |
+
MultiIndex,
|
| 44 |
+
PeriodIndex,
|
| 45 |
+
RangeIndex,
|
| 46 |
+
Series,
|
| 47 |
+
TimedeltaIndex,
|
| 48 |
+
)
|
| 49 |
+
from pandas.core.arrays import (
|
| 50 |
+
DatetimeArray,
|
| 51 |
+
ExtensionArray,
|
| 52 |
+
IntervalArray,
|
| 53 |
+
PeriodArray,
|
| 54 |
+
TimedeltaArray,
|
| 55 |
+
)
|
| 56 |
+
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
|
| 57 |
+
from pandas.core.arrays.string_ import StringDtype
|
| 58 |
+
from pandas.core.indexes.api import safe_sort_index
|
| 59 |
+
|
| 60 |
+
from pandas.io.formats.printing import pprint_thing
|
| 61 |
+
|
| 62 |
+
if TYPE_CHECKING:
|
| 63 |
+
from pandas._typing import DtypeObj
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def assert_almost_equal(
|
| 67 |
+
left,
|
| 68 |
+
right,
|
| 69 |
+
check_dtype: bool | Literal["equiv"] = "equiv",
|
| 70 |
+
rtol: float = 1.0e-5,
|
| 71 |
+
atol: float = 1.0e-8,
|
| 72 |
+
**kwargs,
|
| 73 |
+
) -> None:
|
| 74 |
+
"""
|
| 75 |
+
Check that the left and right objects are approximately equal.
|
| 76 |
+
|
| 77 |
+
By approximately equal, we refer to objects that are numbers or that
|
| 78 |
+
contain numbers which may be equivalent to specific levels of precision.
|
| 79 |
+
|
| 80 |
+
Parameters
|
| 81 |
+
----------
|
| 82 |
+
left : object
|
| 83 |
+
right : object
|
| 84 |
+
check_dtype : bool or {'equiv'}, default 'equiv'
|
| 85 |
+
Check dtype if both a and b are the same type. If 'equiv' is passed in,
|
| 86 |
+
then `RangeIndex` and `Index` with int64 dtype are also considered
|
| 87 |
+
equivalent when doing type checking.
|
| 88 |
+
rtol : float, default 1e-5
|
| 89 |
+
Relative tolerance.
|
| 90 |
+
atol : float, default 1e-8
|
| 91 |
+
Absolute tolerance.
|
| 92 |
+
"""
|
| 93 |
+
if isinstance(left, Index):
|
| 94 |
+
assert_index_equal(
|
| 95 |
+
left,
|
| 96 |
+
right,
|
| 97 |
+
check_exact=False,
|
| 98 |
+
exact=check_dtype,
|
| 99 |
+
rtol=rtol,
|
| 100 |
+
atol=atol,
|
| 101 |
+
**kwargs,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
elif isinstance(left, Series):
|
| 105 |
+
assert_series_equal(
|
| 106 |
+
left,
|
| 107 |
+
right,
|
| 108 |
+
check_exact=False,
|
| 109 |
+
check_dtype=check_dtype,
|
| 110 |
+
rtol=rtol,
|
| 111 |
+
atol=atol,
|
| 112 |
+
**kwargs,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
elif isinstance(left, DataFrame):
|
| 116 |
+
assert_frame_equal(
|
| 117 |
+
left,
|
| 118 |
+
right,
|
| 119 |
+
check_exact=False,
|
| 120 |
+
check_dtype=check_dtype,
|
| 121 |
+
rtol=rtol,
|
| 122 |
+
atol=atol,
|
| 123 |
+
**kwargs,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
else:
|
| 127 |
+
# Other sequences.
|
| 128 |
+
if check_dtype:
|
| 129 |
+
if is_number(left) and is_number(right):
|
| 130 |
+
# Do not compare numeric classes, like np.float64 and float.
|
| 131 |
+
pass
|
| 132 |
+
elif is_bool(left) and is_bool(right):
|
| 133 |
+
# Do not compare bool classes, like np.bool_ and bool.
|
| 134 |
+
pass
|
| 135 |
+
else:
|
| 136 |
+
if isinstance(left, np.ndarray) or isinstance(right, np.ndarray):
|
| 137 |
+
obj = "numpy array"
|
| 138 |
+
else:
|
| 139 |
+
obj = "Input"
|
| 140 |
+
assert_class_equal(left, right, obj=obj)
|
| 141 |
+
|
| 142 |
+
# if we have "equiv", this becomes True
|
| 143 |
+
_testing.assert_almost_equal(
|
| 144 |
+
left, right, check_dtype=bool(check_dtype), rtol=rtol, atol=atol, **kwargs
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def _check_isinstance(left, right, cls) -> None:
|
| 149 |
+
"""
|
| 150 |
+
Helper method for our assert_* methods that ensures that
|
| 151 |
+
the two objects being compared have the right type before
|
| 152 |
+
proceeding with the comparison.
|
| 153 |
+
|
| 154 |
+
Parameters
|
| 155 |
+
----------
|
| 156 |
+
left : The first object being compared.
|
| 157 |
+
right : The second object being compared.
|
| 158 |
+
cls : The class type to check against.
|
| 159 |
+
|
| 160 |
+
Raises
|
| 161 |
+
------
|
| 162 |
+
AssertionError : Either `left` or `right` is not an instance of `cls`.
|
| 163 |
+
"""
|
| 164 |
+
cls_name = cls.__name__
|
| 165 |
+
|
| 166 |
+
if not isinstance(left, cls):
|
| 167 |
+
raise AssertionError(
|
| 168 |
+
f"{cls_name} Expected type {cls}, found {type(left)} instead"
|
| 169 |
+
)
|
| 170 |
+
if not isinstance(right, cls):
|
| 171 |
+
raise AssertionError(
|
| 172 |
+
f"{cls_name} Expected type {cls}, found {type(right)} instead"
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def assert_dict_equal(left, right, compare_keys: bool = True) -> None:
|
| 177 |
+
_check_isinstance(left, right, dict)
|
| 178 |
+
_testing.assert_dict_equal(left, right, compare_keys=compare_keys)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def assert_index_equal(
|
| 182 |
+
left: Index,
|
| 183 |
+
right: Index,
|
| 184 |
+
exact: bool | str = "equiv",
|
| 185 |
+
check_names: bool = True,
|
| 186 |
+
check_exact: bool = True,
|
| 187 |
+
check_categorical: bool = True,
|
| 188 |
+
check_order: bool = True,
|
| 189 |
+
rtol: float = 1.0e-5,
|
| 190 |
+
atol: float = 1.0e-8,
|
| 191 |
+
obj: str = "Index",
|
| 192 |
+
) -> None:
|
| 193 |
+
"""
|
| 194 |
+
Check that left and right Index are equal.
|
| 195 |
+
|
| 196 |
+
Parameters
|
| 197 |
+
----------
|
| 198 |
+
left : Index
|
| 199 |
+
right : Index
|
| 200 |
+
exact : bool or {'equiv'}, default 'equiv'
|
| 201 |
+
Whether to check the Index class, dtype and inferred_type
|
| 202 |
+
are identical. If 'equiv', then RangeIndex can be substituted for
|
| 203 |
+
Index with an int64 dtype as well.
|
| 204 |
+
check_names : bool, default True
|
| 205 |
+
Whether to check the names attribute.
|
| 206 |
+
check_exact : bool, default True
|
| 207 |
+
Whether to compare number exactly.
|
| 208 |
+
check_categorical : bool, default True
|
| 209 |
+
Whether to compare internal Categorical exactly.
|
| 210 |
+
check_order : bool, default True
|
| 211 |
+
Whether to compare the order of index entries as well as their values.
|
| 212 |
+
If True, both indexes must contain the same elements, in the same order.
|
| 213 |
+
If False, both indexes must contain the same elements, but in any order.
|
| 214 |
+
rtol : float, default 1e-5
|
| 215 |
+
Relative tolerance. Only used when check_exact is False.
|
| 216 |
+
atol : float, default 1e-8
|
| 217 |
+
Absolute tolerance. Only used when check_exact is False.
|
| 218 |
+
obj : str, default 'Index'
|
| 219 |
+
Specify object name being compared, internally used to show appropriate
|
| 220 |
+
assertion message.
|
| 221 |
+
|
| 222 |
+
Examples
|
| 223 |
+
--------
|
| 224 |
+
>>> from pandas import testing as tm
|
| 225 |
+
>>> a = pd.Index([1, 2, 3])
|
| 226 |
+
>>> b = pd.Index([1, 2, 3])
|
| 227 |
+
>>> tm.assert_index_equal(a, b)
|
| 228 |
+
"""
|
| 229 |
+
__tracebackhide__ = True
|
| 230 |
+
|
| 231 |
+
def _check_types(left, right, obj: str = "Index") -> None:
|
| 232 |
+
if not exact:
|
| 233 |
+
return
|
| 234 |
+
|
| 235 |
+
assert_class_equal(left, right, exact=exact, obj=obj)
|
| 236 |
+
assert_attr_equal("inferred_type", left, right, obj=obj)
|
| 237 |
+
|
| 238 |
+
# Skip exact dtype checking when `check_categorical` is False
|
| 239 |
+
if isinstance(left.dtype, CategoricalDtype) and isinstance(
|
| 240 |
+
right.dtype, CategoricalDtype
|
| 241 |
+
):
|
| 242 |
+
if check_categorical:
|
| 243 |
+
assert_attr_equal("dtype", left, right, obj=obj)
|
| 244 |
+
assert_index_equal(left.categories, right.categories, exact=exact)
|
| 245 |
+
return
|
| 246 |
+
|
| 247 |
+
assert_attr_equal("dtype", left, right, obj=obj)
|
| 248 |
+
|
| 249 |
+
# instance validation
|
| 250 |
+
_check_isinstance(left, right, Index)
|
| 251 |
+
|
| 252 |
+
# class / dtype comparison
|
| 253 |
+
_check_types(left, right, obj=obj)
|
| 254 |
+
|
| 255 |
+
# level comparison
|
| 256 |
+
if left.nlevels != right.nlevels:
|
| 257 |
+
msg1 = f"{obj} levels are different"
|
| 258 |
+
msg2 = f"{left.nlevels}, {left}"
|
| 259 |
+
msg3 = f"{right.nlevels}, {right}"
|
| 260 |
+
raise_assert_detail(obj, msg1, msg2, msg3)
|
| 261 |
+
|
| 262 |
+
# length comparison
|
| 263 |
+
if len(left) != len(right):
|
| 264 |
+
msg1 = f"{obj} length are different"
|
| 265 |
+
msg2 = f"{len(left)}, {left}"
|
| 266 |
+
msg3 = f"{len(right)}, {right}"
|
| 267 |
+
raise_assert_detail(obj, msg1, msg2, msg3)
|
| 268 |
+
|
| 269 |
+
# If order doesn't matter then sort the index entries
|
| 270 |
+
if not check_order:
|
| 271 |
+
left = safe_sort_index(left)
|
| 272 |
+
right = safe_sort_index(right)
|
| 273 |
+
|
| 274 |
+
# MultiIndex special comparison for little-friendly error messages
|
| 275 |
+
if isinstance(left, MultiIndex):
|
| 276 |
+
right = cast(MultiIndex, right)
|
| 277 |
+
|
| 278 |
+
for level in range(left.nlevels):
|
| 279 |
+
lobj = f"MultiIndex level [{level}]"
|
| 280 |
+
try:
|
| 281 |
+
# try comparison on levels/codes to avoid densifying MultiIndex
|
| 282 |
+
assert_index_equal(
|
| 283 |
+
left.levels[level],
|
| 284 |
+
right.levels[level],
|
| 285 |
+
exact=exact,
|
| 286 |
+
check_names=check_names,
|
| 287 |
+
check_exact=check_exact,
|
| 288 |
+
check_categorical=check_categorical,
|
| 289 |
+
rtol=rtol,
|
| 290 |
+
atol=atol,
|
| 291 |
+
obj=lobj,
|
| 292 |
+
)
|
| 293 |
+
assert_numpy_array_equal(left.codes[level], right.codes[level])
|
| 294 |
+
except AssertionError:
|
| 295 |
+
llevel = left.get_level_values(level)
|
| 296 |
+
rlevel = right.get_level_values(level)
|
| 297 |
+
|
| 298 |
+
assert_index_equal(
|
| 299 |
+
llevel,
|
| 300 |
+
rlevel,
|
| 301 |
+
exact=exact,
|
| 302 |
+
check_names=check_names,
|
| 303 |
+
check_exact=check_exact,
|
| 304 |
+
check_categorical=check_categorical,
|
| 305 |
+
rtol=rtol,
|
| 306 |
+
atol=atol,
|
| 307 |
+
obj=lobj,
|
| 308 |
+
)
|
| 309 |
+
# get_level_values may change dtype
|
| 310 |
+
_check_types(left.levels[level], right.levels[level], obj=obj)
|
| 311 |
+
|
| 312 |
+
# skip exact index checking when `check_categorical` is False
|
| 313 |
+
elif check_exact and check_categorical:
|
| 314 |
+
if not left.equals(right):
|
| 315 |
+
mismatch = left._values != right._values
|
| 316 |
+
|
| 317 |
+
if not isinstance(mismatch, np.ndarray):
|
| 318 |
+
mismatch = cast("ExtensionArray", mismatch).fillna(True)
|
| 319 |
+
|
| 320 |
+
diff = np.sum(mismatch.astype(int)) * 100.0 / len(left)
|
| 321 |
+
msg = f"{obj} values are different ({np.round(diff, 5)} %)"
|
| 322 |
+
raise_assert_detail(obj, msg, left, right)
|
| 323 |
+
else:
|
| 324 |
+
# if we have "equiv", this becomes True
|
| 325 |
+
exact_bool = bool(exact)
|
| 326 |
+
_testing.assert_almost_equal(
|
| 327 |
+
left.values,
|
| 328 |
+
right.values,
|
| 329 |
+
rtol=rtol,
|
| 330 |
+
atol=atol,
|
| 331 |
+
check_dtype=exact_bool,
|
| 332 |
+
obj=obj,
|
| 333 |
+
lobj=left,
|
| 334 |
+
robj=right,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# metadata comparison
|
| 338 |
+
if check_names:
|
| 339 |
+
assert_attr_equal("names", left, right, obj=obj)
|
| 340 |
+
if isinstance(left, PeriodIndex) or isinstance(right, PeriodIndex):
|
| 341 |
+
assert_attr_equal("dtype", left, right, obj=obj)
|
| 342 |
+
if isinstance(left, IntervalIndex) or isinstance(right, IntervalIndex):
|
| 343 |
+
assert_interval_array_equal(left._values, right._values)
|
| 344 |
+
|
| 345 |
+
if check_categorical:
|
| 346 |
+
if isinstance(left.dtype, CategoricalDtype) or isinstance(
|
| 347 |
+
right.dtype, CategoricalDtype
|
| 348 |
+
):
|
| 349 |
+
assert_categorical_equal(left._values, right._values, obj=f"{obj} category")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def assert_class_equal(
|
| 353 |
+
left, right, exact: bool | str = True, obj: str = "Input"
|
| 354 |
+
) -> None:
|
| 355 |
+
"""
|
| 356 |
+
Checks classes are equal.
|
| 357 |
+
"""
|
| 358 |
+
__tracebackhide__ = True
|
| 359 |
+
|
| 360 |
+
def repr_class(x):
|
| 361 |
+
if isinstance(x, Index):
|
| 362 |
+
# return Index as it is to include values in the error message
|
| 363 |
+
return x
|
| 364 |
+
|
| 365 |
+
return type(x).__name__
|
| 366 |
+
|
| 367 |
+
def is_class_equiv(idx: Index) -> bool:
|
| 368 |
+
"""Classes that are a RangeIndex (sub-)instance or exactly an `Index` .
|
| 369 |
+
|
| 370 |
+
This only checks class equivalence. There is a separate check that the
|
| 371 |
+
dtype is int64.
|
| 372 |
+
"""
|
| 373 |
+
return type(idx) is Index or isinstance(idx, RangeIndex)
|
| 374 |
+
|
| 375 |
+
if type(left) == type(right):
|
| 376 |
+
return
|
| 377 |
+
|
| 378 |
+
if exact == "equiv":
|
| 379 |
+
if is_class_equiv(left) and is_class_equiv(right):
|
| 380 |
+
return
|
| 381 |
+
|
| 382 |
+
msg = f"{obj} classes are different"
|
| 383 |
+
raise_assert_detail(obj, msg, repr_class(left), repr_class(right))
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def assert_attr_equal(attr: str, left, right, obj: str = "Attributes") -> None:
|
| 387 |
+
"""
|
| 388 |
+
Check attributes are equal. Both objects must have attribute.
|
| 389 |
+
|
| 390 |
+
Parameters
|
| 391 |
+
----------
|
| 392 |
+
attr : str
|
| 393 |
+
Attribute name being compared.
|
| 394 |
+
left : object
|
| 395 |
+
right : object
|
| 396 |
+
obj : str, default 'Attributes'
|
| 397 |
+
Specify object name being compared, internally used to show appropriate
|
| 398 |
+
assertion message
|
| 399 |
+
"""
|
| 400 |
+
__tracebackhide__ = True
|
| 401 |
+
|
| 402 |
+
left_attr = getattr(left, attr)
|
| 403 |
+
right_attr = getattr(right, attr)
|
| 404 |
+
|
| 405 |
+
if left_attr is right_attr or is_matching_na(left_attr, right_attr):
|
| 406 |
+
# e.g. both np.nan, both NaT, both pd.NA, ...
|
| 407 |
+
return None
|
| 408 |
+
|
| 409 |
+
try:
|
| 410 |
+
result = left_attr == right_attr
|
| 411 |
+
except TypeError:
|
| 412 |
+
# datetimetz on rhs may raise TypeError
|
| 413 |
+
result = False
|
| 414 |
+
if (left_attr is pd.NA) ^ (right_attr is pd.NA):
|
| 415 |
+
result = False
|
| 416 |
+
elif not isinstance(result, bool):
|
| 417 |
+
result = result.all()
|
| 418 |
+
|
| 419 |
+
if not result:
|
| 420 |
+
msg = f'Attribute "{attr}" are different'
|
| 421 |
+
raise_assert_detail(obj, msg, left_attr, right_attr)
|
| 422 |
+
return None
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def assert_is_valid_plot_return_object(objs) -> None:
|
| 426 |
+
from matplotlib.artist import Artist
|
| 427 |
+
from matplotlib.axes import Axes
|
| 428 |
+
|
| 429 |
+
if isinstance(objs, (Series, np.ndarray)):
|
| 430 |
+
if isinstance(objs, Series):
|
| 431 |
+
objs = objs._values
|
| 432 |
+
for el in objs.ravel():
|
| 433 |
+
msg = (
|
| 434 |
+
"one of 'objs' is not a matplotlib Axes instance, "
|
| 435 |
+
f"type encountered {repr(type(el).__name__)}"
|
| 436 |
+
)
|
| 437 |
+
assert isinstance(el, (Axes, dict)), msg
|
| 438 |
+
else:
|
| 439 |
+
msg = (
|
| 440 |
+
"objs is neither an ndarray of Artist instances nor a single "
|
| 441 |
+
"ArtistArtist instance, tuple, or dict, 'objs' is a "
|
| 442 |
+
f"{repr(type(objs).__name__)}"
|
| 443 |
+
)
|
| 444 |
+
assert isinstance(objs, (Artist, tuple, dict)), msg
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def assert_is_sorted(seq) -> None:
|
| 448 |
+
"""Assert that the sequence is sorted."""
|
| 449 |
+
if isinstance(seq, (Index, Series)):
|
| 450 |
+
seq = seq.values
|
| 451 |
+
# sorting does not change precisions
|
| 452 |
+
if isinstance(seq, np.ndarray):
|
| 453 |
+
assert_numpy_array_equal(seq, np.sort(np.array(seq)))
|
| 454 |
+
else:
|
| 455 |
+
assert_extension_array_equal(seq, seq[seq.argsort()])
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def assert_categorical_equal(
|
| 459 |
+
left,
|
| 460 |
+
right,
|
| 461 |
+
check_dtype: bool = True,
|
| 462 |
+
check_category_order: bool = True,
|
| 463 |
+
obj: str = "Categorical",
|
| 464 |
+
) -> None:
|
| 465 |
+
"""
|
| 466 |
+
Test that Categoricals are equivalent.
|
| 467 |
+
|
| 468 |
+
Parameters
|
| 469 |
+
----------
|
| 470 |
+
left : Categorical
|
| 471 |
+
right : Categorical
|
| 472 |
+
check_dtype : bool, default True
|
| 473 |
+
Check that integer dtype of the codes are the same.
|
| 474 |
+
check_category_order : bool, default True
|
| 475 |
+
Whether the order of the categories should be compared, which
|
| 476 |
+
implies identical integer codes. If False, only the resulting
|
| 477 |
+
values are compared. The ordered attribute is
|
| 478 |
+
checked regardless.
|
| 479 |
+
obj : str, default 'Categorical'
|
| 480 |
+
Specify object name being compared, internally used to show appropriate
|
| 481 |
+
assertion message.
|
| 482 |
+
"""
|
| 483 |
+
_check_isinstance(left, right, Categorical)
|
| 484 |
+
|
| 485 |
+
exact: bool | str
|
| 486 |
+
if isinstance(left.categories, RangeIndex) or isinstance(
|
| 487 |
+
right.categories, RangeIndex
|
| 488 |
+
):
|
| 489 |
+
exact = "equiv"
|
| 490 |
+
else:
|
| 491 |
+
# We still want to require exact matches for Index
|
| 492 |
+
exact = True
|
| 493 |
+
|
| 494 |
+
if check_category_order:
|
| 495 |
+
assert_index_equal(
|
| 496 |
+
left.categories, right.categories, obj=f"{obj}.categories", exact=exact
|
| 497 |
+
)
|
| 498 |
+
assert_numpy_array_equal(
|
| 499 |
+
left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes"
|
| 500 |
+
)
|
| 501 |
+
else:
|
| 502 |
+
try:
|
| 503 |
+
lc = left.categories.sort_values()
|
| 504 |
+
rc = right.categories.sort_values()
|
| 505 |
+
except TypeError:
|
| 506 |
+
# e.g. '<' not supported between instances of 'int' and 'str'
|
| 507 |
+
lc, rc = left.categories, right.categories
|
| 508 |
+
assert_index_equal(lc, rc, obj=f"{obj}.categories", exact=exact)
|
| 509 |
+
assert_index_equal(
|
| 510 |
+
left.categories.take(left.codes),
|
| 511 |
+
right.categories.take(right.codes),
|
| 512 |
+
obj=f"{obj}.values",
|
| 513 |
+
exact=exact,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
assert_attr_equal("ordered", left, right, obj=obj)
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def assert_interval_array_equal(
|
| 520 |
+
left, right, exact: bool | Literal["equiv"] = "equiv", obj: str = "IntervalArray"
|
| 521 |
+
) -> None:
|
| 522 |
+
"""
|
| 523 |
+
Test that two IntervalArrays are equivalent.
|
| 524 |
+
|
| 525 |
+
Parameters
|
| 526 |
+
----------
|
| 527 |
+
left, right : IntervalArray
|
| 528 |
+
The IntervalArrays to compare.
|
| 529 |
+
exact : bool or {'equiv'}, default 'equiv'
|
| 530 |
+
Whether to check the Index class, dtype and inferred_type
|
| 531 |
+
are identical. If 'equiv', then RangeIndex can be substituted for
|
| 532 |
+
Index with an int64 dtype as well.
|
| 533 |
+
obj : str, default 'IntervalArray'
|
| 534 |
+
Specify object name being compared, internally used to show appropriate
|
| 535 |
+
assertion message
|
| 536 |
+
"""
|
| 537 |
+
_check_isinstance(left, right, IntervalArray)
|
| 538 |
+
|
| 539 |
+
kwargs = {}
|
| 540 |
+
if left._left.dtype.kind in "mM":
|
| 541 |
+
# We have a DatetimeArray or TimedeltaArray
|
| 542 |
+
kwargs["check_freq"] = False
|
| 543 |
+
|
| 544 |
+
assert_equal(left._left, right._left, obj=f"{obj}.left", **kwargs)
|
| 545 |
+
assert_equal(left._right, right._right, obj=f"{obj}.left", **kwargs)
|
| 546 |
+
|
| 547 |
+
assert_attr_equal("closed", left, right, obj=obj)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def assert_period_array_equal(left, right, obj: str = "PeriodArray") -> None:
|
| 551 |
+
_check_isinstance(left, right, PeriodArray)
|
| 552 |
+
|
| 553 |
+
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
|
| 554 |
+
assert_attr_equal("dtype", left, right, obj=obj)
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def assert_datetime_array_equal(
|
| 558 |
+
left, right, obj: str = "DatetimeArray", check_freq: bool = True
|
| 559 |
+
) -> None:
|
| 560 |
+
__tracebackhide__ = True
|
| 561 |
+
_check_isinstance(left, right, DatetimeArray)
|
| 562 |
+
|
| 563 |
+
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
|
| 564 |
+
if check_freq:
|
| 565 |
+
assert_attr_equal("freq", left, right, obj=obj)
|
| 566 |
+
assert_attr_equal("tz", left, right, obj=obj)
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
def assert_timedelta_array_equal(
|
| 570 |
+
left, right, obj: str = "TimedeltaArray", check_freq: bool = True
|
| 571 |
+
) -> None:
|
| 572 |
+
__tracebackhide__ = True
|
| 573 |
+
_check_isinstance(left, right, TimedeltaArray)
|
| 574 |
+
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
|
| 575 |
+
if check_freq:
|
| 576 |
+
assert_attr_equal("freq", left, right, obj=obj)
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
def raise_assert_detail(
|
| 580 |
+
obj, message, left, right, diff=None, first_diff=None, index_values=None
|
| 581 |
+
) -> NoReturn:
|
| 582 |
+
__tracebackhide__ = True
|
| 583 |
+
|
| 584 |
+
msg = f"""{obj} are different
|
| 585 |
+
|
| 586 |
+
{message}"""
|
| 587 |
+
|
| 588 |
+
if isinstance(index_values, Index):
|
| 589 |
+
index_values = np.asarray(index_values)
|
| 590 |
+
|
| 591 |
+
if isinstance(index_values, np.ndarray):
|
| 592 |
+
msg += f"\n[index]: {pprint_thing(index_values)}"
|
| 593 |
+
|
| 594 |
+
if isinstance(left, np.ndarray):
|
| 595 |
+
left = pprint_thing(left)
|
| 596 |
+
elif isinstance(left, (CategoricalDtype, NumpyEADtype, StringDtype)):
|
| 597 |
+
left = repr(left)
|
| 598 |
+
|
| 599 |
+
if isinstance(right, np.ndarray):
|
| 600 |
+
right = pprint_thing(right)
|
| 601 |
+
elif isinstance(right, (CategoricalDtype, NumpyEADtype, StringDtype)):
|
| 602 |
+
right = repr(right)
|
| 603 |
+
|
| 604 |
+
msg += f"""
|
| 605 |
+
[left]: {left}
|
| 606 |
+
[right]: {right}"""
|
| 607 |
+
|
| 608 |
+
if diff is not None:
|
| 609 |
+
msg += f"\n[diff]: {diff}"
|
| 610 |
+
|
| 611 |
+
if first_diff is not None:
|
| 612 |
+
msg += f"\n{first_diff}"
|
| 613 |
+
|
| 614 |
+
raise AssertionError(msg)
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def assert_numpy_array_equal(
|
| 618 |
+
left,
|
| 619 |
+
right,
|
| 620 |
+
strict_nan: bool = False,
|
| 621 |
+
check_dtype: bool | Literal["equiv"] = True,
|
| 622 |
+
err_msg=None,
|
| 623 |
+
check_same=None,
|
| 624 |
+
obj: str = "numpy array",
|
| 625 |
+
index_values=None,
|
| 626 |
+
) -> None:
|
| 627 |
+
"""
|
| 628 |
+
Check that 'np.ndarray' is equivalent.
|
| 629 |
+
|
| 630 |
+
Parameters
|
| 631 |
+
----------
|
| 632 |
+
left, right : numpy.ndarray or iterable
|
| 633 |
+
The two arrays to be compared.
|
| 634 |
+
strict_nan : bool, default False
|
| 635 |
+
If True, consider NaN and None to be different.
|
| 636 |
+
check_dtype : bool, default True
|
| 637 |
+
Check dtype if both a and b are np.ndarray.
|
| 638 |
+
err_msg : str, default None
|
| 639 |
+
If provided, used as assertion message.
|
| 640 |
+
check_same : None|'copy'|'same', default None
|
| 641 |
+
Ensure left and right refer/do not refer to the same memory area.
|
| 642 |
+
obj : str, default 'numpy array'
|
| 643 |
+
Specify object name being compared, internally used to show appropriate
|
| 644 |
+
assertion message.
|
| 645 |
+
index_values : Index | numpy.ndarray, default None
|
| 646 |
+
optional index (shared by both left and right), used in output.
|
| 647 |
+
"""
|
| 648 |
+
__tracebackhide__ = True
|
| 649 |
+
|
| 650 |
+
# instance validation
|
| 651 |
+
# Show a detailed error message when classes are different
|
| 652 |
+
assert_class_equal(left, right, obj=obj)
|
| 653 |
+
# both classes must be an np.ndarray
|
| 654 |
+
_check_isinstance(left, right, np.ndarray)
|
| 655 |
+
|
| 656 |
+
def _get_base(obj):
|
| 657 |
+
return obj.base if getattr(obj, "base", None) is not None else obj
|
| 658 |
+
|
| 659 |
+
left_base = _get_base(left)
|
| 660 |
+
right_base = _get_base(right)
|
| 661 |
+
|
| 662 |
+
if check_same == "same":
|
| 663 |
+
if left_base is not right_base:
|
| 664 |
+
raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}")
|
| 665 |
+
elif check_same == "copy":
|
| 666 |
+
if left_base is right_base:
|
| 667 |
+
raise AssertionError(f"{repr(left_base)} is {repr(right_base)}")
|
| 668 |
+
|
| 669 |
+
def _raise(left, right, err_msg) -> NoReturn:
|
| 670 |
+
if err_msg is None:
|
| 671 |
+
if left.shape != right.shape:
|
| 672 |
+
raise_assert_detail(
|
| 673 |
+
obj, f"{obj} shapes are different", left.shape, right.shape
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
diff = 0
|
| 677 |
+
for left_arr, right_arr in zip(left, right):
|
| 678 |
+
# count up differences
|
| 679 |
+
if not array_equivalent(left_arr, right_arr, strict_nan=strict_nan):
|
| 680 |
+
diff += 1
|
| 681 |
+
|
| 682 |
+
diff = diff * 100.0 / left.size
|
| 683 |
+
msg = f"{obj} values are different ({np.round(diff, 5)} %)"
|
| 684 |
+
raise_assert_detail(obj, msg, left, right, index_values=index_values)
|
| 685 |
+
|
| 686 |
+
raise AssertionError(err_msg)
|
| 687 |
+
|
| 688 |
+
# compare shape and values
|
| 689 |
+
if not array_equivalent(left, right, strict_nan=strict_nan):
|
| 690 |
+
_raise(left, right, err_msg)
|
| 691 |
+
|
| 692 |
+
if check_dtype:
|
| 693 |
+
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
|
| 694 |
+
assert_attr_equal("dtype", left, right, obj=obj)
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
def assert_extension_array_equal(
|
| 698 |
+
left,
|
| 699 |
+
right,
|
| 700 |
+
check_dtype: bool | Literal["equiv"] = True,
|
| 701 |
+
index_values=None,
|
| 702 |
+
check_exact: bool | lib.NoDefault = lib.no_default,
|
| 703 |
+
rtol: float | lib.NoDefault = lib.no_default,
|
| 704 |
+
atol: float | lib.NoDefault = lib.no_default,
|
| 705 |
+
obj: str = "ExtensionArray",
|
| 706 |
+
) -> None:
|
| 707 |
+
"""
|
| 708 |
+
Check that left and right ExtensionArrays are equal.
|
| 709 |
+
|
| 710 |
+
Parameters
|
| 711 |
+
----------
|
| 712 |
+
left, right : ExtensionArray
|
| 713 |
+
The two arrays to compare.
|
| 714 |
+
check_dtype : bool, default True
|
| 715 |
+
Whether to check if the ExtensionArray dtypes are identical.
|
| 716 |
+
index_values : Index | numpy.ndarray, default None
|
| 717 |
+
Optional index (shared by both left and right), used in output.
|
| 718 |
+
check_exact : bool, default False
|
| 719 |
+
Whether to compare number exactly.
|
| 720 |
+
|
| 721 |
+
.. versionchanged:: 2.2.0
|
| 722 |
+
|
| 723 |
+
Defaults to True for integer dtypes if none of
|
| 724 |
+
``check_exact``, ``rtol`` and ``atol`` are specified.
|
| 725 |
+
rtol : float, default 1e-5
|
| 726 |
+
Relative tolerance. Only used when check_exact is False.
|
| 727 |
+
atol : float, default 1e-8
|
| 728 |
+
Absolute tolerance. Only used when check_exact is False.
|
| 729 |
+
obj : str, default 'ExtensionArray'
|
| 730 |
+
Specify object name being compared, internally used to show appropriate
|
| 731 |
+
assertion message.
|
| 732 |
+
|
| 733 |
+
.. versionadded:: 2.0.0
|
| 734 |
+
|
| 735 |
+
Notes
|
| 736 |
+
-----
|
| 737 |
+
Missing values are checked separately from valid values.
|
| 738 |
+
A mask of missing values is computed for each and checked to match.
|
| 739 |
+
The remaining all-valid values are cast to object dtype and checked.
|
| 740 |
+
|
| 741 |
+
Examples
|
| 742 |
+
--------
|
| 743 |
+
>>> from pandas import testing as tm
|
| 744 |
+
>>> a = pd.Series([1, 2, 3, 4])
|
| 745 |
+
>>> b, c = a.array, a.array
|
| 746 |
+
>>> tm.assert_extension_array_equal(b, c)
|
| 747 |
+
"""
|
| 748 |
+
if (
|
| 749 |
+
check_exact is lib.no_default
|
| 750 |
+
and rtol is lib.no_default
|
| 751 |
+
and atol is lib.no_default
|
| 752 |
+
):
|
| 753 |
+
check_exact = (
|
| 754 |
+
is_numeric_dtype(left.dtype)
|
| 755 |
+
and not is_float_dtype(left.dtype)
|
| 756 |
+
or is_numeric_dtype(right.dtype)
|
| 757 |
+
and not is_float_dtype(right.dtype)
|
| 758 |
+
)
|
| 759 |
+
elif check_exact is lib.no_default:
|
| 760 |
+
check_exact = False
|
| 761 |
+
|
| 762 |
+
rtol = rtol if rtol is not lib.no_default else 1.0e-5
|
| 763 |
+
atol = atol if atol is not lib.no_default else 1.0e-8
|
| 764 |
+
|
| 765 |
+
assert isinstance(left, ExtensionArray), "left is not an ExtensionArray"
|
| 766 |
+
assert isinstance(right, ExtensionArray), "right is not an ExtensionArray"
|
| 767 |
+
if check_dtype:
|
| 768 |
+
assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
|
| 769 |
+
|
| 770 |
+
if (
|
| 771 |
+
isinstance(left, DatetimeLikeArrayMixin)
|
| 772 |
+
and isinstance(right, DatetimeLikeArrayMixin)
|
| 773 |
+
and type(right) == type(left)
|
| 774 |
+
):
|
| 775 |
+
# GH 52449
|
| 776 |
+
if not check_dtype and left.dtype.kind in "mM":
|
| 777 |
+
if not isinstance(left.dtype, np.dtype):
|
| 778 |
+
l_unit = cast(DatetimeTZDtype, left.dtype).unit
|
| 779 |
+
else:
|
| 780 |
+
l_unit = np.datetime_data(left.dtype)[0]
|
| 781 |
+
if not isinstance(right.dtype, np.dtype):
|
| 782 |
+
r_unit = cast(DatetimeTZDtype, right.dtype).unit
|
| 783 |
+
else:
|
| 784 |
+
r_unit = np.datetime_data(right.dtype)[0]
|
| 785 |
+
if (
|
| 786 |
+
l_unit != r_unit
|
| 787 |
+
and compare_mismatched_resolutions(
|
| 788 |
+
left._ndarray, right._ndarray, operator.eq
|
| 789 |
+
).all()
|
| 790 |
+
):
|
| 791 |
+
return
|
| 792 |
+
# Avoid slow object-dtype comparisons
|
| 793 |
+
# np.asarray for case where we have a np.MaskedArray
|
| 794 |
+
assert_numpy_array_equal(
|
| 795 |
+
np.asarray(left.asi8),
|
| 796 |
+
np.asarray(right.asi8),
|
| 797 |
+
index_values=index_values,
|
| 798 |
+
obj=obj,
|
| 799 |
+
)
|
| 800 |
+
return
|
| 801 |
+
|
| 802 |
+
left_na = np.asarray(left.isna())
|
| 803 |
+
right_na = np.asarray(right.isna())
|
| 804 |
+
assert_numpy_array_equal(
|
| 805 |
+
left_na, right_na, obj=f"{obj} NA mask", index_values=index_values
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
left_valid = left[~left_na].to_numpy(dtype=object)
|
| 809 |
+
right_valid = right[~right_na].to_numpy(dtype=object)
|
| 810 |
+
if check_exact:
|
| 811 |
+
assert_numpy_array_equal(
|
| 812 |
+
left_valid, right_valid, obj=obj, index_values=index_values
|
| 813 |
+
)
|
| 814 |
+
else:
|
| 815 |
+
_testing.assert_almost_equal(
|
| 816 |
+
left_valid,
|
| 817 |
+
right_valid,
|
| 818 |
+
check_dtype=bool(check_dtype),
|
| 819 |
+
rtol=rtol,
|
| 820 |
+
atol=atol,
|
| 821 |
+
obj=obj,
|
| 822 |
+
index_values=index_values,
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
# This could be refactored to use the NDFrame.equals method
|
| 827 |
+
def assert_series_equal(
|
| 828 |
+
left,
|
| 829 |
+
right,
|
| 830 |
+
check_dtype: bool | Literal["equiv"] = True,
|
| 831 |
+
check_index_type: bool | Literal["equiv"] = "equiv",
|
| 832 |
+
check_series_type: bool = True,
|
| 833 |
+
check_names: bool = True,
|
| 834 |
+
check_exact: bool | lib.NoDefault = lib.no_default,
|
| 835 |
+
check_datetimelike_compat: bool = False,
|
| 836 |
+
check_categorical: bool = True,
|
| 837 |
+
check_category_order: bool = True,
|
| 838 |
+
check_freq: bool = True,
|
| 839 |
+
check_flags: bool = True,
|
| 840 |
+
rtol: float | lib.NoDefault = lib.no_default,
|
| 841 |
+
atol: float | lib.NoDefault = lib.no_default,
|
| 842 |
+
obj: str = "Series",
|
| 843 |
+
*,
|
| 844 |
+
check_index: bool = True,
|
| 845 |
+
check_like: bool = False,
|
| 846 |
+
) -> None:
|
| 847 |
+
"""
|
| 848 |
+
Check that left and right Series are equal.
|
| 849 |
+
|
| 850 |
+
Parameters
|
| 851 |
+
----------
|
| 852 |
+
left : Series
|
| 853 |
+
right : Series
|
| 854 |
+
check_dtype : bool, default True
|
| 855 |
+
Whether to check the Series dtype is identical.
|
| 856 |
+
check_index_type : bool or {'equiv'}, default 'equiv'
|
| 857 |
+
Whether to check the Index class, dtype and inferred_type
|
| 858 |
+
are identical.
|
| 859 |
+
check_series_type : bool, default True
|
| 860 |
+
Whether to check the Series class is identical.
|
| 861 |
+
check_names : bool, default True
|
| 862 |
+
Whether to check the Series and Index names attribute.
|
| 863 |
+
check_exact : bool, default False
|
| 864 |
+
Whether to compare number exactly.
|
| 865 |
+
|
| 866 |
+
.. versionchanged:: 2.2.0
|
| 867 |
+
|
| 868 |
+
Defaults to True for integer dtypes if none of
|
| 869 |
+
``check_exact``, ``rtol`` and ``atol`` are specified.
|
| 870 |
+
check_datetimelike_compat : bool, default False
|
| 871 |
+
Compare datetime-like which is comparable ignoring dtype.
|
| 872 |
+
check_categorical : bool, default True
|
| 873 |
+
Whether to compare internal Categorical exactly.
|
| 874 |
+
check_category_order : bool, default True
|
| 875 |
+
Whether to compare category order of internal Categoricals.
|
| 876 |
+
check_freq : bool, default True
|
| 877 |
+
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
|
| 878 |
+
check_flags : bool, default True
|
| 879 |
+
Whether to check the `flags` attribute.
|
| 880 |
+
rtol : float, default 1e-5
|
| 881 |
+
Relative tolerance. Only used when check_exact is False.
|
| 882 |
+
atol : float, default 1e-8
|
| 883 |
+
Absolute tolerance. Only used when check_exact is False.
|
| 884 |
+
obj : str, default 'Series'
|
| 885 |
+
Specify object name being compared, internally used to show appropriate
|
| 886 |
+
assertion message.
|
| 887 |
+
check_index : bool, default True
|
| 888 |
+
Whether to check index equivalence. If False, then compare only values.
|
| 889 |
+
|
| 890 |
+
.. versionadded:: 1.3.0
|
| 891 |
+
check_like : bool, default False
|
| 892 |
+
If True, ignore the order of the index. Must be False if check_index is False.
|
| 893 |
+
Note: same labels must be with the same data.
|
| 894 |
+
|
| 895 |
+
.. versionadded:: 1.5.0
|
| 896 |
+
|
| 897 |
+
Examples
|
| 898 |
+
--------
|
| 899 |
+
>>> from pandas import testing as tm
|
| 900 |
+
>>> a = pd.Series([1, 2, 3, 4])
|
| 901 |
+
>>> b = pd.Series([1, 2, 3, 4])
|
| 902 |
+
>>> tm.assert_series_equal(a, b)
|
| 903 |
+
"""
|
| 904 |
+
__tracebackhide__ = True
|
| 905 |
+
check_exact_index = False if check_exact is lib.no_default else check_exact
|
| 906 |
+
if (
|
| 907 |
+
check_exact is lib.no_default
|
| 908 |
+
and rtol is lib.no_default
|
| 909 |
+
and atol is lib.no_default
|
| 910 |
+
):
|
| 911 |
+
check_exact = (
|
| 912 |
+
is_numeric_dtype(left.dtype)
|
| 913 |
+
and not is_float_dtype(left.dtype)
|
| 914 |
+
or is_numeric_dtype(right.dtype)
|
| 915 |
+
and not is_float_dtype(right.dtype)
|
| 916 |
+
)
|
| 917 |
+
elif check_exact is lib.no_default:
|
| 918 |
+
check_exact = False
|
| 919 |
+
|
| 920 |
+
rtol = rtol if rtol is not lib.no_default else 1.0e-5
|
| 921 |
+
atol = atol if atol is not lib.no_default else 1.0e-8
|
| 922 |
+
|
| 923 |
+
if not check_index and check_like:
|
| 924 |
+
raise ValueError("check_like must be False if check_index is False")
|
| 925 |
+
|
| 926 |
+
# instance validation
|
| 927 |
+
_check_isinstance(left, right, Series)
|
| 928 |
+
|
| 929 |
+
if check_series_type:
|
| 930 |
+
assert_class_equal(left, right, obj=obj)
|
| 931 |
+
|
| 932 |
+
# length comparison
|
| 933 |
+
if len(left) != len(right):
|
| 934 |
+
msg1 = f"{len(left)}, {left.index}"
|
| 935 |
+
msg2 = f"{len(right)}, {right.index}"
|
| 936 |
+
raise_assert_detail(obj, "Series length are different", msg1, msg2)
|
| 937 |
+
|
| 938 |
+
if check_flags:
|
| 939 |
+
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
|
| 940 |
+
|
| 941 |
+
if check_index:
|
| 942 |
+
# GH #38183
|
| 943 |
+
assert_index_equal(
|
| 944 |
+
left.index,
|
| 945 |
+
right.index,
|
| 946 |
+
exact=check_index_type,
|
| 947 |
+
check_names=check_names,
|
| 948 |
+
check_exact=check_exact_index,
|
| 949 |
+
check_categorical=check_categorical,
|
| 950 |
+
check_order=not check_like,
|
| 951 |
+
rtol=rtol,
|
| 952 |
+
atol=atol,
|
| 953 |
+
obj=f"{obj}.index",
|
| 954 |
+
)
|
| 955 |
+
|
| 956 |
+
if check_like:
|
| 957 |
+
left = left.reindex_like(right)
|
| 958 |
+
|
| 959 |
+
if check_freq and isinstance(left.index, (DatetimeIndex, TimedeltaIndex)):
|
| 960 |
+
lidx = left.index
|
| 961 |
+
ridx = right.index
|
| 962 |
+
assert lidx.freq == ridx.freq, (lidx.freq, ridx.freq)
|
| 963 |
+
|
| 964 |
+
if check_dtype:
|
| 965 |
+
# We want to skip exact dtype checking when `check_categorical`
|
| 966 |
+
# is False. We'll still raise if only one is a `Categorical`,
|
| 967 |
+
# regardless of `check_categorical`
|
| 968 |
+
if (
|
| 969 |
+
isinstance(left.dtype, CategoricalDtype)
|
| 970 |
+
and isinstance(right.dtype, CategoricalDtype)
|
| 971 |
+
and not check_categorical
|
| 972 |
+
):
|
| 973 |
+
pass
|
| 974 |
+
else:
|
| 975 |
+
assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
|
| 976 |
+
if check_exact:
|
| 977 |
+
left_values = left._values
|
| 978 |
+
right_values = right._values
|
| 979 |
+
# Only check exact if dtype is numeric
|
| 980 |
+
if isinstance(left_values, ExtensionArray) and isinstance(
|
| 981 |
+
right_values, ExtensionArray
|
| 982 |
+
):
|
| 983 |
+
assert_extension_array_equal(
|
| 984 |
+
left_values,
|
| 985 |
+
right_values,
|
| 986 |
+
check_dtype=check_dtype,
|
| 987 |
+
index_values=left.index,
|
| 988 |
+
obj=str(obj),
|
| 989 |
+
)
|
| 990 |
+
else:
|
| 991 |
+
# convert both to NumPy if not, check_dtype would raise earlier
|
| 992 |
+
lv, rv = left_values, right_values
|
| 993 |
+
if isinstance(left_values, ExtensionArray):
|
| 994 |
+
lv = left_values.to_numpy()
|
| 995 |
+
if isinstance(right_values, ExtensionArray):
|
| 996 |
+
rv = right_values.to_numpy()
|
| 997 |
+
assert_numpy_array_equal(
|
| 998 |
+
lv,
|
| 999 |
+
rv,
|
| 1000 |
+
check_dtype=check_dtype,
|
| 1001 |
+
obj=str(obj),
|
| 1002 |
+
index_values=left.index,
|
| 1003 |
+
)
|
| 1004 |
+
elif check_datetimelike_compat and (
|
| 1005 |
+
needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype)
|
| 1006 |
+
):
|
| 1007 |
+
# we want to check only if we have compat dtypes
|
| 1008 |
+
# e.g. integer and M|m are NOT compat, but we can simply check
|
| 1009 |
+
# the values in that case
|
| 1010 |
+
|
| 1011 |
+
# datetimelike may have different objects (e.g. datetime.datetime
|
| 1012 |
+
# vs Timestamp) but will compare equal
|
| 1013 |
+
if not Index(left._values).equals(Index(right._values)):
|
| 1014 |
+
msg = (
|
| 1015 |
+
f"[datetimelike_compat=True] {left._values} "
|
| 1016 |
+
f"is not equal to {right._values}."
|
| 1017 |
+
)
|
| 1018 |
+
raise AssertionError(msg)
|
| 1019 |
+
elif isinstance(left.dtype, IntervalDtype) and isinstance(
|
| 1020 |
+
right.dtype, IntervalDtype
|
| 1021 |
+
):
|
| 1022 |
+
assert_interval_array_equal(left.array, right.array)
|
| 1023 |
+
elif isinstance(left.dtype, CategoricalDtype) or isinstance(
|
| 1024 |
+
right.dtype, CategoricalDtype
|
| 1025 |
+
):
|
| 1026 |
+
_testing.assert_almost_equal(
|
| 1027 |
+
left._values,
|
| 1028 |
+
right._values,
|
| 1029 |
+
rtol=rtol,
|
| 1030 |
+
atol=atol,
|
| 1031 |
+
check_dtype=bool(check_dtype),
|
| 1032 |
+
obj=str(obj),
|
| 1033 |
+
index_values=left.index,
|
| 1034 |
+
)
|
| 1035 |
+
elif isinstance(left.dtype, ExtensionDtype) and isinstance(
|
| 1036 |
+
right.dtype, ExtensionDtype
|
| 1037 |
+
):
|
| 1038 |
+
assert_extension_array_equal(
|
| 1039 |
+
left._values,
|
| 1040 |
+
right._values,
|
| 1041 |
+
rtol=rtol,
|
| 1042 |
+
atol=atol,
|
| 1043 |
+
check_dtype=check_dtype,
|
| 1044 |
+
index_values=left.index,
|
| 1045 |
+
obj=str(obj),
|
| 1046 |
+
)
|
| 1047 |
+
elif is_extension_array_dtype_and_needs_i8_conversion(
|
| 1048 |
+
left.dtype, right.dtype
|
| 1049 |
+
) or is_extension_array_dtype_and_needs_i8_conversion(right.dtype, left.dtype):
|
| 1050 |
+
assert_extension_array_equal(
|
| 1051 |
+
left._values,
|
| 1052 |
+
right._values,
|
| 1053 |
+
check_dtype=check_dtype,
|
| 1054 |
+
index_values=left.index,
|
| 1055 |
+
obj=str(obj),
|
| 1056 |
+
)
|
| 1057 |
+
elif needs_i8_conversion(left.dtype) and needs_i8_conversion(right.dtype):
|
| 1058 |
+
# DatetimeArray or TimedeltaArray
|
| 1059 |
+
assert_extension_array_equal(
|
| 1060 |
+
left._values,
|
| 1061 |
+
right._values,
|
| 1062 |
+
check_dtype=check_dtype,
|
| 1063 |
+
index_values=left.index,
|
| 1064 |
+
obj=str(obj),
|
| 1065 |
+
)
|
| 1066 |
+
else:
|
| 1067 |
+
_testing.assert_almost_equal(
|
| 1068 |
+
left._values,
|
| 1069 |
+
right._values,
|
| 1070 |
+
rtol=rtol,
|
| 1071 |
+
atol=atol,
|
| 1072 |
+
check_dtype=bool(check_dtype),
|
| 1073 |
+
obj=str(obj),
|
| 1074 |
+
index_values=left.index,
|
| 1075 |
+
)
|
| 1076 |
+
|
| 1077 |
+
# metadata comparison
|
| 1078 |
+
if check_names:
|
| 1079 |
+
assert_attr_equal("name", left, right, obj=obj)
|
| 1080 |
+
|
| 1081 |
+
if check_categorical:
|
| 1082 |
+
if isinstance(left.dtype, CategoricalDtype) or isinstance(
|
| 1083 |
+
right.dtype, CategoricalDtype
|
| 1084 |
+
):
|
| 1085 |
+
assert_categorical_equal(
|
| 1086 |
+
left._values,
|
| 1087 |
+
right._values,
|
| 1088 |
+
obj=f"{obj} category",
|
| 1089 |
+
check_category_order=check_category_order,
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
|
| 1093 |
+
# This could be refactored to use the NDFrame.equals method
|
| 1094 |
+
def assert_frame_equal(
|
| 1095 |
+
left,
|
| 1096 |
+
right,
|
| 1097 |
+
check_dtype: bool | Literal["equiv"] = True,
|
| 1098 |
+
check_index_type: bool | Literal["equiv"] = "equiv",
|
| 1099 |
+
check_column_type: bool | Literal["equiv"] = "equiv",
|
| 1100 |
+
check_frame_type: bool = True,
|
| 1101 |
+
check_names: bool = True,
|
| 1102 |
+
by_blocks: bool = False,
|
| 1103 |
+
check_exact: bool | lib.NoDefault = lib.no_default,
|
| 1104 |
+
check_datetimelike_compat: bool = False,
|
| 1105 |
+
check_categorical: bool = True,
|
| 1106 |
+
check_like: bool = False,
|
| 1107 |
+
check_freq: bool = True,
|
| 1108 |
+
check_flags: bool = True,
|
| 1109 |
+
rtol: float | lib.NoDefault = lib.no_default,
|
| 1110 |
+
atol: float | lib.NoDefault = lib.no_default,
|
| 1111 |
+
obj: str = "DataFrame",
|
| 1112 |
+
) -> None:
|
| 1113 |
+
"""
|
| 1114 |
+
Check that left and right DataFrame are equal.
|
| 1115 |
+
|
| 1116 |
+
This function is intended to compare two DataFrames and output any
|
| 1117 |
+
differences. It is mostly intended for use in unit tests.
|
| 1118 |
+
Additional parameters allow varying the strictness of the
|
| 1119 |
+
equality checks performed.
|
| 1120 |
+
|
| 1121 |
+
Parameters
|
| 1122 |
+
----------
|
| 1123 |
+
left : DataFrame
|
| 1124 |
+
First DataFrame to compare.
|
| 1125 |
+
right : DataFrame
|
| 1126 |
+
Second DataFrame to compare.
|
| 1127 |
+
check_dtype : bool, default True
|
| 1128 |
+
Whether to check the DataFrame dtype is identical.
|
| 1129 |
+
check_index_type : bool or {'equiv'}, default 'equiv'
|
| 1130 |
+
Whether to check the Index class, dtype and inferred_type
|
| 1131 |
+
are identical.
|
| 1132 |
+
check_column_type : bool or {'equiv'}, default 'equiv'
|
| 1133 |
+
Whether to check the columns class, dtype and inferred_type
|
| 1134 |
+
are identical. Is passed as the ``exact`` argument of
|
| 1135 |
+
:func:`assert_index_equal`.
|
| 1136 |
+
check_frame_type : bool, default True
|
| 1137 |
+
Whether to check the DataFrame class is identical.
|
| 1138 |
+
check_names : bool, default True
|
| 1139 |
+
Whether to check that the `names` attribute for both the `index`
|
| 1140 |
+
and `column` attributes of the DataFrame is identical.
|
| 1141 |
+
by_blocks : bool, default False
|
| 1142 |
+
Specify how to compare internal data. If False, compare by columns.
|
| 1143 |
+
If True, compare by blocks.
|
| 1144 |
+
check_exact : bool, default False
|
| 1145 |
+
Whether to compare number exactly.
|
| 1146 |
+
|
| 1147 |
+
.. versionchanged:: 2.2.0
|
| 1148 |
+
|
| 1149 |
+
Defaults to True for integer dtypes if none of
|
| 1150 |
+
``check_exact``, ``rtol`` and ``atol`` are specified.
|
| 1151 |
+
check_datetimelike_compat : bool, default False
|
| 1152 |
+
Compare datetime-like which is comparable ignoring dtype.
|
| 1153 |
+
check_categorical : bool, default True
|
| 1154 |
+
Whether to compare internal Categorical exactly.
|
| 1155 |
+
check_like : bool, default False
|
| 1156 |
+
If True, ignore the order of index & columns.
|
| 1157 |
+
Note: index labels must match their respective rows
|
| 1158 |
+
(same as in columns) - same labels must be with the same data.
|
| 1159 |
+
check_freq : bool, default True
|
| 1160 |
+
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
|
| 1161 |
+
check_flags : bool, default True
|
| 1162 |
+
Whether to check the `flags` attribute.
|
| 1163 |
+
rtol : float, default 1e-5
|
| 1164 |
+
Relative tolerance. Only used when check_exact is False.
|
| 1165 |
+
atol : float, default 1e-8
|
| 1166 |
+
Absolute tolerance. Only used when check_exact is False.
|
| 1167 |
+
obj : str, default 'DataFrame'
|
| 1168 |
+
Specify object name being compared, internally used to show appropriate
|
| 1169 |
+
assertion message.
|
| 1170 |
+
|
| 1171 |
+
See Also
|
| 1172 |
+
--------
|
| 1173 |
+
assert_series_equal : Equivalent method for asserting Series equality.
|
| 1174 |
+
DataFrame.equals : Check DataFrame equality.
|
| 1175 |
+
|
| 1176 |
+
Examples
|
| 1177 |
+
--------
|
| 1178 |
+
This example shows comparing two DataFrames that are equal
|
| 1179 |
+
but with columns of differing dtypes.
|
| 1180 |
+
|
| 1181 |
+
>>> from pandas.testing import assert_frame_equal
|
| 1182 |
+
>>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
|
| 1183 |
+
>>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]})
|
| 1184 |
+
|
| 1185 |
+
df1 equals itself.
|
| 1186 |
+
|
| 1187 |
+
>>> assert_frame_equal(df1, df1)
|
| 1188 |
+
|
| 1189 |
+
df1 differs from df2 as column 'b' is of a different type.
|
| 1190 |
+
|
| 1191 |
+
>>> assert_frame_equal(df1, df2)
|
| 1192 |
+
Traceback (most recent call last):
|
| 1193 |
+
...
|
| 1194 |
+
AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different
|
| 1195 |
+
|
| 1196 |
+
Attribute "dtype" are different
|
| 1197 |
+
[left]: int64
|
| 1198 |
+
[right]: float64
|
| 1199 |
+
|
| 1200 |
+
Ignore differing dtypes in columns with check_dtype.
|
| 1201 |
+
|
| 1202 |
+
>>> assert_frame_equal(df1, df2, check_dtype=False)
|
| 1203 |
+
"""
|
| 1204 |
+
__tracebackhide__ = True
|
| 1205 |
+
_rtol = rtol if rtol is not lib.no_default else 1.0e-5
|
| 1206 |
+
_atol = atol if atol is not lib.no_default else 1.0e-8
|
| 1207 |
+
_check_exact = check_exact if check_exact is not lib.no_default else False
|
| 1208 |
+
|
| 1209 |
+
# instance validation
|
| 1210 |
+
_check_isinstance(left, right, DataFrame)
|
| 1211 |
+
|
| 1212 |
+
if check_frame_type:
|
| 1213 |
+
assert isinstance(left, type(right))
|
| 1214 |
+
# assert_class_equal(left, right, obj=obj)
|
| 1215 |
+
|
| 1216 |
+
# shape comparison
|
| 1217 |
+
if left.shape != right.shape:
|
| 1218 |
+
raise_assert_detail(
|
| 1219 |
+
obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}"
|
| 1220 |
+
)
|
| 1221 |
+
|
| 1222 |
+
if check_flags:
|
| 1223 |
+
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
|
| 1224 |
+
|
| 1225 |
+
# index comparison
|
| 1226 |
+
assert_index_equal(
|
| 1227 |
+
left.index,
|
| 1228 |
+
right.index,
|
| 1229 |
+
exact=check_index_type,
|
| 1230 |
+
check_names=check_names,
|
| 1231 |
+
check_exact=_check_exact,
|
| 1232 |
+
check_categorical=check_categorical,
|
| 1233 |
+
check_order=not check_like,
|
| 1234 |
+
rtol=_rtol,
|
| 1235 |
+
atol=_atol,
|
| 1236 |
+
obj=f"{obj}.index",
|
| 1237 |
+
)
|
| 1238 |
+
|
| 1239 |
+
# column comparison
|
| 1240 |
+
assert_index_equal(
|
| 1241 |
+
left.columns,
|
| 1242 |
+
right.columns,
|
| 1243 |
+
exact=check_column_type,
|
| 1244 |
+
check_names=check_names,
|
| 1245 |
+
check_exact=_check_exact,
|
| 1246 |
+
check_categorical=check_categorical,
|
| 1247 |
+
check_order=not check_like,
|
| 1248 |
+
rtol=_rtol,
|
| 1249 |
+
atol=_atol,
|
| 1250 |
+
obj=f"{obj}.columns",
|
| 1251 |
+
)
|
| 1252 |
+
|
| 1253 |
+
if check_like:
|
| 1254 |
+
left = left.reindex_like(right)
|
| 1255 |
+
|
| 1256 |
+
# compare by blocks
|
| 1257 |
+
if by_blocks:
|
| 1258 |
+
rblocks = right._to_dict_of_blocks()
|
| 1259 |
+
lblocks = left._to_dict_of_blocks()
|
| 1260 |
+
for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))):
|
| 1261 |
+
assert dtype in lblocks
|
| 1262 |
+
assert dtype in rblocks
|
| 1263 |
+
assert_frame_equal(
|
| 1264 |
+
lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
# compare by columns
|
| 1268 |
+
else:
|
| 1269 |
+
for i, col in enumerate(left.columns):
|
| 1270 |
+
# We have already checked that columns match, so we can do
|
| 1271 |
+
# fast location-based lookups
|
| 1272 |
+
lcol = left._ixs(i, axis=1)
|
| 1273 |
+
rcol = right._ixs(i, axis=1)
|
| 1274 |
+
|
| 1275 |
+
# GH #38183
|
| 1276 |
+
# use check_index=False, because we do not want to run
|
| 1277 |
+
# assert_index_equal for each column,
|
| 1278 |
+
# as we already checked it for the whole dataframe before.
|
| 1279 |
+
assert_series_equal(
|
| 1280 |
+
lcol,
|
| 1281 |
+
rcol,
|
| 1282 |
+
check_dtype=check_dtype,
|
| 1283 |
+
check_index_type=check_index_type,
|
| 1284 |
+
check_exact=check_exact,
|
| 1285 |
+
check_names=check_names,
|
| 1286 |
+
check_datetimelike_compat=check_datetimelike_compat,
|
| 1287 |
+
check_categorical=check_categorical,
|
| 1288 |
+
check_freq=check_freq,
|
| 1289 |
+
obj=f'{obj}.iloc[:, {i}] (column name="{col}")',
|
| 1290 |
+
rtol=rtol,
|
| 1291 |
+
atol=atol,
|
| 1292 |
+
check_index=False,
|
| 1293 |
+
check_flags=False,
|
| 1294 |
+
)
|
| 1295 |
+
|
| 1296 |
+
|
| 1297 |
+
def assert_equal(left, right, **kwargs) -> None:
|
| 1298 |
+
"""
|
| 1299 |
+
Wrapper for tm.assert_*_equal to dispatch to the appropriate test function.
|
| 1300 |
+
|
| 1301 |
+
Parameters
|
| 1302 |
+
----------
|
| 1303 |
+
left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray
|
| 1304 |
+
The two items to be compared.
|
| 1305 |
+
**kwargs
|
| 1306 |
+
All keyword arguments are passed through to the underlying assert method.
|
| 1307 |
+
"""
|
| 1308 |
+
__tracebackhide__ = True
|
| 1309 |
+
|
| 1310 |
+
if isinstance(left, Index):
|
| 1311 |
+
assert_index_equal(left, right, **kwargs)
|
| 1312 |
+
if isinstance(left, (DatetimeIndex, TimedeltaIndex)):
|
| 1313 |
+
assert left.freq == right.freq, (left.freq, right.freq)
|
| 1314 |
+
elif isinstance(left, Series):
|
| 1315 |
+
assert_series_equal(left, right, **kwargs)
|
| 1316 |
+
elif isinstance(left, DataFrame):
|
| 1317 |
+
assert_frame_equal(left, right, **kwargs)
|
| 1318 |
+
elif isinstance(left, IntervalArray):
|
| 1319 |
+
assert_interval_array_equal(left, right, **kwargs)
|
| 1320 |
+
elif isinstance(left, PeriodArray):
|
| 1321 |
+
assert_period_array_equal(left, right, **kwargs)
|
| 1322 |
+
elif isinstance(left, DatetimeArray):
|
| 1323 |
+
assert_datetime_array_equal(left, right, **kwargs)
|
| 1324 |
+
elif isinstance(left, TimedeltaArray):
|
| 1325 |
+
assert_timedelta_array_equal(left, right, **kwargs)
|
| 1326 |
+
elif isinstance(left, ExtensionArray):
|
| 1327 |
+
assert_extension_array_equal(left, right, **kwargs)
|
| 1328 |
+
elif isinstance(left, np.ndarray):
|
| 1329 |
+
assert_numpy_array_equal(left, right, **kwargs)
|
| 1330 |
+
elif isinstance(left, str):
|
| 1331 |
+
assert kwargs == {}
|
| 1332 |
+
assert left == right
|
| 1333 |
+
else:
|
| 1334 |
+
assert kwargs == {}
|
| 1335 |
+
assert_almost_equal(left, right)
|
| 1336 |
+
|
| 1337 |
+
|
| 1338 |
+
def assert_sp_array_equal(left, right) -> None:
|
| 1339 |
+
"""
|
| 1340 |
+
Check that the left and right SparseArray are equal.
|
| 1341 |
+
|
| 1342 |
+
Parameters
|
| 1343 |
+
----------
|
| 1344 |
+
left : SparseArray
|
| 1345 |
+
right : SparseArray
|
| 1346 |
+
"""
|
| 1347 |
+
_check_isinstance(left, right, pd.arrays.SparseArray)
|
| 1348 |
+
|
| 1349 |
+
assert_numpy_array_equal(left.sp_values, right.sp_values)
|
| 1350 |
+
|
| 1351 |
+
# SparseIndex comparison
|
| 1352 |
+
assert isinstance(left.sp_index, SparseIndex)
|
| 1353 |
+
assert isinstance(right.sp_index, SparseIndex)
|
| 1354 |
+
|
| 1355 |
+
left_index = left.sp_index
|
| 1356 |
+
right_index = right.sp_index
|
| 1357 |
+
|
| 1358 |
+
if not left_index.equals(right_index):
|
| 1359 |
+
raise_assert_detail(
|
| 1360 |
+
"SparseArray.index", "index are not equal", left_index, right_index
|
| 1361 |
+
)
|
| 1362 |
+
else:
|
| 1363 |
+
# Just ensure a
|
| 1364 |
+
pass
|
| 1365 |
+
|
| 1366 |
+
assert_attr_equal("fill_value", left, right)
|
| 1367 |
+
assert_attr_equal("dtype", left, right)
|
| 1368 |
+
assert_numpy_array_equal(left.to_dense(), right.to_dense())
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
def assert_contains_all(iterable, dic) -> None:
|
| 1372 |
+
for k in iterable:
|
| 1373 |
+
assert k in dic, f"Did not contain item: {repr(k)}"
|
| 1374 |
+
|
| 1375 |
+
|
| 1376 |
+
def assert_copy(iter1, iter2, **eql_kwargs) -> None:
|
| 1377 |
+
"""
|
| 1378 |
+
iter1, iter2: iterables that produce elements
|
| 1379 |
+
comparable with assert_almost_equal
|
| 1380 |
+
|
| 1381 |
+
Checks that the elements are equal, but not
|
| 1382 |
+
the same object. (Does not check that items
|
| 1383 |
+
in sequences are also not the same object)
|
| 1384 |
+
"""
|
| 1385 |
+
for elem1, elem2 in zip(iter1, iter2):
|
| 1386 |
+
assert_almost_equal(elem1, elem2, **eql_kwargs)
|
| 1387 |
+
msg = (
|
| 1388 |
+
f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be "
|
| 1389 |
+
"different objects, but they were the same object."
|
| 1390 |
+
)
|
| 1391 |
+
assert elem1 is not elem2, msg
|
| 1392 |
+
|
| 1393 |
+
|
| 1394 |
+
def is_extension_array_dtype_and_needs_i8_conversion(
|
| 1395 |
+
left_dtype: DtypeObj, right_dtype: DtypeObj
|
| 1396 |
+
) -> bool:
|
| 1397 |
+
"""
|
| 1398 |
+
Checks that we have the combination of an ExtensionArraydtype and
|
| 1399 |
+
a dtype that should be converted to int64
|
| 1400 |
+
|
| 1401 |
+
Returns
|
| 1402 |
+
-------
|
| 1403 |
+
bool
|
| 1404 |
+
|
| 1405 |
+
Related to issue #37609
|
| 1406 |
+
"""
|
| 1407 |
+
return isinstance(left_dtype, ExtensionDtype) and needs_i8_conversion(right_dtype)
|
| 1408 |
+
|
| 1409 |
+
|
| 1410 |
+
def assert_indexing_slices_equivalent(ser: Series, l_slc: slice, i_slc: slice) -> None:
|
| 1411 |
+
"""
|
| 1412 |
+
Check that ser.iloc[i_slc] matches ser.loc[l_slc] and, if applicable,
|
| 1413 |
+
ser[l_slc].
|
| 1414 |
+
"""
|
| 1415 |
+
expected = ser.iloc[i_slc]
|
| 1416 |
+
|
| 1417 |
+
assert_series_equal(ser.loc[l_slc], expected)
|
| 1418 |
+
|
| 1419 |
+
if not is_integer_dtype(ser.index):
|
| 1420 |
+
# For integer indices, .loc and plain getitem are position-based.
|
| 1421 |
+
assert_series_equal(ser[l_slc], expected)
|
| 1422 |
+
|
| 1423 |
+
|
| 1424 |
+
def assert_metadata_equivalent(
|
| 1425 |
+
left: DataFrame | Series, right: DataFrame | Series | None = None
|
| 1426 |
+
) -> None:
|
| 1427 |
+
"""
|
| 1428 |
+
Check that ._metadata attributes are equivalent.
|
| 1429 |
+
"""
|
| 1430 |
+
for attr in left._metadata:
|
| 1431 |
+
val = getattr(left, attr, None)
|
| 1432 |
+
if right is None:
|
| 1433 |
+
assert val is None
|
| 1434 |
+
else:
|
| 1435 |
+
assert val == getattr(right, attr, None)
|
emu3/lib/python3.10/site-packages/pandas/_testing/compat.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helpers for sharing tests between DataFrame/Series
|
| 3 |
+
"""
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
from typing import TYPE_CHECKING
|
| 7 |
+
|
| 8 |
+
from pandas import DataFrame
|
| 9 |
+
|
| 10 |
+
if TYPE_CHECKING:
|
| 11 |
+
from pandas._typing import DtypeObj
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_dtype(obj) -> DtypeObj:
|
| 15 |
+
if isinstance(obj, DataFrame):
|
| 16 |
+
# Note: we are assuming only one column
|
| 17 |
+
return obj.dtypes.iat[0]
|
| 18 |
+
else:
|
| 19 |
+
return obj.dtype
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_obj(df: DataFrame, klass):
|
| 23 |
+
"""
|
| 24 |
+
For sharing tests using frame_or_series, either return the DataFrame
|
| 25 |
+
unchanged or return it's first column as a Series.
|
| 26 |
+
"""
|
| 27 |
+
if klass is DataFrame:
|
| 28 |
+
return df
|
| 29 |
+
return df._ixs(0, axis=1)
|
emu3/lib/python3.10/site-packages/pandas/_testing/contexts.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from contextlib import contextmanager
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import tempfile
|
| 7 |
+
from typing import (
|
| 8 |
+
IO,
|
| 9 |
+
TYPE_CHECKING,
|
| 10 |
+
Any,
|
| 11 |
+
)
|
| 12 |
+
import uuid
|
| 13 |
+
|
| 14 |
+
from pandas._config import using_copy_on_write
|
| 15 |
+
|
| 16 |
+
from pandas.compat import PYPY
|
| 17 |
+
from pandas.errors import ChainedAssignmentError
|
| 18 |
+
|
| 19 |
+
from pandas import set_option
|
| 20 |
+
|
| 21 |
+
from pandas.io.common import get_handle
|
| 22 |
+
|
| 23 |
+
if TYPE_CHECKING:
|
| 24 |
+
from collections.abc import Generator
|
| 25 |
+
|
| 26 |
+
from pandas._typing import (
|
| 27 |
+
BaseBuffer,
|
| 28 |
+
CompressionOptions,
|
| 29 |
+
FilePath,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@contextmanager
|
| 34 |
+
def decompress_file(
|
| 35 |
+
path: FilePath | BaseBuffer, compression: CompressionOptions
|
| 36 |
+
) -> Generator[IO[bytes], None, None]:
|
| 37 |
+
"""
|
| 38 |
+
Open a compressed file and return a file object.
|
| 39 |
+
|
| 40 |
+
Parameters
|
| 41 |
+
----------
|
| 42 |
+
path : str
|
| 43 |
+
The path where the file is read from.
|
| 44 |
+
|
| 45 |
+
compression : {'gzip', 'bz2', 'zip', 'xz', 'zstd', None}
|
| 46 |
+
Name of the decompression to use
|
| 47 |
+
|
| 48 |
+
Returns
|
| 49 |
+
-------
|
| 50 |
+
file object
|
| 51 |
+
"""
|
| 52 |
+
with get_handle(path, "rb", compression=compression, is_text=False) as handle:
|
| 53 |
+
yield handle.handle
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@contextmanager
|
| 57 |
+
def set_timezone(tz: str) -> Generator[None, None, None]:
|
| 58 |
+
"""
|
| 59 |
+
Context manager for temporarily setting a timezone.
|
| 60 |
+
|
| 61 |
+
Parameters
|
| 62 |
+
----------
|
| 63 |
+
tz : str
|
| 64 |
+
A string representing a valid timezone.
|
| 65 |
+
|
| 66 |
+
Examples
|
| 67 |
+
--------
|
| 68 |
+
>>> from datetime import datetime
|
| 69 |
+
>>> from dateutil.tz import tzlocal
|
| 70 |
+
>>> tzlocal().tzname(datetime(2021, 1, 1)) # doctest: +SKIP
|
| 71 |
+
'IST'
|
| 72 |
+
|
| 73 |
+
>>> with set_timezone('US/Eastern'):
|
| 74 |
+
... tzlocal().tzname(datetime(2021, 1, 1))
|
| 75 |
+
...
|
| 76 |
+
'EST'
|
| 77 |
+
"""
|
| 78 |
+
import time
|
| 79 |
+
|
| 80 |
+
def setTZ(tz) -> None:
|
| 81 |
+
if tz is None:
|
| 82 |
+
try:
|
| 83 |
+
del os.environ["TZ"]
|
| 84 |
+
except KeyError:
|
| 85 |
+
pass
|
| 86 |
+
else:
|
| 87 |
+
os.environ["TZ"] = tz
|
| 88 |
+
time.tzset()
|
| 89 |
+
|
| 90 |
+
orig_tz = os.environ.get("TZ")
|
| 91 |
+
setTZ(tz)
|
| 92 |
+
try:
|
| 93 |
+
yield
|
| 94 |
+
finally:
|
| 95 |
+
setTZ(orig_tz)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
@contextmanager
|
| 99 |
+
def ensure_clean(
|
| 100 |
+
filename=None, return_filelike: bool = False, **kwargs: Any
|
| 101 |
+
) -> Generator[Any, None, None]:
|
| 102 |
+
"""
|
| 103 |
+
Gets a temporary path and agrees to remove on close.
|
| 104 |
+
|
| 105 |
+
This implementation does not use tempfile.mkstemp to avoid having a file handle.
|
| 106 |
+
If the code using the returned path wants to delete the file itself, windows
|
| 107 |
+
requires that no program has a file handle to it.
|
| 108 |
+
|
| 109 |
+
Parameters
|
| 110 |
+
----------
|
| 111 |
+
filename : str (optional)
|
| 112 |
+
suffix of the created file.
|
| 113 |
+
return_filelike : bool (default False)
|
| 114 |
+
if True, returns a file-like which is *always* cleaned. Necessary for
|
| 115 |
+
savefig and other functions which want to append extensions.
|
| 116 |
+
**kwargs
|
| 117 |
+
Additional keywords are passed to open().
|
| 118 |
+
|
| 119 |
+
"""
|
| 120 |
+
folder = Path(tempfile.gettempdir())
|
| 121 |
+
|
| 122 |
+
if filename is None:
|
| 123 |
+
filename = ""
|
| 124 |
+
filename = str(uuid.uuid4()) + filename
|
| 125 |
+
path = folder / filename
|
| 126 |
+
|
| 127 |
+
path.touch()
|
| 128 |
+
|
| 129 |
+
handle_or_str: str | IO = str(path)
|
| 130 |
+
encoding = kwargs.pop("encoding", None)
|
| 131 |
+
if return_filelike:
|
| 132 |
+
kwargs.setdefault("mode", "w+b")
|
| 133 |
+
if encoding is None and "b" not in kwargs["mode"]:
|
| 134 |
+
encoding = "utf-8"
|
| 135 |
+
handle_or_str = open(path, encoding=encoding, **kwargs)
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
yield handle_or_str
|
| 139 |
+
finally:
|
| 140 |
+
if not isinstance(handle_or_str, str):
|
| 141 |
+
handle_or_str.close()
|
| 142 |
+
if path.is_file():
|
| 143 |
+
path.unlink()
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@contextmanager
|
| 147 |
+
def with_csv_dialect(name: str, **kwargs) -> Generator[None, None, None]:
|
| 148 |
+
"""
|
| 149 |
+
Context manager to temporarily register a CSV dialect for parsing CSV.
|
| 150 |
+
|
| 151 |
+
Parameters
|
| 152 |
+
----------
|
| 153 |
+
name : str
|
| 154 |
+
The name of the dialect.
|
| 155 |
+
kwargs : mapping
|
| 156 |
+
The parameters for the dialect.
|
| 157 |
+
|
| 158 |
+
Raises
|
| 159 |
+
------
|
| 160 |
+
ValueError : the name of the dialect conflicts with a builtin one.
|
| 161 |
+
|
| 162 |
+
See Also
|
| 163 |
+
--------
|
| 164 |
+
csv : Python's CSV library.
|
| 165 |
+
"""
|
| 166 |
+
import csv
|
| 167 |
+
|
| 168 |
+
_BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"}
|
| 169 |
+
|
| 170 |
+
if name in _BUILTIN_DIALECTS:
|
| 171 |
+
raise ValueError("Cannot override builtin dialect.")
|
| 172 |
+
|
| 173 |
+
csv.register_dialect(name, **kwargs)
|
| 174 |
+
try:
|
| 175 |
+
yield
|
| 176 |
+
finally:
|
| 177 |
+
csv.unregister_dialect(name)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
@contextmanager
|
| 181 |
+
def use_numexpr(use, min_elements=None) -> Generator[None, None, None]:
|
| 182 |
+
from pandas.core.computation import expressions as expr
|
| 183 |
+
|
| 184 |
+
if min_elements is None:
|
| 185 |
+
min_elements = expr._MIN_ELEMENTS
|
| 186 |
+
|
| 187 |
+
olduse = expr.USE_NUMEXPR
|
| 188 |
+
oldmin = expr._MIN_ELEMENTS
|
| 189 |
+
set_option("compute.use_numexpr", use)
|
| 190 |
+
expr._MIN_ELEMENTS = min_elements
|
| 191 |
+
try:
|
| 192 |
+
yield
|
| 193 |
+
finally:
|
| 194 |
+
expr._MIN_ELEMENTS = oldmin
|
| 195 |
+
set_option("compute.use_numexpr", olduse)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def raises_chained_assignment_error(warn=True, extra_warnings=(), extra_match=()):
|
| 199 |
+
from pandas._testing import assert_produces_warning
|
| 200 |
+
|
| 201 |
+
if not warn:
|
| 202 |
+
from contextlib import nullcontext
|
| 203 |
+
|
| 204 |
+
return nullcontext()
|
| 205 |
+
|
| 206 |
+
if PYPY and not extra_warnings:
|
| 207 |
+
from contextlib import nullcontext
|
| 208 |
+
|
| 209 |
+
return nullcontext()
|
| 210 |
+
elif PYPY and extra_warnings:
|
| 211 |
+
return assert_produces_warning(
|
| 212 |
+
extra_warnings,
|
| 213 |
+
match="|".join(extra_match),
|
| 214 |
+
)
|
| 215 |
+
else:
|
| 216 |
+
if using_copy_on_write():
|
| 217 |
+
warning = ChainedAssignmentError
|
| 218 |
+
match = (
|
| 219 |
+
"A value is trying to be set on a copy of a DataFrame or Series "
|
| 220 |
+
"through chained assignment"
|
| 221 |
+
)
|
| 222 |
+
else:
|
| 223 |
+
warning = FutureWarning # type: ignore[assignment]
|
| 224 |
+
# TODO update match
|
| 225 |
+
match = "ChainedAssignmentError"
|
| 226 |
+
if extra_warnings:
|
| 227 |
+
warning = (warning, *extra_warnings) # type: ignore[assignment]
|
| 228 |
+
return assert_produces_warning(
|
| 229 |
+
warning,
|
| 230 |
+
match="|".join((match, *extra_match)),
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def assert_cow_warning(warn=True, match=None, **kwargs):
|
| 235 |
+
"""
|
| 236 |
+
Assert that a warning is raised in the CoW warning mode.
|
| 237 |
+
|
| 238 |
+
Parameters
|
| 239 |
+
----------
|
| 240 |
+
warn : bool, default True
|
| 241 |
+
By default, check that a warning is raised. Can be turned off by passing False.
|
| 242 |
+
match : str
|
| 243 |
+
The warning message to match against, if different from the default.
|
| 244 |
+
kwargs
|
| 245 |
+
Passed through to assert_produces_warning
|
| 246 |
+
"""
|
| 247 |
+
from pandas._testing import assert_produces_warning
|
| 248 |
+
|
| 249 |
+
if not warn:
|
| 250 |
+
from contextlib import nullcontext
|
| 251 |
+
|
| 252 |
+
return nullcontext()
|
| 253 |
+
|
| 254 |
+
if not match:
|
| 255 |
+
match = "Setting a value on a view"
|
| 256 |
+
|
| 257 |
+
return assert_produces_warning(FutureWarning, match=match, **kwargs)
|
emu3/lib/python3.10/site-packages/pandas/api/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" public toolkit API """
|
| 2 |
+
from pandas.api import (
|
| 3 |
+
extensions,
|
| 4 |
+
indexers,
|
| 5 |
+
interchange,
|
| 6 |
+
types,
|
| 7 |
+
typing,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"interchange",
|
| 12 |
+
"extensions",
|
| 13 |
+
"indexers",
|
| 14 |
+
"types",
|
| 15 |
+
"typing",
|
| 16 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/api/interchange/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (419 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/api/types/__init__.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Public toolkit API.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from pandas._libs.lib import infer_dtype
|
| 6 |
+
|
| 7 |
+
from pandas.core.dtypes.api import * # noqa: F403
|
| 8 |
+
from pandas.core.dtypes.concat import union_categoricals
|
| 9 |
+
from pandas.core.dtypes.dtypes import (
|
| 10 |
+
CategoricalDtype,
|
| 11 |
+
DatetimeTZDtype,
|
| 12 |
+
IntervalDtype,
|
| 13 |
+
PeriodDtype,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
__all__ = [
|
| 17 |
+
"infer_dtype",
|
| 18 |
+
"union_categoricals",
|
| 19 |
+
"CategoricalDtype",
|
| 20 |
+
"DatetimeTZDtype",
|
| 21 |
+
"IntervalDtype",
|
| 22 |
+
"PeriodDtype",
|
| 23 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/api/types/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (552 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/api/typing/__init__.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Public API classes that store intermediate results useful for type-hinting.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from pandas._libs import NaTType
|
| 6 |
+
from pandas._libs.missing import NAType
|
| 7 |
+
|
| 8 |
+
from pandas.core.groupby import (
|
| 9 |
+
DataFrameGroupBy,
|
| 10 |
+
SeriesGroupBy,
|
| 11 |
+
)
|
| 12 |
+
from pandas.core.resample import (
|
| 13 |
+
DatetimeIndexResamplerGroupby,
|
| 14 |
+
PeriodIndexResamplerGroupby,
|
| 15 |
+
Resampler,
|
| 16 |
+
TimedeltaIndexResamplerGroupby,
|
| 17 |
+
TimeGrouper,
|
| 18 |
+
)
|
| 19 |
+
from pandas.core.window import (
|
| 20 |
+
Expanding,
|
| 21 |
+
ExpandingGroupby,
|
| 22 |
+
ExponentialMovingWindow,
|
| 23 |
+
ExponentialMovingWindowGroupby,
|
| 24 |
+
Rolling,
|
| 25 |
+
RollingGroupby,
|
| 26 |
+
Window,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# TODO: Can't import Styler without importing jinja2
|
| 30 |
+
# from pandas.io.formats.style import Styler
|
| 31 |
+
from pandas.io.json._json import JsonReader
|
| 32 |
+
from pandas.io.stata import StataReader
|
| 33 |
+
|
| 34 |
+
__all__ = [
|
| 35 |
+
"DataFrameGroupBy",
|
| 36 |
+
"DatetimeIndexResamplerGroupby",
|
| 37 |
+
"Expanding",
|
| 38 |
+
"ExpandingGroupby",
|
| 39 |
+
"ExponentialMovingWindow",
|
| 40 |
+
"ExponentialMovingWindowGroupby",
|
| 41 |
+
"JsonReader",
|
| 42 |
+
"NaTType",
|
| 43 |
+
"NAType",
|
| 44 |
+
"PeriodIndexResamplerGroupby",
|
| 45 |
+
"Resampler",
|
| 46 |
+
"Rolling",
|
| 47 |
+
"RollingGroupby",
|
| 48 |
+
"SeriesGroupBy",
|
| 49 |
+
"StataReader",
|
| 50 |
+
# See TODO above
|
| 51 |
+
# "Styler",
|
| 52 |
+
"TimedeltaIndexResamplerGroupby",
|
| 53 |
+
"TimeGrouper",
|
| 54 |
+
"Window",
|
| 55 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/compat/__init__.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
compat
|
| 3 |
+
======
|
| 4 |
+
|
| 5 |
+
Cross-compatible functions for different versions of Python.
|
| 6 |
+
|
| 7 |
+
Other items:
|
| 8 |
+
* platform checker
|
| 9 |
+
"""
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import platform
|
| 14 |
+
import sys
|
| 15 |
+
from typing import TYPE_CHECKING
|
| 16 |
+
|
| 17 |
+
from pandas.compat._constants import (
|
| 18 |
+
IS64,
|
| 19 |
+
ISMUSL,
|
| 20 |
+
PY310,
|
| 21 |
+
PY311,
|
| 22 |
+
PY312,
|
| 23 |
+
PYPY,
|
| 24 |
+
)
|
| 25 |
+
import pandas.compat.compressors
|
| 26 |
+
from pandas.compat.numpy import is_numpy_dev
|
| 27 |
+
from pandas.compat.pyarrow import (
|
| 28 |
+
pa_version_under10p1,
|
| 29 |
+
pa_version_under11p0,
|
| 30 |
+
pa_version_under13p0,
|
| 31 |
+
pa_version_under14p0,
|
| 32 |
+
pa_version_under14p1,
|
| 33 |
+
pa_version_under16p0,
|
| 34 |
+
pa_version_under17p0,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
if TYPE_CHECKING:
|
| 38 |
+
from pandas._typing import F
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def set_function_name(f: F, name: str, cls: type) -> F:
|
| 42 |
+
"""
|
| 43 |
+
Bind the name/qualname attributes of the function.
|
| 44 |
+
"""
|
| 45 |
+
f.__name__ = name
|
| 46 |
+
f.__qualname__ = f"{cls.__name__}.{name}"
|
| 47 |
+
f.__module__ = cls.__module__
|
| 48 |
+
return f
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def is_platform_little_endian() -> bool:
|
| 52 |
+
"""
|
| 53 |
+
Checking if the running platform is little endian.
|
| 54 |
+
|
| 55 |
+
Returns
|
| 56 |
+
-------
|
| 57 |
+
bool
|
| 58 |
+
True if the running platform is little endian.
|
| 59 |
+
"""
|
| 60 |
+
return sys.byteorder == "little"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def is_platform_windows() -> bool:
|
| 64 |
+
"""
|
| 65 |
+
Checking if the running platform is windows.
|
| 66 |
+
|
| 67 |
+
Returns
|
| 68 |
+
-------
|
| 69 |
+
bool
|
| 70 |
+
True if the running platform is windows.
|
| 71 |
+
"""
|
| 72 |
+
return sys.platform in ["win32", "cygwin"]
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def is_platform_linux() -> bool:
|
| 76 |
+
"""
|
| 77 |
+
Checking if the running platform is linux.
|
| 78 |
+
|
| 79 |
+
Returns
|
| 80 |
+
-------
|
| 81 |
+
bool
|
| 82 |
+
True if the running platform is linux.
|
| 83 |
+
"""
|
| 84 |
+
return sys.platform == "linux"
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def is_platform_mac() -> bool:
|
| 88 |
+
"""
|
| 89 |
+
Checking if the running platform is mac.
|
| 90 |
+
|
| 91 |
+
Returns
|
| 92 |
+
-------
|
| 93 |
+
bool
|
| 94 |
+
True if the running platform is mac.
|
| 95 |
+
"""
|
| 96 |
+
return sys.platform == "darwin"
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def is_platform_arm() -> bool:
|
| 100 |
+
"""
|
| 101 |
+
Checking if the running platform use ARM architecture.
|
| 102 |
+
|
| 103 |
+
Returns
|
| 104 |
+
-------
|
| 105 |
+
bool
|
| 106 |
+
True if the running platform uses ARM architecture.
|
| 107 |
+
"""
|
| 108 |
+
return platform.machine() in ("arm64", "aarch64") or platform.machine().startswith(
|
| 109 |
+
"armv"
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def is_platform_power() -> bool:
|
| 114 |
+
"""
|
| 115 |
+
Checking if the running platform use Power architecture.
|
| 116 |
+
|
| 117 |
+
Returns
|
| 118 |
+
-------
|
| 119 |
+
bool
|
| 120 |
+
True if the running platform uses ARM architecture.
|
| 121 |
+
"""
|
| 122 |
+
return platform.machine() in ("ppc64", "ppc64le")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def is_ci_environment() -> bool:
|
| 126 |
+
"""
|
| 127 |
+
Checking if running in a continuous integration environment by checking
|
| 128 |
+
the PANDAS_CI environment variable.
|
| 129 |
+
|
| 130 |
+
Returns
|
| 131 |
+
-------
|
| 132 |
+
bool
|
| 133 |
+
True if the running in a continuous integration environment.
|
| 134 |
+
"""
|
| 135 |
+
return os.environ.get("PANDAS_CI", "0") == "1"
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def get_lzma_file() -> type[pandas.compat.compressors.LZMAFile]:
|
| 139 |
+
"""
|
| 140 |
+
Importing the `LZMAFile` class from the `lzma` module.
|
| 141 |
+
|
| 142 |
+
Returns
|
| 143 |
+
-------
|
| 144 |
+
class
|
| 145 |
+
The `LZMAFile` class from the `lzma` module.
|
| 146 |
+
|
| 147 |
+
Raises
|
| 148 |
+
------
|
| 149 |
+
RuntimeError
|
| 150 |
+
If the `lzma` module was not imported correctly, or didn't exist.
|
| 151 |
+
"""
|
| 152 |
+
if not pandas.compat.compressors.has_lzma:
|
| 153 |
+
raise RuntimeError(
|
| 154 |
+
"lzma module not available. "
|
| 155 |
+
"A Python re-install with the proper dependencies, "
|
| 156 |
+
"might be required to solve this issue."
|
| 157 |
+
)
|
| 158 |
+
return pandas.compat.compressors.LZMAFile
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def get_bz2_file() -> type[pandas.compat.compressors.BZ2File]:
|
| 162 |
+
"""
|
| 163 |
+
Importing the `BZ2File` class from the `bz2` module.
|
| 164 |
+
|
| 165 |
+
Returns
|
| 166 |
+
-------
|
| 167 |
+
class
|
| 168 |
+
The `BZ2File` class from the `bz2` module.
|
| 169 |
+
|
| 170 |
+
Raises
|
| 171 |
+
------
|
| 172 |
+
RuntimeError
|
| 173 |
+
If the `bz2` module was not imported correctly, or didn't exist.
|
| 174 |
+
"""
|
| 175 |
+
if not pandas.compat.compressors.has_bz2:
|
| 176 |
+
raise RuntimeError(
|
| 177 |
+
"bz2 module not available. "
|
| 178 |
+
"A Python re-install with the proper dependencies, "
|
| 179 |
+
"might be required to solve this issue."
|
| 180 |
+
)
|
| 181 |
+
return pandas.compat.compressors.BZ2File
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
__all__ = [
|
| 185 |
+
"is_numpy_dev",
|
| 186 |
+
"pa_version_under10p1",
|
| 187 |
+
"pa_version_under11p0",
|
| 188 |
+
"pa_version_under13p0",
|
| 189 |
+
"pa_version_under14p0",
|
| 190 |
+
"pa_version_under14p1",
|
| 191 |
+
"pa_version_under16p0",
|
| 192 |
+
"pa_version_under17p0",
|
| 193 |
+
"IS64",
|
| 194 |
+
"ISMUSL",
|
| 195 |
+
"PY310",
|
| 196 |
+
"PY311",
|
| 197 |
+
"PY312",
|
| 198 |
+
"PYPY",
|
| 199 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc
ADDED
|
Binary file (1.72 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/_constants.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
_constants
|
| 3 |
+
======
|
| 4 |
+
|
| 5 |
+
Constants relevant for the Python implementation.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from __future__ import annotations
|
| 9 |
+
|
| 10 |
+
import platform
|
| 11 |
+
import sys
|
| 12 |
+
import sysconfig
|
| 13 |
+
|
| 14 |
+
IS64 = sys.maxsize > 2**32
|
| 15 |
+
|
| 16 |
+
PY310 = sys.version_info >= (3, 10)
|
| 17 |
+
PY311 = sys.version_info >= (3, 11)
|
| 18 |
+
PY312 = sys.version_info >= (3, 12)
|
| 19 |
+
PYPY = platform.python_implementation() == "PyPy"
|
| 20 |
+
ISMUSL = "musl" in (sysconfig.get_config_var("HOST_GNU_TYPE") or "")
|
| 21 |
+
REF_COUNT = 2 if PY311 else 3
|
| 22 |
+
|
| 23 |
+
__all__ = [
|
| 24 |
+
"IS64",
|
| 25 |
+
"ISMUSL",
|
| 26 |
+
"PY310",
|
| 27 |
+
"PY311",
|
| 28 |
+
"PY312",
|
| 29 |
+
"PYPY",
|
| 30 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/compat/_optional.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import importlib
|
| 4 |
+
import sys
|
| 5 |
+
from typing import TYPE_CHECKING
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
from pandas.util._exceptions import find_stack_level
|
| 9 |
+
|
| 10 |
+
from pandas.util.version import Version
|
| 11 |
+
|
| 12 |
+
if TYPE_CHECKING:
|
| 13 |
+
import types
|
| 14 |
+
|
| 15 |
+
# Update install.rst & setup.cfg when updating versions!
|
| 16 |
+
|
| 17 |
+
VERSIONS = {
|
| 18 |
+
"adbc-driver-postgresql": "0.8.0",
|
| 19 |
+
"adbc-driver-sqlite": "0.8.0",
|
| 20 |
+
"bs4": "4.11.2",
|
| 21 |
+
"blosc": "1.21.3",
|
| 22 |
+
"bottleneck": "1.3.6",
|
| 23 |
+
"dataframe-api-compat": "0.1.7",
|
| 24 |
+
"fastparquet": "2022.12.0",
|
| 25 |
+
"fsspec": "2022.11.0",
|
| 26 |
+
"html5lib": "1.1",
|
| 27 |
+
"hypothesis": "6.46.1",
|
| 28 |
+
"gcsfs": "2022.11.0",
|
| 29 |
+
"jinja2": "3.1.2",
|
| 30 |
+
"lxml.etree": "4.9.2",
|
| 31 |
+
"matplotlib": "3.6.3",
|
| 32 |
+
"numba": "0.56.4",
|
| 33 |
+
"numexpr": "2.8.4",
|
| 34 |
+
"odfpy": "1.4.1",
|
| 35 |
+
"openpyxl": "3.1.0",
|
| 36 |
+
"pandas_gbq": "0.19.0",
|
| 37 |
+
"psycopg2": "2.9.6", # (dt dec pq3 ext lo64)
|
| 38 |
+
"pymysql": "1.0.2",
|
| 39 |
+
"pyarrow": "10.0.1",
|
| 40 |
+
"pyreadstat": "1.2.0",
|
| 41 |
+
"pytest": "7.3.2",
|
| 42 |
+
"python-calamine": "0.1.7",
|
| 43 |
+
"pyxlsb": "1.0.10",
|
| 44 |
+
"s3fs": "2022.11.0",
|
| 45 |
+
"scipy": "1.10.0",
|
| 46 |
+
"sqlalchemy": "2.0.0",
|
| 47 |
+
"tables": "3.8.0",
|
| 48 |
+
"tabulate": "0.9.0",
|
| 49 |
+
"xarray": "2022.12.0",
|
| 50 |
+
"xlrd": "2.0.1",
|
| 51 |
+
"xlsxwriter": "3.0.5",
|
| 52 |
+
"zstandard": "0.19.0",
|
| 53 |
+
"tzdata": "2022.7",
|
| 54 |
+
"qtpy": "2.3.0",
|
| 55 |
+
"pyqt5": "5.15.9",
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# A mapping from import name to package name (on PyPI) for packages where
|
| 59 |
+
# these two names are different.
|
| 60 |
+
|
| 61 |
+
INSTALL_MAPPING = {
|
| 62 |
+
"bs4": "beautifulsoup4",
|
| 63 |
+
"bottleneck": "Bottleneck",
|
| 64 |
+
"jinja2": "Jinja2",
|
| 65 |
+
"lxml.etree": "lxml",
|
| 66 |
+
"odf": "odfpy",
|
| 67 |
+
"pandas_gbq": "pandas-gbq",
|
| 68 |
+
"python_calamine": "python-calamine",
|
| 69 |
+
"sqlalchemy": "SQLAlchemy",
|
| 70 |
+
"tables": "pytables",
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_version(module: types.ModuleType) -> str:
|
| 75 |
+
version = getattr(module, "__version__", None)
|
| 76 |
+
|
| 77 |
+
if version is None:
|
| 78 |
+
raise ImportError(f"Can't determine version for {module.__name__}")
|
| 79 |
+
if module.__name__ == "psycopg2":
|
| 80 |
+
# psycopg2 appends " (dt dec pq3 ext lo64)" to it's version
|
| 81 |
+
version = version.split()[0]
|
| 82 |
+
return version
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def import_optional_dependency(
|
| 86 |
+
name: str,
|
| 87 |
+
extra: str = "",
|
| 88 |
+
errors: str = "raise",
|
| 89 |
+
min_version: str | None = None,
|
| 90 |
+
):
|
| 91 |
+
"""
|
| 92 |
+
Import an optional dependency.
|
| 93 |
+
|
| 94 |
+
By default, if a dependency is missing an ImportError with a nice
|
| 95 |
+
message will be raised. If a dependency is present, but too old,
|
| 96 |
+
we raise.
|
| 97 |
+
|
| 98 |
+
Parameters
|
| 99 |
+
----------
|
| 100 |
+
name : str
|
| 101 |
+
The module name.
|
| 102 |
+
extra : str
|
| 103 |
+
Additional text to include in the ImportError message.
|
| 104 |
+
errors : str {'raise', 'warn', 'ignore'}
|
| 105 |
+
What to do when a dependency is not found or its version is too old.
|
| 106 |
+
|
| 107 |
+
* raise : Raise an ImportError
|
| 108 |
+
* warn : Only applicable when a module's version is to old.
|
| 109 |
+
Warns that the version is too old and returns None
|
| 110 |
+
* ignore: If the module is not installed, return None, otherwise,
|
| 111 |
+
return the module, even if the version is too old.
|
| 112 |
+
It's expected that users validate the version locally when
|
| 113 |
+
using ``errors="ignore"`` (see. ``io/html.py``)
|
| 114 |
+
min_version : str, default None
|
| 115 |
+
Specify a minimum version that is different from the global pandas
|
| 116 |
+
minimum version required.
|
| 117 |
+
Returns
|
| 118 |
+
-------
|
| 119 |
+
maybe_module : Optional[ModuleType]
|
| 120 |
+
The imported module, when found and the version is correct.
|
| 121 |
+
None is returned when the package is not found and `errors`
|
| 122 |
+
is False, or when the package's version is too old and `errors`
|
| 123 |
+
is ``'warn'`` or ``'ignore'``.
|
| 124 |
+
"""
|
| 125 |
+
assert errors in {"warn", "raise", "ignore"}
|
| 126 |
+
|
| 127 |
+
package_name = INSTALL_MAPPING.get(name)
|
| 128 |
+
install_name = package_name if package_name is not None else name
|
| 129 |
+
|
| 130 |
+
msg = (
|
| 131 |
+
f"Missing optional dependency '{install_name}'. {extra} "
|
| 132 |
+
f"Use pip or conda to install {install_name}."
|
| 133 |
+
)
|
| 134 |
+
try:
|
| 135 |
+
module = importlib.import_module(name)
|
| 136 |
+
except ImportError:
|
| 137 |
+
if errors == "raise":
|
| 138 |
+
raise ImportError(msg)
|
| 139 |
+
return None
|
| 140 |
+
|
| 141 |
+
# Handle submodules: if we have submodule, grab parent module from sys.modules
|
| 142 |
+
parent = name.split(".")[0]
|
| 143 |
+
if parent != name:
|
| 144 |
+
install_name = parent
|
| 145 |
+
module_to_get = sys.modules[install_name]
|
| 146 |
+
else:
|
| 147 |
+
module_to_get = module
|
| 148 |
+
minimum_version = min_version if min_version is not None else VERSIONS.get(parent)
|
| 149 |
+
if minimum_version:
|
| 150 |
+
version = get_version(module_to_get)
|
| 151 |
+
if version and Version(version) < Version(minimum_version):
|
| 152 |
+
msg = (
|
| 153 |
+
f"Pandas requires version '{minimum_version}' or newer of '{parent}' "
|
| 154 |
+
f"(version '{version}' currently installed)."
|
| 155 |
+
)
|
| 156 |
+
if errors == "warn":
|
| 157 |
+
warnings.warn(
|
| 158 |
+
msg,
|
| 159 |
+
UserWarning,
|
| 160 |
+
stacklevel=find_stack_level(),
|
| 161 |
+
)
|
| 162 |
+
return None
|
| 163 |
+
elif errors == "raise":
|
| 164 |
+
raise ImportError(msg)
|
| 165 |
+
else:
|
| 166 |
+
return None
|
| 167 |
+
|
| 168 |
+
return module
|
emu3/lib/python3.10/site-packages/pandas/compat/compressors.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Patched ``BZ2File`` and ``LZMAFile`` to handle pickle protocol 5.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
|
| 7 |
+
from pickle import PickleBuffer
|
| 8 |
+
|
| 9 |
+
from pandas.compat._constants import PY310
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import bz2
|
| 13 |
+
|
| 14 |
+
has_bz2 = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
has_bz2 = False
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
import lzma
|
| 20 |
+
|
| 21 |
+
has_lzma = True
|
| 22 |
+
except ImportError:
|
| 23 |
+
has_lzma = False
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def flatten_buffer(
|
| 27 |
+
b: bytes | bytearray | memoryview | PickleBuffer,
|
| 28 |
+
) -> bytes | bytearray | memoryview:
|
| 29 |
+
"""
|
| 30 |
+
Return some 1-D `uint8` typed buffer.
|
| 31 |
+
|
| 32 |
+
Coerces anything that does not match that description to one that does
|
| 33 |
+
without copying if possible (otherwise will copy).
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
if isinstance(b, (bytes, bytearray)):
|
| 37 |
+
return b
|
| 38 |
+
|
| 39 |
+
if not isinstance(b, PickleBuffer):
|
| 40 |
+
b = PickleBuffer(b)
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# coerce to 1-D `uint8` C-contiguous `memoryview` zero-copy
|
| 44 |
+
return b.raw()
|
| 45 |
+
except BufferError:
|
| 46 |
+
# perform in-memory copy if buffer is not contiguous
|
| 47 |
+
return memoryview(b).tobytes("A")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if has_bz2:
|
| 51 |
+
|
| 52 |
+
class BZ2File(bz2.BZ2File):
|
| 53 |
+
if not PY310:
|
| 54 |
+
|
| 55 |
+
def write(self, b) -> int:
|
| 56 |
+
# Workaround issue where `bz2.BZ2File` expects `len`
|
| 57 |
+
# to return the number of bytes in `b` by converting
|
| 58 |
+
# `b` into something that meets that constraint with
|
| 59 |
+
# minimal copying.
|
| 60 |
+
#
|
| 61 |
+
# Note: This is fixed in Python 3.10.
|
| 62 |
+
return super().write(flatten_buffer(b))
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if has_lzma:
|
| 66 |
+
|
| 67 |
+
class LZMAFile(lzma.LZMAFile):
|
| 68 |
+
if not PY310:
|
| 69 |
+
|
| 70 |
+
def write(self, b) -> int:
|
| 71 |
+
# Workaround issue where `lzma.LZMAFile` expects `len`
|
| 72 |
+
# to return the number of bytes in `b` by converting
|
| 73 |
+
# `b` into something that meets that constraint with
|
| 74 |
+
# minimal copying.
|
| 75 |
+
#
|
| 76 |
+
# Note: This is fixed in Python 3.10.
|
| 77 |
+
return super().write(flatten_buffer(b))
|
emu3/lib/python3.10/site-packages/pandas/compat/pickle_compat.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Support pre-0.12 series pickle compatibility.
|
| 3 |
+
"""
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import contextlib
|
| 7 |
+
import copy
|
| 8 |
+
import io
|
| 9 |
+
import pickle as pkl
|
| 10 |
+
from typing import TYPE_CHECKING
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
from pandas._libs.arrays import NDArrayBacked
|
| 15 |
+
from pandas._libs.tslibs import BaseOffset
|
| 16 |
+
|
| 17 |
+
from pandas import Index
|
| 18 |
+
from pandas.core.arrays import (
|
| 19 |
+
DatetimeArray,
|
| 20 |
+
PeriodArray,
|
| 21 |
+
TimedeltaArray,
|
| 22 |
+
)
|
| 23 |
+
from pandas.core.internals import BlockManager
|
| 24 |
+
|
| 25 |
+
if TYPE_CHECKING:
|
| 26 |
+
from collections.abc import Generator
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def load_reduce(self) -> None:
|
| 30 |
+
stack = self.stack
|
| 31 |
+
args = stack.pop()
|
| 32 |
+
func = stack[-1]
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
stack[-1] = func(*args)
|
| 36 |
+
return
|
| 37 |
+
except TypeError as err:
|
| 38 |
+
# If we have a deprecated function,
|
| 39 |
+
# try to replace and try again.
|
| 40 |
+
|
| 41 |
+
msg = "_reconstruct: First argument must be a sub-type of ndarray"
|
| 42 |
+
|
| 43 |
+
if msg in str(err):
|
| 44 |
+
try:
|
| 45 |
+
cls = args[0]
|
| 46 |
+
stack[-1] = object.__new__(cls)
|
| 47 |
+
return
|
| 48 |
+
except TypeError:
|
| 49 |
+
pass
|
| 50 |
+
elif args and isinstance(args[0], type) and issubclass(args[0], BaseOffset):
|
| 51 |
+
# TypeError: object.__new__(Day) is not safe, use Day.__new__()
|
| 52 |
+
cls = args[0]
|
| 53 |
+
stack[-1] = cls.__new__(*args)
|
| 54 |
+
return
|
| 55 |
+
elif args and issubclass(args[0], PeriodArray):
|
| 56 |
+
cls = args[0]
|
| 57 |
+
stack[-1] = NDArrayBacked.__new__(*args)
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
raise
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# If classes are moved, provide compat here.
|
| 64 |
+
_class_locations_map = {
|
| 65 |
+
("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"),
|
| 66 |
+
# 15477
|
| 67 |
+
("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"),
|
| 68 |
+
# Re-routing unpickle block logic to go through _unpickle_block instead
|
| 69 |
+
# for pandas <= 1.3.5
|
| 70 |
+
("pandas.core.internals.blocks", "new_block"): (
|
| 71 |
+
"pandas._libs.internals",
|
| 72 |
+
"_unpickle_block",
|
| 73 |
+
),
|
| 74 |
+
("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"),
|
| 75 |
+
("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"),
|
| 76 |
+
# 10890
|
| 77 |
+
("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"),
|
| 78 |
+
("pandas.sparse.series", "SparseTimeSeries"): (
|
| 79 |
+
"pandas.core.sparse.series",
|
| 80 |
+
"SparseSeries",
|
| 81 |
+
),
|
| 82 |
+
# 12588, extensions moving
|
| 83 |
+
("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"),
|
| 84 |
+
("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"),
|
| 85 |
+
# 18543 moving period
|
| 86 |
+
("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
| 87 |
+
("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
| 88 |
+
# 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype
|
| 89 |
+
("pandas.tslib", "__nat_unpickle"): (
|
| 90 |
+
"pandas._libs.tslibs.nattype",
|
| 91 |
+
"__nat_unpickle",
|
| 92 |
+
),
|
| 93 |
+
("pandas._libs.tslib", "__nat_unpickle"): (
|
| 94 |
+
"pandas._libs.tslibs.nattype",
|
| 95 |
+
"__nat_unpickle",
|
| 96 |
+
),
|
| 97 |
+
# 15998 top-level dirs moving
|
| 98 |
+
("pandas.sparse.array", "SparseArray"): (
|
| 99 |
+
"pandas.core.arrays.sparse",
|
| 100 |
+
"SparseArray",
|
| 101 |
+
),
|
| 102 |
+
("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"),
|
| 103 |
+
("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"),
|
| 104 |
+
("pandas.indexes.numeric", "Int64Index"): (
|
| 105 |
+
"pandas.core.indexes.base",
|
| 106 |
+
"Index", # updated in 50775
|
| 107 |
+
),
|
| 108 |
+
("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"),
|
| 109 |
+
("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"),
|
| 110 |
+
("pandas.tseries.index", "_new_DatetimeIndex"): (
|
| 111 |
+
"pandas.core.indexes.datetimes",
|
| 112 |
+
"_new_DatetimeIndex",
|
| 113 |
+
),
|
| 114 |
+
("pandas.tseries.index", "DatetimeIndex"): (
|
| 115 |
+
"pandas.core.indexes.datetimes",
|
| 116 |
+
"DatetimeIndex",
|
| 117 |
+
),
|
| 118 |
+
("pandas.tseries.period", "PeriodIndex"): (
|
| 119 |
+
"pandas.core.indexes.period",
|
| 120 |
+
"PeriodIndex",
|
| 121 |
+
),
|
| 122 |
+
# 19269, arrays moving
|
| 123 |
+
("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"),
|
| 124 |
+
# 19939, add timedeltaindex, float64index compat from 15998 move
|
| 125 |
+
("pandas.tseries.tdi", "TimedeltaIndex"): (
|
| 126 |
+
"pandas.core.indexes.timedeltas",
|
| 127 |
+
"TimedeltaIndex",
|
| 128 |
+
),
|
| 129 |
+
("pandas.indexes.numeric", "Float64Index"): (
|
| 130 |
+
"pandas.core.indexes.base",
|
| 131 |
+
"Index", # updated in 50775
|
| 132 |
+
),
|
| 133 |
+
# 50775, remove Int64Index, UInt64Index & Float64Index from codabase
|
| 134 |
+
("pandas.core.indexes.numeric", "Int64Index"): (
|
| 135 |
+
"pandas.core.indexes.base",
|
| 136 |
+
"Index",
|
| 137 |
+
),
|
| 138 |
+
("pandas.core.indexes.numeric", "UInt64Index"): (
|
| 139 |
+
"pandas.core.indexes.base",
|
| 140 |
+
"Index",
|
| 141 |
+
),
|
| 142 |
+
("pandas.core.indexes.numeric", "Float64Index"): (
|
| 143 |
+
"pandas.core.indexes.base",
|
| 144 |
+
"Index",
|
| 145 |
+
),
|
| 146 |
+
("pandas.core.arrays.sparse.dtype", "SparseDtype"): (
|
| 147 |
+
"pandas.core.dtypes.dtypes",
|
| 148 |
+
"SparseDtype",
|
| 149 |
+
),
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# our Unpickler sub-class to override methods and some dispatcher
|
| 154 |
+
# functions for compat and uses a non-public class of the pickle module.
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class Unpickler(pkl._Unpickler):
|
| 158 |
+
def find_class(self, module, name):
|
| 159 |
+
# override superclass
|
| 160 |
+
key = (module, name)
|
| 161 |
+
module, name = _class_locations_map.get(key, key)
|
| 162 |
+
return super().find_class(module, name)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
Unpickler.dispatch = copy.copy(Unpickler.dispatch)
|
| 166 |
+
Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def load_newobj(self) -> None:
|
| 170 |
+
args = self.stack.pop()
|
| 171 |
+
cls = self.stack[-1]
|
| 172 |
+
|
| 173 |
+
# compat
|
| 174 |
+
if issubclass(cls, Index):
|
| 175 |
+
obj = object.__new__(cls)
|
| 176 |
+
elif issubclass(cls, DatetimeArray) and not args:
|
| 177 |
+
arr = np.array([], dtype="M8[ns]")
|
| 178 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
| 179 |
+
elif issubclass(cls, TimedeltaArray) and not args:
|
| 180 |
+
arr = np.array([], dtype="m8[ns]")
|
| 181 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
| 182 |
+
elif cls is BlockManager and not args:
|
| 183 |
+
obj = cls.__new__(cls, (), [], False)
|
| 184 |
+
else:
|
| 185 |
+
obj = cls.__new__(cls, *args)
|
| 186 |
+
|
| 187 |
+
self.stack[-1] = obj
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def load_newobj_ex(self) -> None:
|
| 194 |
+
kwargs = self.stack.pop()
|
| 195 |
+
args = self.stack.pop()
|
| 196 |
+
cls = self.stack.pop()
|
| 197 |
+
|
| 198 |
+
# compat
|
| 199 |
+
if issubclass(cls, Index):
|
| 200 |
+
obj = object.__new__(cls)
|
| 201 |
+
else:
|
| 202 |
+
obj = cls.__new__(cls, *args, **kwargs)
|
| 203 |
+
self.append(obj)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex
|
| 208 |
+
except (AttributeError, KeyError):
|
| 209 |
+
pass
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def load(fh, encoding: str | None = None, is_verbose: bool = False):
|
| 213 |
+
"""
|
| 214 |
+
Load a pickle, with a provided encoding,
|
| 215 |
+
|
| 216 |
+
Parameters
|
| 217 |
+
----------
|
| 218 |
+
fh : a filelike object
|
| 219 |
+
encoding : an optional encoding
|
| 220 |
+
is_verbose : show exception output
|
| 221 |
+
"""
|
| 222 |
+
try:
|
| 223 |
+
fh.seek(0)
|
| 224 |
+
if encoding is not None:
|
| 225 |
+
up = Unpickler(fh, encoding=encoding)
|
| 226 |
+
else:
|
| 227 |
+
up = Unpickler(fh)
|
| 228 |
+
# "Unpickler" has no attribute "is_verbose" [attr-defined]
|
| 229 |
+
up.is_verbose = is_verbose # type: ignore[attr-defined]
|
| 230 |
+
|
| 231 |
+
return up.load()
|
| 232 |
+
except (ValueError, TypeError):
|
| 233 |
+
raise
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def loads(
|
| 237 |
+
bytes_object: bytes,
|
| 238 |
+
*,
|
| 239 |
+
fix_imports: bool = True,
|
| 240 |
+
encoding: str = "ASCII",
|
| 241 |
+
errors: str = "strict",
|
| 242 |
+
):
|
| 243 |
+
"""
|
| 244 |
+
Analogous to pickle._loads.
|
| 245 |
+
"""
|
| 246 |
+
fd = io.BytesIO(bytes_object)
|
| 247 |
+
return Unpickler(
|
| 248 |
+
fd, fix_imports=fix_imports, encoding=encoding, errors=errors
|
| 249 |
+
).load()
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
@contextlib.contextmanager
|
| 253 |
+
def patch_pickle() -> Generator[None, None, None]:
|
| 254 |
+
"""
|
| 255 |
+
Temporarily patch pickle to use our unpickler.
|
| 256 |
+
"""
|
| 257 |
+
orig_loads = pkl.loads
|
| 258 |
+
try:
|
| 259 |
+
setattr(pkl, "loads", loads)
|
| 260 |
+
yield
|
| 261 |
+
finally:
|
| 262 |
+
setattr(pkl, "loads", orig_loads)
|
emu3/lib/python3.10/site-packages/pandas/compat/pyarrow.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" support pyarrow compatibility across versions """
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
from pandas.util.version import Version
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
import pyarrow as pa
|
| 9 |
+
|
| 10 |
+
_palv = Version(Version(pa.__version__).base_version)
|
| 11 |
+
pa_version_under10p1 = _palv < Version("10.0.1")
|
| 12 |
+
pa_version_under11p0 = _palv < Version("11.0.0")
|
| 13 |
+
pa_version_under12p0 = _palv < Version("12.0.0")
|
| 14 |
+
pa_version_under13p0 = _palv < Version("13.0.0")
|
| 15 |
+
pa_version_under14p0 = _palv < Version("14.0.0")
|
| 16 |
+
pa_version_under14p1 = _palv < Version("14.0.1")
|
| 17 |
+
pa_version_under15p0 = _palv < Version("15.0.0")
|
| 18 |
+
pa_version_under16p0 = _palv < Version("16.0.0")
|
| 19 |
+
pa_version_under17p0 = _palv < Version("17.0.0")
|
| 20 |
+
except ImportError:
|
| 21 |
+
pa_version_under10p1 = True
|
| 22 |
+
pa_version_under11p0 = True
|
| 23 |
+
pa_version_under12p0 = True
|
| 24 |
+
pa_version_under13p0 = True
|
| 25 |
+
pa_version_under14p0 = True
|
| 26 |
+
pa_version_under14p1 = True
|
| 27 |
+
pa_version_under15p0 = True
|
| 28 |
+
pa_version_under16p0 = True
|
| 29 |
+
pa_version_under17p0 = True
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/__init__.py
ADDED
|
File without changes
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (174 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_compat.cpython-310.pyc
ADDED
|
Binary file (1.08 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_eval.cpython-310.pyc
ADDED
|
Binary file (58.7 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/test_compat.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
from pandas.compat._optional import VERSIONS
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from pandas.core.computation import expr
|
| 7 |
+
from pandas.core.computation.engines import ENGINES
|
| 8 |
+
from pandas.util.version import Version
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def test_compat():
|
| 12 |
+
# test we have compat with our version of numexpr
|
| 13 |
+
|
| 14 |
+
from pandas.core.computation.check import NUMEXPR_INSTALLED
|
| 15 |
+
|
| 16 |
+
ne = pytest.importorskip("numexpr")
|
| 17 |
+
|
| 18 |
+
ver = ne.__version__
|
| 19 |
+
if Version(ver) < Version(VERSIONS["numexpr"]):
|
| 20 |
+
assert not NUMEXPR_INSTALLED
|
| 21 |
+
else:
|
| 22 |
+
assert NUMEXPR_INSTALLED
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@pytest.mark.parametrize("engine", ENGINES)
|
| 26 |
+
@pytest.mark.parametrize("parser", expr.PARSERS)
|
| 27 |
+
def test_invalid_numexpr_version(engine, parser):
|
| 28 |
+
if engine == "numexpr":
|
| 29 |
+
pytest.importorskip("numexpr")
|
| 30 |
+
a, b = 1, 2 # noqa: F841
|
| 31 |
+
res = pd.eval("a + b", engine=engine, parser=parser)
|
| 32 |
+
assert res == 3
|
emu3/lib/python3.10/site-packages/pandas/tests/computation/test_eval.py
ADDED
|
@@ -0,0 +1,2001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from functools import reduce
|
| 4 |
+
from itertools import product
|
| 5 |
+
import operator
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pytest
|
| 9 |
+
|
| 10 |
+
from pandas.compat import PY312
|
| 11 |
+
from pandas.errors import (
|
| 12 |
+
NumExprClobberingError,
|
| 13 |
+
PerformanceWarning,
|
| 14 |
+
UndefinedVariableError,
|
| 15 |
+
)
|
| 16 |
+
import pandas.util._test_decorators as td
|
| 17 |
+
|
| 18 |
+
from pandas.core.dtypes.common import (
|
| 19 |
+
is_bool,
|
| 20 |
+
is_float,
|
| 21 |
+
is_list_like,
|
| 22 |
+
is_scalar,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
import pandas as pd
|
| 26 |
+
from pandas import (
|
| 27 |
+
DataFrame,
|
| 28 |
+
Index,
|
| 29 |
+
Series,
|
| 30 |
+
date_range,
|
| 31 |
+
period_range,
|
| 32 |
+
timedelta_range,
|
| 33 |
+
)
|
| 34 |
+
import pandas._testing as tm
|
| 35 |
+
from pandas.core.computation import (
|
| 36 |
+
expr,
|
| 37 |
+
pytables,
|
| 38 |
+
)
|
| 39 |
+
from pandas.core.computation.engines import ENGINES
|
| 40 |
+
from pandas.core.computation.expr import (
|
| 41 |
+
BaseExprVisitor,
|
| 42 |
+
PandasExprVisitor,
|
| 43 |
+
PythonExprVisitor,
|
| 44 |
+
)
|
| 45 |
+
from pandas.core.computation.expressions import (
|
| 46 |
+
NUMEXPR_INSTALLED,
|
| 47 |
+
USE_NUMEXPR,
|
| 48 |
+
)
|
| 49 |
+
from pandas.core.computation.ops import (
|
| 50 |
+
ARITH_OPS_SYMS,
|
| 51 |
+
SPECIAL_CASE_ARITH_OPS_SYMS,
|
| 52 |
+
_binary_math_ops,
|
| 53 |
+
_binary_ops_dict,
|
| 54 |
+
_unary_math_ops,
|
| 55 |
+
)
|
| 56 |
+
from pandas.core.computation.scope import DEFAULT_GLOBALS
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@pytest.fixture(
|
| 60 |
+
params=(
|
| 61 |
+
pytest.param(
|
| 62 |
+
engine,
|
| 63 |
+
marks=[
|
| 64 |
+
pytest.mark.skipif(
|
| 65 |
+
engine == "numexpr" and not USE_NUMEXPR,
|
| 66 |
+
reason=f"numexpr enabled->{USE_NUMEXPR}, "
|
| 67 |
+
f"installed->{NUMEXPR_INSTALLED}",
|
| 68 |
+
),
|
| 69 |
+
td.skip_if_no("numexpr"),
|
| 70 |
+
],
|
| 71 |
+
)
|
| 72 |
+
for engine in ENGINES
|
| 73 |
+
)
|
| 74 |
+
)
|
| 75 |
+
def engine(request):
|
| 76 |
+
return request.param
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@pytest.fixture(params=expr.PARSERS)
|
| 80 |
+
def parser(request):
|
| 81 |
+
return request.param
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def _eval_single_bin(lhs, cmp1, rhs, engine):
|
| 85 |
+
c = _binary_ops_dict[cmp1]
|
| 86 |
+
if ENGINES[engine].has_neg_frac:
|
| 87 |
+
try:
|
| 88 |
+
return c(lhs, rhs)
|
| 89 |
+
except ValueError as e:
|
| 90 |
+
if str(e).startswith(
|
| 91 |
+
"negative number cannot be raised to a fractional power"
|
| 92 |
+
):
|
| 93 |
+
return np.nan
|
| 94 |
+
raise
|
| 95 |
+
return c(lhs, rhs)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# TODO: using range(5) here is a kludge
|
| 99 |
+
@pytest.fixture(
|
| 100 |
+
params=list(range(5)),
|
| 101 |
+
ids=["DataFrame", "Series", "SeriesNaN", "DataFrameNaN", "float"],
|
| 102 |
+
)
|
| 103 |
+
def lhs(request):
|
| 104 |
+
nan_df1 = DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
| 105 |
+
nan_df1[nan_df1 > 0.5] = np.nan
|
| 106 |
+
|
| 107 |
+
opts = (
|
| 108 |
+
DataFrame(np.random.default_rng(2).standard_normal((10, 5))),
|
| 109 |
+
Series(np.random.default_rng(2).standard_normal(5)),
|
| 110 |
+
Series([1, 2, np.nan, np.nan, 5]),
|
| 111 |
+
nan_df1,
|
| 112 |
+
np.random.default_rng(2).standard_normal(),
|
| 113 |
+
)
|
| 114 |
+
return opts[request.param]
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
rhs = lhs
|
| 118 |
+
midhs = lhs
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@pytest.fixture
|
| 122 |
+
def idx_func_dict():
|
| 123 |
+
return {
|
| 124 |
+
"i": lambda n: Index(np.arange(n), dtype=np.int64),
|
| 125 |
+
"f": lambda n: Index(np.arange(n), dtype=np.float64),
|
| 126 |
+
"s": lambda n: Index([f"{i}_{chr(i)}" for i in range(97, 97 + n)]),
|
| 127 |
+
"dt": lambda n: date_range("2020-01-01", periods=n),
|
| 128 |
+
"td": lambda n: timedelta_range("1 day", periods=n),
|
| 129 |
+
"p": lambda n: period_range("2020-01-01", periods=n, freq="D"),
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class TestEval:
|
| 134 |
+
@pytest.mark.parametrize(
|
| 135 |
+
"cmp1",
|
| 136 |
+
["!=", "==", "<=", ">=", "<", ">"],
|
| 137 |
+
ids=["ne", "eq", "le", "ge", "lt", "gt"],
|
| 138 |
+
)
|
| 139 |
+
@pytest.mark.parametrize("cmp2", [">", "<"], ids=["gt", "lt"])
|
| 140 |
+
@pytest.mark.parametrize("binop", expr.BOOL_OPS_SYMS)
|
| 141 |
+
def test_complex_cmp_ops(self, cmp1, cmp2, binop, lhs, rhs, engine, parser):
|
| 142 |
+
if parser == "python" and binop in ["and", "or"]:
|
| 143 |
+
msg = "'BoolOp' nodes are not implemented"
|
| 144 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 145 |
+
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
|
| 146 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 147 |
+
return
|
| 148 |
+
|
| 149 |
+
lhs_new = _eval_single_bin(lhs, cmp1, rhs, engine)
|
| 150 |
+
rhs_new = _eval_single_bin(lhs, cmp2, rhs, engine)
|
| 151 |
+
expected = _eval_single_bin(lhs_new, binop, rhs_new, engine)
|
| 152 |
+
|
| 153 |
+
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
|
| 154 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 155 |
+
tm.assert_equal(result, expected)
|
| 156 |
+
|
| 157 |
+
@pytest.mark.parametrize("cmp_op", expr.CMP_OPS_SYMS)
|
| 158 |
+
def test_simple_cmp_ops(self, cmp_op, lhs, rhs, engine, parser):
|
| 159 |
+
lhs = lhs < 0
|
| 160 |
+
rhs = rhs < 0
|
| 161 |
+
|
| 162 |
+
if parser == "python" and cmp_op in ["in", "not in"]:
|
| 163 |
+
msg = "'(In|NotIn)' nodes are not implemented"
|
| 164 |
+
|
| 165 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 166 |
+
ex = f"lhs {cmp_op} rhs"
|
| 167 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 168 |
+
return
|
| 169 |
+
|
| 170 |
+
ex = f"lhs {cmp_op} rhs"
|
| 171 |
+
msg = "|".join(
|
| 172 |
+
[
|
| 173 |
+
r"only list-like( or dict-like)? objects are allowed to be "
|
| 174 |
+
r"passed to (DataFrame\.)?isin\(\), you passed a "
|
| 175 |
+
r"(`|')bool(`|')",
|
| 176 |
+
"argument of type 'bool' is not iterable",
|
| 177 |
+
]
|
| 178 |
+
)
|
| 179 |
+
if cmp_op in ("in", "not in") and not is_list_like(rhs):
|
| 180 |
+
with pytest.raises(TypeError, match=msg):
|
| 181 |
+
pd.eval(
|
| 182 |
+
ex,
|
| 183 |
+
engine=engine,
|
| 184 |
+
parser=parser,
|
| 185 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
| 186 |
+
)
|
| 187 |
+
else:
|
| 188 |
+
expected = _eval_single_bin(lhs, cmp_op, rhs, engine)
|
| 189 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 190 |
+
tm.assert_equal(result, expected)
|
| 191 |
+
|
| 192 |
+
@pytest.mark.parametrize("op", expr.CMP_OPS_SYMS)
|
| 193 |
+
def test_compound_invert_op(self, op, lhs, rhs, request, engine, parser):
|
| 194 |
+
if parser == "python" and op in ["in", "not in"]:
|
| 195 |
+
msg = "'(In|NotIn)' nodes are not implemented"
|
| 196 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 197 |
+
ex = f"~(lhs {op} rhs)"
|
| 198 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 199 |
+
return
|
| 200 |
+
|
| 201 |
+
if (
|
| 202 |
+
is_float(lhs)
|
| 203 |
+
and not is_float(rhs)
|
| 204 |
+
and op in ["in", "not in"]
|
| 205 |
+
and engine == "python"
|
| 206 |
+
and parser == "pandas"
|
| 207 |
+
):
|
| 208 |
+
mark = pytest.mark.xfail(
|
| 209 |
+
reason="Looks like expected is negative, unclear whether "
|
| 210 |
+
"expected is incorrect or result is incorrect"
|
| 211 |
+
)
|
| 212 |
+
request.applymarker(mark)
|
| 213 |
+
skip_these = ["in", "not in"]
|
| 214 |
+
ex = f"~(lhs {op} rhs)"
|
| 215 |
+
|
| 216 |
+
msg = "|".join(
|
| 217 |
+
[
|
| 218 |
+
r"only list-like( or dict-like)? objects are allowed to be "
|
| 219 |
+
r"passed to (DataFrame\.)?isin\(\), you passed a "
|
| 220 |
+
r"(`|')float(`|')",
|
| 221 |
+
"argument of type 'float' is not iterable",
|
| 222 |
+
]
|
| 223 |
+
)
|
| 224 |
+
if is_scalar(rhs) and op in skip_these:
|
| 225 |
+
with pytest.raises(TypeError, match=msg):
|
| 226 |
+
pd.eval(
|
| 227 |
+
ex,
|
| 228 |
+
engine=engine,
|
| 229 |
+
parser=parser,
|
| 230 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
| 231 |
+
)
|
| 232 |
+
else:
|
| 233 |
+
# compound
|
| 234 |
+
if is_scalar(lhs) and is_scalar(rhs):
|
| 235 |
+
lhs, rhs = (np.array([x]) for x in (lhs, rhs))
|
| 236 |
+
expected = _eval_single_bin(lhs, op, rhs, engine)
|
| 237 |
+
if is_scalar(expected):
|
| 238 |
+
expected = not expected
|
| 239 |
+
else:
|
| 240 |
+
expected = ~expected
|
| 241 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 242 |
+
tm.assert_almost_equal(expected, result)
|
| 243 |
+
|
| 244 |
+
@pytest.mark.parametrize("cmp1", ["<", ">"])
|
| 245 |
+
@pytest.mark.parametrize("cmp2", ["<", ">"])
|
| 246 |
+
def test_chained_cmp_op(self, cmp1, cmp2, lhs, midhs, rhs, engine, parser):
|
| 247 |
+
mid = midhs
|
| 248 |
+
if parser == "python":
|
| 249 |
+
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
|
| 250 |
+
msg = "'BoolOp' nodes are not implemented"
|
| 251 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 252 |
+
pd.eval(ex1, engine=engine, parser=parser)
|
| 253 |
+
return
|
| 254 |
+
|
| 255 |
+
lhs_new = _eval_single_bin(lhs, cmp1, mid, engine)
|
| 256 |
+
rhs_new = _eval_single_bin(mid, cmp2, rhs, engine)
|
| 257 |
+
|
| 258 |
+
if lhs_new is not None and rhs_new is not None:
|
| 259 |
+
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
|
| 260 |
+
ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs"
|
| 261 |
+
ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)"
|
| 262 |
+
expected = _eval_single_bin(lhs_new, "&", rhs_new, engine)
|
| 263 |
+
|
| 264 |
+
for ex in (ex1, ex2, ex3):
|
| 265 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 266 |
+
|
| 267 |
+
tm.assert_almost_equal(result, expected)
|
| 268 |
+
|
| 269 |
+
@pytest.mark.parametrize(
|
| 270 |
+
"arith1", sorted(set(ARITH_OPS_SYMS).difference(SPECIAL_CASE_ARITH_OPS_SYMS))
|
| 271 |
+
)
|
| 272 |
+
def test_binary_arith_ops(self, arith1, lhs, rhs, engine, parser):
|
| 273 |
+
ex = f"lhs {arith1} rhs"
|
| 274 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 275 |
+
expected = _eval_single_bin(lhs, arith1, rhs, engine)
|
| 276 |
+
|
| 277 |
+
tm.assert_almost_equal(result, expected)
|
| 278 |
+
ex = f"lhs {arith1} rhs {arith1} rhs"
|
| 279 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 280 |
+
nlhs = _eval_single_bin(lhs, arith1, rhs, engine)
|
| 281 |
+
try:
|
| 282 |
+
nlhs, ghs = nlhs.align(rhs)
|
| 283 |
+
except (ValueError, TypeError, AttributeError):
|
| 284 |
+
# ValueError: series frame or frame series align
|
| 285 |
+
# TypeError, AttributeError: series or frame with scalar align
|
| 286 |
+
return
|
| 287 |
+
else:
|
| 288 |
+
if engine == "numexpr":
|
| 289 |
+
import numexpr as ne
|
| 290 |
+
|
| 291 |
+
# direct numpy comparison
|
| 292 |
+
expected = ne.evaluate(f"nlhs {arith1} ghs")
|
| 293 |
+
# Update assert statement due to unreliable numerical
|
| 294 |
+
# precision component (GH37328)
|
| 295 |
+
# TODO: update testing code so that assert_almost_equal statement
|
| 296 |
+
# can be replaced again by the assert_numpy_array_equal statement
|
| 297 |
+
tm.assert_almost_equal(result.values, expected)
|
| 298 |
+
else:
|
| 299 |
+
expected = eval(f"nlhs {arith1} ghs")
|
| 300 |
+
tm.assert_almost_equal(result, expected)
|
| 301 |
+
|
| 302 |
+
# modulus, pow, and floor division require special casing
|
| 303 |
+
|
| 304 |
+
def test_modulus(self, lhs, rhs, engine, parser):
|
| 305 |
+
ex = r"lhs % rhs"
|
| 306 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 307 |
+
expected = lhs % rhs
|
| 308 |
+
tm.assert_almost_equal(result, expected)
|
| 309 |
+
|
| 310 |
+
if engine == "numexpr":
|
| 311 |
+
import numexpr as ne
|
| 312 |
+
|
| 313 |
+
expected = ne.evaluate(r"expected % rhs")
|
| 314 |
+
if isinstance(result, (DataFrame, Series)):
|
| 315 |
+
tm.assert_almost_equal(result.values, expected)
|
| 316 |
+
else:
|
| 317 |
+
tm.assert_almost_equal(result, expected.item())
|
| 318 |
+
else:
|
| 319 |
+
expected = _eval_single_bin(expected, "%", rhs, engine)
|
| 320 |
+
tm.assert_almost_equal(result, expected)
|
| 321 |
+
|
| 322 |
+
def test_floor_division(self, lhs, rhs, engine, parser):
|
| 323 |
+
ex = "lhs // rhs"
|
| 324 |
+
|
| 325 |
+
if engine == "python":
|
| 326 |
+
res = pd.eval(ex, engine=engine, parser=parser)
|
| 327 |
+
expected = lhs // rhs
|
| 328 |
+
tm.assert_equal(res, expected)
|
| 329 |
+
else:
|
| 330 |
+
msg = (
|
| 331 |
+
r"unsupported operand type\(s\) for //: 'VariableNode' and "
|
| 332 |
+
"'VariableNode'"
|
| 333 |
+
)
|
| 334 |
+
with pytest.raises(TypeError, match=msg):
|
| 335 |
+
pd.eval(
|
| 336 |
+
ex,
|
| 337 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
| 338 |
+
engine=engine,
|
| 339 |
+
parser=parser,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
@td.skip_if_windows
|
| 343 |
+
def test_pow(self, lhs, rhs, engine, parser):
|
| 344 |
+
# odd failure on win32 platform, so skip
|
| 345 |
+
ex = "lhs ** rhs"
|
| 346 |
+
expected = _eval_single_bin(lhs, "**", rhs, engine)
|
| 347 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 348 |
+
|
| 349 |
+
if (
|
| 350 |
+
is_scalar(lhs)
|
| 351 |
+
and is_scalar(rhs)
|
| 352 |
+
and isinstance(expected, (complex, np.complexfloating))
|
| 353 |
+
and np.isnan(result)
|
| 354 |
+
):
|
| 355 |
+
msg = "(DataFrame.columns|numpy array) are different"
|
| 356 |
+
with pytest.raises(AssertionError, match=msg):
|
| 357 |
+
tm.assert_numpy_array_equal(result, expected)
|
| 358 |
+
else:
|
| 359 |
+
tm.assert_almost_equal(result, expected)
|
| 360 |
+
|
| 361 |
+
ex = "(lhs ** rhs) ** rhs"
|
| 362 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
| 363 |
+
|
| 364 |
+
middle = _eval_single_bin(lhs, "**", rhs, engine)
|
| 365 |
+
expected = _eval_single_bin(middle, "**", rhs, engine)
|
| 366 |
+
tm.assert_almost_equal(result, expected)
|
| 367 |
+
|
| 368 |
+
def test_check_single_invert_op(self, lhs, engine, parser):
|
| 369 |
+
# simple
|
| 370 |
+
try:
|
| 371 |
+
elb = lhs.astype(bool)
|
| 372 |
+
except AttributeError:
|
| 373 |
+
elb = np.array([bool(lhs)])
|
| 374 |
+
expected = ~elb
|
| 375 |
+
result = pd.eval("~elb", engine=engine, parser=parser)
|
| 376 |
+
tm.assert_almost_equal(expected, result)
|
| 377 |
+
|
| 378 |
+
def test_frame_invert(self, engine, parser):
|
| 379 |
+
expr = "~lhs"
|
| 380 |
+
|
| 381 |
+
# ~ ##
|
| 382 |
+
# frame
|
| 383 |
+
# float always raises
|
| 384 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)))
|
| 385 |
+
if engine == "numexpr":
|
| 386 |
+
msg = "couldn't find matching opcode for 'invert_dd'"
|
| 387 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 388 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 389 |
+
else:
|
| 390 |
+
msg = "ufunc 'invert' not supported for the input types"
|
| 391 |
+
with pytest.raises(TypeError, match=msg):
|
| 392 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 393 |
+
|
| 394 |
+
# int raises on numexpr
|
| 395 |
+
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2)))
|
| 396 |
+
if engine == "numexpr":
|
| 397 |
+
msg = "couldn't find matching opcode for 'invert"
|
| 398 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 399 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 400 |
+
else:
|
| 401 |
+
expect = ~lhs
|
| 402 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 403 |
+
tm.assert_frame_equal(expect, result)
|
| 404 |
+
|
| 405 |
+
# bool always works
|
| 406 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5)
|
| 407 |
+
expect = ~lhs
|
| 408 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 409 |
+
tm.assert_frame_equal(expect, result)
|
| 410 |
+
|
| 411 |
+
# object raises
|
| 412 |
+
lhs = DataFrame(
|
| 413 |
+
{"b": ["a", 1, 2.0], "c": np.random.default_rng(2).standard_normal(3) > 0.5}
|
| 414 |
+
)
|
| 415 |
+
if engine == "numexpr":
|
| 416 |
+
with pytest.raises(ValueError, match="unknown type object"):
|
| 417 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 418 |
+
else:
|
| 419 |
+
msg = "bad operand type for unary ~: 'str'"
|
| 420 |
+
with pytest.raises(TypeError, match=msg):
|
| 421 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 422 |
+
|
| 423 |
+
def test_series_invert(self, engine, parser):
|
| 424 |
+
# ~ ####
|
| 425 |
+
expr = "~lhs"
|
| 426 |
+
|
| 427 |
+
# series
|
| 428 |
+
# float raises
|
| 429 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5))
|
| 430 |
+
if engine == "numexpr":
|
| 431 |
+
msg = "couldn't find matching opcode for 'invert_dd'"
|
| 432 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 433 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 434 |
+
else:
|
| 435 |
+
msg = "ufunc 'invert' not supported for the input types"
|
| 436 |
+
with pytest.raises(TypeError, match=msg):
|
| 437 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 438 |
+
|
| 439 |
+
# int raises on numexpr
|
| 440 |
+
lhs = Series(np.random.default_rng(2).integers(5, size=5))
|
| 441 |
+
if engine == "numexpr":
|
| 442 |
+
msg = "couldn't find matching opcode for 'invert"
|
| 443 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 444 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 445 |
+
else:
|
| 446 |
+
expect = ~lhs
|
| 447 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 448 |
+
tm.assert_series_equal(expect, result)
|
| 449 |
+
|
| 450 |
+
# bool
|
| 451 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5)
|
| 452 |
+
expect = ~lhs
|
| 453 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 454 |
+
tm.assert_series_equal(expect, result)
|
| 455 |
+
|
| 456 |
+
# float
|
| 457 |
+
# int
|
| 458 |
+
# bool
|
| 459 |
+
|
| 460 |
+
# object
|
| 461 |
+
lhs = Series(["a", 1, 2.0])
|
| 462 |
+
if engine == "numexpr":
|
| 463 |
+
with pytest.raises(ValueError, match="unknown type object"):
|
| 464 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 465 |
+
else:
|
| 466 |
+
msg = "bad operand type for unary ~: 'str'"
|
| 467 |
+
with pytest.raises(TypeError, match=msg):
|
| 468 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 469 |
+
|
| 470 |
+
def test_frame_negate(self, engine, parser):
|
| 471 |
+
expr = "-lhs"
|
| 472 |
+
|
| 473 |
+
# float
|
| 474 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)))
|
| 475 |
+
expect = -lhs
|
| 476 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 477 |
+
tm.assert_frame_equal(expect, result)
|
| 478 |
+
|
| 479 |
+
# int
|
| 480 |
+
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2)))
|
| 481 |
+
expect = -lhs
|
| 482 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 483 |
+
tm.assert_frame_equal(expect, result)
|
| 484 |
+
|
| 485 |
+
# bool doesn't work with numexpr but works elsewhere
|
| 486 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5)
|
| 487 |
+
if engine == "numexpr":
|
| 488 |
+
msg = "couldn't find matching opcode for 'neg_bb'"
|
| 489 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 490 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 491 |
+
else:
|
| 492 |
+
expect = -lhs
|
| 493 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 494 |
+
tm.assert_frame_equal(expect, result)
|
| 495 |
+
|
| 496 |
+
def test_series_negate(self, engine, parser):
|
| 497 |
+
expr = "-lhs"
|
| 498 |
+
|
| 499 |
+
# float
|
| 500 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5))
|
| 501 |
+
expect = -lhs
|
| 502 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 503 |
+
tm.assert_series_equal(expect, result)
|
| 504 |
+
|
| 505 |
+
# int
|
| 506 |
+
lhs = Series(np.random.default_rng(2).integers(5, size=5))
|
| 507 |
+
expect = -lhs
|
| 508 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 509 |
+
tm.assert_series_equal(expect, result)
|
| 510 |
+
|
| 511 |
+
# bool doesn't work with numexpr but works elsewhere
|
| 512 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5)
|
| 513 |
+
if engine == "numexpr":
|
| 514 |
+
msg = "couldn't find matching opcode for 'neg_bb'"
|
| 515 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 516 |
+
pd.eval(expr, engine=engine, parser=parser)
|
| 517 |
+
else:
|
| 518 |
+
expect = -lhs
|
| 519 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 520 |
+
tm.assert_series_equal(expect, result)
|
| 521 |
+
|
| 522 |
+
@pytest.mark.parametrize(
|
| 523 |
+
"lhs",
|
| 524 |
+
[
|
| 525 |
+
# Float
|
| 526 |
+
DataFrame(np.random.default_rng(2).standard_normal((5, 2))),
|
| 527 |
+
# Int
|
| 528 |
+
DataFrame(np.random.default_rng(2).integers(5, size=(5, 2))),
|
| 529 |
+
# bool doesn't work with numexpr but works elsewhere
|
| 530 |
+
DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5),
|
| 531 |
+
],
|
| 532 |
+
)
|
| 533 |
+
def test_frame_pos(self, lhs, engine, parser):
|
| 534 |
+
expr = "+lhs"
|
| 535 |
+
expect = lhs
|
| 536 |
+
|
| 537 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 538 |
+
tm.assert_frame_equal(expect, result)
|
| 539 |
+
|
| 540 |
+
@pytest.mark.parametrize(
|
| 541 |
+
"lhs",
|
| 542 |
+
[
|
| 543 |
+
# Float
|
| 544 |
+
Series(np.random.default_rng(2).standard_normal(5)),
|
| 545 |
+
# Int
|
| 546 |
+
Series(np.random.default_rng(2).integers(5, size=5)),
|
| 547 |
+
# bool doesn't work with numexpr but works elsewhere
|
| 548 |
+
Series(np.random.default_rng(2).standard_normal(5) > 0.5),
|
| 549 |
+
],
|
| 550 |
+
)
|
| 551 |
+
def test_series_pos(self, lhs, engine, parser):
|
| 552 |
+
expr = "+lhs"
|
| 553 |
+
expect = lhs
|
| 554 |
+
|
| 555 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
| 556 |
+
tm.assert_series_equal(expect, result)
|
| 557 |
+
|
| 558 |
+
def test_scalar_unary(self, engine, parser):
|
| 559 |
+
msg = "bad operand type for unary ~: 'float'"
|
| 560 |
+
warn = None
|
| 561 |
+
if PY312 and not (engine == "numexpr" and parser == "pandas"):
|
| 562 |
+
warn = DeprecationWarning
|
| 563 |
+
with pytest.raises(TypeError, match=msg):
|
| 564 |
+
pd.eval("~1.0", engine=engine, parser=parser)
|
| 565 |
+
|
| 566 |
+
assert pd.eval("-1.0", parser=parser, engine=engine) == -1.0
|
| 567 |
+
assert pd.eval("+1.0", parser=parser, engine=engine) == +1.0
|
| 568 |
+
assert pd.eval("~1", parser=parser, engine=engine) == ~1
|
| 569 |
+
assert pd.eval("-1", parser=parser, engine=engine) == -1
|
| 570 |
+
assert pd.eval("+1", parser=parser, engine=engine) == +1
|
| 571 |
+
with tm.assert_produces_warning(
|
| 572 |
+
warn, match="Bitwise inversion", check_stacklevel=False
|
| 573 |
+
):
|
| 574 |
+
assert pd.eval("~True", parser=parser, engine=engine) == ~True
|
| 575 |
+
with tm.assert_produces_warning(
|
| 576 |
+
warn, match="Bitwise inversion", check_stacklevel=False
|
| 577 |
+
):
|
| 578 |
+
assert pd.eval("~False", parser=parser, engine=engine) == ~False
|
| 579 |
+
assert pd.eval("-True", parser=parser, engine=engine) == -True
|
| 580 |
+
assert pd.eval("-False", parser=parser, engine=engine) == -False
|
| 581 |
+
assert pd.eval("+True", parser=parser, engine=engine) == +True
|
| 582 |
+
assert pd.eval("+False", parser=parser, engine=engine) == +False
|
| 583 |
+
|
| 584 |
+
def test_unary_in_array(self):
|
| 585 |
+
# GH 11235
|
| 586 |
+
# TODO: 2022-01-29: result return list with numexpr 2.7.3 in CI
|
| 587 |
+
# but cannot reproduce locally
|
| 588 |
+
result = np.array(
|
| 589 |
+
pd.eval("[-True, True, +True, -False, False, +False, -37, 37, ~37, +37]"),
|
| 590 |
+
dtype=np.object_,
|
| 591 |
+
)
|
| 592 |
+
expected = np.array(
|
| 593 |
+
[
|
| 594 |
+
-True,
|
| 595 |
+
True,
|
| 596 |
+
+True,
|
| 597 |
+
-False,
|
| 598 |
+
False,
|
| 599 |
+
+False,
|
| 600 |
+
-37,
|
| 601 |
+
37,
|
| 602 |
+
~37,
|
| 603 |
+
+37,
|
| 604 |
+
],
|
| 605 |
+
dtype=np.object_,
|
| 606 |
+
)
|
| 607 |
+
tm.assert_numpy_array_equal(result, expected)
|
| 608 |
+
|
| 609 |
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
| 610 |
+
@pytest.mark.parametrize("expr", ["x < -0.1", "-5 > x"])
|
| 611 |
+
def test_float_comparison_bin_op(self, dtype, expr):
|
| 612 |
+
# GH 16363
|
| 613 |
+
df = DataFrame({"x": np.array([0], dtype=dtype)})
|
| 614 |
+
res = df.eval(expr)
|
| 615 |
+
assert res.values == np.array([False])
|
| 616 |
+
|
| 617 |
+
def test_unary_in_function(self):
|
| 618 |
+
# GH 46471
|
| 619 |
+
df = DataFrame({"x": [0, 1, np.nan]})
|
| 620 |
+
|
| 621 |
+
result = df.eval("x.fillna(-1)")
|
| 622 |
+
expected = df.x.fillna(-1)
|
| 623 |
+
# column name becomes None if using numexpr
|
| 624 |
+
# only check names when the engine is not numexpr
|
| 625 |
+
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
|
| 626 |
+
|
| 627 |
+
result = df.eval("x.shift(1, fill_value=-1)")
|
| 628 |
+
expected = df.x.shift(1, fill_value=-1)
|
| 629 |
+
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
|
| 630 |
+
|
| 631 |
+
@pytest.mark.parametrize(
|
| 632 |
+
"ex",
|
| 633 |
+
(
|
| 634 |
+
"1 or 2",
|
| 635 |
+
"1 and 2",
|
| 636 |
+
"a and b",
|
| 637 |
+
"a or b",
|
| 638 |
+
"1 or 2 and (3 + 2) > 3",
|
| 639 |
+
"2 * x > 2 or 1 and 2",
|
| 640 |
+
"2 * df > 3 and 1 or a",
|
| 641 |
+
),
|
| 642 |
+
)
|
| 643 |
+
def test_disallow_scalar_bool_ops(self, ex, engine, parser):
|
| 644 |
+
x, a, b = np.random.default_rng(2).standard_normal(3), 1, 2 # noqa: F841
|
| 645 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 2))) # noqa: F841
|
| 646 |
+
|
| 647 |
+
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
|
| 648 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 649 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 650 |
+
|
| 651 |
+
def test_identical(self, engine, parser):
|
| 652 |
+
# see gh-10546
|
| 653 |
+
x = 1
|
| 654 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 655 |
+
assert result == 1
|
| 656 |
+
assert is_scalar(result)
|
| 657 |
+
|
| 658 |
+
x = 1.5
|
| 659 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 660 |
+
assert result == 1.5
|
| 661 |
+
assert is_scalar(result)
|
| 662 |
+
|
| 663 |
+
x = False
|
| 664 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 665 |
+
assert not result
|
| 666 |
+
assert is_bool(result)
|
| 667 |
+
assert is_scalar(result)
|
| 668 |
+
|
| 669 |
+
x = np.array([1])
|
| 670 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 671 |
+
tm.assert_numpy_array_equal(result, np.array([1]))
|
| 672 |
+
assert result.shape == (1,)
|
| 673 |
+
|
| 674 |
+
x = np.array([1.5])
|
| 675 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 676 |
+
tm.assert_numpy_array_equal(result, np.array([1.5]))
|
| 677 |
+
assert result.shape == (1,)
|
| 678 |
+
|
| 679 |
+
x = np.array([False]) # noqa: F841
|
| 680 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
| 681 |
+
tm.assert_numpy_array_equal(result, np.array([False]))
|
| 682 |
+
assert result.shape == (1,)
|
| 683 |
+
|
| 684 |
+
def test_line_continuation(self, engine, parser):
|
| 685 |
+
# GH 11149
|
| 686 |
+
exp = """1 + 2 * \
|
| 687 |
+
5 - 1 + 2 """
|
| 688 |
+
result = pd.eval(exp, engine=engine, parser=parser)
|
| 689 |
+
assert result == 12
|
| 690 |
+
|
| 691 |
+
def test_float_truncation(self, engine, parser):
|
| 692 |
+
# GH 14241
|
| 693 |
+
exp = "1000000000.006"
|
| 694 |
+
result = pd.eval(exp, engine=engine, parser=parser)
|
| 695 |
+
expected = np.float64(exp)
|
| 696 |
+
assert result == expected
|
| 697 |
+
|
| 698 |
+
df = DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]})
|
| 699 |
+
cutoff = 1000000000.0006
|
| 700 |
+
result = df.query(f"A < {cutoff:.4f}")
|
| 701 |
+
assert result.empty
|
| 702 |
+
|
| 703 |
+
cutoff = 1000000000.0010
|
| 704 |
+
result = df.query(f"A > {cutoff:.4f}")
|
| 705 |
+
expected = df.loc[[1, 2], :]
|
| 706 |
+
tm.assert_frame_equal(expected, result)
|
| 707 |
+
|
| 708 |
+
exact = 1000000000.0011
|
| 709 |
+
result = df.query(f"A == {exact:.4f}")
|
| 710 |
+
expected = df.loc[[1], :]
|
| 711 |
+
tm.assert_frame_equal(expected, result)
|
| 712 |
+
|
| 713 |
+
def test_disallow_python_keywords(self):
|
| 714 |
+
# GH 18221
|
| 715 |
+
df = DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"])
|
| 716 |
+
msg = "Python keyword not valid identifier in numexpr query"
|
| 717 |
+
with pytest.raises(SyntaxError, match=msg):
|
| 718 |
+
df.query("class == 0")
|
| 719 |
+
|
| 720 |
+
df = DataFrame()
|
| 721 |
+
df.index.name = "lambda"
|
| 722 |
+
with pytest.raises(SyntaxError, match=msg):
|
| 723 |
+
df.query("lambda == 0")
|
| 724 |
+
|
| 725 |
+
def test_true_false_logic(self):
|
| 726 |
+
# GH 25823
|
| 727 |
+
# This behavior is deprecated in Python 3.12
|
| 728 |
+
with tm.maybe_produces_warning(
|
| 729 |
+
DeprecationWarning, PY312, check_stacklevel=False
|
| 730 |
+
):
|
| 731 |
+
assert pd.eval("not True") == -2
|
| 732 |
+
assert pd.eval("not False") == -1
|
| 733 |
+
assert pd.eval("True and not True") == 0
|
| 734 |
+
|
| 735 |
+
def test_and_logic_string_match(self):
|
| 736 |
+
# GH 25823
|
| 737 |
+
event = Series({"a": "hello"})
|
| 738 |
+
assert pd.eval(f"{event.str.match('hello').a}")
|
| 739 |
+
assert pd.eval(f"{event.str.match('hello').a and event.str.match('hello').a}")
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
# -------------------------------------
|
| 743 |
+
# gh-12388: Typecasting rules consistency with python
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
class TestTypeCasting:
|
| 747 |
+
@pytest.mark.parametrize("op", ["+", "-", "*", "**", "/"])
|
| 748 |
+
# maybe someday... numexpr has too many upcasting rules now
|
| 749 |
+
# chain(*(np.core.sctypes[x] for x in ['uint', 'int', 'float']))
|
| 750 |
+
@pytest.mark.parametrize("left_right", [("df", "3"), ("3", "df")])
|
| 751 |
+
def test_binop_typecasting(
|
| 752 |
+
self, engine, parser, op, complex_or_float_dtype, left_right, request
|
| 753 |
+
):
|
| 754 |
+
# GH#21374
|
| 755 |
+
dtype = complex_or_float_dtype
|
| 756 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)), dtype=dtype)
|
| 757 |
+
left, right = left_right
|
| 758 |
+
s = f"{left} {op} {right}"
|
| 759 |
+
res = pd.eval(s, engine=engine, parser=parser)
|
| 760 |
+
if dtype == "complex64" and engine == "numexpr":
|
| 761 |
+
mark = pytest.mark.xfail(
|
| 762 |
+
reason="numexpr issue with complex that are upcast "
|
| 763 |
+
"to complex 128 "
|
| 764 |
+
"https://github.com/pydata/numexpr/issues/492"
|
| 765 |
+
)
|
| 766 |
+
request.applymarker(mark)
|
| 767 |
+
assert df.values.dtype == dtype
|
| 768 |
+
assert res.values.dtype == dtype
|
| 769 |
+
tm.assert_frame_equal(res, eval(s), check_exact=False)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
# -------------------------------------
|
| 773 |
+
# Basic and complex alignment
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
def should_warn(*args):
|
| 777 |
+
not_mono = not any(map(operator.attrgetter("is_monotonic_increasing"), args))
|
| 778 |
+
only_one_dt = reduce(
|
| 779 |
+
operator.xor, (issubclass(x.dtype.type, np.datetime64) for x in args)
|
| 780 |
+
)
|
| 781 |
+
return not_mono and only_one_dt
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
class TestAlignment:
|
| 785 |
+
index_types = ["i", "s", "dt"]
|
| 786 |
+
lhs_index_types = index_types + ["s"] # 'p'
|
| 787 |
+
|
| 788 |
+
def test_align_nested_unary_op(self, engine, parser):
|
| 789 |
+
s = "df * ~2"
|
| 790 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
| 791 |
+
res = pd.eval(s, engine=engine, parser=parser)
|
| 792 |
+
tm.assert_frame_equal(res, df * ~2)
|
| 793 |
+
|
| 794 |
+
@pytest.mark.filterwarnings("always::RuntimeWarning")
|
| 795 |
+
@pytest.mark.parametrize("lr_idx_type", lhs_index_types)
|
| 796 |
+
@pytest.mark.parametrize("rr_idx_type", index_types)
|
| 797 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
| 798 |
+
def test_basic_frame_alignment(
|
| 799 |
+
self, engine, parser, lr_idx_type, rr_idx_type, c_idx_type, idx_func_dict
|
| 800 |
+
):
|
| 801 |
+
df = DataFrame(
|
| 802 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
| 803 |
+
index=idx_func_dict[lr_idx_type](10),
|
| 804 |
+
columns=idx_func_dict[c_idx_type](10),
|
| 805 |
+
)
|
| 806 |
+
df2 = DataFrame(
|
| 807 |
+
np.random.default_rng(2).standard_normal((20, 10)),
|
| 808 |
+
index=idx_func_dict[rr_idx_type](20),
|
| 809 |
+
columns=idx_func_dict[c_idx_type](10),
|
| 810 |
+
)
|
| 811 |
+
# only warns if not monotonic and not sortable
|
| 812 |
+
if should_warn(df.index, df2.index):
|
| 813 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 814 |
+
res = pd.eval("df + df2", engine=engine, parser=parser)
|
| 815 |
+
else:
|
| 816 |
+
res = pd.eval("df + df2", engine=engine, parser=parser)
|
| 817 |
+
tm.assert_frame_equal(res, df + df2)
|
| 818 |
+
|
| 819 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
| 820 |
+
@pytest.mark.parametrize("c_idx_type", lhs_index_types)
|
| 821 |
+
def test_frame_comparison(
|
| 822 |
+
self, engine, parser, r_idx_type, c_idx_type, idx_func_dict
|
| 823 |
+
):
|
| 824 |
+
df = DataFrame(
|
| 825 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
| 826 |
+
index=idx_func_dict[r_idx_type](10),
|
| 827 |
+
columns=idx_func_dict[c_idx_type](10),
|
| 828 |
+
)
|
| 829 |
+
res = pd.eval("df < 2", engine=engine, parser=parser)
|
| 830 |
+
tm.assert_frame_equal(res, df < 2)
|
| 831 |
+
|
| 832 |
+
df3 = DataFrame(
|
| 833 |
+
np.random.default_rng(2).standard_normal(df.shape),
|
| 834 |
+
index=df.index,
|
| 835 |
+
columns=df.columns,
|
| 836 |
+
)
|
| 837 |
+
res = pd.eval("df < df3", engine=engine, parser=parser)
|
| 838 |
+
tm.assert_frame_equal(res, df < df3)
|
| 839 |
+
|
| 840 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
| 841 |
+
@pytest.mark.parametrize("r1", lhs_index_types)
|
| 842 |
+
@pytest.mark.parametrize("c1", index_types)
|
| 843 |
+
@pytest.mark.parametrize("r2", index_types)
|
| 844 |
+
@pytest.mark.parametrize("c2", index_types)
|
| 845 |
+
def test_medium_complex_frame_alignment(
|
| 846 |
+
self, engine, parser, r1, c1, r2, c2, idx_func_dict
|
| 847 |
+
):
|
| 848 |
+
df = DataFrame(
|
| 849 |
+
np.random.default_rng(2).standard_normal((3, 2)),
|
| 850 |
+
index=idx_func_dict[r1](3),
|
| 851 |
+
columns=idx_func_dict[c1](2),
|
| 852 |
+
)
|
| 853 |
+
df2 = DataFrame(
|
| 854 |
+
np.random.default_rng(2).standard_normal((4, 2)),
|
| 855 |
+
index=idx_func_dict[r2](4),
|
| 856 |
+
columns=idx_func_dict[c2](2),
|
| 857 |
+
)
|
| 858 |
+
df3 = DataFrame(
|
| 859 |
+
np.random.default_rng(2).standard_normal((5, 2)),
|
| 860 |
+
index=idx_func_dict[r2](5),
|
| 861 |
+
columns=idx_func_dict[c2](2),
|
| 862 |
+
)
|
| 863 |
+
if should_warn(df.index, df2.index, df3.index):
|
| 864 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 865 |
+
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
|
| 866 |
+
else:
|
| 867 |
+
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
|
| 868 |
+
tm.assert_frame_equal(res, df + df2 + df3)
|
| 869 |
+
|
| 870 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
| 871 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
| 872 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
| 873 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
| 874 |
+
def test_basic_frame_series_alignment(
|
| 875 |
+
self, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict
|
| 876 |
+
):
|
| 877 |
+
df = DataFrame(
|
| 878 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
| 879 |
+
index=idx_func_dict[r_idx_type](10),
|
| 880 |
+
columns=idx_func_dict[c_idx_type](10),
|
| 881 |
+
)
|
| 882 |
+
index = getattr(df, index_name)
|
| 883 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
| 884 |
+
|
| 885 |
+
if should_warn(df.index, s.index):
|
| 886 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 887 |
+
res = pd.eval("df + s", engine=engine, parser=parser)
|
| 888 |
+
else:
|
| 889 |
+
res = pd.eval("df + s", engine=engine, parser=parser)
|
| 890 |
+
|
| 891 |
+
if r_idx_type == "dt" or c_idx_type == "dt":
|
| 892 |
+
expected = df.add(s) if engine == "numexpr" else df + s
|
| 893 |
+
else:
|
| 894 |
+
expected = df + s
|
| 895 |
+
tm.assert_frame_equal(res, expected)
|
| 896 |
+
|
| 897 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
| 898 |
+
@pytest.mark.parametrize(
|
| 899 |
+
"r_idx_type, c_idx_type",
|
| 900 |
+
list(product(["i", "s"], ["i", "s"])) + [("dt", "dt")],
|
| 901 |
+
)
|
| 902 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
| 903 |
+
def test_basic_series_frame_alignment(
|
| 904 |
+
self, request, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict
|
| 905 |
+
):
|
| 906 |
+
if (
|
| 907 |
+
engine == "numexpr"
|
| 908 |
+
and parser in ("pandas", "python")
|
| 909 |
+
and index_name == "index"
|
| 910 |
+
and r_idx_type == "i"
|
| 911 |
+
and c_idx_type == "s"
|
| 912 |
+
):
|
| 913 |
+
reason = (
|
| 914 |
+
f"Flaky column ordering when engine={engine}, "
|
| 915 |
+
f"parser={parser}, index_name={index_name}, "
|
| 916 |
+
f"r_idx_type={r_idx_type}, c_idx_type={c_idx_type}"
|
| 917 |
+
)
|
| 918 |
+
request.applymarker(pytest.mark.xfail(reason=reason, strict=False))
|
| 919 |
+
df = DataFrame(
|
| 920 |
+
np.random.default_rng(2).standard_normal((10, 7)),
|
| 921 |
+
index=idx_func_dict[r_idx_type](10),
|
| 922 |
+
columns=idx_func_dict[c_idx_type](7),
|
| 923 |
+
)
|
| 924 |
+
index = getattr(df, index_name)
|
| 925 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
| 926 |
+
if should_warn(s.index, df.index):
|
| 927 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 928 |
+
res = pd.eval("s + df", engine=engine, parser=parser)
|
| 929 |
+
else:
|
| 930 |
+
res = pd.eval("s + df", engine=engine, parser=parser)
|
| 931 |
+
|
| 932 |
+
if r_idx_type == "dt" or c_idx_type == "dt":
|
| 933 |
+
expected = df.add(s) if engine == "numexpr" else s + df
|
| 934 |
+
else:
|
| 935 |
+
expected = s + df
|
| 936 |
+
tm.assert_frame_equal(res, expected)
|
| 937 |
+
|
| 938 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
| 939 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
| 940 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
| 941 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
| 942 |
+
@pytest.mark.parametrize("op", ["+", "*"])
|
| 943 |
+
def test_series_frame_commutativity(
|
| 944 |
+
self, engine, parser, index_name, op, r_idx_type, c_idx_type, idx_func_dict
|
| 945 |
+
):
|
| 946 |
+
df = DataFrame(
|
| 947 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
| 948 |
+
index=idx_func_dict[r_idx_type](10),
|
| 949 |
+
columns=idx_func_dict[c_idx_type](10),
|
| 950 |
+
)
|
| 951 |
+
index = getattr(df, index_name)
|
| 952 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
| 953 |
+
|
| 954 |
+
lhs = f"s {op} df"
|
| 955 |
+
rhs = f"df {op} s"
|
| 956 |
+
if should_warn(df.index, s.index):
|
| 957 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 958 |
+
a = pd.eval(lhs, engine=engine, parser=parser)
|
| 959 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 960 |
+
b = pd.eval(rhs, engine=engine, parser=parser)
|
| 961 |
+
else:
|
| 962 |
+
a = pd.eval(lhs, engine=engine, parser=parser)
|
| 963 |
+
b = pd.eval(rhs, engine=engine, parser=parser)
|
| 964 |
+
|
| 965 |
+
if r_idx_type != "dt" and c_idx_type != "dt":
|
| 966 |
+
if engine == "numexpr":
|
| 967 |
+
tm.assert_frame_equal(a, b)
|
| 968 |
+
|
| 969 |
+
@pytest.mark.filterwarnings("always::RuntimeWarning")
|
| 970 |
+
@pytest.mark.parametrize("r1", lhs_index_types)
|
| 971 |
+
@pytest.mark.parametrize("c1", index_types)
|
| 972 |
+
@pytest.mark.parametrize("r2", index_types)
|
| 973 |
+
@pytest.mark.parametrize("c2", index_types)
|
| 974 |
+
def test_complex_series_frame_alignment(
|
| 975 |
+
self, engine, parser, r1, c1, r2, c2, idx_func_dict
|
| 976 |
+
):
|
| 977 |
+
n = 3
|
| 978 |
+
m1 = 5
|
| 979 |
+
m2 = 2 * m1
|
| 980 |
+
df = DataFrame(
|
| 981 |
+
np.random.default_rng(2).standard_normal((m1, n)),
|
| 982 |
+
index=idx_func_dict[r1](m1),
|
| 983 |
+
columns=idx_func_dict[c1](n),
|
| 984 |
+
)
|
| 985 |
+
df2 = DataFrame(
|
| 986 |
+
np.random.default_rng(2).standard_normal((m2, n)),
|
| 987 |
+
index=idx_func_dict[r2](m2),
|
| 988 |
+
columns=idx_func_dict[c2](n),
|
| 989 |
+
)
|
| 990 |
+
index = df2.columns
|
| 991 |
+
ser = Series(np.random.default_rng(2).standard_normal(n), index[:n])
|
| 992 |
+
|
| 993 |
+
if r2 == "dt" or c2 == "dt":
|
| 994 |
+
if engine == "numexpr":
|
| 995 |
+
expected2 = df2.add(ser)
|
| 996 |
+
else:
|
| 997 |
+
expected2 = df2 + ser
|
| 998 |
+
else:
|
| 999 |
+
expected2 = df2 + ser
|
| 1000 |
+
|
| 1001 |
+
if r1 == "dt" or c1 == "dt":
|
| 1002 |
+
if engine == "numexpr":
|
| 1003 |
+
expected = expected2.add(df)
|
| 1004 |
+
else:
|
| 1005 |
+
expected = expected2 + df
|
| 1006 |
+
else:
|
| 1007 |
+
expected = expected2 + df
|
| 1008 |
+
|
| 1009 |
+
if should_warn(df2.index, ser.index, df.index):
|
| 1010 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
| 1011 |
+
res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
|
| 1012 |
+
else:
|
| 1013 |
+
res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
|
| 1014 |
+
assert res.shape == expected.shape
|
| 1015 |
+
tm.assert_frame_equal(res, expected)
|
| 1016 |
+
|
| 1017 |
+
def test_performance_warning_for_poor_alignment(self, engine, parser):
|
| 1018 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 10)))
|
| 1019 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
| 1020 |
+
if engine == "numexpr":
|
| 1021 |
+
seen = PerformanceWarning
|
| 1022 |
+
else:
|
| 1023 |
+
seen = False
|
| 1024 |
+
|
| 1025 |
+
with tm.assert_produces_warning(seen):
|
| 1026 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
| 1027 |
+
|
| 1028 |
+
s = Series(np.random.default_rng(2).standard_normal(1000))
|
| 1029 |
+
with tm.assert_produces_warning(False):
|
| 1030 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
| 1031 |
+
|
| 1032 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10000)))
|
| 1033 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
| 1034 |
+
with tm.assert_produces_warning(False):
|
| 1035 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
| 1036 |
+
|
| 1037 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10)))
|
| 1038 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
| 1039 |
+
|
| 1040 |
+
is_python_engine = engine == "python"
|
| 1041 |
+
|
| 1042 |
+
if not is_python_engine:
|
| 1043 |
+
wrn = PerformanceWarning
|
| 1044 |
+
else:
|
| 1045 |
+
wrn = False
|
| 1046 |
+
|
| 1047 |
+
with tm.assert_produces_warning(wrn) as w:
|
| 1048 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
| 1049 |
+
|
| 1050 |
+
if not is_python_engine:
|
| 1051 |
+
assert len(w) == 1
|
| 1052 |
+
msg = str(w[0].message)
|
| 1053 |
+
logged = np.log10(s.size - df.shape[1])
|
| 1054 |
+
expected = (
|
| 1055 |
+
f"Alignment difference on axis 1 is larger "
|
| 1056 |
+
f"than an order of magnitude on term 'df', "
|
| 1057 |
+
f"by more than {logged:.4g}; performance may suffer."
|
| 1058 |
+
)
|
| 1059 |
+
assert msg == expected
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
# ------------------------------------
|
| 1063 |
+
# Slightly more complex ops
|
| 1064 |
+
|
| 1065 |
+
|
| 1066 |
+
class TestOperations:
|
| 1067 |
+
def eval(self, *args, **kwargs):
|
| 1068 |
+
kwargs["level"] = kwargs.pop("level", 0) + 1
|
| 1069 |
+
return pd.eval(*args, **kwargs)
|
| 1070 |
+
|
| 1071 |
+
def test_simple_arith_ops(self, engine, parser):
|
| 1072 |
+
exclude_arith = []
|
| 1073 |
+
if parser == "python":
|
| 1074 |
+
exclude_arith = ["in", "not in"]
|
| 1075 |
+
|
| 1076 |
+
arith_ops = [
|
| 1077 |
+
op
|
| 1078 |
+
for op in expr.ARITH_OPS_SYMS + expr.CMP_OPS_SYMS
|
| 1079 |
+
if op not in exclude_arith
|
| 1080 |
+
]
|
| 1081 |
+
|
| 1082 |
+
ops = (op for op in arith_ops if op != "//")
|
| 1083 |
+
|
| 1084 |
+
for op in ops:
|
| 1085 |
+
ex = f"1 {op} 1"
|
| 1086 |
+
ex2 = f"x {op} 1"
|
| 1087 |
+
ex3 = f"1 {op} (x + 1)"
|
| 1088 |
+
|
| 1089 |
+
if op in ("in", "not in"):
|
| 1090 |
+
msg = "argument of type 'int' is not iterable"
|
| 1091 |
+
with pytest.raises(TypeError, match=msg):
|
| 1092 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 1093 |
+
else:
|
| 1094 |
+
expec = _eval_single_bin(1, op, 1, engine)
|
| 1095 |
+
x = self.eval(ex, engine=engine, parser=parser)
|
| 1096 |
+
assert x == expec
|
| 1097 |
+
|
| 1098 |
+
expec = _eval_single_bin(x, op, 1, engine)
|
| 1099 |
+
y = self.eval(ex2, local_dict={"x": x}, engine=engine, parser=parser)
|
| 1100 |
+
assert y == expec
|
| 1101 |
+
|
| 1102 |
+
expec = _eval_single_bin(1, op, x + 1, engine)
|
| 1103 |
+
y = self.eval(ex3, local_dict={"x": x}, engine=engine, parser=parser)
|
| 1104 |
+
assert y == expec
|
| 1105 |
+
|
| 1106 |
+
@pytest.mark.parametrize("rhs", [True, False])
|
| 1107 |
+
@pytest.mark.parametrize("lhs", [True, False])
|
| 1108 |
+
@pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
|
| 1109 |
+
def test_simple_bool_ops(self, rhs, lhs, op):
|
| 1110 |
+
ex = f"{lhs} {op} {rhs}"
|
| 1111 |
+
|
| 1112 |
+
if parser == "python" and op in ["and", "or"]:
|
| 1113 |
+
msg = "'BoolOp' nodes are not implemented"
|
| 1114 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1115 |
+
self.eval(ex)
|
| 1116 |
+
return
|
| 1117 |
+
|
| 1118 |
+
res = self.eval(ex)
|
| 1119 |
+
exp = eval(ex)
|
| 1120 |
+
assert res == exp
|
| 1121 |
+
|
| 1122 |
+
@pytest.mark.parametrize("rhs", [True, False])
|
| 1123 |
+
@pytest.mark.parametrize("lhs", [True, False])
|
| 1124 |
+
@pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
|
| 1125 |
+
def test_bool_ops_with_constants(self, rhs, lhs, op):
|
| 1126 |
+
ex = f"{lhs} {op} {rhs}"
|
| 1127 |
+
|
| 1128 |
+
if parser == "python" and op in ["and", "or"]:
|
| 1129 |
+
msg = "'BoolOp' nodes are not implemented"
|
| 1130 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1131 |
+
self.eval(ex)
|
| 1132 |
+
return
|
| 1133 |
+
|
| 1134 |
+
res = self.eval(ex)
|
| 1135 |
+
exp = eval(ex)
|
| 1136 |
+
assert res == exp
|
| 1137 |
+
|
| 1138 |
+
def test_4d_ndarray_fails(self):
|
| 1139 |
+
x = np.random.default_rng(2).standard_normal((3, 4, 5, 6))
|
| 1140 |
+
y = Series(np.random.default_rng(2).standard_normal(10))
|
| 1141 |
+
msg = "N-dimensional objects, where N > 2, are not supported with eval"
|
| 1142 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1143 |
+
self.eval("x + y", local_dict={"x": x, "y": y})
|
| 1144 |
+
|
| 1145 |
+
def test_constant(self):
|
| 1146 |
+
x = self.eval("1")
|
| 1147 |
+
assert x == 1
|
| 1148 |
+
|
| 1149 |
+
def test_single_variable(self):
|
| 1150 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
|
| 1151 |
+
df2 = self.eval("df", local_dict={"df": df})
|
| 1152 |
+
tm.assert_frame_equal(df, df2)
|
| 1153 |
+
|
| 1154 |
+
def test_failing_subscript_with_name_error(self):
|
| 1155 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841
|
| 1156 |
+
with pytest.raises(NameError, match="name 'x' is not defined"):
|
| 1157 |
+
self.eval("df[x > 2] > 2")
|
| 1158 |
+
|
| 1159 |
+
def test_lhs_expression_subscript(self):
|
| 1160 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
| 1161 |
+
result = self.eval("(df + 1)[df > 2]", local_dict={"df": df})
|
| 1162 |
+
expected = (df + 1)[df > 2]
|
| 1163 |
+
tm.assert_frame_equal(result, expected)
|
| 1164 |
+
|
| 1165 |
+
def test_attr_expression(self):
|
| 1166 |
+
df = DataFrame(
|
| 1167 |
+
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc")
|
| 1168 |
+
)
|
| 1169 |
+
expr1 = "df.a < df.b"
|
| 1170 |
+
expec1 = df.a < df.b
|
| 1171 |
+
expr2 = "df.a + df.b + df.c"
|
| 1172 |
+
expec2 = df.a + df.b + df.c
|
| 1173 |
+
expr3 = "df.a + df.b + df.c[df.b < 0]"
|
| 1174 |
+
expec3 = df.a + df.b + df.c[df.b < 0]
|
| 1175 |
+
exprs = expr1, expr2, expr3
|
| 1176 |
+
expecs = expec1, expec2, expec3
|
| 1177 |
+
for e, expec in zip(exprs, expecs):
|
| 1178 |
+
tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df}))
|
| 1179 |
+
|
| 1180 |
+
def test_assignment_fails(self):
|
| 1181 |
+
df = DataFrame(
|
| 1182 |
+
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc")
|
| 1183 |
+
)
|
| 1184 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
| 1185 |
+
expr1 = "df = df2"
|
| 1186 |
+
msg = "cannot assign without a target object"
|
| 1187 |
+
with pytest.raises(ValueError, match=msg):
|
| 1188 |
+
self.eval(expr1, local_dict={"df": df, "df2": df2})
|
| 1189 |
+
|
| 1190 |
+
def test_assignment_column_multiple_raise(self):
|
| 1191 |
+
df = DataFrame(
|
| 1192 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1193 |
+
)
|
| 1194 |
+
# multiple assignees
|
| 1195 |
+
with pytest.raises(SyntaxError, match="invalid syntax"):
|
| 1196 |
+
df.eval("d c = a + b")
|
| 1197 |
+
|
| 1198 |
+
def test_assignment_column_invalid_assign(self):
|
| 1199 |
+
df = DataFrame(
|
| 1200 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1201 |
+
)
|
| 1202 |
+
# invalid assignees
|
| 1203 |
+
msg = "left hand side of an assignment must be a single name"
|
| 1204 |
+
with pytest.raises(SyntaxError, match=msg):
|
| 1205 |
+
df.eval("d,c = a + b")
|
| 1206 |
+
|
| 1207 |
+
def test_assignment_column_invalid_assign_function_call(self):
|
| 1208 |
+
df = DataFrame(
|
| 1209 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1210 |
+
)
|
| 1211 |
+
msg = "cannot assign to function call"
|
| 1212 |
+
with pytest.raises(SyntaxError, match=msg):
|
| 1213 |
+
df.eval('Timestamp("20131001") = a + b')
|
| 1214 |
+
|
| 1215 |
+
def test_assignment_single_assign_existing(self):
|
| 1216 |
+
df = DataFrame(
|
| 1217 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1218 |
+
)
|
| 1219 |
+
# single assignment - existing variable
|
| 1220 |
+
expected = df.copy()
|
| 1221 |
+
expected["a"] = expected["a"] + expected["b"]
|
| 1222 |
+
df.eval("a = a + b", inplace=True)
|
| 1223 |
+
tm.assert_frame_equal(df, expected)
|
| 1224 |
+
|
| 1225 |
+
def test_assignment_single_assign_new(self):
|
| 1226 |
+
df = DataFrame(
|
| 1227 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1228 |
+
)
|
| 1229 |
+
# single assignment - new variable
|
| 1230 |
+
expected = df.copy()
|
| 1231 |
+
expected["c"] = expected["a"] + expected["b"]
|
| 1232 |
+
df.eval("c = a + b", inplace=True)
|
| 1233 |
+
tm.assert_frame_equal(df, expected)
|
| 1234 |
+
|
| 1235 |
+
def test_assignment_single_assign_local_overlap(self):
|
| 1236 |
+
df = DataFrame(
|
| 1237 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1238 |
+
)
|
| 1239 |
+
df = df.copy()
|
| 1240 |
+
a = 1 # noqa: F841
|
| 1241 |
+
df.eval("a = 1 + b", inplace=True)
|
| 1242 |
+
|
| 1243 |
+
expected = df.copy()
|
| 1244 |
+
expected["a"] = 1 + expected["b"]
|
| 1245 |
+
tm.assert_frame_equal(df, expected)
|
| 1246 |
+
|
| 1247 |
+
def test_assignment_single_assign_name(self):
|
| 1248 |
+
df = DataFrame(
|
| 1249 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1250 |
+
)
|
| 1251 |
+
|
| 1252 |
+
a = 1 # noqa: F841
|
| 1253 |
+
old_a = df.a.copy()
|
| 1254 |
+
df.eval("a = a + b", inplace=True)
|
| 1255 |
+
result = old_a + df.b
|
| 1256 |
+
tm.assert_series_equal(result, df.a, check_names=False)
|
| 1257 |
+
assert result.name is None
|
| 1258 |
+
|
| 1259 |
+
def test_assignment_multiple_raises(self):
|
| 1260 |
+
df = DataFrame(
|
| 1261 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1262 |
+
)
|
| 1263 |
+
# multiple assignment
|
| 1264 |
+
df.eval("c = a + b", inplace=True)
|
| 1265 |
+
msg = "can only assign a single expression"
|
| 1266 |
+
with pytest.raises(SyntaxError, match=msg):
|
| 1267 |
+
df.eval("c = a = b")
|
| 1268 |
+
|
| 1269 |
+
def test_assignment_explicit(self):
|
| 1270 |
+
df = DataFrame(
|
| 1271 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1272 |
+
)
|
| 1273 |
+
# explicit targets
|
| 1274 |
+
self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True)
|
| 1275 |
+
expected = df.copy()
|
| 1276 |
+
expected["c"] = expected["a"] + expected["b"]
|
| 1277 |
+
tm.assert_frame_equal(df, expected)
|
| 1278 |
+
|
| 1279 |
+
def test_column_in(self):
|
| 1280 |
+
# GH 11235
|
| 1281 |
+
df = DataFrame({"a": [11], "b": [-32]})
|
| 1282 |
+
result = df.eval("a in [11, -32]")
|
| 1283 |
+
expected = Series([True])
|
| 1284 |
+
# TODO: 2022-01-29: Name check failed with numexpr 2.7.3 in CI
|
| 1285 |
+
# but cannot reproduce locally
|
| 1286 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
| 1287 |
+
|
| 1288 |
+
@pytest.mark.xfail(reason="Unknown: Omitted test_ in name prior.")
|
| 1289 |
+
def test_assignment_not_inplace(self):
|
| 1290 |
+
# see gh-9297
|
| 1291 |
+
df = DataFrame(
|
| 1292 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
actual = df.eval("c = a + b", inplace=False)
|
| 1296 |
+
assert actual is not None
|
| 1297 |
+
|
| 1298 |
+
expected = df.copy()
|
| 1299 |
+
expected["c"] = expected["a"] + expected["b"]
|
| 1300 |
+
tm.assert_frame_equal(df, expected)
|
| 1301 |
+
|
| 1302 |
+
def test_multi_line_expression(self, warn_copy_on_write):
|
| 1303 |
+
# GH 11149
|
| 1304 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1305 |
+
expected = df.copy()
|
| 1306 |
+
|
| 1307 |
+
expected["c"] = expected["a"] + expected["b"]
|
| 1308 |
+
expected["d"] = expected["c"] + expected["b"]
|
| 1309 |
+
answer = df.eval(
|
| 1310 |
+
"""
|
| 1311 |
+
c = a + b
|
| 1312 |
+
d = c + b""",
|
| 1313 |
+
inplace=True,
|
| 1314 |
+
)
|
| 1315 |
+
tm.assert_frame_equal(expected, df)
|
| 1316 |
+
assert answer is None
|
| 1317 |
+
|
| 1318 |
+
expected["a"] = expected["a"] - 1
|
| 1319 |
+
expected["e"] = expected["a"] + 2
|
| 1320 |
+
answer = df.eval(
|
| 1321 |
+
"""
|
| 1322 |
+
a = a - 1
|
| 1323 |
+
e = a + 2""",
|
| 1324 |
+
inplace=True,
|
| 1325 |
+
)
|
| 1326 |
+
tm.assert_frame_equal(expected, df)
|
| 1327 |
+
assert answer is None
|
| 1328 |
+
|
| 1329 |
+
# multi-line not valid if not all assignments
|
| 1330 |
+
msg = "Multi-line expressions are only valid if all expressions contain"
|
| 1331 |
+
with pytest.raises(ValueError, match=msg):
|
| 1332 |
+
df.eval(
|
| 1333 |
+
"""
|
| 1334 |
+
a = b + 2
|
| 1335 |
+
b - 2""",
|
| 1336 |
+
inplace=False,
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
def test_multi_line_expression_not_inplace(self):
|
| 1340 |
+
# GH 11149
|
| 1341 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1342 |
+
expected = df.copy()
|
| 1343 |
+
|
| 1344 |
+
expected["c"] = expected["a"] + expected["b"]
|
| 1345 |
+
expected["d"] = expected["c"] + expected["b"]
|
| 1346 |
+
df = df.eval(
|
| 1347 |
+
"""
|
| 1348 |
+
c = a + b
|
| 1349 |
+
d = c + b""",
|
| 1350 |
+
inplace=False,
|
| 1351 |
+
)
|
| 1352 |
+
tm.assert_frame_equal(expected, df)
|
| 1353 |
+
|
| 1354 |
+
expected["a"] = expected["a"] - 1
|
| 1355 |
+
expected["e"] = expected["a"] + 2
|
| 1356 |
+
df = df.eval(
|
| 1357 |
+
"""
|
| 1358 |
+
a = a - 1
|
| 1359 |
+
e = a + 2""",
|
| 1360 |
+
inplace=False,
|
| 1361 |
+
)
|
| 1362 |
+
tm.assert_frame_equal(expected, df)
|
| 1363 |
+
|
| 1364 |
+
def test_multi_line_expression_local_variable(self):
|
| 1365 |
+
# GH 15342
|
| 1366 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1367 |
+
expected = df.copy()
|
| 1368 |
+
|
| 1369 |
+
local_var = 7
|
| 1370 |
+
expected["c"] = expected["a"] * local_var
|
| 1371 |
+
expected["d"] = expected["c"] + local_var
|
| 1372 |
+
answer = df.eval(
|
| 1373 |
+
"""
|
| 1374 |
+
c = a * @local_var
|
| 1375 |
+
d = c + @local_var
|
| 1376 |
+
""",
|
| 1377 |
+
inplace=True,
|
| 1378 |
+
)
|
| 1379 |
+
tm.assert_frame_equal(expected, df)
|
| 1380 |
+
assert answer is None
|
| 1381 |
+
|
| 1382 |
+
def test_multi_line_expression_callable_local_variable(self):
|
| 1383 |
+
# 26426
|
| 1384 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1385 |
+
|
| 1386 |
+
def local_func(a, b):
|
| 1387 |
+
return b
|
| 1388 |
+
|
| 1389 |
+
expected = df.copy()
|
| 1390 |
+
expected["c"] = expected["a"] * local_func(1, 7)
|
| 1391 |
+
expected["d"] = expected["c"] + local_func(1, 7)
|
| 1392 |
+
answer = df.eval(
|
| 1393 |
+
"""
|
| 1394 |
+
c = a * @local_func(1, 7)
|
| 1395 |
+
d = c + @local_func(1, 7)
|
| 1396 |
+
""",
|
| 1397 |
+
inplace=True,
|
| 1398 |
+
)
|
| 1399 |
+
tm.assert_frame_equal(expected, df)
|
| 1400 |
+
assert answer is None
|
| 1401 |
+
|
| 1402 |
+
def test_multi_line_expression_callable_local_variable_with_kwargs(self):
|
| 1403 |
+
# 26426
|
| 1404 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1405 |
+
|
| 1406 |
+
def local_func(a, b):
|
| 1407 |
+
return b
|
| 1408 |
+
|
| 1409 |
+
expected = df.copy()
|
| 1410 |
+
expected["c"] = expected["a"] * local_func(b=7, a=1)
|
| 1411 |
+
expected["d"] = expected["c"] + local_func(b=7, a=1)
|
| 1412 |
+
answer = df.eval(
|
| 1413 |
+
"""
|
| 1414 |
+
c = a * @local_func(b=7, a=1)
|
| 1415 |
+
d = c + @local_func(b=7, a=1)
|
| 1416 |
+
""",
|
| 1417 |
+
inplace=True,
|
| 1418 |
+
)
|
| 1419 |
+
tm.assert_frame_equal(expected, df)
|
| 1420 |
+
assert answer is None
|
| 1421 |
+
|
| 1422 |
+
def test_assignment_in_query(self):
|
| 1423 |
+
# GH 8664
|
| 1424 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1425 |
+
df_orig = df.copy()
|
| 1426 |
+
msg = "cannot assign without a target object"
|
| 1427 |
+
with pytest.raises(ValueError, match=msg):
|
| 1428 |
+
df.query("a = 1")
|
| 1429 |
+
tm.assert_frame_equal(df, df_orig)
|
| 1430 |
+
|
| 1431 |
+
def test_query_inplace(self):
|
| 1432 |
+
# see gh-11149
|
| 1433 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
| 1434 |
+
expected = df.copy()
|
| 1435 |
+
expected = expected[expected["a"] == 2]
|
| 1436 |
+
df.query("a == 2", inplace=True)
|
| 1437 |
+
tm.assert_frame_equal(expected, df)
|
| 1438 |
+
|
| 1439 |
+
df = {}
|
| 1440 |
+
expected = {"a": 3}
|
| 1441 |
+
|
| 1442 |
+
self.eval("a = 1 + 2", target=df, inplace=True)
|
| 1443 |
+
tm.assert_dict_equal(df, expected)
|
| 1444 |
+
|
| 1445 |
+
@pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2], np.array([]), (1, 3)])
|
| 1446 |
+
def test_cannot_item_assign(self, invalid_target):
|
| 1447 |
+
msg = "Cannot assign expression output to target"
|
| 1448 |
+
expression = "a = 1 + 2"
|
| 1449 |
+
|
| 1450 |
+
with pytest.raises(ValueError, match=msg):
|
| 1451 |
+
self.eval(expression, target=invalid_target, inplace=True)
|
| 1452 |
+
|
| 1453 |
+
if hasattr(invalid_target, "copy"):
|
| 1454 |
+
with pytest.raises(ValueError, match=msg):
|
| 1455 |
+
self.eval(expression, target=invalid_target, inplace=False)
|
| 1456 |
+
|
| 1457 |
+
@pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)])
|
| 1458 |
+
def test_cannot_copy_item(self, invalid_target):
|
| 1459 |
+
msg = "Cannot return a copy of the target"
|
| 1460 |
+
expression = "a = 1 + 2"
|
| 1461 |
+
|
| 1462 |
+
with pytest.raises(ValueError, match=msg):
|
| 1463 |
+
self.eval(expression, target=invalid_target, inplace=False)
|
| 1464 |
+
|
| 1465 |
+
@pytest.mark.parametrize("target", [1, "cat", [1, 2], np.array([]), (1, 3), {1: 2}])
|
| 1466 |
+
def test_inplace_no_assignment(self, target):
|
| 1467 |
+
expression = "1 + 2"
|
| 1468 |
+
|
| 1469 |
+
assert self.eval(expression, target=target, inplace=False) == 3
|
| 1470 |
+
|
| 1471 |
+
msg = "Cannot operate inplace if there is no assignment"
|
| 1472 |
+
with pytest.raises(ValueError, match=msg):
|
| 1473 |
+
self.eval(expression, target=target, inplace=True)
|
| 1474 |
+
|
| 1475 |
+
def test_basic_period_index_boolean_expression(self):
|
| 1476 |
+
df = DataFrame(
|
| 1477 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
| 1478 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
| 1479 |
+
)
|
| 1480 |
+
e = df < 2
|
| 1481 |
+
r = self.eval("df < 2", local_dict={"df": df})
|
| 1482 |
+
x = df < 2
|
| 1483 |
+
|
| 1484 |
+
tm.assert_frame_equal(r, e)
|
| 1485 |
+
tm.assert_frame_equal(x, e)
|
| 1486 |
+
|
| 1487 |
+
def test_basic_period_index_subscript_expression(self):
|
| 1488 |
+
df = DataFrame(
|
| 1489 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
| 1490 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
| 1491 |
+
)
|
| 1492 |
+
r = self.eval("df[df < 2 + 3]", local_dict={"df": df})
|
| 1493 |
+
e = df[df < 2 + 3]
|
| 1494 |
+
tm.assert_frame_equal(r, e)
|
| 1495 |
+
|
| 1496 |
+
def test_nested_period_index_subscript_expression(self):
|
| 1497 |
+
df = DataFrame(
|
| 1498 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
| 1499 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
| 1500 |
+
)
|
| 1501 |
+
r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df})
|
| 1502 |
+
e = df[df[df < 2] < 2] + df * 2
|
| 1503 |
+
tm.assert_frame_equal(r, e)
|
| 1504 |
+
|
| 1505 |
+
def test_date_boolean(self, engine, parser):
|
| 1506 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
| 1507 |
+
df["dates1"] = date_range("1/1/2012", periods=5)
|
| 1508 |
+
res = self.eval(
|
| 1509 |
+
"df.dates1 < 20130101",
|
| 1510 |
+
local_dict={"df": df},
|
| 1511 |
+
engine=engine,
|
| 1512 |
+
parser=parser,
|
| 1513 |
+
)
|
| 1514 |
+
expec = df.dates1 < "20130101"
|
| 1515 |
+
tm.assert_series_equal(res, expec, check_names=False)
|
| 1516 |
+
|
| 1517 |
+
def test_simple_in_ops(self, engine, parser):
|
| 1518 |
+
if parser != "python":
|
| 1519 |
+
res = pd.eval("1 in [1, 2]", engine=engine, parser=parser)
|
| 1520 |
+
assert res
|
| 1521 |
+
|
| 1522 |
+
res = pd.eval("2 in (1, 2)", engine=engine, parser=parser)
|
| 1523 |
+
assert res
|
| 1524 |
+
|
| 1525 |
+
res = pd.eval("3 in (1, 2)", engine=engine, parser=parser)
|
| 1526 |
+
assert not res
|
| 1527 |
+
|
| 1528 |
+
res = pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
|
| 1529 |
+
assert res
|
| 1530 |
+
|
| 1531 |
+
res = pd.eval("[3] not in (1, 2)", engine=engine, parser=parser)
|
| 1532 |
+
assert res
|
| 1533 |
+
|
| 1534 |
+
res = pd.eval("[3] in ([3], 2)", engine=engine, parser=parser)
|
| 1535 |
+
assert res
|
| 1536 |
+
|
| 1537 |
+
res = pd.eval("[[3]] in [[[3]], 2]", engine=engine, parser=parser)
|
| 1538 |
+
assert res
|
| 1539 |
+
|
| 1540 |
+
res = pd.eval("(3,) in [(3,), 2]", engine=engine, parser=parser)
|
| 1541 |
+
assert res
|
| 1542 |
+
|
| 1543 |
+
res = pd.eval("(3,) not in [(3,), 2]", engine=engine, parser=parser)
|
| 1544 |
+
assert not res
|
| 1545 |
+
|
| 1546 |
+
res = pd.eval("[(3,)] in [[(3,)], 2]", engine=engine, parser=parser)
|
| 1547 |
+
assert res
|
| 1548 |
+
else:
|
| 1549 |
+
msg = "'In' nodes are not implemented"
|
| 1550 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1551 |
+
pd.eval("1 in [1, 2]", engine=engine, parser=parser)
|
| 1552 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1553 |
+
pd.eval("2 in (1, 2)", engine=engine, parser=parser)
|
| 1554 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1555 |
+
pd.eval("3 in (1, 2)", engine=engine, parser=parser)
|
| 1556 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1557 |
+
pd.eval("[(3,)] in (1, 2, [(3,)])", engine=engine, parser=parser)
|
| 1558 |
+
msg = "'NotIn' nodes are not implemented"
|
| 1559 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1560 |
+
pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
|
| 1561 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1562 |
+
pd.eval("[3] not in (1, 2, [[3]])", engine=engine, parser=parser)
|
| 1563 |
+
|
| 1564 |
+
def test_check_many_exprs(self, engine, parser):
|
| 1565 |
+
a = 1 # noqa: F841
|
| 1566 |
+
expr = " * ".join("a" * 33)
|
| 1567 |
+
expected = 1
|
| 1568 |
+
res = pd.eval(expr, engine=engine, parser=parser)
|
| 1569 |
+
assert res == expected
|
| 1570 |
+
|
| 1571 |
+
@pytest.mark.parametrize(
|
| 1572 |
+
"expr",
|
| 1573 |
+
[
|
| 1574 |
+
"df > 2 and df > 3",
|
| 1575 |
+
"df > 2 or df > 3",
|
| 1576 |
+
"not df > 2",
|
| 1577 |
+
],
|
| 1578 |
+
)
|
| 1579 |
+
def test_fails_and_or_not(self, expr, engine, parser):
|
| 1580 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
| 1581 |
+
if parser == "python":
|
| 1582 |
+
msg = "'BoolOp' nodes are not implemented"
|
| 1583 |
+
if "not" in expr:
|
| 1584 |
+
msg = "'Not' nodes are not implemented"
|
| 1585 |
+
|
| 1586 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1587 |
+
pd.eval(
|
| 1588 |
+
expr,
|
| 1589 |
+
local_dict={"df": df},
|
| 1590 |
+
parser=parser,
|
| 1591 |
+
engine=engine,
|
| 1592 |
+
)
|
| 1593 |
+
else:
|
| 1594 |
+
# smoke-test, should not raise
|
| 1595 |
+
pd.eval(
|
| 1596 |
+
expr,
|
| 1597 |
+
local_dict={"df": df},
|
| 1598 |
+
parser=parser,
|
| 1599 |
+
engine=engine,
|
| 1600 |
+
)
|
| 1601 |
+
|
| 1602 |
+
@pytest.mark.parametrize("char", ["|", "&"])
|
| 1603 |
+
def test_fails_ampersand_pipe(self, char, engine, parser):
|
| 1604 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841
|
| 1605 |
+
ex = f"(df + 2)[df > 1] > 0 {char} (df > 0)"
|
| 1606 |
+
if parser == "python":
|
| 1607 |
+
msg = "cannot evaluate scalar only bool ops"
|
| 1608 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1609 |
+
pd.eval(ex, parser=parser, engine=engine)
|
| 1610 |
+
else:
|
| 1611 |
+
# smoke-test, should not raise
|
| 1612 |
+
pd.eval(ex, parser=parser, engine=engine)
|
| 1613 |
+
|
| 1614 |
+
|
| 1615 |
+
class TestMath:
|
| 1616 |
+
def eval(self, *args, **kwargs):
|
| 1617 |
+
kwargs["level"] = kwargs.pop("level", 0) + 1
|
| 1618 |
+
return pd.eval(*args, **kwargs)
|
| 1619 |
+
|
| 1620 |
+
@pytest.mark.skipif(
|
| 1621 |
+
not NUMEXPR_INSTALLED, reason="Unary ops only implemented for numexpr"
|
| 1622 |
+
)
|
| 1623 |
+
@pytest.mark.parametrize("fn", _unary_math_ops)
|
| 1624 |
+
def test_unary_functions(self, fn):
|
| 1625 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
| 1626 |
+
a = df.a
|
| 1627 |
+
|
| 1628 |
+
expr = f"{fn}(a)"
|
| 1629 |
+
got = self.eval(expr)
|
| 1630 |
+
with np.errstate(all="ignore"):
|
| 1631 |
+
expect = getattr(np, fn)(a)
|
| 1632 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
| 1633 |
+
|
| 1634 |
+
@pytest.mark.parametrize("fn", _binary_math_ops)
|
| 1635 |
+
def test_binary_functions(self, fn):
|
| 1636 |
+
df = DataFrame(
|
| 1637 |
+
{
|
| 1638 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
| 1639 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
| 1640 |
+
}
|
| 1641 |
+
)
|
| 1642 |
+
a = df.a
|
| 1643 |
+
b = df.b
|
| 1644 |
+
|
| 1645 |
+
expr = f"{fn}(a, b)"
|
| 1646 |
+
got = self.eval(expr)
|
| 1647 |
+
with np.errstate(all="ignore"):
|
| 1648 |
+
expect = getattr(np, fn)(a, b)
|
| 1649 |
+
tm.assert_almost_equal(got, expect, check_names=False)
|
| 1650 |
+
|
| 1651 |
+
def test_df_use_case(self, engine, parser):
|
| 1652 |
+
df = DataFrame(
|
| 1653 |
+
{
|
| 1654 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
| 1655 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
| 1656 |
+
}
|
| 1657 |
+
)
|
| 1658 |
+
df.eval(
|
| 1659 |
+
"e = arctan2(sin(a), b)",
|
| 1660 |
+
engine=engine,
|
| 1661 |
+
parser=parser,
|
| 1662 |
+
inplace=True,
|
| 1663 |
+
)
|
| 1664 |
+
got = df.e
|
| 1665 |
+
expect = np.arctan2(np.sin(df.a), df.b)
|
| 1666 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
| 1667 |
+
|
| 1668 |
+
def test_df_arithmetic_subexpression(self, engine, parser):
|
| 1669 |
+
df = DataFrame(
|
| 1670 |
+
{
|
| 1671 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
| 1672 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
| 1673 |
+
}
|
| 1674 |
+
)
|
| 1675 |
+
df.eval("e = sin(a + b)", engine=engine, parser=parser, inplace=True)
|
| 1676 |
+
got = df.e
|
| 1677 |
+
expect = np.sin(df.a + df.b)
|
| 1678 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
| 1679 |
+
|
| 1680 |
+
@pytest.mark.parametrize(
|
| 1681 |
+
"dtype, expect_dtype",
|
| 1682 |
+
[
|
| 1683 |
+
(np.int32, np.float64),
|
| 1684 |
+
(np.int64, np.float64),
|
| 1685 |
+
(np.float32, np.float32),
|
| 1686 |
+
(np.float64, np.float64),
|
| 1687 |
+
pytest.param(np.complex128, np.complex128, marks=td.skip_if_windows),
|
| 1688 |
+
],
|
| 1689 |
+
)
|
| 1690 |
+
def test_result_types(self, dtype, expect_dtype, engine, parser):
|
| 1691 |
+
# xref https://github.com/pandas-dev/pandas/issues/12293
|
| 1692 |
+
# this fails on Windows, apparently a floating point precision issue
|
| 1693 |
+
|
| 1694 |
+
# Did not test complex64 because DataFrame is converting it to
|
| 1695 |
+
# complex128. Due to https://github.com/pandas-dev/pandas/issues/10952
|
| 1696 |
+
df = DataFrame(
|
| 1697 |
+
{"a": np.random.default_rng(2).standard_normal(10).astype(dtype)}
|
| 1698 |
+
)
|
| 1699 |
+
assert df.a.dtype == dtype
|
| 1700 |
+
df.eval("b = sin(a)", engine=engine, parser=parser, inplace=True)
|
| 1701 |
+
got = df.b
|
| 1702 |
+
expect = np.sin(df.a)
|
| 1703 |
+
assert expect.dtype == got.dtype
|
| 1704 |
+
assert expect_dtype == got.dtype
|
| 1705 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
| 1706 |
+
|
| 1707 |
+
def test_undefined_func(self, engine, parser):
|
| 1708 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
| 1709 |
+
msg = '"mysin" is not a supported function'
|
| 1710 |
+
|
| 1711 |
+
with pytest.raises(ValueError, match=msg):
|
| 1712 |
+
df.eval("mysin(a)", engine=engine, parser=parser)
|
| 1713 |
+
|
| 1714 |
+
def test_keyword_arg(self, engine, parser):
|
| 1715 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
| 1716 |
+
msg = 'Function "sin" does not support keyword arguments'
|
| 1717 |
+
|
| 1718 |
+
with pytest.raises(TypeError, match=msg):
|
| 1719 |
+
df.eval("sin(x=a)", engine=engine, parser=parser)
|
| 1720 |
+
|
| 1721 |
+
|
| 1722 |
+
_var_s = np.random.default_rng(2).standard_normal(10)
|
| 1723 |
+
|
| 1724 |
+
|
| 1725 |
+
class TestScope:
|
| 1726 |
+
def test_global_scope(self, engine, parser):
|
| 1727 |
+
e = "_var_s * 2"
|
| 1728 |
+
tm.assert_numpy_array_equal(
|
| 1729 |
+
_var_s * 2, pd.eval(e, engine=engine, parser=parser)
|
| 1730 |
+
)
|
| 1731 |
+
|
| 1732 |
+
def test_no_new_locals(self, engine, parser):
|
| 1733 |
+
x = 1
|
| 1734 |
+
lcls = locals().copy()
|
| 1735 |
+
pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser)
|
| 1736 |
+
lcls2 = locals().copy()
|
| 1737 |
+
lcls2.pop("lcls")
|
| 1738 |
+
assert lcls == lcls2
|
| 1739 |
+
|
| 1740 |
+
def test_no_new_globals(self, engine, parser):
|
| 1741 |
+
x = 1 # noqa: F841
|
| 1742 |
+
gbls = globals().copy()
|
| 1743 |
+
pd.eval("x + 1", engine=engine, parser=parser)
|
| 1744 |
+
gbls2 = globals().copy()
|
| 1745 |
+
assert gbls == gbls2
|
| 1746 |
+
|
| 1747 |
+
def test_empty_locals(self, engine, parser):
|
| 1748 |
+
# GH 47084
|
| 1749 |
+
x = 1 # noqa: F841
|
| 1750 |
+
msg = "name 'x' is not defined"
|
| 1751 |
+
with pytest.raises(UndefinedVariableError, match=msg):
|
| 1752 |
+
pd.eval("x + 1", engine=engine, parser=parser, local_dict={})
|
| 1753 |
+
|
| 1754 |
+
def test_empty_globals(self, engine, parser):
|
| 1755 |
+
# GH 47084
|
| 1756 |
+
msg = "name '_var_s' is not defined"
|
| 1757 |
+
e = "_var_s * 2"
|
| 1758 |
+
with pytest.raises(UndefinedVariableError, match=msg):
|
| 1759 |
+
pd.eval(e, engine=engine, parser=parser, global_dict={})
|
| 1760 |
+
|
| 1761 |
+
|
| 1762 |
+
@td.skip_if_no("numexpr")
|
| 1763 |
+
def test_invalid_engine():
|
| 1764 |
+
msg = "Invalid engine 'asdf' passed"
|
| 1765 |
+
with pytest.raises(KeyError, match=msg):
|
| 1766 |
+
pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf")
|
| 1767 |
+
|
| 1768 |
+
|
| 1769 |
+
@td.skip_if_no("numexpr")
|
| 1770 |
+
@pytest.mark.parametrize(
|
| 1771 |
+
("use_numexpr", "expected"),
|
| 1772 |
+
(
|
| 1773 |
+
(True, "numexpr"),
|
| 1774 |
+
(False, "python"),
|
| 1775 |
+
),
|
| 1776 |
+
)
|
| 1777 |
+
def test_numexpr_option_respected(use_numexpr, expected):
|
| 1778 |
+
# GH 32556
|
| 1779 |
+
from pandas.core.computation.eval import _check_engine
|
| 1780 |
+
|
| 1781 |
+
with pd.option_context("compute.use_numexpr", use_numexpr):
|
| 1782 |
+
result = _check_engine(None)
|
| 1783 |
+
assert result == expected
|
| 1784 |
+
|
| 1785 |
+
|
| 1786 |
+
@td.skip_if_no("numexpr")
|
| 1787 |
+
def test_numexpr_option_incompatible_op():
|
| 1788 |
+
# GH 32556
|
| 1789 |
+
with pd.option_context("compute.use_numexpr", False):
|
| 1790 |
+
df = DataFrame(
|
| 1791 |
+
{"A": [True, False, True, False, None, None], "B": [1, 2, 3, 4, 5, 6]}
|
| 1792 |
+
)
|
| 1793 |
+
result = df.query("A.isnull()")
|
| 1794 |
+
expected = DataFrame({"A": [None, None], "B": [5, 6]}, index=[4, 5])
|
| 1795 |
+
tm.assert_frame_equal(result, expected)
|
| 1796 |
+
|
| 1797 |
+
|
| 1798 |
+
@td.skip_if_no("numexpr")
|
| 1799 |
+
def test_invalid_parser():
|
| 1800 |
+
msg = "Invalid parser 'asdf' passed"
|
| 1801 |
+
with pytest.raises(KeyError, match=msg):
|
| 1802 |
+
pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf")
|
| 1803 |
+
|
| 1804 |
+
|
| 1805 |
+
_parsers: dict[str, type[BaseExprVisitor]] = {
|
| 1806 |
+
"python": PythonExprVisitor,
|
| 1807 |
+
"pytables": pytables.PyTablesExprVisitor,
|
| 1808 |
+
"pandas": PandasExprVisitor,
|
| 1809 |
+
}
|
| 1810 |
+
|
| 1811 |
+
|
| 1812 |
+
@pytest.mark.parametrize("engine", ENGINES)
|
| 1813 |
+
@pytest.mark.parametrize("parser", _parsers)
|
| 1814 |
+
def test_disallowed_nodes(engine, parser):
|
| 1815 |
+
VisitorClass = _parsers[parser]
|
| 1816 |
+
inst = VisitorClass("x + 1", engine, parser)
|
| 1817 |
+
|
| 1818 |
+
for ops in VisitorClass.unsupported_nodes:
|
| 1819 |
+
msg = "nodes are not implemented"
|
| 1820 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1821 |
+
getattr(inst, ops)()
|
| 1822 |
+
|
| 1823 |
+
|
| 1824 |
+
def test_syntax_error_exprs(engine, parser):
|
| 1825 |
+
e = "s +"
|
| 1826 |
+
with pytest.raises(SyntaxError, match="invalid syntax"):
|
| 1827 |
+
pd.eval(e, engine=engine, parser=parser)
|
| 1828 |
+
|
| 1829 |
+
|
| 1830 |
+
def test_name_error_exprs(engine, parser):
|
| 1831 |
+
e = "s + t"
|
| 1832 |
+
msg = "name 's' is not defined"
|
| 1833 |
+
with pytest.raises(NameError, match=msg):
|
| 1834 |
+
pd.eval(e, engine=engine, parser=parser)
|
| 1835 |
+
|
| 1836 |
+
|
| 1837 |
+
@pytest.mark.parametrize("express", ["a + @b", "@a + b", "@a + @b"])
|
| 1838 |
+
def test_invalid_local_variable_reference(engine, parser, express):
|
| 1839 |
+
a, b = 1, 2 # noqa: F841
|
| 1840 |
+
|
| 1841 |
+
if parser != "pandas":
|
| 1842 |
+
with pytest.raises(SyntaxError, match="The '@' prefix is only"):
|
| 1843 |
+
pd.eval(express, engine=engine, parser=parser)
|
| 1844 |
+
else:
|
| 1845 |
+
with pytest.raises(SyntaxError, match="The '@' prefix is not"):
|
| 1846 |
+
pd.eval(express, engine=engine, parser=parser)
|
| 1847 |
+
|
| 1848 |
+
|
| 1849 |
+
def test_numexpr_builtin_raises(engine, parser):
|
| 1850 |
+
sin, dotted_line = 1, 2
|
| 1851 |
+
if engine == "numexpr":
|
| 1852 |
+
msg = "Variables in expression .+"
|
| 1853 |
+
with pytest.raises(NumExprClobberingError, match=msg):
|
| 1854 |
+
pd.eval("sin + dotted_line", engine=engine, parser=parser)
|
| 1855 |
+
else:
|
| 1856 |
+
res = pd.eval("sin + dotted_line", engine=engine, parser=parser)
|
| 1857 |
+
assert res == sin + dotted_line
|
| 1858 |
+
|
| 1859 |
+
|
| 1860 |
+
def test_bad_resolver_raises(engine, parser):
|
| 1861 |
+
cannot_resolve = 42, 3.0
|
| 1862 |
+
with pytest.raises(TypeError, match="Resolver of type .+"):
|
| 1863 |
+
pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser)
|
| 1864 |
+
|
| 1865 |
+
|
| 1866 |
+
def test_empty_string_raises(engine, parser):
|
| 1867 |
+
# GH 13139
|
| 1868 |
+
with pytest.raises(ValueError, match="expr cannot be an empty string"):
|
| 1869 |
+
pd.eval("", engine=engine, parser=parser)
|
| 1870 |
+
|
| 1871 |
+
|
| 1872 |
+
def test_more_than_one_expression_raises(engine, parser):
|
| 1873 |
+
with pytest.raises(SyntaxError, match="only a single expression is allowed"):
|
| 1874 |
+
pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser)
|
| 1875 |
+
|
| 1876 |
+
|
| 1877 |
+
@pytest.mark.parametrize("cmp", ("and", "or"))
|
| 1878 |
+
@pytest.mark.parametrize("lhs", (int, float))
|
| 1879 |
+
@pytest.mark.parametrize("rhs", (int, float))
|
| 1880 |
+
def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
|
| 1881 |
+
gen = {
|
| 1882 |
+
int: lambda: np.random.default_rng(2).integers(10),
|
| 1883 |
+
float: np.random.default_rng(2).standard_normal,
|
| 1884 |
+
}
|
| 1885 |
+
|
| 1886 |
+
mid = gen[lhs]() # noqa: F841
|
| 1887 |
+
lhs = gen[lhs]()
|
| 1888 |
+
rhs = gen[rhs]()
|
| 1889 |
+
|
| 1890 |
+
ex1 = f"lhs {cmp} mid {cmp} rhs"
|
| 1891 |
+
ex2 = f"lhs {cmp} mid and mid {cmp} rhs"
|
| 1892 |
+
ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)"
|
| 1893 |
+
for ex in (ex1, ex2, ex3):
|
| 1894 |
+
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
|
| 1895 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1896 |
+
pd.eval(ex, engine=engine, parser=parser)
|
| 1897 |
+
|
| 1898 |
+
|
| 1899 |
+
@pytest.mark.parametrize(
|
| 1900 |
+
"other",
|
| 1901 |
+
[
|
| 1902 |
+
"'x'",
|
| 1903 |
+
"...",
|
| 1904 |
+
],
|
| 1905 |
+
)
|
| 1906 |
+
def test_equals_various(other):
|
| 1907 |
+
df = DataFrame({"A": ["a", "b", "c"]}, dtype=object)
|
| 1908 |
+
result = df.eval(f"A == {other}")
|
| 1909 |
+
expected = Series([False, False, False], name="A")
|
| 1910 |
+
if USE_NUMEXPR:
|
| 1911 |
+
# https://github.com/pandas-dev/pandas/issues/10239
|
| 1912 |
+
# lose name with numexpr engine. Remove when that's fixed.
|
| 1913 |
+
expected.name = None
|
| 1914 |
+
tm.assert_series_equal(result, expected)
|
| 1915 |
+
|
| 1916 |
+
|
| 1917 |
+
def test_inf(engine, parser):
|
| 1918 |
+
s = "inf + 1"
|
| 1919 |
+
expected = np.inf
|
| 1920 |
+
result = pd.eval(s, engine=engine, parser=parser)
|
| 1921 |
+
assert result == expected
|
| 1922 |
+
|
| 1923 |
+
|
| 1924 |
+
@pytest.mark.parametrize("column", ["Temp(°C)", "Capacitance(μF)"])
|
| 1925 |
+
def test_query_token(engine, column):
|
| 1926 |
+
# See: https://github.com/pandas-dev/pandas/pull/42826
|
| 1927 |
+
df = DataFrame(
|
| 1928 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=[column, "b"]
|
| 1929 |
+
)
|
| 1930 |
+
expected = df[df[column] > 5]
|
| 1931 |
+
query_string = f"`{column}` > 5"
|
| 1932 |
+
result = df.query(query_string, engine=engine)
|
| 1933 |
+
tm.assert_frame_equal(result, expected)
|
| 1934 |
+
|
| 1935 |
+
|
| 1936 |
+
def test_negate_lt_eq_le(engine, parser):
|
| 1937 |
+
df = DataFrame([[0, 10], [1, 20]], columns=["cat", "count"])
|
| 1938 |
+
expected = df[~(df.cat > 0)]
|
| 1939 |
+
|
| 1940 |
+
result = df.query("~(cat > 0)", engine=engine, parser=parser)
|
| 1941 |
+
tm.assert_frame_equal(result, expected)
|
| 1942 |
+
|
| 1943 |
+
if parser == "python":
|
| 1944 |
+
msg = "'Not' nodes are not implemented"
|
| 1945 |
+
with pytest.raises(NotImplementedError, match=msg):
|
| 1946 |
+
df.query("not (cat > 0)", engine=engine, parser=parser)
|
| 1947 |
+
else:
|
| 1948 |
+
result = df.query("not (cat > 0)", engine=engine, parser=parser)
|
| 1949 |
+
tm.assert_frame_equal(result, expected)
|
| 1950 |
+
|
| 1951 |
+
|
| 1952 |
+
@pytest.mark.parametrize(
|
| 1953 |
+
"column",
|
| 1954 |
+
DEFAULT_GLOBALS.keys(),
|
| 1955 |
+
)
|
| 1956 |
+
def test_eval_no_support_column_name(request, column):
|
| 1957 |
+
# GH 44603
|
| 1958 |
+
if column in ["True", "False", "inf", "Inf"]:
|
| 1959 |
+
request.applymarker(
|
| 1960 |
+
pytest.mark.xfail(
|
| 1961 |
+
raises=KeyError,
|
| 1962 |
+
reason=f"GH 47859 DataFrame eval not supported with {column}",
|
| 1963 |
+
)
|
| 1964 |
+
)
|
| 1965 |
+
|
| 1966 |
+
df = DataFrame(
|
| 1967 |
+
np.random.default_rng(2).integers(0, 100, size=(10, 2)),
|
| 1968 |
+
columns=[column, "col1"],
|
| 1969 |
+
)
|
| 1970 |
+
expected = df[df[column] > 6]
|
| 1971 |
+
result = df.query(f"{column}>6")
|
| 1972 |
+
|
| 1973 |
+
tm.assert_frame_equal(result, expected)
|
| 1974 |
+
|
| 1975 |
+
|
| 1976 |
+
def test_set_inplace(using_copy_on_write, warn_copy_on_write):
|
| 1977 |
+
# https://github.com/pandas-dev/pandas/issues/47449
|
| 1978 |
+
# Ensure we don't only update the DataFrame inplace, but also the actual
|
| 1979 |
+
# column values, such that references to this column also get updated
|
| 1980 |
+
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
|
| 1981 |
+
result_view = df[:]
|
| 1982 |
+
ser = df["A"]
|
| 1983 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
| 1984 |
+
df.eval("A = B + C", inplace=True)
|
| 1985 |
+
expected = DataFrame({"A": [11, 13, 15], "B": [4, 5, 6], "C": [7, 8, 9]})
|
| 1986 |
+
tm.assert_frame_equal(df, expected)
|
| 1987 |
+
if not using_copy_on_write:
|
| 1988 |
+
tm.assert_series_equal(ser, expected["A"])
|
| 1989 |
+
tm.assert_series_equal(result_view["A"], expected["A"])
|
| 1990 |
+
else:
|
| 1991 |
+
expected = Series([1, 2, 3], name="A")
|
| 1992 |
+
tm.assert_series_equal(ser, expected)
|
| 1993 |
+
tm.assert_series_equal(result_view["A"], expected)
|
| 1994 |
+
|
| 1995 |
+
|
| 1996 |
+
class TestValidate:
|
| 1997 |
+
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
|
| 1998 |
+
def test_validate_bool_args(self, value):
|
| 1999 |
+
msg = 'For argument "inplace" expected type bool, received type'
|
| 2000 |
+
with pytest.raises(ValueError, match=msg):
|
| 2001 |
+
pd.eval("2+2", inplace=value)
|
emu3/lib/python3.10/site-packages/pandas/tests/series/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (169 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_api.cpython-310.pyc
ADDED
|
Binary file (10.6 kB). View file
|
|
|