ZTWHHH commited on
Commit
49326f5
·
verified ·
1 Parent(s): 89bdc86

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. falcon/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 +3 -0
  3. infer_4_30_0/bin/python3 +3 -0
  4. infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc +3 -0
  5. infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc +3 -0
  6. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/__init__.py +0 -0
  7. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py +0 -0
  8. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__init__.py +0 -0
  9. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/__init__.cpython-310.pyc +0 -0
  10. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_append.cpython-310.pyc +0 -0
  11. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_astype.cpython-310.pyc +0 -0
  12. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_category.cpython-310.pyc +0 -0
  13. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_constructors.cpython-310.pyc +0 -0
  14. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_equals.cpython-310.pyc +0 -0
  15. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_fillna.cpython-310.pyc +0 -0
  16. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_formats.cpython-310.pyc +0 -0
  17. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_indexing.cpython-310.pyc +0 -0
  18. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_map.cpython-310.pyc +0 -0
  19. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_reindex.cpython-310.pyc +0 -0
  20. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_setops.cpython-310.pyc +0 -0
  21. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_append.py +62 -0
  22. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_astype.py +90 -0
  23. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_category.py +394 -0
  24. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_constructors.py +142 -0
  25. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_equals.py +96 -0
  26. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_fillna.py +54 -0
  27. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_formats.py +120 -0
  28. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_indexing.py +420 -0
  29. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_map.py +144 -0
  30. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_reindex.py +78 -0
  31. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_setops.py +18 -0
  32. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__init__.py +0 -0
  33. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/__init__.cpython-310.pyc +0 -0
  34. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_drop_duplicates.cpython-310.pyc +0 -0
  35. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_equals.cpython-310.pyc +0 -0
  36. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_indexing.cpython-310.pyc +0 -0
  37. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_is_monotonic.cpython-310.pyc +0 -0
  38. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_nat.cpython-310.pyc +0 -0
  39. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_sort_values.cpython-310.pyc +0 -0
  40. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_value_counts.cpython-310.pyc +0 -0
  41. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_drop_duplicates.py +89 -0
  42. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_equals.py +181 -0
  43. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_indexing.py +45 -0
  44. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_is_monotonic.py +46 -0
  45. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_nat.py +53 -0
  46. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_sort_values.py +315 -0
  47. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_value_counts.py +103 -0
  48. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_any_index.py +172 -0
  49. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_common.py +512 -0
  50. infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_datetimelike.py +171 -0
.gitattributes CHANGED
@@ -2185,3 +2185,7 @@ infer_4_30_0/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/base.c
2185
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2186
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2187
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
2185
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/indexes/__pycache__/multi.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2186
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2187
  infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2188
+ infer_4_30_0/bin/python3 filter=lfs diff=lfs merge=lfs -text
2189
+ infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
2190
+ falcon/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 filter=lfs diff=lfs merge=lfs -text
2191
+ infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
falcon/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6f24534f1aa85998fb58a61b9e7124281ab539cbde11f0f40d9d25795c8728
3
+ size 43229425
infer_4_30_0/bin/python3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e0b275e6d9fdb324bd66d9b3a1442628850203bd126a700c4f3be9bd2a18e12
3
+ size 17225608
infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b51c1785c83ec8f7ed5f0e4d876a08fc707ecb7d56eb809029942ea5158d22f8
3
+ size 362638
infer_4_30_0/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a7604866bc62b788e91bdd33e41b25ae39d85644f7e6a0b7d94331d75c9399
3
+ size 385659
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/__init__.py ADDED
File without changes
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py ADDED
File without changes
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__init__.py ADDED
File without changes
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (190 Bytes). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_append.cpython-310.pyc ADDED
Binary file (2.75 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_category.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_equals.cpython-310.pyc ADDED
Binary file (3.06 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_fillna.cpython-310.pyc ADDED
Binary file (1.82 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (5.38 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_map.cpython-310.pyc ADDED
Binary file (3.73 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_reindex.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/__pycache__/test_setops.cpython-310.pyc ADDED
Binary file (721 Bytes). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_append.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ CategoricalIndex,
5
+ Index,
6
+ )
7
+ import pandas._testing as tm
8
+
9
+
10
+ class TestAppend:
11
+ @pytest.fixture
12
+ def ci(self):
13
+ categories = list("cab")
14
+ return CategoricalIndex(list("aabbca"), categories=categories, ordered=False)
15
+
16
+ def test_append(self, ci):
17
+ # append cats with the same categories
18
+ result = ci[:3].append(ci[3:])
19
+ tm.assert_index_equal(result, ci, exact=True)
20
+
21
+ foos = [ci[:1], ci[1:3], ci[3:]]
22
+ result = foos[0].append(foos[1:])
23
+ tm.assert_index_equal(result, ci, exact=True)
24
+
25
+ def test_append_empty(self, ci):
26
+ # empty
27
+ result = ci.append([])
28
+ tm.assert_index_equal(result, ci, exact=True)
29
+
30
+ def test_append_mismatched_categories(self, ci):
31
+ # appending with different categories or reordered is not ok
32
+ msg = "all inputs must be Index"
33
+ with pytest.raises(TypeError, match=msg):
34
+ ci.append(ci.values.set_categories(list("abcd")))
35
+ with pytest.raises(TypeError, match=msg):
36
+ ci.append(ci.values.reorder_categories(list("abc")))
37
+
38
+ def test_append_category_objects(self, ci):
39
+ # with objects
40
+ result = ci.append(Index(["c", "a"]))
41
+ expected = CategoricalIndex(list("aabbcaca"), categories=ci.categories)
42
+ tm.assert_index_equal(result, expected, exact=True)
43
+
44
+ def test_append_non_categories(self, ci):
45
+ # invalid objects -> cast to object via concat_compat
46
+ result = ci.append(Index(["a", "d"]))
47
+ expected = Index(["a", "a", "b", "b", "c", "a", "a", "d"])
48
+ tm.assert_index_equal(result, expected, exact=True)
49
+
50
+ def test_append_object(self, ci):
51
+ # GH#14298 - if base object is not categorical -> coerce to object
52
+ result = Index(["c", "a"]).append(ci)
53
+ expected = Index(list("caaabbca"))
54
+ tm.assert_index_equal(result, expected, exact=True)
55
+
56
+ def test_append_to_another(self):
57
+ # hits Index._concat
58
+ fst = Index(["a", "b"])
59
+ snd = CategoricalIndex(["d", "e"])
60
+ result = fst.append(snd)
61
+ expected = Index(["a", "b", "d", "e"])
62
+ tm.assert_index_equal(result, expected)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_astype.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import date
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ Categorical,
8
+ CategoricalDtype,
9
+ CategoricalIndex,
10
+ Index,
11
+ IntervalIndex,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestAstype:
17
+ def test_astype(self):
18
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
19
+
20
+ result = ci.astype(object)
21
+ tm.assert_index_equal(result, Index(np.array(ci), dtype=object))
22
+
23
+ # this IS equal, but not the same class
24
+ assert result.equals(ci)
25
+ assert isinstance(result, Index)
26
+ assert not isinstance(result, CategoricalIndex)
27
+
28
+ # interval
29
+ ii = IntervalIndex.from_arrays(left=[-0.001, 2.0], right=[2, 4], closed="right")
30
+
31
+ ci = CategoricalIndex(
32
+ Categorical.from_codes([0, 1, -1], categories=ii, ordered=True)
33
+ )
34
+
35
+ result = ci.astype("interval")
36
+ expected = ii.take([0, 1, -1], allow_fill=True, fill_value=np.nan)
37
+ tm.assert_index_equal(result, expected)
38
+
39
+ result = IntervalIndex(result.values)
40
+ tm.assert_index_equal(result, expected)
41
+
42
+ @pytest.mark.parametrize("name", [None, "foo"])
43
+ @pytest.mark.parametrize("dtype_ordered", [True, False])
44
+ @pytest.mark.parametrize("index_ordered", [True, False])
45
+ def test_astype_category(self, name, dtype_ordered, index_ordered):
46
+ # GH#18630
47
+ index = CategoricalIndex(
48
+ list("aabbca"), categories=list("cab"), ordered=index_ordered
49
+ )
50
+ if name:
51
+ index = index.rename(name)
52
+
53
+ # standard categories
54
+ dtype = CategoricalDtype(ordered=dtype_ordered)
55
+ result = index.astype(dtype)
56
+ expected = CategoricalIndex(
57
+ index.tolist(),
58
+ name=name,
59
+ categories=index.categories,
60
+ ordered=dtype_ordered,
61
+ )
62
+ tm.assert_index_equal(result, expected)
63
+
64
+ # non-standard categories
65
+ dtype = CategoricalDtype(index.unique().tolist()[:-1], dtype_ordered)
66
+ result = index.astype(dtype)
67
+ expected = CategoricalIndex(index.tolist(), name=name, dtype=dtype)
68
+ tm.assert_index_equal(result, expected)
69
+
70
+ if dtype_ordered is False:
71
+ # dtype='category' can't specify ordered, so only test once
72
+ result = index.astype("category")
73
+ expected = index
74
+ tm.assert_index_equal(result, expected)
75
+
76
+ @pytest.mark.parametrize("box", [True, False])
77
+ def test_categorical_date_roundtrip(self, box):
78
+ # astype to categorical and back should preserve date objects
79
+ v = date.today()
80
+
81
+ obj = Index([v, v])
82
+ assert obj.dtype == object
83
+ if box:
84
+ obj = obj.array
85
+
86
+ cat = obj.astype("category")
87
+
88
+ rtrip = cat.astype(object)
89
+ assert rtrip.dtype == object
90
+ assert type(rtrip[0]) is date
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_category.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+
6
+ from pandas._libs import index as libindex
7
+ from pandas._libs.arrays import NDArrayBacked
8
+
9
+ import pandas as pd
10
+ from pandas import (
11
+ Categorical,
12
+ CategoricalDtype,
13
+ )
14
+ import pandas._testing as tm
15
+ from pandas.core.indexes.api import (
16
+ CategoricalIndex,
17
+ Index,
18
+ )
19
+
20
+
21
+ class TestCategoricalIndex:
22
+ @pytest.fixture
23
+ def simple_index(self) -> CategoricalIndex:
24
+ return CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
25
+
26
+ def test_can_hold_identifiers(self):
27
+ idx = CategoricalIndex(list("aabbca"), categories=None, ordered=False)
28
+ key = idx[0]
29
+ assert idx._can_hold_identifiers_and_holds_name(key) is True
30
+
31
+ def test_insert(self, simple_index):
32
+ ci = simple_index
33
+ categories = ci.categories
34
+
35
+ # test 0th element
36
+ result = ci.insert(0, "a")
37
+ expected = CategoricalIndex(list("aaabbca"), categories=categories)
38
+ tm.assert_index_equal(result, expected, exact=True)
39
+
40
+ # test Nth element that follows Python list behavior
41
+ result = ci.insert(-1, "a")
42
+ expected = CategoricalIndex(list("aabbcaa"), categories=categories)
43
+ tm.assert_index_equal(result, expected, exact=True)
44
+
45
+ # test empty
46
+ result = CategoricalIndex([], categories=categories).insert(0, "a")
47
+ expected = CategoricalIndex(["a"], categories=categories)
48
+ tm.assert_index_equal(result, expected, exact=True)
49
+
50
+ # invalid -> cast to object
51
+ expected = ci.astype(object).insert(0, "d")
52
+ result = ci.insert(0, "d").astype(object)
53
+ tm.assert_index_equal(result, expected, exact=True)
54
+
55
+ # GH 18295 (test missing)
56
+ expected = CategoricalIndex(["a", np.nan, "a", "b", "c", "b"])
57
+ for na in (np.nan, pd.NaT, None):
58
+ result = CategoricalIndex(list("aabcb")).insert(1, na)
59
+ tm.assert_index_equal(result, expected)
60
+
61
+ def test_insert_na_mismatched_dtype(self):
62
+ ci = CategoricalIndex([0, 1, 1])
63
+ result = ci.insert(0, pd.NaT)
64
+ expected = Index([pd.NaT, 0, 1, 1], dtype=object)
65
+ tm.assert_index_equal(result, expected)
66
+
67
+ def test_delete(self, simple_index):
68
+ ci = simple_index
69
+ categories = ci.categories
70
+
71
+ result = ci.delete(0)
72
+ expected = CategoricalIndex(list("abbca"), categories=categories)
73
+ tm.assert_index_equal(result, expected, exact=True)
74
+
75
+ result = ci.delete(-1)
76
+ expected = CategoricalIndex(list("aabbc"), categories=categories)
77
+ tm.assert_index_equal(result, expected, exact=True)
78
+
79
+ with tm.external_error_raised((IndexError, ValueError)):
80
+ # Either depending on NumPy version
81
+ ci.delete(10)
82
+
83
+ @pytest.mark.parametrize(
84
+ "data, non_lexsorted_data",
85
+ [[[1, 2, 3], [9, 0, 1, 2, 3]], [list("abc"), list("fabcd")]],
86
+ )
87
+ def test_is_monotonic(self, data, non_lexsorted_data):
88
+ c = CategoricalIndex(data)
89
+ assert c.is_monotonic_increasing is True
90
+ assert c.is_monotonic_decreasing is False
91
+
92
+ c = CategoricalIndex(data, ordered=True)
93
+ assert c.is_monotonic_increasing is True
94
+ assert c.is_monotonic_decreasing is False
95
+
96
+ c = CategoricalIndex(data, categories=reversed(data))
97
+ assert c.is_monotonic_increasing is False
98
+ assert c.is_monotonic_decreasing is True
99
+
100
+ c = CategoricalIndex(data, categories=reversed(data), ordered=True)
101
+ assert c.is_monotonic_increasing is False
102
+ assert c.is_monotonic_decreasing is True
103
+
104
+ # test when data is neither monotonic increasing nor decreasing
105
+ reordered_data = [data[0], data[2], data[1]]
106
+ c = CategoricalIndex(reordered_data, categories=reversed(data))
107
+ assert c.is_monotonic_increasing is False
108
+ assert c.is_monotonic_decreasing is False
109
+
110
+ # non lexsorted categories
111
+ categories = non_lexsorted_data
112
+
113
+ c = CategoricalIndex(categories[:2], categories=categories)
114
+ assert c.is_monotonic_increasing is True
115
+ assert c.is_monotonic_decreasing is False
116
+
117
+ c = CategoricalIndex(categories[1:3], categories=categories)
118
+ assert c.is_monotonic_increasing is True
119
+ assert c.is_monotonic_decreasing is False
120
+
121
+ def test_has_duplicates(self):
122
+ idx = CategoricalIndex([0, 0, 0], name="foo")
123
+ assert idx.is_unique is False
124
+ assert idx.has_duplicates is True
125
+
126
+ idx = CategoricalIndex([0, 1], categories=[2, 3], name="foo")
127
+ assert idx.is_unique is False
128
+ assert idx.has_duplicates is True
129
+
130
+ idx = CategoricalIndex([0, 1, 2, 3], categories=[1, 2, 3], name="foo")
131
+ assert idx.is_unique is True
132
+ assert idx.has_duplicates is False
133
+
134
+ @pytest.mark.parametrize(
135
+ "data, categories, expected",
136
+ [
137
+ (
138
+ [1, 1, 1],
139
+ [1, 2, 3],
140
+ {
141
+ "first": np.array([False, True, True]),
142
+ "last": np.array([True, True, False]),
143
+ False: np.array([True, True, True]),
144
+ },
145
+ ),
146
+ (
147
+ [1, 1, 1],
148
+ list("abc"),
149
+ {
150
+ "first": np.array([False, True, True]),
151
+ "last": np.array([True, True, False]),
152
+ False: np.array([True, True, True]),
153
+ },
154
+ ),
155
+ (
156
+ [2, "a", "b"],
157
+ list("abc"),
158
+ {
159
+ "first": np.zeros(shape=(3), dtype=np.bool_),
160
+ "last": np.zeros(shape=(3), dtype=np.bool_),
161
+ False: np.zeros(shape=(3), dtype=np.bool_),
162
+ },
163
+ ),
164
+ (
165
+ list("abb"),
166
+ list("abc"),
167
+ {
168
+ "first": np.array([False, False, True]),
169
+ "last": np.array([False, True, False]),
170
+ False: np.array([False, True, True]),
171
+ },
172
+ ),
173
+ ],
174
+ )
175
+ def test_drop_duplicates(self, data, categories, expected):
176
+ idx = CategoricalIndex(data, categories=categories, name="foo")
177
+ for keep, e in expected.items():
178
+ tm.assert_numpy_array_equal(idx.duplicated(keep=keep), e)
179
+ e = idx[~e]
180
+ result = idx.drop_duplicates(keep=keep)
181
+ tm.assert_index_equal(result, e)
182
+
183
+ @pytest.mark.parametrize(
184
+ "data, categories, expected_data",
185
+ [
186
+ ([1, 1, 1], [1, 2, 3], [1]),
187
+ ([1, 1, 1], list("abc"), [np.nan]),
188
+ ([1, 2, "a"], [1, 2, 3], [1, 2, np.nan]),
189
+ ([2, "a", "b"], list("abc"), [np.nan, "a", "b"]),
190
+ ],
191
+ )
192
+ def test_unique(self, data, categories, expected_data, ordered):
193
+ dtype = CategoricalDtype(categories, ordered=ordered)
194
+
195
+ idx = CategoricalIndex(data, dtype=dtype)
196
+ expected = CategoricalIndex(expected_data, dtype=dtype)
197
+ tm.assert_index_equal(idx.unique(), expected)
198
+
199
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr doesn't roundtrip")
200
+ def test_repr_roundtrip(self):
201
+ ci = CategoricalIndex(["a", "b"], categories=["a", "b"], ordered=True)
202
+ str(ci)
203
+ tm.assert_index_equal(eval(repr(ci)), ci, exact=True)
204
+
205
+ # formatting
206
+ str(ci)
207
+
208
+ # long format
209
+ # this is not reprable
210
+ ci = CategoricalIndex(np.random.default_rng(2).integers(0, 5, size=100))
211
+ str(ci)
212
+
213
+ def test_isin(self):
214
+ ci = CategoricalIndex(list("aabca") + [np.nan], categories=["c", "a", "b"])
215
+ tm.assert_numpy_array_equal(
216
+ ci.isin(["c"]), np.array([False, False, False, True, False, False])
217
+ )
218
+ tm.assert_numpy_array_equal(
219
+ ci.isin(["c", "a", "b"]), np.array([True] * 5 + [False])
220
+ )
221
+ tm.assert_numpy_array_equal(
222
+ ci.isin(["c", "a", "b", np.nan]), np.array([True] * 6)
223
+ )
224
+
225
+ # mismatched categorical -> coerced to ndarray so doesn't matter
226
+ result = ci.isin(ci.set_categories(list("abcdefghi")))
227
+ expected = np.array([True] * 6)
228
+ tm.assert_numpy_array_equal(result, expected)
229
+
230
+ result = ci.isin(ci.set_categories(list("defghi")))
231
+ expected = np.array([False] * 5 + [True])
232
+ tm.assert_numpy_array_equal(result, expected)
233
+
234
+ def test_isin_overlapping_intervals(self):
235
+ # GH 34974
236
+ idx = pd.IntervalIndex([pd.Interval(0, 2), pd.Interval(0, 1)])
237
+ result = CategoricalIndex(idx).isin(idx)
238
+ expected = np.array([True, True])
239
+ tm.assert_numpy_array_equal(result, expected)
240
+
241
+ def test_identical(self):
242
+ ci1 = CategoricalIndex(["a", "b"], categories=["a", "b"], ordered=True)
243
+ ci2 = CategoricalIndex(["a", "b"], categories=["a", "b", "c"], ordered=True)
244
+ assert ci1.identical(ci1)
245
+ assert ci1.identical(ci1.copy())
246
+ assert not ci1.identical(ci2)
247
+
248
+ def test_ensure_copied_data(self):
249
+ # gh-12309: Check the "copy" argument of each
250
+ # Index.__new__ is honored.
251
+ #
252
+ # Must be tested separately from other indexes because
253
+ # self.values is not an ndarray.
254
+ index = CategoricalIndex(list("ab") * 5)
255
+
256
+ result = CategoricalIndex(index.values, copy=True)
257
+ tm.assert_index_equal(index, result)
258
+ assert not np.shares_memory(result._data._codes, index._data._codes)
259
+
260
+ result = CategoricalIndex(index.values, copy=False)
261
+ assert result._data._codes is index._data._codes
262
+
263
+
264
+ class TestCategoricalIndex2:
265
+ def test_view_i8(self):
266
+ # GH#25464
267
+ ci = CategoricalIndex(list("ab") * 50)
268
+ msg = "When changing to a larger dtype, its size must be a divisor"
269
+ with pytest.raises(ValueError, match=msg):
270
+ ci.view("i8")
271
+ with pytest.raises(ValueError, match=msg):
272
+ ci._data.view("i8")
273
+
274
+ ci = ci[:-4] # length divisible by 8
275
+
276
+ res = ci.view("i8")
277
+ expected = ci._data.codes.view("i8")
278
+ tm.assert_numpy_array_equal(res, expected)
279
+
280
+ cat = ci._data
281
+ tm.assert_numpy_array_equal(cat.view("i8"), expected)
282
+
283
+ @pytest.mark.parametrize(
284
+ "dtype, engine_type",
285
+ [
286
+ (np.int8, libindex.Int8Engine),
287
+ (np.int16, libindex.Int16Engine),
288
+ (np.int32, libindex.Int32Engine),
289
+ (np.int64, libindex.Int64Engine),
290
+ ],
291
+ )
292
+ def test_engine_type(self, dtype, engine_type):
293
+ if dtype != np.int64:
294
+ # num. of uniques required to push CategoricalIndex.codes to a
295
+ # dtype (128 categories required for .codes dtype to be int16 etc.)
296
+ num_uniques = {np.int8: 1, np.int16: 128, np.int32: 32768}[dtype]
297
+ ci = CategoricalIndex(range(num_uniques))
298
+ else:
299
+ # having 2**32 - 2**31 categories would be very memory-intensive,
300
+ # so we cheat a bit with the dtype
301
+ ci = CategoricalIndex(range(32768)) # == 2**16 - 2**(16 - 1)
302
+ arr = ci.values._ndarray.astype("int64")
303
+ NDArrayBacked.__init__(ci._data, arr, ci.dtype)
304
+ assert np.issubdtype(ci.codes.dtype, dtype)
305
+ assert isinstance(ci._engine, engine_type)
306
+
307
+ @pytest.mark.parametrize(
308
+ "func,op_name",
309
+ [
310
+ (lambda idx: idx - idx, "__sub__"),
311
+ (lambda idx: idx + idx, "__add__"),
312
+ (lambda idx: idx - ["a", "b"], "__sub__"),
313
+ (lambda idx: idx + ["a", "b"], "__add__"),
314
+ (lambda idx: ["a", "b"] - idx, "__rsub__"),
315
+ (lambda idx: ["a", "b"] + idx, "__radd__"),
316
+ ],
317
+ )
318
+ def test_disallow_addsub_ops(self, func, op_name):
319
+ # GH 10039
320
+ # set ops (+/-) raise TypeError
321
+ idx = Index(Categorical(["a", "b"]))
322
+ cat_or_list = "'(Categorical|list)' and '(Categorical|list)'"
323
+ msg = "|".join(
324
+ [
325
+ f"cannot perform {op_name} with this index type: CategoricalIndex",
326
+ "can only concatenate list",
327
+ rf"unsupported operand type\(s\) for [\+-]: {cat_or_list}",
328
+ ]
329
+ )
330
+ with pytest.raises(TypeError, match=msg):
331
+ func(idx)
332
+
333
+ def test_method_delegation(self):
334
+ ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"))
335
+ result = ci.set_categories(list("cab"))
336
+ tm.assert_index_equal(
337
+ result, CategoricalIndex(list("aabbca"), categories=list("cab"))
338
+ )
339
+
340
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
341
+ result = ci.rename_categories(list("efg"))
342
+ tm.assert_index_equal(
343
+ result, CategoricalIndex(list("ffggef"), categories=list("efg"))
344
+ )
345
+
346
+ # GH18862 (let rename_categories take callables)
347
+ result = ci.rename_categories(lambda x: x.upper())
348
+ tm.assert_index_equal(
349
+ result, CategoricalIndex(list("AABBCA"), categories=list("CAB"))
350
+ )
351
+
352
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
353
+ result = ci.add_categories(["d"])
354
+ tm.assert_index_equal(
355
+ result, CategoricalIndex(list("aabbca"), categories=list("cabd"))
356
+ )
357
+
358
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
359
+ result = ci.remove_categories(["c"])
360
+ tm.assert_index_equal(
361
+ result,
362
+ CategoricalIndex(list("aabb") + [np.nan] + ["a"], categories=list("ab")),
363
+ )
364
+
365
+ ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"))
366
+ result = ci.as_unordered()
367
+ tm.assert_index_equal(result, ci)
368
+
369
+ ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"))
370
+ result = ci.as_ordered()
371
+ tm.assert_index_equal(
372
+ result,
373
+ CategoricalIndex(list("aabbca"), categories=list("cabdef"), ordered=True),
374
+ )
375
+
376
+ # invalid
377
+ msg = "cannot use inplace with CategoricalIndex"
378
+ with pytest.raises(ValueError, match=msg):
379
+ ci.set_categories(list("cab"), inplace=True)
380
+
381
+ def test_remove_maintains_order(self):
382
+ ci = CategoricalIndex(list("abcdda"), categories=list("abcd"))
383
+ result = ci.reorder_categories(["d", "c", "b", "a"], ordered=True)
384
+ tm.assert_index_equal(
385
+ result,
386
+ CategoricalIndex(list("abcdda"), categories=list("dcba"), ordered=True),
387
+ )
388
+ result = result.remove_categories(["c"])
389
+ tm.assert_index_equal(
390
+ result,
391
+ CategoricalIndex(
392
+ ["a", "b", np.nan, "d", "d", "a"], categories=list("dba"), ordered=True
393
+ ),
394
+ )
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_constructors.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ CategoricalDtype,
7
+ CategoricalIndex,
8
+ Index,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class TestCategoricalIndexConstructors:
14
+ def test_construction_disallows_scalar(self):
15
+ msg = "must be called with a collection of some kind"
16
+ with pytest.raises(TypeError, match=msg):
17
+ CategoricalIndex(data=1, categories=list("abcd"), ordered=False)
18
+ with pytest.raises(TypeError, match=msg):
19
+ CategoricalIndex(categories=list("abcd"), ordered=False)
20
+
21
+ def test_construction(self):
22
+ ci = CategoricalIndex(list("aabbca"), categories=list("abcd"), ordered=False)
23
+ categories = ci.categories
24
+
25
+ result = Index(ci)
26
+ tm.assert_index_equal(result, ci, exact=True)
27
+ assert not result.ordered
28
+
29
+ result = Index(ci.values)
30
+ tm.assert_index_equal(result, ci, exact=True)
31
+ assert not result.ordered
32
+
33
+ # empty
34
+ result = CategoricalIndex([], categories=categories)
35
+ tm.assert_index_equal(result.categories, Index(categories))
36
+ tm.assert_numpy_array_equal(result.codes, np.array([], dtype="int8"))
37
+ assert not result.ordered
38
+
39
+ # passing categories
40
+ result = CategoricalIndex(list("aabbca"), categories=categories)
41
+ tm.assert_index_equal(result.categories, Index(categories))
42
+ tm.assert_numpy_array_equal(
43
+ result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8")
44
+ )
45
+
46
+ c = Categorical(list("aabbca"))
47
+ result = CategoricalIndex(c)
48
+ tm.assert_index_equal(result.categories, Index(list("abc")))
49
+ tm.assert_numpy_array_equal(
50
+ result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8")
51
+ )
52
+ assert not result.ordered
53
+
54
+ result = CategoricalIndex(c, categories=categories)
55
+ tm.assert_index_equal(result.categories, Index(categories))
56
+ tm.assert_numpy_array_equal(
57
+ result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8")
58
+ )
59
+ assert not result.ordered
60
+
61
+ ci = CategoricalIndex(c, categories=list("abcd"))
62
+ result = CategoricalIndex(ci)
63
+ tm.assert_index_equal(result.categories, Index(categories))
64
+ tm.assert_numpy_array_equal(
65
+ result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8")
66
+ )
67
+ assert not result.ordered
68
+
69
+ result = CategoricalIndex(ci, categories=list("ab"))
70
+ tm.assert_index_equal(result.categories, Index(list("ab")))
71
+ tm.assert_numpy_array_equal(
72
+ result.codes, np.array([0, 0, 1, 1, -1, 0], dtype="int8")
73
+ )
74
+ assert not result.ordered
75
+
76
+ result = CategoricalIndex(ci, categories=list("ab"), ordered=True)
77
+ tm.assert_index_equal(result.categories, Index(list("ab")))
78
+ tm.assert_numpy_array_equal(
79
+ result.codes, np.array([0, 0, 1, 1, -1, 0], dtype="int8")
80
+ )
81
+ assert result.ordered
82
+
83
+ result = CategoricalIndex(ci, categories=list("ab"), ordered=True)
84
+ expected = CategoricalIndex(
85
+ ci, categories=list("ab"), ordered=True, dtype="category"
86
+ )
87
+ tm.assert_index_equal(result, expected, exact=True)
88
+
89
+ # turn me to an Index
90
+ result = Index(np.array(ci))
91
+ assert isinstance(result, Index)
92
+ assert not isinstance(result, CategoricalIndex)
93
+
94
+ def test_construction_with_dtype(self):
95
+ # specify dtype
96
+ ci = CategoricalIndex(list("aabbca"), categories=list("abc"), ordered=False)
97
+
98
+ result = Index(np.array(ci), dtype="category")
99
+ tm.assert_index_equal(result, ci, exact=True)
100
+
101
+ result = Index(np.array(ci).tolist(), dtype="category")
102
+ tm.assert_index_equal(result, ci, exact=True)
103
+
104
+ # these are generally only equal when the categories are reordered
105
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
106
+
107
+ result = Index(np.array(ci), dtype="category").reorder_categories(ci.categories)
108
+ tm.assert_index_equal(result, ci, exact=True)
109
+
110
+ # make sure indexes are handled
111
+ idx = Index(range(3))
112
+ expected = CategoricalIndex([0, 1, 2], categories=idx, ordered=True)
113
+ result = CategoricalIndex(idx, categories=idx, ordered=True)
114
+ tm.assert_index_equal(result, expected, exact=True)
115
+
116
+ def test_construction_empty_with_bool_categories(self):
117
+ # see GH#22702
118
+ cat = CategoricalIndex([], categories=[True, False])
119
+ categories = sorted(cat.categories.tolist())
120
+ assert categories == [False, True]
121
+
122
+ def test_construction_with_categorical_dtype(self):
123
+ # construction with CategoricalDtype
124
+ # GH#18109
125
+ data, cats, ordered = "a a b b".split(), "c b a".split(), True
126
+ dtype = CategoricalDtype(categories=cats, ordered=ordered)
127
+
128
+ result = CategoricalIndex(data, dtype=dtype)
129
+ expected = CategoricalIndex(data, categories=cats, ordered=ordered)
130
+ tm.assert_index_equal(result, expected, exact=True)
131
+
132
+ # GH#19032
133
+ result = Index(data, dtype=dtype)
134
+ tm.assert_index_equal(result, expected, exact=True)
135
+
136
+ # error when combining categories/ordered and dtype kwargs
137
+ msg = "Cannot specify `categories` or `ordered` together with `dtype`."
138
+ with pytest.raises(ValueError, match=msg):
139
+ CategoricalIndex(data, categories=cats, dtype=dtype)
140
+
141
+ with pytest.raises(ValueError, match=msg):
142
+ CategoricalIndex(data, ordered=ordered, dtype=dtype)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_equals.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ CategoricalIndex,
7
+ Index,
8
+ MultiIndex,
9
+ )
10
+
11
+
12
+ class TestEquals:
13
+ def test_equals_categorical(self):
14
+ ci1 = CategoricalIndex(["a", "b"], categories=["a", "b"], ordered=True)
15
+ ci2 = CategoricalIndex(["a", "b"], categories=["a", "b", "c"], ordered=True)
16
+
17
+ assert ci1.equals(ci1)
18
+ assert not ci1.equals(ci2)
19
+ assert ci1.equals(ci1.astype(object))
20
+ assert ci1.astype(object).equals(ci1)
21
+
22
+ assert (ci1 == ci1).all()
23
+ assert not (ci1 != ci1).all()
24
+ assert not (ci1 > ci1).all()
25
+ assert not (ci1 < ci1).all()
26
+ assert (ci1 <= ci1).all()
27
+ assert (ci1 >= ci1).all()
28
+
29
+ assert not (ci1 == 1).all()
30
+ assert (ci1 == Index(["a", "b"])).all()
31
+ assert (ci1 == ci1.values).all()
32
+
33
+ # invalid comparisons
34
+ with pytest.raises(ValueError, match="Lengths must match"):
35
+ ci1 == Index(["a", "b", "c"])
36
+
37
+ msg = "Categoricals can only be compared if 'categories' are the same"
38
+ with pytest.raises(TypeError, match=msg):
39
+ ci1 == ci2
40
+ with pytest.raises(TypeError, match=msg):
41
+ ci1 == Categorical(ci1.values, ordered=False)
42
+ with pytest.raises(TypeError, match=msg):
43
+ ci1 == Categorical(ci1.values, categories=list("abc"))
44
+
45
+ # tests
46
+ # make sure that we are testing for category inclusion properly
47
+ ci = CategoricalIndex(list("aabca"), categories=["c", "a", "b"])
48
+ assert not ci.equals(list("aabca"))
49
+ # Same categories, but different order
50
+ # Unordered
51
+ assert ci.equals(CategoricalIndex(list("aabca")))
52
+ # Ordered
53
+ assert not ci.equals(CategoricalIndex(list("aabca"), ordered=True))
54
+ assert ci.equals(ci.copy())
55
+
56
+ ci = CategoricalIndex(list("aabca") + [np.nan], categories=["c", "a", "b"])
57
+ assert not ci.equals(list("aabca"))
58
+ assert not ci.equals(CategoricalIndex(list("aabca")))
59
+ assert ci.equals(ci.copy())
60
+
61
+ ci = CategoricalIndex(list("aabca") + [np.nan], categories=["c", "a", "b"])
62
+ assert not ci.equals(list("aabca") + [np.nan])
63
+ assert ci.equals(CategoricalIndex(list("aabca") + [np.nan]))
64
+ assert not ci.equals(CategoricalIndex(list("aabca") + [np.nan], ordered=True))
65
+ assert ci.equals(ci.copy())
66
+
67
+ def test_equals_categorical_unordered(self):
68
+ # https://github.com/pandas-dev/pandas/issues/16603
69
+ a = CategoricalIndex(["A"], categories=["A", "B"])
70
+ b = CategoricalIndex(["A"], categories=["B", "A"])
71
+ c = CategoricalIndex(["C"], categories=["B", "A"])
72
+ assert a.equals(b)
73
+ assert not a.equals(c)
74
+ assert not b.equals(c)
75
+
76
+ def test_equals_non_category(self):
77
+ # GH#37667 Case where other contains a value not among ci's
78
+ # categories ("D") and also contains np.nan
79
+ ci = CategoricalIndex(["A", "B", np.nan, np.nan])
80
+ other = Index(["A", "B", "D", np.nan])
81
+
82
+ assert not ci.equals(other)
83
+
84
+ def test_equals_multiindex(self):
85
+ # dont raise NotImplementedError when calling is_dtype_compat
86
+
87
+ mi = MultiIndex.from_arrays([["A", "B", "C", "D"], range(4)])
88
+ ci = mi.to_flat_index().astype("category")
89
+
90
+ assert not ci.equals(mi)
91
+
92
+ def test_equals_string_dtype(self, any_string_dtype):
93
+ # GH#55364
94
+ idx = CategoricalIndex(list("abc"), name="B")
95
+ other = Index(["a", "b", "c"], name="B", dtype=any_string_dtype)
96
+ assert idx.equals(other)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_fillna.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import CategoricalIndex
5
+ import pandas._testing as tm
6
+
7
+
8
+ class TestFillNA:
9
+ def test_fillna_categorical(self):
10
+ # GH#11343
11
+ idx = CategoricalIndex([1.0, np.nan, 3.0, 1.0], name="x")
12
+ # fill by value in categories
13
+ exp = CategoricalIndex([1.0, 1.0, 3.0, 1.0], name="x")
14
+ tm.assert_index_equal(idx.fillna(1.0), exp)
15
+
16
+ cat = idx._data
17
+
18
+ # fill by value not in categories raises TypeError on EA, casts on CI
19
+ msg = "Cannot setitem on a Categorical with a new category"
20
+ with pytest.raises(TypeError, match=msg):
21
+ cat.fillna(2.0)
22
+
23
+ result = idx.fillna(2.0)
24
+ expected = idx.astype(object).fillna(2.0)
25
+ tm.assert_index_equal(result, expected)
26
+
27
+ def test_fillna_copies_with_no_nas(self):
28
+ # Nothing to fill, should still get a copy for the Categorical method,
29
+ # but OK to get a view on CategoricalIndex method
30
+ ci = CategoricalIndex([0, 1, 1])
31
+ result = ci.fillna(0)
32
+ assert result is not ci
33
+ assert tm.shares_memory(result, ci)
34
+
35
+ # But at the EA level we always get a copy.
36
+ cat = ci._data
37
+ result = cat.fillna(0)
38
+ assert result._ndarray is not cat._ndarray
39
+ assert result._ndarray.base is None
40
+ assert not tm.shares_memory(result, cat)
41
+
42
+ def test_fillna_validates_with_no_nas(self):
43
+ # We validate the fill value even if fillna is a no-op
44
+ ci = CategoricalIndex([2, 3, 3])
45
+ cat = ci._data
46
+
47
+ msg = "Cannot setitem on a Categorical with a new category"
48
+ res = ci.fillna(False)
49
+ # nothing to fill, so we dont cast
50
+ tm.assert_index_equal(res, ci)
51
+
52
+ # Same check directly on the Categorical
53
+ with pytest.raises(TypeError, match=msg):
54
+ cat.fillna(False)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_formats.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for CategoricalIndex.__repr__ and related methods.
3
+ """
4
+ import pytest
5
+
6
+ from pandas._config import using_pyarrow_string_dtype
7
+ import pandas._config.config as cf
8
+
9
+ from pandas import CategoricalIndex
10
+ import pandas._testing as tm
11
+
12
+
13
+ class TestCategoricalIndexRepr:
14
+ def test_format_different_scalar_lengths(self):
15
+ # GH#35439
16
+ idx = CategoricalIndex(["aaaaaaaaa", "b"])
17
+ expected = ["aaaaaaaaa", "b"]
18
+ msg = r"CategoricalIndex\.format is deprecated"
19
+ with tm.assert_produces_warning(FutureWarning, match=msg):
20
+ assert idx.format() == expected
21
+
22
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different")
23
+ def test_string_categorical_index_repr(self):
24
+ # short
25
+ idx = CategoricalIndex(["a", "bb", "ccc"])
26
+ expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa: E501
27
+ assert repr(idx) == expected
28
+
29
+ # multiple lines
30
+ idx = CategoricalIndex(["a", "bb", "ccc"] * 10)
31
+ expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
32
+ 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb',
33
+ 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
34
+ categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa: E501
35
+
36
+ assert repr(idx) == expected
37
+
38
+ # truncated
39
+ idx = CategoricalIndex(["a", "bb", "ccc"] * 100)
40
+ expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
41
+ ...
42
+ 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
43
+ categories=['a', 'bb', 'ccc'], ordered=False, dtype='category', length=300)""" # noqa: E501
44
+
45
+ assert repr(idx) == expected
46
+
47
+ # larger categories
48
+ idx = CategoricalIndex(list("abcdefghijklmmo"))
49
+ expected = """CategoricalIndex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
50
+ 'm', 'm', 'o'],
51
+ categories=['a', 'b', 'c', 'd', ..., 'k', 'l', 'm', 'o'], ordered=False, dtype='category')""" # noqa: E501
52
+
53
+ assert repr(idx) == expected
54
+
55
+ # short
56
+ idx = CategoricalIndex(["あ", "いい", "ううう"])
57
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" # noqa: E501
58
+ assert repr(idx) == expected
59
+
60
+ # multiple lines
61
+ idx = CategoricalIndex(["あ", "いい", "ううう"] * 10)
62
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
63
+ 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
64
+ 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
65
+ categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" # noqa: E501
66
+
67
+ assert repr(idx) == expected
68
+
69
+ # truncated
70
+ idx = CategoricalIndex(["あ", "いい", "ううう"] * 100)
71
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
72
+ ...
73
+ 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
74
+ categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)""" # noqa: E501
75
+
76
+ assert repr(idx) == expected
77
+
78
+ # larger categories
79
+ idx = CategoricalIndex(list("あいうえおかきくけこさしすせそ"))
80
+ expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し',
81
+ 'す', 'せ', 'そ'],
82
+ categories=['あ', 'い', 'う', 'え', ..., 'し', 'す', 'せ', 'そ'], ordered=False, dtype='category')""" # noqa: E501
83
+
84
+ assert repr(idx) == expected
85
+
86
+ # Enable Unicode option -----------------------------------------
87
+ with cf.option_context("display.unicode.east_asian_width", True):
88
+ # short
89
+ idx = CategoricalIndex(["あ", "いい", "ううう"])
90
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" # noqa: E501
91
+ assert repr(idx) == expected
92
+
93
+ # multiple lines
94
+ idx = CategoricalIndex(["あ", "いい", "ううう"] * 10)
95
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
96
+ 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
97
+ 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
98
+ 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
99
+ categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" # noqa: E501
100
+
101
+ assert repr(idx) == expected
102
+
103
+ # truncated
104
+ idx = CategoricalIndex(["あ", "いい", "ううう"] * 100)
105
+ expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
106
+ 'ううう', 'あ',
107
+ ...
108
+ 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
109
+ 'あ', 'いい', 'ううう'],
110
+ categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)""" # noqa: E501
111
+
112
+ assert repr(idx) == expected
113
+
114
+ # larger categories
115
+ idx = CategoricalIndex(list("あいうえおかきくけこさしすせそ"))
116
+ expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ',
117
+ 'さ', 'し', 'す', 'せ', 'そ'],
118
+ categories=['あ', 'い', 'う', 'え', ..., 'し', 'す', 'せ', 'そ'], ordered=False, dtype='category')""" # noqa: E501
119
+
120
+ assert repr(idx) == expected
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_indexing.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import InvalidIndexError
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ CategoricalIndex,
9
+ Index,
10
+ IntervalIndex,
11
+ Timestamp,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestTake:
17
+ def test_take_fill_value(self):
18
+ # GH 12631
19
+
20
+ # numeric category
21
+ idx = CategoricalIndex([1, 2, 3], name="xxx")
22
+ result = idx.take(np.array([1, 0, -1]))
23
+ expected = CategoricalIndex([2, 1, 3], name="xxx")
24
+ tm.assert_index_equal(result, expected)
25
+ tm.assert_categorical_equal(result.values, expected.values)
26
+
27
+ # fill_value
28
+ result = idx.take(np.array([1, 0, -1]), fill_value=True)
29
+ expected = CategoricalIndex([2, 1, np.nan], categories=[1, 2, 3], name="xxx")
30
+ tm.assert_index_equal(result, expected)
31
+ tm.assert_categorical_equal(result.values, expected.values)
32
+
33
+ # allow_fill=False
34
+ result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
35
+ expected = CategoricalIndex([2, 1, 3], name="xxx")
36
+ tm.assert_index_equal(result, expected)
37
+ tm.assert_categorical_equal(result.values, expected.values)
38
+
39
+ # object category
40
+ idx = CategoricalIndex(
41
+ list("CBA"), categories=list("ABC"), ordered=True, name="xxx"
42
+ )
43
+ result = idx.take(np.array([1, 0, -1]))
44
+ expected = CategoricalIndex(
45
+ list("BCA"), categories=list("ABC"), ordered=True, name="xxx"
46
+ )
47
+ tm.assert_index_equal(result, expected)
48
+ tm.assert_categorical_equal(result.values, expected.values)
49
+
50
+ # fill_value
51
+ result = idx.take(np.array([1, 0, -1]), fill_value=True)
52
+ expected = CategoricalIndex(
53
+ ["B", "C", np.nan], categories=list("ABC"), ordered=True, name="xxx"
54
+ )
55
+ tm.assert_index_equal(result, expected)
56
+ tm.assert_categorical_equal(result.values, expected.values)
57
+
58
+ # allow_fill=False
59
+ result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
60
+ expected = CategoricalIndex(
61
+ list("BCA"), categories=list("ABC"), ordered=True, name="xxx"
62
+ )
63
+ tm.assert_index_equal(result, expected)
64
+ tm.assert_categorical_equal(result.values, expected.values)
65
+
66
+ msg = (
67
+ "When allow_fill=True and fill_value is not None, "
68
+ "all indices must be >= -1"
69
+ )
70
+ with pytest.raises(ValueError, match=msg):
71
+ idx.take(np.array([1, 0, -2]), fill_value=True)
72
+ with pytest.raises(ValueError, match=msg):
73
+ idx.take(np.array([1, 0, -5]), fill_value=True)
74
+
75
+ msg = "index -5 is out of bounds for (axis 0 with )?size 3"
76
+ with pytest.raises(IndexError, match=msg):
77
+ idx.take(np.array([1, -5]))
78
+
79
+ def test_take_fill_value_datetime(self):
80
+ # datetime category
81
+ idx = pd.DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx")
82
+ idx = CategoricalIndex(idx)
83
+ result = idx.take(np.array([1, 0, -1]))
84
+ expected = pd.DatetimeIndex(
85
+ ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
86
+ )
87
+ expected = CategoricalIndex(expected)
88
+ tm.assert_index_equal(result, expected)
89
+
90
+ # fill_value
91
+ result = idx.take(np.array([1, 0, -1]), fill_value=True)
92
+ expected = pd.DatetimeIndex(["2011-02-01", "2011-01-01", "NaT"], name="xxx")
93
+ exp_cats = pd.DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"])
94
+ expected = CategoricalIndex(expected, categories=exp_cats)
95
+ tm.assert_index_equal(result, expected)
96
+
97
+ # allow_fill=False
98
+ result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
99
+ expected = pd.DatetimeIndex(
100
+ ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
101
+ )
102
+ expected = CategoricalIndex(expected)
103
+ tm.assert_index_equal(result, expected)
104
+
105
+ msg = (
106
+ "When allow_fill=True and fill_value is not None, "
107
+ "all indices must be >= -1"
108
+ )
109
+ with pytest.raises(ValueError, match=msg):
110
+ idx.take(np.array([1, 0, -2]), fill_value=True)
111
+ with pytest.raises(ValueError, match=msg):
112
+ idx.take(np.array([1, 0, -5]), fill_value=True)
113
+
114
+ msg = "index -5 is out of bounds for (axis 0 with )?size 3"
115
+ with pytest.raises(IndexError, match=msg):
116
+ idx.take(np.array([1, -5]))
117
+
118
+ def test_take_invalid_kwargs(self):
119
+ idx = CategoricalIndex([1, 2, 3], name="foo")
120
+ indices = [1, 0, -1]
121
+
122
+ msg = r"take\(\) got an unexpected keyword argument 'foo'"
123
+ with pytest.raises(TypeError, match=msg):
124
+ idx.take(indices, foo=2)
125
+
126
+ msg = "the 'out' parameter is not supported"
127
+ with pytest.raises(ValueError, match=msg):
128
+ idx.take(indices, out=indices)
129
+
130
+ msg = "the 'mode' parameter is not supported"
131
+ with pytest.raises(ValueError, match=msg):
132
+ idx.take(indices, mode="clip")
133
+
134
+
135
+ class TestGetLoc:
136
+ def test_get_loc(self):
137
+ # GH 12531
138
+ cidx1 = CategoricalIndex(list("abcde"), categories=list("edabc"))
139
+ idx1 = Index(list("abcde"))
140
+ assert cidx1.get_loc("a") == idx1.get_loc("a")
141
+ assert cidx1.get_loc("e") == idx1.get_loc("e")
142
+
143
+ for i in [cidx1, idx1]:
144
+ with pytest.raises(KeyError, match="'NOT-EXIST'"):
145
+ i.get_loc("NOT-EXIST")
146
+
147
+ # non-unique
148
+ cidx2 = CategoricalIndex(list("aacded"), categories=list("edabc"))
149
+ idx2 = Index(list("aacded"))
150
+
151
+ # results in bool array
152
+ res = cidx2.get_loc("d")
153
+ tm.assert_numpy_array_equal(res, idx2.get_loc("d"))
154
+ tm.assert_numpy_array_equal(
155
+ res, np.array([False, False, False, True, False, True])
156
+ )
157
+ # unique element results in scalar
158
+ res = cidx2.get_loc("e")
159
+ assert res == idx2.get_loc("e")
160
+ assert res == 4
161
+
162
+ for i in [cidx2, idx2]:
163
+ with pytest.raises(KeyError, match="'NOT-EXIST'"):
164
+ i.get_loc("NOT-EXIST")
165
+
166
+ # non-unique, sliceable
167
+ cidx3 = CategoricalIndex(list("aabbb"), categories=list("abc"))
168
+ idx3 = Index(list("aabbb"))
169
+
170
+ # results in slice
171
+ res = cidx3.get_loc("a")
172
+ assert res == idx3.get_loc("a")
173
+ assert res == slice(0, 2, None)
174
+
175
+ res = cidx3.get_loc("b")
176
+ assert res == idx3.get_loc("b")
177
+ assert res == slice(2, 5, None)
178
+
179
+ for i in [cidx3, idx3]:
180
+ with pytest.raises(KeyError, match="'c'"):
181
+ i.get_loc("c")
182
+
183
+ def test_get_loc_unique(self):
184
+ cidx = CategoricalIndex(list("abc"))
185
+ result = cidx.get_loc("b")
186
+ assert result == 1
187
+
188
+ def test_get_loc_monotonic_nonunique(self):
189
+ cidx = CategoricalIndex(list("abbc"))
190
+ result = cidx.get_loc("b")
191
+ expected = slice(1, 3, None)
192
+ assert result == expected
193
+
194
+ def test_get_loc_nonmonotonic_nonunique(self):
195
+ cidx = CategoricalIndex(list("abcb"))
196
+ result = cidx.get_loc("b")
197
+ expected = np.array([False, True, False, True], dtype=bool)
198
+ tm.assert_numpy_array_equal(result, expected)
199
+
200
+ def test_get_loc_nan(self):
201
+ # GH#41933
202
+ ci = CategoricalIndex(["A", "B", np.nan])
203
+ res = ci.get_loc(np.nan)
204
+
205
+ assert res == 2
206
+
207
+
208
+ class TestGetIndexer:
209
+ def test_get_indexer_base(self):
210
+ # Determined by cat ordering.
211
+ idx = CategoricalIndex(list("cab"), categories=list("cab"))
212
+ expected = np.arange(len(idx), dtype=np.intp)
213
+
214
+ actual = idx.get_indexer(idx)
215
+ tm.assert_numpy_array_equal(expected, actual)
216
+
217
+ with pytest.raises(ValueError, match="Invalid fill method"):
218
+ idx.get_indexer(idx, method="invalid")
219
+
220
+ def test_get_indexer_requires_unique(self):
221
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
222
+ oidx = Index(np.array(ci))
223
+
224
+ msg = "Reindexing only valid with uniquely valued Index objects"
225
+
226
+ for n in [1, 2, 5, len(ci)]:
227
+ finder = oidx[np.random.default_rng(2).integers(0, len(ci), size=n)]
228
+
229
+ with pytest.raises(InvalidIndexError, match=msg):
230
+ ci.get_indexer(finder)
231
+
232
+ # see gh-17323
233
+ #
234
+ # Even when indexer is equal to the
235
+ # members in the index, we should
236
+ # respect duplicates instead of taking
237
+ # the fast-track path.
238
+ for finder in [list("aabbca"), list("aababca")]:
239
+ with pytest.raises(InvalidIndexError, match=msg):
240
+ ci.get_indexer(finder)
241
+
242
+ def test_get_indexer_non_unique(self):
243
+ idx1 = CategoricalIndex(list("aabcde"), categories=list("edabc"))
244
+ idx2 = CategoricalIndex(list("abf"))
245
+
246
+ for indexer in [idx2, list("abf"), Index(list("abf"))]:
247
+ msg = "Reindexing only valid with uniquely valued Index objects"
248
+ with pytest.raises(InvalidIndexError, match=msg):
249
+ idx1.get_indexer(indexer)
250
+
251
+ r1, _ = idx1.get_indexer_non_unique(indexer)
252
+ expected = np.array([0, 1, 2, -1], dtype=np.intp)
253
+ tm.assert_almost_equal(r1, expected)
254
+
255
+ def test_get_indexer_method(self):
256
+ idx1 = CategoricalIndex(list("aabcde"), categories=list("edabc"))
257
+ idx2 = CategoricalIndex(list("abf"))
258
+
259
+ msg = "method pad not yet implemented for CategoricalIndex"
260
+ with pytest.raises(NotImplementedError, match=msg):
261
+ idx2.get_indexer(idx1, method="pad")
262
+ msg = "method backfill not yet implemented for CategoricalIndex"
263
+ with pytest.raises(NotImplementedError, match=msg):
264
+ idx2.get_indexer(idx1, method="backfill")
265
+
266
+ msg = "method nearest not yet implemented for CategoricalIndex"
267
+ with pytest.raises(NotImplementedError, match=msg):
268
+ idx2.get_indexer(idx1, method="nearest")
269
+
270
+ def test_get_indexer_array(self):
271
+ arr = np.array(
272
+ [Timestamp("1999-12-31 00:00:00"), Timestamp("2000-12-31 00:00:00")],
273
+ dtype=object,
274
+ )
275
+ cats = [Timestamp("1999-12-31 00:00:00"), Timestamp("2000-12-31 00:00:00")]
276
+ ci = CategoricalIndex(cats, categories=cats, ordered=False, dtype="category")
277
+ result = ci.get_indexer(arr)
278
+ expected = np.array([0, 1], dtype="intp")
279
+ tm.assert_numpy_array_equal(result, expected)
280
+
281
+ def test_get_indexer_same_categories_same_order(self):
282
+ ci = CategoricalIndex(["a", "b"], categories=["a", "b"])
283
+
284
+ result = ci.get_indexer(CategoricalIndex(["b", "b"], categories=["a", "b"]))
285
+ expected = np.array([1, 1], dtype="intp")
286
+ tm.assert_numpy_array_equal(result, expected)
287
+
288
+ def test_get_indexer_same_categories_different_order(self):
289
+ # https://github.com/pandas-dev/pandas/issues/19551
290
+ ci = CategoricalIndex(["a", "b"], categories=["a", "b"])
291
+
292
+ result = ci.get_indexer(CategoricalIndex(["b", "b"], categories=["b", "a"]))
293
+ expected = np.array([1, 1], dtype="intp")
294
+ tm.assert_numpy_array_equal(result, expected)
295
+
296
+ def test_get_indexer_nans_in_index_and_target(self):
297
+ # GH 45361
298
+ ci = CategoricalIndex([1, 2, np.nan, 3])
299
+ other1 = [2, 3, 4, np.nan]
300
+ res1 = ci.get_indexer(other1)
301
+ expected1 = np.array([1, 3, -1, 2], dtype=np.intp)
302
+ tm.assert_numpy_array_equal(res1, expected1)
303
+ other2 = [1, 4, 2, 3]
304
+ res2 = ci.get_indexer(other2)
305
+ expected2 = np.array([0, -1, 1, 3], dtype=np.intp)
306
+ tm.assert_numpy_array_equal(res2, expected2)
307
+
308
+
309
+ class TestWhere:
310
+ def test_where(self, listlike_box):
311
+ klass = listlike_box
312
+
313
+ i = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
314
+ cond = [True] * len(i)
315
+ expected = i
316
+ result = i.where(klass(cond))
317
+ tm.assert_index_equal(result, expected)
318
+
319
+ cond = [False] + [True] * (len(i) - 1)
320
+ expected = CategoricalIndex([np.nan] + i[1:].tolist(), categories=i.categories)
321
+ result = i.where(klass(cond))
322
+ tm.assert_index_equal(result, expected)
323
+
324
+ def test_where_non_categories(self):
325
+ ci = CategoricalIndex(["a", "b", "c", "d"])
326
+ mask = np.array([True, False, True, False])
327
+
328
+ result = ci.where(mask, 2)
329
+ expected = Index(["a", 2, "c", 2], dtype=object)
330
+ tm.assert_index_equal(result, expected)
331
+
332
+ msg = "Cannot setitem on a Categorical with a new category"
333
+ with pytest.raises(TypeError, match=msg):
334
+ # Test the Categorical method directly
335
+ ci._data._where(mask, 2)
336
+
337
+
338
+ class TestContains:
339
+ def test_contains(self):
340
+ ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"), ordered=False)
341
+
342
+ assert "a" in ci
343
+ assert "z" not in ci
344
+ assert "e" not in ci
345
+ assert np.nan not in ci
346
+
347
+ # assert codes NOT in index
348
+ assert 0 not in ci
349
+ assert 1 not in ci
350
+
351
+ def test_contains_nan(self):
352
+ ci = CategoricalIndex(list("aabbca") + [np.nan], categories=list("cabdef"))
353
+ assert np.nan in ci
354
+
355
+ @pytest.mark.parametrize("unwrap", [True, False])
356
+ def test_contains_na_dtype(self, unwrap):
357
+ dti = pd.date_range("2016-01-01", periods=100).insert(0, pd.NaT)
358
+ pi = dti.to_period("D")
359
+ tdi = dti - dti[-1]
360
+ ci = CategoricalIndex(dti)
361
+
362
+ obj = ci
363
+ if unwrap:
364
+ obj = ci._data
365
+
366
+ assert np.nan in obj
367
+ assert None in obj
368
+ assert pd.NaT in obj
369
+ assert np.datetime64("NaT") in obj
370
+ assert np.timedelta64("NaT") not in obj
371
+
372
+ obj2 = CategoricalIndex(tdi)
373
+ if unwrap:
374
+ obj2 = obj2._data
375
+
376
+ assert np.nan in obj2
377
+ assert None in obj2
378
+ assert pd.NaT in obj2
379
+ assert np.datetime64("NaT") not in obj2
380
+ assert np.timedelta64("NaT") in obj2
381
+
382
+ obj3 = CategoricalIndex(pi)
383
+ if unwrap:
384
+ obj3 = obj3._data
385
+
386
+ assert np.nan in obj3
387
+ assert None in obj3
388
+ assert pd.NaT in obj3
389
+ assert np.datetime64("NaT") not in obj3
390
+ assert np.timedelta64("NaT") not in obj3
391
+
392
+ @pytest.mark.parametrize(
393
+ "item, expected",
394
+ [
395
+ (pd.Interval(0, 1), True),
396
+ (1.5, True),
397
+ (pd.Interval(0.5, 1.5), False),
398
+ ("a", False),
399
+ (Timestamp(1), False),
400
+ (pd.Timedelta(1), False),
401
+ ],
402
+ ids=str,
403
+ )
404
+ def test_contains_interval(self, item, expected):
405
+ # GH 23705
406
+ ci = CategoricalIndex(IntervalIndex.from_breaks(range(3)))
407
+ result = item in ci
408
+ assert result is expected
409
+
410
+ def test_contains_list(self):
411
+ # GH#21729
412
+ idx = CategoricalIndex([1, 2, 3])
413
+
414
+ assert "a" not in idx
415
+
416
+ with pytest.raises(TypeError, match="unhashable type"):
417
+ ["a"] in idx
418
+
419
+ with pytest.raises(TypeError, match="unhashable type"):
420
+ ["a", "b"] in idx
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_map.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ CategoricalIndex,
7
+ Index,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.mark.parametrize(
14
+ "data, categories",
15
+ [
16
+ (list("abcbca"), list("cab")),
17
+ (pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)),
18
+ ],
19
+ ids=["string", "interval"],
20
+ )
21
+ def test_map_str(data, categories, ordered):
22
+ # GH 31202 - override base class since we want to maintain categorical/ordered
23
+ index = CategoricalIndex(data, categories=categories, ordered=ordered)
24
+ result = index.map(str)
25
+ expected = CategoricalIndex(
26
+ map(str, data), categories=map(str, categories), ordered=ordered
27
+ )
28
+ tm.assert_index_equal(result, expected)
29
+
30
+
31
+ def test_map():
32
+ ci = CategoricalIndex(list("ABABC"), categories=list("CBA"), ordered=True)
33
+ result = ci.map(lambda x: x.lower())
34
+ exp = CategoricalIndex(list("ababc"), categories=list("cba"), ordered=True)
35
+ tm.assert_index_equal(result, exp)
36
+
37
+ ci = CategoricalIndex(
38
+ list("ABABC"), categories=list("BAC"), ordered=False, name="XXX"
39
+ )
40
+ result = ci.map(lambda x: x.lower())
41
+ exp = CategoricalIndex(
42
+ list("ababc"), categories=list("bac"), ordered=False, name="XXX"
43
+ )
44
+ tm.assert_index_equal(result, exp)
45
+
46
+ # GH 12766: Return an index not an array
47
+ tm.assert_index_equal(
48
+ ci.map(lambda x: 1), Index(np.array([1] * 5, dtype=np.int64), name="XXX")
49
+ )
50
+
51
+ # change categories dtype
52
+ ci = CategoricalIndex(list("ABABC"), categories=list("BAC"), ordered=False)
53
+
54
+ def f(x):
55
+ return {"A": 10, "B": 20, "C": 30}.get(x)
56
+
57
+ result = ci.map(f)
58
+ exp = CategoricalIndex([10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False)
59
+ tm.assert_index_equal(result, exp)
60
+
61
+ result = ci.map(Series([10, 20, 30], index=["A", "B", "C"]))
62
+ tm.assert_index_equal(result, exp)
63
+
64
+ result = ci.map({"A": 10, "B": 20, "C": 30})
65
+ tm.assert_index_equal(result, exp)
66
+
67
+
68
+ def test_map_with_categorical_series():
69
+ # GH 12756
70
+ a = Index([1, 2, 3, 4])
71
+ b = Series(["even", "odd", "even", "odd"], dtype="category")
72
+ c = Series(["even", "odd", "even", "odd"])
73
+
74
+ exp = CategoricalIndex(["odd", "even", "odd", np.nan])
75
+ tm.assert_index_equal(a.map(b), exp)
76
+ exp = Index(["odd", "even", "odd", np.nan])
77
+ tm.assert_index_equal(a.map(c), exp)
78
+
79
+
80
+ @pytest.mark.parametrize(
81
+ ("data", "f", "expected"),
82
+ (
83
+ ([1, 1, np.nan], pd.isna, CategoricalIndex([False, False, np.nan])),
84
+ ([1, 2, np.nan], pd.isna, Index([False, False, np.nan])),
85
+ ([1, 1, np.nan], {1: False}, CategoricalIndex([False, False, np.nan])),
86
+ ([1, 2, np.nan], {1: False, 2: False}, Index([False, False, np.nan])),
87
+ (
88
+ [1, 1, np.nan],
89
+ Series([False, False]),
90
+ CategoricalIndex([False, False, np.nan]),
91
+ ),
92
+ (
93
+ [1, 2, np.nan],
94
+ Series([False, False, False]),
95
+ Index([False, False, np.nan]),
96
+ ),
97
+ ),
98
+ )
99
+ def test_map_with_nan_ignore(data, f, expected): # GH 24241
100
+ values = CategoricalIndex(data)
101
+ result = values.map(f, na_action="ignore")
102
+ tm.assert_index_equal(result, expected)
103
+
104
+
105
+ @pytest.mark.parametrize(
106
+ ("data", "f", "expected"),
107
+ (
108
+ ([1, 1, np.nan], pd.isna, Index([False, False, True])),
109
+ ([1, 2, np.nan], pd.isna, Index([False, False, True])),
110
+ ([1, 1, np.nan], {1: False}, CategoricalIndex([False, False, np.nan])),
111
+ ([1, 2, np.nan], {1: False, 2: False}, Index([False, False, np.nan])),
112
+ (
113
+ [1, 1, np.nan],
114
+ Series([False, False]),
115
+ CategoricalIndex([False, False, np.nan]),
116
+ ),
117
+ (
118
+ [1, 2, np.nan],
119
+ Series([False, False, False]),
120
+ Index([False, False, np.nan]),
121
+ ),
122
+ ),
123
+ )
124
+ def test_map_with_nan_none(data, f, expected): # GH 24241
125
+ values = CategoricalIndex(data)
126
+ result = values.map(f, na_action=None)
127
+ tm.assert_index_equal(result, expected)
128
+
129
+
130
+ def test_map_with_dict_or_series():
131
+ orig_values = ["a", "B", 1, "a"]
132
+ new_values = ["one", 2, 3.0, "one"]
133
+ cur_index = CategoricalIndex(orig_values, name="XXX")
134
+ expected = CategoricalIndex(new_values, name="XXX", categories=[3.0, 2, "one"])
135
+
136
+ mapper = Series(new_values[:-1], index=orig_values[:-1])
137
+ result = cur_index.map(mapper)
138
+ # Order of categories in result can be different
139
+ tm.assert_index_equal(result, expected)
140
+
141
+ mapper = dict(zip(orig_values[:-1], new_values[:-1]))
142
+ result = cur_index.map(mapper)
143
+ # Order of categories in result can be different
144
+ tm.assert_index_equal(result, expected)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_reindex.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ CategoricalIndex,
7
+ Index,
8
+ Interval,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class TestReindex:
14
+ def test_reindex_list_non_unique(self):
15
+ # GH#11586
16
+ msg = "cannot reindex on an axis with duplicate labels"
17
+ ci = CategoricalIndex(["a", "b", "c", "a"])
18
+ with pytest.raises(ValueError, match=msg):
19
+ ci.reindex(["a", "c"])
20
+
21
+ def test_reindex_categorical_non_unique(self):
22
+ msg = "cannot reindex on an axis with duplicate labels"
23
+ ci = CategoricalIndex(["a", "b", "c", "a"])
24
+ with pytest.raises(ValueError, match=msg):
25
+ ci.reindex(Categorical(["a", "c"]))
26
+
27
+ def test_reindex_list_non_unique_unused_category(self):
28
+ msg = "cannot reindex on an axis with duplicate labels"
29
+ ci = CategoricalIndex(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
30
+ with pytest.raises(ValueError, match=msg):
31
+ ci.reindex(["a", "c"])
32
+
33
+ def test_reindex_categorical_non_unique_unused_category(self):
34
+ msg = "cannot reindex on an axis with duplicate labels"
35
+ ci = CategoricalIndex(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
36
+ with pytest.raises(ValueError, match=msg):
37
+ ci.reindex(Categorical(["a", "c"]))
38
+
39
+ def test_reindex_duplicate_target(self):
40
+ # See GH25459
41
+ cat = CategoricalIndex(["a", "b", "c"], categories=["a", "b", "c", "d"])
42
+ res, indexer = cat.reindex(["a", "c", "c"])
43
+ exp = Index(["a", "c", "c"])
44
+ tm.assert_index_equal(res, exp, exact=True)
45
+ tm.assert_numpy_array_equal(indexer, np.array([0, 2, 2], dtype=np.intp))
46
+
47
+ res, indexer = cat.reindex(
48
+ CategoricalIndex(["a", "c", "c"], categories=["a", "b", "c", "d"])
49
+ )
50
+ exp = CategoricalIndex(["a", "c", "c"], categories=["a", "b", "c", "d"])
51
+ tm.assert_index_equal(res, exp, exact=True)
52
+ tm.assert_numpy_array_equal(indexer, np.array([0, 2, 2], dtype=np.intp))
53
+
54
+ def test_reindex_empty_index(self):
55
+ # See GH16770
56
+ c = CategoricalIndex([])
57
+ res, indexer = c.reindex(["a", "b"])
58
+ tm.assert_index_equal(res, Index(["a", "b"]), exact=True)
59
+ tm.assert_numpy_array_equal(indexer, np.array([-1, -1], dtype=np.intp))
60
+
61
+ def test_reindex_categorical_added_category(self):
62
+ # GH 42424
63
+ ci = CategoricalIndex(
64
+ [Interval(0, 1, closed="right"), Interval(1, 2, closed="right")],
65
+ ordered=True,
66
+ )
67
+ ci_add = CategoricalIndex(
68
+ [
69
+ Interval(0, 1, closed="right"),
70
+ Interval(1, 2, closed="right"),
71
+ Interval(2, 3, closed="right"),
72
+ Interval(3, 4, closed="right"),
73
+ ],
74
+ ordered=True,
75
+ )
76
+ result, _ = ci.reindex(ci_add)
77
+ expected = ci_add
78
+ tm.assert_index_equal(expected, result)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/categorical/test_setops.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ CategoricalIndex,
6
+ Index,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ @pytest.mark.parametrize("na_value", [None, np.nan])
12
+ def test_difference_with_na(na_value):
13
+ # GH 57318
14
+ ci = CategoricalIndex(["a", "b", "c", None])
15
+ other = Index(["c", na_value])
16
+ result = ci.difference(other)
17
+ expected = CategoricalIndex(["a", "b"], categories=["a", "b", "c"])
18
+ tm.assert_index_equal(result, expected)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__init__.py ADDED
File without changes
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_drop_duplicates.cpython-310.pyc ADDED
Binary file (2.95 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_equals.cpython-310.pyc ADDED
Binary file (6.06 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_is_monotonic.cpython-310.pyc ADDED
Binary file (1.01 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_nat.cpython-310.pyc ADDED
Binary file (1.94 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_sort_values.cpython-310.pyc ADDED
Binary file (7.61 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_value_counts.cpython-310.pyc ADDED
Binary file (3.28 kB). View file
 
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_drop_duplicates.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ PeriodIndex,
6
+ Series,
7
+ date_range,
8
+ period_range,
9
+ timedelta_range,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class DropDuplicates:
15
+ def test_drop_duplicates_metadata(self, idx):
16
+ # GH#10115
17
+ result = idx.drop_duplicates()
18
+ tm.assert_index_equal(idx, result)
19
+ assert idx.freq == result.freq
20
+
21
+ idx_dup = idx.append(idx)
22
+ result = idx_dup.drop_duplicates()
23
+
24
+ expected = idx
25
+ if not isinstance(idx, PeriodIndex):
26
+ # freq is reset except for PeriodIndex
27
+ assert idx_dup.freq is None
28
+ assert result.freq is None
29
+ expected = idx._with_freq(None)
30
+ else:
31
+ assert result.freq == expected.freq
32
+
33
+ tm.assert_index_equal(result, expected)
34
+
35
+ @pytest.mark.parametrize(
36
+ "keep, expected, index",
37
+ [
38
+ (
39
+ "first",
40
+ np.concatenate(([False] * 10, [True] * 5)),
41
+ np.arange(0, 10, dtype=np.int64),
42
+ ),
43
+ (
44
+ "last",
45
+ np.concatenate(([True] * 5, [False] * 10)),
46
+ np.arange(5, 15, dtype=np.int64),
47
+ ),
48
+ (
49
+ False,
50
+ np.concatenate(([True] * 5, [False] * 5, [True] * 5)),
51
+ np.arange(5, 10, dtype=np.int64),
52
+ ),
53
+ ],
54
+ )
55
+ def test_drop_duplicates(self, keep, expected, index, idx):
56
+ # to check Index/Series compat
57
+ idx = idx.append(idx[:5])
58
+
59
+ tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected)
60
+ expected = idx[~expected]
61
+
62
+ result = idx.drop_duplicates(keep=keep)
63
+ tm.assert_index_equal(result, expected)
64
+
65
+ result = Series(idx).drop_duplicates(keep=keep)
66
+ expected = Series(expected, index=index)
67
+ tm.assert_series_equal(result, expected)
68
+
69
+
70
+ class TestDropDuplicatesPeriodIndex(DropDuplicates):
71
+ @pytest.fixture(params=["D", "3D", "h", "2h", "min", "2min", "s", "3s"])
72
+ def freq(self, request):
73
+ return request.param
74
+
75
+ @pytest.fixture
76
+ def idx(self, freq):
77
+ return period_range("2011-01-01", periods=10, freq=freq, name="idx")
78
+
79
+
80
+ class TestDropDuplicatesDatetimeIndex(DropDuplicates):
81
+ @pytest.fixture
82
+ def idx(self, freq_sample):
83
+ return date_range("2011-01-01", freq=freq_sample, periods=10, name="idx")
84
+
85
+
86
+ class TestDropDuplicatesTimedeltaIndex(DropDuplicates):
87
+ @pytest.fixture
88
+ def idx(self, freq_sample):
89
+ return timedelta_range("1 day", periods=10, freq=freq_sample, name="idx")
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_equals.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests shared for DatetimeIndex/TimedeltaIndex/PeriodIndex
3
+ """
4
+ from datetime import (
5
+ datetime,
6
+ timedelta,
7
+ )
8
+
9
+ import numpy as np
10
+ import pytest
11
+
12
+ import pandas as pd
13
+ from pandas import (
14
+ CategoricalIndex,
15
+ DatetimeIndex,
16
+ Index,
17
+ PeriodIndex,
18
+ TimedeltaIndex,
19
+ date_range,
20
+ period_range,
21
+ timedelta_range,
22
+ )
23
+ import pandas._testing as tm
24
+
25
+
26
+ class EqualsTests:
27
+ def test_not_equals_numeric(self, index):
28
+ assert not index.equals(Index(index.asi8))
29
+ assert not index.equals(Index(index.asi8.astype("u8")))
30
+ assert not index.equals(Index(index.asi8).astype("f8"))
31
+
32
+ def test_equals(self, index):
33
+ assert index.equals(index)
34
+ assert index.equals(index.astype(object))
35
+ assert index.equals(CategoricalIndex(index))
36
+ assert index.equals(CategoricalIndex(index.astype(object)))
37
+
38
+ def test_not_equals_non_arraylike(self, index):
39
+ assert not index.equals(list(index))
40
+
41
+ def test_not_equals_strings(self, index):
42
+ other = Index([str(x) for x in index], dtype=object)
43
+ assert not index.equals(other)
44
+ assert not index.equals(CategoricalIndex(other))
45
+
46
+ def test_not_equals_misc_strs(self, index):
47
+ other = Index(list("abc"))
48
+ assert not index.equals(other)
49
+
50
+
51
+ class TestPeriodIndexEquals(EqualsTests):
52
+ @pytest.fixture
53
+ def index(self):
54
+ return period_range("2013-01-01", periods=5, freq="D")
55
+
56
+ # TODO: de-duplicate with other test_equals2 methods
57
+ @pytest.mark.parametrize("freq", ["D", "M"])
58
+ def test_equals2(self, freq):
59
+ # GH#13107
60
+ idx = PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq=freq)
61
+ assert idx.equals(idx)
62
+ assert idx.equals(idx.copy())
63
+ assert idx.equals(idx.astype(object))
64
+ assert idx.astype(object).equals(idx)
65
+ assert idx.astype(object).equals(idx.astype(object))
66
+ assert not idx.equals(list(idx))
67
+ assert not idx.equals(pd.Series(idx))
68
+
69
+ idx2 = PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq="h")
70
+ assert not idx.equals(idx2)
71
+ assert not idx.equals(idx2.copy())
72
+ assert not idx.equals(idx2.astype(object))
73
+ assert not idx.astype(object).equals(idx2)
74
+ assert not idx.equals(list(idx2))
75
+ assert not idx.equals(pd.Series(idx2))
76
+
77
+ # same internal, different tz
78
+ idx3 = PeriodIndex._simple_new(
79
+ idx._values._simple_new(idx._values.asi8, dtype=pd.PeriodDtype("h"))
80
+ )
81
+ tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
82
+ assert not idx.equals(idx3)
83
+ assert not idx.equals(idx3.copy())
84
+ assert not idx.equals(idx3.astype(object))
85
+ assert not idx.astype(object).equals(idx3)
86
+ assert not idx.equals(list(idx3))
87
+ assert not idx.equals(pd.Series(idx3))
88
+
89
+
90
+ class TestDatetimeIndexEquals(EqualsTests):
91
+ @pytest.fixture
92
+ def index(self):
93
+ return date_range("2013-01-01", periods=5)
94
+
95
+ def test_equals2(self):
96
+ # GH#13107
97
+ idx = DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"])
98
+ assert idx.equals(idx)
99
+ assert idx.equals(idx.copy())
100
+ assert idx.equals(idx.astype(object))
101
+ assert idx.astype(object).equals(idx)
102
+ assert idx.astype(object).equals(idx.astype(object))
103
+ assert not idx.equals(list(idx))
104
+ assert not idx.equals(pd.Series(idx))
105
+
106
+ idx2 = DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific")
107
+ assert not idx.equals(idx2)
108
+ assert not idx.equals(idx2.copy())
109
+ assert not idx.equals(idx2.astype(object))
110
+ assert not idx.astype(object).equals(idx2)
111
+ assert not idx.equals(list(idx2))
112
+ assert not idx.equals(pd.Series(idx2))
113
+
114
+ # same internal, different tz
115
+ idx3 = DatetimeIndex(idx.asi8, tz="US/Pacific")
116
+ tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
117
+ assert not idx.equals(idx3)
118
+ assert not idx.equals(idx3.copy())
119
+ assert not idx.equals(idx3.astype(object))
120
+ assert not idx.astype(object).equals(idx3)
121
+ assert not idx.equals(list(idx3))
122
+ assert not idx.equals(pd.Series(idx3))
123
+
124
+ # check that we do not raise when comparing with OutOfBounds objects
125
+ oob = Index([datetime(2500, 1, 1)] * 3, dtype=object)
126
+ assert not idx.equals(oob)
127
+ assert not idx2.equals(oob)
128
+ assert not idx3.equals(oob)
129
+
130
+ # check that we do not raise when comparing with OutOfBounds dt64
131
+ oob2 = oob.map(np.datetime64)
132
+ assert not idx.equals(oob2)
133
+ assert not idx2.equals(oob2)
134
+ assert not idx3.equals(oob2)
135
+
136
+ @pytest.mark.parametrize("freq", ["B", "C"])
137
+ def test_not_equals_bday(self, freq):
138
+ rng = date_range("2009-01-01", "2010-01-01", freq=freq)
139
+ assert not rng.equals(list(rng))
140
+
141
+
142
+ class TestTimedeltaIndexEquals(EqualsTests):
143
+ @pytest.fixture
144
+ def index(self):
145
+ return timedelta_range("1 day", periods=10)
146
+
147
+ def test_equals2(self):
148
+ # GH#13107
149
+ idx = TimedeltaIndex(["1 days", "2 days", "NaT"])
150
+ assert idx.equals(idx)
151
+ assert idx.equals(idx.copy())
152
+ assert idx.equals(idx.astype(object))
153
+ assert idx.astype(object).equals(idx)
154
+ assert idx.astype(object).equals(idx.astype(object))
155
+ assert not idx.equals(list(idx))
156
+ assert not idx.equals(pd.Series(idx))
157
+
158
+ idx2 = TimedeltaIndex(["2 days", "1 days", "NaT"])
159
+ assert not idx.equals(idx2)
160
+ assert not idx.equals(idx2.copy())
161
+ assert not idx.equals(idx2.astype(object))
162
+ assert not idx.astype(object).equals(idx2)
163
+ assert not idx.astype(object).equals(idx2.astype(object))
164
+ assert not idx.equals(list(idx2))
165
+ assert not idx.equals(pd.Series(idx2))
166
+
167
+ # Check that we dont raise OverflowError on comparisons outside the
168
+ # implementation range GH#28532
169
+ oob = Index([timedelta(days=10**6)] * 3, dtype=object)
170
+ assert not idx.equals(oob)
171
+ assert not idx2.equals(oob)
172
+
173
+ oob2 = Index([np.timedelta64(x) for x in oob], dtype=object)
174
+ assert (oob == oob2).all()
175
+ assert not idx.equals(oob2)
176
+ assert not idx2.equals(oob2)
177
+
178
+ oob3 = oob.map(np.timedelta64)
179
+ assert (oob3 == oob).all()
180
+ assert not idx.equals(oob3)
181
+ assert not idx2.equals(oob3)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_indexing.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ Index,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+ dtlike_dtypes = [
12
+ np.dtype("timedelta64[ns]"),
13
+ np.dtype("datetime64[ns]"),
14
+ pd.DatetimeTZDtype("ns", "Asia/Tokyo"),
15
+ pd.PeriodDtype("ns"),
16
+ ]
17
+
18
+
19
+ @pytest.mark.parametrize("ldtype", dtlike_dtypes)
20
+ @pytest.mark.parametrize("rdtype", dtlike_dtypes)
21
+ def test_get_indexer_non_unique_wrong_dtype(ldtype, rdtype):
22
+ vals = np.tile(3600 * 10**9 * np.arange(3, dtype=np.int64), 2)
23
+
24
+ def construct(dtype):
25
+ if dtype is dtlike_dtypes[-1]:
26
+ # PeriodArray will try to cast ints to strings
27
+ return DatetimeIndex(vals).astype(dtype)
28
+ return Index(vals, dtype=dtype)
29
+
30
+ left = construct(ldtype)
31
+ right = construct(rdtype)
32
+
33
+ result = left.get_indexer_non_unique(right)
34
+
35
+ if ldtype is rdtype:
36
+ ex1 = np.array([0, 3, 1, 4, 2, 5] * 2, dtype=np.intp)
37
+ ex2 = np.array([], dtype=np.intp)
38
+ tm.assert_numpy_array_equal(result[0], ex1)
39
+ tm.assert_numpy_array_equal(result[1], ex2)
40
+
41
+ else:
42
+ no_matches = np.array([-1] * 6, dtype=np.intp)
43
+ missing = np.arange(6, dtype=np.intp)
44
+ tm.assert_numpy_array_equal(result[0], no_matches)
45
+ tm.assert_numpy_array_equal(result[1], missing)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_is_monotonic.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import (
2
+ Index,
3
+ NaT,
4
+ date_range,
5
+ )
6
+
7
+
8
+ def test_is_monotonic_with_nat():
9
+ # GH#31437
10
+ # PeriodIndex.is_monotonic_increasing should behave analogously to DatetimeIndex,
11
+ # in particular never be monotonic when we have NaT
12
+ dti = date_range("2016-01-01", periods=3)
13
+ pi = dti.to_period("D")
14
+ tdi = Index(dti.view("timedelta64[ns]"))
15
+
16
+ for obj in [pi, pi._engine, dti, dti._engine, tdi, tdi._engine]:
17
+ if isinstance(obj, Index):
18
+ # i.e. not Engines
19
+ assert obj.is_monotonic_increasing
20
+ assert obj.is_monotonic_increasing
21
+ assert not obj.is_monotonic_decreasing
22
+ assert obj.is_unique
23
+
24
+ dti1 = dti.insert(0, NaT)
25
+ pi1 = dti1.to_period("D")
26
+ tdi1 = Index(dti1.view("timedelta64[ns]"))
27
+
28
+ for obj in [pi1, pi1._engine, dti1, dti1._engine, tdi1, tdi1._engine]:
29
+ if isinstance(obj, Index):
30
+ # i.e. not Engines
31
+ assert not obj.is_monotonic_increasing
32
+ assert not obj.is_monotonic_increasing
33
+ assert not obj.is_monotonic_decreasing
34
+ assert obj.is_unique
35
+
36
+ dti2 = dti.insert(3, NaT)
37
+ pi2 = dti2.to_period("h")
38
+ tdi2 = Index(dti2.view("timedelta64[ns]"))
39
+
40
+ for obj in [pi2, pi2._engine, dti2, dti2._engine, tdi2, tdi2._engine]:
41
+ if isinstance(obj, Index):
42
+ # i.e. not Engines
43
+ assert not obj.is_monotonic_increasing
44
+ assert not obj.is_monotonic_increasing
45
+ assert not obj.is_monotonic_decreasing
46
+ assert obj.is_unique
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_nat.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DatetimeIndex,
6
+ NaT,
7
+ PeriodIndex,
8
+ TimedeltaIndex,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class NATests:
14
+ def test_nat(self, index_without_na):
15
+ empty_index = index_without_na[:0]
16
+
17
+ index_with_na = index_without_na.copy(deep=True)
18
+ index_with_na._data[1] = NaT
19
+
20
+ assert empty_index._na_value is NaT
21
+ assert index_with_na._na_value is NaT
22
+ assert index_without_na._na_value is NaT
23
+
24
+ idx = index_without_na
25
+ assert idx._can_hold_na
26
+
27
+ tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
28
+ assert idx.hasnans is False
29
+
30
+ idx = index_with_na
31
+ assert idx._can_hold_na
32
+
33
+ tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
34
+ assert idx.hasnans is True
35
+
36
+
37
+ class TestDatetimeIndexNA(NATests):
38
+ @pytest.fixture
39
+ def index_without_na(self, tz_naive_fixture):
40
+ tz = tz_naive_fixture
41
+ return DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
42
+
43
+
44
+ class TestTimedeltaIndexNA(NATests):
45
+ @pytest.fixture
46
+ def index_without_na(self):
47
+ return TimedeltaIndex(["1 days", "2 days"])
48
+
49
+
50
+ class TestPeriodIndexNA(NATests):
51
+ @pytest.fixture
52
+ def index_without_na(self):
53
+ return PeriodIndex(["2011-01-01", "2011-01-02"], freq="D")
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_sort_values.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DatetimeIndex,
6
+ Index,
7
+ NaT,
8
+ PeriodIndex,
9
+ TimedeltaIndex,
10
+ timedelta_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ def check_freq_ascending(ordered, orig, ascending):
16
+ """
17
+ Check the expected freq on a PeriodIndex/DatetimeIndex/TimedeltaIndex
18
+ when the original index is generated (or generate-able) with
19
+ period_range/date_range/timedelta_range.
20
+ """
21
+ if isinstance(ordered, PeriodIndex):
22
+ assert ordered.freq == orig.freq
23
+ elif isinstance(ordered, (DatetimeIndex, TimedeltaIndex)):
24
+ if ascending:
25
+ assert ordered.freq.n == orig.freq.n
26
+ else:
27
+ assert ordered.freq.n == -1 * orig.freq.n
28
+
29
+
30
+ def check_freq_nonmonotonic(ordered, orig):
31
+ """
32
+ Check the expected freq on a PeriodIndex/DatetimeIndex/TimedeltaIndex
33
+ when the original index is _not_ generated (or generate-able) with
34
+ period_range/date_range//timedelta_range.
35
+ """
36
+ if isinstance(ordered, PeriodIndex):
37
+ assert ordered.freq == orig.freq
38
+ elif isinstance(ordered, (DatetimeIndex, TimedeltaIndex)):
39
+ assert ordered.freq is None
40
+
41
+
42
+ class TestSortValues:
43
+ @pytest.fixture(params=[DatetimeIndex, TimedeltaIndex, PeriodIndex])
44
+ def non_monotonic_idx(self, request):
45
+ if request.param is DatetimeIndex:
46
+ return DatetimeIndex(["2000-01-04", "2000-01-01", "2000-01-02"])
47
+ elif request.param is PeriodIndex:
48
+ dti = DatetimeIndex(["2000-01-04", "2000-01-01", "2000-01-02"])
49
+ return dti.to_period("D")
50
+ else:
51
+ return TimedeltaIndex(
52
+ ["1 day 00:00:05", "1 day 00:00:01", "1 day 00:00:02"]
53
+ )
54
+
55
+ def test_argmin_argmax(self, non_monotonic_idx):
56
+ assert non_monotonic_idx.argmin() == 1
57
+ assert non_monotonic_idx.argmax() == 0
58
+
59
+ def test_sort_values(self, non_monotonic_idx):
60
+ idx = non_monotonic_idx
61
+ ordered = idx.sort_values()
62
+ assert ordered.is_monotonic_increasing
63
+ ordered = idx.sort_values(ascending=False)
64
+ assert ordered[::-1].is_monotonic_increasing
65
+
66
+ ordered, dexer = idx.sort_values(return_indexer=True)
67
+ assert ordered.is_monotonic_increasing
68
+ tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0], dtype=np.intp))
69
+
70
+ ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
71
+ assert ordered[::-1].is_monotonic_increasing
72
+ tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1], dtype=np.intp))
73
+
74
+ def check_sort_values_with_freq(self, idx):
75
+ ordered = idx.sort_values()
76
+ tm.assert_index_equal(ordered, idx)
77
+ check_freq_ascending(ordered, idx, True)
78
+
79
+ ordered = idx.sort_values(ascending=False)
80
+ expected = idx[::-1]
81
+ tm.assert_index_equal(ordered, expected)
82
+ check_freq_ascending(ordered, idx, False)
83
+
84
+ ordered, indexer = idx.sort_values(return_indexer=True)
85
+ tm.assert_index_equal(ordered, idx)
86
+ tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2], dtype=np.intp))
87
+ check_freq_ascending(ordered, idx, True)
88
+
89
+ ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
90
+ expected = idx[::-1]
91
+ tm.assert_index_equal(ordered, expected)
92
+ tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0], dtype=np.intp))
93
+ check_freq_ascending(ordered, idx, False)
94
+
95
+ @pytest.mark.parametrize("freq", ["D", "h"])
96
+ def test_sort_values_with_freq_timedeltaindex(self, freq):
97
+ # GH#10295
98
+ idx = timedelta_range(start=f"1{freq}", periods=3, freq=freq).rename("idx")
99
+
100
+ self.check_sort_values_with_freq(idx)
101
+
102
+ @pytest.mark.parametrize(
103
+ "idx",
104
+ [
105
+ DatetimeIndex(
106
+ ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx"
107
+ ),
108
+ DatetimeIndex(
109
+ ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
110
+ freq="h",
111
+ name="tzidx",
112
+ tz="Asia/Tokyo",
113
+ ),
114
+ ],
115
+ )
116
+ def test_sort_values_with_freq_datetimeindex(self, idx):
117
+ self.check_sort_values_with_freq(idx)
118
+
119
+ @pytest.mark.parametrize("freq", ["D", "2D", "4D"])
120
+ def test_sort_values_with_freq_periodindex(self, freq):
121
+ # here with_freq refers to being period_range-like
122
+ idx = PeriodIndex(
123
+ ["2011-01-01", "2011-01-02", "2011-01-03"], freq=freq, name="idx"
124
+ )
125
+ self.check_sort_values_with_freq(idx)
126
+
127
+ @pytest.mark.parametrize(
128
+ "idx",
129
+ [
130
+ PeriodIndex(["2011", "2012", "2013"], name="pidx", freq="Y"),
131
+ Index([2011, 2012, 2013], name="idx"), # for compatibility check
132
+ ],
133
+ )
134
+ def test_sort_values_with_freq_periodindex2(self, idx):
135
+ # here with_freq indicates this is period_range-like
136
+ self.check_sort_values_with_freq(idx)
137
+
138
+ def check_sort_values_without_freq(self, idx, expected):
139
+ ordered = idx.sort_values(na_position="first")
140
+ tm.assert_index_equal(ordered, expected)
141
+ check_freq_nonmonotonic(ordered, idx)
142
+
143
+ if not idx.isna().any():
144
+ ordered = idx.sort_values()
145
+ tm.assert_index_equal(ordered, expected)
146
+ check_freq_nonmonotonic(ordered, idx)
147
+
148
+ ordered = idx.sort_values(ascending=False)
149
+ tm.assert_index_equal(ordered, expected[::-1])
150
+ check_freq_nonmonotonic(ordered, idx)
151
+
152
+ ordered, indexer = idx.sort_values(return_indexer=True, na_position="first")
153
+ tm.assert_index_equal(ordered, expected)
154
+
155
+ exp = np.array([0, 4, 3, 1, 2], dtype=np.intp)
156
+ tm.assert_numpy_array_equal(indexer, exp)
157
+ check_freq_nonmonotonic(ordered, idx)
158
+
159
+ if not idx.isna().any():
160
+ ordered, indexer = idx.sort_values(return_indexer=True)
161
+ tm.assert_index_equal(ordered, expected)
162
+
163
+ exp = np.array([0, 4, 3, 1, 2], dtype=np.intp)
164
+ tm.assert_numpy_array_equal(indexer, exp)
165
+ check_freq_nonmonotonic(ordered, idx)
166
+
167
+ ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
168
+ tm.assert_index_equal(ordered, expected[::-1])
169
+
170
+ exp = np.array([2, 1, 3, 0, 4], dtype=np.intp)
171
+ tm.assert_numpy_array_equal(indexer, exp)
172
+ check_freq_nonmonotonic(ordered, idx)
173
+
174
+ def test_sort_values_without_freq_timedeltaindex(self):
175
+ # GH#10295
176
+
177
+ idx = TimedeltaIndex(
178
+ ["1 hour", "3 hour", "5 hour", "2 hour ", "1 hour"], name="idx1"
179
+ )
180
+ expected = TimedeltaIndex(
181
+ ["1 hour", "1 hour", "2 hour", "3 hour", "5 hour"], name="idx1"
182
+ )
183
+ self.check_sort_values_without_freq(idx, expected)
184
+
185
+ @pytest.mark.parametrize(
186
+ "index_dates,expected_dates",
187
+ [
188
+ (
189
+ ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"],
190
+ ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"],
191
+ ),
192
+ (
193
+ ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"],
194
+ ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"],
195
+ ),
196
+ (
197
+ [NaT, "2011-01-03", "2011-01-05", "2011-01-02", NaT],
198
+ [NaT, NaT, "2011-01-02", "2011-01-03", "2011-01-05"],
199
+ ),
200
+ ],
201
+ )
202
+ def test_sort_values_without_freq_datetimeindex(
203
+ self, index_dates, expected_dates, tz_naive_fixture
204
+ ):
205
+ tz = tz_naive_fixture
206
+
207
+ # without freq
208
+ idx = DatetimeIndex(index_dates, tz=tz, name="idx")
209
+ expected = DatetimeIndex(expected_dates, tz=tz, name="idx")
210
+
211
+ self.check_sort_values_without_freq(idx, expected)
212
+
213
+ @pytest.mark.parametrize(
214
+ "idx,expected",
215
+ [
216
+ (
217
+ PeriodIndex(
218
+ [
219
+ "2011-01-01",
220
+ "2011-01-03",
221
+ "2011-01-05",
222
+ "2011-01-02",
223
+ "2011-01-01",
224
+ ],
225
+ freq="D",
226
+ name="idx1",
227
+ ),
228
+ PeriodIndex(
229
+ [
230
+ "2011-01-01",
231
+ "2011-01-01",
232
+ "2011-01-02",
233
+ "2011-01-03",
234
+ "2011-01-05",
235
+ ],
236
+ freq="D",
237
+ name="idx1",
238
+ ),
239
+ ),
240
+ (
241
+ PeriodIndex(
242
+ [
243
+ "2011-01-01",
244
+ "2011-01-03",
245
+ "2011-01-05",
246
+ "2011-01-02",
247
+ "2011-01-01",
248
+ ],
249
+ freq="D",
250
+ name="idx2",
251
+ ),
252
+ PeriodIndex(
253
+ [
254
+ "2011-01-01",
255
+ "2011-01-01",
256
+ "2011-01-02",
257
+ "2011-01-03",
258
+ "2011-01-05",
259
+ ],
260
+ freq="D",
261
+ name="idx2",
262
+ ),
263
+ ),
264
+ (
265
+ PeriodIndex(
266
+ [NaT, "2011-01-03", "2011-01-05", "2011-01-02", NaT],
267
+ freq="D",
268
+ name="idx3",
269
+ ),
270
+ PeriodIndex(
271
+ [NaT, NaT, "2011-01-02", "2011-01-03", "2011-01-05"],
272
+ freq="D",
273
+ name="idx3",
274
+ ),
275
+ ),
276
+ (
277
+ PeriodIndex(
278
+ ["2011", "2013", "2015", "2012", "2011"], name="pidx", freq="Y"
279
+ ),
280
+ PeriodIndex(
281
+ ["2011", "2011", "2012", "2013", "2015"], name="pidx", freq="Y"
282
+ ),
283
+ ),
284
+ (
285
+ # For compatibility check
286
+ Index([2011, 2013, 2015, 2012, 2011], name="idx"),
287
+ Index([2011, 2011, 2012, 2013, 2015], name="idx"),
288
+ ),
289
+ ],
290
+ )
291
+ def test_sort_values_without_freq_periodindex(self, idx, expected):
292
+ # here without_freq means not generateable by period_range
293
+ self.check_sort_values_without_freq(idx, expected)
294
+
295
+ def test_sort_values_without_freq_periodindex_nat(self):
296
+ # doesn't quite fit into check_sort_values_without_freq
297
+ idx = PeriodIndex(["2011", "2013", "NaT", "2011"], name="pidx", freq="D")
298
+ expected = PeriodIndex(["NaT", "2011", "2011", "2013"], name="pidx", freq="D")
299
+
300
+ ordered = idx.sort_values(na_position="first")
301
+ tm.assert_index_equal(ordered, expected)
302
+ check_freq_nonmonotonic(ordered, idx)
303
+
304
+ ordered = idx.sort_values(ascending=False)
305
+ tm.assert_index_equal(ordered, expected[::-1])
306
+ check_freq_nonmonotonic(ordered, idx)
307
+
308
+
309
+ def test_order_stability_compat():
310
+ # GH#35922. sort_values is stable both for normal and datetime-like Index
311
+ pidx = PeriodIndex(["2011", "2013", "2015", "2012", "2011"], name="pidx", freq="Y")
312
+ iidx = Index([2011, 2013, 2015, 2012, 2011], name="idx")
313
+ ordered1, indexer1 = pidx.sort_values(return_indexer=True, ascending=False)
314
+ ordered2, indexer2 = iidx.sort_values(return_indexer=True, ascending=False)
315
+ tm.assert_numpy_array_equal(indexer1, indexer2)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_value_counts.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas import (
4
+ DatetimeIndex,
5
+ NaT,
6
+ PeriodIndex,
7
+ Series,
8
+ TimedeltaIndex,
9
+ date_range,
10
+ period_range,
11
+ timedelta_range,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestValueCounts:
17
+ # GH#7735
18
+
19
+ def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
20
+ tz = tz_naive_fixture
21
+ orig = date_range("2011-01-01 09:00", freq="h", periods=10, tz=tz)
22
+ self._check_value_counts_with_repeats(orig)
23
+
24
+ def test_value_counts_unique_timedeltaindex(self):
25
+ orig = timedelta_range("1 days 09:00:00", freq="h", periods=10)
26
+ self._check_value_counts_with_repeats(orig)
27
+
28
+ def test_value_counts_unique_periodindex(self):
29
+ orig = period_range("2011-01-01 09:00", freq="h", periods=10)
30
+ self._check_value_counts_with_repeats(orig)
31
+
32
+ def _check_value_counts_with_repeats(self, orig):
33
+ # create repeated values, 'n'th element is repeated by n+1 times
34
+ idx = type(orig)(
35
+ np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
36
+ )
37
+
38
+ exp_idx = orig[::-1]
39
+ if not isinstance(exp_idx, PeriodIndex):
40
+ exp_idx = exp_idx._with_freq(None)
41
+ expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64", name="count")
42
+
43
+ for obj in [idx, Series(idx)]:
44
+ tm.assert_series_equal(obj.value_counts(), expected)
45
+
46
+ tm.assert_index_equal(idx.unique(), orig)
47
+
48
+ def test_value_counts_unique_datetimeindex2(self, tz_naive_fixture):
49
+ tz = tz_naive_fixture
50
+ idx = DatetimeIndex(
51
+ [
52
+ "2013-01-01 09:00",
53
+ "2013-01-01 09:00",
54
+ "2013-01-01 09:00",
55
+ "2013-01-01 08:00",
56
+ "2013-01-01 08:00",
57
+ NaT,
58
+ ],
59
+ tz=tz,
60
+ )
61
+ self._check_value_counts_dropna(idx)
62
+
63
+ def test_value_counts_unique_timedeltaindex2(self):
64
+ idx = TimedeltaIndex(
65
+ [
66
+ "1 days 09:00:00",
67
+ "1 days 09:00:00",
68
+ "1 days 09:00:00",
69
+ "1 days 08:00:00",
70
+ "1 days 08:00:00",
71
+ NaT,
72
+ ]
73
+ )
74
+ self._check_value_counts_dropna(idx)
75
+
76
+ def test_value_counts_unique_periodindex2(self):
77
+ idx = PeriodIndex(
78
+ [
79
+ "2013-01-01 09:00",
80
+ "2013-01-01 09:00",
81
+ "2013-01-01 09:00",
82
+ "2013-01-01 08:00",
83
+ "2013-01-01 08:00",
84
+ NaT,
85
+ ],
86
+ freq="h",
87
+ )
88
+ self._check_value_counts_dropna(idx)
89
+
90
+ def _check_value_counts_dropna(self, idx):
91
+ exp_idx = idx[[2, 3]]
92
+ expected = Series([3, 2], index=exp_idx, name="count")
93
+
94
+ for obj in [idx, Series(idx)]:
95
+ tm.assert_series_equal(obj.value_counts(), expected)
96
+
97
+ exp_idx = idx[[2, 3, -1]]
98
+ expected = Series([3, 2, 1], index=exp_idx, name="count")
99
+
100
+ for obj in [idx, Series(idx)]:
101
+ tm.assert_series_equal(obj.value_counts(dropna=False), expected)
102
+
103
+ tm.assert_index_equal(idx.unique(), exp_idx)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_any_index.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests that can be parametrized over _any_ Index object.
3
+ """
4
+ import re
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.errors import InvalidIndexError
10
+
11
+ import pandas._testing as tm
12
+
13
+
14
+ def test_boolean_context_compat(index):
15
+ # GH#7897
16
+ with pytest.raises(ValueError, match="The truth value of a"):
17
+ if index:
18
+ pass
19
+
20
+ with pytest.raises(ValueError, match="The truth value of a"):
21
+ bool(index)
22
+
23
+
24
+ def test_sort(index):
25
+ msg = "cannot sort an Index object in-place, use sort_values instead"
26
+ with pytest.raises(TypeError, match=msg):
27
+ index.sort()
28
+
29
+
30
+ def test_hash_error(index):
31
+ with pytest.raises(TypeError, match=f"unhashable type: '{type(index).__name__}'"):
32
+ hash(index)
33
+
34
+
35
+ def test_mutability(index):
36
+ if not len(index):
37
+ pytest.skip("Test doesn't make sense for empty index")
38
+ msg = "Index does not support mutable operations"
39
+ with pytest.raises(TypeError, match=msg):
40
+ index[0] = index[0]
41
+
42
+
43
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
44
+ def test_map_identity_mapping(index, request):
45
+ # GH#12766
46
+
47
+ result = index.map(lambda x: x)
48
+ if index.dtype == object and result.dtype == bool:
49
+ assert (index == result).all()
50
+ # TODO: could work that into the 'exact="equiv"'?
51
+ return # FIXME: doesn't belong in this file anymore!
52
+ tm.assert_index_equal(result, index, exact="equiv")
53
+
54
+
55
+ def test_wrong_number_names(index):
56
+ names = index.nlevels * ["apple", "banana", "carrot"]
57
+ with pytest.raises(ValueError, match="^Length"):
58
+ index.names = names
59
+
60
+
61
+ def test_view_preserves_name(index):
62
+ assert index.view().name == index.name
63
+
64
+
65
+ def test_ravel(index):
66
+ # GH#19956 ravel returning ndarray is deprecated, in 2.0 returns a view on self
67
+ res = index.ravel()
68
+ tm.assert_index_equal(res, index)
69
+
70
+
71
+ class TestConversion:
72
+ def test_to_series(self, index):
73
+ # assert that we are creating a copy of the index
74
+
75
+ ser = index.to_series()
76
+ assert ser.values is not index.values
77
+ assert ser.index is not index
78
+ assert ser.name == index.name
79
+
80
+ def test_to_series_with_arguments(self, index):
81
+ # GH#18699
82
+
83
+ # index kwarg
84
+ ser = index.to_series(index=index)
85
+
86
+ assert ser.values is not index.values
87
+ assert ser.index is index
88
+ assert ser.name == index.name
89
+
90
+ # name kwarg
91
+ ser = index.to_series(name="__test")
92
+
93
+ assert ser.values is not index.values
94
+ assert ser.index is not index
95
+ assert ser.name != index.name
96
+
97
+ def test_tolist_matches_list(self, index):
98
+ assert index.tolist() == list(index)
99
+
100
+
101
+ class TestRoundTrips:
102
+ def test_pickle_roundtrip(self, index):
103
+ result = tm.round_trip_pickle(index)
104
+ tm.assert_index_equal(result, index, exact=True)
105
+ if result.nlevels > 1:
106
+ # GH#8367 round-trip with timezone
107
+ assert index.equal_levels(result)
108
+
109
+ def test_pickle_preserves_name(self, index):
110
+ original_name, index.name = index.name, "foo"
111
+ unpickled = tm.round_trip_pickle(index)
112
+ assert index.equals(unpickled)
113
+ index.name = original_name
114
+
115
+
116
+ class TestIndexing:
117
+ def test_get_loc_listlike_raises_invalid_index_error(self, index):
118
+ # and never TypeError
119
+ key = np.array([0, 1], dtype=np.intp)
120
+
121
+ with pytest.raises(InvalidIndexError, match=r"\[0 1\]"):
122
+ index.get_loc(key)
123
+
124
+ with pytest.raises(InvalidIndexError, match=r"\[False True\]"):
125
+ index.get_loc(key.astype(bool))
126
+
127
+ def test_getitem_ellipsis(self, index):
128
+ # GH#21282
129
+ result = index[...]
130
+ assert result.equals(index)
131
+ assert result is not index
132
+
133
+ def test_slice_keeps_name(self, index):
134
+ assert index.name == index[1:].name
135
+
136
+ @pytest.mark.parametrize("item", [101, "no_int", 2.5])
137
+ def test_getitem_error(self, index, item):
138
+ msg = "|".join(
139
+ [
140
+ r"index 101 is out of bounds for axis 0 with size [\d]+",
141
+ re.escape(
142
+ "only integers, slices (`:`), ellipsis (`...`), "
143
+ "numpy.newaxis (`None`) and integer or boolean arrays "
144
+ "are valid indices"
145
+ ),
146
+ "index out of bounds", # string[pyarrow]
147
+ ]
148
+ )
149
+ with pytest.raises(IndexError, match=msg):
150
+ index[item]
151
+
152
+
153
+ class TestRendering:
154
+ def test_str(self, index):
155
+ # test the string repr
156
+ index.name = "foo"
157
+ assert "'foo'" in str(index)
158
+ assert type(index).__name__ in str(index)
159
+
160
+
161
+ class TestReductions:
162
+ def test_argmax_axis_invalid(self, index):
163
+ # GH#23081
164
+ msg = r"`axis` must be fewer than the number of dimensions \(1\)"
165
+ with pytest.raises(ValueError, match=msg):
166
+ index.argmax(axis=1)
167
+ with pytest.raises(ValueError, match=msg):
168
+ index.argmin(axis=2)
169
+ with pytest.raises(ValueError, match=msg):
170
+ index.min(axis=-2)
171
+ with pytest.raises(ValueError, match=msg):
172
+ index.max(axis=-3)
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_common.py ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Collection of tests asserting things that should be true for
3
+ any index subclass except for MultiIndex. Makes use of the `index_flat`
4
+ fixture defined in pandas/conftest.py.
5
+ """
6
+ from copy import (
7
+ copy,
8
+ deepcopy,
9
+ )
10
+ import re
11
+
12
+ import numpy as np
13
+ import pytest
14
+
15
+ from pandas.compat import IS64
16
+ from pandas.compat.numpy import np_version_gte1p25
17
+
18
+ from pandas.core.dtypes.common import (
19
+ is_integer_dtype,
20
+ is_numeric_dtype,
21
+ )
22
+
23
+ import pandas as pd
24
+ from pandas import (
25
+ CategoricalIndex,
26
+ MultiIndex,
27
+ PeriodIndex,
28
+ RangeIndex,
29
+ )
30
+ import pandas._testing as tm
31
+
32
+
33
+ class TestCommon:
34
+ @pytest.mark.parametrize("name", [None, "new_name"])
35
+ def test_to_frame(self, name, index_flat, using_copy_on_write):
36
+ # see GH#15230, GH#22580
37
+ idx = index_flat
38
+
39
+ if name:
40
+ idx_name = name
41
+ else:
42
+ idx_name = idx.name or 0
43
+
44
+ df = idx.to_frame(name=idx_name)
45
+
46
+ assert df.index is idx
47
+ assert len(df.columns) == 1
48
+ assert df.columns[0] == idx_name
49
+ if not using_copy_on_write:
50
+ assert df[idx_name].values is not idx.values
51
+
52
+ df = idx.to_frame(index=False, name=idx_name)
53
+ assert df.index is not idx
54
+
55
+ def test_droplevel(self, index_flat):
56
+ # GH 21115
57
+ # MultiIndex is tested separately in test_multi.py
58
+ index = index_flat
59
+
60
+ assert index.droplevel([]).equals(index)
61
+
62
+ for level in [index.name, [index.name]]:
63
+ if isinstance(index.name, tuple) and level is index.name:
64
+ # GH 21121 : droplevel with tuple name
65
+ continue
66
+ msg = (
67
+ "Cannot remove 1 levels from an index with 1 levels: at least one "
68
+ "level must be left."
69
+ )
70
+ with pytest.raises(ValueError, match=msg):
71
+ index.droplevel(level)
72
+
73
+ for level in "wrong", ["wrong"]:
74
+ with pytest.raises(
75
+ KeyError,
76
+ match=r"'Requested level \(wrong\) does not match index name \(None\)'",
77
+ ):
78
+ index.droplevel(level)
79
+
80
+ def test_constructor_non_hashable_name(self, index_flat):
81
+ # GH 20527
82
+ index = index_flat
83
+
84
+ message = "Index.name must be a hashable type"
85
+ renamed = [["1"]]
86
+
87
+ # With .rename()
88
+ with pytest.raises(TypeError, match=message):
89
+ index.rename(name=renamed)
90
+
91
+ # With .set_names()
92
+ with pytest.raises(TypeError, match=message):
93
+ index.set_names(names=renamed)
94
+
95
+ def test_constructor_unwraps_index(self, index_flat):
96
+ a = index_flat
97
+ # Passing dtype is necessary for Index([True, False], dtype=object)
98
+ # case.
99
+ b = type(a)(a, dtype=a.dtype)
100
+ tm.assert_equal(a._data, b._data)
101
+
102
+ def test_to_flat_index(self, index_flat):
103
+ # 22866
104
+ index = index_flat
105
+
106
+ result = index.to_flat_index()
107
+ tm.assert_index_equal(result, index)
108
+
109
+ def test_set_name_methods(self, index_flat):
110
+ # MultiIndex tested separately
111
+ index = index_flat
112
+ new_name = "This is the new name for this index"
113
+
114
+ original_name = index.name
115
+ new_ind = index.set_names([new_name])
116
+ assert new_ind.name == new_name
117
+ assert index.name == original_name
118
+ res = index.rename(new_name, inplace=True)
119
+
120
+ # should return None
121
+ assert res is None
122
+ assert index.name == new_name
123
+ assert index.names == [new_name]
124
+ with pytest.raises(ValueError, match="Level must be None"):
125
+ index.set_names("a", level=0)
126
+
127
+ # rename in place just leaves tuples and other containers alone
128
+ name = ("A", "B")
129
+ index.rename(name, inplace=True)
130
+ assert index.name == name
131
+ assert index.names == [name]
132
+
133
+ @pytest.mark.xfail
134
+ def test_set_names_single_label_no_level(self, index_flat):
135
+ with pytest.raises(TypeError, match="list-like"):
136
+ # should still fail even if it would be the right length
137
+ index_flat.set_names("a")
138
+
139
+ def test_copy_and_deepcopy(self, index_flat):
140
+ index = index_flat
141
+
142
+ for func in (copy, deepcopy):
143
+ idx_copy = func(index)
144
+ assert idx_copy is not index
145
+ assert idx_copy.equals(index)
146
+
147
+ new_copy = index.copy(deep=True, name="banana")
148
+ assert new_copy.name == "banana"
149
+
150
+ def test_copy_name(self, index_flat):
151
+ # GH#12309: Check that the "name" argument
152
+ # passed at initialization is honored.
153
+ index = index_flat
154
+
155
+ first = type(index)(index, copy=True, name="mario")
156
+ second = type(first)(first, copy=False)
157
+
158
+ # Even though "copy=False", we want a new object.
159
+ assert first is not second
160
+ tm.assert_index_equal(first, second)
161
+
162
+ # Not using tm.assert_index_equal() since names differ.
163
+ assert index.equals(first)
164
+
165
+ assert first.name == "mario"
166
+ assert second.name == "mario"
167
+
168
+ # TODO: belongs in series arithmetic tests?
169
+ s1 = pd.Series(2, index=first)
170
+ s2 = pd.Series(3, index=second[:-1])
171
+ # See GH#13365
172
+ s3 = s1 * s2
173
+ assert s3.index.name == "mario"
174
+
175
+ def test_copy_name2(self, index_flat):
176
+ # GH#35592
177
+ index = index_flat
178
+
179
+ assert index.copy(name="mario").name == "mario"
180
+
181
+ with pytest.raises(ValueError, match="Length of new names must be 1, got 2"):
182
+ index.copy(name=["mario", "luigi"])
183
+
184
+ msg = f"{type(index).__name__}.name must be a hashable type"
185
+ with pytest.raises(TypeError, match=msg):
186
+ index.copy(name=[["mario"]])
187
+
188
+ def test_unique_level(self, index_flat):
189
+ # don't test a MultiIndex here (as its tested separated)
190
+ index = index_flat
191
+
192
+ # GH 17896
193
+ expected = index.drop_duplicates()
194
+ for level in [0, index.name, None]:
195
+ result = index.unique(level=level)
196
+ tm.assert_index_equal(result, expected)
197
+
198
+ msg = "Too many levels: Index has only 1 level, not 4"
199
+ with pytest.raises(IndexError, match=msg):
200
+ index.unique(level=3)
201
+
202
+ msg = (
203
+ rf"Requested level \(wrong\) does not match index name "
204
+ rf"\({re.escape(index.name.__repr__())}\)"
205
+ )
206
+ with pytest.raises(KeyError, match=msg):
207
+ index.unique(level="wrong")
208
+
209
+ def test_unique(self, index_flat):
210
+ # MultiIndex tested separately
211
+ index = index_flat
212
+ if not len(index):
213
+ pytest.skip("Skip check for empty Index and MultiIndex")
214
+
215
+ idx = index[[0] * 5]
216
+ idx_unique = index[[0]]
217
+
218
+ # We test against `idx_unique`, so first we make sure it's unique
219
+ # and doesn't contain nans.
220
+ assert idx_unique.is_unique is True
221
+ try:
222
+ assert idx_unique.hasnans is False
223
+ except NotImplementedError:
224
+ pass
225
+
226
+ result = idx.unique()
227
+ tm.assert_index_equal(result, idx_unique)
228
+
229
+ # nans:
230
+ if not index._can_hold_na:
231
+ pytest.skip("Skip na-check if index cannot hold na")
232
+
233
+ vals = index._values[[0] * 5]
234
+ vals[0] = np.nan
235
+
236
+ vals_unique = vals[:2]
237
+ idx_nan = index._shallow_copy(vals)
238
+ idx_unique_nan = index._shallow_copy(vals_unique)
239
+ assert idx_unique_nan.is_unique is True
240
+
241
+ assert idx_nan.dtype == index.dtype
242
+ assert idx_unique_nan.dtype == index.dtype
243
+
244
+ expected = idx_unique_nan
245
+ for pos, i in enumerate([idx_nan, idx_unique_nan]):
246
+ result = i.unique()
247
+ tm.assert_index_equal(result, expected)
248
+
249
+ @pytest.mark.filterwarnings("ignore:Period with BDay freq:FutureWarning")
250
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
251
+ def test_searchsorted_monotonic(self, index_flat, request):
252
+ # GH17271
253
+ index = index_flat
254
+ # not implemented for tuple searches in MultiIndex
255
+ # or Intervals searches in IntervalIndex
256
+ if isinstance(index, pd.IntervalIndex):
257
+ mark = pytest.mark.xfail(
258
+ reason="IntervalIndex.searchsorted does not support Interval arg",
259
+ raises=NotImplementedError,
260
+ )
261
+ request.applymarker(mark)
262
+
263
+ # nothing to test if the index is empty
264
+ if index.empty:
265
+ pytest.skip("Skip check for empty Index")
266
+ value = index[0]
267
+
268
+ # determine the expected results (handle dupes for 'right')
269
+ expected_left, expected_right = 0, (index == value).argmin()
270
+ if expected_right == 0:
271
+ # all values are the same, expected_right should be length
272
+ expected_right = len(index)
273
+
274
+ # test _searchsorted_monotonic in all cases
275
+ # test searchsorted only for increasing
276
+ if index.is_monotonic_increasing:
277
+ ssm_left = index._searchsorted_monotonic(value, side="left")
278
+ assert expected_left == ssm_left
279
+
280
+ ssm_right = index._searchsorted_monotonic(value, side="right")
281
+ assert expected_right == ssm_right
282
+
283
+ ss_left = index.searchsorted(value, side="left")
284
+ assert expected_left == ss_left
285
+
286
+ ss_right = index.searchsorted(value, side="right")
287
+ assert expected_right == ss_right
288
+
289
+ elif index.is_monotonic_decreasing:
290
+ ssm_left = index._searchsorted_monotonic(value, side="left")
291
+ assert expected_left == ssm_left
292
+
293
+ ssm_right = index._searchsorted_monotonic(value, side="right")
294
+ assert expected_right == ssm_right
295
+ else:
296
+ # non-monotonic should raise.
297
+ msg = "index must be monotonic increasing or decreasing"
298
+ with pytest.raises(ValueError, match=msg):
299
+ index._searchsorted_monotonic(value, side="left")
300
+
301
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
302
+ def test_drop_duplicates(self, index_flat, keep):
303
+ # MultiIndex is tested separately
304
+ index = index_flat
305
+ if isinstance(index, RangeIndex):
306
+ pytest.skip(
307
+ "RangeIndex is tested in test_drop_duplicates_no_duplicates "
308
+ "as it cannot hold duplicates"
309
+ )
310
+ if len(index) == 0:
311
+ pytest.skip(
312
+ "empty index is tested in test_drop_duplicates_no_duplicates "
313
+ "as it cannot hold duplicates"
314
+ )
315
+
316
+ # make unique index
317
+ holder = type(index)
318
+ unique_values = list(set(index))
319
+ dtype = index.dtype if is_numeric_dtype(index) else None
320
+ unique_idx = holder(unique_values, dtype=dtype)
321
+
322
+ # make duplicated index
323
+ n = len(unique_idx)
324
+ duplicated_selection = np.random.default_rng(2).choice(n, int(n * 1.5))
325
+ idx = holder(unique_idx.values[duplicated_selection])
326
+
327
+ # Series.duplicated is tested separately
328
+ expected_duplicated = (
329
+ pd.Series(duplicated_selection).duplicated(keep=keep).values
330
+ )
331
+ tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated)
332
+
333
+ # Series.drop_duplicates is tested separately
334
+ expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep))
335
+ tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped)
336
+
337
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
338
+ def test_drop_duplicates_no_duplicates(self, index_flat):
339
+ # MultiIndex is tested separately
340
+ index = index_flat
341
+
342
+ # make unique index
343
+ if isinstance(index, RangeIndex):
344
+ # RangeIndex cannot have duplicates
345
+ unique_idx = index
346
+ else:
347
+ holder = type(index)
348
+ unique_values = list(set(index))
349
+ dtype = index.dtype if is_numeric_dtype(index) else None
350
+ unique_idx = holder(unique_values, dtype=dtype)
351
+
352
+ # check on unique index
353
+ expected_duplicated = np.array([False] * len(unique_idx), dtype="bool")
354
+ tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated)
355
+ result_dropped = unique_idx.drop_duplicates()
356
+ tm.assert_index_equal(result_dropped, unique_idx)
357
+ # validate shallow copy
358
+ assert result_dropped is not unique_idx
359
+
360
+ def test_drop_duplicates_inplace(self, index):
361
+ msg = r"drop_duplicates\(\) got an unexpected keyword argument"
362
+ with pytest.raises(TypeError, match=msg):
363
+ index.drop_duplicates(inplace=True)
364
+
365
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
366
+ def test_has_duplicates(self, index_flat):
367
+ # MultiIndex tested separately in:
368
+ # tests/indexes/multi/test_unique_and_duplicates.
369
+ index = index_flat
370
+ holder = type(index)
371
+ if not len(index) or isinstance(index, RangeIndex):
372
+ # MultiIndex tested separately in:
373
+ # tests/indexes/multi/test_unique_and_duplicates.
374
+ # RangeIndex is unique by definition.
375
+ pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex")
376
+
377
+ idx = holder([index[0]] * 5)
378
+ assert idx.is_unique is False
379
+ assert idx.has_duplicates is True
380
+
381
+ @pytest.mark.parametrize(
382
+ "dtype",
383
+ ["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"],
384
+ )
385
+ def test_astype_preserves_name(self, index, dtype):
386
+ # https://github.com/pandas-dev/pandas/issues/32013
387
+ if isinstance(index, MultiIndex):
388
+ index.names = ["idx" + str(i) for i in range(index.nlevels)]
389
+ else:
390
+ index.name = "idx"
391
+
392
+ warn = None
393
+ if index.dtype.kind == "c" and dtype in ["float64", "int64", "uint64"]:
394
+ # imaginary components discarded
395
+ if np_version_gte1p25:
396
+ warn = np.exceptions.ComplexWarning
397
+ else:
398
+ warn = np.ComplexWarning
399
+
400
+ is_pyarrow_str = str(index.dtype) == "string[pyarrow]" and dtype == "category"
401
+ try:
402
+ # Some of these conversions cannot succeed so we use a try / except
403
+ with tm.assert_produces_warning(
404
+ warn,
405
+ raise_on_extra_warnings=is_pyarrow_str,
406
+ check_stacklevel=False,
407
+ ):
408
+ result = index.astype(dtype)
409
+ except (ValueError, TypeError, NotImplementedError, SystemError):
410
+ return
411
+
412
+ if isinstance(index, MultiIndex):
413
+ assert result.names == index.names
414
+ else:
415
+ assert result.name == index.name
416
+
417
+ def test_hasnans_isnans(self, index_flat):
418
+ # GH#11343, added tests for hasnans / isnans
419
+ index = index_flat
420
+
421
+ # cases in indices doesn't include NaN
422
+ idx = index.copy(deep=True)
423
+ expected = np.array([False] * len(idx), dtype=bool)
424
+ tm.assert_numpy_array_equal(idx._isnan, expected)
425
+ assert idx.hasnans is False
426
+
427
+ idx = index.copy(deep=True)
428
+ values = idx._values
429
+
430
+ if len(index) == 0:
431
+ return
432
+ elif is_integer_dtype(index.dtype):
433
+ return
434
+ elif index.dtype == bool:
435
+ # values[1] = np.nan below casts to True!
436
+ return
437
+
438
+ values[1] = np.nan
439
+
440
+ idx = type(index)(values)
441
+
442
+ expected = np.array([False] * len(idx), dtype=bool)
443
+ expected[1] = True
444
+ tm.assert_numpy_array_equal(idx._isnan, expected)
445
+ assert idx.hasnans is True
446
+
447
+
448
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
449
+ @pytest.mark.parametrize("na_position", [None, "middle"])
450
+ def test_sort_values_invalid_na_position(index_with_missing, na_position):
451
+ with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"):
452
+ index_with_missing.sort_values(na_position=na_position)
453
+
454
+
455
+ @pytest.mark.fails_arm_wheels
456
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
457
+ @pytest.mark.parametrize("na_position", ["first", "last"])
458
+ def test_sort_values_with_missing(index_with_missing, na_position, request):
459
+ # GH 35584. Test that sort_values works with missing values,
460
+ # sort non-missing and place missing according to na_position
461
+
462
+ if isinstance(index_with_missing, CategoricalIndex):
463
+ request.applymarker(
464
+ pytest.mark.xfail(
465
+ reason="missing value sorting order not well-defined", strict=False
466
+ )
467
+ )
468
+
469
+ missing_count = np.sum(index_with_missing.isna())
470
+ not_na_vals = index_with_missing[index_with_missing.notna()].values
471
+ sorted_values = np.sort(not_na_vals)
472
+ if na_position == "first":
473
+ sorted_values = np.concatenate([[None] * missing_count, sorted_values])
474
+ else:
475
+ sorted_values = np.concatenate([sorted_values, [None] * missing_count])
476
+
477
+ # Explicitly pass dtype needed for Index backed by EA e.g. IntegerArray
478
+ expected = type(index_with_missing)(sorted_values, dtype=index_with_missing.dtype)
479
+
480
+ result = index_with_missing.sort_values(na_position=na_position)
481
+ tm.assert_index_equal(result, expected)
482
+
483
+
484
+ def test_ndarray_compat_properties(index):
485
+ if isinstance(index, PeriodIndex) and not IS64:
486
+ pytest.skip("Overflow")
487
+ idx = index
488
+ assert idx.T.equals(idx)
489
+ assert idx.transpose().equals(idx)
490
+
491
+ values = idx.values
492
+
493
+ assert idx.shape == values.shape
494
+ assert idx.ndim == values.ndim
495
+ assert idx.size == values.size
496
+
497
+ if not isinstance(index, (RangeIndex, MultiIndex)):
498
+ # These two are not backed by an ndarray
499
+ assert idx.nbytes == values.nbytes
500
+
501
+ # test for validity
502
+ idx.nbytes
503
+ idx.values.nbytes
504
+
505
+
506
+ def test_compare_read_only_array():
507
+ # GH#57130
508
+ arr = np.array([], dtype=object)
509
+ arr.flags.writeable = False
510
+ idx = pd.Index(arr)
511
+ result = idx > 69
512
+ assert result.dtype == bool
infer_4_30_0/lib/python3.10/site-packages/pandas/tests/indexes/test_datetimelike.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ generic datetimelike tests """
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+
9
+
10
+ class TestDatetimeLike:
11
+ @pytest.fixture(
12
+ params=[
13
+ pd.period_range("20130101", periods=5, freq="D"),
14
+ pd.TimedeltaIndex(
15
+ [
16
+ "0 days 01:00:00",
17
+ "1 days 01:00:00",
18
+ "2 days 01:00:00",
19
+ "3 days 01:00:00",
20
+ "4 days 01:00:00",
21
+ ],
22
+ dtype="timedelta64[ns]",
23
+ freq="D",
24
+ ),
25
+ pd.DatetimeIndex(
26
+ ["2013-01-01", "2013-01-02", "2013-01-03", "2013-01-04", "2013-01-05"],
27
+ dtype="datetime64[ns]",
28
+ freq="D",
29
+ ),
30
+ ]
31
+ )
32
+ def simple_index(self, request):
33
+ return request.param
34
+
35
+ def test_isin(self, simple_index):
36
+ index = simple_index[:4]
37
+ result = index.isin(index)
38
+ assert result.all()
39
+
40
+ result = index.isin(list(index))
41
+ assert result.all()
42
+
43
+ result = index.isin([index[2], 5])
44
+ expected = np.array([False, False, True, False])
45
+ tm.assert_numpy_array_equal(result, expected)
46
+
47
+ def test_argsort_matches_array(self, simple_index):
48
+ idx = simple_index
49
+ idx = idx.insert(1, pd.NaT)
50
+
51
+ result = idx.argsort()
52
+ expected = idx._data.argsort()
53
+ tm.assert_numpy_array_equal(result, expected)
54
+
55
+ def test_can_hold_identifiers(self, simple_index):
56
+ idx = simple_index
57
+ key = idx[0]
58
+ assert idx._can_hold_identifiers_and_holds_name(key) is False
59
+
60
+ def test_shift_identity(self, simple_index):
61
+ idx = simple_index
62
+ tm.assert_index_equal(idx, idx.shift(0))
63
+
64
+ def test_shift_empty(self, simple_index):
65
+ # GH#14811
66
+ idx = simple_index[:0]
67
+ tm.assert_index_equal(idx, idx.shift(1))
68
+
69
+ def test_str(self, simple_index):
70
+ # test the string repr
71
+ idx = simple_index.copy()
72
+ idx.name = "foo"
73
+ assert f"length={len(idx)}" not in str(idx)
74
+ assert "'foo'" in str(idx)
75
+ assert type(idx).__name__ in str(idx)
76
+
77
+ if hasattr(idx, "tz"):
78
+ if idx.tz is not None:
79
+ assert idx.tz in str(idx)
80
+ if isinstance(idx, pd.PeriodIndex):
81
+ assert f"dtype='period[{idx.freqstr}]'" in str(idx)
82
+ else:
83
+ assert f"freq='{idx.freqstr}'" in str(idx)
84
+
85
+ def test_view(self, simple_index):
86
+ idx = simple_index
87
+
88
+ idx_view = idx.view("i8")
89
+ result = type(simple_index)(idx)
90
+ tm.assert_index_equal(result, idx)
91
+
92
+ msg = "Passing a type in .*Index.view is deprecated"
93
+ with tm.assert_produces_warning(FutureWarning, match=msg):
94
+ idx_view = idx.view(type(simple_index))
95
+ result = type(simple_index)(idx)
96
+ tm.assert_index_equal(result, idx_view)
97
+
98
+ def test_map_callable(self, simple_index):
99
+ index = simple_index
100
+ expected = index + index.freq
101
+ result = index.map(lambda x: x + index.freq)
102
+ tm.assert_index_equal(result, expected)
103
+
104
+ # map to NaT
105
+ result = index.map(lambda x: pd.NaT if x == index[0] else x)
106
+ expected = pd.Index([pd.NaT] + index[1:].tolist())
107
+ tm.assert_index_equal(result, expected)
108
+
109
+ @pytest.mark.parametrize(
110
+ "mapper",
111
+ [
112
+ lambda values, index: {i: e for e, i in zip(values, index)},
113
+ lambda values, index: pd.Series(values, index, dtype=object),
114
+ ],
115
+ )
116
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
117
+ def test_map_dictlike(self, mapper, simple_index):
118
+ index = simple_index
119
+ expected = index + index.freq
120
+
121
+ # don't compare the freqs
122
+ if isinstance(expected, (pd.DatetimeIndex, pd.TimedeltaIndex)):
123
+ expected = expected._with_freq(None)
124
+
125
+ result = index.map(mapper(expected, index))
126
+ tm.assert_index_equal(result, expected)
127
+
128
+ expected = pd.Index([pd.NaT] + index[1:].tolist())
129
+ result = index.map(mapper(expected, index))
130
+ tm.assert_index_equal(result, expected)
131
+
132
+ # empty map; these map to np.nan because we cannot know
133
+ # to re-infer things
134
+ expected = pd.Index([np.nan] * len(index))
135
+ result = index.map(mapper([], []))
136
+ tm.assert_index_equal(result, expected)
137
+
138
+ def test_getitem_preserves_freq(self, simple_index):
139
+ index = simple_index
140
+ assert index.freq is not None
141
+
142
+ result = index[:]
143
+ assert result.freq == index.freq
144
+
145
+ def test_where_cast_str(self, simple_index):
146
+ index = simple_index
147
+
148
+ mask = np.ones(len(index), dtype=bool)
149
+ mask[-1] = False
150
+
151
+ result = index.where(mask, str(index[0]))
152
+ expected = index.where(mask, index[0])
153
+ tm.assert_index_equal(result, expected)
154
+
155
+ result = index.where(mask, [str(index[0])])
156
+ tm.assert_index_equal(result, expected)
157
+
158
+ expected = index.astype(object).where(mask, "foo")
159
+ result = index.where(mask, "foo")
160
+ tm.assert_index_equal(result, expected)
161
+
162
+ result = index.where(mask, ["foo"])
163
+ tm.assert_index_equal(result, expected)
164
+
165
+ @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s"])
166
+ def test_diff(self, unit):
167
+ # GH 55080
168
+ dti = pd.to_datetime([10, 20, 30], unit=unit).as_unit(unit)
169
+ result = dti.diff(1)
170
+ expected = pd.to_timedelta([pd.NaT, 10, 10], unit=unit).as_unit(unit)
171
+ tm.assert_index_equal(result, expected)