Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- emu3/lib/python3.10/site-packages/anyio-4.6.2.post1.dist-info/INSTALLER +1 -0
- emu3/lib/python3.10/site-packages/anyio-4.6.2.post1.dist-info/RECORD +83 -0
- emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/RECORD +0 -0
- emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/REQUESTED +0 -0
- emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/WHEEL +4 -0
- emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/entry_points.txt +3 -0
- emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/licenses/LICENSE +201 -0
- emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/LICENSE +27 -0
- emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/METADATA +233 -0
- emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/RECORD +181 -0
- emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/REQUESTED +0 -0
- emu3/lib/python3.10/site-packages/ninja/__init__.py +55 -0
- emu3/lib/python3.10/site-packages/ninja/__main__.py +5 -0
- emu3/lib/python3.10/site-packages/ninja/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/ninja/__pycache__/__main__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/ninja/__pycache__/_version.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/ninja/__pycache__/ninja_syntax.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/ninja/_version.py +16 -0
- emu3/lib/python3.10/site-packages/ninja/ninja_syntax.py +199 -0
- emu3/lib/python3.10/site-packages/ninja/py.typed +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py +53 -0
- emu3/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/compat/numpy/function.py +418 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/__init__.py +98 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/_core.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/_misc.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_core.py +1946 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__init__.py +93 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/__init__.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/boxplot.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/converter.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/core.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/groupby.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/hist.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/misc.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/style.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/timeseries.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/tools.cpython-310.pyc +0 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/boxplot.py +572 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/converter.py +1139 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/core.py +2125 -0
- emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/groupby.py +142 -0
.gitattributes
CHANGED
|
@@ -1039,3 +1039,6 @@ emu3/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc
|
|
| 1039 |
infer_4_33_0/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_constructors.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1040 |
infer_4_33_0/lib/python3.10/site-packages/tokenizers.libs/libk5crypto-b1f99d5c.so.3.1 filter=lfs diff=lfs merge=lfs -text
|
| 1041 |
infer_4_33_0/lib/python3.10/site-packages/opencv_python.libs/libswresample-d02fa90a.so.4.7.100 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 1039 |
infer_4_33_0/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_constructors.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1040 |
infer_4_33_0/lib/python3.10/site-packages/tokenizers.libs/libk5crypto-b1f99d5c.so.3.1 filter=lfs diff=lfs merge=lfs -text
|
| 1041 |
infer_4_33_0/lib/python3.10/site-packages/opencv_python.libs/libswresample-d02fa90a.so.4.7.100 filter=lfs diff=lfs merge=lfs -text
|
| 1042 |
+
infer_4_33_0/lib/python3.10/site-packages/pyparsing/__pycache__/core.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1043 |
+
evalkit_cambrian/lib/python3.10/site-packages/scipy.libs/libscipy_openblas-68440149.so filter=lfs diff=lfs merge=lfs -text
|
| 1044 |
+
evalkit_tf446/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text
|
emu3/lib/python3.10/site-packages/anyio-4.6.2.post1.dist-info/INSTALLER
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip
|
emu3/lib/python3.10/site-packages/anyio-4.6.2.post1.dist-info/RECORD
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
anyio-4.6.2.post1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
| 2 |
+
anyio-4.6.2.post1.dist-info/LICENSE,sha256=U2GsncWPLvX9LpsJxoKXwX8ElQkJu8gCO9uC6s8iwrA,1081
|
| 3 |
+
anyio-4.6.2.post1.dist-info/METADATA,sha256=-tUagL58CG66oT2eLY1593L_yXsIb6xW0oouVCQsE5c,4697
|
| 4 |
+
anyio-4.6.2.post1.dist-info/RECORD,,
|
| 5 |
+
anyio-4.6.2.post1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 6 |
+
anyio-4.6.2.post1.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
| 7 |
+
anyio-4.6.2.post1.dist-info/entry_points.txt,sha256=_d6Yu6uiaZmNe0CydowirE9Cmg7zUL2g08tQpoS3Qvc,39
|
| 8 |
+
anyio-4.6.2.post1.dist-info/top_level.txt,sha256=QglSMiWX8_5dpoVAEIHdEYzvqFMdSYWmCj6tYw2ITkQ,6
|
| 9 |
+
anyio/__init__.py,sha256=myTIdg75VPwA-9L7BpislRQplJUPMeleUBHa4MyIruw,4315
|
| 10 |
+
anyio/__pycache__/__init__.cpython-310.pyc,,
|
| 11 |
+
anyio/__pycache__/from_thread.cpython-310.pyc,,
|
| 12 |
+
anyio/__pycache__/lowlevel.cpython-310.pyc,,
|
| 13 |
+
anyio/__pycache__/pytest_plugin.cpython-310.pyc,,
|
| 14 |
+
anyio/__pycache__/to_process.cpython-310.pyc,,
|
| 15 |
+
anyio/__pycache__/to_thread.cpython-310.pyc,,
|
| 16 |
+
anyio/_backends/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 17 |
+
anyio/_backends/__pycache__/__init__.cpython-310.pyc,,
|
| 18 |
+
anyio/_backends/__pycache__/_asyncio.cpython-310.pyc,,
|
| 19 |
+
anyio/_backends/__pycache__/_trio.cpython-310.pyc,,
|
| 20 |
+
anyio/_backends/_asyncio.py,sha256=H3rMz2wquSxPnV4KIXpXGtBFWXk3jkFljrzvk7KWk4E,91497
|
| 21 |
+
anyio/_backends/_trio.py,sha256=wfgvQ2ut2CAxOjcuDLAdrucfEgc02XXRN9aC3IEBHdY,40311
|
| 22 |
+
anyio/_core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 23 |
+
anyio/_core/__pycache__/__init__.cpython-310.pyc,,
|
| 24 |
+
anyio/_core/__pycache__/_eventloop.cpython-310.pyc,,
|
| 25 |
+
anyio/_core/__pycache__/_exceptions.cpython-310.pyc,,
|
| 26 |
+
anyio/_core/__pycache__/_fileio.cpython-310.pyc,,
|
| 27 |
+
anyio/_core/__pycache__/_resources.cpython-310.pyc,,
|
| 28 |
+
anyio/_core/__pycache__/_signals.cpython-310.pyc,,
|
| 29 |
+
anyio/_core/__pycache__/_sockets.cpython-310.pyc,,
|
| 30 |
+
anyio/_core/__pycache__/_streams.cpython-310.pyc,,
|
| 31 |
+
anyio/_core/__pycache__/_subprocesses.cpython-310.pyc,,
|
| 32 |
+
anyio/_core/__pycache__/_synchronization.cpython-310.pyc,,
|
| 33 |
+
anyio/_core/__pycache__/_tasks.cpython-310.pyc,,
|
| 34 |
+
anyio/_core/__pycache__/_testing.cpython-310.pyc,,
|
| 35 |
+
anyio/_core/__pycache__/_typedattr.cpython-310.pyc,,
|
| 36 |
+
anyio/_core/_eventloop.py,sha256=t_tAwBFPjF8jrZGjlJ6bbYy6KA3bjsbZxV9mvh9t1i0,4695
|
| 37 |
+
anyio/_core/_exceptions.py,sha256=NPxECdXkG4nk3NOCUeFmBEAgPhmj7Bzs4vFAKaW_vqw,2481
|
| 38 |
+
anyio/_core/_fileio.py,sha256=lbGk3xq_6DhvbEI8ykdFf2NjYnhuyc8hjXKZTLYkW4k,20961
|
| 39 |
+
anyio/_core/_resources.py,sha256=NbmU5O5UX3xEyACnkmYX28Fmwdl-f-ny0tHym26e0w0,435
|
| 40 |
+
anyio/_core/_signals.py,sha256=vulT1M1xdLYtAR-eY5TamIgaf1WTlOwOrMGwswlTTr8,905
|
| 41 |
+
anyio/_core/_sockets.py,sha256=iM3UeMU68n0PlQjl2U9HyiOpV26rnjqV4KBr_Fo2z1I,24293
|
| 42 |
+
anyio/_core/_streams.py,sha256=OnaKgoDD-FcMSwLvkoAUGP51sG2ZdRvMpxt9q2w1gYA,1804
|
| 43 |
+
anyio/_core/_subprocesses.py,sha256=WquR6sHrnaZofaeqnL8U4Yv___msVW_WqivleLHK4zI,7760
|
| 44 |
+
anyio/_core/_synchronization.py,sha256=UDsbG5f8jWsWkRxYUOKp_WOBWCI9-vBO6wBrsR6WNjA,20121
|
| 45 |
+
anyio/_core/_tasks.py,sha256=pvVEX2Fw159sf0ypAPerukKsZgRRwvFFedVW52nR2Vk,4764
|
| 46 |
+
anyio/_core/_testing.py,sha256=YUGwA5cgFFbUTv4WFd7cv_BSVr4ryTtPp8owQA3JdWE,2118
|
| 47 |
+
anyio/_core/_typedattr.py,sha256=P4ozZikn3-DbpoYcvyghS_FOYAgbmUxeoU8-L_07pZM,2508
|
| 48 |
+
anyio/abc/__init__.py,sha256=U44_s3BglL8BojWQiq0KuokvCqkunIp-ySH3GyRXxAc,2681
|
| 49 |
+
anyio/abc/__pycache__/__init__.cpython-310.pyc,,
|
| 50 |
+
anyio/abc/__pycache__/_eventloop.cpython-310.pyc,,
|
| 51 |
+
anyio/abc/__pycache__/_resources.cpython-310.pyc,,
|
| 52 |
+
anyio/abc/__pycache__/_sockets.cpython-310.pyc,,
|
| 53 |
+
anyio/abc/__pycache__/_streams.cpython-310.pyc,,
|
| 54 |
+
anyio/abc/__pycache__/_subprocesses.cpython-310.pyc,,
|
| 55 |
+
anyio/abc/__pycache__/_tasks.cpython-310.pyc,,
|
| 56 |
+
anyio/abc/__pycache__/_testing.cpython-310.pyc,,
|
| 57 |
+
anyio/abc/_eventloop.py,sha256=kdkLSnizMk3tPq61K109iPUQ6uXpvp1uNsj5aP1s0N8,9619
|
| 58 |
+
anyio/abc/_resources.py,sha256=DrYvkNN1hH6Uvv5_5uKySvDsnknGVDe8FCKfko0VtN8,783
|
| 59 |
+
anyio/abc/_sockets.py,sha256=KhWtJxan8jpBXKwPaFeQzI4iRXdFaOIn0HXtDZnaO7U,6262
|
| 60 |
+
anyio/abc/_streams.py,sha256=GzST5Q2zQmxVzdrAqtbSyHNxkPlIC9AzeZJg_YyPAXw,6598
|
| 61 |
+
anyio/abc/_subprocesses.py,sha256=cumAPJTktOQtw63IqG0lDpyZqu_l1EElvQHMiwJgL08,2067
|
| 62 |
+
anyio/abc/_tasks.py,sha256=0Jc6oIwUjMIVReehF6knOZyAqlgwDt4TP1NQkx4IQGw,2731
|
| 63 |
+
anyio/abc/_testing.py,sha256=tBJUzkSfOXJw23fe8qSJ03kJlShOYjjaEyFB6k6MYT8,1821
|
| 64 |
+
anyio/from_thread.py,sha256=dbi5TUH45_Sg_jZ8Vv1NJWVohe0WeQ_OaCvXIKveAGg,17478
|
| 65 |
+
anyio/lowlevel.py,sha256=nkgmW--SdxGVp0cmLUYazjkigveRm5HY7-gW8Bpp9oY,4169
|
| 66 |
+
anyio/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 67 |
+
anyio/pytest_plugin.py,sha256=vjGhGRHD31OyMgJRFQrMvExhx3Ea8KbyDqYKmiSDdXA,6712
|
| 68 |
+
anyio/streams/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 69 |
+
anyio/streams/__pycache__/__init__.cpython-310.pyc,,
|
| 70 |
+
anyio/streams/__pycache__/buffered.cpython-310.pyc,,
|
| 71 |
+
anyio/streams/__pycache__/file.cpython-310.pyc,,
|
| 72 |
+
anyio/streams/__pycache__/memory.cpython-310.pyc,,
|
| 73 |
+
anyio/streams/__pycache__/stapled.cpython-310.pyc,,
|
| 74 |
+
anyio/streams/__pycache__/text.cpython-310.pyc,,
|
| 75 |
+
anyio/streams/__pycache__/tls.cpython-310.pyc,,
|
| 76 |
+
anyio/streams/buffered.py,sha256=UCldKC168YuLvT7n3HtNPnQ2iWAMSTYQWbZvzLwMwkM,4500
|
| 77 |
+
anyio/streams/file.py,sha256=6uoTNb5KbMoj-6gS3_xrrL8uZN8Q4iIvOS1WtGyFfKw,4383
|
| 78 |
+
anyio/streams/memory.py,sha256=j8AyOExK4-UPaon_Xbhwax25Vqs0DwFg3ZXc-EIiHjY,10550
|
| 79 |
+
anyio/streams/stapled.py,sha256=U09pCrmOw9kkNhe6tKopsm1QIMT1lFTFvtb-A7SIe4k,4302
|
| 80 |
+
anyio/streams/text.py,sha256=6x8w8xlfCZKTUWQoJiMPoMhSSJFUBRKgoBNSBtbd9yg,5094
|
| 81 |
+
anyio/streams/tls.py,sha256=m3AE2LVSpoRHSIwSoSCupiOVL54EvOFoY3CcwTxcZfg,12742
|
| 82 |
+
anyio/to_process.py,sha256=cR4n7TssbbJowE_9cWme49zaeuoBuMzqgZ6cBIs0YIs,9571
|
| 83 |
+
anyio/to_thread.py,sha256=WM2JQ2MbVsd5D5CM08bQiTwzZIvpsGjfH1Fy247KoDQ,2396
|
emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/RECORD
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/REQUESTED
ADDED
|
File without changes
|
emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/WHEEL
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Wheel-Version: 1.0
|
| 2 |
+
Generator: hatchling 1.25.0
|
| 3 |
+
Root-Is-Purelib: true
|
| 4 |
+
Tag: py3-none-any
|
emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/entry_points.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[console_scripts]
|
| 2 |
+
gradio = gradio.cli:cli
|
| 3 |
+
upload_theme = gradio.themes.upload_theme:main
|
emu3/lib/python3.10/site-packages/gradio-4.44.0.dist-info/licenses/LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/LICENSE
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Copyright (c) 2005-2021 Fredrik Johansson and mpmath contributors
|
| 2 |
+
|
| 3 |
+
All rights reserved.
|
| 4 |
+
|
| 5 |
+
Redistribution and use in source and binary forms, with or without
|
| 6 |
+
modification, are permitted provided that the following conditions are met:
|
| 7 |
+
|
| 8 |
+
a. Redistributions of source code must retain the above copyright notice,
|
| 9 |
+
this list of conditions and the following disclaimer.
|
| 10 |
+
b. Redistributions in binary form must reproduce the above copyright
|
| 11 |
+
notice, this list of conditions and the following disclaimer in the
|
| 12 |
+
documentation and/or other materials provided with the distribution.
|
| 13 |
+
c. Neither the name of the copyright holder nor the names of its
|
| 14 |
+
contributors may be used to endorse or promote products derived
|
| 15 |
+
from this software without specific prior written permission.
|
| 16 |
+
|
| 17 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 18 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 19 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| 20 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
| 21 |
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 22 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 23 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 24 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| 25 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| 26 |
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
| 27 |
+
DAMAGE.
|
emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/METADATA
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.1
|
| 2 |
+
Name: mpmath
|
| 3 |
+
Version: 1.3.0
|
| 4 |
+
Summary: Python library for arbitrary-precision floating-point arithmetic
|
| 5 |
+
Home-page: http://mpmath.org/
|
| 6 |
+
Author: Fredrik Johansson
|
| 7 |
+
Author-email: [email protected]
|
| 8 |
+
License: BSD
|
| 9 |
+
Project-URL: Source, https://github.com/fredrik-johansson/mpmath
|
| 10 |
+
Project-URL: Tracker, https://github.com/fredrik-johansson/mpmath/issues
|
| 11 |
+
Project-URL: Documentation, http://mpmath.org/doc/current/
|
| 12 |
+
Classifier: License :: OSI Approved :: BSD License
|
| 13 |
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
| 14 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
| 15 |
+
Classifier: Programming Language :: Python
|
| 16 |
+
Classifier: Programming Language :: Python :: 2
|
| 17 |
+
Classifier: Programming Language :: Python :: 2.7
|
| 18 |
+
Classifier: Programming Language :: Python :: 3
|
| 19 |
+
Classifier: Programming Language :: Python :: 3.5
|
| 20 |
+
Classifier: Programming Language :: Python :: 3.6
|
| 21 |
+
Classifier: Programming Language :: Python :: 3.7
|
| 22 |
+
Classifier: Programming Language :: Python :: 3.8
|
| 23 |
+
Classifier: Programming Language :: Python :: 3.9
|
| 24 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
| 25 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
| 26 |
+
License-File: LICENSE
|
| 27 |
+
Provides-Extra: develop
|
| 28 |
+
Requires-Dist: pytest (>=4.6) ; extra == 'develop'
|
| 29 |
+
Requires-Dist: pycodestyle ; extra == 'develop'
|
| 30 |
+
Requires-Dist: pytest-cov ; extra == 'develop'
|
| 31 |
+
Requires-Dist: codecov ; extra == 'develop'
|
| 32 |
+
Requires-Dist: wheel ; extra == 'develop'
|
| 33 |
+
Provides-Extra: docs
|
| 34 |
+
Requires-Dist: sphinx ; extra == 'docs'
|
| 35 |
+
Provides-Extra: gmpy
|
| 36 |
+
Requires-Dist: gmpy2 (>=2.1.0a4) ; (platform_python_implementation != "PyPy") and extra == 'gmpy'
|
| 37 |
+
Provides-Extra: tests
|
| 38 |
+
Requires-Dist: pytest (>=4.6) ; extra == 'tests'
|
| 39 |
+
|
| 40 |
+
mpmath
|
| 41 |
+
======
|
| 42 |
+
|
| 43 |
+
|pypi version| |Build status| |Code coverage status| |Zenodo Badge|
|
| 44 |
+
|
| 45 |
+
.. |pypi version| image:: https://img.shields.io/pypi/v/mpmath.svg
|
| 46 |
+
:target: https://pypi.python.org/pypi/mpmath
|
| 47 |
+
.. |Build status| image:: https://github.com/fredrik-johansson/mpmath/workflows/test/badge.svg
|
| 48 |
+
:target: https://github.com/fredrik-johansson/mpmath/actions?workflow=test
|
| 49 |
+
.. |Code coverage status| image:: https://codecov.io/gh/fredrik-johansson/mpmath/branch/master/graph/badge.svg
|
| 50 |
+
:target: https://codecov.io/gh/fredrik-johansson/mpmath
|
| 51 |
+
.. |Zenodo Badge| image:: https://zenodo.org/badge/2934512.svg
|
| 52 |
+
:target: https://zenodo.org/badge/latestdoi/2934512
|
| 53 |
+
|
| 54 |
+
A Python library for arbitrary-precision floating-point arithmetic.
|
| 55 |
+
|
| 56 |
+
Website: http://mpmath.org/
|
| 57 |
+
Main author: Fredrik Johansson <[email protected]>
|
| 58 |
+
|
| 59 |
+
Mpmath is free software released under the New BSD License (see the
|
| 60 |
+
LICENSE file for details)
|
| 61 |
+
|
| 62 |
+
0. History and credits
|
| 63 |
+
----------------------
|
| 64 |
+
|
| 65 |
+
The following people (among others) have contributed major patches
|
| 66 |
+
or new features to mpmath:
|
| 67 |
+
|
| 68 |
+
* Pearu Peterson <[email protected]>
|
| 69 |
+
* Mario Pernici <[email protected]>
|
| 70 |
+
* Ondrej Certik <[email protected]>
|
| 71 |
+
* Vinzent Steinberg <[email protected]>
|
| 72 |
+
* Nimish Telang <[email protected]>
|
| 73 |
+
* Mike Taschuk <[email protected]>
|
| 74 |
+
* Case Van Horsen <[email protected]>
|
| 75 |
+
* Jorn Baayen <[email protected]>
|
| 76 |
+
* Chris Smith <[email protected]>
|
| 77 |
+
* Juan Arias de Reyna <[email protected]>
|
| 78 |
+
* Ioannis Tziakos <[email protected]>
|
| 79 |
+
* Aaron Meurer <[email protected]>
|
| 80 |
+
* Stefan Krastanov <[email protected]>
|
| 81 |
+
* Ken Allen <[email protected]>
|
| 82 |
+
* Timo Hartmann <[email protected]>
|
| 83 |
+
* Sergey B Kirpichev <[email protected]>
|
| 84 |
+
* Kris Kuhlman <[email protected]>
|
| 85 |
+
* Paul Masson <[email protected]>
|
| 86 |
+
* Michael Kagalenko <[email protected]>
|
| 87 |
+
* Jonathan Warner <[email protected]>
|
| 88 |
+
* Max Gaukler <[email protected]>
|
| 89 |
+
* Guillermo Navas-Palencia <[email protected]>
|
| 90 |
+
* Nike Dattani <[email protected]>
|
| 91 |
+
|
| 92 |
+
Numerous other people have contributed by reporting bugs,
|
| 93 |
+
requesting new features, or suggesting improvements to the
|
| 94 |
+
documentation.
|
| 95 |
+
|
| 96 |
+
For a detailed changelog, including individual contributions,
|
| 97 |
+
see the CHANGES file.
|
| 98 |
+
|
| 99 |
+
Fredrik's work on mpmath during summer 2008 was sponsored by Google
|
| 100 |
+
as part of the Google Summer of Code program.
|
| 101 |
+
|
| 102 |
+
Fredrik's work on mpmath during summer 2009 was sponsored by the
|
| 103 |
+
American Institute of Mathematics under the support of the National Science
|
| 104 |
+
Foundation Grant No. 0757627 (FRG: L-functions and Modular Forms).
|
| 105 |
+
|
| 106 |
+
Any opinions, findings, and conclusions or recommendations expressed in this
|
| 107 |
+
material are those of the author(s) and do not necessarily reflect the
|
| 108 |
+
views of the sponsors.
|
| 109 |
+
|
| 110 |
+
Credit also goes to:
|
| 111 |
+
|
| 112 |
+
* The authors of the GMP library and the Python wrapper
|
| 113 |
+
gmpy, enabling mpmath to become much faster at
|
| 114 |
+
high precision
|
| 115 |
+
* The authors of MPFR, pari/gp, MPFUN, and other arbitrary-
|
| 116 |
+
precision libraries, whose documentation has been helpful
|
| 117 |
+
for implementing many of the algorithms in mpmath
|
| 118 |
+
* Wikipedia contributors; Abramowitz & Stegun; Gradshteyn & Ryzhik;
|
| 119 |
+
Wolfram Research for MathWorld and the Wolfram Functions site.
|
| 120 |
+
These are the main references used for special functions
|
| 121 |
+
implementations.
|
| 122 |
+
* George Brandl for developing the Sphinx documentation tool
|
| 123 |
+
used to build mpmath's documentation
|
| 124 |
+
|
| 125 |
+
Release history:
|
| 126 |
+
|
| 127 |
+
* Version 1.3.0 released on March 7, 2023
|
| 128 |
+
* Version 1.2.0 released on February 1, 2021
|
| 129 |
+
* Version 1.1.0 released on December 11, 2018
|
| 130 |
+
* Version 1.0.0 released on September 27, 2017
|
| 131 |
+
* Version 0.19 released on June 10, 2014
|
| 132 |
+
* Version 0.18 released on December 31, 2013
|
| 133 |
+
* Version 0.17 released on February 1, 2011
|
| 134 |
+
* Version 0.16 released on September 24, 2010
|
| 135 |
+
* Version 0.15 released on June 6, 2010
|
| 136 |
+
* Version 0.14 released on February 5, 2010
|
| 137 |
+
* Version 0.13 released on August 13, 2009
|
| 138 |
+
* Version 0.12 released on June 9, 2009
|
| 139 |
+
* Version 0.11 released on January 26, 2009
|
| 140 |
+
* Version 0.10 released on October 15, 2008
|
| 141 |
+
* Version 0.9 released on August 23, 2008
|
| 142 |
+
* Version 0.8 released on April 20, 2008
|
| 143 |
+
* Version 0.7 released on March 12, 2008
|
| 144 |
+
* Version 0.6 released on January 13, 2008
|
| 145 |
+
* Version 0.5 released on November 24, 2007
|
| 146 |
+
* Version 0.4 released on November 3, 2007
|
| 147 |
+
* Version 0.3 released on October 5, 2007
|
| 148 |
+
* Version 0.2 released on October 2, 2007
|
| 149 |
+
* Version 0.1 released on September 27, 2007
|
| 150 |
+
|
| 151 |
+
1. Download & installation
|
| 152 |
+
--------------------------
|
| 153 |
+
|
| 154 |
+
Mpmath requires Python 2.7 or 3.5 (or later versions). It has been tested
|
| 155 |
+
with CPython 2.7, 3.5 through 3.7 and for PyPy.
|
| 156 |
+
|
| 157 |
+
The latest release of mpmath can be downloaded from the mpmath
|
| 158 |
+
website and from https://github.com/fredrik-johansson/mpmath/releases
|
| 159 |
+
|
| 160 |
+
It should also be available in the Python Package Index at
|
| 161 |
+
https://pypi.python.org/pypi/mpmath
|
| 162 |
+
|
| 163 |
+
To install latest release of Mpmath with pip, simply run
|
| 164 |
+
|
| 165 |
+
``pip install mpmath``
|
| 166 |
+
|
| 167 |
+
Or unpack the mpmath archive and run
|
| 168 |
+
|
| 169 |
+
``python setup.py install``
|
| 170 |
+
|
| 171 |
+
Mpmath can also be installed using
|
| 172 |
+
|
| 173 |
+
``python -m easy_install mpmath``
|
| 174 |
+
|
| 175 |
+
The latest development code is available from
|
| 176 |
+
https://github.com/fredrik-johansson/mpmath
|
| 177 |
+
|
| 178 |
+
See the main documentation for more detailed instructions.
|
| 179 |
+
|
| 180 |
+
2. Running tests
|
| 181 |
+
----------------
|
| 182 |
+
|
| 183 |
+
The unit tests in mpmath/tests/ can be run via the script
|
| 184 |
+
runtests.py, but it is recommended to run them with py.test
|
| 185 |
+
(https://pytest.org/), especially
|
| 186 |
+
to generate more useful reports in case there are failures.
|
| 187 |
+
|
| 188 |
+
You may also want to check out the demo scripts in the demo
|
| 189 |
+
directory.
|
| 190 |
+
|
| 191 |
+
The master branch is automatically tested by Travis CI.
|
| 192 |
+
|
| 193 |
+
3. Documentation
|
| 194 |
+
----------------
|
| 195 |
+
|
| 196 |
+
Documentation in reStructuredText format is available in the
|
| 197 |
+
doc directory included with the source package. These files
|
| 198 |
+
are human-readable, but can be compiled to prettier HTML using
|
| 199 |
+
the build.py script (requires Sphinx, http://sphinx.pocoo.org/).
|
| 200 |
+
|
| 201 |
+
See setup.txt in the documentation for more information.
|
| 202 |
+
|
| 203 |
+
The most recent documentation is also available in HTML format:
|
| 204 |
+
|
| 205 |
+
http://mpmath.org/doc/current/
|
| 206 |
+
|
| 207 |
+
4. Known problems
|
| 208 |
+
-----------------
|
| 209 |
+
|
| 210 |
+
Mpmath is a work in progress. Major issues include:
|
| 211 |
+
|
| 212 |
+
* Some functions may return incorrect values when given extremely
|
| 213 |
+
large arguments or arguments very close to singularities.
|
| 214 |
+
|
| 215 |
+
* Directed rounding works for arithmetic operations. It is implemented
|
| 216 |
+
heuristically for other operations, and their results may be off by one
|
| 217 |
+
or two units in the last place (even if otherwise accurate).
|
| 218 |
+
|
| 219 |
+
* Some IEEE 754 features are not available. Inifinities and NaN are
|
| 220 |
+
partially supported; denormal rounding is currently not available
|
| 221 |
+
at all.
|
| 222 |
+
|
| 223 |
+
* The interface for switching precision and rounding is not finalized.
|
| 224 |
+
The current method is not threadsafe.
|
| 225 |
+
|
| 226 |
+
5. Help and bug reports
|
| 227 |
+
-----------------------
|
| 228 |
+
|
| 229 |
+
General questions and comments can be sent to the mpmath mailinglist,
|
| 230 | |
| 231 |
+
|
| 232 |
+
You can also report bugs and send patches to the mpmath issue tracker,
|
| 233 |
+
https://github.com/fredrik-johansson/mpmath/issues
|
emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/RECORD
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mpmath-1.3.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
| 2 |
+
mpmath-1.3.0.dist-info/LICENSE,sha256=wmyugdpFCOXiSZhXd6M4IfGDIj67dNf4z7-Q_n7vL7c,1537
|
| 3 |
+
mpmath-1.3.0.dist-info/METADATA,sha256=RLZupES5wNGa6UgV01a_BHrmtoDBkmi1wmVofNaoFAY,8630
|
| 4 |
+
mpmath-1.3.0.dist-info/RECORD,,
|
| 5 |
+
mpmath-1.3.0.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 6 |
+
mpmath-1.3.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
| 7 |
+
mpmath-1.3.0.dist-info/top_level.txt,sha256=BUVWrh8EVlkOhM1n3X9S8msTaVcC-3s6Sjt60avHYus,7
|
| 8 |
+
mpmath/__init__.py,sha256=skFYTSwfwDBLChAV6pI3SdewgAQR3UBtyrfIK_Jdn-g,8765
|
| 9 |
+
mpmath/__pycache__/__init__.cpython-310.pyc,,
|
| 10 |
+
mpmath/__pycache__/ctx_base.cpython-310.pyc,,
|
| 11 |
+
mpmath/__pycache__/ctx_fp.cpython-310.pyc,,
|
| 12 |
+
mpmath/__pycache__/ctx_iv.cpython-310.pyc,,
|
| 13 |
+
mpmath/__pycache__/ctx_mp.cpython-310.pyc,,
|
| 14 |
+
mpmath/__pycache__/ctx_mp_python.cpython-310.pyc,,
|
| 15 |
+
mpmath/__pycache__/function_docs.cpython-310.pyc,,
|
| 16 |
+
mpmath/__pycache__/identification.cpython-310.pyc,,
|
| 17 |
+
mpmath/__pycache__/math2.cpython-310.pyc,,
|
| 18 |
+
mpmath/__pycache__/rational.cpython-310.pyc,,
|
| 19 |
+
mpmath/__pycache__/usertools.cpython-310.pyc,,
|
| 20 |
+
mpmath/__pycache__/visualization.cpython-310.pyc,,
|
| 21 |
+
mpmath/calculus/__init__.py,sha256=UAgCIJ1YmaeyTqpNzjBlCZGeIzLtUZMEEpl99VWNjus,162
|
| 22 |
+
mpmath/calculus/__pycache__/__init__.cpython-310.pyc,,
|
| 23 |
+
mpmath/calculus/__pycache__/approximation.cpython-310.pyc,,
|
| 24 |
+
mpmath/calculus/__pycache__/calculus.cpython-310.pyc,,
|
| 25 |
+
mpmath/calculus/__pycache__/differentiation.cpython-310.pyc,,
|
| 26 |
+
mpmath/calculus/__pycache__/extrapolation.cpython-310.pyc,,
|
| 27 |
+
mpmath/calculus/__pycache__/inverselaplace.cpython-310.pyc,,
|
| 28 |
+
mpmath/calculus/__pycache__/odes.cpython-310.pyc,,
|
| 29 |
+
mpmath/calculus/__pycache__/optimization.cpython-310.pyc,,
|
| 30 |
+
mpmath/calculus/__pycache__/polynomials.cpython-310.pyc,,
|
| 31 |
+
mpmath/calculus/__pycache__/quadrature.cpython-310.pyc,,
|
| 32 |
+
mpmath/calculus/approximation.py,sha256=vyzu3YI6r63Oq1KFHrQz02mGXAcH23emqNYhJuUaFZ4,8817
|
| 33 |
+
mpmath/calculus/calculus.py,sha256=A0gSp0hxSyEDfugJViY3CeWalF-vK701YftzrjSQzQ4,112
|
| 34 |
+
mpmath/calculus/differentiation.py,sha256=2L6CBj8xtX9iip98NPbKsLtwtRjxi571wYmTMHFeL90,20226
|
| 35 |
+
mpmath/calculus/extrapolation.py,sha256=xM0rvk2DFEF4iR1Jhl-Y3aS93iW9VVJX7y9IGpmzC-A,73306
|
| 36 |
+
mpmath/calculus/inverselaplace.py,sha256=5-pn8N_t0PtgBTXixsXZ4xxrihK2J5gYsVfTKfDx4gA,36056
|
| 37 |
+
mpmath/calculus/odes.py,sha256=gaHiw7IJjsONNTAa6izFPZpmcg9uyTp8MULnGdzTIGo,9908
|
| 38 |
+
mpmath/calculus/optimization.py,sha256=bKnShXElBOmVOIOlFeksDsYCp9fYSmYwKmXDt0z26MM,32856
|
| 39 |
+
mpmath/calculus/polynomials.py,sha256=D16BhU_SHbVi06IxNwABHR-H77IylndNsN3muPTuFYs,7877
|
| 40 |
+
mpmath/calculus/quadrature.py,sha256=n-avtS8E43foV-5tr5lofgOBaiMUYE8AJjQcWI9QcKk,42432
|
| 41 |
+
mpmath/ctx_base.py,sha256=rfjmfMyA55x8R_cWFINUwWVTElfZmyx5erKDdauSEVw,15985
|
| 42 |
+
mpmath/ctx_fp.py,sha256=ctUjx_NoU0iFWk05cXDYCL2ZtLZOlWs1n6Zao3pbG2g,6572
|
| 43 |
+
mpmath/ctx_iv.py,sha256=tqdMr-GDfkZk1EhoGeCAajy7pQv-RWtrVqhYjfI8r4g,17211
|
| 44 |
+
mpmath/ctx_mp.py,sha256=d3r4t7xHNqSFtmqsA9Btq1Npy3WTM-pcM2_jeCyECxY,49452
|
| 45 |
+
mpmath/ctx_mp_python.py,sha256=3olYWo4lk1SnQ0A_IaZ181qqG8u5pxGat_v-L4Qtn3Y,37815
|
| 46 |
+
mpmath/function_docs.py,sha256=g4PP8n6ILXmHcLyA50sxK6Tmp_Z4_pRN-wDErU8D1i4,283512
|
| 47 |
+
mpmath/functions/__init__.py,sha256=YXVdhqv-6LKm6cr5xxtTNTtuD9zDPKGQl8GmS0xz2xo,330
|
| 48 |
+
mpmath/functions/__pycache__/__init__.cpython-310.pyc,,
|
| 49 |
+
mpmath/functions/__pycache__/bessel.cpython-310.pyc,,
|
| 50 |
+
mpmath/functions/__pycache__/elliptic.cpython-310.pyc,,
|
| 51 |
+
mpmath/functions/__pycache__/expintegrals.cpython-310.pyc,,
|
| 52 |
+
mpmath/functions/__pycache__/factorials.cpython-310.pyc,,
|
| 53 |
+
mpmath/functions/__pycache__/functions.cpython-310.pyc,,
|
| 54 |
+
mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc,,
|
| 55 |
+
mpmath/functions/__pycache__/orthogonal.cpython-310.pyc,,
|
| 56 |
+
mpmath/functions/__pycache__/qfunctions.cpython-310.pyc,,
|
| 57 |
+
mpmath/functions/__pycache__/rszeta.cpython-310.pyc,,
|
| 58 |
+
mpmath/functions/__pycache__/signals.cpython-310.pyc,,
|
| 59 |
+
mpmath/functions/__pycache__/theta.cpython-310.pyc,,
|
| 60 |
+
mpmath/functions/__pycache__/zeta.cpython-310.pyc,,
|
| 61 |
+
mpmath/functions/__pycache__/zetazeros.cpython-310.pyc,,
|
| 62 |
+
mpmath/functions/bessel.py,sha256=dUPLu8frlK-vmf3-irX_7uvwyw4xccv6EIizmIZ88kM,37938
|
| 63 |
+
mpmath/functions/elliptic.py,sha256=qz0yVMb4lWEeOTDL_DWz5u5awmGIPKAsuZFJXgwHJNU,42237
|
| 64 |
+
mpmath/functions/expintegrals.py,sha256=75X_MRdYc1F_X73bgNiOJqwRlS2hqAzcFLl3RM2tCDc,11644
|
| 65 |
+
mpmath/functions/factorials.py,sha256=8_6kCR7e4k1GwxiAOJu0NRadeF4jA28qx4hidhu4ILk,5273
|
| 66 |
+
mpmath/functions/functions.py,sha256=ub2JExvqzCWLkm5yAm72Fr6fdWmZZUknq9_3w9MEigI,18100
|
| 67 |
+
mpmath/functions/hypergeometric.py,sha256=Z0OMAMC4ylK42n_SnamyFVnUx6zHLyCLCoJDSZ1JrHY,51570
|
| 68 |
+
mpmath/functions/orthogonal.py,sha256=FabkxKfBoSseA5flWu1a3re-2BYaew9augqIsT8LaLw,16097
|
| 69 |
+
mpmath/functions/qfunctions.py,sha256=a3EHGKQt_jMd4x9I772Jz-TGFnGY-arWqPvZGz9QSe0,7633
|
| 70 |
+
mpmath/functions/rszeta.py,sha256=yuUVp4ilIyDmXyE3WTBxDDjwfEJNypJnbPS-xPH5How,46184
|
| 71 |
+
mpmath/functions/signals.py,sha256=ELotwQaW1CDpv-eeJzOZ5c23NhfaZcj9_Gkb3psvS0Q,703
|
| 72 |
+
mpmath/functions/theta.py,sha256=KggOocczoMG6_HMoal4oEP7iZ4SKOou9JFE-WzY2r3M,37320
|
| 73 |
+
mpmath/functions/zeta.py,sha256=ue7JY7GXA0oX8q08sQJl2CSRrZ7kOt8HsftpVjnTwrE,36410
|
| 74 |
+
mpmath/functions/zetazeros.py,sha256=uq6TVyZBcY2MLX7VSdVfn0TOkowBLM9fXtnySEwaNzw,30858
|
| 75 |
+
mpmath/identification.py,sha256=7aMdngRAaeL_MafDUNbmEIlGQSklHDZ8pmPFt-OLgkw,29253
|
| 76 |
+
mpmath/libmp/__init__.py,sha256=UCDjLZw4brbklaCmSixCcPdLdHkz8sF_-6F_wr0duAg,3790
|
| 77 |
+
mpmath/libmp/__pycache__/__init__.cpython-310.pyc,,
|
| 78 |
+
mpmath/libmp/__pycache__/backend.cpython-310.pyc,,
|
| 79 |
+
mpmath/libmp/__pycache__/gammazeta.cpython-310.pyc,,
|
| 80 |
+
mpmath/libmp/__pycache__/libelefun.cpython-310.pyc,,
|
| 81 |
+
mpmath/libmp/__pycache__/libhyper.cpython-310.pyc,,
|
| 82 |
+
mpmath/libmp/__pycache__/libintmath.cpython-310.pyc,,
|
| 83 |
+
mpmath/libmp/__pycache__/libmpc.cpython-310.pyc,,
|
| 84 |
+
mpmath/libmp/__pycache__/libmpf.cpython-310.pyc,,
|
| 85 |
+
mpmath/libmp/__pycache__/libmpi.cpython-310.pyc,,
|
| 86 |
+
mpmath/libmp/backend.py,sha256=26A8pUkaGov26vrrFNQVyWJ5LDtK8sl3UHrYLecaTjA,3360
|
| 87 |
+
mpmath/libmp/gammazeta.py,sha256=Xqdw6PMoswDaSca_sOs-IglRuk3fb8c9p43M_lbcrlc,71469
|
| 88 |
+
mpmath/libmp/libelefun.py,sha256=joBZP4FOdxPfieWso1LPtSr6dHydpG_LQiF_bYQYWMg,43861
|
| 89 |
+
mpmath/libmp/libhyper.py,sha256=J9fmdDF6u27EcssEWvBuVaAa3hFjPvPN1SgRgu1dEbc,36624
|
| 90 |
+
mpmath/libmp/libintmath.py,sha256=aIRT0rkUZ_sdGQf3TNCLd-pBMvtQWjssbvFLfK7U0jc,16688
|
| 91 |
+
mpmath/libmp/libmpc.py,sha256=KBndUjs5YVS32-Id3fflDfYgpdW1Prx6zfo8Ez5Qbrs,26875
|
| 92 |
+
mpmath/libmp/libmpf.py,sha256=vpP0kNVkScbCVoZogJ4Watl4I7Ce0d4dzHVjfVe57so,45021
|
| 93 |
+
mpmath/libmp/libmpi.py,sha256=u0I5Eiwkqa-4-dXETi5k7MuaxBeZbvCAPFtl93U9YF0,27622
|
| 94 |
+
mpmath/math2.py,sha256=O5Dglg81SsW0wfHDUJcXOD8-cCaLvbVIvyw0sVmRbpI,18561
|
| 95 |
+
mpmath/matrices/__init__.py,sha256=ETzGDciYbq9ftiKwaMbJ15EI-KNXHrzRb-ZHehhqFjs,94
|
| 96 |
+
mpmath/matrices/__pycache__/__init__.cpython-310.pyc,,
|
| 97 |
+
mpmath/matrices/__pycache__/calculus.cpython-310.pyc,,
|
| 98 |
+
mpmath/matrices/__pycache__/eigen.cpython-310.pyc,,
|
| 99 |
+
mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc,,
|
| 100 |
+
mpmath/matrices/__pycache__/linalg.cpython-310.pyc,,
|
| 101 |
+
mpmath/matrices/__pycache__/matrices.cpython-310.pyc,,
|
| 102 |
+
mpmath/matrices/calculus.py,sha256=PNRq-p2nxgT-fzC54K2depi8ddhdx6Q86G8qpUiHeUY,18609
|
| 103 |
+
mpmath/matrices/eigen.py,sha256=GbDXI3CixzEdXxr1G86uUWkAngAvd-05MmSQ-Tsu_5k,24394
|
| 104 |
+
mpmath/matrices/eigen_symmetric.py,sha256=FPKPeQr1cGYw6Y6ea32a1YdEWQDLP6JlQHEA2WfNLYg,58534
|
| 105 |
+
mpmath/matrices/linalg.py,sha256=04C3ijzMFom7ob5fXBCDfyPPdo3BIboIeE8x2A6vqF0,26958
|
| 106 |
+
mpmath/matrices/matrices.py,sha256=o78Eq62EHQnxcsR0LBoWDEGREOoN4L2iDM1q3dQrw0o,32331
|
| 107 |
+
mpmath/rational.py,sha256=64d56fvZXngYZT7nOAHeFRUX77eJ1A0R3rpfWBU-mSo,5976
|
| 108 |
+
mpmath/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
| 109 |
+
mpmath/tests/__pycache__/__init__.cpython-310.pyc,,
|
| 110 |
+
mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc,,
|
| 111 |
+
mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc,,
|
| 112 |
+
mpmath/tests/__pycache__/runtests.cpython-310.pyc,,
|
| 113 |
+
mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc,,
|
| 114 |
+
mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc,,
|
| 115 |
+
mpmath/tests/__pycache__/test_calculus.cpython-310.pyc,,
|
| 116 |
+
mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc,,
|
| 117 |
+
mpmath/tests/__pycache__/test_convert.cpython-310.pyc,,
|
| 118 |
+
mpmath/tests/__pycache__/test_diff.cpython-310.pyc,,
|
| 119 |
+
mpmath/tests/__pycache__/test_division.cpython-310.pyc,,
|
| 120 |
+
mpmath/tests/__pycache__/test_eigen.cpython-310.pyc,,
|
| 121 |
+
mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc,,
|
| 122 |
+
mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc,,
|
| 123 |
+
mpmath/tests/__pycache__/test_fp.cpython-310.pyc,,
|
| 124 |
+
mpmath/tests/__pycache__/test_functions.cpython-310.pyc,,
|
| 125 |
+
mpmath/tests/__pycache__/test_functions2.cpython-310.pyc,,
|
| 126 |
+
mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc,,
|
| 127 |
+
mpmath/tests/__pycache__/test_hp.cpython-310.pyc,,
|
| 128 |
+
mpmath/tests/__pycache__/test_identify.cpython-310.pyc,,
|
| 129 |
+
mpmath/tests/__pycache__/test_interval.cpython-310.pyc,,
|
| 130 |
+
mpmath/tests/__pycache__/test_levin.cpython-310.pyc,,
|
| 131 |
+
mpmath/tests/__pycache__/test_linalg.cpython-310.pyc,,
|
| 132 |
+
mpmath/tests/__pycache__/test_matrices.cpython-310.pyc,,
|
| 133 |
+
mpmath/tests/__pycache__/test_mpmath.cpython-310.pyc,,
|
| 134 |
+
mpmath/tests/__pycache__/test_ode.cpython-310.pyc,,
|
| 135 |
+
mpmath/tests/__pycache__/test_pickle.cpython-310.pyc,,
|
| 136 |
+
mpmath/tests/__pycache__/test_power.cpython-310.pyc,,
|
| 137 |
+
mpmath/tests/__pycache__/test_quad.cpython-310.pyc,,
|
| 138 |
+
mpmath/tests/__pycache__/test_rootfinding.cpython-310.pyc,,
|
| 139 |
+
mpmath/tests/__pycache__/test_special.cpython-310.pyc,,
|
| 140 |
+
mpmath/tests/__pycache__/test_str.cpython-310.pyc,,
|
| 141 |
+
mpmath/tests/__pycache__/test_summation.cpython-310.pyc,,
|
| 142 |
+
mpmath/tests/__pycache__/test_trig.cpython-310.pyc,,
|
| 143 |
+
mpmath/tests/__pycache__/test_visualization.cpython-310.pyc,,
|
| 144 |
+
mpmath/tests/__pycache__/torture.cpython-310.pyc,,
|
| 145 |
+
mpmath/tests/extratest_gamma.py,sha256=xidhXUelILcxtiPGoTBHjqUOKIJzEaZ_v3nntGQyWZQ,7228
|
| 146 |
+
mpmath/tests/extratest_zeta.py,sha256=sg10j9RhjBpV2EdUqyYhGV2ERWvM--EvwwGIz6HTmlw,1003
|
| 147 |
+
mpmath/tests/runtests.py,sha256=7NUV82F3K_5AhU8mCLUFf5OibtT7uloFCwPyM3l71wM,5189
|
| 148 |
+
mpmath/tests/test_basic_ops.py,sha256=dsB8DRG-GrPzBaZ-bIauYabaeqXbfqBo9SIP9BqcTSs,15348
|
| 149 |
+
mpmath/tests/test_bitwise.py,sha256=-nLYhgQbhDza3SQM63BhktYntACagqMYx9ib3dPnTKM,7686
|
| 150 |
+
mpmath/tests/test_calculus.py,sha256=4oxtNfMpO4RLLoOzrv7r9-h8BcqfBsJIE6UpsHe7c4w,9187
|
| 151 |
+
mpmath/tests/test_compatibility.py,sha256=_t3ASZ3jhfAMnN1voWX7PDNIDzn-3PokkJGIdT1x7y0,2306
|
| 152 |
+
mpmath/tests/test_convert.py,sha256=JPcDcTJIWh5prIxjx5DM1aNWgqlUoF2KpHvAgK3uHi4,8834
|
| 153 |
+
mpmath/tests/test_diff.py,sha256=qjiF8NxQ8vueuZ5ZHGPQ-kjcj_I7Jh_fEdFtaA8DzEI,2466
|
| 154 |
+
mpmath/tests/test_division.py,sha256=6lUeZfmaBWvvszdqlWLMHgXPjVsxvW1WZpd4-jFWCpU,5340
|
| 155 |
+
mpmath/tests/test_eigen.py,sha256=2mnqVATGbsJkvSVHPpitfAk881twFfb3LsO3XikV9Hs,3905
|
| 156 |
+
mpmath/tests/test_eigen_symmetric.py,sha256=v0VimCicIU2owASDMBaP-t-30uq-pXcsglt95KBtNO4,8778
|
| 157 |
+
mpmath/tests/test_elliptic.py,sha256=Kjiwq9Bb6N_OOzzWewGQ1M_PMa7vRs42V0t90gloZxo,26225
|
| 158 |
+
mpmath/tests/test_fp.py,sha256=AJo0FTyH4BuUnUsv176LD956om308KGYndy-b54KGxM,89997
|
| 159 |
+
mpmath/tests/test_functions.py,sha256=b47VywdomoOX6KmMmz9-iv2IqVIydwKSuUw2pWlFHrY,30955
|
| 160 |
+
mpmath/tests/test_functions2.py,sha256=vlw2RWhL1oTcifnOMDx1a_YzN96UgNNIE5STeKRv1HY,96990
|
| 161 |
+
mpmath/tests/test_gammazeta.py,sha256=AB34O0DV7AlEf9Z4brnCadeQU5-uAwhWRw5FZas65DA,27917
|
| 162 |
+
mpmath/tests/test_hp.py,sha256=6hcENu6Te2klPEiTSeLBIRPlH7PADlJwFKbx8xpnOhg,10461
|
| 163 |
+
mpmath/tests/test_identify.py,sha256=lGUIPfrB2paTg0cFUo64GmMzF77F9gs9FQjX7gxGHV8,692
|
| 164 |
+
mpmath/tests/test_interval.py,sha256=TjYd7a9ca6iRJiLjw06isLeZTuGoGAPmgleDZ0cYfJ0,17527
|
| 165 |
+
mpmath/tests/test_levin.py,sha256=P8M11yV1dj_gdSNv5xuwCzFiF86QyRDtPMjURy6wJ28,5090
|
| 166 |
+
mpmath/tests/test_linalg.py,sha256=miKEnwB8iwWV13hi1bF1cg3hgB4rTKOR0fvDVfWmXds,10440
|
| 167 |
+
mpmath/tests/test_matrices.py,sha256=qyA4Ml2CvNvW034lzB01G6wVgNr7UrgZqh2wkMXtpzM,7944
|
| 168 |
+
mpmath/tests/test_mpmath.py,sha256=LVyJUeofiaxW-zLKWVBCz59L9UQsjlW0Ts9_oBiEv_4,196
|
| 169 |
+
mpmath/tests/test_ode.py,sha256=zAxexBH4fnmFNO4bvEHbug1NJWC5zqfFaVDlYijowkY,1822
|
| 170 |
+
mpmath/tests/test_pickle.py,sha256=Y8CKmDLFsJHUqG8CDaBw5ilrPP4YT1xijVduLpQ7XFE,401
|
| 171 |
+
mpmath/tests/test_power.py,sha256=sz_K02SmNxpa6Kb1uJLN_N4tXTJGdQ___vPRshEN7Gk,5227
|
| 172 |
+
mpmath/tests/test_quad.py,sha256=49Ltft0vZ_kdKLL5s-Kj-BzAVoF5LPVEUeNUzdOkghI,3893
|
| 173 |
+
mpmath/tests/test_rootfinding.py,sha256=umQegEaKHmYOEl5jEyoD-VLKDtXsTJJkepKEr4c0dC0,3132
|
| 174 |
+
mpmath/tests/test_special.py,sha256=YbMIoMIkJEvvKYIzS0CXthJFG0--j6un7-tcE6b7FPM,2848
|
| 175 |
+
mpmath/tests/test_str.py,sha256=0WsGD9hMPRi8zcuYMA9Cu2mOvQiCFskPwMsMf8lBDK4,544
|
| 176 |
+
mpmath/tests/test_summation.py,sha256=fdNlsvRVOsbWxbhlyDLDaEO2S8kTJrRMKIvB5-aNci0,2035
|
| 177 |
+
mpmath/tests/test_trig.py,sha256=zPtkIEnZaThxcWur4k7BX8-2Jmj-AhO191Svv7ANYUU,4799
|
| 178 |
+
mpmath/tests/test_visualization.py,sha256=1PqtkoUx-WsKYgTRiu5o9pBc85kwhf1lzU2eobDQCJM,944
|
| 179 |
+
mpmath/tests/torture.py,sha256=LD95oES7JY2KroELK-m-jhvtbvZaKChnt0Cq7kFMNCw,7868
|
| 180 |
+
mpmath/usertools.py,sha256=a-TDw7XSRsPdBEffxOooDV4WDFfuXnO58P75dcAD87I,3029
|
| 181 |
+
mpmath/visualization.py,sha256=pnnbjcd9AhFVRBZavYX5gjx4ytK_kXoDDisYR6EpXhs,10627
|
emu3/lib/python3.10/site-packages/mpmath-1.3.0.dist-info/REQUESTED
ADDED
|
File without changes
|
emu3/lib/python3.10/site-packages/ninja/__init__.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import platform
|
| 4 |
+
import subprocess
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
from ._version import version as __version__
|
| 8 |
+
|
| 9 |
+
__all__ = ["__version__", "DATA", "BIN_DIR", "ninja"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def __dir__():
|
| 13 |
+
return __all__
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
from .ninja_syntax import Writer, escape, expand
|
| 18 |
+
except ImportError:
|
| 19 |
+
# Support importing `ninja_syntax` from the source tree
|
| 20 |
+
if not os.path.exists(
|
| 21 |
+
os.path.join(os.path.dirname(__file__), 'ninja_syntax.py')):
|
| 22 |
+
sys.path.insert(0, os.path.abspath(os.path.join(
|
| 23 |
+
os.path.dirname(__file__), '../../Ninja-src/misc')))
|
| 24 |
+
from ninja_syntax import Writer, escape, expand # noqa: F401
|
| 25 |
+
|
| 26 |
+
DATA = os.path.join(os.path.dirname(__file__), 'data')
|
| 27 |
+
|
| 28 |
+
# Support running tests from the source tree
|
| 29 |
+
if not os.path.exists(DATA):
|
| 30 |
+
from skbuild.constants import CMAKE_INSTALL_DIR as SKBUILD_CMAKE_INSTALL_DIR
|
| 31 |
+
from skbuild.constants import set_skbuild_plat_name
|
| 32 |
+
|
| 33 |
+
if platform.system().lower() == "darwin":
|
| 34 |
+
# Since building the project specifying --plat-name or CMAKE_OSX_* variables
|
| 35 |
+
# leads to different SKBUILD_DIR, the code below attempt to guess the most
|
| 36 |
+
# likely plat-name.
|
| 37 |
+
_skbuild_dirs = os.listdir(os.path.join(os.path.dirname(__file__), '..', '..', '_skbuild'))
|
| 38 |
+
if _skbuild_dirs:
|
| 39 |
+
_likely_plat_name = '-'.join(_skbuild_dirs[0].split('-')[:3])
|
| 40 |
+
set_skbuild_plat_name(_likely_plat_name)
|
| 41 |
+
|
| 42 |
+
_data = os.path.abspath(os.path.join(
|
| 43 |
+
os.path.dirname(__file__), '..', '..', SKBUILD_CMAKE_INSTALL_DIR(), 'src/ninja/data'))
|
| 44 |
+
if os.path.exists(_data):
|
| 45 |
+
DATA = _data
|
| 46 |
+
|
| 47 |
+
BIN_DIR = os.path.join(DATA, 'bin')
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def _program(name, args):
|
| 51 |
+
return subprocess.call([os.path.join(BIN_DIR, name)] + args, close_fds=False)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def ninja():
|
| 55 |
+
raise SystemExit(_program('ninja', sys.argv[1:]))
|
emu3/lib/python3.10/site-packages/ninja/__main__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
from ninja import ninja
|
| 3 |
+
|
| 4 |
+
if __name__ == '__main__':
|
| 5 |
+
ninja()
|
emu3/lib/python3.10/site-packages/ninja/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.57 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/ninja/__pycache__/__main__.cpython-310.pyc
ADDED
|
Binary file (227 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/ninja/__pycache__/_version.cpython-310.pyc
ADDED
|
Binary file (486 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/ninja/__pycache__/ninja_syntax.cpython-310.pyc
ADDED
|
Binary file (5.95 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/ninja/_version.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# file generated by setuptools_scm
|
| 2 |
+
# don't change, don't track in version control
|
| 3 |
+
TYPE_CHECKING = False
|
| 4 |
+
if TYPE_CHECKING:
|
| 5 |
+
from typing import Tuple, Union
|
| 6 |
+
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
| 7 |
+
else:
|
| 8 |
+
VERSION_TUPLE = object
|
| 9 |
+
|
| 10 |
+
version: str
|
| 11 |
+
__version__: str
|
| 12 |
+
__version_tuple__: VERSION_TUPLE
|
| 13 |
+
version_tuple: VERSION_TUPLE
|
| 14 |
+
|
| 15 |
+
__version__ = version = '1.11.1.1'
|
| 16 |
+
__version_tuple__ = version_tuple = (1, 11, 1, 1)
|
emu3/lib/python3.10/site-packages/ninja/ninja_syntax.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python
|
| 2 |
+
|
| 3 |
+
# Copyright 2011 Google Inc. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Python module for generating .ninja files.
|
| 18 |
+
|
| 19 |
+
Note that this is emphatically not a required piece of Ninja; it's
|
| 20 |
+
just a helpful utility for build-file-generation systems that already
|
| 21 |
+
use Python.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import re
|
| 25 |
+
import textwrap
|
| 26 |
+
|
| 27 |
+
def escape_path(word):
|
| 28 |
+
return word.replace('$ ', '$$ ').replace(' ', '$ ').replace(':', '$:')
|
| 29 |
+
|
| 30 |
+
class Writer(object):
|
| 31 |
+
def __init__(self, output, width=78):
|
| 32 |
+
self.output = output
|
| 33 |
+
self.width = width
|
| 34 |
+
|
| 35 |
+
def newline(self):
|
| 36 |
+
self.output.write('\n')
|
| 37 |
+
|
| 38 |
+
def comment(self, text):
|
| 39 |
+
for line in textwrap.wrap(text, self.width - 2, break_long_words=False,
|
| 40 |
+
break_on_hyphens=False):
|
| 41 |
+
self.output.write('# ' + line + '\n')
|
| 42 |
+
|
| 43 |
+
def variable(self, key, value, indent=0):
|
| 44 |
+
if value is None:
|
| 45 |
+
return
|
| 46 |
+
if isinstance(value, list):
|
| 47 |
+
value = ' '.join(filter(None, value)) # Filter out empty strings.
|
| 48 |
+
self._line('%s = %s' % (key, value), indent)
|
| 49 |
+
|
| 50 |
+
def pool(self, name, depth):
|
| 51 |
+
self._line('pool %s' % name)
|
| 52 |
+
self.variable('depth', depth, indent=1)
|
| 53 |
+
|
| 54 |
+
def rule(self, name, command, description=None, depfile=None,
|
| 55 |
+
generator=False, pool=None, restat=False, rspfile=None,
|
| 56 |
+
rspfile_content=None, deps=None):
|
| 57 |
+
self._line('rule %s' % name)
|
| 58 |
+
self.variable('command', command, indent=1)
|
| 59 |
+
if description:
|
| 60 |
+
self.variable('description', description, indent=1)
|
| 61 |
+
if depfile:
|
| 62 |
+
self.variable('depfile', depfile, indent=1)
|
| 63 |
+
if generator:
|
| 64 |
+
self.variable('generator', '1', indent=1)
|
| 65 |
+
if pool:
|
| 66 |
+
self.variable('pool', pool, indent=1)
|
| 67 |
+
if restat:
|
| 68 |
+
self.variable('restat', '1', indent=1)
|
| 69 |
+
if rspfile:
|
| 70 |
+
self.variable('rspfile', rspfile, indent=1)
|
| 71 |
+
if rspfile_content:
|
| 72 |
+
self.variable('rspfile_content', rspfile_content, indent=1)
|
| 73 |
+
if deps:
|
| 74 |
+
self.variable('deps', deps, indent=1)
|
| 75 |
+
|
| 76 |
+
def build(self, outputs, rule, inputs=None, implicit=None, order_only=None,
|
| 77 |
+
variables=None, implicit_outputs=None, pool=None, dyndep=None):
|
| 78 |
+
outputs = as_list(outputs)
|
| 79 |
+
out_outputs = [escape_path(x) for x in outputs]
|
| 80 |
+
all_inputs = [escape_path(x) for x in as_list(inputs)]
|
| 81 |
+
|
| 82 |
+
if implicit:
|
| 83 |
+
implicit = [escape_path(x) for x in as_list(implicit)]
|
| 84 |
+
all_inputs.append('|')
|
| 85 |
+
all_inputs.extend(implicit)
|
| 86 |
+
if order_only:
|
| 87 |
+
order_only = [escape_path(x) for x in as_list(order_only)]
|
| 88 |
+
all_inputs.append('||')
|
| 89 |
+
all_inputs.extend(order_only)
|
| 90 |
+
if implicit_outputs:
|
| 91 |
+
implicit_outputs = [escape_path(x)
|
| 92 |
+
for x in as_list(implicit_outputs)]
|
| 93 |
+
out_outputs.append('|')
|
| 94 |
+
out_outputs.extend(implicit_outputs)
|
| 95 |
+
|
| 96 |
+
self._line('build %s: %s' % (' '.join(out_outputs),
|
| 97 |
+
' '.join([rule] + all_inputs)))
|
| 98 |
+
if pool is not None:
|
| 99 |
+
self._line(' pool = %s' % pool)
|
| 100 |
+
if dyndep is not None:
|
| 101 |
+
self._line(' dyndep = %s' % dyndep)
|
| 102 |
+
|
| 103 |
+
if variables:
|
| 104 |
+
if isinstance(variables, dict):
|
| 105 |
+
iterator = iter(variables.items())
|
| 106 |
+
else:
|
| 107 |
+
iterator = iter(variables)
|
| 108 |
+
|
| 109 |
+
for key, val in iterator:
|
| 110 |
+
self.variable(key, val, indent=1)
|
| 111 |
+
|
| 112 |
+
return outputs
|
| 113 |
+
|
| 114 |
+
def include(self, path):
|
| 115 |
+
self._line('include %s' % path)
|
| 116 |
+
|
| 117 |
+
def subninja(self, path):
|
| 118 |
+
self._line('subninja %s' % path)
|
| 119 |
+
|
| 120 |
+
def default(self, paths):
|
| 121 |
+
self._line('default %s' % ' '.join(as_list(paths)))
|
| 122 |
+
|
| 123 |
+
def _count_dollars_before_index(self, s, i):
|
| 124 |
+
"""Returns the number of '$' characters right in front of s[i]."""
|
| 125 |
+
dollar_count = 0
|
| 126 |
+
dollar_index = i - 1
|
| 127 |
+
while dollar_index > 0 and s[dollar_index] == '$':
|
| 128 |
+
dollar_count += 1
|
| 129 |
+
dollar_index -= 1
|
| 130 |
+
return dollar_count
|
| 131 |
+
|
| 132 |
+
def _line(self, text, indent=0):
|
| 133 |
+
"""Write 'text' word-wrapped at self.width characters."""
|
| 134 |
+
leading_space = ' ' * indent
|
| 135 |
+
while len(leading_space) + len(text) > self.width:
|
| 136 |
+
# The text is too wide; wrap if possible.
|
| 137 |
+
|
| 138 |
+
# Find the rightmost space that would obey our width constraint and
|
| 139 |
+
# that's not an escaped space.
|
| 140 |
+
available_space = self.width - len(leading_space) - len(' $')
|
| 141 |
+
space = available_space
|
| 142 |
+
while True:
|
| 143 |
+
space = text.rfind(' ', 0, space)
|
| 144 |
+
if (space < 0 or
|
| 145 |
+
self._count_dollars_before_index(text, space) % 2 == 0):
|
| 146 |
+
break
|
| 147 |
+
|
| 148 |
+
if space < 0:
|
| 149 |
+
# No such space; just use the first unescaped space we can find.
|
| 150 |
+
space = available_space - 1
|
| 151 |
+
while True:
|
| 152 |
+
space = text.find(' ', space + 1)
|
| 153 |
+
if (space < 0 or
|
| 154 |
+
self._count_dollars_before_index(text, space) % 2 == 0):
|
| 155 |
+
break
|
| 156 |
+
if space < 0:
|
| 157 |
+
# Give up on breaking.
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
self.output.write(leading_space + text[0:space] + ' $\n')
|
| 161 |
+
text = text[space+1:]
|
| 162 |
+
|
| 163 |
+
# Subsequent lines are continuations, so indent them.
|
| 164 |
+
leading_space = ' ' * (indent+2)
|
| 165 |
+
|
| 166 |
+
self.output.write(leading_space + text + '\n')
|
| 167 |
+
|
| 168 |
+
def close(self):
|
| 169 |
+
self.output.close()
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def as_list(input):
|
| 173 |
+
if input is None:
|
| 174 |
+
return []
|
| 175 |
+
if isinstance(input, list):
|
| 176 |
+
return input
|
| 177 |
+
return [input]
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def escape(string):
|
| 181 |
+
"""Escape a string such that it can be embedded into a Ninja file without
|
| 182 |
+
further interpretation."""
|
| 183 |
+
assert '\n' not in string, 'Ninja syntax does not allow newlines'
|
| 184 |
+
# We only have one special metacharacter: '$'.
|
| 185 |
+
return string.replace('$', '$$')
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def expand(string, vars, local_vars={}):
|
| 189 |
+
"""Expand a string containing $vars as Ninja would.
|
| 190 |
+
|
| 191 |
+
Note: doesn't handle the full Ninja variable syntax, but it's enough
|
| 192 |
+
to make configure.py's use of it work.
|
| 193 |
+
"""
|
| 194 |
+
def exp(m):
|
| 195 |
+
var = m.group(1)
|
| 196 |
+
if var == '$':
|
| 197 |
+
return '$'
|
| 198 |
+
return local_vars.get(var, vars.get(var, ''))
|
| 199 |
+
return re.sub(r'\$(\$|\w*)', exp, string)
|
emu3/lib/python3.10/site-packages/ninja/py.typed
ADDED
|
File without changes
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (4.74 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc
ADDED
|
Binary file (701 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc
ADDED
|
Binary file (4.36 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc
ADDED
|
Binary file (5.66 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc
ADDED
|
Binary file (892 Bytes). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" support numpy compatibility across versions """
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from pandas.util.version import Version
|
| 7 |
+
|
| 8 |
+
# numpy versioning
|
| 9 |
+
_np_version = np.__version__
|
| 10 |
+
_nlv = Version(_np_version)
|
| 11 |
+
np_version_lt1p23 = _nlv < Version("1.23")
|
| 12 |
+
np_version_gte1p24 = _nlv >= Version("1.24")
|
| 13 |
+
np_version_gte1p24p3 = _nlv >= Version("1.24.3")
|
| 14 |
+
np_version_gte1p25 = _nlv >= Version("1.25")
|
| 15 |
+
np_version_gt2 = _nlv >= Version("2.0.0")
|
| 16 |
+
is_numpy_dev = _nlv.dev is not None
|
| 17 |
+
_min_numpy_ver = "1.22.4"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if _nlv < Version(_min_numpy_ver):
|
| 21 |
+
raise ImportError(
|
| 22 |
+
f"this version of pandas is incompatible with numpy < {_min_numpy_ver}\n"
|
| 23 |
+
f"your numpy version is {_np_version}.\n"
|
| 24 |
+
f"Please upgrade numpy to >= {_min_numpy_ver} to use this pandas version"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
np_long: type
|
| 29 |
+
np_ulong: type
|
| 30 |
+
|
| 31 |
+
if np_version_gt2:
|
| 32 |
+
try:
|
| 33 |
+
with warnings.catch_warnings():
|
| 34 |
+
warnings.filterwarnings(
|
| 35 |
+
"ignore",
|
| 36 |
+
r".*In the future `np\.long` will be defined as.*",
|
| 37 |
+
FutureWarning,
|
| 38 |
+
)
|
| 39 |
+
np_long = np.long # type: ignore[attr-defined]
|
| 40 |
+
np_ulong = np.ulong # type: ignore[attr-defined]
|
| 41 |
+
except AttributeError:
|
| 42 |
+
np_long = np.int_
|
| 43 |
+
np_ulong = np.uint
|
| 44 |
+
else:
|
| 45 |
+
np_long = np.int_
|
| 46 |
+
np_ulong = np.uint
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
__all__ = [
|
| 50 |
+
"np",
|
| 51 |
+
"_np_version",
|
| 52 |
+
"is_numpy_dev",
|
| 53 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.25 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/compat/numpy/function.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
For compatibility with numpy libraries, pandas functions or methods have to
|
| 3 |
+
accept '*args' and '**kwargs' parameters to accommodate numpy arguments that
|
| 4 |
+
are not actually used or respected in the pandas implementation.
|
| 5 |
+
|
| 6 |
+
To ensure that users do not abuse these parameters, validation is performed in
|
| 7 |
+
'validators.py' to make sure that any extra parameters passed correspond ONLY
|
| 8 |
+
to those in the numpy signature. Part of that validation includes whether or
|
| 9 |
+
not the user attempted to pass in non-default values for these extraneous
|
| 10 |
+
parameters. As we want to discourage users from relying on these parameters
|
| 11 |
+
when calling the pandas implementation, we want them only to pass in the
|
| 12 |
+
default values for these parameters.
|
| 13 |
+
|
| 14 |
+
This module provides a set of commonly used default arguments for functions and
|
| 15 |
+
methods that are spread throughout the codebase. This module will make it
|
| 16 |
+
easier to adjust to future upstream changes in the analogous numpy signatures.
|
| 17 |
+
"""
|
| 18 |
+
from __future__ import annotations
|
| 19 |
+
|
| 20 |
+
from typing import (
|
| 21 |
+
TYPE_CHECKING,
|
| 22 |
+
Any,
|
| 23 |
+
TypeVar,
|
| 24 |
+
cast,
|
| 25 |
+
overload,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
import numpy as np
|
| 29 |
+
from numpy import ndarray
|
| 30 |
+
|
| 31 |
+
from pandas._libs.lib import (
|
| 32 |
+
is_bool,
|
| 33 |
+
is_integer,
|
| 34 |
+
)
|
| 35 |
+
from pandas.errors import UnsupportedFunctionCall
|
| 36 |
+
from pandas.util._validators import (
|
| 37 |
+
validate_args,
|
| 38 |
+
validate_args_and_kwargs,
|
| 39 |
+
validate_kwargs,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
if TYPE_CHECKING:
|
| 43 |
+
from pandas._typing import (
|
| 44 |
+
Axis,
|
| 45 |
+
AxisInt,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
AxisNoneT = TypeVar("AxisNoneT", Axis, None)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class CompatValidator:
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
defaults,
|
| 55 |
+
fname=None,
|
| 56 |
+
method: str | None = None,
|
| 57 |
+
max_fname_arg_count=None,
|
| 58 |
+
) -> None:
|
| 59 |
+
self.fname = fname
|
| 60 |
+
self.method = method
|
| 61 |
+
self.defaults = defaults
|
| 62 |
+
self.max_fname_arg_count = max_fname_arg_count
|
| 63 |
+
|
| 64 |
+
def __call__(
|
| 65 |
+
self,
|
| 66 |
+
args,
|
| 67 |
+
kwargs,
|
| 68 |
+
fname=None,
|
| 69 |
+
max_fname_arg_count=None,
|
| 70 |
+
method: str | None = None,
|
| 71 |
+
) -> None:
|
| 72 |
+
if not args and not kwargs:
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
fname = self.fname if fname is None else fname
|
| 76 |
+
max_fname_arg_count = (
|
| 77 |
+
self.max_fname_arg_count
|
| 78 |
+
if max_fname_arg_count is None
|
| 79 |
+
else max_fname_arg_count
|
| 80 |
+
)
|
| 81 |
+
method = self.method if method is None else method
|
| 82 |
+
|
| 83 |
+
if method == "args":
|
| 84 |
+
validate_args(fname, args, max_fname_arg_count, self.defaults)
|
| 85 |
+
elif method == "kwargs":
|
| 86 |
+
validate_kwargs(fname, kwargs, self.defaults)
|
| 87 |
+
elif method == "both":
|
| 88 |
+
validate_args_and_kwargs(
|
| 89 |
+
fname, args, kwargs, max_fname_arg_count, self.defaults
|
| 90 |
+
)
|
| 91 |
+
else:
|
| 92 |
+
raise ValueError(f"invalid validation method '{method}'")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
ARGMINMAX_DEFAULTS = {"out": None}
|
| 96 |
+
validate_argmin = CompatValidator(
|
| 97 |
+
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
| 98 |
+
)
|
| 99 |
+
validate_argmax = CompatValidator(
|
| 100 |
+
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def process_skipna(skipna: bool | ndarray | None, args) -> tuple[bool, Any]:
|
| 105 |
+
if isinstance(skipna, ndarray) or skipna is None:
|
| 106 |
+
args = (skipna,) + args
|
| 107 |
+
skipna = True
|
| 108 |
+
|
| 109 |
+
return skipna, args
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def validate_argmin_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
| 113 |
+
"""
|
| 114 |
+
If 'Series.argmin' is called via the 'numpy' library, the third parameter
|
| 115 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
| 116 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
| 117 |
+
None, since 'skipna' itself should be a boolean
|
| 118 |
+
"""
|
| 119 |
+
skipna, args = process_skipna(skipna, args)
|
| 120 |
+
validate_argmin(args, kwargs)
|
| 121 |
+
return skipna
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def validate_argmax_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
| 125 |
+
"""
|
| 126 |
+
If 'Series.argmax' is called via the 'numpy' library, the third parameter
|
| 127 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
| 128 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
| 129 |
+
None, since 'skipna' itself should be a boolean
|
| 130 |
+
"""
|
| 131 |
+
skipna, args = process_skipna(skipna, args)
|
| 132 |
+
validate_argmax(args, kwargs)
|
| 133 |
+
return skipna
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
ARGSORT_DEFAULTS: dict[str, int | str | None] = {}
|
| 137 |
+
ARGSORT_DEFAULTS["axis"] = -1
|
| 138 |
+
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
| 139 |
+
ARGSORT_DEFAULTS["order"] = None
|
| 140 |
+
ARGSORT_DEFAULTS["kind"] = None
|
| 141 |
+
ARGSORT_DEFAULTS["stable"] = None
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
validate_argsort = CompatValidator(
|
| 145 |
+
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# two different signatures of argsort, this second validation for when the
|
| 149 |
+
# `kind` param is supported
|
| 150 |
+
ARGSORT_DEFAULTS_KIND: dict[str, int | None] = {}
|
| 151 |
+
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
| 152 |
+
ARGSORT_DEFAULTS_KIND["order"] = None
|
| 153 |
+
ARGSORT_DEFAULTS_KIND["stable"] = None
|
| 154 |
+
validate_argsort_kind = CompatValidator(
|
| 155 |
+
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def validate_argsort_with_ascending(ascending: bool | int | None, args, kwargs) -> bool:
|
| 160 |
+
"""
|
| 161 |
+
If 'Categorical.argsort' is called via the 'numpy' library, the first
|
| 162 |
+
parameter in its signature is 'axis', which takes either an integer or
|
| 163 |
+
'None', so check if the 'ascending' parameter has either integer type or is
|
| 164 |
+
None, since 'ascending' itself should be a boolean
|
| 165 |
+
"""
|
| 166 |
+
if is_integer(ascending) or ascending is None:
|
| 167 |
+
args = (ascending,) + args
|
| 168 |
+
ascending = True
|
| 169 |
+
|
| 170 |
+
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
|
| 171 |
+
ascending = cast(bool, ascending)
|
| 172 |
+
return ascending
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
CLIP_DEFAULTS: dict[str, Any] = {"out": None}
|
| 176 |
+
validate_clip = CompatValidator(
|
| 177 |
+
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
@overload
|
| 182 |
+
def validate_clip_with_axis(axis: ndarray, args, kwargs) -> None:
|
| 183 |
+
...
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@overload
|
| 187 |
+
def validate_clip_with_axis(axis: AxisNoneT, args, kwargs) -> AxisNoneT:
|
| 188 |
+
...
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def validate_clip_with_axis(
|
| 192 |
+
axis: ndarray | AxisNoneT, args, kwargs
|
| 193 |
+
) -> AxisNoneT | None:
|
| 194 |
+
"""
|
| 195 |
+
If 'NDFrame.clip' is called via the numpy library, the third parameter in
|
| 196 |
+
its signature is 'out', which can takes an ndarray, so check if the 'axis'
|
| 197 |
+
parameter is an instance of ndarray, since 'axis' itself should either be
|
| 198 |
+
an integer or None
|
| 199 |
+
"""
|
| 200 |
+
if isinstance(axis, ndarray):
|
| 201 |
+
args = (axis,) + args
|
| 202 |
+
# error: Incompatible types in assignment (expression has type "None",
|
| 203 |
+
# variable has type "Union[ndarray[Any, Any], str, int]")
|
| 204 |
+
axis = None # type: ignore[assignment]
|
| 205 |
+
|
| 206 |
+
validate_clip(args, kwargs)
|
| 207 |
+
# error: Incompatible return value type (got "Union[ndarray[Any, Any],
|
| 208 |
+
# str, int]", expected "Union[str, int, None]")
|
| 209 |
+
return axis # type: ignore[return-value]
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
CUM_FUNC_DEFAULTS: dict[str, Any] = {}
|
| 213 |
+
CUM_FUNC_DEFAULTS["dtype"] = None
|
| 214 |
+
CUM_FUNC_DEFAULTS["out"] = None
|
| 215 |
+
validate_cum_func = CompatValidator(
|
| 216 |
+
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
|
| 217 |
+
)
|
| 218 |
+
validate_cumsum = CompatValidator(
|
| 219 |
+
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def validate_cum_func_with_skipna(skipna: bool, args, kwargs, name) -> bool:
|
| 224 |
+
"""
|
| 225 |
+
If this function is called via the 'numpy' library, the third parameter in
|
| 226 |
+
its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so
|
| 227 |
+
check if the 'skipna' parameter is a boolean or not
|
| 228 |
+
"""
|
| 229 |
+
if not is_bool(skipna):
|
| 230 |
+
args = (skipna,) + args
|
| 231 |
+
skipna = True
|
| 232 |
+
elif isinstance(skipna, np.bool_):
|
| 233 |
+
skipna = bool(skipna)
|
| 234 |
+
|
| 235 |
+
validate_cum_func(args, kwargs, fname=name)
|
| 236 |
+
return skipna
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
ALLANY_DEFAULTS: dict[str, bool | None] = {}
|
| 240 |
+
ALLANY_DEFAULTS["dtype"] = None
|
| 241 |
+
ALLANY_DEFAULTS["out"] = None
|
| 242 |
+
ALLANY_DEFAULTS["keepdims"] = False
|
| 243 |
+
ALLANY_DEFAULTS["axis"] = None
|
| 244 |
+
validate_all = CompatValidator(
|
| 245 |
+
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
|
| 246 |
+
)
|
| 247 |
+
validate_any = CompatValidator(
|
| 248 |
+
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False}
|
| 252 |
+
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
| 253 |
+
|
| 254 |
+
MINMAX_DEFAULTS = {"axis": None, "dtype": None, "out": None, "keepdims": False}
|
| 255 |
+
validate_min = CompatValidator(
|
| 256 |
+
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
| 257 |
+
)
|
| 258 |
+
validate_max = CompatValidator(
|
| 259 |
+
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
RESHAPE_DEFAULTS: dict[str, str] = {"order": "C"}
|
| 263 |
+
validate_reshape = CompatValidator(
|
| 264 |
+
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
REPEAT_DEFAULTS: dict[str, Any] = {"axis": None}
|
| 268 |
+
validate_repeat = CompatValidator(
|
| 269 |
+
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
ROUND_DEFAULTS: dict[str, Any] = {"out": None}
|
| 273 |
+
validate_round = CompatValidator(
|
| 274 |
+
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
SORT_DEFAULTS: dict[str, int | str | None] = {}
|
| 278 |
+
SORT_DEFAULTS["axis"] = -1
|
| 279 |
+
SORT_DEFAULTS["kind"] = "quicksort"
|
| 280 |
+
SORT_DEFAULTS["order"] = None
|
| 281 |
+
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
| 282 |
+
|
| 283 |
+
STAT_FUNC_DEFAULTS: dict[str, Any | None] = {}
|
| 284 |
+
STAT_FUNC_DEFAULTS["dtype"] = None
|
| 285 |
+
STAT_FUNC_DEFAULTS["out"] = None
|
| 286 |
+
|
| 287 |
+
SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
| 288 |
+
SUM_DEFAULTS["axis"] = None
|
| 289 |
+
SUM_DEFAULTS["keepdims"] = False
|
| 290 |
+
SUM_DEFAULTS["initial"] = None
|
| 291 |
+
|
| 292 |
+
PROD_DEFAULTS = SUM_DEFAULTS.copy()
|
| 293 |
+
|
| 294 |
+
MEAN_DEFAULTS = SUM_DEFAULTS.copy()
|
| 295 |
+
|
| 296 |
+
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
| 297 |
+
MEDIAN_DEFAULTS["overwrite_input"] = False
|
| 298 |
+
MEDIAN_DEFAULTS["keepdims"] = False
|
| 299 |
+
|
| 300 |
+
STAT_FUNC_DEFAULTS["keepdims"] = False
|
| 301 |
+
|
| 302 |
+
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
|
| 303 |
+
validate_sum = CompatValidator(
|
| 304 |
+
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
|
| 305 |
+
)
|
| 306 |
+
validate_prod = CompatValidator(
|
| 307 |
+
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
|
| 308 |
+
)
|
| 309 |
+
validate_mean = CompatValidator(
|
| 310 |
+
MEAN_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
|
| 311 |
+
)
|
| 312 |
+
validate_median = CompatValidator(
|
| 313 |
+
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
STAT_DDOF_FUNC_DEFAULTS: dict[str, bool | None] = {}
|
| 317 |
+
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
| 318 |
+
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
| 319 |
+
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
| 320 |
+
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
| 321 |
+
|
| 322 |
+
TAKE_DEFAULTS: dict[str, str | None] = {}
|
| 323 |
+
TAKE_DEFAULTS["out"] = None
|
| 324 |
+
TAKE_DEFAULTS["mode"] = "raise"
|
| 325 |
+
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def validate_take_with_convert(convert: ndarray | bool | None, args, kwargs) -> bool:
|
| 329 |
+
"""
|
| 330 |
+
If this function is called via the 'numpy' library, the third parameter in
|
| 331 |
+
its signature is 'axis', which takes either an ndarray or 'None', so check
|
| 332 |
+
if the 'convert' parameter is either an instance of ndarray or is None
|
| 333 |
+
"""
|
| 334 |
+
if isinstance(convert, ndarray) or convert is None:
|
| 335 |
+
args = (convert,) + args
|
| 336 |
+
convert = True
|
| 337 |
+
|
| 338 |
+
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
|
| 339 |
+
return convert
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
TRANSPOSE_DEFAULTS = {"axes": None}
|
| 343 |
+
validate_transpose = CompatValidator(
|
| 344 |
+
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def validate_groupby_func(name: str, args, kwargs, allowed=None) -> None:
|
| 349 |
+
"""
|
| 350 |
+
'args' and 'kwargs' should be empty, except for allowed kwargs because all
|
| 351 |
+
of their necessary parameters are explicitly listed in the function
|
| 352 |
+
signature
|
| 353 |
+
"""
|
| 354 |
+
if allowed is None:
|
| 355 |
+
allowed = []
|
| 356 |
+
|
| 357 |
+
kwargs = set(kwargs) - set(allowed)
|
| 358 |
+
|
| 359 |
+
if len(args) + len(kwargs) > 0:
|
| 360 |
+
raise UnsupportedFunctionCall(
|
| 361 |
+
"numpy operations are not valid with groupby. "
|
| 362 |
+
f"Use .groupby(...).{name}() instead"
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def validate_resampler_func(method: str, args, kwargs) -> None:
|
| 370 |
+
"""
|
| 371 |
+
'args' and 'kwargs' should be empty because all of their necessary
|
| 372 |
+
parameters are explicitly listed in the function signature
|
| 373 |
+
"""
|
| 374 |
+
if len(args) + len(kwargs) > 0:
|
| 375 |
+
if method in RESAMPLER_NUMPY_OPS:
|
| 376 |
+
raise UnsupportedFunctionCall(
|
| 377 |
+
"numpy operations are not valid with resample. "
|
| 378 |
+
f"Use .resample(...).{method}() instead"
|
| 379 |
+
)
|
| 380 |
+
raise TypeError("too many arguments passed in")
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def validate_minmax_axis(axis: AxisInt | None, ndim: int = 1) -> None:
|
| 384 |
+
"""
|
| 385 |
+
Ensure that the axis argument passed to min, max, argmin, or argmax is zero
|
| 386 |
+
or None, as otherwise it will be incorrectly ignored.
|
| 387 |
+
|
| 388 |
+
Parameters
|
| 389 |
+
----------
|
| 390 |
+
axis : int or None
|
| 391 |
+
ndim : int, default 1
|
| 392 |
+
|
| 393 |
+
Raises
|
| 394 |
+
------
|
| 395 |
+
ValueError
|
| 396 |
+
"""
|
| 397 |
+
if axis is None:
|
| 398 |
+
return
|
| 399 |
+
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
| 400 |
+
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
_validation_funcs = {
|
| 404 |
+
"median": validate_median,
|
| 405 |
+
"mean": validate_mean,
|
| 406 |
+
"min": validate_min,
|
| 407 |
+
"max": validate_max,
|
| 408 |
+
"sum": validate_sum,
|
| 409 |
+
"prod": validate_prod,
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def validate_func(fname, args, kwargs) -> None:
|
| 414 |
+
if fname not in _validation_funcs:
|
| 415 |
+
return validate_stat_func(args, kwargs, fname=fname)
|
| 416 |
+
|
| 417 |
+
validation_func = _validation_funcs[fname]
|
| 418 |
+
return validation_func(args, kwargs)
|
emu3/lib/python3.10/site-packages/pandas/plotting/__init__.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Plotting public API.
|
| 3 |
+
|
| 4 |
+
Authors of third-party plotting backends should implement a module with a
|
| 5 |
+
public ``plot(data, kind, **kwargs)``. The parameter `data` will contain
|
| 6 |
+
the data structure and can be a `Series` or a `DataFrame`. For example,
|
| 7 |
+
for ``df.plot()`` the parameter `data` will contain the DataFrame `df`.
|
| 8 |
+
In some cases, the data structure is transformed before being sent to
|
| 9 |
+
the backend (see PlotAccessor.__call__ in pandas/plotting/_core.py for
|
| 10 |
+
the exact transformations).
|
| 11 |
+
|
| 12 |
+
The parameter `kind` will be one of:
|
| 13 |
+
|
| 14 |
+
- line
|
| 15 |
+
- bar
|
| 16 |
+
- barh
|
| 17 |
+
- box
|
| 18 |
+
- hist
|
| 19 |
+
- kde
|
| 20 |
+
- area
|
| 21 |
+
- pie
|
| 22 |
+
- scatter
|
| 23 |
+
- hexbin
|
| 24 |
+
|
| 25 |
+
See the pandas API reference for documentation on each kind of plot.
|
| 26 |
+
|
| 27 |
+
Any other keyword argument is currently assumed to be backend specific,
|
| 28 |
+
but some parameters may be unified and added to the signature in the
|
| 29 |
+
future (e.g. `title` which should be useful for any backend).
|
| 30 |
+
|
| 31 |
+
Currently, all the Matplotlib functions in pandas are accessed through
|
| 32 |
+
the selected backend. For example, `pandas.plotting.boxplot` (equivalent
|
| 33 |
+
to `DataFrame.boxplot`) is also accessed in the selected backend. This
|
| 34 |
+
is expected to change, and the exact API is under discussion. But with
|
| 35 |
+
the current version, backends are expected to implement the next functions:
|
| 36 |
+
|
| 37 |
+
- plot (describe above, used for `Series.plot` and `DataFrame.plot`)
|
| 38 |
+
- hist_series and hist_frame (for `Series.hist` and `DataFrame.hist`)
|
| 39 |
+
- boxplot (`pandas.plotting.boxplot(df)` equivalent to `DataFrame.boxplot`)
|
| 40 |
+
- boxplot_frame and boxplot_frame_groupby
|
| 41 |
+
- register and deregister (register converters for the tick formats)
|
| 42 |
+
- Plots not called as `Series` and `DataFrame` methods:
|
| 43 |
+
- table
|
| 44 |
+
- andrews_curves
|
| 45 |
+
- autocorrelation_plot
|
| 46 |
+
- bootstrap_plot
|
| 47 |
+
- lag_plot
|
| 48 |
+
- parallel_coordinates
|
| 49 |
+
- radviz
|
| 50 |
+
- scatter_matrix
|
| 51 |
+
|
| 52 |
+
Use the code in pandas/plotting/_matplotib.py and
|
| 53 |
+
https://github.com/pyviz/hvplot as a reference on how to write a backend.
|
| 54 |
+
|
| 55 |
+
For the discussion about the API see
|
| 56 |
+
https://github.com/pandas-dev/pandas/issues/26747.
|
| 57 |
+
"""
|
| 58 |
+
from pandas.plotting._core import (
|
| 59 |
+
PlotAccessor,
|
| 60 |
+
boxplot,
|
| 61 |
+
boxplot_frame,
|
| 62 |
+
boxplot_frame_groupby,
|
| 63 |
+
hist_frame,
|
| 64 |
+
hist_series,
|
| 65 |
+
)
|
| 66 |
+
from pandas.plotting._misc import (
|
| 67 |
+
andrews_curves,
|
| 68 |
+
autocorrelation_plot,
|
| 69 |
+
bootstrap_plot,
|
| 70 |
+
deregister as deregister_matplotlib_converters,
|
| 71 |
+
lag_plot,
|
| 72 |
+
parallel_coordinates,
|
| 73 |
+
plot_params,
|
| 74 |
+
radviz,
|
| 75 |
+
register as register_matplotlib_converters,
|
| 76 |
+
scatter_matrix,
|
| 77 |
+
table,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
__all__ = [
|
| 81 |
+
"PlotAccessor",
|
| 82 |
+
"boxplot",
|
| 83 |
+
"boxplot_frame",
|
| 84 |
+
"boxplot_frame_groupby",
|
| 85 |
+
"hist_frame",
|
| 86 |
+
"hist_series",
|
| 87 |
+
"scatter_matrix",
|
| 88 |
+
"radviz",
|
| 89 |
+
"andrews_curves",
|
| 90 |
+
"bootstrap_plot",
|
| 91 |
+
"parallel_coordinates",
|
| 92 |
+
"lag_plot",
|
| 93 |
+
"autocorrelation_plot",
|
| 94 |
+
"table",
|
| 95 |
+
"plot_params",
|
| 96 |
+
"register_matplotlib_converters",
|
| 97 |
+
"deregister_matplotlib_converters",
|
| 98 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (2.79 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/_core.cpython-310.pyc
ADDED
|
Binary file (61.2 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/__pycache__/_misc.cpython-310.pyc
ADDED
|
Binary file (21.2 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_core.py
ADDED
|
@@ -0,0 +1,1946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import importlib
|
| 4 |
+
from typing import (
|
| 5 |
+
TYPE_CHECKING,
|
| 6 |
+
Callable,
|
| 7 |
+
Literal,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
from pandas._config import get_option
|
| 11 |
+
|
| 12 |
+
from pandas.util._decorators import (
|
| 13 |
+
Appender,
|
| 14 |
+
Substitution,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
from pandas.core.dtypes.common import (
|
| 18 |
+
is_integer,
|
| 19 |
+
is_list_like,
|
| 20 |
+
)
|
| 21 |
+
from pandas.core.dtypes.generic import (
|
| 22 |
+
ABCDataFrame,
|
| 23 |
+
ABCSeries,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
from pandas.core.base import PandasObject
|
| 27 |
+
|
| 28 |
+
if TYPE_CHECKING:
|
| 29 |
+
from collections.abc import (
|
| 30 |
+
Hashable,
|
| 31 |
+
Sequence,
|
| 32 |
+
)
|
| 33 |
+
import types
|
| 34 |
+
|
| 35 |
+
from matplotlib.axes import Axes
|
| 36 |
+
import numpy as np
|
| 37 |
+
|
| 38 |
+
from pandas._typing import IndexLabel
|
| 39 |
+
|
| 40 |
+
from pandas import (
|
| 41 |
+
DataFrame,
|
| 42 |
+
Series,
|
| 43 |
+
)
|
| 44 |
+
from pandas.core.groupby.generic import DataFrameGroupBy
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def hist_series(
|
| 48 |
+
self: Series,
|
| 49 |
+
by=None,
|
| 50 |
+
ax=None,
|
| 51 |
+
grid: bool = True,
|
| 52 |
+
xlabelsize: int | None = None,
|
| 53 |
+
xrot: float | None = None,
|
| 54 |
+
ylabelsize: int | None = None,
|
| 55 |
+
yrot: float | None = None,
|
| 56 |
+
figsize: tuple[int, int] | None = None,
|
| 57 |
+
bins: int | Sequence[int] = 10,
|
| 58 |
+
backend: str | None = None,
|
| 59 |
+
legend: bool = False,
|
| 60 |
+
**kwargs,
|
| 61 |
+
):
|
| 62 |
+
"""
|
| 63 |
+
Draw histogram of the input series using matplotlib.
|
| 64 |
+
|
| 65 |
+
Parameters
|
| 66 |
+
----------
|
| 67 |
+
by : object, optional
|
| 68 |
+
If passed, then used to form histograms for separate groups.
|
| 69 |
+
ax : matplotlib axis object
|
| 70 |
+
If not passed, uses gca().
|
| 71 |
+
grid : bool, default True
|
| 72 |
+
Whether to show axis grid lines.
|
| 73 |
+
xlabelsize : int, default None
|
| 74 |
+
If specified changes the x-axis label size.
|
| 75 |
+
xrot : float, default None
|
| 76 |
+
Rotation of x axis labels.
|
| 77 |
+
ylabelsize : int, default None
|
| 78 |
+
If specified changes the y-axis label size.
|
| 79 |
+
yrot : float, default None
|
| 80 |
+
Rotation of y axis labels.
|
| 81 |
+
figsize : tuple, default None
|
| 82 |
+
Figure size in inches by default.
|
| 83 |
+
bins : int or sequence, default 10
|
| 84 |
+
Number of histogram bins to be used. If an integer is given, bins + 1
|
| 85 |
+
bin edges are calculated and returned. If bins is a sequence, gives
|
| 86 |
+
bin edges, including left edge of first bin and right edge of last
|
| 87 |
+
bin. In this case, bins is returned unmodified.
|
| 88 |
+
backend : str, default None
|
| 89 |
+
Backend to use instead of the backend specified in the option
|
| 90 |
+
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
|
| 91 |
+
specify the ``plotting.backend`` for the whole session, set
|
| 92 |
+
``pd.options.plotting.backend``.
|
| 93 |
+
legend : bool, default False
|
| 94 |
+
Whether to show the legend.
|
| 95 |
+
|
| 96 |
+
**kwargs
|
| 97 |
+
To be passed to the actual plotting function.
|
| 98 |
+
|
| 99 |
+
Returns
|
| 100 |
+
-------
|
| 101 |
+
matplotlib.AxesSubplot
|
| 102 |
+
A histogram plot.
|
| 103 |
+
|
| 104 |
+
See Also
|
| 105 |
+
--------
|
| 106 |
+
matplotlib.axes.Axes.hist : Plot a histogram using matplotlib.
|
| 107 |
+
|
| 108 |
+
Examples
|
| 109 |
+
--------
|
| 110 |
+
For Series:
|
| 111 |
+
|
| 112 |
+
.. plot::
|
| 113 |
+
:context: close-figs
|
| 114 |
+
|
| 115 |
+
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
|
| 116 |
+
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
|
| 117 |
+
>>> hist = ser.hist()
|
| 118 |
+
|
| 119 |
+
For Groupby:
|
| 120 |
+
|
| 121 |
+
.. plot::
|
| 122 |
+
:context: close-figs
|
| 123 |
+
|
| 124 |
+
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
|
| 125 |
+
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
|
| 126 |
+
>>> hist = ser.groupby(level=0).hist()
|
| 127 |
+
"""
|
| 128 |
+
plot_backend = _get_plot_backend(backend)
|
| 129 |
+
return plot_backend.hist_series(
|
| 130 |
+
self,
|
| 131 |
+
by=by,
|
| 132 |
+
ax=ax,
|
| 133 |
+
grid=grid,
|
| 134 |
+
xlabelsize=xlabelsize,
|
| 135 |
+
xrot=xrot,
|
| 136 |
+
ylabelsize=ylabelsize,
|
| 137 |
+
yrot=yrot,
|
| 138 |
+
figsize=figsize,
|
| 139 |
+
bins=bins,
|
| 140 |
+
legend=legend,
|
| 141 |
+
**kwargs,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def hist_frame(
|
| 146 |
+
data: DataFrame,
|
| 147 |
+
column: IndexLabel | None = None,
|
| 148 |
+
by=None,
|
| 149 |
+
grid: bool = True,
|
| 150 |
+
xlabelsize: int | None = None,
|
| 151 |
+
xrot: float | None = None,
|
| 152 |
+
ylabelsize: int | None = None,
|
| 153 |
+
yrot: float | None = None,
|
| 154 |
+
ax=None,
|
| 155 |
+
sharex: bool = False,
|
| 156 |
+
sharey: bool = False,
|
| 157 |
+
figsize: tuple[int, int] | None = None,
|
| 158 |
+
layout: tuple[int, int] | None = None,
|
| 159 |
+
bins: int | Sequence[int] = 10,
|
| 160 |
+
backend: str | None = None,
|
| 161 |
+
legend: bool = False,
|
| 162 |
+
**kwargs,
|
| 163 |
+
):
|
| 164 |
+
"""
|
| 165 |
+
Make a histogram of the DataFrame's columns.
|
| 166 |
+
|
| 167 |
+
A `histogram`_ is a representation of the distribution of data.
|
| 168 |
+
This function calls :meth:`matplotlib.pyplot.hist`, on each series in
|
| 169 |
+
the DataFrame, resulting in one histogram per column.
|
| 170 |
+
|
| 171 |
+
.. _histogram: https://en.wikipedia.org/wiki/Histogram
|
| 172 |
+
|
| 173 |
+
Parameters
|
| 174 |
+
----------
|
| 175 |
+
data : DataFrame
|
| 176 |
+
The pandas object holding the data.
|
| 177 |
+
column : str or sequence, optional
|
| 178 |
+
If passed, will be used to limit data to a subset of columns.
|
| 179 |
+
by : object, optional
|
| 180 |
+
If passed, then used to form histograms for separate groups.
|
| 181 |
+
grid : bool, default True
|
| 182 |
+
Whether to show axis grid lines.
|
| 183 |
+
xlabelsize : int, default None
|
| 184 |
+
If specified changes the x-axis label size.
|
| 185 |
+
xrot : float, default None
|
| 186 |
+
Rotation of x axis labels. For example, a value of 90 displays the
|
| 187 |
+
x labels rotated 90 degrees clockwise.
|
| 188 |
+
ylabelsize : int, default None
|
| 189 |
+
If specified changes the y-axis label size.
|
| 190 |
+
yrot : float, default None
|
| 191 |
+
Rotation of y axis labels. For example, a value of 90 displays the
|
| 192 |
+
y labels rotated 90 degrees clockwise.
|
| 193 |
+
ax : Matplotlib axes object, default None
|
| 194 |
+
The axes to plot the histogram on.
|
| 195 |
+
sharex : bool, default True if ax is None else False
|
| 196 |
+
In case subplots=True, share x axis and set some x axis labels to
|
| 197 |
+
invisible; defaults to True if ax is None otherwise False if an ax
|
| 198 |
+
is passed in.
|
| 199 |
+
Note that passing in both an ax and sharex=True will alter all x axis
|
| 200 |
+
labels for all subplots in a figure.
|
| 201 |
+
sharey : bool, default False
|
| 202 |
+
In case subplots=True, share y axis and set some y axis labels to
|
| 203 |
+
invisible.
|
| 204 |
+
figsize : tuple, optional
|
| 205 |
+
The size in inches of the figure to create. Uses the value in
|
| 206 |
+
`matplotlib.rcParams` by default.
|
| 207 |
+
layout : tuple, optional
|
| 208 |
+
Tuple of (rows, columns) for the layout of the histograms.
|
| 209 |
+
bins : int or sequence, default 10
|
| 210 |
+
Number of histogram bins to be used. If an integer is given, bins + 1
|
| 211 |
+
bin edges are calculated and returned. If bins is a sequence, gives
|
| 212 |
+
bin edges, including left edge of first bin and right edge of last
|
| 213 |
+
bin. In this case, bins is returned unmodified.
|
| 214 |
+
|
| 215 |
+
backend : str, default None
|
| 216 |
+
Backend to use instead of the backend specified in the option
|
| 217 |
+
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
|
| 218 |
+
specify the ``plotting.backend`` for the whole session, set
|
| 219 |
+
``pd.options.plotting.backend``.
|
| 220 |
+
|
| 221 |
+
legend : bool, default False
|
| 222 |
+
Whether to show the legend.
|
| 223 |
+
|
| 224 |
+
**kwargs
|
| 225 |
+
All other plotting keyword arguments to be passed to
|
| 226 |
+
:meth:`matplotlib.pyplot.hist`.
|
| 227 |
+
|
| 228 |
+
Returns
|
| 229 |
+
-------
|
| 230 |
+
matplotlib.AxesSubplot or numpy.ndarray of them
|
| 231 |
+
|
| 232 |
+
See Also
|
| 233 |
+
--------
|
| 234 |
+
matplotlib.pyplot.hist : Plot a histogram using matplotlib.
|
| 235 |
+
|
| 236 |
+
Examples
|
| 237 |
+
--------
|
| 238 |
+
This example draws a histogram based on the length and width of
|
| 239 |
+
some animals, displayed in three bins
|
| 240 |
+
|
| 241 |
+
.. plot::
|
| 242 |
+
:context: close-figs
|
| 243 |
+
|
| 244 |
+
>>> data = {'length': [1.5, 0.5, 1.2, 0.9, 3],
|
| 245 |
+
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]}
|
| 246 |
+
>>> index = ['pig', 'rabbit', 'duck', 'chicken', 'horse']
|
| 247 |
+
>>> df = pd.DataFrame(data, index=index)
|
| 248 |
+
>>> hist = df.hist(bins=3)
|
| 249 |
+
"""
|
| 250 |
+
plot_backend = _get_plot_backend(backend)
|
| 251 |
+
return plot_backend.hist_frame(
|
| 252 |
+
data,
|
| 253 |
+
column=column,
|
| 254 |
+
by=by,
|
| 255 |
+
grid=grid,
|
| 256 |
+
xlabelsize=xlabelsize,
|
| 257 |
+
xrot=xrot,
|
| 258 |
+
ylabelsize=ylabelsize,
|
| 259 |
+
yrot=yrot,
|
| 260 |
+
ax=ax,
|
| 261 |
+
sharex=sharex,
|
| 262 |
+
sharey=sharey,
|
| 263 |
+
figsize=figsize,
|
| 264 |
+
layout=layout,
|
| 265 |
+
legend=legend,
|
| 266 |
+
bins=bins,
|
| 267 |
+
**kwargs,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
_boxplot_doc = """
|
| 272 |
+
Make a box plot from DataFrame columns.
|
| 273 |
+
|
| 274 |
+
Make a box-and-whisker plot from DataFrame columns, optionally grouped
|
| 275 |
+
by some other columns. A box plot is a method for graphically depicting
|
| 276 |
+
groups of numerical data through their quartiles.
|
| 277 |
+
The box extends from the Q1 to Q3 quartile values of the data,
|
| 278 |
+
with a line at the median (Q2). The whiskers extend from the edges
|
| 279 |
+
of box to show the range of the data. By default, they extend no more than
|
| 280 |
+
`1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest
|
| 281 |
+
data point within that interval. Outliers are plotted as separate dots.
|
| 282 |
+
|
| 283 |
+
For further details see
|
| 284 |
+
Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.
|
| 285 |
+
|
| 286 |
+
Parameters
|
| 287 |
+
----------
|
| 288 |
+
%(data)s\
|
| 289 |
+
column : str or list of str, optional
|
| 290 |
+
Column name or list of names, or vector.
|
| 291 |
+
Can be any valid input to :meth:`pandas.DataFrame.groupby`.
|
| 292 |
+
by : str or array-like, optional
|
| 293 |
+
Column in the DataFrame to :meth:`pandas.DataFrame.groupby`.
|
| 294 |
+
One box-plot will be done per value of columns in `by`.
|
| 295 |
+
ax : object of class matplotlib.axes.Axes, optional
|
| 296 |
+
The matplotlib axes to be used by boxplot.
|
| 297 |
+
fontsize : float or str
|
| 298 |
+
Tick label font size in points or as a string (e.g., `large`).
|
| 299 |
+
rot : float, default 0
|
| 300 |
+
The rotation angle of labels (in degrees)
|
| 301 |
+
with respect to the screen coordinate system.
|
| 302 |
+
grid : bool, default True
|
| 303 |
+
Setting this to True will show the grid.
|
| 304 |
+
figsize : A tuple (width, height) in inches
|
| 305 |
+
The size of the figure to create in matplotlib.
|
| 306 |
+
layout : tuple (rows, columns), optional
|
| 307 |
+
For example, (3, 5) will display the subplots
|
| 308 |
+
using 3 rows and 5 columns, starting from the top-left.
|
| 309 |
+
return_type : {'axes', 'dict', 'both'} or None, default 'axes'
|
| 310 |
+
The kind of object to return. The default is ``axes``.
|
| 311 |
+
|
| 312 |
+
* 'axes' returns the matplotlib axes the boxplot is drawn on.
|
| 313 |
+
* 'dict' returns a dictionary whose values are the matplotlib
|
| 314 |
+
Lines of the boxplot.
|
| 315 |
+
* 'both' returns a namedtuple with the axes and dict.
|
| 316 |
+
* when grouping with ``by``, a Series mapping columns to
|
| 317 |
+
``return_type`` is returned.
|
| 318 |
+
|
| 319 |
+
If ``return_type`` is `None`, a NumPy array
|
| 320 |
+
of axes with the same shape as ``layout`` is returned.
|
| 321 |
+
%(backend)s\
|
| 322 |
+
|
| 323 |
+
**kwargs
|
| 324 |
+
All other plotting keyword arguments to be passed to
|
| 325 |
+
:func:`matplotlib.pyplot.boxplot`.
|
| 326 |
+
|
| 327 |
+
Returns
|
| 328 |
+
-------
|
| 329 |
+
result
|
| 330 |
+
See Notes.
|
| 331 |
+
|
| 332 |
+
See Also
|
| 333 |
+
--------
|
| 334 |
+
pandas.Series.plot.hist: Make a histogram.
|
| 335 |
+
matplotlib.pyplot.boxplot : Matplotlib equivalent plot.
|
| 336 |
+
|
| 337 |
+
Notes
|
| 338 |
+
-----
|
| 339 |
+
The return type depends on the `return_type` parameter:
|
| 340 |
+
|
| 341 |
+
* 'axes' : object of class matplotlib.axes.Axes
|
| 342 |
+
* 'dict' : dict of matplotlib.lines.Line2D objects
|
| 343 |
+
* 'both' : a namedtuple with structure (ax, lines)
|
| 344 |
+
|
| 345 |
+
For data grouped with ``by``, return a Series of the above or a numpy
|
| 346 |
+
array:
|
| 347 |
+
|
| 348 |
+
* :class:`~pandas.Series`
|
| 349 |
+
* :class:`~numpy.array` (for ``return_type = None``)
|
| 350 |
+
|
| 351 |
+
Use ``return_type='dict'`` when you want to tweak the appearance
|
| 352 |
+
of the lines after plotting. In this case a dict containing the Lines
|
| 353 |
+
making up the boxes, caps, fliers, medians, and whiskers is returned.
|
| 354 |
+
|
| 355 |
+
Examples
|
| 356 |
+
--------
|
| 357 |
+
|
| 358 |
+
Boxplots can be created for every column in the dataframe
|
| 359 |
+
by ``df.boxplot()`` or indicating the columns to be used:
|
| 360 |
+
|
| 361 |
+
.. plot::
|
| 362 |
+
:context: close-figs
|
| 363 |
+
|
| 364 |
+
>>> np.random.seed(1234)
|
| 365 |
+
>>> df = pd.DataFrame(np.random.randn(10, 4),
|
| 366 |
+
... columns=['Col1', 'Col2', 'Col3', 'Col4'])
|
| 367 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
|
| 368 |
+
|
| 369 |
+
Boxplots of variables distributions grouped by the values of a third
|
| 370 |
+
variable can be created using the option ``by``. For instance:
|
| 371 |
+
|
| 372 |
+
.. plot::
|
| 373 |
+
:context: close-figs
|
| 374 |
+
|
| 375 |
+
>>> df = pd.DataFrame(np.random.randn(10, 2),
|
| 376 |
+
... columns=['Col1', 'Col2'])
|
| 377 |
+
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
|
| 378 |
+
... 'B', 'B', 'B', 'B', 'B'])
|
| 379 |
+
>>> boxplot = df.boxplot(by='X')
|
| 380 |
+
|
| 381 |
+
A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
|
| 382 |
+
in order to group the data by combination of the variables in the x-axis:
|
| 383 |
+
|
| 384 |
+
.. plot::
|
| 385 |
+
:context: close-figs
|
| 386 |
+
|
| 387 |
+
>>> df = pd.DataFrame(np.random.randn(10, 3),
|
| 388 |
+
... columns=['Col1', 'Col2', 'Col3'])
|
| 389 |
+
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
|
| 390 |
+
... 'B', 'B', 'B', 'B', 'B'])
|
| 391 |
+
>>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
|
| 392 |
+
... 'B', 'A', 'B', 'A', 'B'])
|
| 393 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
|
| 394 |
+
|
| 395 |
+
The layout of boxplot can be adjusted giving a tuple to ``layout``:
|
| 396 |
+
|
| 397 |
+
.. plot::
|
| 398 |
+
:context: close-figs
|
| 399 |
+
|
| 400 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
|
| 401 |
+
... layout=(2, 1))
|
| 402 |
+
|
| 403 |
+
Additional formatting can be done to the boxplot, like suppressing the grid
|
| 404 |
+
(``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
|
| 405 |
+
or changing the fontsize (i.e. ``fontsize=15``):
|
| 406 |
+
|
| 407 |
+
.. plot::
|
| 408 |
+
:context: close-figs
|
| 409 |
+
|
| 410 |
+
>>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) # doctest: +SKIP
|
| 411 |
+
|
| 412 |
+
The parameter ``return_type`` can be used to select the type of element
|
| 413 |
+
returned by `boxplot`. When ``return_type='axes'`` is selected,
|
| 414 |
+
the matplotlib axes on which the boxplot is drawn are returned:
|
| 415 |
+
|
| 416 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
|
| 417 |
+
>>> type(boxplot)
|
| 418 |
+
<class 'matplotlib.axes._axes.Axes'>
|
| 419 |
+
|
| 420 |
+
When grouping with ``by``, a Series mapping columns to ``return_type``
|
| 421 |
+
is returned:
|
| 422 |
+
|
| 423 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
|
| 424 |
+
... return_type='axes')
|
| 425 |
+
>>> type(boxplot)
|
| 426 |
+
<class 'pandas.core.series.Series'>
|
| 427 |
+
|
| 428 |
+
If ``return_type`` is `None`, a NumPy array of axes with the same shape
|
| 429 |
+
as ``layout`` is returned:
|
| 430 |
+
|
| 431 |
+
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
|
| 432 |
+
... return_type=None)
|
| 433 |
+
>>> type(boxplot)
|
| 434 |
+
<class 'numpy.ndarray'>
|
| 435 |
+
"""
|
| 436 |
+
|
| 437 |
+
_backend_doc = """\
|
| 438 |
+
backend : str, default None
|
| 439 |
+
Backend to use instead of the backend specified in the option
|
| 440 |
+
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
|
| 441 |
+
specify the ``plotting.backend`` for the whole session, set
|
| 442 |
+
``pd.options.plotting.backend``.
|
| 443 |
+
"""
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
_bar_or_line_doc = """
|
| 447 |
+
Parameters
|
| 448 |
+
----------
|
| 449 |
+
x : label or position, optional
|
| 450 |
+
Allows plotting of one column versus another. If not specified,
|
| 451 |
+
the index of the DataFrame is used.
|
| 452 |
+
y : label or position, optional
|
| 453 |
+
Allows plotting of one column versus another. If not specified,
|
| 454 |
+
all numerical columns are used.
|
| 455 |
+
color : str, array-like, or dict, optional
|
| 456 |
+
The color for each of the DataFrame's columns. Possible values are:
|
| 457 |
+
|
| 458 |
+
- A single color string referred to by name, RGB or RGBA code,
|
| 459 |
+
for instance 'red' or '#a98d19'.
|
| 460 |
+
|
| 461 |
+
- A sequence of color strings referred to by name, RGB or RGBA
|
| 462 |
+
code, which will be used for each column recursively. For
|
| 463 |
+
instance ['green','yellow'] each column's %(kind)s will be filled in
|
| 464 |
+
green or yellow, alternatively. If there is only a single column to
|
| 465 |
+
be plotted, then only the first color from the color list will be
|
| 466 |
+
used.
|
| 467 |
+
|
| 468 |
+
- A dict of the form {column name : color}, so that each column will be
|
| 469 |
+
colored accordingly. For example, if your columns are called `a` and
|
| 470 |
+
`b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for
|
| 471 |
+
column `a` in green and %(kind)ss for column `b` in red.
|
| 472 |
+
|
| 473 |
+
**kwargs
|
| 474 |
+
Additional keyword arguments are documented in
|
| 475 |
+
:meth:`DataFrame.plot`.
|
| 476 |
+
|
| 477 |
+
Returns
|
| 478 |
+
-------
|
| 479 |
+
matplotlib.axes.Axes or np.ndarray of them
|
| 480 |
+
An ndarray is returned with one :class:`matplotlib.axes.Axes`
|
| 481 |
+
per column when ``subplots=True``.
|
| 482 |
+
"""
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
@Substitution(data="data : DataFrame\n The data to visualize.\n", backend="")
|
| 486 |
+
@Appender(_boxplot_doc)
|
| 487 |
+
def boxplot(
|
| 488 |
+
data: DataFrame,
|
| 489 |
+
column: str | list[str] | None = None,
|
| 490 |
+
by: str | list[str] | None = None,
|
| 491 |
+
ax: Axes | None = None,
|
| 492 |
+
fontsize: float | str | None = None,
|
| 493 |
+
rot: int = 0,
|
| 494 |
+
grid: bool = True,
|
| 495 |
+
figsize: tuple[float, float] | None = None,
|
| 496 |
+
layout: tuple[int, int] | None = None,
|
| 497 |
+
return_type: str | None = None,
|
| 498 |
+
**kwargs,
|
| 499 |
+
):
|
| 500 |
+
plot_backend = _get_plot_backend("matplotlib")
|
| 501 |
+
return plot_backend.boxplot(
|
| 502 |
+
data,
|
| 503 |
+
column=column,
|
| 504 |
+
by=by,
|
| 505 |
+
ax=ax,
|
| 506 |
+
fontsize=fontsize,
|
| 507 |
+
rot=rot,
|
| 508 |
+
grid=grid,
|
| 509 |
+
figsize=figsize,
|
| 510 |
+
layout=layout,
|
| 511 |
+
return_type=return_type,
|
| 512 |
+
**kwargs,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
@Substitution(data="", backend=_backend_doc)
|
| 517 |
+
@Appender(_boxplot_doc)
|
| 518 |
+
def boxplot_frame(
|
| 519 |
+
self: DataFrame,
|
| 520 |
+
column=None,
|
| 521 |
+
by=None,
|
| 522 |
+
ax=None,
|
| 523 |
+
fontsize: int | None = None,
|
| 524 |
+
rot: int = 0,
|
| 525 |
+
grid: bool = True,
|
| 526 |
+
figsize: tuple[float, float] | None = None,
|
| 527 |
+
layout=None,
|
| 528 |
+
return_type=None,
|
| 529 |
+
backend=None,
|
| 530 |
+
**kwargs,
|
| 531 |
+
):
|
| 532 |
+
plot_backend = _get_plot_backend(backend)
|
| 533 |
+
return plot_backend.boxplot_frame(
|
| 534 |
+
self,
|
| 535 |
+
column=column,
|
| 536 |
+
by=by,
|
| 537 |
+
ax=ax,
|
| 538 |
+
fontsize=fontsize,
|
| 539 |
+
rot=rot,
|
| 540 |
+
grid=grid,
|
| 541 |
+
figsize=figsize,
|
| 542 |
+
layout=layout,
|
| 543 |
+
return_type=return_type,
|
| 544 |
+
**kwargs,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
def boxplot_frame_groupby(
|
| 549 |
+
grouped: DataFrameGroupBy,
|
| 550 |
+
subplots: bool = True,
|
| 551 |
+
column=None,
|
| 552 |
+
fontsize: int | None = None,
|
| 553 |
+
rot: int = 0,
|
| 554 |
+
grid: bool = True,
|
| 555 |
+
ax=None,
|
| 556 |
+
figsize: tuple[float, float] | None = None,
|
| 557 |
+
layout=None,
|
| 558 |
+
sharex: bool = False,
|
| 559 |
+
sharey: bool = True,
|
| 560 |
+
backend=None,
|
| 561 |
+
**kwargs,
|
| 562 |
+
):
|
| 563 |
+
"""
|
| 564 |
+
Make box plots from DataFrameGroupBy data.
|
| 565 |
+
|
| 566 |
+
Parameters
|
| 567 |
+
----------
|
| 568 |
+
grouped : Grouped DataFrame
|
| 569 |
+
subplots : bool
|
| 570 |
+
* ``False`` - no subplots will be used
|
| 571 |
+
* ``True`` - create a subplot for each group.
|
| 572 |
+
|
| 573 |
+
column : column name or list of names, or vector
|
| 574 |
+
Can be any valid input to groupby.
|
| 575 |
+
fontsize : float or str
|
| 576 |
+
rot : label rotation angle
|
| 577 |
+
grid : Setting this to True will show the grid
|
| 578 |
+
ax : Matplotlib axis object, default None
|
| 579 |
+
figsize : A tuple (width, height) in inches
|
| 580 |
+
layout : tuple (optional)
|
| 581 |
+
The layout of the plot: (rows, columns).
|
| 582 |
+
sharex : bool, default False
|
| 583 |
+
Whether x-axes will be shared among subplots.
|
| 584 |
+
sharey : bool, default True
|
| 585 |
+
Whether y-axes will be shared among subplots.
|
| 586 |
+
backend : str, default None
|
| 587 |
+
Backend to use instead of the backend specified in the option
|
| 588 |
+
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
|
| 589 |
+
specify the ``plotting.backend`` for the whole session, set
|
| 590 |
+
``pd.options.plotting.backend``.
|
| 591 |
+
**kwargs
|
| 592 |
+
All other plotting keyword arguments to be passed to
|
| 593 |
+
matplotlib's boxplot function.
|
| 594 |
+
|
| 595 |
+
Returns
|
| 596 |
+
-------
|
| 597 |
+
dict of key/value = group key/DataFrame.boxplot return value
|
| 598 |
+
or DataFrame.boxplot return value in case subplots=figures=False
|
| 599 |
+
|
| 600 |
+
Examples
|
| 601 |
+
--------
|
| 602 |
+
You can create boxplots for grouped data and show them as separate subplots:
|
| 603 |
+
|
| 604 |
+
.. plot::
|
| 605 |
+
:context: close-figs
|
| 606 |
+
|
| 607 |
+
>>> import itertools
|
| 608 |
+
>>> tuples = [t for t in itertools.product(range(1000), range(4))]
|
| 609 |
+
>>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
|
| 610 |
+
>>> data = np.random.randn(len(index), 4)
|
| 611 |
+
>>> df = pd.DataFrame(data, columns=list('ABCD'), index=index)
|
| 612 |
+
>>> grouped = df.groupby(level='lvl1')
|
| 613 |
+
>>> grouped.boxplot(rot=45, fontsize=12, figsize=(8, 10)) # doctest: +SKIP
|
| 614 |
+
|
| 615 |
+
The ``subplots=False`` option shows the boxplots in a single figure.
|
| 616 |
+
|
| 617 |
+
.. plot::
|
| 618 |
+
:context: close-figs
|
| 619 |
+
|
| 620 |
+
>>> grouped.boxplot(subplots=False, rot=45, fontsize=12) # doctest: +SKIP
|
| 621 |
+
"""
|
| 622 |
+
plot_backend = _get_plot_backend(backend)
|
| 623 |
+
return plot_backend.boxplot_frame_groupby(
|
| 624 |
+
grouped,
|
| 625 |
+
subplots=subplots,
|
| 626 |
+
column=column,
|
| 627 |
+
fontsize=fontsize,
|
| 628 |
+
rot=rot,
|
| 629 |
+
grid=grid,
|
| 630 |
+
ax=ax,
|
| 631 |
+
figsize=figsize,
|
| 632 |
+
layout=layout,
|
| 633 |
+
sharex=sharex,
|
| 634 |
+
sharey=sharey,
|
| 635 |
+
**kwargs,
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
class PlotAccessor(PandasObject):
|
| 640 |
+
"""
|
| 641 |
+
Make plots of Series or DataFrame.
|
| 642 |
+
|
| 643 |
+
Uses the backend specified by the
|
| 644 |
+
option ``plotting.backend``. By default, matplotlib is used.
|
| 645 |
+
|
| 646 |
+
Parameters
|
| 647 |
+
----------
|
| 648 |
+
data : Series or DataFrame
|
| 649 |
+
The object for which the method is called.
|
| 650 |
+
x : label or position, default None
|
| 651 |
+
Only used if data is a DataFrame.
|
| 652 |
+
y : label, position or list of label, positions, default None
|
| 653 |
+
Allows plotting of one column versus another. Only used if data is a
|
| 654 |
+
DataFrame.
|
| 655 |
+
kind : str
|
| 656 |
+
The kind of plot to produce:
|
| 657 |
+
|
| 658 |
+
- 'line' : line plot (default)
|
| 659 |
+
- 'bar' : vertical bar plot
|
| 660 |
+
- 'barh' : horizontal bar plot
|
| 661 |
+
- 'hist' : histogram
|
| 662 |
+
- 'box' : boxplot
|
| 663 |
+
- 'kde' : Kernel Density Estimation plot
|
| 664 |
+
- 'density' : same as 'kde'
|
| 665 |
+
- 'area' : area plot
|
| 666 |
+
- 'pie' : pie plot
|
| 667 |
+
- 'scatter' : scatter plot (DataFrame only)
|
| 668 |
+
- 'hexbin' : hexbin plot (DataFrame only)
|
| 669 |
+
ax : matplotlib axes object, default None
|
| 670 |
+
An axes of the current figure.
|
| 671 |
+
subplots : bool or sequence of iterables, default False
|
| 672 |
+
Whether to group columns into subplots:
|
| 673 |
+
|
| 674 |
+
- ``False`` : No subplots will be used
|
| 675 |
+
- ``True`` : Make separate subplots for each column.
|
| 676 |
+
- sequence of iterables of column labels: Create a subplot for each
|
| 677 |
+
group of columns. For example `[('a', 'c'), ('b', 'd')]` will
|
| 678 |
+
create 2 subplots: one with columns 'a' and 'c', and one
|
| 679 |
+
with columns 'b' and 'd'. Remaining columns that aren't specified
|
| 680 |
+
will be plotted in additional subplots (one per column).
|
| 681 |
+
|
| 682 |
+
.. versionadded:: 1.5.0
|
| 683 |
+
|
| 684 |
+
sharex : bool, default True if ax is None else False
|
| 685 |
+
In case ``subplots=True``, share x axis and set some x axis labels
|
| 686 |
+
to invisible; defaults to True if ax is None otherwise False if
|
| 687 |
+
an ax is passed in; Be aware, that passing in both an ax and
|
| 688 |
+
``sharex=True`` will alter all x axis labels for all axis in a figure.
|
| 689 |
+
sharey : bool, default False
|
| 690 |
+
In case ``subplots=True``, share y axis and set some y axis labels to invisible.
|
| 691 |
+
layout : tuple, optional
|
| 692 |
+
(rows, columns) for the layout of subplots.
|
| 693 |
+
figsize : a tuple (width, height) in inches
|
| 694 |
+
Size of a figure object.
|
| 695 |
+
use_index : bool, default True
|
| 696 |
+
Use index as ticks for x axis.
|
| 697 |
+
title : str or list
|
| 698 |
+
Title to use for the plot. If a string is passed, print the string
|
| 699 |
+
at the top of the figure. If a list is passed and `subplots` is
|
| 700 |
+
True, print each item in the list above the corresponding subplot.
|
| 701 |
+
grid : bool, default None (matlab style default)
|
| 702 |
+
Axis grid lines.
|
| 703 |
+
legend : bool or {'reverse'}
|
| 704 |
+
Place legend on axis subplots.
|
| 705 |
+
style : list or dict
|
| 706 |
+
The matplotlib line style per column.
|
| 707 |
+
logx : bool or 'sym', default False
|
| 708 |
+
Use log scaling or symlog scaling on x axis.
|
| 709 |
+
|
| 710 |
+
logy : bool or 'sym' default False
|
| 711 |
+
Use log scaling or symlog scaling on y axis.
|
| 712 |
+
|
| 713 |
+
loglog : bool or 'sym', default False
|
| 714 |
+
Use log scaling or symlog scaling on both x and y axes.
|
| 715 |
+
|
| 716 |
+
xticks : sequence
|
| 717 |
+
Values to use for the xticks.
|
| 718 |
+
yticks : sequence
|
| 719 |
+
Values to use for the yticks.
|
| 720 |
+
xlim : 2-tuple/list
|
| 721 |
+
Set the x limits of the current axes.
|
| 722 |
+
ylim : 2-tuple/list
|
| 723 |
+
Set the y limits of the current axes.
|
| 724 |
+
xlabel : label, optional
|
| 725 |
+
Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
|
| 726 |
+
x-column name for planar plots.
|
| 727 |
+
|
| 728 |
+
.. versionchanged:: 2.0.0
|
| 729 |
+
|
| 730 |
+
Now applicable to histograms.
|
| 731 |
+
|
| 732 |
+
ylabel : label, optional
|
| 733 |
+
Name to use for the ylabel on y-axis. Default will show no ylabel, or the
|
| 734 |
+
y-column name for planar plots.
|
| 735 |
+
|
| 736 |
+
.. versionchanged:: 2.0.0
|
| 737 |
+
|
| 738 |
+
Now applicable to histograms.
|
| 739 |
+
|
| 740 |
+
rot : float, default None
|
| 741 |
+
Rotation for ticks (xticks for vertical, yticks for horizontal
|
| 742 |
+
plots).
|
| 743 |
+
fontsize : float, default None
|
| 744 |
+
Font size for xticks and yticks.
|
| 745 |
+
colormap : str or matplotlib colormap object, default None
|
| 746 |
+
Colormap to select colors from. If string, load colormap with that
|
| 747 |
+
name from matplotlib.
|
| 748 |
+
colorbar : bool, optional
|
| 749 |
+
If True, plot colorbar (only relevant for 'scatter' and 'hexbin'
|
| 750 |
+
plots).
|
| 751 |
+
position : float
|
| 752 |
+
Specify relative alignments for bar plot layout.
|
| 753 |
+
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
|
| 754 |
+
(center).
|
| 755 |
+
table : bool, Series or DataFrame, default False
|
| 756 |
+
If True, draw a table using the data in the DataFrame and the data
|
| 757 |
+
will be transposed to meet matplotlib's default layout.
|
| 758 |
+
If a Series or DataFrame is passed, use passed data to draw a
|
| 759 |
+
table.
|
| 760 |
+
yerr : DataFrame, Series, array-like, dict and str
|
| 761 |
+
See :ref:`Plotting with Error Bars <visualization.errorbars>` for
|
| 762 |
+
detail.
|
| 763 |
+
xerr : DataFrame, Series, array-like, dict and str
|
| 764 |
+
Equivalent to yerr.
|
| 765 |
+
stacked : bool, default False in line and bar plots, and True in area plot
|
| 766 |
+
If True, create stacked plot.
|
| 767 |
+
secondary_y : bool or sequence, default False
|
| 768 |
+
Whether to plot on the secondary y-axis if a list/tuple, which
|
| 769 |
+
columns to plot on secondary y-axis.
|
| 770 |
+
mark_right : bool, default True
|
| 771 |
+
When using a secondary_y axis, automatically mark the column
|
| 772 |
+
labels with "(right)" in the legend.
|
| 773 |
+
include_bool : bool, default is False
|
| 774 |
+
If True, boolean values can be plotted.
|
| 775 |
+
backend : str, default None
|
| 776 |
+
Backend to use instead of the backend specified in the option
|
| 777 |
+
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
|
| 778 |
+
specify the ``plotting.backend`` for the whole session, set
|
| 779 |
+
``pd.options.plotting.backend``.
|
| 780 |
+
**kwargs
|
| 781 |
+
Options to pass to matplotlib plotting method.
|
| 782 |
+
|
| 783 |
+
Returns
|
| 784 |
+
-------
|
| 785 |
+
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
|
| 786 |
+
If the backend is not the default matplotlib one, the return value
|
| 787 |
+
will be the object returned by the backend.
|
| 788 |
+
|
| 789 |
+
Notes
|
| 790 |
+
-----
|
| 791 |
+
- See matplotlib documentation online for more on this subject
|
| 792 |
+
- If `kind` = 'bar' or 'barh', you can specify relative alignments
|
| 793 |
+
for bar plot layout by `position` keyword.
|
| 794 |
+
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
|
| 795 |
+
(center)
|
| 796 |
+
|
| 797 |
+
Examples
|
| 798 |
+
--------
|
| 799 |
+
For Series:
|
| 800 |
+
|
| 801 |
+
.. plot::
|
| 802 |
+
:context: close-figs
|
| 803 |
+
|
| 804 |
+
>>> ser = pd.Series([1, 2, 3, 3])
|
| 805 |
+
>>> plot = ser.plot(kind='hist', title="My plot")
|
| 806 |
+
|
| 807 |
+
For DataFrame:
|
| 808 |
+
|
| 809 |
+
.. plot::
|
| 810 |
+
:context: close-figs
|
| 811 |
+
|
| 812 |
+
>>> df = pd.DataFrame({'length': [1.5, 0.5, 1.2, 0.9, 3],
|
| 813 |
+
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]},
|
| 814 |
+
... index=['pig', 'rabbit', 'duck', 'chicken', 'horse'])
|
| 815 |
+
>>> plot = df.plot(title="DataFrame Plot")
|
| 816 |
+
|
| 817 |
+
For SeriesGroupBy:
|
| 818 |
+
|
| 819 |
+
.. plot::
|
| 820 |
+
:context: close-figs
|
| 821 |
+
|
| 822 |
+
>>> lst = [-1, -2, -3, 1, 2, 3]
|
| 823 |
+
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
|
| 824 |
+
>>> plot = ser.groupby(lambda x: x > 0).plot(title="SeriesGroupBy Plot")
|
| 825 |
+
|
| 826 |
+
For DataFrameGroupBy:
|
| 827 |
+
|
| 828 |
+
.. plot::
|
| 829 |
+
:context: close-figs
|
| 830 |
+
|
| 831 |
+
>>> df = pd.DataFrame({"col1" : [1, 2, 3, 4],
|
| 832 |
+
... "col2" : ["A", "B", "A", "B"]})
|
| 833 |
+
>>> plot = df.groupby("col2").plot(kind="bar", title="DataFrameGroupBy Plot")
|
| 834 |
+
"""
|
| 835 |
+
|
| 836 |
+
_common_kinds = ("line", "bar", "barh", "kde", "density", "area", "hist", "box")
|
| 837 |
+
_series_kinds = ("pie",)
|
| 838 |
+
_dataframe_kinds = ("scatter", "hexbin")
|
| 839 |
+
_kind_aliases = {"density": "kde"}
|
| 840 |
+
_all_kinds = _common_kinds + _series_kinds + _dataframe_kinds
|
| 841 |
+
|
| 842 |
+
def __init__(self, data: Series | DataFrame) -> None:
|
| 843 |
+
self._parent = data
|
| 844 |
+
|
| 845 |
+
@staticmethod
|
| 846 |
+
def _get_call_args(backend_name: str, data: Series | DataFrame, args, kwargs):
|
| 847 |
+
"""
|
| 848 |
+
This function makes calls to this accessor `__call__` method compatible
|
| 849 |
+
with the previous `SeriesPlotMethods.__call__` and
|
| 850 |
+
`DataFramePlotMethods.__call__`. Those had slightly different
|
| 851 |
+
signatures, since `DataFramePlotMethods` accepted `x` and `y`
|
| 852 |
+
parameters.
|
| 853 |
+
"""
|
| 854 |
+
if isinstance(data, ABCSeries):
|
| 855 |
+
arg_def = [
|
| 856 |
+
("kind", "line"),
|
| 857 |
+
("ax", None),
|
| 858 |
+
("figsize", None),
|
| 859 |
+
("use_index", True),
|
| 860 |
+
("title", None),
|
| 861 |
+
("grid", None),
|
| 862 |
+
("legend", False),
|
| 863 |
+
("style", None),
|
| 864 |
+
("logx", False),
|
| 865 |
+
("logy", False),
|
| 866 |
+
("loglog", False),
|
| 867 |
+
("xticks", None),
|
| 868 |
+
("yticks", None),
|
| 869 |
+
("xlim", None),
|
| 870 |
+
("ylim", None),
|
| 871 |
+
("rot", None),
|
| 872 |
+
("fontsize", None),
|
| 873 |
+
("colormap", None),
|
| 874 |
+
("table", False),
|
| 875 |
+
("yerr", None),
|
| 876 |
+
("xerr", None),
|
| 877 |
+
("label", None),
|
| 878 |
+
("secondary_y", False),
|
| 879 |
+
("xlabel", None),
|
| 880 |
+
("ylabel", None),
|
| 881 |
+
]
|
| 882 |
+
elif isinstance(data, ABCDataFrame):
|
| 883 |
+
arg_def = [
|
| 884 |
+
("x", None),
|
| 885 |
+
("y", None),
|
| 886 |
+
("kind", "line"),
|
| 887 |
+
("ax", None),
|
| 888 |
+
("subplots", False),
|
| 889 |
+
("sharex", None),
|
| 890 |
+
("sharey", False),
|
| 891 |
+
("layout", None),
|
| 892 |
+
("figsize", None),
|
| 893 |
+
("use_index", True),
|
| 894 |
+
("title", None),
|
| 895 |
+
("grid", None),
|
| 896 |
+
("legend", True),
|
| 897 |
+
("style", None),
|
| 898 |
+
("logx", False),
|
| 899 |
+
("logy", False),
|
| 900 |
+
("loglog", False),
|
| 901 |
+
("xticks", None),
|
| 902 |
+
("yticks", None),
|
| 903 |
+
("xlim", None),
|
| 904 |
+
("ylim", None),
|
| 905 |
+
("rot", None),
|
| 906 |
+
("fontsize", None),
|
| 907 |
+
("colormap", None),
|
| 908 |
+
("table", False),
|
| 909 |
+
("yerr", None),
|
| 910 |
+
("xerr", None),
|
| 911 |
+
("secondary_y", False),
|
| 912 |
+
("xlabel", None),
|
| 913 |
+
("ylabel", None),
|
| 914 |
+
]
|
| 915 |
+
else:
|
| 916 |
+
raise TypeError(
|
| 917 |
+
f"Called plot accessor for type {type(data).__name__}, "
|
| 918 |
+
"expected Series or DataFrame"
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
if args and isinstance(data, ABCSeries):
|
| 922 |
+
positional_args = str(args)[1:-1]
|
| 923 |
+
keyword_args = ", ".join(
|
| 924 |
+
[f"{name}={repr(value)}" for (name, _), value in zip(arg_def, args)]
|
| 925 |
+
)
|
| 926 |
+
msg = (
|
| 927 |
+
"`Series.plot()` should not be called with positional "
|
| 928 |
+
"arguments, only keyword arguments. The order of "
|
| 929 |
+
"positional arguments will change in the future. "
|
| 930 |
+
f"Use `Series.plot({keyword_args})` instead of "
|
| 931 |
+
f"`Series.plot({positional_args})`."
|
| 932 |
+
)
|
| 933 |
+
raise TypeError(msg)
|
| 934 |
+
|
| 935 |
+
pos_args = {name: value for (name, _), value in zip(arg_def, args)}
|
| 936 |
+
if backend_name == "pandas.plotting._matplotlib":
|
| 937 |
+
kwargs = dict(arg_def, **pos_args, **kwargs)
|
| 938 |
+
else:
|
| 939 |
+
kwargs = dict(pos_args, **kwargs)
|
| 940 |
+
|
| 941 |
+
x = kwargs.pop("x", None)
|
| 942 |
+
y = kwargs.pop("y", None)
|
| 943 |
+
kind = kwargs.pop("kind", "line")
|
| 944 |
+
return x, y, kind, kwargs
|
| 945 |
+
|
| 946 |
+
def __call__(self, *args, **kwargs):
|
| 947 |
+
plot_backend = _get_plot_backend(kwargs.pop("backend", None))
|
| 948 |
+
|
| 949 |
+
x, y, kind, kwargs = self._get_call_args(
|
| 950 |
+
plot_backend.__name__, self._parent, args, kwargs
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
kind = self._kind_aliases.get(kind, kind)
|
| 954 |
+
|
| 955 |
+
# when using another backend, get out of the way
|
| 956 |
+
if plot_backend.__name__ != "pandas.plotting._matplotlib":
|
| 957 |
+
return plot_backend.plot(self._parent, x=x, y=y, kind=kind, **kwargs)
|
| 958 |
+
|
| 959 |
+
if kind not in self._all_kinds:
|
| 960 |
+
raise ValueError(
|
| 961 |
+
f"{kind} is not a valid plot kind "
|
| 962 |
+
f"Valid plot kinds: {self._all_kinds}"
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
# The original data structured can be transformed before passed to the
|
| 966 |
+
# backend. For example, for DataFrame is common to set the index as the
|
| 967 |
+
# `x` parameter, and return a Series with the parameter `y` as values.
|
| 968 |
+
data = self._parent.copy()
|
| 969 |
+
|
| 970 |
+
if isinstance(data, ABCSeries):
|
| 971 |
+
kwargs["reuse_plot"] = True
|
| 972 |
+
|
| 973 |
+
if kind in self._dataframe_kinds:
|
| 974 |
+
if isinstance(data, ABCDataFrame):
|
| 975 |
+
return plot_backend.plot(data, x=x, y=y, kind=kind, **kwargs)
|
| 976 |
+
else:
|
| 977 |
+
raise ValueError(f"plot kind {kind} can only be used for data frames")
|
| 978 |
+
elif kind in self._series_kinds:
|
| 979 |
+
if isinstance(data, ABCDataFrame):
|
| 980 |
+
if y is None and kwargs.get("subplots") is False:
|
| 981 |
+
raise ValueError(
|
| 982 |
+
f"{kind} requires either y column or 'subplots=True'"
|
| 983 |
+
)
|
| 984 |
+
if y is not None:
|
| 985 |
+
if is_integer(y) and not data.columns._holds_integer():
|
| 986 |
+
y = data.columns[y]
|
| 987 |
+
# converted to series actually. copy to not modify
|
| 988 |
+
data = data[y].copy()
|
| 989 |
+
data.index.name = y
|
| 990 |
+
elif isinstance(data, ABCDataFrame):
|
| 991 |
+
data_cols = data.columns
|
| 992 |
+
if x is not None:
|
| 993 |
+
if is_integer(x) and not data.columns._holds_integer():
|
| 994 |
+
x = data_cols[x]
|
| 995 |
+
elif not isinstance(data[x], ABCSeries):
|
| 996 |
+
raise ValueError("x must be a label or position")
|
| 997 |
+
data = data.set_index(x)
|
| 998 |
+
if y is not None:
|
| 999 |
+
# check if we have y as int or list of ints
|
| 1000 |
+
int_ylist = is_list_like(y) and all(is_integer(c) for c in y)
|
| 1001 |
+
int_y_arg = is_integer(y) or int_ylist
|
| 1002 |
+
if int_y_arg and not data.columns._holds_integer():
|
| 1003 |
+
y = data_cols[y]
|
| 1004 |
+
|
| 1005 |
+
label_kw = kwargs["label"] if "label" in kwargs else False
|
| 1006 |
+
for kw in ["xerr", "yerr"]:
|
| 1007 |
+
if kw in kwargs and (
|
| 1008 |
+
isinstance(kwargs[kw], str) or is_integer(kwargs[kw])
|
| 1009 |
+
):
|
| 1010 |
+
try:
|
| 1011 |
+
kwargs[kw] = data[kwargs[kw]]
|
| 1012 |
+
except (IndexError, KeyError, TypeError):
|
| 1013 |
+
pass
|
| 1014 |
+
|
| 1015 |
+
# don't overwrite
|
| 1016 |
+
data = data[y].copy()
|
| 1017 |
+
|
| 1018 |
+
if isinstance(data, ABCSeries):
|
| 1019 |
+
label_name = label_kw or y
|
| 1020 |
+
data.name = label_name
|
| 1021 |
+
else:
|
| 1022 |
+
match = is_list_like(label_kw) and len(label_kw) == len(y)
|
| 1023 |
+
if label_kw and not match:
|
| 1024 |
+
raise ValueError(
|
| 1025 |
+
"label should be list-like and same length as y"
|
| 1026 |
+
)
|
| 1027 |
+
label_name = label_kw or data.columns
|
| 1028 |
+
data.columns = label_name
|
| 1029 |
+
|
| 1030 |
+
return plot_backend.plot(data, kind=kind, **kwargs)
|
| 1031 |
+
|
| 1032 |
+
__call__.__doc__ = __doc__
|
| 1033 |
+
|
| 1034 |
+
@Appender(
|
| 1035 |
+
"""
|
| 1036 |
+
See Also
|
| 1037 |
+
--------
|
| 1038 |
+
matplotlib.pyplot.plot : Plot y versus x as lines and/or markers.
|
| 1039 |
+
|
| 1040 |
+
Examples
|
| 1041 |
+
--------
|
| 1042 |
+
|
| 1043 |
+
.. plot::
|
| 1044 |
+
:context: close-figs
|
| 1045 |
+
|
| 1046 |
+
>>> s = pd.Series([1, 3, 2])
|
| 1047 |
+
>>> s.plot.line() # doctest: +SKIP
|
| 1048 |
+
|
| 1049 |
+
.. plot::
|
| 1050 |
+
:context: close-figs
|
| 1051 |
+
|
| 1052 |
+
The following example shows the populations for some animals
|
| 1053 |
+
over the years.
|
| 1054 |
+
|
| 1055 |
+
>>> df = pd.DataFrame({
|
| 1056 |
+
... 'pig': [20, 18, 489, 675, 1776],
|
| 1057 |
+
... 'horse': [4, 25, 281, 600, 1900]
|
| 1058 |
+
... }, index=[1990, 1997, 2003, 2009, 2014])
|
| 1059 |
+
>>> lines = df.plot.line()
|
| 1060 |
+
|
| 1061 |
+
.. plot::
|
| 1062 |
+
:context: close-figs
|
| 1063 |
+
|
| 1064 |
+
An example with subplots, so an array of axes is returned.
|
| 1065 |
+
|
| 1066 |
+
>>> axes = df.plot.line(subplots=True)
|
| 1067 |
+
>>> type(axes)
|
| 1068 |
+
<class 'numpy.ndarray'>
|
| 1069 |
+
|
| 1070 |
+
.. plot::
|
| 1071 |
+
:context: close-figs
|
| 1072 |
+
|
| 1073 |
+
Let's repeat the same example, but specifying colors for
|
| 1074 |
+
each column (in this case, for each animal).
|
| 1075 |
+
|
| 1076 |
+
>>> axes = df.plot.line(
|
| 1077 |
+
... subplots=True, color={"pig": "pink", "horse": "#742802"}
|
| 1078 |
+
... )
|
| 1079 |
+
|
| 1080 |
+
.. plot::
|
| 1081 |
+
:context: close-figs
|
| 1082 |
+
|
| 1083 |
+
The following example shows the relationship between both
|
| 1084 |
+
populations.
|
| 1085 |
+
|
| 1086 |
+
>>> lines = df.plot.line(x='pig', y='horse')
|
| 1087 |
+
"""
|
| 1088 |
+
)
|
| 1089 |
+
@Substitution(kind="line")
|
| 1090 |
+
@Appender(_bar_or_line_doc)
|
| 1091 |
+
def line(
|
| 1092 |
+
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
|
| 1093 |
+
) -> PlotAccessor:
|
| 1094 |
+
"""
|
| 1095 |
+
Plot Series or DataFrame as lines.
|
| 1096 |
+
|
| 1097 |
+
This function is useful to plot lines using DataFrame's values
|
| 1098 |
+
as coordinates.
|
| 1099 |
+
"""
|
| 1100 |
+
return self(kind="line", x=x, y=y, **kwargs)
|
| 1101 |
+
|
| 1102 |
+
@Appender(
|
| 1103 |
+
"""
|
| 1104 |
+
See Also
|
| 1105 |
+
--------
|
| 1106 |
+
DataFrame.plot.barh : Horizontal bar plot.
|
| 1107 |
+
DataFrame.plot : Make plots of a DataFrame.
|
| 1108 |
+
matplotlib.pyplot.bar : Make a bar plot with matplotlib.
|
| 1109 |
+
|
| 1110 |
+
Examples
|
| 1111 |
+
--------
|
| 1112 |
+
Basic plot.
|
| 1113 |
+
|
| 1114 |
+
.. plot::
|
| 1115 |
+
:context: close-figs
|
| 1116 |
+
|
| 1117 |
+
>>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]})
|
| 1118 |
+
>>> ax = df.plot.bar(x='lab', y='val', rot=0)
|
| 1119 |
+
|
| 1120 |
+
Plot a whole dataframe to a bar plot. Each column is assigned a
|
| 1121 |
+
distinct color, and each row is nested in a group along the
|
| 1122 |
+
horizontal axis.
|
| 1123 |
+
|
| 1124 |
+
.. plot::
|
| 1125 |
+
:context: close-figs
|
| 1126 |
+
|
| 1127 |
+
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
|
| 1128 |
+
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
|
| 1129 |
+
>>> index = ['snail', 'pig', 'elephant',
|
| 1130 |
+
... 'rabbit', 'giraffe', 'coyote', 'horse']
|
| 1131 |
+
>>> df = pd.DataFrame({'speed': speed,
|
| 1132 |
+
... 'lifespan': lifespan}, index=index)
|
| 1133 |
+
>>> ax = df.plot.bar(rot=0)
|
| 1134 |
+
|
| 1135 |
+
Plot stacked bar charts for the DataFrame
|
| 1136 |
+
|
| 1137 |
+
.. plot::
|
| 1138 |
+
:context: close-figs
|
| 1139 |
+
|
| 1140 |
+
>>> ax = df.plot.bar(stacked=True)
|
| 1141 |
+
|
| 1142 |
+
Instead of nesting, the figure can be split by column with
|
| 1143 |
+
``subplots=True``. In this case, a :class:`numpy.ndarray` of
|
| 1144 |
+
:class:`matplotlib.axes.Axes` are returned.
|
| 1145 |
+
|
| 1146 |
+
.. plot::
|
| 1147 |
+
:context: close-figs
|
| 1148 |
+
|
| 1149 |
+
>>> axes = df.plot.bar(rot=0, subplots=True)
|
| 1150 |
+
>>> axes[1].legend(loc=2) # doctest: +SKIP
|
| 1151 |
+
|
| 1152 |
+
If you don't like the default colours, you can specify how you'd
|
| 1153 |
+
like each column to be colored.
|
| 1154 |
+
|
| 1155 |
+
.. plot::
|
| 1156 |
+
:context: close-figs
|
| 1157 |
+
|
| 1158 |
+
>>> axes = df.plot.bar(
|
| 1159 |
+
... rot=0, subplots=True, color={"speed": "red", "lifespan": "green"}
|
| 1160 |
+
... )
|
| 1161 |
+
>>> axes[1].legend(loc=2) # doctest: +SKIP
|
| 1162 |
+
|
| 1163 |
+
Plot a single column.
|
| 1164 |
+
|
| 1165 |
+
.. plot::
|
| 1166 |
+
:context: close-figs
|
| 1167 |
+
|
| 1168 |
+
>>> ax = df.plot.bar(y='speed', rot=0)
|
| 1169 |
+
|
| 1170 |
+
Plot only selected categories for the DataFrame.
|
| 1171 |
+
|
| 1172 |
+
.. plot::
|
| 1173 |
+
:context: close-figs
|
| 1174 |
+
|
| 1175 |
+
>>> ax = df.plot.bar(x='lifespan', rot=0)
|
| 1176 |
+
"""
|
| 1177 |
+
)
|
| 1178 |
+
@Substitution(kind="bar")
|
| 1179 |
+
@Appender(_bar_or_line_doc)
|
| 1180 |
+
def bar( # pylint: disable=disallowed-name
|
| 1181 |
+
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
|
| 1182 |
+
) -> PlotAccessor:
|
| 1183 |
+
"""
|
| 1184 |
+
Vertical bar plot.
|
| 1185 |
+
|
| 1186 |
+
A bar plot is a plot that presents categorical data with
|
| 1187 |
+
rectangular bars with lengths proportional to the values that they
|
| 1188 |
+
represent. A bar plot shows comparisons among discrete categories. One
|
| 1189 |
+
axis of the plot shows the specific categories being compared, and the
|
| 1190 |
+
other axis represents a measured value.
|
| 1191 |
+
"""
|
| 1192 |
+
return self(kind="bar", x=x, y=y, **kwargs)
|
| 1193 |
+
|
| 1194 |
+
@Appender(
|
| 1195 |
+
"""
|
| 1196 |
+
See Also
|
| 1197 |
+
--------
|
| 1198 |
+
DataFrame.plot.bar: Vertical bar plot.
|
| 1199 |
+
DataFrame.plot : Make plots of DataFrame using matplotlib.
|
| 1200 |
+
matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib.
|
| 1201 |
+
|
| 1202 |
+
Examples
|
| 1203 |
+
--------
|
| 1204 |
+
Basic example
|
| 1205 |
+
|
| 1206 |
+
.. plot::
|
| 1207 |
+
:context: close-figs
|
| 1208 |
+
|
| 1209 |
+
>>> df = pd.DataFrame({'lab': ['A', 'B', 'C'], 'val': [10, 30, 20]})
|
| 1210 |
+
>>> ax = df.plot.barh(x='lab', y='val')
|
| 1211 |
+
|
| 1212 |
+
Plot a whole DataFrame to a horizontal bar plot
|
| 1213 |
+
|
| 1214 |
+
.. plot::
|
| 1215 |
+
:context: close-figs
|
| 1216 |
+
|
| 1217 |
+
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
|
| 1218 |
+
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
|
| 1219 |
+
>>> index = ['snail', 'pig', 'elephant',
|
| 1220 |
+
... 'rabbit', 'giraffe', 'coyote', 'horse']
|
| 1221 |
+
>>> df = pd.DataFrame({'speed': speed,
|
| 1222 |
+
... 'lifespan': lifespan}, index=index)
|
| 1223 |
+
>>> ax = df.plot.barh()
|
| 1224 |
+
|
| 1225 |
+
Plot stacked barh charts for the DataFrame
|
| 1226 |
+
|
| 1227 |
+
.. plot::
|
| 1228 |
+
:context: close-figs
|
| 1229 |
+
|
| 1230 |
+
>>> ax = df.plot.barh(stacked=True)
|
| 1231 |
+
|
| 1232 |
+
We can specify colors for each column
|
| 1233 |
+
|
| 1234 |
+
.. plot::
|
| 1235 |
+
:context: close-figs
|
| 1236 |
+
|
| 1237 |
+
>>> ax = df.plot.barh(color={"speed": "red", "lifespan": "green"})
|
| 1238 |
+
|
| 1239 |
+
Plot a column of the DataFrame to a horizontal bar plot
|
| 1240 |
+
|
| 1241 |
+
.. plot::
|
| 1242 |
+
:context: close-figs
|
| 1243 |
+
|
| 1244 |
+
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
|
| 1245 |
+
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
|
| 1246 |
+
>>> index = ['snail', 'pig', 'elephant',
|
| 1247 |
+
... 'rabbit', 'giraffe', 'coyote', 'horse']
|
| 1248 |
+
>>> df = pd.DataFrame({'speed': speed,
|
| 1249 |
+
... 'lifespan': lifespan}, index=index)
|
| 1250 |
+
>>> ax = df.plot.barh(y='speed')
|
| 1251 |
+
|
| 1252 |
+
Plot DataFrame versus the desired column
|
| 1253 |
+
|
| 1254 |
+
.. plot::
|
| 1255 |
+
:context: close-figs
|
| 1256 |
+
|
| 1257 |
+
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
|
| 1258 |
+
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
|
| 1259 |
+
>>> index = ['snail', 'pig', 'elephant',
|
| 1260 |
+
... 'rabbit', 'giraffe', 'coyote', 'horse']
|
| 1261 |
+
>>> df = pd.DataFrame({'speed': speed,
|
| 1262 |
+
... 'lifespan': lifespan}, index=index)
|
| 1263 |
+
>>> ax = df.plot.barh(x='lifespan')
|
| 1264 |
+
"""
|
| 1265 |
+
)
|
| 1266 |
+
@Substitution(kind="bar")
|
| 1267 |
+
@Appender(_bar_or_line_doc)
|
| 1268 |
+
def barh(
|
| 1269 |
+
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
|
| 1270 |
+
) -> PlotAccessor:
|
| 1271 |
+
"""
|
| 1272 |
+
Make a horizontal bar plot.
|
| 1273 |
+
|
| 1274 |
+
A horizontal bar plot is a plot that presents quantitative data with
|
| 1275 |
+
rectangular bars with lengths proportional to the values that they
|
| 1276 |
+
represent. A bar plot shows comparisons among discrete categories. One
|
| 1277 |
+
axis of the plot shows the specific categories being compared, and the
|
| 1278 |
+
other axis represents a measured value.
|
| 1279 |
+
"""
|
| 1280 |
+
return self(kind="barh", x=x, y=y, **kwargs)
|
| 1281 |
+
|
| 1282 |
+
def box(self, by: IndexLabel | None = None, **kwargs) -> PlotAccessor:
|
| 1283 |
+
r"""
|
| 1284 |
+
Make a box plot of the DataFrame columns.
|
| 1285 |
+
|
| 1286 |
+
A box plot is a method for graphically depicting groups of numerical
|
| 1287 |
+
data through their quartiles.
|
| 1288 |
+
The box extends from the Q1 to Q3 quartile values of the data,
|
| 1289 |
+
with a line at the median (Q2). The whiskers extend from the edges
|
| 1290 |
+
of box to show the range of the data. The position of the whiskers
|
| 1291 |
+
is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the
|
| 1292 |
+
box. Outlier points are those past the end of the whiskers.
|
| 1293 |
+
|
| 1294 |
+
For further details see Wikipedia's
|
| 1295 |
+
entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`__.
|
| 1296 |
+
|
| 1297 |
+
A consideration when using this chart is that the box and the whiskers
|
| 1298 |
+
can overlap, which is very common when plotting small sets of data.
|
| 1299 |
+
|
| 1300 |
+
Parameters
|
| 1301 |
+
----------
|
| 1302 |
+
by : str or sequence
|
| 1303 |
+
Column in the DataFrame to group by.
|
| 1304 |
+
|
| 1305 |
+
.. versionchanged:: 1.4.0
|
| 1306 |
+
|
| 1307 |
+
Previously, `by` is silently ignore and makes no groupings
|
| 1308 |
+
|
| 1309 |
+
**kwargs
|
| 1310 |
+
Additional keywords are documented in
|
| 1311 |
+
:meth:`DataFrame.plot`.
|
| 1312 |
+
|
| 1313 |
+
Returns
|
| 1314 |
+
-------
|
| 1315 |
+
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
|
| 1316 |
+
|
| 1317 |
+
See Also
|
| 1318 |
+
--------
|
| 1319 |
+
DataFrame.boxplot: Another method to draw a box plot.
|
| 1320 |
+
Series.plot.box: Draw a box plot from a Series object.
|
| 1321 |
+
matplotlib.pyplot.boxplot: Draw a box plot in matplotlib.
|
| 1322 |
+
|
| 1323 |
+
Examples
|
| 1324 |
+
--------
|
| 1325 |
+
Draw a box plot from a DataFrame with four columns of randomly
|
| 1326 |
+
generated data.
|
| 1327 |
+
|
| 1328 |
+
.. plot::
|
| 1329 |
+
:context: close-figs
|
| 1330 |
+
|
| 1331 |
+
>>> data = np.random.randn(25, 4)
|
| 1332 |
+
>>> df = pd.DataFrame(data, columns=list('ABCD'))
|
| 1333 |
+
>>> ax = df.plot.box()
|
| 1334 |
+
|
| 1335 |
+
You can also generate groupings if you specify the `by` parameter (which
|
| 1336 |
+
can take a column name, or a list or tuple of column names):
|
| 1337 |
+
|
| 1338 |
+
.. versionchanged:: 1.4.0
|
| 1339 |
+
|
| 1340 |
+
.. plot::
|
| 1341 |
+
:context: close-figs
|
| 1342 |
+
|
| 1343 |
+
>>> age_list = [8, 10, 12, 14, 72, 74, 76, 78, 20, 25, 30, 35, 60, 85]
|
| 1344 |
+
>>> df = pd.DataFrame({"gender": list("MMMMMMMMFFFFFF"), "age": age_list})
|
| 1345 |
+
>>> ax = df.plot.box(column="age", by="gender", figsize=(10, 8))
|
| 1346 |
+
"""
|
| 1347 |
+
return self(kind="box", by=by, **kwargs)
|
| 1348 |
+
|
| 1349 |
+
def hist(
|
| 1350 |
+
self, by: IndexLabel | None = None, bins: int = 10, **kwargs
|
| 1351 |
+
) -> PlotAccessor:
|
| 1352 |
+
"""
|
| 1353 |
+
Draw one histogram of the DataFrame's columns.
|
| 1354 |
+
|
| 1355 |
+
A histogram is a representation of the distribution of data.
|
| 1356 |
+
This function groups the values of all given Series in the DataFrame
|
| 1357 |
+
into bins and draws all bins in one :class:`matplotlib.axes.Axes`.
|
| 1358 |
+
This is useful when the DataFrame's Series are in a similar scale.
|
| 1359 |
+
|
| 1360 |
+
Parameters
|
| 1361 |
+
----------
|
| 1362 |
+
by : str or sequence, optional
|
| 1363 |
+
Column in the DataFrame to group by.
|
| 1364 |
+
|
| 1365 |
+
.. versionchanged:: 1.4.0
|
| 1366 |
+
|
| 1367 |
+
Previously, `by` is silently ignore and makes no groupings
|
| 1368 |
+
|
| 1369 |
+
bins : int, default 10
|
| 1370 |
+
Number of histogram bins to be used.
|
| 1371 |
+
**kwargs
|
| 1372 |
+
Additional keyword arguments are documented in
|
| 1373 |
+
:meth:`DataFrame.plot`.
|
| 1374 |
+
|
| 1375 |
+
Returns
|
| 1376 |
+
-------
|
| 1377 |
+
class:`matplotlib.AxesSubplot`
|
| 1378 |
+
Return a histogram plot.
|
| 1379 |
+
|
| 1380 |
+
See Also
|
| 1381 |
+
--------
|
| 1382 |
+
DataFrame.hist : Draw histograms per DataFrame's Series.
|
| 1383 |
+
Series.hist : Draw a histogram with Series' data.
|
| 1384 |
+
|
| 1385 |
+
Examples
|
| 1386 |
+
--------
|
| 1387 |
+
When we roll a die 6000 times, we expect to get each value around 1000
|
| 1388 |
+
times. But when we roll two dice and sum the result, the distribution
|
| 1389 |
+
is going to be quite different. A histogram illustrates those
|
| 1390 |
+
distributions.
|
| 1391 |
+
|
| 1392 |
+
.. plot::
|
| 1393 |
+
:context: close-figs
|
| 1394 |
+
|
| 1395 |
+
>>> df = pd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
|
| 1396 |
+
>>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
|
| 1397 |
+
>>> ax = df.plot.hist(bins=12, alpha=0.5)
|
| 1398 |
+
|
| 1399 |
+
A grouped histogram can be generated by providing the parameter `by` (which
|
| 1400 |
+
can be a column name, or a list of column names):
|
| 1401 |
+
|
| 1402 |
+
.. plot::
|
| 1403 |
+
:context: close-figs
|
| 1404 |
+
|
| 1405 |
+
>>> age_list = [8, 10, 12, 14, 72, 74, 76, 78, 20, 25, 30, 35, 60, 85]
|
| 1406 |
+
>>> df = pd.DataFrame({"gender": list("MMMMMMMMFFFFFF"), "age": age_list})
|
| 1407 |
+
>>> ax = df.plot.hist(column=["age"], by="gender", figsize=(10, 8))
|
| 1408 |
+
"""
|
| 1409 |
+
return self(kind="hist", by=by, bins=bins, **kwargs)
|
| 1410 |
+
|
| 1411 |
+
def kde(
|
| 1412 |
+
self,
|
| 1413 |
+
bw_method: Literal["scott", "silverman"] | float | Callable | None = None,
|
| 1414 |
+
ind: np.ndarray | int | None = None,
|
| 1415 |
+
**kwargs,
|
| 1416 |
+
) -> PlotAccessor:
|
| 1417 |
+
"""
|
| 1418 |
+
Generate Kernel Density Estimate plot using Gaussian kernels.
|
| 1419 |
+
|
| 1420 |
+
In statistics, `kernel density estimation`_ (KDE) is a non-parametric
|
| 1421 |
+
way to estimate the probability density function (PDF) of a random
|
| 1422 |
+
variable. This function uses Gaussian kernels and includes automatic
|
| 1423 |
+
bandwidth determination.
|
| 1424 |
+
|
| 1425 |
+
.. _kernel density estimation:
|
| 1426 |
+
https://en.wikipedia.org/wiki/Kernel_density_estimation
|
| 1427 |
+
|
| 1428 |
+
Parameters
|
| 1429 |
+
----------
|
| 1430 |
+
bw_method : str, scalar or callable, optional
|
| 1431 |
+
The method used to calculate the estimator bandwidth. This can be
|
| 1432 |
+
'scott', 'silverman', a scalar constant or a callable.
|
| 1433 |
+
If None (default), 'scott' is used.
|
| 1434 |
+
See :class:`scipy.stats.gaussian_kde` for more information.
|
| 1435 |
+
ind : NumPy array or int, optional
|
| 1436 |
+
Evaluation points for the estimated PDF. If None (default),
|
| 1437 |
+
1000 equally spaced points are used. If `ind` is a NumPy array, the
|
| 1438 |
+
KDE is evaluated at the points passed. If `ind` is an integer,
|
| 1439 |
+
`ind` number of equally spaced points are used.
|
| 1440 |
+
**kwargs
|
| 1441 |
+
Additional keyword arguments are documented in
|
| 1442 |
+
:meth:`DataFrame.plot`.
|
| 1443 |
+
|
| 1444 |
+
Returns
|
| 1445 |
+
-------
|
| 1446 |
+
matplotlib.axes.Axes or numpy.ndarray of them
|
| 1447 |
+
|
| 1448 |
+
See Also
|
| 1449 |
+
--------
|
| 1450 |
+
scipy.stats.gaussian_kde : Representation of a kernel-density
|
| 1451 |
+
estimate using Gaussian kernels. This is the function used
|
| 1452 |
+
internally to estimate the PDF.
|
| 1453 |
+
|
| 1454 |
+
Examples
|
| 1455 |
+
--------
|
| 1456 |
+
Given a Series of points randomly sampled from an unknown
|
| 1457 |
+
distribution, estimate its PDF using KDE with automatic
|
| 1458 |
+
bandwidth determination and plot the results, evaluating them at
|
| 1459 |
+
1000 equally spaced points (default):
|
| 1460 |
+
|
| 1461 |
+
.. plot::
|
| 1462 |
+
:context: close-figs
|
| 1463 |
+
|
| 1464 |
+
>>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5])
|
| 1465 |
+
>>> ax = s.plot.kde()
|
| 1466 |
+
|
| 1467 |
+
A scalar bandwidth can be specified. Using a small bandwidth value can
|
| 1468 |
+
lead to over-fitting, while using a large bandwidth value may result
|
| 1469 |
+
in under-fitting:
|
| 1470 |
+
|
| 1471 |
+
.. plot::
|
| 1472 |
+
:context: close-figs
|
| 1473 |
+
|
| 1474 |
+
>>> ax = s.plot.kde(bw_method=0.3)
|
| 1475 |
+
|
| 1476 |
+
.. plot::
|
| 1477 |
+
:context: close-figs
|
| 1478 |
+
|
| 1479 |
+
>>> ax = s.plot.kde(bw_method=3)
|
| 1480 |
+
|
| 1481 |
+
Finally, the `ind` parameter determines the evaluation points for the
|
| 1482 |
+
plot of the estimated PDF:
|
| 1483 |
+
|
| 1484 |
+
.. plot::
|
| 1485 |
+
:context: close-figs
|
| 1486 |
+
|
| 1487 |
+
>>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5])
|
| 1488 |
+
|
| 1489 |
+
For DataFrame, it works in the same way:
|
| 1490 |
+
|
| 1491 |
+
.. plot::
|
| 1492 |
+
:context: close-figs
|
| 1493 |
+
|
| 1494 |
+
>>> df = pd.DataFrame({
|
| 1495 |
+
... 'x': [1, 2, 2.5, 3, 3.5, 4, 5],
|
| 1496 |
+
... 'y': [4, 4, 4.5, 5, 5.5, 6, 6],
|
| 1497 |
+
... })
|
| 1498 |
+
>>> ax = df.plot.kde()
|
| 1499 |
+
|
| 1500 |
+
A scalar bandwidth can be specified. Using a small bandwidth value can
|
| 1501 |
+
lead to over-fitting, while using a large bandwidth value may result
|
| 1502 |
+
in under-fitting:
|
| 1503 |
+
|
| 1504 |
+
.. plot::
|
| 1505 |
+
:context: close-figs
|
| 1506 |
+
|
| 1507 |
+
>>> ax = df.plot.kde(bw_method=0.3)
|
| 1508 |
+
|
| 1509 |
+
.. plot::
|
| 1510 |
+
:context: close-figs
|
| 1511 |
+
|
| 1512 |
+
>>> ax = df.plot.kde(bw_method=3)
|
| 1513 |
+
|
| 1514 |
+
Finally, the `ind` parameter determines the evaluation points for the
|
| 1515 |
+
plot of the estimated PDF:
|
| 1516 |
+
|
| 1517 |
+
.. plot::
|
| 1518 |
+
:context: close-figs
|
| 1519 |
+
|
| 1520 |
+
>>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])
|
| 1521 |
+
"""
|
| 1522 |
+
return self(kind="kde", bw_method=bw_method, ind=ind, **kwargs)
|
| 1523 |
+
|
| 1524 |
+
density = kde
|
| 1525 |
+
|
| 1526 |
+
def area(
|
| 1527 |
+
self,
|
| 1528 |
+
x: Hashable | None = None,
|
| 1529 |
+
y: Hashable | None = None,
|
| 1530 |
+
stacked: bool = True,
|
| 1531 |
+
**kwargs,
|
| 1532 |
+
) -> PlotAccessor:
|
| 1533 |
+
"""
|
| 1534 |
+
Draw a stacked area plot.
|
| 1535 |
+
|
| 1536 |
+
An area plot displays quantitative data visually.
|
| 1537 |
+
This function wraps the matplotlib area function.
|
| 1538 |
+
|
| 1539 |
+
Parameters
|
| 1540 |
+
----------
|
| 1541 |
+
x : label or position, optional
|
| 1542 |
+
Coordinates for the X axis. By default uses the index.
|
| 1543 |
+
y : label or position, optional
|
| 1544 |
+
Column to plot. By default uses all columns.
|
| 1545 |
+
stacked : bool, default True
|
| 1546 |
+
Area plots are stacked by default. Set to False to create a
|
| 1547 |
+
unstacked plot.
|
| 1548 |
+
**kwargs
|
| 1549 |
+
Additional keyword arguments are documented in
|
| 1550 |
+
:meth:`DataFrame.plot`.
|
| 1551 |
+
|
| 1552 |
+
Returns
|
| 1553 |
+
-------
|
| 1554 |
+
matplotlib.axes.Axes or numpy.ndarray
|
| 1555 |
+
Area plot, or array of area plots if subplots is True.
|
| 1556 |
+
|
| 1557 |
+
See Also
|
| 1558 |
+
--------
|
| 1559 |
+
DataFrame.plot : Make plots of DataFrame using matplotlib / pylab.
|
| 1560 |
+
|
| 1561 |
+
Examples
|
| 1562 |
+
--------
|
| 1563 |
+
Draw an area plot based on basic business metrics:
|
| 1564 |
+
|
| 1565 |
+
.. plot::
|
| 1566 |
+
:context: close-figs
|
| 1567 |
+
|
| 1568 |
+
>>> df = pd.DataFrame({
|
| 1569 |
+
... 'sales': [3, 2, 3, 9, 10, 6],
|
| 1570 |
+
... 'signups': [5, 5, 6, 12, 14, 13],
|
| 1571 |
+
... 'visits': [20, 42, 28, 62, 81, 50],
|
| 1572 |
+
... }, index=pd.date_range(start='2018/01/01', end='2018/07/01',
|
| 1573 |
+
... freq='ME'))
|
| 1574 |
+
>>> ax = df.plot.area()
|
| 1575 |
+
|
| 1576 |
+
Area plots are stacked by default. To produce an unstacked plot,
|
| 1577 |
+
pass ``stacked=False``:
|
| 1578 |
+
|
| 1579 |
+
.. plot::
|
| 1580 |
+
:context: close-figs
|
| 1581 |
+
|
| 1582 |
+
>>> ax = df.plot.area(stacked=False)
|
| 1583 |
+
|
| 1584 |
+
Draw an area plot for a single column:
|
| 1585 |
+
|
| 1586 |
+
.. plot::
|
| 1587 |
+
:context: close-figs
|
| 1588 |
+
|
| 1589 |
+
>>> ax = df.plot.area(y='sales')
|
| 1590 |
+
|
| 1591 |
+
Draw with a different `x`:
|
| 1592 |
+
|
| 1593 |
+
.. plot::
|
| 1594 |
+
:context: close-figs
|
| 1595 |
+
|
| 1596 |
+
>>> df = pd.DataFrame({
|
| 1597 |
+
... 'sales': [3, 2, 3],
|
| 1598 |
+
... 'visits': [20, 42, 28],
|
| 1599 |
+
... 'day': [1, 2, 3],
|
| 1600 |
+
... })
|
| 1601 |
+
>>> ax = df.plot.area(x='day')
|
| 1602 |
+
"""
|
| 1603 |
+
return self(kind="area", x=x, y=y, stacked=stacked, **kwargs)
|
| 1604 |
+
|
| 1605 |
+
def pie(self, **kwargs) -> PlotAccessor:
|
| 1606 |
+
"""
|
| 1607 |
+
Generate a pie plot.
|
| 1608 |
+
|
| 1609 |
+
A pie plot is a proportional representation of the numerical data in a
|
| 1610 |
+
column. This function wraps :meth:`matplotlib.pyplot.pie` for the
|
| 1611 |
+
specified column. If no column reference is passed and
|
| 1612 |
+
``subplots=True`` a pie plot is drawn for each numerical column
|
| 1613 |
+
independently.
|
| 1614 |
+
|
| 1615 |
+
Parameters
|
| 1616 |
+
----------
|
| 1617 |
+
y : int or label, optional
|
| 1618 |
+
Label or position of the column to plot.
|
| 1619 |
+
If not provided, ``subplots=True`` argument must be passed.
|
| 1620 |
+
**kwargs
|
| 1621 |
+
Keyword arguments to pass on to :meth:`DataFrame.plot`.
|
| 1622 |
+
|
| 1623 |
+
Returns
|
| 1624 |
+
-------
|
| 1625 |
+
matplotlib.axes.Axes or np.ndarray of them
|
| 1626 |
+
A NumPy array is returned when `subplots` is True.
|
| 1627 |
+
|
| 1628 |
+
See Also
|
| 1629 |
+
--------
|
| 1630 |
+
Series.plot.pie : Generate a pie plot for a Series.
|
| 1631 |
+
DataFrame.plot : Make plots of a DataFrame.
|
| 1632 |
+
|
| 1633 |
+
Examples
|
| 1634 |
+
--------
|
| 1635 |
+
In the example below we have a DataFrame with the information about
|
| 1636 |
+
planet's mass and radius. We pass the 'mass' column to the
|
| 1637 |
+
pie function to get a pie plot.
|
| 1638 |
+
|
| 1639 |
+
.. plot::
|
| 1640 |
+
:context: close-figs
|
| 1641 |
+
|
| 1642 |
+
>>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97],
|
| 1643 |
+
... 'radius': [2439.7, 6051.8, 6378.1]},
|
| 1644 |
+
... index=['Mercury', 'Venus', 'Earth'])
|
| 1645 |
+
>>> plot = df.plot.pie(y='mass', figsize=(5, 5))
|
| 1646 |
+
|
| 1647 |
+
.. plot::
|
| 1648 |
+
:context: close-figs
|
| 1649 |
+
|
| 1650 |
+
>>> plot = df.plot.pie(subplots=True, figsize=(11, 6))
|
| 1651 |
+
"""
|
| 1652 |
+
if (
|
| 1653 |
+
isinstance(self._parent, ABCDataFrame)
|
| 1654 |
+
and kwargs.get("y", None) is None
|
| 1655 |
+
and not kwargs.get("subplots", False)
|
| 1656 |
+
):
|
| 1657 |
+
raise ValueError("pie requires either y column or 'subplots=True'")
|
| 1658 |
+
return self(kind="pie", **kwargs)
|
| 1659 |
+
|
| 1660 |
+
def scatter(
|
| 1661 |
+
self,
|
| 1662 |
+
x: Hashable,
|
| 1663 |
+
y: Hashable,
|
| 1664 |
+
s: Hashable | Sequence[Hashable] | None = None,
|
| 1665 |
+
c: Hashable | Sequence[Hashable] | None = None,
|
| 1666 |
+
**kwargs,
|
| 1667 |
+
) -> PlotAccessor:
|
| 1668 |
+
"""
|
| 1669 |
+
Create a scatter plot with varying marker point size and color.
|
| 1670 |
+
|
| 1671 |
+
The coordinates of each point are defined by two dataframe columns and
|
| 1672 |
+
filled circles are used to represent each point. This kind of plot is
|
| 1673 |
+
useful to see complex correlations between two variables. Points could
|
| 1674 |
+
be for instance natural 2D coordinates like longitude and latitude in
|
| 1675 |
+
a map or, in general, any pair of metrics that can be plotted against
|
| 1676 |
+
each other.
|
| 1677 |
+
|
| 1678 |
+
Parameters
|
| 1679 |
+
----------
|
| 1680 |
+
x : int or str
|
| 1681 |
+
The column name or column position to be used as horizontal
|
| 1682 |
+
coordinates for each point.
|
| 1683 |
+
y : int or str
|
| 1684 |
+
The column name or column position to be used as vertical
|
| 1685 |
+
coordinates for each point.
|
| 1686 |
+
s : str, scalar or array-like, optional
|
| 1687 |
+
The size of each point. Possible values are:
|
| 1688 |
+
|
| 1689 |
+
- A string with the name of the column to be used for marker's size.
|
| 1690 |
+
|
| 1691 |
+
- A single scalar so all points have the same size.
|
| 1692 |
+
|
| 1693 |
+
- A sequence of scalars, which will be used for each point's size
|
| 1694 |
+
recursively. For instance, when passing [2,14] all points size
|
| 1695 |
+
will be either 2 or 14, alternatively.
|
| 1696 |
+
|
| 1697 |
+
c : str, int or array-like, optional
|
| 1698 |
+
The color of each point. Possible values are:
|
| 1699 |
+
|
| 1700 |
+
- A single color string referred to by name, RGB or RGBA code,
|
| 1701 |
+
for instance 'red' or '#a98d19'.
|
| 1702 |
+
|
| 1703 |
+
- A sequence of color strings referred to by name, RGB or RGBA
|
| 1704 |
+
code, which will be used for each point's color recursively. For
|
| 1705 |
+
instance ['green','yellow'] all points will be filled in green or
|
| 1706 |
+
yellow, alternatively.
|
| 1707 |
+
|
| 1708 |
+
- A column name or position whose values will be used to color the
|
| 1709 |
+
marker points according to a colormap.
|
| 1710 |
+
|
| 1711 |
+
**kwargs
|
| 1712 |
+
Keyword arguments to pass on to :meth:`DataFrame.plot`.
|
| 1713 |
+
|
| 1714 |
+
Returns
|
| 1715 |
+
-------
|
| 1716 |
+
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
|
| 1717 |
+
|
| 1718 |
+
See Also
|
| 1719 |
+
--------
|
| 1720 |
+
matplotlib.pyplot.scatter : Scatter plot using multiple input data
|
| 1721 |
+
formats.
|
| 1722 |
+
|
| 1723 |
+
Examples
|
| 1724 |
+
--------
|
| 1725 |
+
Let's see how to draw a scatter plot using coordinates from the values
|
| 1726 |
+
in a DataFrame's columns.
|
| 1727 |
+
|
| 1728 |
+
.. plot::
|
| 1729 |
+
:context: close-figs
|
| 1730 |
+
|
| 1731 |
+
>>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1],
|
| 1732 |
+
... [6.4, 3.2, 1], [5.9, 3.0, 2]],
|
| 1733 |
+
... columns=['length', 'width', 'species'])
|
| 1734 |
+
>>> ax1 = df.plot.scatter(x='length',
|
| 1735 |
+
... y='width',
|
| 1736 |
+
... c='DarkBlue')
|
| 1737 |
+
|
| 1738 |
+
And now with the color determined by a column as well.
|
| 1739 |
+
|
| 1740 |
+
.. plot::
|
| 1741 |
+
:context: close-figs
|
| 1742 |
+
|
| 1743 |
+
>>> ax2 = df.plot.scatter(x='length',
|
| 1744 |
+
... y='width',
|
| 1745 |
+
... c='species',
|
| 1746 |
+
... colormap='viridis')
|
| 1747 |
+
"""
|
| 1748 |
+
return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs)
|
| 1749 |
+
|
| 1750 |
+
def hexbin(
|
| 1751 |
+
self,
|
| 1752 |
+
x: Hashable,
|
| 1753 |
+
y: Hashable,
|
| 1754 |
+
C: Hashable | None = None,
|
| 1755 |
+
reduce_C_function: Callable | None = None,
|
| 1756 |
+
gridsize: int | tuple[int, int] | None = None,
|
| 1757 |
+
**kwargs,
|
| 1758 |
+
) -> PlotAccessor:
|
| 1759 |
+
"""
|
| 1760 |
+
Generate a hexagonal binning plot.
|
| 1761 |
+
|
| 1762 |
+
Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None`
|
| 1763 |
+
(the default), this is a histogram of the number of occurrences
|
| 1764 |
+
of the observations at ``(x[i], y[i])``.
|
| 1765 |
+
|
| 1766 |
+
If `C` is specified, specifies values at given coordinates
|
| 1767 |
+
``(x[i], y[i])``. These values are accumulated for each hexagonal
|
| 1768 |
+
bin and then reduced according to `reduce_C_function`,
|
| 1769 |
+
having as default the NumPy's mean function (:meth:`numpy.mean`).
|
| 1770 |
+
(If `C` is specified, it must also be a 1-D sequence
|
| 1771 |
+
of the same length as `x` and `y`, or a column label.)
|
| 1772 |
+
|
| 1773 |
+
Parameters
|
| 1774 |
+
----------
|
| 1775 |
+
x : int or str
|
| 1776 |
+
The column label or position for x points.
|
| 1777 |
+
y : int or str
|
| 1778 |
+
The column label or position for y points.
|
| 1779 |
+
C : int or str, optional
|
| 1780 |
+
The column label or position for the value of `(x, y)` point.
|
| 1781 |
+
reduce_C_function : callable, default `np.mean`
|
| 1782 |
+
Function of one argument that reduces all the values in a bin to
|
| 1783 |
+
a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`).
|
| 1784 |
+
gridsize : int or tuple of (int, int), default 100
|
| 1785 |
+
The number of hexagons in the x-direction.
|
| 1786 |
+
The corresponding number of hexagons in the y-direction is
|
| 1787 |
+
chosen in a way that the hexagons are approximately regular.
|
| 1788 |
+
Alternatively, gridsize can be a tuple with two elements
|
| 1789 |
+
specifying the number of hexagons in the x-direction and the
|
| 1790 |
+
y-direction.
|
| 1791 |
+
**kwargs
|
| 1792 |
+
Additional keyword arguments are documented in
|
| 1793 |
+
:meth:`DataFrame.plot`.
|
| 1794 |
+
|
| 1795 |
+
Returns
|
| 1796 |
+
-------
|
| 1797 |
+
matplotlib.AxesSubplot
|
| 1798 |
+
The matplotlib ``Axes`` on which the hexbin is plotted.
|
| 1799 |
+
|
| 1800 |
+
See Also
|
| 1801 |
+
--------
|
| 1802 |
+
DataFrame.plot : Make plots of a DataFrame.
|
| 1803 |
+
matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib,
|
| 1804 |
+
the matplotlib function that is used under the hood.
|
| 1805 |
+
|
| 1806 |
+
Examples
|
| 1807 |
+
--------
|
| 1808 |
+
The following examples are generated with random data from
|
| 1809 |
+
a normal distribution.
|
| 1810 |
+
|
| 1811 |
+
.. plot::
|
| 1812 |
+
:context: close-figs
|
| 1813 |
+
|
| 1814 |
+
>>> n = 10000
|
| 1815 |
+
>>> df = pd.DataFrame({'x': np.random.randn(n),
|
| 1816 |
+
... 'y': np.random.randn(n)})
|
| 1817 |
+
>>> ax = df.plot.hexbin(x='x', y='y', gridsize=20)
|
| 1818 |
+
|
| 1819 |
+
The next example uses `C` and `np.sum` as `reduce_C_function`.
|
| 1820 |
+
Note that `'observations'` values ranges from 1 to 5 but the result
|
| 1821 |
+
plot shows values up to more than 25. This is because of the
|
| 1822 |
+
`reduce_C_function`.
|
| 1823 |
+
|
| 1824 |
+
.. plot::
|
| 1825 |
+
:context: close-figs
|
| 1826 |
+
|
| 1827 |
+
>>> n = 500
|
| 1828 |
+
>>> df = pd.DataFrame({
|
| 1829 |
+
... 'coord_x': np.random.uniform(-3, 3, size=n),
|
| 1830 |
+
... 'coord_y': np.random.uniform(30, 50, size=n),
|
| 1831 |
+
... 'observations': np.random.randint(1,5, size=n)
|
| 1832 |
+
... })
|
| 1833 |
+
>>> ax = df.plot.hexbin(x='coord_x',
|
| 1834 |
+
... y='coord_y',
|
| 1835 |
+
... C='observations',
|
| 1836 |
+
... reduce_C_function=np.sum,
|
| 1837 |
+
... gridsize=10,
|
| 1838 |
+
... cmap="viridis")
|
| 1839 |
+
"""
|
| 1840 |
+
if reduce_C_function is not None:
|
| 1841 |
+
kwargs["reduce_C_function"] = reduce_C_function
|
| 1842 |
+
if gridsize is not None:
|
| 1843 |
+
kwargs["gridsize"] = gridsize
|
| 1844 |
+
|
| 1845 |
+
return self(kind="hexbin", x=x, y=y, C=C, **kwargs)
|
| 1846 |
+
|
| 1847 |
+
|
| 1848 |
+
_backends: dict[str, types.ModuleType] = {}
|
| 1849 |
+
|
| 1850 |
+
|
| 1851 |
+
def _load_backend(backend: str) -> types.ModuleType:
|
| 1852 |
+
"""
|
| 1853 |
+
Load a pandas plotting backend.
|
| 1854 |
+
|
| 1855 |
+
Parameters
|
| 1856 |
+
----------
|
| 1857 |
+
backend : str
|
| 1858 |
+
The identifier for the backend. Either an entrypoint item registered
|
| 1859 |
+
with importlib.metadata, "matplotlib", or a module name.
|
| 1860 |
+
|
| 1861 |
+
Returns
|
| 1862 |
+
-------
|
| 1863 |
+
types.ModuleType
|
| 1864 |
+
The imported backend.
|
| 1865 |
+
"""
|
| 1866 |
+
from importlib.metadata import entry_points
|
| 1867 |
+
|
| 1868 |
+
if backend == "matplotlib":
|
| 1869 |
+
# Because matplotlib is an optional dependency and first-party backend,
|
| 1870 |
+
# we need to attempt an import here to raise an ImportError if needed.
|
| 1871 |
+
try:
|
| 1872 |
+
module = importlib.import_module("pandas.plotting._matplotlib")
|
| 1873 |
+
except ImportError:
|
| 1874 |
+
raise ImportError(
|
| 1875 |
+
"matplotlib is required for plotting when the "
|
| 1876 |
+
'default backend "matplotlib" is selected.'
|
| 1877 |
+
) from None
|
| 1878 |
+
return module
|
| 1879 |
+
|
| 1880 |
+
found_backend = False
|
| 1881 |
+
|
| 1882 |
+
eps = entry_points()
|
| 1883 |
+
key = "pandas_plotting_backends"
|
| 1884 |
+
# entry_points lost dict API ~ PY 3.10
|
| 1885 |
+
# https://github.com/python/importlib_metadata/issues/298
|
| 1886 |
+
if hasattr(eps, "select"):
|
| 1887 |
+
entry = eps.select(group=key)
|
| 1888 |
+
else:
|
| 1889 |
+
# Argument 2 to "get" of "dict" has incompatible type "Tuple[]";
|
| 1890 |
+
# expected "EntryPoints" [arg-type]
|
| 1891 |
+
entry = eps.get(key, ()) # type: ignore[arg-type]
|
| 1892 |
+
for entry_point in entry:
|
| 1893 |
+
found_backend = entry_point.name == backend
|
| 1894 |
+
if found_backend:
|
| 1895 |
+
module = entry_point.load()
|
| 1896 |
+
break
|
| 1897 |
+
|
| 1898 |
+
if not found_backend:
|
| 1899 |
+
# Fall back to unregistered, module name approach.
|
| 1900 |
+
try:
|
| 1901 |
+
module = importlib.import_module(backend)
|
| 1902 |
+
found_backend = True
|
| 1903 |
+
except ImportError:
|
| 1904 |
+
# We re-raise later on.
|
| 1905 |
+
pass
|
| 1906 |
+
|
| 1907 |
+
if found_backend:
|
| 1908 |
+
if hasattr(module, "plot"):
|
| 1909 |
+
# Validate that the interface is implemented when the option is set,
|
| 1910 |
+
# rather than at plot time.
|
| 1911 |
+
return module
|
| 1912 |
+
|
| 1913 |
+
raise ValueError(
|
| 1914 |
+
f"Could not find plotting backend '{backend}'. Ensure that you've "
|
| 1915 |
+
f"installed the package providing the '{backend}' entrypoint, or that "
|
| 1916 |
+
"the package has a top-level `.plot` method."
|
| 1917 |
+
)
|
| 1918 |
+
|
| 1919 |
+
|
| 1920 |
+
def _get_plot_backend(backend: str | None = None):
|
| 1921 |
+
"""
|
| 1922 |
+
Return the plotting backend to use (e.g. `pandas.plotting._matplotlib`).
|
| 1923 |
+
|
| 1924 |
+
The plotting system of pandas uses matplotlib by default, but the idea here
|
| 1925 |
+
is that it can also work with other third-party backends. This function
|
| 1926 |
+
returns the module which provides a top-level `.plot` method that will
|
| 1927 |
+
actually do the plotting. The backend is specified from a string, which
|
| 1928 |
+
either comes from the keyword argument `backend`, or, if not specified, from
|
| 1929 |
+
the option `pandas.options.plotting.backend`. All the rest of the code in
|
| 1930 |
+
this file uses the backend specified there for the plotting.
|
| 1931 |
+
|
| 1932 |
+
The backend is imported lazily, as matplotlib is a soft dependency, and
|
| 1933 |
+
pandas can be used without it being installed.
|
| 1934 |
+
|
| 1935 |
+
Notes
|
| 1936 |
+
-----
|
| 1937 |
+
Modifies `_backends` with imported backend as a side effect.
|
| 1938 |
+
"""
|
| 1939 |
+
backend_str: str = backend or get_option("plotting.backend")
|
| 1940 |
+
|
| 1941 |
+
if backend_str in _backends:
|
| 1942 |
+
return _backends[backend_str]
|
| 1943 |
+
|
| 1944 |
+
module = _load_backend(backend_str)
|
| 1945 |
+
_backends[backend_str] = module
|
| 1946 |
+
return module
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__init__.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import TYPE_CHECKING
|
| 4 |
+
|
| 5 |
+
from pandas.plotting._matplotlib.boxplot import (
|
| 6 |
+
BoxPlot,
|
| 7 |
+
boxplot,
|
| 8 |
+
boxplot_frame,
|
| 9 |
+
boxplot_frame_groupby,
|
| 10 |
+
)
|
| 11 |
+
from pandas.plotting._matplotlib.converter import (
|
| 12 |
+
deregister,
|
| 13 |
+
register,
|
| 14 |
+
)
|
| 15 |
+
from pandas.plotting._matplotlib.core import (
|
| 16 |
+
AreaPlot,
|
| 17 |
+
BarhPlot,
|
| 18 |
+
BarPlot,
|
| 19 |
+
HexBinPlot,
|
| 20 |
+
LinePlot,
|
| 21 |
+
PiePlot,
|
| 22 |
+
ScatterPlot,
|
| 23 |
+
)
|
| 24 |
+
from pandas.plotting._matplotlib.hist import (
|
| 25 |
+
HistPlot,
|
| 26 |
+
KdePlot,
|
| 27 |
+
hist_frame,
|
| 28 |
+
hist_series,
|
| 29 |
+
)
|
| 30 |
+
from pandas.plotting._matplotlib.misc import (
|
| 31 |
+
andrews_curves,
|
| 32 |
+
autocorrelation_plot,
|
| 33 |
+
bootstrap_plot,
|
| 34 |
+
lag_plot,
|
| 35 |
+
parallel_coordinates,
|
| 36 |
+
radviz,
|
| 37 |
+
scatter_matrix,
|
| 38 |
+
)
|
| 39 |
+
from pandas.plotting._matplotlib.tools import table
|
| 40 |
+
|
| 41 |
+
if TYPE_CHECKING:
|
| 42 |
+
from pandas.plotting._matplotlib.core import MPLPlot
|
| 43 |
+
|
| 44 |
+
PLOT_CLASSES: dict[str, type[MPLPlot]] = {
|
| 45 |
+
"line": LinePlot,
|
| 46 |
+
"bar": BarPlot,
|
| 47 |
+
"barh": BarhPlot,
|
| 48 |
+
"box": BoxPlot,
|
| 49 |
+
"hist": HistPlot,
|
| 50 |
+
"kde": KdePlot,
|
| 51 |
+
"area": AreaPlot,
|
| 52 |
+
"pie": PiePlot,
|
| 53 |
+
"scatter": ScatterPlot,
|
| 54 |
+
"hexbin": HexBinPlot,
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def plot(data, kind, **kwargs):
|
| 59 |
+
# Importing pyplot at the top of the file (before the converters are
|
| 60 |
+
# registered) causes problems in matplotlib 2 (converters seem to not
|
| 61 |
+
# work)
|
| 62 |
+
import matplotlib.pyplot as plt
|
| 63 |
+
|
| 64 |
+
if kwargs.pop("reuse_plot", False):
|
| 65 |
+
ax = kwargs.get("ax")
|
| 66 |
+
if ax is None and len(plt.get_fignums()) > 0:
|
| 67 |
+
with plt.rc_context():
|
| 68 |
+
ax = plt.gca()
|
| 69 |
+
kwargs["ax"] = getattr(ax, "left_ax", ax)
|
| 70 |
+
plot_obj = PLOT_CLASSES[kind](data, **kwargs)
|
| 71 |
+
plot_obj.generate()
|
| 72 |
+
plot_obj.draw()
|
| 73 |
+
return plot_obj.result
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
__all__ = [
|
| 77 |
+
"plot",
|
| 78 |
+
"hist_series",
|
| 79 |
+
"hist_frame",
|
| 80 |
+
"boxplot",
|
| 81 |
+
"boxplot_frame",
|
| 82 |
+
"boxplot_frame_groupby",
|
| 83 |
+
"table",
|
| 84 |
+
"andrews_curves",
|
| 85 |
+
"autocorrelation_plot",
|
| 86 |
+
"bootstrap_plot",
|
| 87 |
+
"lag_plot",
|
| 88 |
+
"parallel_coordinates",
|
| 89 |
+
"radviz",
|
| 90 |
+
"scatter_matrix",
|
| 91 |
+
"register",
|
| 92 |
+
"deregister",
|
| 93 |
+
]
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.87 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/boxplot.cpython-310.pyc
ADDED
|
Binary file (13.4 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/converter.cpython-310.pyc
ADDED
|
Binary file (29.1 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/core.cpython-310.pyc
ADDED
|
Binary file (50.1 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/groupby.cpython-310.pyc
ADDED
|
Binary file (4.34 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/hist.cpython-310.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/misc.cpython-310.pyc
ADDED
|
Binary file (11.5 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/style.cpython-310.pyc
ADDED
|
Binary file (8.8 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/timeseries.cpython-310.pyc
ADDED
|
Binary file (8.03 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/tools.cpython-310.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/boxplot.py
ADDED
|
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import (
|
| 4 |
+
TYPE_CHECKING,
|
| 5 |
+
Literal,
|
| 6 |
+
NamedTuple,
|
| 7 |
+
)
|
| 8 |
+
import warnings
|
| 9 |
+
|
| 10 |
+
from matplotlib.artist import setp
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
from pandas._libs import lib
|
| 14 |
+
from pandas.util._decorators import cache_readonly
|
| 15 |
+
from pandas.util._exceptions import find_stack_level
|
| 16 |
+
|
| 17 |
+
from pandas.core.dtypes.common import is_dict_like
|
| 18 |
+
from pandas.core.dtypes.generic import ABCSeries
|
| 19 |
+
from pandas.core.dtypes.missing import remove_na_arraylike
|
| 20 |
+
|
| 21 |
+
import pandas as pd
|
| 22 |
+
import pandas.core.common as com
|
| 23 |
+
|
| 24 |
+
from pandas.io.formats.printing import pprint_thing
|
| 25 |
+
from pandas.plotting._matplotlib.core import (
|
| 26 |
+
LinePlot,
|
| 27 |
+
MPLPlot,
|
| 28 |
+
)
|
| 29 |
+
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
|
| 30 |
+
from pandas.plotting._matplotlib.style import get_standard_colors
|
| 31 |
+
from pandas.plotting._matplotlib.tools import (
|
| 32 |
+
create_subplots,
|
| 33 |
+
flatten_axes,
|
| 34 |
+
maybe_adjust_figure,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
if TYPE_CHECKING:
|
| 38 |
+
from collections.abc import Collection
|
| 39 |
+
|
| 40 |
+
from matplotlib.axes import Axes
|
| 41 |
+
from matplotlib.figure import Figure
|
| 42 |
+
from matplotlib.lines import Line2D
|
| 43 |
+
|
| 44 |
+
from pandas._typing import MatplotlibColor
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None:
|
| 48 |
+
"""Set the tick labels of a given axis.
|
| 49 |
+
|
| 50 |
+
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the
|
| 51 |
+
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of
|
| 52 |
+
labels.
|
| 53 |
+
"""
|
| 54 |
+
ticks = ax.get_xticks() if is_vertical else ax.get_yticks()
|
| 55 |
+
if len(ticks) != len(labels):
|
| 56 |
+
i, remainder = divmod(len(ticks), len(labels))
|
| 57 |
+
assert remainder == 0, remainder
|
| 58 |
+
labels *= i
|
| 59 |
+
if is_vertical:
|
| 60 |
+
ax.set_xticklabels(labels, **kwargs)
|
| 61 |
+
else:
|
| 62 |
+
ax.set_yticklabels(labels, **kwargs)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class BoxPlot(LinePlot):
|
| 66 |
+
@property
|
| 67 |
+
def _kind(self) -> Literal["box"]:
|
| 68 |
+
return "box"
|
| 69 |
+
|
| 70 |
+
_layout_type = "horizontal"
|
| 71 |
+
|
| 72 |
+
_valid_return_types = (None, "axes", "dict", "both")
|
| 73 |
+
|
| 74 |
+
class BP(NamedTuple):
|
| 75 |
+
# namedtuple to hold results
|
| 76 |
+
ax: Axes
|
| 77 |
+
lines: dict[str, list[Line2D]]
|
| 78 |
+
|
| 79 |
+
def __init__(self, data, return_type: str = "axes", **kwargs) -> None:
|
| 80 |
+
if return_type not in self._valid_return_types:
|
| 81 |
+
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
|
| 82 |
+
|
| 83 |
+
self.return_type = return_type
|
| 84 |
+
# Do not call LinePlot.__init__ which may fill nan
|
| 85 |
+
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
| 86 |
+
|
| 87 |
+
if self.subplots:
|
| 88 |
+
# Disable label ax sharing. Otherwise, all subplots shows last
|
| 89 |
+
# column label
|
| 90 |
+
if self.orientation == "vertical":
|
| 91 |
+
self.sharex = False
|
| 92 |
+
else:
|
| 93 |
+
self.sharey = False
|
| 94 |
+
|
| 95 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
| 96 |
+
@classmethod
|
| 97 |
+
def _plot( # type: ignore[override]
|
| 98 |
+
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds
|
| 99 |
+
):
|
| 100 |
+
ys: np.ndarray | list[np.ndarray]
|
| 101 |
+
if y.ndim == 2:
|
| 102 |
+
ys = [remove_na_arraylike(v) for v in y]
|
| 103 |
+
# Boxplot fails with empty arrays, so need to add a NaN
|
| 104 |
+
# if any cols are empty
|
| 105 |
+
# GH 8181
|
| 106 |
+
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys]
|
| 107 |
+
else:
|
| 108 |
+
ys = remove_na_arraylike(y)
|
| 109 |
+
bp = ax.boxplot(ys, **kwds)
|
| 110 |
+
|
| 111 |
+
if return_type == "dict":
|
| 112 |
+
return bp, bp
|
| 113 |
+
elif return_type == "both":
|
| 114 |
+
return cls.BP(ax=ax, lines=bp), bp
|
| 115 |
+
else:
|
| 116 |
+
return ax, bp
|
| 117 |
+
|
| 118 |
+
def _validate_color_args(self, color, colormap):
|
| 119 |
+
if color is lib.no_default:
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
if colormap is not None:
|
| 123 |
+
warnings.warn(
|
| 124 |
+
"'color' and 'colormap' cannot be used "
|
| 125 |
+
"simultaneously. Using 'color'",
|
| 126 |
+
stacklevel=find_stack_level(),
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
if isinstance(color, dict):
|
| 130 |
+
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
| 131 |
+
for key in color:
|
| 132 |
+
if key not in valid_keys:
|
| 133 |
+
raise ValueError(
|
| 134 |
+
f"color dict contains invalid key '{key}'. "
|
| 135 |
+
f"The key must be either {valid_keys}"
|
| 136 |
+
)
|
| 137 |
+
return color
|
| 138 |
+
|
| 139 |
+
@cache_readonly
|
| 140 |
+
def _color_attrs(self):
|
| 141 |
+
# get standard colors for default
|
| 142 |
+
# use 2 colors by default, for box/whisker and median
|
| 143 |
+
# flier colors isn't needed here
|
| 144 |
+
# because it can be specified by ``sym`` kw
|
| 145 |
+
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
|
| 146 |
+
|
| 147 |
+
@cache_readonly
|
| 148 |
+
def _boxes_c(self):
|
| 149 |
+
return self._color_attrs[0]
|
| 150 |
+
|
| 151 |
+
@cache_readonly
|
| 152 |
+
def _whiskers_c(self):
|
| 153 |
+
return self._color_attrs[0]
|
| 154 |
+
|
| 155 |
+
@cache_readonly
|
| 156 |
+
def _medians_c(self):
|
| 157 |
+
return self._color_attrs[2]
|
| 158 |
+
|
| 159 |
+
@cache_readonly
|
| 160 |
+
def _caps_c(self):
|
| 161 |
+
return self._color_attrs[0]
|
| 162 |
+
|
| 163 |
+
def _get_colors(
|
| 164 |
+
self,
|
| 165 |
+
num_colors=None,
|
| 166 |
+
color_kwds: dict[str, MatplotlibColor]
|
| 167 |
+
| MatplotlibColor
|
| 168 |
+
| Collection[MatplotlibColor]
|
| 169 |
+
| None = "color",
|
| 170 |
+
) -> None:
|
| 171 |
+
pass
|
| 172 |
+
|
| 173 |
+
def maybe_color_bp(self, bp) -> None:
|
| 174 |
+
if isinstance(self.color, dict):
|
| 175 |
+
boxes = self.color.get("boxes", self._boxes_c)
|
| 176 |
+
whiskers = self.color.get("whiskers", self._whiskers_c)
|
| 177 |
+
medians = self.color.get("medians", self._medians_c)
|
| 178 |
+
caps = self.color.get("caps", self._caps_c)
|
| 179 |
+
else:
|
| 180 |
+
# Other types are forwarded to matplotlib
|
| 181 |
+
# If None, use default colors
|
| 182 |
+
boxes = self.color or self._boxes_c
|
| 183 |
+
whiskers = self.color or self._whiskers_c
|
| 184 |
+
medians = self.color or self._medians_c
|
| 185 |
+
caps = self.color or self._caps_c
|
| 186 |
+
|
| 187 |
+
color_tup = (boxes, whiskers, medians, caps)
|
| 188 |
+
maybe_color_bp(bp, color_tup=color_tup, **self.kwds)
|
| 189 |
+
|
| 190 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 191 |
+
if self.subplots:
|
| 192 |
+
self._return_obj = pd.Series(dtype=object)
|
| 193 |
+
|
| 194 |
+
# Re-create iterated data if `by` is assigned by users
|
| 195 |
+
data = (
|
| 196 |
+
create_iter_data_given_by(self.data, self._kind)
|
| 197 |
+
if self.by is not None
|
| 198 |
+
else self.data
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# error: Argument "data" to "_iter_data" of "MPLPlot" has
|
| 202 |
+
# incompatible type "object"; expected "DataFrame |
|
| 203 |
+
# dict[Hashable, Series | DataFrame]"
|
| 204 |
+
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
|
| 205 |
+
ax = self._get_ax(i)
|
| 206 |
+
kwds = self.kwds.copy()
|
| 207 |
+
|
| 208 |
+
# When by is applied, show title for subplots to know which group it is
|
| 209 |
+
# just like df.boxplot, and need to apply T on y to provide right input
|
| 210 |
+
if self.by is not None:
|
| 211 |
+
y = y.T
|
| 212 |
+
ax.set_title(pprint_thing(label))
|
| 213 |
+
|
| 214 |
+
# When `by` is assigned, the ticklabels will become unique grouped
|
| 215 |
+
# values, instead of label which is used as subtitle in this case.
|
| 216 |
+
# error: "Index" has no attribute "levels"; maybe "nlevels"?
|
| 217 |
+
levels = self.data.columns.levels # type: ignore[attr-defined]
|
| 218 |
+
ticklabels = [pprint_thing(col) for col in levels[0]]
|
| 219 |
+
else:
|
| 220 |
+
ticklabels = [pprint_thing(label)]
|
| 221 |
+
|
| 222 |
+
ret, bp = self._plot(
|
| 223 |
+
ax, y, column_num=i, return_type=self.return_type, **kwds
|
| 224 |
+
)
|
| 225 |
+
self.maybe_color_bp(bp)
|
| 226 |
+
self._return_obj[label] = ret
|
| 227 |
+
_set_ticklabels(
|
| 228 |
+
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical"
|
| 229 |
+
)
|
| 230 |
+
else:
|
| 231 |
+
y = self.data.values.T
|
| 232 |
+
ax = self._get_ax(0)
|
| 233 |
+
kwds = self.kwds.copy()
|
| 234 |
+
|
| 235 |
+
ret, bp = self._plot(
|
| 236 |
+
ax, y, column_num=0, return_type=self.return_type, **kwds
|
| 237 |
+
)
|
| 238 |
+
self.maybe_color_bp(bp)
|
| 239 |
+
self._return_obj = ret
|
| 240 |
+
|
| 241 |
+
labels = [pprint_thing(left) for left in self.data.columns]
|
| 242 |
+
if not self.use_index:
|
| 243 |
+
labels = [pprint_thing(key) for key in range(len(labels))]
|
| 244 |
+
_set_ticklabels(
|
| 245 |
+
ax=ax, labels=labels, is_vertical=self.orientation == "vertical"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
def _make_legend(self) -> None:
|
| 249 |
+
pass
|
| 250 |
+
|
| 251 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 252 |
+
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel
|
| 253 |
+
if self.xlabel:
|
| 254 |
+
ax.set_xlabel(pprint_thing(self.xlabel))
|
| 255 |
+
if self.ylabel:
|
| 256 |
+
ax.set_ylabel(pprint_thing(self.ylabel))
|
| 257 |
+
|
| 258 |
+
@property
|
| 259 |
+
def orientation(self) -> Literal["horizontal", "vertical"]:
|
| 260 |
+
if self.kwds.get("vert", True):
|
| 261 |
+
return "vertical"
|
| 262 |
+
else:
|
| 263 |
+
return "horizontal"
|
| 264 |
+
|
| 265 |
+
@property
|
| 266 |
+
def result(self):
|
| 267 |
+
if self.return_type is None:
|
| 268 |
+
return super().result
|
| 269 |
+
else:
|
| 270 |
+
return self._return_obj
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def maybe_color_bp(bp, color_tup, **kwds) -> None:
|
| 274 |
+
# GH#30346, when users specifying those arguments explicitly, our defaults
|
| 275 |
+
# for these four kwargs should be overridden; if not, use Pandas settings
|
| 276 |
+
if not kwds.get("boxprops"):
|
| 277 |
+
setp(bp["boxes"], color=color_tup[0], alpha=1)
|
| 278 |
+
if not kwds.get("whiskerprops"):
|
| 279 |
+
setp(bp["whiskers"], color=color_tup[1], alpha=1)
|
| 280 |
+
if not kwds.get("medianprops"):
|
| 281 |
+
setp(bp["medians"], color=color_tup[2], alpha=1)
|
| 282 |
+
if not kwds.get("capprops"):
|
| 283 |
+
setp(bp["caps"], color=color_tup[3], alpha=1)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def _grouped_plot_by_column(
|
| 287 |
+
plotf,
|
| 288 |
+
data,
|
| 289 |
+
columns=None,
|
| 290 |
+
by=None,
|
| 291 |
+
numeric_only: bool = True,
|
| 292 |
+
grid: bool = False,
|
| 293 |
+
figsize: tuple[float, float] | None = None,
|
| 294 |
+
ax=None,
|
| 295 |
+
layout=None,
|
| 296 |
+
return_type=None,
|
| 297 |
+
**kwargs,
|
| 298 |
+
):
|
| 299 |
+
grouped = data.groupby(by, observed=False)
|
| 300 |
+
if columns is None:
|
| 301 |
+
if not isinstance(by, (list, tuple)):
|
| 302 |
+
by = [by]
|
| 303 |
+
columns = data._get_numeric_data().columns.difference(by)
|
| 304 |
+
naxes = len(columns)
|
| 305 |
+
fig, axes = create_subplots(
|
| 306 |
+
naxes=naxes,
|
| 307 |
+
sharex=kwargs.pop("sharex", True),
|
| 308 |
+
sharey=kwargs.pop("sharey", True),
|
| 309 |
+
figsize=figsize,
|
| 310 |
+
ax=ax,
|
| 311 |
+
layout=layout,
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
_axes = flatten_axes(axes)
|
| 315 |
+
|
| 316 |
+
# GH 45465: move the "by" label based on "vert"
|
| 317 |
+
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None)
|
| 318 |
+
if kwargs.get("vert", True):
|
| 319 |
+
xlabel = xlabel or by
|
| 320 |
+
else:
|
| 321 |
+
ylabel = ylabel or by
|
| 322 |
+
|
| 323 |
+
ax_values = []
|
| 324 |
+
|
| 325 |
+
for i, col in enumerate(columns):
|
| 326 |
+
ax = _axes[i]
|
| 327 |
+
gp_col = grouped[col]
|
| 328 |
+
keys, values = zip(*gp_col)
|
| 329 |
+
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs)
|
| 330 |
+
ax.set_title(col)
|
| 331 |
+
ax_values.append(re_plotf)
|
| 332 |
+
ax.grid(grid)
|
| 333 |
+
|
| 334 |
+
result = pd.Series(ax_values, index=columns, copy=False)
|
| 335 |
+
|
| 336 |
+
# Return axes in multiplot case, maybe revisit later # 985
|
| 337 |
+
if return_type is None:
|
| 338 |
+
result = axes
|
| 339 |
+
|
| 340 |
+
byline = by[0] if len(by) == 1 else by
|
| 341 |
+
fig.suptitle(f"Boxplot grouped by {byline}")
|
| 342 |
+
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
| 343 |
+
|
| 344 |
+
return result
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
def boxplot(
|
| 348 |
+
data,
|
| 349 |
+
column=None,
|
| 350 |
+
by=None,
|
| 351 |
+
ax=None,
|
| 352 |
+
fontsize: int | None = None,
|
| 353 |
+
rot: int = 0,
|
| 354 |
+
grid: bool = True,
|
| 355 |
+
figsize: tuple[float, float] | None = None,
|
| 356 |
+
layout=None,
|
| 357 |
+
return_type=None,
|
| 358 |
+
**kwds,
|
| 359 |
+
):
|
| 360 |
+
import matplotlib.pyplot as plt
|
| 361 |
+
|
| 362 |
+
# validate return_type:
|
| 363 |
+
if return_type not in BoxPlot._valid_return_types:
|
| 364 |
+
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
|
| 365 |
+
|
| 366 |
+
if isinstance(data, ABCSeries):
|
| 367 |
+
data = data.to_frame("x")
|
| 368 |
+
column = "x"
|
| 369 |
+
|
| 370 |
+
def _get_colors():
|
| 371 |
+
# num_colors=3 is required as method maybe_color_bp takes the colors
|
| 372 |
+
# in positions 0 and 2.
|
| 373 |
+
# if colors not provided, use same defaults as DataFrame.plot.box
|
| 374 |
+
result = get_standard_colors(num_colors=3)
|
| 375 |
+
result = np.take(result, [0, 0, 2])
|
| 376 |
+
result = np.append(result, "k")
|
| 377 |
+
|
| 378 |
+
colors = kwds.pop("color", None)
|
| 379 |
+
if colors:
|
| 380 |
+
if is_dict_like(colors):
|
| 381 |
+
# replace colors in result array with user-specified colors
|
| 382 |
+
# taken from the colors dict parameter
|
| 383 |
+
# "boxes" value placed in position 0, "whiskers" in 1, etc.
|
| 384 |
+
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
| 385 |
+
key_to_index = dict(zip(valid_keys, range(4)))
|
| 386 |
+
for key, value in colors.items():
|
| 387 |
+
if key in valid_keys:
|
| 388 |
+
result[key_to_index[key]] = value
|
| 389 |
+
else:
|
| 390 |
+
raise ValueError(
|
| 391 |
+
f"color dict contains invalid key '{key}'. "
|
| 392 |
+
f"The key must be either {valid_keys}"
|
| 393 |
+
)
|
| 394 |
+
else:
|
| 395 |
+
result.fill(colors)
|
| 396 |
+
|
| 397 |
+
return result
|
| 398 |
+
|
| 399 |
+
def plot_group(keys, values, ax: Axes, **kwds):
|
| 400 |
+
# GH 45465: xlabel/ylabel need to be popped out before plotting happens
|
| 401 |
+
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None)
|
| 402 |
+
if xlabel:
|
| 403 |
+
ax.set_xlabel(pprint_thing(xlabel))
|
| 404 |
+
if ylabel:
|
| 405 |
+
ax.set_ylabel(pprint_thing(ylabel))
|
| 406 |
+
|
| 407 |
+
keys = [pprint_thing(x) for x in keys]
|
| 408 |
+
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
|
| 409 |
+
bp = ax.boxplot(values, **kwds)
|
| 410 |
+
if fontsize is not None:
|
| 411 |
+
ax.tick_params(axis="both", labelsize=fontsize)
|
| 412 |
+
|
| 413 |
+
# GH 45465: x/y are flipped when "vert" changes
|
| 414 |
+
_set_ticklabels(
|
| 415 |
+
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot
|
| 416 |
+
)
|
| 417 |
+
maybe_color_bp(bp, color_tup=colors, **kwds)
|
| 418 |
+
|
| 419 |
+
# Return axes in multiplot case, maybe revisit later # 985
|
| 420 |
+
if return_type == "dict":
|
| 421 |
+
return bp
|
| 422 |
+
elif return_type == "both":
|
| 423 |
+
return BoxPlot.BP(ax=ax, lines=bp)
|
| 424 |
+
else:
|
| 425 |
+
return ax
|
| 426 |
+
|
| 427 |
+
colors = _get_colors()
|
| 428 |
+
if column is None:
|
| 429 |
+
columns = None
|
| 430 |
+
elif isinstance(column, (list, tuple)):
|
| 431 |
+
columns = column
|
| 432 |
+
else:
|
| 433 |
+
columns = [column]
|
| 434 |
+
|
| 435 |
+
if by is not None:
|
| 436 |
+
# Prefer array return type for 2-D plots to match the subplot layout
|
| 437 |
+
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
|
| 438 |
+
result = _grouped_plot_by_column(
|
| 439 |
+
plot_group,
|
| 440 |
+
data,
|
| 441 |
+
columns=columns,
|
| 442 |
+
by=by,
|
| 443 |
+
grid=grid,
|
| 444 |
+
figsize=figsize,
|
| 445 |
+
ax=ax,
|
| 446 |
+
layout=layout,
|
| 447 |
+
return_type=return_type,
|
| 448 |
+
**kwds,
|
| 449 |
+
)
|
| 450 |
+
else:
|
| 451 |
+
if return_type is None:
|
| 452 |
+
return_type = "axes"
|
| 453 |
+
if layout is not None:
|
| 454 |
+
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
|
| 455 |
+
|
| 456 |
+
if ax is None:
|
| 457 |
+
rc = {"figure.figsize": figsize} if figsize is not None else {}
|
| 458 |
+
with plt.rc_context(rc):
|
| 459 |
+
ax = plt.gca()
|
| 460 |
+
data = data._get_numeric_data()
|
| 461 |
+
naxes = len(data.columns)
|
| 462 |
+
if naxes == 0:
|
| 463 |
+
raise ValueError(
|
| 464 |
+
"boxplot method requires numerical columns, nothing to plot."
|
| 465 |
+
)
|
| 466 |
+
if columns is None:
|
| 467 |
+
columns = data.columns
|
| 468 |
+
else:
|
| 469 |
+
data = data[columns]
|
| 470 |
+
|
| 471 |
+
result = plot_group(columns, data.values.T, ax, **kwds)
|
| 472 |
+
ax.grid(grid)
|
| 473 |
+
|
| 474 |
+
return result
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def boxplot_frame(
|
| 478 |
+
self,
|
| 479 |
+
column=None,
|
| 480 |
+
by=None,
|
| 481 |
+
ax=None,
|
| 482 |
+
fontsize: int | None = None,
|
| 483 |
+
rot: int = 0,
|
| 484 |
+
grid: bool = True,
|
| 485 |
+
figsize: tuple[float, float] | None = None,
|
| 486 |
+
layout=None,
|
| 487 |
+
return_type=None,
|
| 488 |
+
**kwds,
|
| 489 |
+
):
|
| 490 |
+
import matplotlib.pyplot as plt
|
| 491 |
+
|
| 492 |
+
ax = boxplot(
|
| 493 |
+
self,
|
| 494 |
+
column=column,
|
| 495 |
+
by=by,
|
| 496 |
+
ax=ax,
|
| 497 |
+
fontsize=fontsize,
|
| 498 |
+
grid=grid,
|
| 499 |
+
rot=rot,
|
| 500 |
+
figsize=figsize,
|
| 501 |
+
layout=layout,
|
| 502 |
+
return_type=return_type,
|
| 503 |
+
**kwds,
|
| 504 |
+
)
|
| 505 |
+
plt.draw_if_interactive()
|
| 506 |
+
return ax
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def boxplot_frame_groupby(
|
| 510 |
+
grouped,
|
| 511 |
+
subplots: bool = True,
|
| 512 |
+
column=None,
|
| 513 |
+
fontsize: int | None = None,
|
| 514 |
+
rot: int = 0,
|
| 515 |
+
grid: bool = True,
|
| 516 |
+
ax=None,
|
| 517 |
+
figsize: tuple[float, float] | None = None,
|
| 518 |
+
layout=None,
|
| 519 |
+
sharex: bool = False,
|
| 520 |
+
sharey: bool = True,
|
| 521 |
+
**kwds,
|
| 522 |
+
):
|
| 523 |
+
if subplots is True:
|
| 524 |
+
naxes = len(grouped)
|
| 525 |
+
fig, axes = create_subplots(
|
| 526 |
+
naxes=naxes,
|
| 527 |
+
squeeze=False,
|
| 528 |
+
ax=ax,
|
| 529 |
+
sharex=sharex,
|
| 530 |
+
sharey=sharey,
|
| 531 |
+
figsize=figsize,
|
| 532 |
+
layout=layout,
|
| 533 |
+
)
|
| 534 |
+
axes = flatten_axes(axes)
|
| 535 |
+
|
| 536 |
+
ret = pd.Series(dtype=object)
|
| 537 |
+
|
| 538 |
+
for (key, group), ax in zip(grouped, axes):
|
| 539 |
+
d = group.boxplot(
|
| 540 |
+
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
|
| 541 |
+
)
|
| 542 |
+
ax.set_title(pprint_thing(key))
|
| 543 |
+
ret.loc[key] = d
|
| 544 |
+
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
| 545 |
+
else:
|
| 546 |
+
keys, frames = zip(*grouped)
|
| 547 |
+
if grouped.axis == 0:
|
| 548 |
+
df = pd.concat(frames, keys=keys, axis=1)
|
| 549 |
+
elif len(frames) > 1:
|
| 550 |
+
df = frames[0].join(frames[1::])
|
| 551 |
+
else:
|
| 552 |
+
df = frames[0]
|
| 553 |
+
|
| 554 |
+
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
|
| 555 |
+
# is assigned, and in this case, since `df` here becomes MI after groupby,
|
| 556 |
+
# so we need to couple the keys (grouped values) and column (original df
|
| 557 |
+
# column) together to search for subset to plot
|
| 558 |
+
if column is not None:
|
| 559 |
+
column = com.convert_to_list_like(column)
|
| 560 |
+
multi_key = pd.MultiIndex.from_product([keys, column])
|
| 561 |
+
column = list(multi_key.values)
|
| 562 |
+
ret = df.boxplot(
|
| 563 |
+
column=column,
|
| 564 |
+
fontsize=fontsize,
|
| 565 |
+
rot=rot,
|
| 566 |
+
grid=grid,
|
| 567 |
+
ax=ax,
|
| 568 |
+
figsize=figsize,
|
| 569 |
+
layout=layout,
|
| 570 |
+
**kwds,
|
| 571 |
+
)
|
| 572 |
+
return ret
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/converter.py
ADDED
|
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import contextlib
|
| 4 |
+
import datetime as pydt
|
| 5 |
+
from datetime import (
|
| 6 |
+
datetime,
|
| 7 |
+
timedelta,
|
| 8 |
+
tzinfo,
|
| 9 |
+
)
|
| 10 |
+
import functools
|
| 11 |
+
from typing import (
|
| 12 |
+
TYPE_CHECKING,
|
| 13 |
+
Any,
|
| 14 |
+
cast,
|
| 15 |
+
)
|
| 16 |
+
import warnings
|
| 17 |
+
|
| 18 |
+
import matplotlib.dates as mdates
|
| 19 |
+
from matplotlib.ticker import (
|
| 20 |
+
AutoLocator,
|
| 21 |
+
Formatter,
|
| 22 |
+
Locator,
|
| 23 |
+
)
|
| 24 |
+
from matplotlib.transforms import nonsingular
|
| 25 |
+
import matplotlib.units as munits
|
| 26 |
+
import numpy as np
|
| 27 |
+
|
| 28 |
+
from pandas._libs import lib
|
| 29 |
+
from pandas._libs.tslibs import (
|
| 30 |
+
Timestamp,
|
| 31 |
+
to_offset,
|
| 32 |
+
)
|
| 33 |
+
from pandas._libs.tslibs.dtypes import (
|
| 34 |
+
FreqGroup,
|
| 35 |
+
periods_per_day,
|
| 36 |
+
)
|
| 37 |
+
from pandas._typing import (
|
| 38 |
+
F,
|
| 39 |
+
npt,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
from pandas.core.dtypes.common import (
|
| 43 |
+
is_float,
|
| 44 |
+
is_float_dtype,
|
| 45 |
+
is_integer,
|
| 46 |
+
is_integer_dtype,
|
| 47 |
+
is_nested_list_like,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
from pandas import (
|
| 51 |
+
Index,
|
| 52 |
+
Series,
|
| 53 |
+
get_option,
|
| 54 |
+
)
|
| 55 |
+
import pandas.core.common as com
|
| 56 |
+
from pandas.core.indexes.datetimes import date_range
|
| 57 |
+
from pandas.core.indexes.period import (
|
| 58 |
+
Period,
|
| 59 |
+
PeriodIndex,
|
| 60 |
+
period_range,
|
| 61 |
+
)
|
| 62 |
+
import pandas.core.tools.datetimes as tools
|
| 63 |
+
|
| 64 |
+
if TYPE_CHECKING:
|
| 65 |
+
from collections.abc import Generator
|
| 66 |
+
|
| 67 |
+
from matplotlib.axis import Axis
|
| 68 |
+
|
| 69 |
+
from pandas._libs.tslibs.offsets import BaseOffset
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
_mpl_units = {} # Cache for units overwritten by us
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_pairs():
|
| 76 |
+
pairs = [
|
| 77 |
+
(Timestamp, DatetimeConverter),
|
| 78 |
+
(Period, PeriodConverter),
|
| 79 |
+
(pydt.datetime, DatetimeConverter),
|
| 80 |
+
(pydt.date, DatetimeConverter),
|
| 81 |
+
(pydt.time, TimeConverter),
|
| 82 |
+
(np.datetime64, DatetimeConverter),
|
| 83 |
+
]
|
| 84 |
+
return pairs
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def register_pandas_matplotlib_converters(func: F) -> F:
|
| 88 |
+
"""
|
| 89 |
+
Decorator applying pandas_converters.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
@functools.wraps(func)
|
| 93 |
+
def wrapper(*args, **kwargs):
|
| 94 |
+
with pandas_converters():
|
| 95 |
+
return func(*args, **kwargs)
|
| 96 |
+
|
| 97 |
+
return cast(F, wrapper)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@contextlib.contextmanager
|
| 101 |
+
def pandas_converters() -> Generator[None, None, None]:
|
| 102 |
+
"""
|
| 103 |
+
Context manager registering pandas' converters for a plot.
|
| 104 |
+
|
| 105 |
+
See Also
|
| 106 |
+
--------
|
| 107 |
+
register_pandas_matplotlib_converters : Decorator that applies this.
|
| 108 |
+
"""
|
| 109 |
+
value = get_option("plotting.matplotlib.register_converters")
|
| 110 |
+
|
| 111 |
+
if value:
|
| 112 |
+
# register for True or "auto"
|
| 113 |
+
register()
|
| 114 |
+
try:
|
| 115 |
+
yield
|
| 116 |
+
finally:
|
| 117 |
+
if value == "auto":
|
| 118 |
+
# only deregister for "auto"
|
| 119 |
+
deregister()
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def register() -> None:
|
| 123 |
+
pairs = get_pairs()
|
| 124 |
+
for type_, cls in pairs:
|
| 125 |
+
# Cache previous converter if present
|
| 126 |
+
if type_ in munits.registry and not isinstance(munits.registry[type_], cls):
|
| 127 |
+
previous = munits.registry[type_]
|
| 128 |
+
_mpl_units[type_] = previous
|
| 129 |
+
# Replace with pandas converter
|
| 130 |
+
munits.registry[type_] = cls()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def deregister() -> None:
|
| 134 |
+
# Renamed in pandas.plotting.__init__
|
| 135 |
+
for type_, cls in get_pairs():
|
| 136 |
+
# We use type to catch our classes directly, no inheritance
|
| 137 |
+
if type(munits.registry.get(type_)) is cls:
|
| 138 |
+
munits.registry.pop(type_)
|
| 139 |
+
|
| 140 |
+
# restore the old keys
|
| 141 |
+
for unit, formatter in _mpl_units.items():
|
| 142 |
+
if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}:
|
| 143 |
+
# make it idempotent by excluding ours.
|
| 144 |
+
munits.registry[unit] = formatter
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def _to_ordinalf(tm: pydt.time) -> float:
|
| 148 |
+
tot_sec = tm.hour * 3600 + tm.minute * 60 + tm.second + tm.microsecond / 10**6
|
| 149 |
+
return tot_sec
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def time2num(d):
|
| 153 |
+
if isinstance(d, str):
|
| 154 |
+
parsed = Timestamp(d)
|
| 155 |
+
return _to_ordinalf(parsed.time())
|
| 156 |
+
if isinstance(d, pydt.time):
|
| 157 |
+
return _to_ordinalf(d)
|
| 158 |
+
return d
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class TimeConverter(munits.ConversionInterface):
|
| 162 |
+
@staticmethod
|
| 163 |
+
def convert(value, unit, axis):
|
| 164 |
+
valid_types = (str, pydt.time)
|
| 165 |
+
if isinstance(value, valid_types) or is_integer(value) or is_float(value):
|
| 166 |
+
return time2num(value)
|
| 167 |
+
if isinstance(value, Index):
|
| 168 |
+
return value.map(time2num)
|
| 169 |
+
if isinstance(value, (list, tuple, np.ndarray, Index)):
|
| 170 |
+
return [time2num(x) for x in value]
|
| 171 |
+
return value
|
| 172 |
+
|
| 173 |
+
@staticmethod
|
| 174 |
+
def axisinfo(unit, axis) -> munits.AxisInfo | None:
|
| 175 |
+
if unit != "time":
|
| 176 |
+
return None
|
| 177 |
+
|
| 178 |
+
majloc = AutoLocator()
|
| 179 |
+
majfmt = TimeFormatter(majloc)
|
| 180 |
+
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label="time")
|
| 181 |
+
|
| 182 |
+
@staticmethod
|
| 183 |
+
def default_units(x, axis) -> str:
|
| 184 |
+
return "time"
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# time formatter
|
| 188 |
+
class TimeFormatter(Formatter):
|
| 189 |
+
def __init__(self, locs) -> None:
|
| 190 |
+
self.locs = locs
|
| 191 |
+
|
| 192 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
| 193 |
+
"""
|
| 194 |
+
Return the time of day as a formatted string.
|
| 195 |
+
|
| 196 |
+
Parameters
|
| 197 |
+
----------
|
| 198 |
+
x : float
|
| 199 |
+
The time of day specified as seconds since 00:00 (midnight),
|
| 200 |
+
with up to microsecond precision.
|
| 201 |
+
pos
|
| 202 |
+
Unused
|
| 203 |
+
|
| 204 |
+
Returns
|
| 205 |
+
-------
|
| 206 |
+
str
|
| 207 |
+
A string in HH:MM:SS.mmmuuu format. Microseconds,
|
| 208 |
+
milliseconds and seconds are only displayed if non-zero.
|
| 209 |
+
"""
|
| 210 |
+
fmt = "%H:%M:%S.%f"
|
| 211 |
+
s = int(x)
|
| 212 |
+
msus = round((x - s) * 10**6)
|
| 213 |
+
ms = msus // 1000
|
| 214 |
+
us = msus % 1000
|
| 215 |
+
m, s = divmod(s, 60)
|
| 216 |
+
h, m = divmod(m, 60)
|
| 217 |
+
_, h = divmod(h, 24)
|
| 218 |
+
if us != 0:
|
| 219 |
+
return pydt.time(h, m, s, msus).strftime(fmt)
|
| 220 |
+
elif ms != 0:
|
| 221 |
+
return pydt.time(h, m, s, msus).strftime(fmt)[:-3]
|
| 222 |
+
elif s != 0:
|
| 223 |
+
return pydt.time(h, m, s).strftime("%H:%M:%S")
|
| 224 |
+
|
| 225 |
+
return pydt.time(h, m).strftime("%H:%M")
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Period Conversion
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class PeriodConverter(mdates.DateConverter):
|
| 232 |
+
@staticmethod
|
| 233 |
+
def convert(values, units, axis):
|
| 234 |
+
if is_nested_list_like(values):
|
| 235 |
+
values = [PeriodConverter._convert_1d(v, units, axis) for v in values]
|
| 236 |
+
else:
|
| 237 |
+
values = PeriodConverter._convert_1d(values, units, axis)
|
| 238 |
+
return values
|
| 239 |
+
|
| 240 |
+
@staticmethod
|
| 241 |
+
def _convert_1d(values, units, axis):
|
| 242 |
+
if not hasattr(axis, "freq"):
|
| 243 |
+
raise TypeError("Axis must have `freq` set to convert to Periods")
|
| 244 |
+
valid_types = (str, datetime, Period, pydt.date, pydt.time, np.datetime64)
|
| 245 |
+
with warnings.catch_warnings():
|
| 246 |
+
warnings.filterwarnings(
|
| 247 |
+
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
|
| 248 |
+
)
|
| 249 |
+
warnings.filterwarnings(
|
| 250 |
+
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
|
| 251 |
+
)
|
| 252 |
+
if (
|
| 253 |
+
isinstance(values, valid_types)
|
| 254 |
+
or is_integer(values)
|
| 255 |
+
or is_float(values)
|
| 256 |
+
):
|
| 257 |
+
return get_datevalue(values, axis.freq)
|
| 258 |
+
elif isinstance(values, PeriodIndex):
|
| 259 |
+
return values.asfreq(axis.freq).asi8
|
| 260 |
+
elif isinstance(values, Index):
|
| 261 |
+
return values.map(lambda x: get_datevalue(x, axis.freq))
|
| 262 |
+
elif lib.infer_dtype(values, skipna=False) == "period":
|
| 263 |
+
# https://github.com/pandas-dev/pandas/issues/24304
|
| 264 |
+
# convert ndarray[period] -> PeriodIndex
|
| 265 |
+
return PeriodIndex(values, freq=axis.freq).asi8
|
| 266 |
+
elif isinstance(values, (list, tuple, np.ndarray, Index)):
|
| 267 |
+
return [get_datevalue(x, axis.freq) for x in values]
|
| 268 |
+
return values
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def get_datevalue(date, freq):
|
| 272 |
+
if isinstance(date, Period):
|
| 273 |
+
return date.asfreq(freq).ordinal
|
| 274 |
+
elif isinstance(date, (str, datetime, pydt.date, pydt.time, np.datetime64)):
|
| 275 |
+
return Period(date, freq).ordinal
|
| 276 |
+
elif (
|
| 277 |
+
is_integer(date)
|
| 278 |
+
or is_float(date)
|
| 279 |
+
or (isinstance(date, (np.ndarray, Index)) and (date.size == 1))
|
| 280 |
+
):
|
| 281 |
+
return date
|
| 282 |
+
elif date is None:
|
| 283 |
+
return None
|
| 284 |
+
raise ValueError(f"Unrecognizable date '{date}'")
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Datetime Conversion
|
| 288 |
+
class DatetimeConverter(mdates.DateConverter):
|
| 289 |
+
@staticmethod
|
| 290 |
+
def convert(values, unit, axis):
|
| 291 |
+
# values might be a 1-d array, or a list-like of arrays.
|
| 292 |
+
if is_nested_list_like(values):
|
| 293 |
+
values = [DatetimeConverter._convert_1d(v, unit, axis) for v in values]
|
| 294 |
+
else:
|
| 295 |
+
values = DatetimeConverter._convert_1d(values, unit, axis)
|
| 296 |
+
return values
|
| 297 |
+
|
| 298 |
+
@staticmethod
|
| 299 |
+
def _convert_1d(values, unit, axis):
|
| 300 |
+
def try_parse(values):
|
| 301 |
+
try:
|
| 302 |
+
return mdates.date2num(tools.to_datetime(values))
|
| 303 |
+
except Exception:
|
| 304 |
+
return values
|
| 305 |
+
|
| 306 |
+
if isinstance(values, (datetime, pydt.date, np.datetime64, pydt.time)):
|
| 307 |
+
return mdates.date2num(values)
|
| 308 |
+
elif is_integer(values) or is_float(values):
|
| 309 |
+
return values
|
| 310 |
+
elif isinstance(values, str):
|
| 311 |
+
return try_parse(values)
|
| 312 |
+
elif isinstance(values, (list, tuple, np.ndarray, Index, Series)):
|
| 313 |
+
if isinstance(values, Series):
|
| 314 |
+
# https://github.com/matplotlib/matplotlib/issues/11391
|
| 315 |
+
# Series was skipped. Convert to DatetimeIndex to get asi8
|
| 316 |
+
values = Index(values)
|
| 317 |
+
if isinstance(values, Index):
|
| 318 |
+
values = values.values
|
| 319 |
+
if not isinstance(values, np.ndarray):
|
| 320 |
+
values = com.asarray_tuplesafe(values)
|
| 321 |
+
|
| 322 |
+
if is_integer_dtype(values) or is_float_dtype(values):
|
| 323 |
+
return values
|
| 324 |
+
|
| 325 |
+
try:
|
| 326 |
+
values = tools.to_datetime(values)
|
| 327 |
+
except Exception:
|
| 328 |
+
pass
|
| 329 |
+
|
| 330 |
+
values = mdates.date2num(values)
|
| 331 |
+
|
| 332 |
+
return values
|
| 333 |
+
|
| 334 |
+
@staticmethod
|
| 335 |
+
def axisinfo(unit: tzinfo | None, axis) -> munits.AxisInfo:
|
| 336 |
+
"""
|
| 337 |
+
Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
|
| 338 |
+
|
| 339 |
+
*unit* is a tzinfo instance or None.
|
| 340 |
+
The *axis* argument is required but not used.
|
| 341 |
+
"""
|
| 342 |
+
tz = unit
|
| 343 |
+
|
| 344 |
+
majloc = PandasAutoDateLocator(tz=tz)
|
| 345 |
+
majfmt = PandasAutoDateFormatter(majloc, tz=tz)
|
| 346 |
+
datemin = pydt.date(2000, 1, 1)
|
| 347 |
+
datemax = pydt.date(2010, 1, 1)
|
| 348 |
+
|
| 349 |
+
return munits.AxisInfo(
|
| 350 |
+
majloc=majloc, majfmt=majfmt, label="", default_limits=(datemin, datemax)
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class PandasAutoDateFormatter(mdates.AutoDateFormatter):
|
| 355 |
+
def __init__(self, locator, tz=None, defaultfmt: str = "%Y-%m-%d") -> None:
|
| 356 |
+
mdates.AutoDateFormatter.__init__(self, locator, tz, defaultfmt)
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class PandasAutoDateLocator(mdates.AutoDateLocator):
|
| 360 |
+
def get_locator(self, dmin, dmax):
|
| 361 |
+
"""Pick the best locator based on a distance."""
|
| 362 |
+
tot_sec = (dmax - dmin).total_seconds()
|
| 363 |
+
|
| 364 |
+
if abs(tot_sec) < self.minticks:
|
| 365 |
+
self._freq = -1
|
| 366 |
+
locator = MilliSecondLocator(self.tz)
|
| 367 |
+
locator.set_axis(self.axis)
|
| 368 |
+
|
| 369 |
+
# error: Item "None" of "Axis | _DummyAxis | _AxisWrapper | None"
|
| 370 |
+
# has no attribute "get_data_interval"
|
| 371 |
+
locator.axis.set_view_interval( # type: ignore[union-attr]
|
| 372 |
+
*self.axis.get_view_interval() # type: ignore[union-attr]
|
| 373 |
+
)
|
| 374 |
+
locator.axis.set_data_interval( # type: ignore[union-attr]
|
| 375 |
+
*self.axis.get_data_interval() # type: ignore[union-attr]
|
| 376 |
+
)
|
| 377 |
+
return locator
|
| 378 |
+
|
| 379 |
+
return mdates.AutoDateLocator.get_locator(self, dmin, dmax)
|
| 380 |
+
|
| 381 |
+
def _get_unit(self):
|
| 382 |
+
return MilliSecondLocator.get_unit_generic(self._freq)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
class MilliSecondLocator(mdates.DateLocator):
|
| 386 |
+
UNIT = 1.0 / (24 * 3600 * 1000)
|
| 387 |
+
|
| 388 |
+
def __init__(self, tz) -> None:
|
| 389 |
+
mdates.DateLocator.__init__(self, tz)
|
| 390 |
+
self._interval = 1.0
|
| 391 |
+
|
| 392 |
+
def _get_unit(self):
|
| 393 |
+
return self.get_unit_generic(-1)
|
| 394 |
+
|
| 395 |
+
@staticmethod
|
| 396 |
+
def get_unit_generic(freq):
|
| 397 |
+
unit = mdates.RRuleLocator.get_unit_generic(freq)
|
| 398 |
+
if unit < 0:
|
| 399 |
+
return MilliSecondLocator.UNIT
|
| 400 |
+
return unit
|
| 401 |
+
|
| 402 |
+
def __call__(self):
|
| 403 |
+
# if no data have been set, this will tank with a ValueError
|
| 404 |
+
try:
|
| 405 |
+
dmin, dmax = self.viewlim_to_dt()
|
| 406 |
+
except ValueError:
|
| 407 |
+
return []
|
| 408 |
+
|
| 409 |
+
# We need to cap at the endpoints of valid datetime
|
| 410 |
+
nmax, nmin = mdates.date2num((dmax, dmin))
|
| 411 |
+
|
| 412 |
+
num = (nmax - nmin) * 86400 * 1000
|
| 413 |
+
max_millis_ticks = 6
|
| 414 |
+
for interval in [1, 10, 50, 100, 200, 500]:
|
| 415 |
+
if num <= interval * (max_millis_ticks - 1):
|
| 416 |
+
self._interval = interval
|
| 417 |
+
break
|
| 418 |
+
# We went through the whole loop without breaking, default to 1
|
| 419 |
+
self._interval = 1000.0
|
| 420 |
+
|
| 421 |
+
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
|
| 422 |
+
|
| 423 |
+
if estimate > self.MAXTICKS * 2:
|
| 424 |
+
raise RuntimeError(
|
| 425 |
+
"MillisecondLocator estimated to generate "
|
| 426 |
+
f"{estimate:d} ticks from {dmin} to {dmax}: exceeds Locator.MAXTICKS"
|
| 427 |
+
f"* 2 ({self.MAXTICKS * 2:d}) "
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
interval = self._get_interval()
|
| 431 |
+
freq = f"{interval}ms"
|
| 432 |
+
tz = self.tz.tzname(None)
|
| 433 |
+
st = dmin.replace(tzinfo=None)
|
| 434 |
+
ed = dmin.replace(tzinfo=None)
|
| 435 |
+
all_dates = date_range(start=st, end=ed, freq=freq, tz=tz).astype(object)
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
if len(all_dates) > 0:
|
| 439 |
+
locs = self.raise_if_exceeds(mdates.date2num(all_dates))
|
| 440 |
+
return locs
|
| 441 |
+
except Exception: # pragma: no cover
|
| 442 |
+
pass
|
| 443 |
+
|
| 444 |
+
lims = mdates.date2num([dmin, dmax])
|
| 445 |
+
return lims
|
| 446 |
+
|
| 447 |
+
def _get_interval(self):
|
| 448 |
+
return self._interval
|
| 449 |
+
|
| 450 |
+
def autoscale(self):
|
| 451 |
+
"""
|
| 452 |
+
Set the view limits to include the data range.
|
| 453 |
+
"""
|
| 454 |
+
# We need to cap at the endpoints of valid datetime
|
| 455 |
+
dmin, dmax = self.datalim_to_dt()
|
| 456 |
+
|
| 457 |
+
vmin = mdates.date2num(dmin)
|
| 458 |
+
vmax = mdates.date2num(dmax)
|
| 459 |
+
|
| 460 |
+
return self.nonsingular(vmin, vmax)
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def _from_ordinal(x, tz: tzinfo | None = None) -> datetime:
|
| 464 |
+
ix = int(x)
|
| 465 |
+
dt = datetime.fromordinal(ix)
|
| 466 |
+
remainder = float(x) - ix
|
| 467 |
+
hour, remainder = divmod(24 * remainder, 1)
|
| 468 |
+
minute, remainder = divmod(60 * remainder, 1)
|
| 469 |
+
second, remainder = divmod(60 * remainder, 1)
|
| 470 |
+
microsecond = int(1_000_000 * remainder)
|
| 471 |
+
if microsecond < 10:
|
| 472 |
+
microsecond = 0 # compensate for rounding errors
|
| 473 |
+
dt = datetime(
|
| 474 |
+
dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond
|
| 475 |
+
)
|
| 476 |
+
if tz is not None:
|
| 477 |
+
dt = dt.astimezone(tz)
|
| 478 |
+
|
| 479 |
+
if microsecond > 999990: # compensate for rounding errors
|
| 480 |
+
dt += timedelta(microseconds=1_000_000 - microsecond)
|
| 481 |
+
|
| 482 |
+
return dt
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
# Fixed frequency dynamic tick locators and formatters
|
| 486 |
+
|
| 487 |
+
# -------------------------------------------------------------------------
|
| 488 |
+
# --- Locators ---
|
| 489 |
+
# -------------------------------------------------------------------------
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
def _get_default_annual_spacing(nyears) -> tuple[int, int]:
|
| 493 |
+
"""
|
| 494 |
+
Returns a default spacing between consecutive ticks for annual data.
|
| 495 |
+
"""
|
| 496 |
+
if nyears < 11:
|
| 497 |
+
(min_spacing, maj_spacing) = (1, 1)
|
| 498 |
+
elif nyears < 20:
|
| 499 |
+
(min_spacing, maj_spacing) = (1, 2)
|
| 500 |
+
elif nyears < 50:
|
| 501 |
+
(min_spacing, maj_spacing) = (1, 5)
|
| 502 |
+
elif nyears < 100:
|
| 503 |
+
(min_spacing, maj_spacing) = (5, 10)
|
| 504 |
+
elif nyears < 200:
|
| 505 |
+
(min_spacing, maj_spacing) = (5, 25)
|
| 506 |
+
elif nyears < 600:
|
| 507 |
+
(min_spacing, maj_spacing) = (10, 50)
|
| 508 |
+
else:
|
| 509 |
+
factor = nyears // 1000 + 1
|
| 510 |
+
(min_spacing, maj_spacing) = (factor * 20, factor * 100)
|
| 511 |
+
return (min_spacing, maj_spacing)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def _period_break(dates: PeriodIndex, period: str) -> npt.NDArray[np.intp]:
|
| 515 |
+
"""
|
| 516 |
+
Returns the indices where the given period changes.
|
| 517 |
+
|
| 518 |
+
Parameters
|
| 519 |
+
----------
|
| 520 |
+
dates : PeriodIndex
|
| 521 |
+
Array of intervals to monitor.
|
| 522 |
+
period : str
|
| 523 |
+
Name of the period to monitor.
|
| 524 |
+
"""
|
| 525 |
+
mask = _period_break_mask(dates, period)
|
| 526 |
+
return np.nonzero(mask)[0]
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def _period_break_mask(dates: PeriodIndex, period: str) -> npt.NDArray[np.bool_]:
|
| 530 |
+
current = getattr(dates, period)
|
| 531 |
+
previous = getattr(dates - 1 * dates.freq, period)
|
| 532 |
+
return current != previous
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
def has_level_label(label_flags: npt.NDArray[np.intp], vmin: float) -> bool:
|
| 536 |
+
"""
|
| 537 |
+
Returns true if the ``label_flags`` indicate there is at least one label
|
| 538 |
+
for this level.
|
| 539 |
+
|
| 540 |
+
if the minimum view limit is not an exact integer, then the first tick
|
| 541 |
+
label won't be shown, so we must adjust for that.
|
| 542 |
+
"""
|
| 543 |
+
if label_flags.size == 0 or (
|
| 544 |
+
label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0
|
| 545 |
+
):
|
| 546 |
+
return False
|
| 547 |
+
else:
|
| 548 |
+
return True
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
def _get_periods_per_ymd(freq: BaseOffset) -> tuple[int, int, int]:
|
| 552 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
| 553 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
| 554 |
+
freq_group = FreqGroup.from_period_dtype_code(dtype_code)
|
| 555 |
+
|
| 556 |
+
ppd = -1 # placeholder for above-day freqs
|
| 557 |
+
|
| 558 |
+
if dtype_code >= FreqGroup.FR_HR.value:
|
| 559 |
+
# error: "BaseOffset" has no attribute "_creso"
|
| 560 |
+
ppd = periods_per_day(freq._creso) # type: ignore[attr-defined]
|
| 561 |
+
ppm = 28 * ppd
|
| 562 |
+
ppy = 365 * ppd
|
| 563 |
+
elif freq_group == FreqGroup.FR_BUS:
|
| 564 |
+
ppm = 19
|
| 565 |
+
ppy = 261
|
| 566 |
+
elif freq_group == FreqGroup.FR_DAY:
|
| 567 |
+
ppm = 28
|
| 568 |
+
ppy = 365
|
| 569 |
+
elif freq_group == FreqGroup.FR_WK:
|
| 570 |
+
ppm = 3
|
| 571 |
+
ppy = 52
|
| 572 |
+
elif freq_group == FreqGroup.FR_MTH:
|
| 573 |
+
ppm = 1
|
| 574 |
+
ppy = 12
|
| 575 |
+
elif freq_group == FreqGroup.FR_QTR:
|
| 576 |
+
ppm = -1 # placerholder
|
| 577 |
+
ppy = 4
|
| 578 |
+
elif freq_group == FreqGroup.FR_ANN:
|
| 579 |
+
ppm = -1 # placeholder
|
| 580 |
+
ppy = 1
|
| 581 |
+
else:
|
| 582 |
+
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
|
| 583 |
+
|
| 584 |
+
return ppd, ppm, ppy
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
@functools.cache
|
| 588 |
+
def _daily_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
|
| 589 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
| 590 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
| 591 |
+
|
| 592 |
+
periodsperday, periodspermonth, periodsperyear = _get_periods_per_ymd(freq)
|
| 593 |
+
|
| 594 |
+
# save this for later usage
|
| 595 |
+
vmin_orig = vmin
|
| 596 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
| 597 |
+
span = vmax - vmin + 1
|
| 598 |
+
|
| 599 |
+
with warnings.catch_warnings():
|
| 600 |
+
warnings.filterwarnings(
|
| 601 |
+
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
|
| 602 |
+
)
|
| 603 |
+
warnings.filterwarnings(
|
| 604 |
+
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
|
| 605 |
+
)
|
| 606 |
+
dates_ = period_range(
|
| 607 |
+
start=Period(ordinal=vmin, freq=freq),
|
| 608 |
+
end=Period(ordinal=vmax, freq=freq),
|
| 609 |
+
freq=freq,
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
# Initialize the output
|
| 613 |
+
info = np.zeros(
|
| 614 |
+
span, dtype=[("val", np.int64), ("maj", bool), ("min", bool), ("fmt", "|S20")]
|
| 615 |
+
)
|
| 616 |
+
info["val"][:] = dates_.asi8
|
| 617 |
+
info["fmt"][:] = ""
|
| 618 |
+
info["maj"][[0, -1]] = True
|
| 619 |
+
# .. and set some shortcuts
|
| 620 |
+
info_maj = info["maj"]
|
| 621 |
+
info_min = info["min"]
|
| 622 |
+
info_fmt = info["fmt"]
|
| 623 |
+
|
| 624 |
+
def first_label(label_flags):
|
| 625 |
+
if (label_flags[0] == 0) and (label_flags.size > 1) and ((vmin_orig % 1) > 0.0):
|
| 626 |
+
return label_flags[1]
|
| 627 |
+
else:
|
| 628 |
+
return label_flags[0]
|
| 629 |
+
|
| 630 |
+
# Case 1. Less than a month
|
| 631 |
+
if span <= periodspermonth:
|
| 632 |
+
day_start = _period_break(dates_, "day")
|
| 633 |
+
month_start = _period_break(dates_, "month")
|
| 634 |
+
year_start = _period_break(dates_, "year")
|
| 635 |
+
|
| 636 |
+
def _hour_finder(label_interval: int, force_year_start: bool) -> None:
|
| 637 |
+
target = dates_.hour
|
| 638 |
+
mask = _period_break_mask(dates_, "hour")
|
| 639 |
+
info_maj[day_start] = True
|
| 640 |
+
info_min[mask & (target % label_interval == 0)] = True
|
| 641 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
|
| 642 |
+
info_fmt[day_start] = "%H:%M\n%d-%b"
|
| 643 |
+
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
|
| 644 |
+
if force_year_start and not has_level_label(year_start, vmin_orig):
|
| 645 |
+
info_fmt[first_label(day_start)] = "%H:%M\n%d-%b\n%Y"
|
| 646 |
+
|
| 647 |
+
def _minute_finder(label_interval: int) -> None:
|
| 648 |
+
target = dates_.minute
|
| 649 |
+
hour_start = _period_break(dates_, "hour")
|
| 650 |
+
mask = _period_break_mask(dates_, "minute")
|
| 651 |
+
info_maj[hour_start] = True
|
| 652 |
+
info_min[mask & (target % label_interval == 0)] = True
|
| 653 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
|
| 654 |
+
info_fmt[day_start] = "%H:%M\n%d-%b"
|
| 655 |
+
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
|
| 656 |
+
|
| 657 |
+
def _second_finder(label_interval: int) -> None:
|
| 658 |
+
target = dates_.second
|
| 659 |
+
minute_start = _period_break(dates_, "minute")
|
| 660 |
+
mask = _period_break_mask(dates_, "second")
|
| 661 |
+
info_maj[minute_start] = True
|
| 662 |
+
info_min[mask & (target % label_interval == 0)] = True
|
| 663 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M:%S"
|
| 664 |
+
info_fmt[day_start] = "%H:%M:%S\n%d-%b"
|
| 665 |
+
info_fmt[year_start] = "%H:%M:%S\n%d-%b\n%Y"
|
| 666 |
+
|
| 667 |
+
if span < periodsperday / 12000:
|
| 668 |
+
_second_finder(1)
|
| 669 |
+
elif span < periodsperday / 6000:
|
| 670 |
+
_second_finder(2)
|
| 671 |
+
elif span < periodsperday / 2400:
|
| 672 |
+
_second_finder(5)
|
| 673 |
+
elif span < periodsperday / 1200:
|
| 674 |
+
_second_finder(10)
|
| 675 |
+
elif span < periodsperday / 800:
|
| 676 |
+
_second_finder(15)
|
| 677 |
+
elif span < periodsperday / 400:
|
| 678 |
+
_second_finder(30)
|
| 679 |
+
elif span < periodsperday / 150:
|
| 680 |
+
_minute_finder(1)
|
| 681 |
+
elif span < periodsperday / 70:
|
| 682 |
+
_minute_finder(2)
|
| 683 |
+
elif span < periodsperday / 24:
|
| 684 |
+
_minute_finder(5)
|
| 685 |
+
elif span < periodsperday / 12:
|
| 686 |
+
_minute_finder(15)
|
| 687 |
+
elif span < periodsperday / 6:
|
| 688 |
+
_minute_finder(30)
|
| 689 |
+
elif span < periodsperday / 2.5:
|
| 690 |
+
_hour_finder(1, False)
|
| 691 |
+
elif span < periodsperday / 1.5:
|
| 692 |
+
_hour_finder(2, False)
|
| 693 |
+
elif span < periodsperday * 1.25:
|
| 694 |
+
_hour_finder(3, False)
|
| 695 |
+
elif span < periodsperday * 2.5:
|
| 696 |
+
_hour_finder(6, True)
|
| 697 |
+
elif span < periodsperday * 4:
|
| 698 |
+
_hour_finder(12, True)
|
| 699 |
+
else:
|
| 700 |
+
info_maj[month_start] = True
|
| 701 |
+
info_min[day_start] = True
|
| 702 |
+
info_fmt[day_start] = "%d"
|
| 703 |
+
info_fmt[month_start] = "%d\n%b"
|
| 704 |
+
info_fmt[year_start] = "%d\n%b\n%Y"
|
| 705 |
+
if not has_level_label(year_start, vmin_orig):
|
| 706 |
+
if not has_level_label(month_start, vmin_orig):
|
| 707 |
+
info_fmt[first_label(day_start)] = "%d\n%b\n%Y"
|
| 708 |
+
else:
|
| 709 |
+
info_fmt[first_label(month_start)] = "%d\n%b\n%Y"
|
| 710 |
+
|
| 711 |
+
# Case 2. Less than three months
|
| 712 |
+
elif span <= periodsperyear // 4:
|
| 713 |
+
month_start = _period_break(dates_, "month")
|
| 714 |
+
info_maj[month_start] = True
|
| 715 |
+
if dtype_code < FreqGroup.FR_HR.value:
|
| 716 |
+
info["min"] = True
|
| 717 |
+
else:
|
| 718 |
+
day_start = _period_break(dates_, "day")
|
| 719 |
+
info["min"][day_start] = True
|
| 720 |
+
week_start = _period_break(dates_, "week")
|
| 721 |
+
year_start = _period_break(dates_, "year")
|
| 722 |
+
info_fmt[week_start] = "%d"
|
| 723 |
+
info_fmt[month_start] = "\n\n%b"
|
| 724 |
+
info_fmt[year_start] = "\n\n%b\n%Y"
|
| 725 |
+
if not has_level_label(year_start, vmin_orig):
|
| 726 |
+
if not has_level_label(month_start, vmin_orig):
|
| 727 |
+
info_fmt[first_label(week_start)] = "\n\n%b\n%Y"
|
| 728 |
+
else:
|
| 729 |
+
info_fmt[first_label(month_start)] = "\n\n%b\n%Y"
|
| 730 |
+
# Case 3. Less than 14 months ...............
|
| 731 |
+
elif span <= 1.15 * periodsperyear:
|
| 732 |
+
year_start = _period_break(dates_, "year")
|
| 733 |
+
month_start = _period_break(dates_, "month")
|
| 734 |
+
week_start = _period_break(dates_, "week")
|
| 735 |
+
info_maj[month_start] = True
|
| 736 |
+
info_min[week_start] = True
|
| 737 |
+
info_min[year_start] = False
|
| 738 |
+
info_min[month_start] = False
|
| 739 |
+
info_fmt[month_start] = "%b"
|
| 740 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 741 |
+
if not has_level_label(year_start, vmin_orig):
|
| 742 |
+
info_fmt[first_label(month_start)] = "%b\n%Y"
|
| 743 |
+
# Case 4. Less than 2.5 years ...............
|
| 744 |
+
elif span <= 2.5 * periodsperyear:
|
| 745 |
+
year_start = _period_break(dates_, "year")
|
| 746 |
+
quarter_start = _period_break(dates_, "quarter")
|
| 747 |
+
month_start = _period_break(dates_, "month")
|
| 748 |
+
info_maj[quarter_start] = True
|
| 749 |
+
info_min[month_start] = True
|
| 750 |
+
info_fmt[quarter_start] = "%b"
|
| 751 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 752 |
+
# Case 4. Less than 4 years .................
|
| 753 |
+
elif span <= 4 * periodsperyear:
|
| 754 |
+
year_start = _period_break(dates_, "year")
|
| 755 |
+
month_start = _period_break(dates_, "month")
|
| 756 |
+
info_maj[year_start] = True
|
| 757 |
+
info_min[month_start] = True
|
| 758 |
+
info_min[year_start] = False
|
| 759 |
+
|
| 760 |
+
month_break = dates_[month_start].month
|
| 761 |
+
jan_or_jul = month_start[(month_break == 1) | (month_break == 7)]
|
| 762 |
+
info_fmt[jan_or_jul] = "%b"
|
| 763 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 764 |
+
# Case 5. Less than 11 years ................
|
| 765 |
+
elif span <= 11 * periodsperyear:
|
| 766 |
+
year_start = _period_break(dates_, "year")
|
| 767 |
+
quarter_start = _period_break(dates_, "quarter")
|
| 768 |
+
info_maj[year_start] = True
|
| 769 |
+
info_min[quarter_start] = True
|
| 770 |
+
info_min[year_start] = False
|
| 771 |
+
info_fmt[year_start] = "%Y"
|
| 772 |
+
# Case 6. More than 12 years ................
|
| 773 |
+
else:
|
| 774 |
+
year_start = _period_break(dates_, "year")
|
| 775 |
+
year_break = dates_[year_start].year
|
| 776 |
+
nyears = span / periodsperyear
|
| 777 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
| 778 |
+
major_idx = year_start[(year_break % maj_anndef == 0)]
|
| 779 |
+
info_maj[major_idx] = True
|
| 780 |
+
minor_idx = year_start[(year_break % min_anndef == 0)]
|
| 781 |
+
info_min[minor_idx] = True
|
| 782 |
+
info_fmt[major_idx] = "%Y"
|
| 783 |
+
|
| 784 |
+
return info
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
@functools.cache
|
| 788 |
+
def _monthly_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
|
| 789 |
+
_, _, periodsperyear = _get_periods_per_ymd(freq)
|
| 790 |
+
|
| 791 |
+
vmin_orig = vmin
|
| 792 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
| 793 |
+
span = vmax - vmin + 1
|
| 794 |
+
|
| 795 |
+
# Initialize the output
|
| 796 |
+
info = np.zeros(
|
| 797 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
| 798 |
+
)
|
| 799 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
| 800 |
+
dates_ = info["val"]
|
| 801 |
+
info["fmt"] = ""
|
| 802 |
+
year_start = (dates_ % 12 == 0).nonzero()[0]
|
| 803 |
+
info_maj = info["maj"]
|
| 804 |
+
info_fmt = info["fmt"]
|
| 805 |
+
|
| 806 |
+
if span <= 1.15 * periodsperyear:
|
| 807 |
+
info_maj[year_start] = True
|
| 808 |
+
info["min"] = True
|
| 809 |
+
|
| 810 |
+
info_fmt[:] = "%b"
|
| 811 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 812 |
+
|
| 813 |
+
if not has_level_label(year_start, vmin_orig):
|
| 814 |
+
if dates_.size > 1:
|
| 815 |
+
idx = 1
|
| 816 |
+
else:
|
| 817 |
+
idx = 0
|
| 818 |
+
info_fmt[idx] = "%b\n%Y"
|
| 819 |
+
|
| 820 |
+
elif span <= 2.5 * periodsperyear:
|
| 821 |
+
quarter_start = (dates_ % 3 == 0).nonzero()
|
| 822 |
+
info_maj[year_start] = True
|
| 823 |
+
# TODO: Check the following : is it really info['fmt'] ?
|
| 824 |
+
# 2023-09-15 this is reached in test_finder_monthly
|
| 825 |
+
info["fmt"][quarter_start] = True
|
| 826 |
+
info["min"] = True
|
| 827 |
+
|
| 828 |
+
info_fmt[quarter_start] = "%b"
|
| 829 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 830 |
+
|
| 831 |
+
elif span <= 4 * periodsperyear:
|
| 832 |
+
info_maj[year_start] = True
|
| 833 |
+
info["min"] = True
|
| 834 |
+
|
| 835 |
+
jan_or_jul = (dates_ % 12 == 0) | (dates_ % 12 == 6)
|
| 836 |
+
info_fmt[jan_or_jul] = "%b"
|
| 837 |
+
info_fmt[year_start] = "%b\n%Y"
|
| 838 |
+
|
| 839 |
+
elif span <= 11 * periodsperyear:
|
| 840 |
+
quarter_start = (dates_ % 3 == 0).nonzero()
|
| 841 |
+
info_maj[year_start] = True
|
| 842 |
+
info["min"][quarter_start] = True
|
| 843 |
+
|
| 844 |
+
info_fmt[year_start] = "%Y"
|
| 845 |
+
|
| 846 |
+
else:
|
| 847 |
+
nyears = span / periodsperyear
|
| 848 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
| 849 |
+
years = dates_[year_start] // 12 + 1
|
| 850 |
+
major_idx = year_start[(years % maj_anndef == 0)]
|
| 851 |
+
info_maj[major_idx] = True
|
| 852 |
+
info["min"][year_start[(years % min_anndef == 0)]] = True
|
| 853 |
+
|
| 854 |
+
info_fmt[major_idx] = "%Y"
|
| 855 |
+
|
| 856 |
+
return info
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
@functools.cache
|
| 860 |
+
def _quarterly_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
|
| 861 |
+
_, _, periodsperyear = _get_periods_per_ymd(freq)
|
| 862 |
+
vmin_orig = vmin
|
| 863 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
| 864 |
+
span = vmax - vmin + 1
|
| 865 |
+
|
| 866 |
+
info = np.zeros(
|
| 867 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
| 868 |
+
)
|
| 869 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
| 870 |
+
info["fmt"] = ""
|
| 871 |
+
dates_ = info["val"]
|
| 872 |
+
info_maj = info["maj"]
|
| 873 |
+
info_fmt = info["fmt"]
|
| 874 |
+
year_start = (dates_ % 4 == 0).nonzero()[0]
|
| 875 |
+
|
| 876 |
+
if span <= 3.5 * periodsperyear:
|
| 877 |
+
info_maj[year_start] = True
|
| 878 |
+
info["min"] = True
|
| 879 |
+
|
| 880 |
+
info_fmt[:] = "Q%q"
|
| 881 |
+
info_fmt[year_start] = "Q%q\n%F"
|
| 882 |
+
if not has_level_label(year_start, vmin_orig):
|
| 883 |
+
if dates_.size > 1:
|
| 884 |
+
idx = 1
|
| 885 |
+
else:
|
| 886 |
+
idx = 0
|
| 887 |
+
info_fmt[idx] = "Q%q\n%F"
|
| 888 |
+
|
| 889 |
+
elif span <= 11 * periodsperyear:
|
| 890 |
+
info_maj[year_start] = True
|
| 891 |
+
info["min"] = True
|
| 892 |
+
info_fmt[year_start] = "%F"
|
| 893 |
+
|
| 894 |
+
else:
|
| 895 |
+
# https://github.com/pandas-dev/pandas/pull/47602
|
| 896 |
+
years = dates_[year_start] // 4 + 1970
|
| 897 |
+
nyears = span / periodsperyear
|
| 898 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
| 899 |
+
major_idx = year_start[(years % maj_anndef == 0)]
|
| 900 |
+
info_maj[major_idx] = True
|
| 901 |
+
info["min"][year_start[(years % min_anndef == 0)]] = True
|
| 902 |
+
info_fmt[major_idx] = "%F"
|
| 903 |
+
|
| 904 |
+
return info
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
@functools.cache
|
| 908 |
+
def _annual_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
|
| 909 |
+
# Note: small difference here vs other finders in adding 1 to vmax
|
| 910 |
+
(vmin, vmax) = (int(vmin), int(vmax + 1))
|
| 911 |
+
span = vmax - vmin + 1
|
| 912 |
+
|
| 913 |
+
info = np.zeros(
|
| 914 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
| 915 |
+
)
|
| 916 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
| 917 |
+
info["fmt"] = ""
|
| 918 |
+
dates_ = info["val"]
|
| 919 |
+
|
| 920 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(span)
|
| 921 |
+
major_idx = dates_ % maj_anndef == 0
|
| 922 |
+
minor_idx = dates_ % min_anndef == 0
|
| 923 |
+
info["maj"][major_idx] = True
|
| 924 |
+
info["min"][minor_idx] = True
|
| 925 |
+
info["fmt"][major_idx] = "%Y"
|
| 926 |
+
|
| 927 |
+
return info
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
def get_finder(freq: BaseOffset):
|
| 931 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
| 932 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
| 933 |
+
fgroup = FreqGroup.from_period_dtype_code(dtype_code)
|
| 934 |
+
|
| 935 |
+
if fgroup == FreqGroup.FR_ANN:
|
| 936 |
+
return _annual_finder
|
| 937 |
+
elif fgroup == FreqGroup.FR_QTR:
|
| 938 |
+
return _quarterly_finder
|
| 939 |
+
elif fgroup == FreqGroup.FR_MTH:
|
| 940 |
+
return _monthly_finder
|
| 941 |
+
elif (dtype_code >= FreqGroup.FR_BUS.value) or fgroup == FreqGroup.FR_WK:
|
| 942 |
+
return _daily_finder
|
| 943 |
+
else: # pragma: no cover
|
| 944 |
+
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
class TimeSeries_DateLocator(Locator):
|
| 948 |
+
"""
|
| 949 |
+
Locates the ticks along an axis controlled by a :class:`Series`.
|
| 950 |
+
|
| 951 |
+
Parameters
|
| 952 |
+
----------
|
| 953 |
+
freq : BaseOffset
|
| 954 |
+
Valid frequency specifier.
|
| 955 |
+
minor_locator : {False, True}, optional
|
| 956 |
+
Whether the locator is for minor ticks (True) or not.
|
| 957 |
+
dynamic_mode : {True, False}, optional
|
| 958 |
+
Whether the locator should work in dynamic mode.
|
| 959 |
+
base : {int}, optional
|
| 960 |
+
quarter : {int}, optional
|
| 961 |
+
month : {int}, optional
|
| 962 |
+
day : {int}, optional
|
| 963 |
+
"""
|
| 964 |
+
|
| 965 |
+
axis: Axis
|
| 966 |
+
|
| 967 |
+
def __init__(
|
| 968 |
+
self,
|
| 969 |
+
freq: BaseOffset,
|
| 970 |
+
minor_locator: bool = False,
|
| 971 |
+
dynamic_mode: bool = True,
|
| 972 |
+
base: int = 1,
|
| 973 |
+
quarter: int = 1,
|
| 974 |
+
month: int = 1,
|
| 975 |
+
day: int = 1,
|
| 976 |
+
plot_obj=None,
|
| 977 |
+
) -> None:
|
| 978 |
+
freq = to_offset(freq, is_period=True)
|
| 979 |
+
self.freq = freq
|
| 980 |
+
self.base = base
|
| 981 |
+
(self.quarter, self.month, self.day) = (quarter, month, day)
|
| 982 |
+
self.isminor = minor_locator
|
| 983 |
+
self.isdynamic = dynamic_mode
|
| 984 |
+
self.offset = 0
|
| 985 |
+
self.plot_obj = plot_obj
|
| 986 |
+
self.finder = get_finder(freq)
|
| 987 |
+
|
| 988 |
+
def _get_default_locs(self, vmin, vmax):
|
| 989 |
+
"""Returns the default locations of ticks."""
|
| 990 |
+
locator = self.finder(vmin, vmax, self.freq)
|
| 991 |
+
|
| 992 |
+
if self.isminor:
|
| 993 |
+
return np.compress(locator["min"], locator["val"])
|
| 994 |
+
return np.compress(locator["maj"], locator["val"])
|
| 995 |
+
|
| 996 |
+
def __call__(self):
|
| 997 |
+
"""Return the locations of the ticks."""
|
| 998 |
+
# axis calls Locator.set_axis inside set_m<xxxx>_formatter
|
| 999 |
+
|
| 1000 |
+
vi = tuple(self.axis.get_view_interval())
|
| 1001 |
+
vmin, vmax = vi
|
| 1002 |
+
if vmax < vmin:
|
| 1003 |
+
vmin, vmax = vmax, vmin
|
| 1004 |
+
if self.isdynamic:
|
| 1005 |
+
locs = self._get_default_locs(vmin, vmax)
|
| 1006 |
+
else: # pragma: no cover
|
| 1007 |
+
base = self.base
|
| 1008 |
+
(d, m) = divmod(vmin, base)
|
| 1009 |
+
vmin = (d + 1) * base
|
| 1010 |
+
# error: No overload variant of "range" matches argument types "float",
|
| 1011 |
+
# "float", "int"
|
| 1012 |
+
locs = list(range(vmin, vmax + 1, base)) # type: ignore[call-overload]
|
| 1013 |
+
return locs
|
| 1014 |
+
|
| 1015 |
+
def autoscale(self):
|
| 1016 |
+
"""
|
| 1017 |
+
Sets the view limits to the nearest multiples of base that contain the
|
| 1018 |
+
data.
|
| 1019 |
+
"""
|
| 1020 |
+
# requires matplotlib >= 0.98.0
|
| 1021 |
+
(vmin, vmax) = self.axis.get_data_interval()
|
| 1022 |
+
|
| 1023 |
+
locs = self._get_default_locs(vmin, vmax)
|
| 1024 |
+
(vmin, vmax) = locs[[0, -1]]
|
| 1025 |
+
if vmin == vmax:
|
| 1026 |
+
vmin -= 1
|
| 1027 |
+
vmax += 1
|
| 1028 |
+
return nonsingular(vmin, vmax)
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
# -------------------------------------------------------------------------
|
| 1032 |
+
# --- Formatter ---
|
| 1033 |
+
# -------------------------------------------------------------------------
|
| 1034 |
+
|
| 1035 |
+
|
| 1036 |
+
class TimeSeries_DateFormatter(Formatter):
|
| 1037 |
+
"""
|
| 1038 |
+
Formats the ticks along an axis controlled by a :class:`PeriodIndex`.
|
| 1039 |
+
|
| 1040 |
+
Parameters
|
| 1041 |
+
----------
|
| 1042 |
+
freq : BaseOffset
|
| 1043 |
+
Valid frequency specifier.
|
| 1044 |
+
minor_locator : bool, default False
|
| 1045 |
+
Whether the current formatter should apply to minor ticks (True) or
|
| 1046 |
+
major ticks (False).
|
| 1047 |
+
dynamic_mode : bool, default True
|
| 1048 |
+
Whether the formatter works in dynamic mode or not.
|
| 1049 |
+
"""
|
| 1050 |
+
|
| 1051 |
+
axis: Axis
|
| 1052 |
+
|
| 1053 |
+
def __init__(
|
| 1054 |
+
self,
|
| 1055 |
+
freq: BaseOffset,
|
| 1056 |
+
minor_locator: bool = False,
|
| 1057 |
+
dynamic_mode: bool = True,
|
| 1058 |
+
plot_obj=None,
|
| 1059 |
+
) -> None:
|
| 1060 |
+
freq = to_offset(freq, is_period=True)
|
| 1061 |
+
self.format = None
|
| 1062 |
+
self.freq = freq
|
| 1063 |
+
self.locs: list[Any] = [] # unused, for matplotlib compat
|
| 1064 |
+
self.formatdict: dict[Any, Any] | None = None
|
| 1065 |
+
self.isminor = minor_locator
|
| 1066 |
+
self.isdynamic = dynamic_mode
|
| 1067 |
+
self.offset = 0
|
| 1068 |
+
self.plot_obj = plot_obj
|
| 1069 |
+
self.finder = get_finder(freq)
|
| 1070 |
+
|
| 1071 |
+
def _set_default_format(self, vmin, vmax):
|
| 1072 |
+
"""Returns the default ticks spacing."""
|
| 1073 |
+
info = self.finder(vmin, vmax, self.freq)
|
| 1074 |
+
|
| 1075 |
+
if self.isminor:
|
| 1076 |
+
format = np.compress(info["min"] & np.logical_not(info["maj"]), info)
|
| 1077 |
+
else:
|
| 1078 |
+
format = np.compress(info["maj"], info)
|
| 1079 |
+
self.formatdict = {x: f for (x, _, _, f) in format}
|
| 1080 |
+
return self.formatdict
|
| 1081 |
+
|
| 1082 |
+
def set_locs(self, locs) -> None:
|
| 1083 |
+
"""Sets the locations of the ticks"""
|
| 1084 |
+
# don't actually use the locs. This is just needed to work with
|
| 1085 |
+
# matplotlib. Force to use vmin, vmax
|
| 1086 |
+
|
| 1087 |
+
self.locs = locs
|
| 1088 |
+
|
| 1089 |
+
(vmin, vmax) = tuple(self.axis.get_view_interval())
|
| 1090 |
+
if vmax < vmin:
|
| 1091 |
+
(vmin, vmax) = (vmax, vmin)
|
| 1092 |
+
self._set_default_format(vmin, vmax)
|
| 1093 |
+
|
| 1094 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
| 1095 |
+
if self.formatdict is None:
|
| 1096 |
+
return ""
|
| 1097 |
+
else:
|
| 1098 |
+
fmt = self.formatdict.pop(x, "")
|
| 1099 |
+
if isinstance(fmt, np.bytes_):
|
| 1100 |
+
fmt = fmt.decode("utf-8")
|
| 1101 |
+
with warnings.catch_warnings():
|
| 1102 |
+
warnings.filterwarnings(
|
| 1103 |
+
"ignore",
|
| 1104 |
+
"Period with BDay freq is deprecated",
|
| 1105 |
+
category=FutureWarning,
|
| 1106 |
+
)
|
| 1107 |
+
period = Period(ordinal=int(x), freq=self.freq)
|
| 1108 |
+
assert isinstance(period, Period)
|
| 1109 |
+
return period.strftime(fmt)
|
| 1110 |
+
|
| 1111 |
+
|
| 1112 |
+
class TimeSeries_TimedeltaFormatter(Formatter):
|
| 1113 |
+
"""
|
| 1114 |
+
Formats the ticks along an axis controlled by a :class:`TimedeltaIndex`.
|
| 1115 |
+
"""
|
| 1116 |
+
|
| 1117 |
+
axis: Axis
|
| 1118 |
+
|
| 1119 |
+
@staticmethod
|
| 1120 |
+
def format_timedelta_ticks(x, pos, n_decimals: int) -> str:
|
| 1121 |
+
"""
|
| 1122 |
+
Convert seconds to 'D days HH:MM:SS.F'
|
| 1123 |
+
"""
|
| 1124 |
+
s, ns = divmod(x, 10**9) # TODO(non-nano): this looks like it assumes ns
|
| 1125 |
+
m, s = divmod(s, 60)
|
| 1126 |
+
h, m = divmod(m, 60)
|
| 1127 |
+
d, h = divmod(h, 24)
|
| 1128 |
+
decimals = int(ns * 10 ** (n_decimals - 9))
|
| 1129 |
+
s = f"{int(h):02d}:{int(m):02d}:{int(s):02d}"
|
| 1130 |
+
if n_decimals > 0:
|
| 1131 |
+
s += f".{decimals:0{n_decimals}d}"
|
| 1132 |
+
if d != 0:
|
| 1133 |
+
s = f"{int(d):d} days {s}"
|
| 1134 |
+
return s
|
| 1135 |
+
|
| 1136 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
| 1137 |
+
(vmin, vmax) = tuple(self.axis.get_view_interval())
|
| 1138 |
+
n_decimals = min(int(np.ceil(np.log10(100 * 10**9 / abs(vmax - vmin)))), 9)
|
| 1139 |
+
return self.format_timedelta_ticks(x, pos, n_decimals)
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/core.py
ADDED
|
@@ -0,0 +1,2125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from abc import (
|
| 4 |
+
ABC,
|
| 5 |
+
abstractmethod,
|
| 6 |
+
)
|
| 7 |
+
from collections.abc import (
|
| 8 |
+
Hashable,
|
| 9 |
+
Iterable,
|
| 10 |
+
Iterator,
|
| 11 |
+
Sequence,
|
| 12 |
+
)
|
| 13 |
+
from typing import (
|
| 14 |
+
TYPE_CHECKING,
|
| 15 |
+
Any,
|
| 16 |
+
Literal,
|
| 17 |
+
cast,
|
| 18 |
+
final,
|
| 19 |
+
)
|
| 20 |
+
import warnings
|
| 21 |
+
|
| 22 |
+
import matplotlib as mpl
|
| 23 |
+
import numpy as np
|
| 24 |
+
|
| 25 |
+
from pandas._libs import lib
|
| 26 |
+
from pandas.errors import AbstractMethodError
|
| 27 |
+
from pandas.util._decorators import cache_readonly
|
| 28 |
+
from pandas.util._exceptions import find_stack_level
|
| 29 |
+
|
| 30 |
+
from pandas.core.dtypes.common import (
|
| 31 |
+
is_any_real_numeric_dtype,
|
| 32 |
+
is_bool,
|
| 33 |
+
is_float,
|
| 34 |
+
is_float_dtype,
|
| 35 |
+
is_hashable,
|
| 36 |
+
is_integer,
|
| 37 |
+
is_integer_dtype,
|
| 38 |
+
is_iterator,
|
| 39 |
+
is_list_like,
|
| 40 |
+
is_number,
|
| 41 |
+
is_numeric_dtype,
|
| 42 |
+
)
|
| 43 |
+
from pandas.core.dtypes.dtypes import (
|
| 44 |
+
CategoricalDtype,
|
| 45 |
+
ExtensionDtype,
|
| 46 |
+
)
|
| 47 |
+
from pandas.core.dtypes.generic import (
|
| 48 |
+
ABCDataFrame,
|
| 49 |
+
ABCDatetimeIndex,
|
| 50 |
+
ABCIndex,
|
| 51 |
+
ABCMultiIndex,
|
| 52 |
+
ABCPeriodIndex,
|
| 53 |
+
ABCSeries,
|
| 54 |
+
)
|
| 55 |
+
from pandas.core.dtypes.missing import isna
|
| 56 |
+
|
| 57 |
+
import pandas.core.common as com
|
| 58 |
+
from pandas.core.frame import DataFrame
|
| 59 |
+
from pandas.util.version import Version
|
| 60 |
+
|
| 61 |
+
from pandas.io.formats.printing import pprint_thing
|
| 62 |
+
from pandas.plotting._matplotlib import tools
|
| 63 |
+
from pandas.plotting._matplotlib.converter import register_pandas_matplotlib_converters
|
| 64 |
+
from pandas.plotting._matplotlib.groupby import reconstruct_data_with_by
|
| 65 |
+
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
| 66 |
+
from pandas.plotting._matplotlib.style import get_standard_colors
|
| 67 |
+
from pandas.plotting._matplotlib.timeseries import (
|
| 68 |
+
decorate_axes,
|
| 69 |
+
format_dateaxis,
|
| 70 |
+
maybe_convert_index,
|
| 71 |
+
maybe_resample,
|
| 72 |
+
use_dynamic_x,
|
| 73 |
+
)
|
| 74 |
+
from pandas.plotting._matplotlib.tools import (
|
| 75 |
+
create_subplots,
|
| 76 |
+
flatten_axes,
|
| 77 |
+
format_date_labels,
|
| 78 |
+
get_all_lines,
|
| 79 |
+
get_xlim,
|
| 80 |
+
handle_shared_axes,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
if TYPE_CHECKING:
|
| 84 |
+
from matplotlib.artist import Artist
|
| 85 |
+
from matplotlib.axes import Axes
|
| 86 |
+
from matplotlib.axis import Axis
|
| 87 |
+
from matplotlib.figure import Figure
|
| 88 |
+
|
| 89 |
+
from pandas._typing import (
|
| 90 |
+
IndexLabel,
|
| 91 |
+
NDFrameT,
|
| 92 |
+
PlottingOrientation,
|
| 93 |
+
npt,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
from pandas import Series
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def _color_in_style(style: str) -> bool:
|
| 100 |
+
"""
|
| 101 |
+
Check if there is a color letter in the style string.
|
| 102 |
+
"""
|
| 103 |
+
from matplotlib.colors import BASE_COLORS
|
| 104 |
+
|
| 105 |
+
return not set(BASE_COLORS).isdisjoint(style)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class MPLPlot(ABC):
|
| 109 |
+
"""
|
| 110 |
+
Base class for assembling a pandas plot using matplotlib
|
| 111 |
+
|
| 112 |
+
Parameters
|
| 113 |
+
----------
|
| 114 |
+
data :
|
| 115 |
+
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
@property
|
| 119 |
+
@abstractmethod
|
| 120 |
+
def _kind(self) -> str:
|
| 121 |
+
"""Specify kind str. Must be overridden in child class"""
|
| 122 |
+
raise NotImplementedError
|
| 123 |
+
|
| 124 |
+
_layout_type = "vertical"
|
| 125 |
+
_default_rot = 0
|
| 126 |
+
|
| 127 |
+
@property
|
| 128 |
+
def orientation(self) -> str | None:
|
| 129 |
+
return None
|
| 130 |
+
|
| 131 |
+
data: DataFrame
|
| 132 |
+
|
| 133 |
+
def __init__(
|
| 134 |
+
self,
|
| 135 |
+
data,
|
| 136 |
+
kind=None,
|
| 137 |
+
by: IndexLabel | None = None,
|
| 138 |
+
subplots: bool | Sequence[Sequence[str]] = False,
|
| 139 |
+
sharex: bool | None = None,
|
| 140 |
+
sharey: bool = False,
|
| 141 |
+
use_index: bool = True,
|
| 142 |
+
figsize: tuple[float, float] | None = None,
|
| 143 |
+
grid=None,
|
| 144 |
+
legend: bool | str = True,
|
| 145 |
+
rot=None,
|
| 146 |
+
ax=None,
|
| 147 |
+
fig=None,
|
| 148 |
+
title=None,
|
| 149 |
+
xlim=None,
|
| 150 |
+
ylim=None,
|
| 151 |
+
xticks=None,
|
| 152 |
+
yticks=None,
|
| 153 |
+
xlabel: Hashable | None = None,
|
| 154 |
+
ylabel: Hashable | None = None,
|
| 155 |
+
fontsize: int | None = None,
|
| 156 |
+
secondary_y: bool | tuple | list | np.ndarray = False,
|
| 157 |
+
colormap=None,
|
| 158 |
+
table: bool = False,
|
| 159 |
+
layout=None,
|
| 160 |
+
include_bool: bool = False,
|
| 161 |
+
column: IndexLabel | None = None,
|
| 162 |
+
*,
|
| 163 |
+
logx: bool | None | Literal["sym"] = False,
|
| 164 |
+
logy: bool | None | Literal["sym"] = False,
|
| 165 |
+
loglog: bool | None | Literal["sym"] = False,
|
| 166 |
+
mark_right: bool = True,
|
| 167 |
+
stacked: bool = False,
|
| 168 |
+
label: Hashable | None = None,
|
| 169 |
+
style=None,
|
| 170 |
+
**kwds,
|
| 171 |
+
) -> None:
|
| 172 |
+
import matplotlib.pyplot as plt
|
| 173 |
+
|
| 174 |
+
# if users assign an empty list or tuple, raise `ValueError`
|
| 175 |
+
# similar to current `df.box` and `df.hist` APIs.
|
| 176 |
+
if by in ([], ()):
|
| 177 |
+
raise ValueError("No group keys passed!")
|
| 178 |
+
self.by = com.maybe_make_list(by)
|
| 179 |
+
|
| 180 |
+
# Assign the rest of columns into self.columns if by is explicitly defined
|
| 181 |
+
# while column is not, only need `columns` in hist/box plot when it's DF
|
| 182 |
+
# TODO: Might deprecate `column` argument in future PR (#28373)
|
| 183 |
+
if isinstance(data, DataFrame):
|
| 184 |
+
if column:
|
| 185 |
+
self.columns = com.maybe_make_list(column)
|
| 186 |
+
elif self.by is None:
|
| 187 |
+
self.columns = [
|
| 188 |
+
col for col in data.columns if is_numeric_dtype(data[col])
|
| 189 |
+
]
|
| 190 |
+
else:
|
| 191 |
+
self.columns = [
|
| 192 |
+
col
|
| 193 |
+
for col in data.columns
|
| 194 |
+
if col not in self.by and is_numeric_dtype(data[col])
|
| 195 |
+
]
|
| 196 |
+
|
| 197 |
+
# For `hist` plot, need to get grouped original data before `self.data` is
|
| 198 |
+
# updated later
|
| 199 |
+
if self.by is not None and self._kind == "hist":
|
| 200 |
+
self._grouped = data.groupby(unpack_single_str_list(self.by))
|
| 201 |
+
|
| 202 |
+
self.kind = kind
|
| 203 |
+
|
| 204 |
+
self.subplots = type(self)._validate_subplots_kwarg(
|
| 205 |
+
subplots, data, kind=self._kind
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
self.sharex = type(self)._validate_sharex(sharex, ax, by)
|
| 209 |
+
self.sharey = sharey
|
| 210 |
+
self.figsize = figsize
|
| 211 |
+
self.layout = layout
|
| 212 |
+
|
| 213 |
+
self.xticks = xticks
|
| 214 |
+
self.yticks = yticks
|
| 215 |
+
self.xlim = xlim
|
| 216 |
+
self.ylim = ylim
|
| 217 |
+
self.title = title
|
| 218 |
+
self.use_index = use_index
|
| 219 |
+
self.xlabel = xlabel
|
| 220 |
+
self.ylabel = ylabel
|
| 221 |
+
|
| 222 |
+
self.fontsize = fontsize
|
| 223 |
+
|
| 224 |
+
if rot is not None:
|
| 225 |
+
self.rot = rot
|
| 226 |
+
# need to know for format_date_labels since it's rotated to 30 by
|
| 227 |
+
# default
|
| 228 |
+
self._rot_set = True
|
| 229 |
+
else:
|
| 230 |
+
self._rot_set = False
|
| 231 |
+
self.rot = self._default_rot
|
| 232 |
+
|
| 233 |
+
if grid is None:
|
| 234 |
+
grid = False if secondary_y else plt.rcParams["axes.grid"]
|
| 235 |
+
|
| 236 |
+
self.grid = grid
|
| 237 |
+
self.legend = legend
|
| 238 |
+
self.legend_handles: list[Artist] = []
|
| 239 |
+
self.legend_labels: list[Hashable] = []
|
| 240 |
+
|
| 241 |
+
self.logx = type(self)._validate_log_kwd("logx", logx)
|
| 242 |
+
self.logy = type(self)._validate_log_kwd("logy", logy)
|
| 243 |
+
self.loglog = type(self)._validate_log_kwd("loglog", loglog)
|
| 244 |
+
self.label = label
|
| 245 |
+
self.style = style
|
| 246 |
+
self.mark_right = mark_right
|
| 247 |
+
self.stacked = stacked
|
| 248 |
+
|
| 249 |
+
# ax may be an Axes object or (if self.subplots) an ndarray of
|
| 250 |
+
# Axes objects
|
| 251 |
+
self.ax = ax
|
| 252 |
+
# TODO: deprecate fig keyword as it is ignored, not passed in tests
|
| 253 |
+
# as of 2023-11-05
|
| 254 |
+
|
| 255 |
+
# parse errorbar input if given
|
| 256 |
+
xerr = kwds.pop("xerr", None)
|
| 257 |
+
yerr = kwds.pop("yerr", None)
|
| 258 |
+
nseries = self._get_nseries(data)
|
| 259 |
+
xerr, data = type(self)._parse_errorbars("xerr", xerr, data, nseries)
|
| 260 |
+
yerr, data = type(self)._parse_errorbars("yerr", yerr, data, nseries)
|
| 261 |
+
self.errors = {"xerr": xerr, "yerr": yerr}
|
| 262 |
+
self.data = data
|
| 263 |
+
|
| 264 |
+
if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndex)):
|
| 265 |
+
secondary_y = [secondary_y]
|
| 266 |
+
self.secondary_y = secondary_y
|
| 267 |
+
|
| 268 |
+
# ugly TypeError if user passes matplotlib's `cmap` name.
|
| 269 |
+
# Probably better to accept either.
|
| 270 |
+
if "cmap" in kwds and colormap:
|
| 271 |
+
raise TypeError("Only specify one of `cmap` and `colormap`.")
|
| 272 |
+
if "cmap" in kwds:
|
| 273 |
+
self.colormap = kwds.pop("cmap")
|
| 274 |
+
else:
|
| 275 |
+
self.colormap = colormap
|
| 276 |
+
|
| 277 |
+
self.table = table
|
| 278 |
+
self.include_bool = include_bool
|
| 279 |
+
|
| 280 |
+
self.kwds = kwds
|
| 281 |
+
|
| 282 |
+
color = kwds.pop("color", lib.no_default)
|
| 283 |
+
self.color = self._validate_color_args(color, self.colormap)
|
| 284 |
+
assert "color" not in self.kwds
|
| 285 |
+
|
| 286 |
+
self.data = self._ensure_frame(self.data)
|
| 287 |
+
|
| 288 |
+
@final
|
| 289 |
+
@staticmethod
|
| 290 |
+
def _validate_sharex(sharex: bool | None, ax, by) -> bool:
|
| 291 |
+
if sharex is None:
|
| 292 |
+
# if by is defined, subplots are used and sharex should be False
|
| 293 |
+
if ax is None and by is None: # pylint: disable=simplifiable-if-statement
|
| 294 |
+
sharex = True
|
| 295 |
+
else:
|
| 296 |
+
# if we get an axis, the users should do the visibility
|
| 297 |
+
# setting...
|
| 298 |
+
sharex = False
|
| 299 |
+
elif not is_bool(sharex):
|
| 300 |
+
raise TypeError("sharex must be a bool or None")
|
| 301 |
+
return bool(sharex)
|
| 302 |
+
|
| 303 |
+
@classmethod
|
| 304 |
+
def _validate_log_kwd(
|
| 305 |
+
cls,
|
| 306 |
+
kwd: str,
|
| 307 |
+
value: bool | None | Literal["sym"],
|
| 308 |
+
) -> bool | None | Literal["sym"]:
|
| 309 |
+
if (
|
| 310 |
+
value is None
|
| 311 |
+
or isinstance(value, bool)
|
| 312 |
+
or (isinstance(value, str) and value == "sym")
|
| 313 |
+
):
|
| 314 |
+
return value
|
| 315 |
+
raise ValueError(
|
| 316 |
+
f"keyword '{kwd}' should be bool, None, or 'sym', not '{value}'"
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
@final
|
| 320 |
+
@staticmethod
|
| 321 |
+
def _validate_subplots_kwarg(
|
| 322 |
+
subplots: bool | Sequence[Sequence[str]], data: Series | DataFrame, kind: str
|
| 323 |
+
) -> bool | list[tuple[int, ...]]:
|
| 324 |
+
"""
|
| 325 |
+
Validate the subplots parameter
|
| 326 |
+
|
| 327 |
+
- check type and content
|
| 328 |
+
- check for duplicate columns
|
| 329 |
+
- check for invalid column names
|
| 330 |
+
- convert column names into indices
|
| 331 |
+
- add missing columns in a group of their own
|
| 332 |
+
See comments in code below for more details.
|
| 333 |
+
|
| 334 |
+
Parameters
|
| 335 |
+
----------
|
| 336 |
+
subplots : subplots parameters as passed to PlotAccessor
|
| 337 |
+
|
| 338 |
+
Returns
|
| 339 |
+
-------
|
| 340 |
+
validated subplots : a bool or a list of tuples of column indices. Columns
|
| 341 |
+
in the same tuple will be grouped together in the resulting plot.
|
| 342 |
+
"""
|
| 343 |
+
|
| 344 |
+
if isinstance(subplots, bool):
|
| 345 |
+
return subplots
|
| 346 |
+
elif not isinstance(subplots, Iterable):
|
| 347 |
+
raise ValueError("subplots should be a bool or an iterable")
|
| 348 |
+
|
| 349 |
+
supported_kinds = (
|
| 350 |
+
"line",
|
| 351 |
+
"bar",
|
| 352 |
+
"barh",
|
| 353 |
+
"hist",
|
| 354 |
+
"kde",
|
| 355 |
+
"density",
|
| 356 |
+
"area",
|
| 357 |
+
"pie",
|
| 358 |
+
)
|
| 359 |
+
if kind not in supported_kinds:
|
| 360 |
+
raise ValueError(
|
| 361 |
+
"When subplots is an iterable, kind must be "
|
| 362 |
+
f"one of {', '.join(supported_kinds)}. Got {kind}."
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
if isinstance(data, ABCSeries):
|
| 366 |
+
raise NotImplementedError(
|
| 367 |
+
"An iterable subplots for a Series is not supported."
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
columns = data.columns
|
| 371 |
+
if isinstance(columns, ABCMultiIndex):
|
| 372 |
+
raise NotImplementedError(
|
| 373 |
+
"An iterable subplots for a DataFrame with a MultiIndex column "
|
| 374 |
+
"is not supported."
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
if columns.nunique() != len(columns):
|
| 378 |
+
raise NotImplementedError(
|
| 379 |
+
"An iterable subplots for a DataFrame with non-unique column "
|
| 380 |
+
"labels is not supported."
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# subplots is a list of tuples where each tuple is a group of
|
| 384 |
+
# columns to be grouped together (one ax per group).
|
| 385 |
+
# we consolidate the subplots list such that:
|
| 386 |
+
# - the tuples contain indices instead of column names
|
| 387 |
+
# - the columns that aren't yet in the list are added in a group
|
| 388 |
+
# of their own.
|
| 389 |
+
# For example with columns from a to g, and
|
| 390 |
+
# subplots = [(a, c), (b, f, e)],
|
| 391 |
+
# we end up with [(ai, ci), (bi, fi, ei), (di,), (gi,)]
|
| 392 |
+
# This way, we can handle self.subplots in a homogeneous manner
|
| 393 |
+
# later.
|
| 394 |
+
# TODO: also accept indices instead of just names?
|
| 395 |
+
|
| 396 |
+
out = []
|
| 397 |
+
seen_columns: set[Hashable] = set()
|
| 398 |
+
for group in subplots:
|
| 399 |
+
if not is_list_like(group):
|
| 400 |
+
raise ValueError(
|
| 401 |
+
"When subplots is an iterable, each entry "
|
| 402 |
+
"should be a list/tuple of column names."
|
| 403 |
+
)
|
| 404 |
+
idx_locs = columns.get_indexer_for(group)
|
| 405 |
+
if (idx_locs == -1).any():
|
| 406 |
+
bad_labels = np.extract(idx_locs == -1, group)
|
| 407 |
+
raise ValueError(
|
| 408 |
+
f"Column label(s) {list(bad_labels)} not found in the DataFrame."
|
| 409 |
+
)
|
| 410 |
+
unique_columns = set(group)
|
| 411 |
+
duplicates = seen_columns.intersection(unique_columns)
|
| 412 |
+
if duplicates:
|
| 413 |
+
raise ValueError(
|
| 414 |
+
"Each column should be in only one subplot. "
|
| 415 |
+
f"Columns {duplicates} were found in multiple subplots."
|
| 416 |
+
)
|
| 417 |
+
seen_columns = seen_columns.union(unique_columns)
|
| 418 |
+
out.append(tuple(idx_locs))
|
| 419 |
+
|
| 420 |
+
unseen_columns = columns.difference(seen_columns)
|
| 421 |
+
for column in unseen_columns:
|
| 422 |
+
idx_loc = columns.get_loc(column)
|
| 423 |
+
out.append((idx_loc,))
|
| 424 |
+
return out
|
| 425 |
+
|
| 426 |
+
def _validate_color_args(self, color, colormap):
|
| 427 |
+
if color is lib.no_default:
|
| 428 |
+
# It was not provided by the user
|
| 429 |
+
if "colors" in self.kwds and colormap is not None:
|
| 430 |
+
warnings.warn(
|
| 431 |
+
"'color' and 'colormap' cannot be used simultaneously. "
|
| 432 |
+
"Using 'color'",
|
| 433 |
+
stacklevel=find_stack_level(),
|
| 434 |
+
)
|
| 435 |
+
return None
|
| 436 |
+
if self.nseries == 1 and color is not None and not is_list_like(color):
|
| 437 |
+
# support series.plot(color='green')
|
| 438 |
+
color = [color]
|
| 439 |
+
|
| 440 |
+
if isinstance(color, tuple) and self.nseries == 1 and len(color) in (3, 4):
|
| 441 |
+
# support RGB and RGBA tuples in series plot
|
| 442 |
+
color = [color]
|
| 443 |
+
|
| 444 |
+
if colormap is not None:
|
| 445 |
+
warnings.warn(
|
| 446 |
+
"'color' and 'colormap' cannot be used simultaneously. Using 'color'",
|
| 447 |
+
stacklevel=find_stack_level(),
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
if self.style is not None:
|
| 451 |
+
if is_list_like(self.style):
|
| 452 |
+
styles = self.style
|
| 453 |
+
else:
|
| 454 |
+
styles = [self.style]
|
| 455 |
+
# need only a single match
|
| 456 |
+
for s in styles:
|
| 457 |
+
if _color_in_style(s):
|
| 458 |
+
raise ValueError(
|
| 459 |
+
"Cannot pass 'style' string with a color symbol and "
|
| 460 |
+
"'color' keyword argument. Please use one or the "
|
| 461 |
+
"other or pass 'style' without a color symbol"
|
| 462 |
+
)
|
| 463 |
+
return color
|
| 464 |
+
|
| 465 |
+
@final
|
| 466 |
+
@staticmethod
|
| 467 |
+
def _iter_data(
|
| 468 |
+
data: DataFrame | dict[Hashable, Series | DataFrame]
|
| 469 |
+
) -> Iterator[tuple[Hashable, np.ndarray]]:
|
| 470 |
+
for col, values in data.items():
|
| 471 |
+
# This was originally written to use values.values before EAs
|
| 472 |
+
# were implemented; adding np.asarray(...) to keep consistent
|
| 473 |
+
# typing.
|
| 474 |
+
yield col, np.asarray(values.values)
|
| 475 |
+
|
| 476 |
+
def _get_nseries(self, data: Series | DataFrame) -> int:
|
| 477 |
+
# When `by` is explicitly assigned, grouped data size will be defined, and
|
| 478 |
+
# this will determine number of subplots to have, aka `self.nseries`
|
| 479 |
+
if data.ndim == 1:
|
| 480 |
+
return 1
|
| 481 |
+
elif self.by is not None and self._kind == "hist":
|
| 482 |
+
return len(self._grouped)
|
| 483 |
+
elif self.by is not None and self._kind == "box":
|
| 484 |
+
return len(self.columns)
|
| 485 |
+
else:
|
| 486 |
+
return data.shape[1]
|
| 487 |
+
|
| 488 |
+
@final
|
| 489 |
+
@property
|
| 490 |
+
def nseries(self) -> int:
|
| 491 |
+
return self._get_nseries(self.data)
|
| 492 |
+
|
| 493 |
+
@final
|
| 494 |
+
def draw(self) -> None:
|
| 495 |
+
self.plt.draw_if_interactive()
|
| 496 |
+
|
| 497 |
+
@final
|
| 498 |
+
def generate(self) -> None:
|
| 499 |
+
self._compute_plot_data()
|
| 500 |
+
fig = self.fig
|
| 501 |
+
self._make_plot(fig)
|
| 502 |
+
self._add_table()
|
| 503 |
+
self._make_legend()
|
| 504 |
+
self._adorn_subplots(fig)
|
| 505 |
+
|
| 506 |
+
for ax in self.axes:
|
| 507 |
+
self._post_plot_logic_common(ax)
|
| 508 |
+
self._post_plot_logic(ax, self.data)
|
| 509 |
+
|
| 510 |
+
@final
|
| 511 |
+
@staticmethod
|
| 512 |
+
def _has_plotted_object(ax: Axes) -> bool:
|
| 513 |
+
"""check whether ax has data"""
|
| 514 |
+
return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0
|
| 515 |
+
|
| 516 |
+
@final
|
| 517 |
+
def _maybe_right_yaxis(self, ax: Axes, axes_num: int) -> Axes:
|
| 518 |
+
if not self.on_right(axes_num):
|
| 519 |
+
# secondary axes may be passed via ax kw
|
| 520 |
+
return self._get_ax_layer(ax)
|
| 521 |
+
|
| 522 |
+
if hasattr(ax, "right_ax"):
|
| 523 |
+
# if it has right_ax property, ``ax`` must be left axes
|
| 524 |
+
return ax.right_ax
|
| 525 |
+
elif hasattr(ax, "left_ax"):
|
| 526 |
+
# if it has left_ax property, ``ax`` must be right axes
|
| 527 |
+
return ax
|
| 528 |
+
else:
|
| 529 |
+
# otherwise, create twin axes
|
| 530 |
+
orig_ax, new_ax = ax, ax.twinx()
|
| 531 |
+
# TODO: use Matplotlib public API when available
|
| 532 |
+
new_ax._get_lines = orig_ax._get_lines # type: ignore[attr-defined]
|
| 533 |
+
# TODO #54485
|
| 534 |
+
new_ax._get_patches_for_fill = ( # type: ignore[attr-defined]
|
| 535 |
+
orig_ax._get_patches_for_fill # type: ignore[attr-defined]
|
| 536 |
+
)
|
| 537 |
+
# TODO #54485
|
| 538 |
+
orig_ax.right_ax, new_ax.left_ax = ( # type: ignore[attr-defined]
|
| 539 |
+
new_ax,
|
| 540 |
+
orig_ax,
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
if not self._has_plotted_object(orig_ax): # no data on left y
|
| 544 |
+
orig_ax.get_yaxis().set_visible(False)
|
| 545 |
+
|
| 546 |
+
if self.logy is True or self.loglog is True:
|
| 547 |
+
new_ax.set_yscale("log")
|
| 548 |
+
elif self.logy == "sym" or self.loglog == "sym":
|
| 549 |
+
new_ax.set_yscale("symlog")
|
| 550 |
+
return new_ax
|
| 551 |
+
|
| 552 |
+
@final
|
| 553 |
+
@cache_readonly
|
| 554 |
+
def fig(self) -> Figure:
|
| 555 |
+
return self._axes_and_fig[1]
|
| 556 |
+
|
| 557 |
+
@final
|
| 558 |
+
@cache_readonly
|
| 559 |
+
# TODO: can we annotate this as both a Sequence[Axes] and ndarray[object]?
|
| 560 |
+
def axes(self) -> Sequence[Axes]:
|
| 561 |
+
return self._axes_and_fig[0]
|
| 562 |
+
|
| 563 |
+
@final
|
| 564 |
+
@cache_readonly
|
| 565 |
+
def _axes_and_fig(self) -> tuple[Sequence[Axes], Figure]:
|
| 566 |
+
if self.subplots:
|
| 567 |
+
naxes = (
|
| 568 |
+
self.nseries if isinstance(self.subplots, bool) else len(self.subplots)
|
| 569 |
+
)
|
| 570 |
+
fig, axes = create_subplots(
|
| 571 |
+
naxes=naxes,
|
| 572 |
+
sharex=self.sharex,
|
| 573 |
+
sharey=self.sharey,
|
| 574 |
+
figsize=self.figsize,
|
| 575 |
+
ax=self.ax,
|
| 576 |
+
layout=self.layout,
|
| 577 |
+
layout_type=self._layout_type,
|
| 578 |
+
)
|
| 579 |
+
elif self.ax is None:
|
| 580 |
+
fig = self.plt.figure(figsize=self.figsize)
|
| 581 |
+
axes = fig.add_subplot(111)
|
| 582 |
+
else:
|
| 583 |
+
fig = self.ax.get_figure()
|
| 584 |
+
if self.figsize is not None:
|
| 585 |
+
fig.set_size_inches(self.figsize)
|
| 586 |
+
axes = self.ax
|
| 587 |
+
|
| 588 |
+
axes = flatten_axes(axes)
|
| 589 |
+
|
| 590 |
+
if self.logx is True or self.loglog is True:
|
| 591 |
+
[a.set_xscale("log") for a in axes]
|
| 592 |
+
elif self.logx == "sym" or self.loglog == "sym":
|
| 593 |
+
[a.set_xscale("symlog") for a in axes]
|
| 594 |
+
|
| 595 |
+
if self.logy is True or self.loglog is True:
|
| 596 |
+
[a.set_yscale("log") for a in axes]
|
| 597 |
+
elif self.logy == "sym" or self.loglog == "sym":
|
| 598 |
+
[a.set_yscale("symlog") for a in axes]
|
| 599 |
+
|
| 600 |
+
axes_seq = cast(Sequence["Axes"], axes)
|
| 601 |
+
return axes_seq, fig
|
| 602 |
+
|
| 603 |
+
@property
|
| 604 |
+
def result(self):
|
| 605 |
+
"""
|
| 606 |
+
Return result axes
|
| 607 |
+
"""
|
| 608 |
+
if self.subplots:
|
| 609 |
+
if self.layout is not None and not is_list_like(self.ax):
|
| 610 |
+
# error: "Sequence[Any]" has no attribute "reshape"
|
| 611 |
+
return self.axes.reshape(*self.layout) # type: ignore[attr-defined]
|
| 612 |
+
else:
|
| 613 |
+
return self.axes
|
| 614 |
+
else:
|
| 615 |
+
sec_true = isinstance(self.secondary_y, bool) and self.secondary_y
|
| 616 |
+
# error: Argument 1 to "len" has incompatible type "Union[bool,
|
| 617 |
+
# Tuple[Any, ...], List[Any], ndarray[Any, Any]]"; expected "Sized"
|
| 618 |
+
all_sec = (
|
| 619 |
+
is_list_like(self.secondary_y)
|
| 620 |
+
and len(self.secondary_y) == self.nseries # type: ignore[arg-type]
|
| 621 |
+
)
|
| 622 |
+
if sec_true or all_sec:
|
| 623 |
+
# if all data is plotted on secondary, return right axes
|
| 624 |
+
return self._get_ax_layer(self.axes[0], primary=False)
|
| 625 |
+
else:
|
| 626 |
+
return self.axes[0]
|
| 627 |
+
|
| 628 |
+
@final
|
| 629 |
+
@staticmethod
|
| 630 |
+
def _convert_to_ndarray(data):
|
| 631 |
+
# GH31357: categorical columns are processed separately
|
| 632 |
+
if isinstance(data.dtype, CategoricalDtype):
|
| 633 |
+
return data
|
| 634 |
+
|
| 635 |
+
# GH32073: cast to float if values contain nulled integers
|
| 636 |
+
if (is_integer_dtype(data.dtype) or is_float_dtype(data.dtype)) and isinstance(
|
| 637 |
+
data.dtype, ExtensionDtype
|
| 638 |
+
):
|
| 639 |
+
return data.to_numpy(dtype="float", na_value=np.nan)
|
| 640 |
+
|
| 641 |
+
# GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to
|
| 642 |
+
# np.ndarray before plot.
|
| 643 |
+
if len(data) > 0:
|
| 644 |
+
return np.asarray(data)
|
| 645 |
+
|
| 646 |
+
return data
|
| 647 |
+
|
| 648 |
+
@final
|
| 649 |
+
def _ensure_frame(self, data) -> DataFrame:
|
| 650 |
+
if isinstance(data, ABCSeries):
|
| 651 |
+
label = self.label
|
| 652 |
+
if label is None and data.name is None:
|
| 653 |
+
label = ""
|
| 654 |
+
if label is None:
|
| 655 |
+
# We'll end up with columns of [0] instead of [None]
|
| 656 |
+
data = data.to_frame()
|
| 657 |
+
else:
|
| 658 |
+
data = data.to_frame(name=label)
|
| 659 |
+
elif self._kind in ("hist", "box"):
|
| 660 |
+
cols = self.columns if self.by is None else self.columns + self.by
|
| 661 |
+
data = data.loc[:, cols]
|
| 662 |
+
return data
|
| 663 |
+
|
| 664 |
+
@final
|
| 665 |
+
def _compute_plot_data(self) -> None:
|
| 666 |
+
data = self.data
|
| 667 |
+
|
| 668 |
+
# GH15079 reconstruct data if by is defined
|
| 669 |
+
if self.by is not None:
|
| 670 |
+
self.subplots = True
|
| 671 |
+
data = reconstruct_data_with_by(self.data, by=self.by, cols=self.columns)
|
| 672 |
+
|
| 673 |
+
# GH16953, infer_objects is needed as fallback, for ``Series``
|
| 674 |
+
# with ``dtype == object``
|
| 675 |
+
data = data.infer_objects(copy=False)
|
| 676 |
+
include_type = [np.number, "datetime", "datetimetz", "timedelta"]
|
| 677 |
+
|
| 678 |
+
# GH23719, allow plotting boolean
|
| 679 |
+
if self.include_bool is True:
|
| 680 |
+
include_type.append(np.bool_)
|
| 681 |
+
|
| 682 |
+
# GH22799, exclude datetime-like type for boxplot
|
| 683 |
+
exclude_type = None
|
| 684 |
+
if self._kind == "box":
|
| 685 |
+
# TODO: change after solving issue 27881
|
| 686 |
+
include_type = [np.number]
|
| 687 |
+
exclude_type = ["timedelta"]
|
| 688 |
+
|
| 689 |
+
# GH 18755, include object and category type for scatter plot
|
| 690 |
+
if self._kind == "scatter":
|
| 691 |
+
include_type.extend(["object", "category", "string"])
|
| 692 |
+
|
| 693 |
+
numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type)
|
| 694 |
+
|
| 695 |
+
is_empty = numeric_data.shape[-1] == 0
|
| 696 |
+
# no non-numeric frames or series allowed
|
| 697 |
+
if is_empty:
|
| 698 |
+
raise TypeError("no numeric data to plot")
|
| 699 |
+
|
| 700 |
+
self.data = numeric_data.apply(type(self)._convert_to_ndarray)
|
| 701 |
+
|
| 702 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 703 |
+
raise AbstractMethodError(self)
|
| 704 |
+
|
| 705 |
+
@final
|
| 706 |
+
def _add_table(self) -> None:
|
| 707 |
+
if self.table is False:
|
| 708 |
+
return
|
| 709 |
+
elif self.table is True:
|
| 710 |
+
data = self.data.transpose()
|
| 711 |
+
else:
|
| 712 |
+
data = self.table
|
| 713 |
+
ax = self._get_ax(0)
|
| 714 |
+
tools.table(ax, data)
|
| 715 |
+
|
| 716 |
+
@final
|
| 717 |
+
def _post_plot_logic_common(self, ax: Axes) -> None:
|
| 718 |
+
"""Common post process for each axes"""
|
| 719 |
+
if self.orientation == "vertical" or self.orientation is None:
|
| 720 |
+
type(self)._apply_axis_properties(
|
| 721 |
+
ax.xaxis, rot=self.rot, fontsize=self.fontsize
|
| 722 |
+
)
|
| 723 |
+
type(self)._apply_axis_properties(ax.yaxis, fontsize=self.fontsize)
|
| 724 |
+
|
| 725 |
+
if hasattr(ax, "right_ax"):
|
| 726 |
+
type(self)._apply_axis_properties(
|
| 727 |
+
ax.right_ax.yaxis, fontsize=self.fontsize
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
elif self.orientation == "horizontal":
|
| 731 |
+
type(self)._apply_axis_properties(
|
| 732 |
+
ax.yaxis, rot=self.rot, fontsize=self.fontsize
|
| 733 |
+
)
|
| 734 |
+
type(self)._apply_axis_properties(ax.xaxis, fontsize=self.fontsize)
|
| 735 |
+
|
| 736 |
+
if hasattr(ax, "right_ax"):
|
| 737 |
+
type(self)._apply_axis_properties(
|
| 738 |
+
ax.right_ax.yaxis, fontsize=self.fontsize
|
| 739 |
+
)
|
| 740 |
+
else: # pragma no cover
|
| 741 |
+
raise ValueError
|
| 742 |
+
|
| 743 |
+
@abstractmethod
|
| 744 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 745 |
+
"""Post process for each axes. Overridden in child classes"""
|
| 746 |
+
|
| 747 |
+
@final
|
| 748 |
+
def _adorn_subplots(self, fig: Figure) -> None:
|
| 749 |
+
"""Common post process unrelated to data"""
|
| 750 |
+
if len(self.axes) > 0:
|
| 751 |
+
all_axes = self._get_subplots(fig)
|
| 752 |
+
nrows, ncols = self._get_axes_layout(fig)
|
| 753 |
+
handle_shared_axes(
|
| 754 |
+
axarr=all_axes,
|
| 755 |
+
nplots=len(all_axes),
|
| 756 |
+
naxes=nrows * ncols,
|
| 757 |
+
nrows=nrows,
|
| 758 |
+
ncols=ncols,
|
| 759 |
+
sharex=self.sharex,
|
| 760 |
+
sharey=self.sharey,
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
for ax in self.axes:
|
| 764 |
+
ax = getattr(ax, "right_ax", ax)
|
| 765 |
+
if self.yticks is not None:
|
| 766 |
+
ax.set_yticks(self.yticks)
|
| 767 |
+
|
| 768 |
+
if self.xticks is not None:
|
| 769 |
+
ax.set_xticks(self.xticks)
|
| 770 |
+
|
| 771 |
+
if self.ylim is not None:
|
| 772 |
+
ax.set_ylim(self.ylim)
|
| 773 |
+
|
| 774 |
+
if self.xlim is not None:
|
| 775 |
+
ax.set_xlim(self.xlim)
|
| 776 |
+
|
| 777 |
+
# GH9093, currently Pandas does not show ylabel, so if users provide
|
| 778 |
+
# ylabel will set it as ylabel in the plot.
|
| 779 |
+
if self.ylabel is not None:
|
| 780 |
+
ax.set_ylabel(pprint_thing(self.ylabel))
|
| 781 |
+
|
| 782 |
+
ax.grid(self.grid)
|
| 783 |
+
|
| 784 |
+
if self.title:
|
| 785 |
+
if self.subplots:
|
| 786 |
+
if is_list_like(self.title):
|
| 787 |
+
if len(self.title) != self.nseries:
|
| 788 |
+
raise ValueError(
|
| 789 |
+
"The length of `title` must equal the number "
|
| 790 |
+
"of columns if using `title` of type `list` "
|
| 791 |
+
"and `subplots=True`.\n"
|
| 792 |
+
f"length of title = {len(self.title)}\n"
|
| 793 |
+
f"number of columns = {self.nseries}"
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
for ax, title in zip(self.axes, self.title):
|
| 797 |
+
ax.set_title(title)
|
| 798 |
+
else:
|
| 799 |
+
fig.suptitle(self.title)
|
| 800 |
+
else:
|
| 801 |
+
if is_list_like(self.title):
|
| 802 |
+
msg = (
|
| 803 |
+
"Using `title` of type `list` is not supported "
|
| 804 |
+
"unless `subplots=True` is passed"
|
| 805 |
+
)
|
| 806 |
+
raise ValueError(msg)
|
| 807 |
+
self.axes[0].set_title(self.title)
|
| 808 |
+
|
| 809 |
+
@final
|
| 810 |
+
@staticmethod
|
| 811 |
+
def _apply_axis_properties(
|
| 812 |
+
axis: Axis, rot=None, fontsize: int | None = None
|
| 813 |
+
) -> None:
|
| 814 |
+
"""
|
| 815 |
+
Tick creation within matplotlib is reasonably expensive and is
|
| 816 |
+
internally deferred until accessed as Ticks are created/destroyed
|
| 817 |
+
multiple times per draw. It's therefore beneficial for us to avoid
|
| 818 |
+
accessing unless we will act on the Tick.
|
| 819 |
+
"""
|
| 820 |
+
if rot is not None or fontsize is not None:
|
| 821 |
+
# rot=0 is a valid setting, hence the explicit None check
|
| 822 |
+
labels = axis.get_majorticklabels() + axis.get_minorticklabels()
|
| 823 |
+
for label in labels:
|
| 824 |
+
if rot is not None:
|
| 825 |
+
label.set_rotation(rot)
|
| 826 |
+
if fontsize is not None:
|
| 827 |
+
label.set_fontsize(fontsize)
|
| 828 |
+
|
| 829 |
+
@final
|
| 830 |
+
@property
|
| 831 |
+
def legend_title(self) -> str | None:
|
| 832 |
+
if not isinstance(self.data.columns, ABCMultiIndex):
|
| 833 |
+
name = self.data.columns.name
|
| 834 |
+
if name is not None:
|
| 835 |
+
name = pprint_thing(name)
|
| 836 |
+
return name
|
| 837 |
+
else:
|
| 838 |
+
stringified = map(pprint_thing, self.data.columns.names)
|
| 839 |
+
return ",".join(stringified)
|
| 840 |
+
|
| 841 |
+
@final
|
| 842 |
+
def _mark_right_label(self, label: str, index: int) -> str:
|
| 843 |
+
"""
|
| 844 |
+
Append ``(right)`` to the label of a line if it's plotted on the right axis.
|
| 845 |
+
|
| 846 |
+
Note that ``(right)`` is only appended when ``subplots=False``.
|
| 847 |
+
"""
|
| 848 |
+
if not self.subplots and self.mark_right and self.on_right(index):
|
| 849 |
+
label += " (right)"
|
| 850 |
+
return label
|
| 851 |
+
|
| 852 |
+
@final
|
| 853 |
+
def _append_legend_handles_labels(self, handle: Artist, label: str) -> None:
|
| 854 |
+
"""
|
| 855 |
+
Append current handle and label to ``legend_handles`` and ``legend_labels``.
|
| 856 |
+
|
| 857 |
+
These will be used to make the legend.
|
| 858 |
+
"""
|
| 859 |
+
self.legend_handles.append(handle)
|
| 860 |
+
self.legend_labels.append(label)
|
| 861 |
+
|
| 862 |
+
def _make_legend(self) -> None:
|
| 863 |
+
ax, leg = self._get_ax_legend(self.axes[0])
|
| 864 |
+
|
| 865 |
+
handles = []
|
| 866 |
+
labels = []
|
| 867 |
+
title = ""
|
| 868 |
+
|
| 869 |
+
if not self.subplots:
|
| 870 |
+
if leg is not None:
|
| 871 |
+
title = leg.get_title().get_text()
|
| 872 |
+
# Replace leg.legend_handles because it misses marker info
|
| 873 |
+
if Version(mpl.__version__) < Version("3.7"):
|
| 874 |
+
handles = leg.legendHandles
|
| 875 |
+
else:
|
| 876 |
+
handles = leg.legend_handles
|
| 877 |
+
labels = [x.get_text() for x in leg.get_texts()]
|
| 878 |
+
|
| 879 |
+
if self.legend:
|
| 880 |
+
if self.legend == "reverse":
|
| 881 |
+
handles += reversed(self.legend_handles)
|
| 882 |
+
labels += reversed(self.legend_labels)
|
| 883 |
+
else:
|
| 884 |
+
handles += self.legend_handles
|
| 885 |
+
labels += self.legend_labels
|
| 886 |
+
|
| 887 |
+
if self.legend_title is not None:
|
| 888 |
+
title = self.legend_title
|
| 889 |
+
|
| 890 |
+
if len(handles) > 0:
|
| 891 |
+
ax.legend(handles, labels, loc="best", title=title)
|
| 892 |
+
|
| 893 |
+
elif self.subplots and self.legend:
|
| 894 |
+
for ax in self.axes:
|
| 895 |
+
if ax.get_visible():
|
| 896 |
+
with warnings.catch_warnings():
|
| 897 |
+
warnings.filterwarnings(
|
| 898 |
+
"ignore",
|
| 899 |
+
"No artists with labels found to put in legend.",
|
| 900 |
+
UserWarning,
|
| 901 |
+
)
|
| 902 |
+
ax.legend(loc="best")
|
| 903 |
+
|
| 904 |
+
@final
|
| 905 |
+
@staticmethod
|
| 906 |
+
def _get_ax_legend(ax: Axes):
|
| 907 |
+
"""
|
| 908 |
+
Take in axes and return ax and legend under different scenarios
|
| 909 |
+
"""
|
| 910 |
+
leg = ax.get_legend()
|
| 911 |
+
|
| 912 |
+
other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None)
|
| 913 |
+
other_leg = None
|
| 914 |
+
if other_ax is not None:
|
| 915 |
+
other_leg = other_ax.get_legend()
|
| 916 |
+
if leg is None and other_leg is not None:
|
| 917 |
+
leg = other_leg
|
| 918 |
+
ax = other_ax
|
| 919 |
+
return ax, leg
|
| 920 |
+
|
| 921 |
+
@final
|
| 922 |
+
@cache_readonly
|
| 923 |
+
def plt(self):
|
| 924 |
+
import matplotlib.pyplot as plt
|
| 925 |
+
|
| 926 |
+
return plt
|
| 927 |
+
|
| 928 |
+
_need_to_set_index = False
|
| 929 |
+
|
| 930 |
+
@final
|
| 931 |
+
def _get_xticks(self):
|
| 932 |
+
index = self.data.index
|
| 933 |
+
is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time")
|
| 934 |
+
|
| 935 |
+
# TODO: be stricter about x?
|
| 936 |
+
x: list[int] | np.ndarray
|
| 937 |
+
if self.use_index:
|
| 938 |
+
if isinstance(index, ABCPeriodIndex):
|
| 939 |
+
# test_mixed_freq_irreg_period
|
| 940 |
+
x = index.to_timestamp()._mpl_repr()
|
| 941 |
+
# TODO: why do we need to do to_timestamp() here but not other
|
| 942 |
+
# places where we call mpl_repr?
|
| 943 |
+
elif is_any_real_numeric_dtype(index.dtype):
|
| 944 |
+
# Matplotlib supports numeric values or datetime objects as
|
| 945 |
+
# xaxis values. Taking LBYL approach here, by the time
|
| 946 |
+
# matplotlib raises exception when using non numeric/datetime
|
| 947 |
+
# values for xaxis, several actions are already taken by plt.
|
| 948 |
+
x = index._mpl_repr()
|
| 949 |
+
elif isinstance(index, ABCDatetimeIndex) or is_datetype:
|
| 950 |
+
x = index._mpl_repr()
|
| 951 |
+
else:
|
| 952 |
+
self._need_to_set_index = True
|
| 953 |
+
x = list(range(len(index)))
|
| 954 |
+
else:
|
| 955 |
+
x = list(range(len(index)))
|
| 956 |
+
|
| 957 |
+
return x
|
| 958 |
+
|
| 959 |
+
@classmethod
|
| 960 |
+
@register_pandas_matplotlib_converters
|
| 961 |
+
def _plot(
|
| 962 |
+
cls, ax: Axes, x, y: np.ndarray, style=None, is_errorbar: bool = False, **kwds
|
| 963 |
+
):
|
| 964 |
+
mask = isna(y)
|
| 965 |
+
if mask.any():
|
| 966 |
+
y = np.ma.array(y)
|
| 967 |
+
y = np.ma.masked_where(mask, y)
|
| 968 |
+
|
| 969 |
+
if isinstance(x, ABCIndex):
|
| 970 |
+
x = x._mpl_repr()
|
| 971 |
+
|
| 972 |
+
if is_errorbar:
|
| 973 |
+
if "xerr" in kwds:
|
| 974 |
+
kwds["xerr"] = np.array(kwds.get("xerr"))
|
| 975 |
+
if "yerr" in kwds:
|
| 976 |
+
kwds["yerr"] = np.array(kwds.get("yerr"))
|
| 977 |
+
return ax.errorbar(x, y, **kwds)
|
| 978 |
+
else:
|
| 979 |
+
# prevent style kwarg from going to errorbar, where it is unsupported
|
| 980 |
+
args = (x, y, style) if style is not None else (x, y)
|
| 981 |
+
return ax.plot(*args, **kwds)
|
| 982 |
+
|
| 983 |
+
def _get_custom_index_name(self):
|
| 984 |
+
"""Specify whether xlabel/ylabel should be used to override index name"""
|
| 985 |
+
return self.xlabel
|
| 986 |
+
|
| 987 |
+
@final
|
| 988 |
+
def _get_index_name(self) -> str | None:
|
| 989 |
+
if isinstance(self.data.index, ABCMultiIndex):
|
| 990 |
+
name = self.data.index.names
|
| 991 |
+
if com.any_not_none(*name):
|
| 992 |
+
name = ",".join([pprint_thing(x) for x in name])
|
| 993 |
+
else:
|
| 994 |
+
name = None
|
| 995 |
+
else:
|
| 996 |
+
name = self.data.index.name
|
| 997 |
+
if name is not None:
|
| 998 |
+
name = pprint_thing(name)
|
| 999 |
+
|
| 1000 |
+
# GH 45145, override the default axis label if one is provided.
|
| 1001 |
+
index_name = self._get_custom_index_name()
|
| 1002 |
+
if index_name is not None:
|
| 1003 |
+
name = pprint_thing(index_name)
|
| 1004 |
+
|
| 1005 |
+
return name
|
| 1006 |
+
|
| 1007 |
+
@final
|
| 1008 |
+
@classmethod
|
| 1009 |
+
def _get_ax_layer(cls, ax, primary: bool = True):
|
| 1010 |
+
"""get left (primary) or right (secondary) axes"""
|
| 1011 |
+
if primary:
|
| 1012 |
+
return getattr(ax, "left_ax", ax)
|
| 1013 |
+
else:
|
| 1014 |
+
return getattr(ax, "right_ax", ax)
|
| 1015 |
+
|
| 1016 |
+
@final
|
| 1017 |
+
def _col_idx_to_axis_idx(self, col_idx: int) -> int:
|
| 1018 |
+
"""Return the index of the axis where the column at col_idx should be plotted"""
|
| 1019 |
+
if isinstance(self.subplots, list):
|
| 1020 |
+
# Subplots is a list: some columns will be grouped together in the same ax
|
| 1021 |
+
return next(
|
| 1022 |
+
group_idx
|
| 1023 |
+
for (group_idx, group) in enumerate(self.subplots)
|
| 1024 |
+
if col_idx in group
|
| 1025 |
+
)
|
| 1026 |
+
else:
|
| 1027 |
+
# subplots is True: one ax per column
|
| 1028 |
+
return col_idx
|
| 1029 |
+
|
| 1030 |
+
@final
|
| 1031 |
+
def _get_ax(self, i: int):
|
| 1032 |
+
# get the twinx ax if appropriate
|
| 1033 |
+
if self.subplots:
|
| 1034 |
+
i = self._col_idx_to_axis_idx(i)
|
| 1035 |
+
ax = self.axes[i]
|
| 1036 |
+
ax = self._maybe_right_yaxis(ax, i)
|
| 1037 |
+
# error: Unsupported target for indexed assignment ("Sequence[Any]")
|
| 1038 |
+
self.axes[i] = ax # type: ignore[index]
|
| 1039 |
+
else:
|
| 1040 |
+
ax = self.axes[0]
|
| 1041 |
+
ax = self._maybe_right_yaxis(ax, i)
|
| 1042 |
+
|
| 1043 |
+
ax.get_yaxis().set_visible(True)
|
| 1044 |
+
return ax
|
| 1045 |
+
|
| 1046 |
+
@final
|
| 1047 |
+
def on_right(self, i: int):
|
| 1048 |
+
if isinstance(self.secondary_y, bool):
|
| 1049 |
+
return self.secondary_y
|
| 1050 |
+
|
| 1051 |
+
if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndex)):
|
| 1052 |
+
return self.data.columns[i] in self.secondary_y
|
| 1053 |
+
|
| 1054 |
+
@final
|
| 1055 |
+
def _apply_style_colors(
|
| 1056 |
+
self, colors, kwds: dict[str, Any], col_num: int, label: str
|
| 1057 |
+
):
|
| 1058 |
+
"""
|
| 1059 |
+
Manage style and color based on column number and its label.
|
| 1060 |
+
Returns tuple of appropriate style and kwds which "color" may be added.
|
| 1061 |
+
"""
|
| 1062 |
+
style = None
|
| 1063 |
+
if self.style is not None:
|
| 1064 |
+
if isinstance(self.style, list):
|
| 1065 |
+
try:
|
| 1066 |
+
style = self.style[col_num]
|
| 1067 |
+
except IndexError:
|
| 1068 |
+
pass
|
| 1069 |
+
elif isinstance(self.style, dict):
|
| 1070 |
+
style = self.style.get(label, style)
|
| 1071 |
+
else:
|
| 1072 |
+
style = self.style
|
| 1073 |
+
|
| 1074 |
+
has_color = "color" in kwds or self.colormap is not None
|
| 1075 |
+
nocolor_style = style is None or not _color_in_style(style)
|
| 1076 |
+
if (has_color or self.subplots) and nocolor_style:
|
| 1077 |
+
if isinstance(colors, dict):
|
| 1078 |
+
kwds["color"] = colors[label]
|
| 1079 |
+
else:
|
| 1080 |
+
kwds["color"] = colors[col_num % len(colors)]
|
| 1081 |
+
return style, kwds
|
| 1082 |
+
|
| 1083 |
+
def _get_colors(
|
| 1084 |
+
self,
|
| 1085 |
+
num_colors: int | None = None,
|
| 1086 |
+
color_kwds: str = "color",
|
| 1087 |
+
):
|
| 1088 |
+
if num_colors is None:
|
| 1089 |
+
num_colors = self.nseries
|
| 1090 |
+
if color_kwds == "color":
|
| 1091 |
+
color = self.color
|
| 1092 |
+
else:
|
| 1093 |
+
color = self.kwds.get(color_kwds)
|
| 1094 |
+
return get_standard_colors(
|
| 1095 |
+
num_colors=num_colors,
|
| 1096 |
+
colormap=self.colormap,
|
| 1097 |
+
color=color,
|
| 1098 |
+
)
|
| 1099 |
+
|
| 1100 |
+
# TODO: tighter typing for first return?
|
| 1101 |
+
@final
|
| 1102 |
+
@staticmethod
|
| 1103 |
+
def _parse_errorbars(
|
| 1104 |
+
label: str, err, data: NDFrameT, nseries: int
|
| 1105 |
+
) -> tuple[Any, NDFrameT]:
|
| 1106 |
+
"""
|
| 1107 |
+
Look for error keyword arguments and return the actual errorbar data
|
| 1108 |
+
or return the error DataFrame/dict
|
| 1109 |
+
|
| 1110 |
+
Error bars can be specified in several ways:
|
| 1111 |
+
Series: the user provides a pandas.Series object of the same
|
| 1112 |
+
length as the data
|
| 1113 |
+
ndarray: provides a np.ndarray of the same length as the data
|
| 1114 |
+
DataFrame/dict: error values are paired with keys matching the
|
| 1115 |
+
key in the plotted DataFrame
|
| 1116 |
+
str: the name of the column within the plotted DataFrame
|
| 1117 |
+
|
| 1118 |
+
Asymmetrical error bars are also supported, however raw error values
|
| 1119 |
+
must be provided in this case. For a ``N`` length :class:`Series`, a
|
| 1120 |
+
``2xN`` array should be provided indicating lower and upper (or left
|
| 1121 |
+
and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors
|
| 1122 |
+
should be in a ``Mx2xN`` array.
|
| 1123 |
+
"""
|
| 1124 |
+
if err is None:
|
| 1125 |
+
return None, data
|
| 1126 |
+
|
| 1127 |
+
def match_labels(data, e):
|
| 1128 |
+
e = e.reindex(data.index)
|
| 1129 |
+
return e
|
| 1130 |
+
|
| 1131 |
+
# key-matched DataFrame
|
| 1132 |
+
if isinstance(err, ABCDataFrame):
|
| 1133 |
+
err = match_labels(data, err)
|
| 1134 |
+
# key-matched dict
|
| 1135 |
+
elif isinstance(err, dict):
|
| 1136 |
+
pass
|
| 1137 |
+
|
| 1138 |
+
# Series of error values
|
| 1139 |
+
elif isinstance(err, ABCSeries):
|
| 1140 |
+
# broadcast error series across data
|
| 1141 |
+
err = match_labels(data, err)
|
| 1142 |
+
err = np.atleast_2d(err)
|
| 1143 |
+
err = np.tile(err, (nseries, 1))
|
| 1144 |
+
|
| 1145 |
+
# errors are a column in the dataframe
|
| 1146 |
+
elif isinstance(err, str):
|
| 1147 |
+
evalues = data[err].values
|
| 1148 |
+
data = data[data.columns.drop(err)]
|
| 1149 |
+
err = np.atleast_2d(evalues)
|
| 1150 |
+
err = np.tile(err, (nseries, 1))
|
| 1151 |
+
|
| 1152 |
+
elif is_list_like(err):
|
| 1153 |
+
if is_iterator(err):
|
| 1154 |
+
err = np.atleast_2d(list(err))
|
| 1155 |
+
else:
|
| 1156 |
+
# raw error values
|
| 1157 |
+
err = np.atleast_2d(err)
|
| 1158 |
+
|
| 1159 |
+
err_shape = err.shape
|
| 1160 |
+
|
| 1161 |
+
# asymmetrical error bars
|
| 1162 |
+
if isinstance(data, ABCSeries) and err_shape[0] == 2:
|
| 1163 |
+
err = np.expand_dims(err, 0)
|
| 1164 |
+
err_shape = err.shape
|
| 1165 |
+
if err_shape[2] != len(data):
|
| 1166 |
+
raise ValueError(
|
| 1167 |
+
"Asymmetrical error bars should be provided "
|
| 1168 |
+
f"with the shape (2, {len(data)})"
|
| 1169 |
+
)
|
| 1170 |
+
elif isinstance(data, ABCDataFrame) and err.ndim == 3:
|
| 1171 |
+
if (
|
| 1172 |
+
(err_shape[0] != nseries)
|
| 1173 |
+
or (err_shape[1] != 2)
|
| 1174 |
+
or (err_shape[2] != len(data))
|
| 1175 |
+
):
|
| 1176 |
+
raise ValueError(
|
| 1177 |
+
"Asymmetrical error bars should be provided "
|
| 1178 |
+
f"with the shape ({nseries}, 2, {len(data)})"
|
| 1179 |
+
)
|
| 1180 |
+
|
| 1181 |
+
# broadcast errors to each data series
|
| 1182 |
+
if len(err) == 1:
|
| 1183 |
+
err = np.tile(err, (nseries, 1))
|
| 1184 |
+
|
| 1185 |
+
elif is_number(err):
|
| 1186 |
+
err = np.tile(
|
| 1187 |
+
[err],
|
| 1188 |
+
(nseries, len(data)),
|
| 1189 |
+
)
|
| 1190 |
+
|
| 1191 |
+
else:
|
| 1192 |
+
msg = f"No valid {label} detected"
|
| 1193 |
+
raise ValueError(msg)
|
| 1194 |
+
|
| 1195 |
+
return err, data
|
| 1196 |
+
|
| 1197 |
+
@final
|
| 1198 |
+
def _get_errorbars(
|
| 1199 |
+
self, label=None, index=None, xerr: bool = True, yerr: bool = True
|
| 1200 |
+
) -> dict[str, Any]:
|
| 1201 |
+
errors = {}
|
| 1202 |
+
|
| 1203 |
+
for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]):
|
| 1204 |
+
if flag:
|
| 1205 |
+
err = self.errors[kw]
|
| 1206 |
+
# user provided label-matched dataframe of errors
|
| 1207 |
+
if isinstance(err, (ABCDataFrame, dict)):
|
| 1208 |
+
if label is not None and label in err.keys():
|
| 1209 |
+
err = err[label]
|
| 1210 |
+
else:
|
| 1211 |
+
err = None
|
| 1212 |
+
elif index is not None and err is not None:
|
| 1213 |
+
err = err[index]
|
| 1214 |
+
|
| 1215 |
+
if err is not None:
|
| 1216 |
+
errors[kw] = err
|
| 1217 |
+
return errors
|
| 1218 |
+
|
| 1219 |
+
@final
|
| 1220 |
+
def _get_subplots(self, fig: Figure):
|
| 1221 |
+
if Version(mpl.__version__) < Version("3.8"):
|
| 1222 |
+
from matplotlib.axes import Subplot as Klass
|
| 1223 |
+
else:
|
| 1224 |
+
from matplotlib.axes import Axes as Klass
|
| 1225 |
+
|
| 1226 |
+
return [
|
| 1227 |
+
ax
|
| 1228 |
+
for ax in fig.get_axes()
|
| 1229 |
+
if (isinstance(ax, Klass) and ax.get_subplotspec() is not None)
|
| 1230 |
+
]
|
| 1231 |
+
|
| 1232 |
+
@final
|
| 1233 |
+
def _get_axes_layout(self, fig: Figure) -> tuple[int, int]:
|
| 1234 |
+
axes = self._get_subplots(fig)
|
| 1235 |
+
x_set = set()
|
| 1236 |
+
y_set = set()
|
| 1237 |
+
for ax in axes:
|
| 1238 |
+
# check axes coordinates to estimate layout
|
| 1239 |
+
points = ax.get_position().get_points()
|
| 1240 |
+
x_set.add(points[0][0])
|
| 1241 |
+
y_set.add(points[0][1])
|
| 1242 |
+
return (len(y_set), len(x_set))
|
| 1243 |
+
|
| 1244 |
+
|
| 1245 |
+
class PlanePlot(MPLPlot, ABC):
|
| 1246 |
+
"""
|
| 1247 |
+
Abstract class for plotting on plane, currently scatter and hexbin.
|
| 1248 |
+
"""
|
| 1249 |
+
|
| 1250 |
+
_layout_type = "single"
|
| 1251 |
+
|
| 1252 |
+
def __init__(self, data, x, y, **kwargs) -> None:
|
| 1253 |
+
MPLPlot.__init__(self, data, **kwargs)
|
| 1254 |
+
if x is None or y is None:
|
| 1255 |
+
raise ValueError(self._kind + " requires an x and y column")
|
| 1256 |
+
if is_integer(x) and not self.data.columns._holds_integer():
|
| 1257 |
+
x = self.data.columns[x]
|
| 1258 |
+
if is_integer(y) and not self.data.columns._holds_integer():
|
| 1259 |
+
y = self.data.columns[y]
|
| 1260 |
+
|
| 1261 |
+
self.x = x
|
| 1262 |
+
self.y = y
|
| 1263 |
+
|
| 1264 |
+
@final
|
| 1265 |
+
def _get_nseries(self, data: Series | DataFrame) -> int:
|
| 1266 |
+
return 1
|
| 1267 |
+
|
| 1268 |
+
@final
|
| 1269 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 1270 |
+
x, y = self.x, self.y
|
| 1271 |
+
xlabel = self.xlabel if self.xlabel is not None else pprint_thing(x)
|
| 1272 |
+
ylabel = self.ylabel if self.ylabel is not None else pprint_thing(y)
|
| 1273 |
+
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
|
| 1274 |
+
# type "Hashable"; expected "str"
|
| 1275 |
+
ax.set_xlabel(xlabel) # type: ignore[arg-type]
|
| 1276 |
+
ax.set_ylabel(ylabel) # type: ignore[arg-type]
|
| 1277 |
+
|
| 1278 |
+
@final
|
| 1279 |
+
def _plot_colorbar(self, ax: Axes, *, fig: Figure, **kwds):
|
| 1280 |
+
# Addresses issues #10611 and #10678:
|
| 1281 |
+
# When plotting scatterplots and hexbinplots in IPython
|
| 1282 |
+
# inline backend the colorbar axis height tends not to
|
| 1283 |
+
# exactly match the parent axis height.
|
| 1284 |
+
# The difference is due to small fractional differences
|
| 1285 |
+
# in floating points with similar representation.
|
| 1286 |
+
# To deal with this, this method forces the colorbar
|
| 1287 |
+
# height to take the height of the parent axes.
|
| 1288 |
+
# For a more detailed description of the issue
|
| 1289 |
+
# see the following link:
|
| 1290 |
+
# https://github.com/ipython/ipython/issues/11215
|
| 1291 |
+
|
| 1292 |
+
# GH33389, if ax is used multiple times, we should always
|
| 1293 |
+
# use the last one which contains the latest information
|
| 1294 |
+
# about the ax
|
| 1295 |
+
img = ax.collections[-1]
|
| 1296 |
+
return fig.colorbar(img, ax=ax, **kwds)
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
+
class ScatterPlot(PlanePlot):
|
| 1300 |
+
@property
|
| 1301 |
+
def _kind(self) -> Literal["scatter"]:
|
| 1302 |
+
return "scatter"
|
| 1303 |
+
|
| 1304 |
+
def __init__(
|
| 1305 |
+
self,
|
| 1306 |
+
data,
|
| 1307 |
+
x,
|
| 1308 |
+
y,
|
| 1309 |
+
s=None,
|
| 1310 |
+
c=None,
|
| 1311 |
+
*,
|
| 1312 |
+
colorbar: bool | lib.NoDefault = lib.no_default,
|
| 1313 |
+
norm=None,
|
| 1314 |
+
**kwargs,
|
| 1315 |
+
) -> None:
|
| 1316 |
+
if s is None:
|
| 1317 |
+
# hide the matplotlib default for size, in case we want to change
|
| 1318 |
+
# the handling of this argument later
|
| 1319 |
+
s = 20
|
| 1320 |
+
elif is_hashable(s) and s in data.columns:
|
| 1321 |
+
s = data[s]
|
| 1322 |
+
self.s = s
|
| 1323 |
+
|
| 1324 |
+
self.colorbar = colorbar
|
| 1325 |
+
self.norm = norm
|
| 1326 |
+
|
| 1327 |
+
super().__init__(data, x, y, **kwargs)
|
| 1328 |
+
if is_integer(c) and not self.data.columns._holds_integer():
|
| 1329 |
+
c = self.data.columns[c]
|
| 1330 |
+
self.c = c
|
| 1331 |
+
|
| 1332 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 1333 |
+
x, y, c, data = self.x, self.y, self.c, self.data
|
| 1334 |
+
ax = self.axes[0]
|
| 1335 |
+
|
| 1336 |
+
c_is_column = is_hashable(c) and c in self.data.columns
|
| 1337 |
+
|
| 1338 |
+
color_by_categorical = c_is_column and isinstance(
|
| 1339 |
+
self.data[c].dtype, CategoricalDtype
|
| 1340 |
+
)
|
| 1341 |
+
|
| 1342 |
+
color = self.color
|
| 1343 |
+
c_values = self._get_c_values(color, color_by_categorical, c_is_column)
|
| 1344 |
+
norm, cmap = self._get_norm_and_cmap(c_values, color_by_categorical)
|
| 1345 |
+
cb = self._get_colorbar(c_values, c_is_column)
|
| 1346 |
+
|
| 1347 |
+
if self.legend:
|
| 1348 |
+
label = self.label
|
| 1349 |
+
else:
|
| 1350 |
+
label = None
|
| 1351 |
+
scatter = ax.scatter(
|
| 1352 |
+
data[x].values,
|
| 1353 |
+
data[y].values,
|
| 1354 |
+
c=c_values,
|
| 1355 |
+
label=label,
|
| 1356 |
+
cmap=cmap,
|
| 1357 |
+
norm=norm,
|
| 1358 |
+
s=self.s,
|
| 1359 |
+
**self.kwds,
|
| 1360 |
+
)
|
| 1361 |
+
if cb:
|
| 1362 |
+
cbar_label = c if c_is_column else ""
|
| 1363 |
+
cbar = self._plot_colorbar(ax, fig=fig, label=cbar_label)
|
| 1364 |
+
if color_by_categorical:
|
| 1365 |
+
n_cats = len(self.data[c].cat.categories)
|
| 1366 |
+
cbar.set_ticks(np.linspace(0.5, n_cats - 0.5, n_cats))
|
| 1367 |
+
cbar.ax.set_yticklabels(self.data[c].cat.categories)
|
| 1368 |
+
|
| 1369 |
+
if label is not None:
|
| 1370 |
+
self._append_legend_handles_labels(
|
| 1371 |
+
# error: Argument 2 to "_append_legend_handles_labels" of
|
| 1372 |
+
# "MPLPlot" has incompatible type "Hashable"; expected "str"
|
| 1373 |
+
scatter,
|
| 1374 |
+
label, # type: ignore[arg-type]
|
| 1375 |
+
)
|
| 1376 |
+
|
| 1377 |
+
errors_x = self._get_errorbars(label=x, index=0, yerr=False)
|
| 1378 |
+
errors_y = self._get_errorbars(label=y, index=0, xerr=False)
|
| 1379 |
+
if len(errors_x) > 0 or len(errors_y) > 0:
|
| 1380 |
+
err_kwds = dict(errors_x, **errors_y)
|
| 1381 |
+
err_kwds["ecolor"] = scatter.get_facecolor()[0]
|
| 1382 |
+
ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds)
|
| 1383 |
+
|
| 1384 |
+
def _get_c_values(self, color, color_by_categorical: bool, c_is_column: bool):
|
| 1385 |
+
c = self.c
|
| 1386 |
+
if c is not None and color is not None:
|
| 1387 |
+
raise TypeError("Specify exactly one of `c` and `color`")
|
| 1388 |
+
if c is None and color is None:
|
| 1389 |
+
c_values = self.plt.rcParams["patch.facecolor"]
|
| 1390 |
+
elif color is not None:
|
| 1391 |
+
c_values = color
|
| 1392 |
+
elif color_by_categorical:
|
| 1393 |
+
c_values = self.data[c].cat.codes
|
| 1394 |
+
elif c_is_column:
|
| 1395 |
+
c_values = self.data[c].values
|
| 1396 |
+
else:
|
| 1397 |
+
c_values = c
|
| 1398 |
+
return c_values
|
| 1399 |
+
|
| 1400 |
+
def _get_norm_and_cmap(self, c_values, color_by_categorical: bool):
|
| 1401 |
+
c = self.c
|
| 1402 |
+
if self.colormap is not None:
|
| 1403 |
+
cmap = mpl.colormaps.get_cmap(self.colormap)
|
| 1404 |
+
# cmap is only used if c_values are integers, otherwise UserWarning.
|
| 1405 |
+
# GH-53908: additionally call isinstance() because is_integer_dtype
|
| 1406 |
+
# returns True for "b" (meaning "blue" and not int8 in this context)
|
| 1407 |
+
elif not isinstance(c_values, str) and is_integer_dtype(c_values):
|
| 1408 |
+
# pandas uses colormap, matplotlib uses cmap.
|
| 1409 |
+
cmap = mpl.colormaps["Greys"]
|
| 1410 |
+
else:
|
| 1411 |
+
cmap = None
|
| 1412 |
+
|
| 1413 |
+
if color_by_categorical and cmap is not None:
|
| 1414 |
+
from matplotlib import colors
|
| 1415 |
+
|
| 1416 |
+
n_cats = len(self.data[c].cat.categories)
|
| 1417 |
+
cmap = colors.ListedColormap([cmap(i) for i in range(cmap.N)])
|
| 1418 |
+
bounds = np.linspace(0, n_cats, n_cats + 1)
|
| 1419 |
+
norm = colors.BoundaryNorm(bounds, cmap.N)
|
| 1420 |
+
# TODO: warn that we are ignoring self.norm if user specified it?
|
| 1421 |
+
# Doesn't happen in any tests 2023-11-09
|
| 1422 |
+
else:
|
| 1423 |
+
norm = self.norm
|
| 1424 |
+
return norm, cmap
|
| 1425 |
+
|
| 1426 |
+
def _get_colorbar(self, c_values, c_is_column: bool) -> bool:
|
| 1427 |
+
# plot colorbar if
|
| 1428 |
+
# 1. colormap is assigned, and
|
| 1429 |
+
# 2.`c` is a column containing only numeric values
|
| 1430 |
+
plot_colorbar = self.colormap or c_is_column
|
| 1431 |
+
cb = self.colorbar
|
| 1432 |
+
if cb is lib.no_default:
|
| 1433 |
+
return is_numeric_dtype(c_values) and plot_colorbar
|
| 1434 |
+
return cb
|
| 1435 |
+
|
| 1436 |
+
|
| 1437 |
+
class HexBinPlot(PlanePlot):
|
| 1438 |
+
@property
|
| 1439 |
+
def _kind(self) -> Literal["hexbin"]:
|
| 1440 |
+
return "hexbin"
|
| 1441 |
+
|
| 1442 |
+
def __init__(self, data, x, y, C=None, *, colorbar: bool = True, **kwargs) -> None:
|
| 1443 |
+
super().__init__(data, x, y, **kwargs)
|
| 1444 |
+
if is_integer(C) and not self.data.columns._holds_integer():
|
| 1445 |
+
C = self.data.columns[C]
|
| 1446 |
+
self.C = C
|
| 1447 |
+
|
| 1448 |
+
self.colorbar = colorbar
|
| 1449 |
+
|
| 1450 |
+
# Scatter plot allows to plot objects data
|
| 1451 |
+
if len(self.data[self.x]._get_numeric_data()) == 0:
|
| 1452 |
+
raise ValueError(self._kind + " requires x column to be numeric")
|
| 1453 |
+
if len(self.data[self.y]._get_numeric_data()) == 0:
|
| 1454 |
+
raise ValueError(self._kind + " requires y column to be numeric")
|
| 1455 |
+
|
| 1456 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 1457 |
+
x, y, data, C = self.x, self.y, self.data, self.C
|
| 1458 |
+
ax = self.axes[0]
|
| 1459 |
+
# pandas uses colormap, matplotlib uses cmap.
|
| 1460 |
+
cmap = self.colormap or "BuGn"
|
| 1461 |
+
cmap = mpl.colormaps.get_cmap(cmap)
|
| 1462 |
+
cb = self.colorbar
|
| 1463 |
+
|
| 1464 |
+
if C is None:
|
| 1465 |
+
c_values = None
|
| 1466 |
+
else:
|
| 1467 |
+
c_values = data[C].values
|
| 1468 |
+
|
| 1469 |
+
ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds)
|
| 1470 |
+
if cb:
|
| 1471 |
+
self._plot_colorbar(ax, fig=fig)
|
| 1472 |
+
|
| 1473 |
+
def _make_legend(self) -> None:
|
| 1474 |
+
pass
|
| 1475 |
+
|
| 1476 |
+
|
| 1477 |
+
class LinePlot(MPLPlot):
|
| 1478 |
+
_default_rot = 0
|
| 1479 |
+
|
| 1480 |
+
@property
|
| 1481 |
+
def orientation(self) -> PlottingOrientation:
|
| 1482 |
+
return "vertical"
|
| 1483 |
+
|
| 1484 |
+
@property
|
| 1485 |
+
def _kind(self) -> Literal["line", "area", "hist", "kde", "box"]:
|
| 1486 |
+
return "line"
|
| 1487 |
+
|
| 1488 |
+
def __init__(self, data, **kwargs) -> None:
|
| 1489 |
+
from pandas.plotting import plot_params
|
| 1490 |
+
|
| 1491 |
+
MPLPlot.__init__(self, data, **kwargs)
|
| 1492 |
+
if self.stacked:
|
| 1493 |
+
self.data = self.data.fillna(value=0)
|
| 1494 |
+
self.x_compat = plot_params["x_compat"]
|
| 1495 |
+
if "x_compat" in self.kwds:
|
| 1496 |
+
self.x_compat = bool(self.kwds.pop("x_compat"))
|
| 1497 |
+
|
| 1498 |
+
@final
|
| 1499 |
+
def _is_ts_plot(self) -> bool:
|
| 1500 |
+
# this is slightly deceptive
|
| 1501 |
+
return not self.x_compat and self.use_index and self._use_dynamic_x()
|
| 1502 |
+
|
| 1503 |
+
@final
|
| 1504 |
+
def _use_dynamic_x(self) -> bool:
|
| 1505 |
+
return use_dynamic_x(self._get_ax(0), self.data)
|
| 1506 |
+
|
| 1507 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 1508 |
+
if self._is_ts_plot():
|
| 1509 |
+
data = maybe_convert_index(self._get_ax(0), self.data)
|
| 1510 |
+
|
| 1511 |
+
x = data.index # dummy, not used
|
| 1512 |
+
plotf = self._ts_plot
|
| 1513 |
+
it = data.items()
|
| 1514 |
+
else:
|
| 1515 |
+
x = self._get_xticks()
|
| 1516 |
+
# error: Incompatible types in assignment (expression has type
|
| 1517 |
+
# "Callable[[Any, Any, Any, Any, Any, Any, KwArg(Any)], Any]", variable has
|
| 1518 |
+
# type "Callable[[Any, Any, Any, Any, KwArg(Any)], Any]")
|
| 1519 |
+
plotf = self._plot # type: ignore[assignment]
|
| 1520 |
+
# error: Incompatible types in assignment (expression has type
|
| 1521 |
+
# "Iterator[tuple[Hashable, ndarray[Any, Any]]]", variable has
|
| 1522 |
+
# type "Iterable[tuple[Hashable, Series]]")
|
| 1523 |
+
it = self._iter_data(data=self.data) # type: ignore[assignment]
|
| 1524 |
+
|
| 1525 |
+
stacking_id = self._get_stacking_id()
|
| 1526 |
+
is_errorbar = com.any_not_none(*self.errors.values())
|
| 1527 |
+
|
| 1528 |
+
colors = self._get_colors()
|
| 1529 |
+
for i, (label, y) in enumerate(it):
|
| 1530 |
+
ax = self._get_ax(i)
|
| 1531 |
+
kwds = self.kwds.copy()
|
| 1532 |
+
if self.color is not None:
|
| 1533 |
+
kwds["color"] = self.color
|
| 1534 |
+
style, kwds = self._apply_style_colors(
|
| 1535 |
+
colors,
|
| 1536 |
+
kwds,
|
| 1537 |
+
i,
|
| 1538 |
+
# error: Argument 4 to "_apply_style_colors" of "MPLPlot" has
|
| 1539 |
+
# incompatible type "Hashable"; expected "str"
|
| 1540 |
+
label, # type: ignore[arg-type]
|
| 1541 |
+
)
|
| 1542 |
+
|
| 1543 |
+
errors = self._get_errorbars(label=label, index=i)
|
| 1544 |
+
kwds = dict(kwds, **errors)
|
| 1545 |
+
|
| 1546 |
+
label = pprint_thing(label)
|
| 1547 |
+
label = self._mark_right_label(label, index=i)
|
| 1548 |
+
kwds["label"] = label
|
| 1549 |
+
|
| 1550 |
+
newlines = plotf(
|
| 1551 |
+
ax,
|
| 1552 |
+
x,
|
| 1553 |
+
y,
|
| 1554 |
+
style=style,
|
| 1555 |
+
column_num=i,
|
| 1556 |
+
stacking_id=stacking_id,
|
| 1557 |
+
is_errorbar=is_errorbar,
|
| 1558 |
+
**kwds,
|
| 1559 |
+
)
|
| 1560 |
+
self._append_legend_handles_labels(newlines[0], label)
|
| 1561 |
+
|
| 1562 |
+
if self._is_ts_plot():
|
| 1563 |
+
# reset of xlim should be used for ts data
|
| 1564 |
+
# TODO: GH28021, should find a way to change view limit on xaxis
|
| 1565 |
+
lines = get_all_lines(ax)
|
| 1566 |
+
left, right = get_xlim(lines)
|
| 1567 |
+
ax.set_xlim(left, right)
|
| 1568 |
+
|
| 1569 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
| 1570 |
+
@classmethod
|
| 1571 |
+
def _plot( # type: ignore[override]
|
| 1572 |
+
cls,
|
| 1573 |
+
ax: Axes,
|
| 1574 |
+
x,
|
| 1575 |
+
y: np.ndarray,
|
| 1576 |
+
style=None,
|
| 1577 |
+
column_num=None,
|
| 1578 |
+
stacking_id=None,
|
| 1579 |
+
**kwds,
|
| 1580 |
+
):
|
| 1581 |
+
# column_num is used to get the target column from plotf in line and
|
| 1582 |
+
# area plots
|
| 1583 |
+
if column_num == 0:
|
| 1584 |
+
cls._initialize_stacker(ax, stacking_id, len(y))
|
| 1585 |
+
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
|
| 1586 |
+
lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds)
|
| 1587 |
+
cls._update_stacker(ax, stacking_id, y)
|
| 1588 |
+
return lines
|
| 1589 |
+
|
| 1590 |
+
@final
|
| 1591 |
+
def _ts_plot(self, ax: Axes, x, data: Series, style=None, **kwds):
|
| 1592 |
+
# accept x to be consistent with normal plot func,
|
| 1593 |
+
# x is not passed to tsplot as it uses data.index as x coordinate
|
| 1594 |
+
# column_num must be in kwds for stacking purpose
|
| 1595 |
+
freq, data = maybe_resample(data, ax, kwds)
|
| 1596 |
+
|
| 1597 |
+
# Set ax with freq info
|
| 1598 |
+
decorate_axes(ax, freq)
|
| 1599 |
+
# digging deeper
|
| 1600 |
+
if hasattr(ax, "left_ax"):
|
| 1601 |
+
decorate_axes(ax.left_ax, freq)
|
| 1602 |
+
if hasattr(ax, "right_ax"):
|
| 1603 |
+
decorate_axes(ax.right_ax, freq)
|
| 1604 |
+
# TODO #54485
|
| 1605 |
+
ax._plot_data.append((data, self._kind, kwds)) # type: ignore[attr-defined]
|
| 1606 |
+
|
| 1607 |
+
lines = self._plot(ax, data.index, np.asarray(data.values), style=style, **kwds)
|
| 1608 |
+
# set date formatter, locators and rescale limits
|
| 1609 |
+
# TODO #54485
|
| 1610 |
+
format_dateaxis(ax, ax.freq, data.index) # type: ignore[arg-type, attr-defined]
|
| 1611 |
+
return lines
|
| 1612 |
+
|
| 1613 |
+
@final
|
| 1614 |
+
def _get_stacking_id(self) -> int | None:
|
| 1615 |
+
if self.stacked:
|
| 1616 |
+
return id(self.data)
|
| 1617 |
+
else:
|
| 1618 |
+
return None
|
| 1619 |
+
|
| 1620 |
+
@final
|
| 1621 |
+
@classmethod
|
| 1622 |
+
def _initialize_stacker(cls, ax: Axes, stacking_id, n: int) -> None:
|
| 1623 |
+
if stacking_id is None:
|
| 1624 |
+
return
|
| 1625 |
+
if not hasattr(ax, "_stacker_pos_prior"):
|
| 1626 |
+
# TODO #54485
|
| 1627 |
+
ax._stacker_pos_prior = {} # type: ignore[attr-defined]
|
| 1628 |
+
if not hasattr(ax, "_stacker_neg_prior"):
|
| 1629 |
+
# TODO #54485
|
| 1630 |
+
ax._stacker_neg_prior = {} # type: ignore[attr-defined]
|
| 1631 |
+
# TODO #54485
|
| 1632 |
+
ax._stacker_pos_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined]
|
| 1633 |
+
# TODO #54485
|
| 1634 |
+
ax._stacker_neg_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined]
|
| 1635 |
+
|
| 1636 |
+
@final
|
| 1637 |
+
@classmethod
|
| 1638 |
+
def _get_stacked_values(
|
| 1639 |
+
cls, ax: Axes, stacking_id: int | None, values: np.ndarray, label
|
| 1640 |
+
) -> np.ndarray:
|
| 1641 |
+
if stacking_id is None:
|
| 1642 |
+
return values
|
| 1643 |
+
if not hasattr(ax, "_stacker_pos_prior"):
|
| 1644 |
+
# stacker may not be initialized for subplots
|
| 1645 |
+
cls._initialize_stacker(ax, stacking_id, len(values))
|
| 1646 |
+
|
| 1647 |
+
if (values >= 0).all():
|
| 1648 |
+
# TODO #54485
|
| 1649 |
+
return (
|
| 1650 |
+
ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined]
|
| 1651 |
+
+ values
|
| 1652 |
+
)
|
| 1653 |
+
elif (values <= 0).all():
|
| 1654 |
+
# TODO #54485
|
| 1655 |
+
return (
|
| 1656 |
+
ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined]
|
| 1657 |
+
+ values
|
| 1658 |
+
)
|
| 1659 |
+
|
| 1660 |
+
raise ValueError(
|
| 1661 |
+
"When stacked is True, each column must be either "
|
| 1662 |
+
"all positive or all negative. "
|
| 1663 |
+
f"Column '{label}' contains both positive and negative values"
|
| 1664 |
+
)
|
| 1665 |
+
|
| 1666 |
+
@final
|
| 1667 |
+
@classmethod
|
| 1668 |
+
def _update_stacker(cls, ax: Axes, stacking_id: int | None, values) -> None:
|
| 1669 |
+
if stacking_id is None:
|
| 1670 |
+
return
|
| 1671 |
+
if (values >= 0).all():
|
| 1672 |
+
# TODO #54485
|
| 1673 |
+
ax._stacker_pos_prior[stacking_id] += values # type: ignore[attr-defined]
|
| 1674 |
+
elif (values <= 0).all():
|
| 1675 |
+
# TODO #54485
|
| 1676 |
+
ax._stacker_neg_prior[stacking_id] += values # type: ignore[attr-defined]
|
| 1677 |
+
|
| 1678 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 1679 |
+
from matplotlib.ticker import FixedLocator
|
| 1680 |
+
|
| 1681 |
+
def get_label(i):
|
| 1682 |
+
if is_float(i) and i.is_integer():
|
| 1683 |
+
i = int(i)
|
| 1684 |
+
try:
|
| 1685 |
+
return pprint_thing(data.index[i])
|
| 1686 |
+
except Exception:
|
| 1687 |
+
return ""
|
| 1688 |
+
|
| 1689 |
+
if self._need_to_set_index:
|
| 1690 |
+
xticks = ax.get_xticks()
|
| 1691 |
+
xticklabels = [get_label(x) for x in xticks]
|
| 1692 |
+
# error: Argument 1 to "FixedLocator" has incompatible type "ndarray[Any,
|
| 1693 |
+
# Any]"; expected "Sequence[float]"
|
| 1694 |
+
ax.xaxis.set_major_locator(FixedLocator(xticks)) # type: ignore[arg-type]
|
| 1695 |
+
ax.set_xticklabels(xticklabels)
|
| 1696 |
+
|
| 1697 |
+
# If the index is an irregular time series, then by default
|
| 1698 |
+
# we rotate the tick labels. The exception is if there are
|
| 1699 |
+
# subplots which don't share their x-axes, in which we case
|
| 1700 |
+
# we don't rotate the ticklabels as by default the subplots
|
| 1701 |
+
# would be too close together.
|
| 1702 |
+
condition = (
|
| 1703 |
+
not self._use_dynamic_x()
|
| 1704 |
+
and (data.index._is_all_dates and self.use_index)
|
| 1705 |
+
and (not self.subplots or (self.subplots and self.sharex))
|
| 1706 |
+
)
|
| 1707 |
+
|
| 1708 |
+
index_name = self._get_index_name()
|
| 1709 |
+
|
| 1710 |
+
if condition:
|
| 1711 |
+
# irregular TS rotated 30 deg. by default
|
| 1712 |
+
# probably a better place to check / set this.
|
| 1713 |
+
if not self._rot_set:
|
| 1714 |
+
self.rot = 30
|
| 1715 |
+
format_date_labels(ax, rot=self.rot)
|
| 1716 |
+
|
| 1717 |
+
if index_name is not None and self.use_index:
|
| 1718 |
+
ax.set_xlabel(index_name)
|
| 1719 |
+
|
| 1720 |
+
|
| 1721 |
+
class AreaPlot(LinePlot):
|
| 1722 |
+
@property
|
| 1723 |
+
def _kind(self) -> Literal["area"]:
|
| 1724 |
+
return "area"
|
| 1725 |
+
|
| 1726 |
+
def __init__(self, data, **kwargs) -> None:
|
| 1727 |
+
kwargs.setdefault("stacked", True)
|
| 1728 |
+
with warnings.catch_warnings():
|
| 1729 |
+
warnings.filterwarnings(
|
| 1730 |
+
"ignore",
|
| 1731 |
+
"Downcasting object dtype arrays",
|
| 1732 |
+
category=FutureWarning,
|
| 1733 |
+
)
|
| 1734 |
+
data = data.fillna(value=0)
|
| 1735 |
+
LinePlot.__init__(self, data, **kwargs)
|
| 1736 |
+
|
| 1737 |
+
if not self.stacked:
|
| 1738 |
+
# use smaller alpha to distinguish overlap
|
| 1739 |
+
self.kwds.setdefault("alpha", 0.5)
|
| 1740 |
+
|
| 1741 |
+
if self.logy or self.loglog:
|
| 1742 |
+
raise ValueError("Log-y scales are not supported in area plot")
|
| 1743 |
+
|
| 1744 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
| 1745 |
+
@classmethod
|
| 1746 |
+
def _plot( # type: ignore[override]
|
| 1747 |
+
cls,
|
| 1748 |
+
ax: Axes,
|
| 1749 |
+
x,
|
| 1750 |
+
y: np.ndarray,
|
| 1751 |
+
style=None,
|
| 1752 |
+
column_num=None,
|
| 1753 |
+
stacking_id=None,
|
| 1754 |
+
is_errorbar: bool = False,
|
| 1755 |
+
**kwds,
|
| 1756 |
+
):
|
| 1757 |
+
if column_num == 0:
|
| 1758 |
+
cls._initialize_stacker(ax, stacking_id, len(y))
|
| 1759 |
+
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
|
| 1760 |
+
|
| 1761 |
+
# need to remove label, because subplots uses mpl legend as it is
|
| 1762 |
+
line_kwds = kwds.copy()
|
| 1763 |
+
line_kwds.pop("label")
|
| 1764 |
+
lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds)
|
| 1765 |
+
|
| 1766 |
+
# get data from the line to get coordinates for fill_between
|
| 1767 |
+
xdata, y_values = lines[0].get_data(orig=False)
|
| 1768 |
+
|
| 1769 |
+
# unable to use ``_get_stacked_values`` here to get starting point
|
| 1770 |
+
if stacking_id is None:
|
| 1771 |
+
start = np.zeros(len(y))
|
| 1772 |
+
elif (y >= 0).all():
|
| 1773 |
+
# TODO #54485
|
| 1774 |
+
start = ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined]
|
| 1775 |
+
elif (y <= 0).all():
|
| 1776 |
+
# TODO #54485
|
| 1777 |
+
start = ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined]
|
| 1778 |
+
else:
|
| 1779 |
+
start = np.zeros(len(y))
|
| 1780 |
+
|
| 1781 |
+
if "color" not in kwds:
|
| 1782 |
+
kwds["color"] = lines[0].get_color()
|
| 1783 |
+
|
| 1784 |
+
rect = ax.fill_between(xdata, start, y_values, **kwds)
|
| 1785 |
+
cls._update_stacker(ax, stacking_id, y)
|
| 1786 |
+
|
| 1787 |
+
# LinePlot expects list of artists
|
| 1788 |
+
res = [rect]
|
| 1789 |
+
return res
|
| 1790 |
+
|
| 1791 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 1792 |
+
LinePlot._post_plot_logic(self, ax, data)
|
| 1793 |
+
|
| 1794 |
+
is_shared_y = len(list(ax.get_shared_y_axes())) > 0
|
| 1795 |
+
# do not override the default axis behaviour in case of shared y axes
|
| 1796 |
+
if self.ylim is None and not is_shared_y:
|
| 1797 |
+
if (data >= 0).all().all():
|
| 1798 |
+
ax.set_ylim(0, None)
|
| 1799 |
+
elif (data <= 0).all().all():
|
| 1800 |
+
ax.set_ylim(None, 0)
|
| 1801 |
+
|
| 1802 |
+
|
| 1803 |
+
class BarPlot(MPLPlot):
|
| 1804 |
+
@property
|
| 1805 |
+
def _kind(self) -> Literal["bar", "barh"]:
|
| 1806 |
+
return "bar"
|
| 1807 |
+
|
| 1808 |
+
_default_rot = 90
|
| 1809 |
+
|
| 1810 |
+
@property
|
| 1811 |
+
def orientation(self) -> PlottingOrientation:
|
| 1812 |
+
return "vertical"
|
| 1813 |
+
|
| 1814 |
+
def __init__(
|
| 1815 |
+
self,
|
| 1816 |
+
data,
|
| 1817 |
+
*,
|
| 1818 |
+
align="center",
|
| 1819 |
+
bottom=0,
|
| 1820 |
+
left=0,
|
| 1821 |
+
width=0.5,
|
| 1822 |
+
position=0.5,
|
| 1823 |
+
log=False,
|
| 1824 |
+
**kwargs,
|
| 1825 |
+
) -> None:
|
| 1826 |
+
# we have to treat a series differently than a
|
| 1827 |
+
# 1-column DataFrame w.r.t. color handling
|
| 1828 |
+
self._is_series = isinstance(data, ABCSeries)
|
| 1829 |
+
self.bar_width = width
|
| 1830 |
+
self._align = align
|
| 1831 |
+
self._position = position
|
| 1832 |
+
self.tick_pos = np.arange(len(data))
|
| 1833 |
+
|
| 1834 |
+
if is_list_like(bottom):
|
| 1835 |
+
bottom = np.array(bottom)
|
| 1836 |
+
if is_list_like(left):
|
| 1837 |
+
left = np.array(left)
|
| 1838 |
+
self.bottom = bottom
|
| 1839 |
+
self.left = left
|
| 1840 |
+
|
| 1841 |
+
self.log = log
|
| 1842 |
+
|
| 1843 |
+
MPLPlot.__init__(self, data, **kwargs)
|
| 1844 |
+
|
| 1845 |
+
@cache_readonly
|
| 1846 |
+
def ax_pos(self) -> np.ndarray:
|
| 1847 |
+
return self.tick_pos - self.tickoffset
|
| 1848 |
+
|
| 1849 |
+
@cache_readonly
|
| 1850 |
+
def tickoffset(self):
|
| 1851 |
+
if self.stacked or self.subplots:
|
| 1852 |
+
return self.bar_width * self._position
|
| 1853 |
+
elif self._align == "edge":
|
| 1854 |
+
w = self.bar_width / self.nseries
|
| 1855 |
+
return self.bar_width * (self._position - 0.5) + w * 0.5
|
| 1856 |
+
else:
|
| 1857 |
+
return self.bar_width * self._position
|
| 1858 |
+
|
| 1859 |
+
@cache_readonly
|
| 1860 |
+
def lim_offset(self):
|
| 1861 |
+
if self.stacked or self.subplots:
|
| 1862 |
+
if self._align == "edge":
|
| 1863 |
+
return self.bar_width / 2
|
| 1864 |
+
else:
|
| 1865 |
+
return 0
|
| 1866 |
+
elif self._align == "edge":
|
| 1867 |
+
w = self.bar_width / self.nseries
|
| 1868 |
+
return w * 0.5
|
| 1869 |
+
else:
|
| 1870 |
+
return 0
|
| 1871 |
+
|
| 1872 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
| 1873 |
+
@classmethod
|
| 1874 |
+
def _plot( # type: ignore[override]
|
| 1875 |
+
cls,
|
| 1876 |
+
ax: Axes,
|
| 1877 |
+
x,
|
| 1878 |
+
y: np.ndarray,
|
| 1879 |
+
w,
|
| 1880 |
+
start: int | npt.NDArray[np.intp] = 0,
|
| 1881 |
+
log: bool = False,
|
| 1882 |
+
**kwds,
|
| 1883 |
+
):
|
| 1884 |
+
return ax.bar(x, y, w, bottom=start, log=log, **kwds)
|
| 1885 |
+
|
| 1886 |
+
@property
|
| 1887 |
+
def _start_base(self):
|
| 1888 |
+
return self.bottom
|
| 1889 |
+
|
| 1890 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 1891 |
+
colors = self._get_colors()
|
| 1892 |
+
ncolors = len(colors)
|
| 1893 |
+
|
| 1894 |
+
pos_prior = neg_prior = np.zeros(len(self.data))
|
| 1895 |
+
K = self.nseries
|
| 1896 |
+
|
| 1897 |
+
data = self.data.fillna(0)
|
| 1898 |
+
for i, (label, y) in enumerate(self._iter_data(data=data)):
|
| 1899 |
+
ax = self._get_ax(i)
|
| 1900 |
+
kwds = self.kwds.copy()
|
| 1901 |
+
if self._is_series:
|
| 1902 |
+
kwds["color"] = colors
|
| 1903 |
+
elif isinstance(colors, dict):
|
| 1904 |
+
kwds["color"] = colors[label]
|
| 1905 |
+
else:
|
| 1906 |
+
kwds["color"] = colors[i % ncolors]
|
| 1907 |
+
|
| 1908 |
+
errors = self._get_errorbars(label=label, index=i)
|
| 1909 |
+
kwds = dict(kwds, **errors)
|
| 1910 |
+
|
| 1911 |
+
label = pprint_thing(label)
|
| 1912 |
+
label = self._mark_right_label(label, index=i)
|
| 1913 |
+
|
| 1914 |
+
if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None):
|
| 1915 |
+
kwds["ecolor"] = mpl.rcParams["xtick.color"]
|
| 1916 |
+
|
| 1917 |
+
start = 0
|
| 1918 |
+
if self.log and (y >= 1).all():
|
| 1919 |
+
start = 1
|
| 1920 |
+
start = start + self._start_base
|
| 1921 |
+
|
| 1922 |
+
kwds["align"] = self._align
|
| 1923 |
+
if self.subplots:
|
| 1924 |
+
w = self.bar_width / 2
|
| 1925 |
+
rect = self._plot(
|
| 1926 |
+
ax,
|
| 1927 |
+
self.ax_pos + w,
|
| 1928 |
+
y,
|
| 1929 |
+
self.bar_width,
|
| 1930 |
+
start=start,
|
| 1931 |
+
label=label,
|
| 1932 |
+
log=self.log,
|
| 1933 |
+
**kwds,
|
| 1934 |
+
)
|
| 1935 |
+
ax.set_title(label)
|
| 1936 |
+
elif self.stacked:
|
| 1937 |
+
mask = y > 0
|
| 1938 |
+
start = np.where(mask, pos_prior, neg_prior) + self._start_base
|
| 1939 |
+
w = self.bar_width / 2
|
| 1940 |
+
rect = self._plot(
|
| 1941 |
+
ax,
|
| 1942 |
+
self.ax_pos + w,
|
| 1943 |
+
y,
|
| 1944 |
+
self.bar_width,
|
| 1945 |
+
start=start,
|
| 1946 |
+
label=label,
|
| 1947 |
+
log=self.log,
|
| 1948 |
+
**kwds,
|
| 1949 |
+
)
|
| 1950 |
+
pos_prior = pos_prior + np.where(mask, y, 0)
|
| 1951 |
+
neg_prior = neg_prior + np.where(mask, 0, y)
|
| 1952 |
+
else:
|
| 1953 |
+
w = self.bar_width / K
|
| 1954 |
+
rect = self._plot(
|
| 1955 |
+
ax,
|
| 1956 |
+
self.ax_pos + (i + 0.5) * w,
|
| 1957 |
+
y,
|
| 1958 |
+
w,
|
| 1959 |
+
start=start,
|
| 1960 |
+
label=label,
|
| 1961 |
+
log=self.log,
|
| 1962 |
+
**kwds,
|
| 1963 |
+
)
|
| 1964 |
+
self._append_legend_handles_labels(rect, label)
|
| 1965 |
+
|
| 1966 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 1967 |
+
if self.use_index:
|
| 1968 |
+
str_index = [pprint_thing(key) for key in data.index]
|
| 1969 |
+
else:
|
| 1970 |
+
str_index = [pprint_thing(key) for key in range(data.shape[0])]
|
| 1971 |
+
|
| 1972 |
+
s_edge = self.ax_pos[0] - 0.25 + self.lim_offset
|
| 1973 |
+
e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset
|
| 1974 |
+
|
| 1975 |
+
self._decorate_ticks(ax, self._get_index_name(), str_index, s_edge, e_edge)
|
| 1976 |
+
|
| 1977 |
+
def _decorate_ticks(
|
| 1978 |
+
self,
|
| 1979 |
+
ax: Axes,
|
| 1980 |
+
name: str | None,
|
| 1981 |
+
ticklabels: list[str],
|
| 1982 |
+
start_edge: float,
|
| 1983 |
+
end_edge: float,
|
| 1984 |
+
) -> None:
|
| 1985 |
+
ax.set_xlim((start_edge, end_edge))
|
| 1986 |
+
|
| 1987 |
+
if self.xticks is not None:
|
| 1988 |
+
ax.set_xticks(np.array(self.xticks))
|
| 1989 |
+
else:
|
| 1990 |
+
ax.set_xticks(self.tick_pos)
|
| 1991 |
+
ax.set_xticklabels(ticklabels)
|
| 1992 |
+
|
| 1993 |
+
if name is not None and self.use_index:
|
| 1994 |
+
ax.set_xlabel(name)
|
| 1995 |
+
|
| 1996 |
+
|
| 1997 |
+
class BarhPlot(BarPlot):
|
| 1998 |
+
@property
|
| 1999 |
+
def _kind(self) -> Literal["barh"]:
|
| 2000 |
+
return "barh"
|
| 2001 |
+
|
| 2002 |
+
_default_rot = 0
|
| 2003 |
+
|
| 2004 |
+
@property
|
| 2005 |
+
def orientation(self) -> Literal["horizontal"]:
|
| 2006 |
+
return "horizontal"
|
| 2007 |
+
|
| 2008 |
+
@property
|
| 2009 |
+
def _start_base(self):
|
| 2010 |
+
return self.left
|
| 2011 |
+
|
| 2012 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
| 2013 |
+
@classmethod
|
| 2014 |
+
def _plot( # type: ignore[override]
|
| 2015 |
+
cls,
|
| 2016 |
+
ax: Axes,
|
| 2017 |
+
x,
|
| 2018 |
+
y: np.ndarray,
|
| 2019 |
+
w,
|
| 2020 |
+
start: int | npt.NDArray[np.intp] = 0,
|
| 2021 |
+
log: bool = False,
|
| 2022 |
+
**kwds,
|
| 2023 |
+
):
|
| 2024 |
+
return ax.barh(x, y, w, left=start, log=log, **kwds)
|
| 2025 |
+
|
| 2026 |
+
def _get_custom_index_name(self):
|
| 2027 |
+
return self.ylabel
|
| 2028 |
+
|
| 2029 |
+
def _decorate_ticks(
|
| 2030 |
+
self,
|
| 2031 |
+
ax: Axes,
|
| 2032 |
+
name: str | None,
|
| 2033 |
+
ticklabels: list[str],
|
| 2034 |
+
start_edge: float,
|
| 2035 |
+
end_edge: float,
|
| 2036 |
+
) -> None:
|
| 2037 |
+
# horizontal bars
|
| 2038 |
+
ax.set_ylim((start_edge, end_edge))
|
| 2039 |
+
ax.set_yticks(self.tick_pos)
|
| 2040 |
+
ax.set_yticklabels(ticklabels)
|
| 2041 |
+
if name is not None and self.use_index:
|
| 2042 |
+
ax.set_ylabel(name)
|
| 2043 |
+
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible type
|
| 2044 |
+
# "Hashable | None"; expected "str"
|
| 2045 |
+
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
|
| 2046 |
+
|
| 2047 |
+
|
| 2048 |
+
class PiePlot(MPLPlot):
|
| 2049 |
+
@property
|
| 2050 |
+
def _kind(self) -> Literal["pie"]:
|
| 2051 |
+
return "pie"
|
| 2052 |
+
|
| 2053 |
+
_layout_type = "horizontal"
|
| 2054 |
+
|
| 2055 |
+
def __init__(self, data, kind=None, **kwargs) -> None:
|
| 2056 |
+
data = data.fillna(value=0)
|
| 2057 |
+
if (data < 0).any().any():
|
| 2058 |
+
raise ValueError(f"{self._kind} plot doesn't allow negative values")
|
| 2059 |
+
MPLPlot.__init__(self, data, kind=kind, **kwargs)
|
| 2060 |
+
|
| 2061 |
+
@classmethod
|
| 2062 |
+
def _validate_log_kwd(
|
| 2063 |
+
cls,
|
| 2064 |
+
kwd: str,
|
| 2065 |
+
value: bool | None | Literal["sym"],
|
| 2066 |
+
) -> bool | None | Literal["sym"]:
|
| 2067 |
+
super()._validate_log_kwd(kwd=kwd, value=value)
|
| 2068 |
+
if value is not False:
|
| 2069 |
+
warnings.warn(
|
| 2070 |
+
f"PiePlot ignores the '{kwd}' keyword",
|
| 2071 |
+
UserWarning,
|
| 2072 |
+
stacklevel=find_stack_level(),
|
| 2073 |
+
)
|
| 2074 |
+
return False
|
| 2075 |
+
|
| 2076 |
+
def _validate_color_args(self, color, colormap) -> None:
|
| 2077 |
+
# TODO: warn if color is passed and ignored?
|
| 2078 |
+
return None
|
| 2079 |
+
|
| 2080 |
+
def _make_plot(self, fig: Figure) -> None:
|
| 2081 |
+
colors = self._get_colors(num_colors=len(self.data), color_kwds="colors")
|
| 2082 |
+
self.kwds.setdefault("colors", colors)
|
| 2083 |
+
|
| 2084 |
+
for i, (label, y) in enumerate(self._iter_data(data=self.data)):
|
| 2085 |
+
ax = self._get_ax(i)
|
| 2086 |
+
if label is not None:
|
| 2087 |
+
label = pprint_thing(label)
|
| 2088 |
+
ax.set_ylabel(label)
|
| 2089 |
+
|
| 2090 |
+
kwds = self.kwds.copy()
|
| 2091 |
+
|
| 2092 |
+
def blank_labeler(label, value):
|
| 2093 |
+
if value == 0:
|
| 2094 |
+
return ""
|
| 2095 |
+
else:
|
| 2096 |
+
return label
|
| 2097 |
+
|
| 2098 |
+
idx = [pprint_thing(v) for v in self.data.index]
|
| 2099 |
+
labels = kwds.pop("labels", idx)
|
| 2100 |
+
# labels is used for each wedge's labels
|
| 2101 |
+
# Blank out labels for values of 0 so they don't overlap
|
| 2102 |
+
# with nonzero wedges
|
| 2103 |
+
if labels is not None:
|
| 2104 |
+
blabels = [blank_labeler(left, value) for left, value in zip(labels, y)]
|
| 2105 |
+
else:
|
| 2106 |
+
blabels = None
|
| 2107 |
+
results = ax.pie(y, labels=blabels, **kwds)
|
| 2108 |
+
|
| 2109 |
+
if kwds.get("autopct", None) is not None:
|
| 2110 |
+
patches, texts, autotexts = results
|
| 2111 |
+
else:
|
| 2112 |
+
patches, texts = results
|
| 2113 |
+
autotexts = []
|
| 2114 |
+
|
| 2115 |
+
if self.fontsize is not None:
|
| 2116 |
+
for t in texts + autotexts:
|
| 2117 |
+
t.set_fontsize(self.fontsize)
|
| 2118 |
+
|
| 2119 |
+
# leglabels is used for legend labels
|
| 2120 |
+
leglabels = labels if labels is not None else idx
|
| 2121 |
+
for _patch, _leglabel in zip(patches, leglabels):
|
| 2122 |
+
self._append_legend_handles_labels(_patch, _leglabel)
|
| 2123 |
+
|
| 2124 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
| 2125 |
+
pass
|
emu3/lib/python3.10/site-packages/pandas/plotting/_matplotlib/groupby.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import TYPE_CHECKING
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from pandas.core.dtypes.missing import remove_na_arraylike
|
| 8 |
+
|
| 9 |
+
from pandas import (
|
| 10 |
+
MultiIndex,
|
| 11 |
+
concat,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
| 15 |
+
|
| 16 |
+
if TYPE_CHECKING:
|
| 17 |
+
from collections.abc import Hashable
|
| 18 |
+
|
| 19 |
+
from pandas._typing import IndexLabel
|
| 20 |
+
|
| 21 |
+
from pandas import (
|
| 22 |
+
DataFrame,
|
| 23 |
+
Series,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def create_iter_data_given_by(
|
| 28 |
+
data: DataFrame, kind: str = "hist"
|
| 29 |
+
) -> dict[Hashable, DataFrame | Series]:
|
| 30 |
+
"""
|
| 31 |
+
Create data for iteration given `by` is assigned or not, and it is only
|
| 32 |
+
used in both hist and boxplot.
|
| 33 |
+
|
| 34 |
+
If `by` is assigned, return a dictionary of DataFrames in which the key of
|
| 35 |
+
dictionary is the values in groups.
|
| 36 |
+
If `by` is not assigned, return input as is, and this preserves current
|
| 37 |
+
status of iter_data.
|
| 38 |
+
|
| 39 |
+
Parameters
|
| 40 |
+
----------
|
| 41 |
+
data : reformatted grouped data from `_compute_plot_data` method.
|
| 42 |
+
kind : str, plot kind. This function is only used for `hist` and `box` plots.
|
| 43 |
+
|
| 44 |
+
Returns
|
| 45 |
+
-------
|
| 46 |
+
iter_data : DataFrame or Dictionary of DataFrames
|
| 47 |
+
|
| 48 |
+
Examples
|
| 49 |
+
--------
|
| 50 |
+
If `by` is assigned:
|
| 51 |
+
|
| 52 |
+
>>> import numpy as np
|
| 53 |
+
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
|
| 54 |
+
>>> mi = pd.MultiIndex.from_tuples(tuples)
|
| 55 |
+
>>> value = [[1, 3, np.nan, np.nan],
|
| 56 |
+
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
|
| 57 |
+
>>> data = pd.DataFrame(value, columns=mi)
|
| 58 |
+
>>> create_iter_data_given_by(data)
|
| 59 |
+
{'h1': h1
|
| 60 |
+
a b
|
| 61 |
+
0 1.0 3.0
|
| 62 |
+
1 3.0 4.0
|
| 63 |
+
2 NaN NaN, 'h2': h2
|
| 64 |
+
a b
|
| 65 |
+
0 NaN NaN
|
| 66 |
+
1 NaN NaN
|
| 67 |
+
2 5.0 6.0}
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
# For `hist` plot, before transformation, the values in level 0 are values
|
| 71 |
+
# in groups and subplot titles, and later used for column subselection and
|
| 72 |
+
# iteration; For `box` plot, values in level 1 are column names to show,
|
| 73 |
+
# and are used for iteration and as subplots titles.
|
| 74 |
+
if kind == "hist":
|
| 75 |
+
level = 0
|
| 76 |
+
else:
|
| 77 |
+
level = 1
|
| 78 |
+
|
| 79 |
+
# Select sub-columns based on the value of level of MI, and if `by` is
|
| 80 |
+
# assigned, data must be a MI DataFrame
|
| 81 |
+
assert isinstance(data.columns, MultiIndex)
|
| 82 |
+
return {
|
| 83 |
+
col: data.loc[:, data.columns.get_level_values(level) == col]
|
| 84 |
+
for col in data.columns.levels[level]
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def reconstruct_data_with_by(
|
| 89 |
+
data: DataFrame, by: IndexLabel, cols: IndexLabel
|
| 90 |
+
) -> DataFrame:
|
| 91 |
+
"""
|
| 92 |
+
Internal function to group data, and reassign multiindex column names onto the
|
| 93 |
+
result in order to let grouped data be used in _compute_plot_data method.
|
| 94 |
+
|
| 95 |
+
Parameters
|
| 96 |
+
----------
|
| 97 |
+
data : Original DataFrame to plot
|
| 98 |
+
by : grouped `by` parameter selected by users
|
| 99 |
+
cols : columns of data set (excluding columns used in `by`)
|
| 100 |
+
|
| 101 |
+
Returns
|
| 102 |
+
-------
|
| 103 |
+
Output is the reconstructed DataFrame with MultiIndex columns. The first level
|
| 104 |
+
of MI is unique values of groups, and second level of MI is the columns
|
| 105 |
+
selected by users.
|
| 106 |
+
|
| 107 |
+
Examples
|
| 108 |
+
--------
|
| 109 |
+
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
|
| 110 |
+
>>> df = pd.DataFrame(d)
|
| 111 |
+
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
|
| 112 |
+
h1 h2
|
| 113 |
+
a b a b
|
| 114 |
+
0 1.0 3.0 NaN NaN
|
| 115 |
+
1 3.0 4.0 NaN NaN
|
| 116 |
+
2 NaN NaN 5.0 6.0
|
| 117 |
+
"""
|
| 118 |
+
by_modified = unpack_single_str_list(by)
|
| 119 |
+
grouped = data.groupby(by_modified)
|
| 120 |
+
|
| 121 |
+
data_list = []
|
| 122 |
+
for key, group in grouped:
|
| 123 |
+
# error: List item 1 has incompatible type "Union[Hashable,
|
| 124 |
+
# Sequence[Hashable]]"; expected "Iterable[Hashable]"
|
| 125 |
+
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item]
|
| 126 |
+
sub_group = group[cols]
|
| 127 |
+
sub_group.columns = columns
|
| 128 |
+
data_list.append(sub_group)
|
| 129 |
+
|
| 130 |
+
data = concat(data_list, axis=1)
|
| 131 |
+
return data
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def reformat_hist_y_given_by(y: np.ndarray, by: IndexLabel | None) -> np.ndarray:
|
| 135 |
+
"""Internal function to reformat y given `by` is applied or not for hist plot.
|
| 136 |
+
|
| 137 |
+
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
|
| 138 |
+
will take place and input y is multi-dimensional array.
|
| 139 |
+
"""
|
| 140 |
+
if by is not None and len(y.shape) > 1:
|
| 141 |
+
return np.array([remove_na_arraylike(col) for col in y.T]).T
|
| 142 |
+
return remove_na_arraylike(y)
|