Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- deepseek/lib/python3.10/site-packages/xformers/_C.so +3 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/codecache.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/dependencies.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/inductor_prims.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/quantized_lowerings.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/scheduler.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/select_algorithm.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/utils.cpython-310.pyc +0 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/_lazy/__init__.py +55 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/fx/config.py +6 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/fx/graph_module.py +867 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/fx/immutable_collections.py +54 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/fx/operator_schemas.py +440 -0
- evalkit_tf437/lib/python3.10/site-packages/torch/utils/hipify/__pycache__/cuda_to_hip_mappings.cpython-310.pyc +3 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c +27 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimddp.c +16 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdfhm.c +19 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c +15 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c +22 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c +26 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c +25 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c +30 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c +26 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_spr.c +26 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c +22 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c +22 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma4.c +13 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c +19 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c +11 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c +32 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse42.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c +20 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx2.c +13 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c +13 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c +14 -0
- falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c +16 -0
.gitattributes
CHANGED
|
@@ -568,3 +568,6 @@ falcon/lib/python3.10/site-packages/sklearn/preprocessing/_csr_polynomial_expans
|
|
| 568 |
falcon/lib/python3.10/site-packages/PIL/_imagingmath.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 569 |
falcon/lib/python3.10/site-packages/pandas/tests/tools/__pycache__/test_to_datetime.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 570 |
falcon/lib/python3.10/site-packages/psutil/_psutil_linux.abi3.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
falcon/lib/python3.10/site-packages/PIL/_imagingmath.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 569 |
falcon/lib/python3.10/site-packages/pandas/tests/tools/__pycache__/test_to_datetime.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 570 |
falcon/lib/python3.10/site-packages/psutil/_psutil_linux.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 571 |
+
evalkit_tf437/lib/python3.10/site-packages/torch/utils/hipify/__pycache__/cuda_to_hip_mappings.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 572 |
+
deepseek/lib/python3.10/site-packages/xformers/_C.so filter=lfs diff=lfs merge=lfs -text
|
| 573 |
+
falcon/lib/python3.10/site-packages/regex/__pycache__/_regex_core.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
deepseek/lib/python3.10/site-packages/xformers/_C.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f09f83477c28599853978c2731663e517f27fba277141ff74d6acc1ea5c60cb
|
| 3 |
+
size 50942528
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (3.61 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/codecache.cpython-310.pyc
ADDED
|
Binary file (68.2 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/dependencies.cpython-310.pyc
ADDED
|
Binary file (15.8 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc
ADDED
|
Binary file (5.57 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/inductor_prims.cpython-310.pyc
ADDED
|
Binary file (3.56 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc
ADDED
|
Binary file (2.63 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/quantized_lowerings.cpython-310.pyc
ADDED
|
Binary file (480 Bytes). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/scheduler.cpython-310.pyc
ADDED
|
Binary file (72 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/select_algorithm.cpython-310.pyc
ADDED
|
Binary file (29.4 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_inductor/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (39.4 kB). View file
|
|
|
evalkit_tf437/lib/python3.10/site-packages/torch/_lazy/__init__.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading
|
| 2 |
+
|
| 3 |
+
import torch._C._lazy
|
| 4 |
+
from torch.utils._pytree import tree_flatten, tree_unflatten
|
| 5 |
+
|
| 6 |
+
from .closure import add_step_closure, run_step_closures
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def mark_step(device: str = "", wait=False):
|
| 10 |
+
"""Triggers a mark step, which amounts to
|
| 11 |
+
- collecting a group of 'live' lazy tensors to index into the compilation cache
|
| 12 |
+
(lowering/compiling their IR graphs if not cached)
|
| 13 |
+
- kicking off execution of the compiled function
|
| 14 |
+
- (optionally, wait=True) waiting for cpu-side execution to complete (does not sync the accelerator)
|
| 15 |
+
"""
|
| 16 |
+
# TODO(whc) expand this to include backend hooks and align with XLA backend needs
|
| 17 |
+
torch._C._lazy._mark_step(device, [], wait=wait)
|
| 18 |
+
|
| 19 |
+
run_step_closures()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def wait_device_ops(devices=None):
|
| 23 |
+
"""Waits for all the async operations on the given devices to complete.
|
| 24 |
+
Args:
|
| 25 |
+
devices (string..., optional): The devices whose async ops need to be waited
|
| 26 |
+
for. If empty, all the local devices will be waited for.
|
| 27 |
+
"""
|
| 28 |
+
if devices is None:
|
| 29 |
+
devices = []
|
| 30 |
+
torch._C._lazy._wait_device_ops(devices=devices)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def sync_multi(tensors, devices):
|
| 34 |
+
"""
|
| 35 |
+
Sync the list of lazy tensors so there IR get lowered for the activate backend
|
| 36 |
+
and the compiled computation graph get cached.
|
| 37 |
+
"""
|
| 38 |
+
torch._C._lazy._sync_multi(tensors, devices)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_tensor_id(tensor):
|
| 42 |
+
"""Return a unique id of the lazy tensor maintained by LTC"""
|
| 43 |
+
return torch._C._lazy._get_tensor_id(tensor)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def to_cpu(tensors, devices=None):
|
| 47 |
+
devices = devices or ["lazy"]
|
| 48 |
+
|
| 49 |
+
flattened, spec = tree_flatten(tensors)
|
| 50 |
+
sync_multi(flattened, devices)
|
| 51 |
+
return tree_unflatten([t.to("cpu") for t in flattened], spec)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def save(tensors, *args, **kwargs):
|
| 55 |
+
torch.save(to_cpu(tensors), *args, **kwargs)
|
evalkit_tf437/lib/python3.10/site-packages/torch/fx/config.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Whether to disable showing progress on compilation passes
|
| 2 |
+
# Need to add a new config otherwise wil get a circular import if dynamo config is imported here
|
| 3 |
+
disable_progress = True
|
| 4 |
+
|
| 5 |
+
# If True this also shows the node names in each pass, for small models this is great but larger models it's quite noisy
|
| 6 |
+
verbose_progress = False
|
evalkit_tf437/lib/python3.10/site-packages/torch/fx/graph_module.py
ADDED
|
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import itertools
|
| 3 |
+
import linecache
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import traceback
|
| 7 |
+
import warnings
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Type, Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.overrides
|
| 14 |
+
from torch.nn.modules.module import _addindent
|
| 15 |
+
from torch.package import Importer, PackageExporter, PackageImporter, sys_importer
|
| 16 |
+
|
| 17 |
+
from ._compatibility import compatibility
|
| 18 |
+
from .graph import _custom_builtins, _is_from_torch, _PyTreeCodeGen, Graph, PythonCode
|
| 19 |
+
|
| 20 |
+
__all__ = [
|
| 21 |
+
"reduce_graph_module",
|
| 22 |
+
"reduce_package_graph_module",
|
| 23 |
+
"reduce_deploy_graph_module",
|
| 24 |
+
"GraphModule",
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
_USER_PRESERVED_ATTRIBUTES_KEY = "_user_preserved_attributes"
|
| 28 |
+
|
| 29 |
+
# Normal exec loses the source code, however we can work with
|
| 30 |
+
# the linecache module to recover it.
|
| 31 |
+
# Using _exec_with_source will add it to our local cache
|
| 32 |
+
# and then tools like TorchScript will be able to get source info.
|
| 33 |
+
class _EvalCacheLoader:
|
| 34 |
+
def __init__(self):
|
| 35 |
+
self.eval_cache = {}
|
| 36 |
+
self.next_id = 0
|
| 37 |
+
|
| 38 |
+
def cache(self, src: str, globals: Dict[str, Any], co_fields=None):
|
| 39 |
+
"""Store the source in a private cache, and add a lazy entry in linecache
|
| 40 |
+
that allows the source to be retrieved by 'filename'.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
src (str): The module source to cache
|
| 44 |
+
globals (dict): The module globals
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: The cache key (and dummy filename) generated for src.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
key = self._get_key()
|
| 51 |
+
if co_fields:
|
| 52 |
+
key += f" from {co_fields['co_filename']}:{co_fields['co_firstlineno']} in {co_fields['co_name']}"
|
| 53 |
+
self.eval_cache[key] = src
|
| 54 |
+
|
| 55 |
+
# Don't mutate globals so that this loader is only used
|
| 56 |
+
# to populate linecache, and doesn't interact with other modules
|
| 57 |
+
# that might check `__loader__`
|
| 58 |
+
globals_copy = globals.copy()
|
| 59 |
+
globals_copy["__file__"] = key
|
| 60 |
+
globals_copy["__name__"] = key
|
| 61 |
+
globals_copy["__loader__"] = self
|
| 62 |
+
linecache.lazycache(key, globals_copy)
|
| 63 |
+
|
| 64 |
+
return key
|
| 65 |
+
|
| 66 |
+
# Part of the loader protocol (PEP 302)
|
| 67 |
+
# linecache will use this method when trying to find source code
|
| 68 |
+
def get_source(self, module_name) -> Optional[str]:
|
| 69 |
+
if module_name in self.eval_cache:
|
| 70 |
+
return self.eval_cache[module_name]
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
def _get_key(self):
|
| 74 |
+
key = f"<eval_with_key>.{self.next_id}"
|
| 75 |
+
self.next_id += 1
|
| 76 |
+
return key
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
_loader = _EvalCacheLoader()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def _exec_with_source(src: str, globals: Dict[str, Any], co_fields=None):
|
| 83 |
+
key = _loader.cache(src, globals, co_fields)
|
| 84 |
+
exec(compile(src, key, "exec"), globals)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _forward_from_src(src: str, globals: Dict[str, Any], co_fields=None):
|
| 88 |
+
return _method_from_src(
|
| 89 |
+
method_name="forward", src=src, globals=globals, co_fields=co_fields
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def _method_from_src(
|
| 94 |
+
method_name: str, src: str, globals: Dict[str, Any], co_fields=None
|
| 95 |
+
) -> Callable:
|
| 96 |
+
# avoid mutating the passed in dict
|
| 97 |
+
globals_copy = globals.copy()
|
| 98 |
+
_exec_with_source(src, globals_copy, co_fields)
|
| 99 |
+
fn = globals_copy[method_name]
|
| 100 |
+
del globals_copy[method_name]
|
| 101 |
+
return fn
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def _format_import_statement(name: str, obj: Any, importer: Importer) -> str:
|
| 105 |
+
if name in _custom_builtins:
|
| 106 |
+
return _custom_builtins[name].import_str
|
| 107 |
+
if _is_from_torch(name):
|
| 108 |
+
return "import torch"
|
| 109 |
+
module_name, attr_name = importer.get_name(obj)
|
| 110 |
+
return f"from {module_name} import {attr_name} as {name}"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def _format_import_block(globals: Dict[str, Any], importer: Importer):
|
| 114 |
+
import_strs: Set[str] = set()
|
| 115 |
+
for name, obj in globals.items():
|
| 116 |
+
import_strs.add(_format_import_statement(name, obj, importer))
|
| 117 |
+
# Sort the imports so we have a stable import block that allows us to
|
| 118 |
+
# hash the graph module and get a consistent key for use in a cache.
|
| 119 |
+
return "\n".join(sorted(import_strs))
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@compatibility(is_backward_compatible=True)
|
| 123 |
+
def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module:
|
| 124 |
+
# BC: attribute name was changed from `code` to `_code` to facilitate
|
| 125 |
+
# making `code` into a property and adding a docstring to it
|
| 126 |
+
fn_src = body.get("_code") or body["code"]
|
| 127 |
+
forward = _forward_from_src(import_block + fn_src, {})
|
| 128 |
+
return _deserialize_graph_module(forward, body)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@compatibility(is_backward_compatible=True)
|
| 132 |
+
def reduce_package_graph_module(
|
| 133 |
+
importer: PackageImporter, body: Dict[Any, Any], generated_module_name: str
|
| 134 |
+
) -> torch.nn.Module:
|
| 135 |
+
forward = importer.import_module(generated_module_name).forward
|
| 136 |
+
return _deserialize_graph_module(forward, body)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@compatibility(is_backward_compatible=True)
|
| 140 |
+
def reduce_deploy_graph_module(
|
| 141 |
+
importer: PackageImporter, body: Dict[Any, Any], import_block: str
|
| 142 |
+
) -> torch.nn.Module:
|
| 143 |
+
ns = {}
|
| 144 |
+
ns["__builtins__"] = importer.patched_builtins
|
| 145 |
+
fn_src = body.get("_code")
|
| 146 |
+
assert fn_src is not None
|
| 147 |
+
forward = _forward_from_src(import_block + fn_src, ns)
|
| 148 |
+
return _deserialize_graph_module(forward, body)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# We create a dummy class here because symbolic_trace pulls the forward()
|
| 152 |
+
# function off of the class, rather than the instance. This class is used
|
| 153 |
+
# in _deserialize_graph_module() below.
|
| 154 |
+
class _CodeOnlyModule(torch.nn.Module):
|
| 155 |
+
def __init__(self, body):
|
| 156 |
+
super().__init__()
|
| 157 |
+
self.__dict__ = body
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def _deserialize_graph_module(forward, body: Dict[Any, Any], graph_module_cls=None) -> torch.nn.Module:
|
| 161 |
+
"""
|
| 162 |
+
Deserialize a GraphModule given the dictionary of the original module,
|
| 163 |
+
using the code to reconstruct the graph. We delete the actual graph before
|
| 164 |
+
saving the dictionary so that changes to the in-memory graph format do not
|
| 165 |
+
get serialized.
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
# Try to retrieve the forward source in a backward-compatible way
|
| 169 |
+
_CodeOnlyModule.forward = forward
|
| 170 |
+
|
| 171 |
+
tracer_cls = body.get("_tracer_cls")
|
| 172 |
+
if tracer_cls is None:
|
| 173 |
+
from ._symbolic_trace import Tracer
|
| 174 |
+
|
| 175 |
+
tracer_cls = Tracer
|
| 176 |
+
|
| 177 |
+
graphmodule_cls_name = body.get("_graphmodule_cls_name", "GraphModule")
|
| 178 |
+
|
| 179 |
+
# This is a workaround for a mypy linter issue related to
|
| 180 |
+
# passing base class as an argument - https://github.com/python/mypy/issues/5865.
|
| 181 |
+
cls_tracer: Any = tracer_cls
|
| 182 |
+
|
| 183 |
+
class KeepModules(cls_tracer):
|
| 184 |
+
# we shouldn't trace into any of the submodules,
|
| 185 |
+
# because they were not traced in the original GraphModule
|
| 186 |
+
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool:
|
| 187 |
+
return True
|
| 188 |
+
|
| 189 |
+
com = _CodeOnlyModule(body)
|
| 190 |
+
|
| 191 |
+
tracer_extras = body.get("_tracer_extras", {})
|
| 192 |
+
graph = KeepModules().trace(com, **tracer_extras)
|
| 193 |
+
|
| 194 |
+
# Manually set Tracer class on the reconstructed Graph, to avoid
|
| 195 |
+
# referencing the private local subclass KeepModules.
|
| 196 |
+
graph._tracer_cls = tracer_cls
|
| 197 |
+
if graph_module_cls is None:
|
| 198 |
+
graph_module_cls = GraphModule
|
| 199 |
+
gm = graph_module_cls(com, graph, class_name=graphmodule_cls_name)
|
| 200 |
+
|
| 201 |
+
# The GraphModule constructor only retains attributes referenced by the graph.
|
| 202 |
+
# In this case, our goal is return a GraphModule as close to identical as the one
|
| 203 |
+
# put into the package. If any additional attributes were present in body,
|
| 204 |
+
# we should keep them.
|
| 205 |
+
for k, v in body.items():
|
| 206 |
+
if not hasattr(gm, k):
|
| 207 |
+
setattr(gm, k, v)
|
| 208 |
+
return gm
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# copy an attribute value with qualified name 'target' from 'from_module' to 'to_module'
|
| 212 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
| 213 |
+
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str):
|
| 214 |
+
*prefix, field = target.split(".")
|
| 215 |
+
for item in prefix:
|
| 216 |
+
f = getattr(from_module, item)
|
| 217 |
+
t = getattr(to_module, item, None)
|
| 218 |
+
if f is t:
|
| 219 |
+
# we have already installed one of its parents
|
| 220 |
+
# (e.g. target = root.linear.weight, but we have already installed root.linear)
|
| 221 |
+
# once we install a parent, we no longer need to copy the children
|
| 222 |
+
# since all the needed properties will already be present
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
if t is None:
|
| 226 |
+
t = torch.nn.Module()
|
| 227 |
+
setattr(to_module, item, t)
|
| 228 |
+
from_module, to_module = f, t
|
| 229 |
+
|
| 230 |
+
orig = getattr(from_module, field)
|
| 231 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
| 232 |
+
# So, we register it as a named buffer in the target module.
|
| 233 |
+
if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter):
|
| 234 |
+
to_module.register_buffer(field, orig)
|
| 235 |
+
else:
|
| 236 |
+
setattr(to_module, field, orig)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
|
| 240 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
| 241 |
+
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str):
|
| 242 |
+
*prefix, field = target.split(".")
|
| 243 |
+
for item in prefix:
|
| 244 |
+
t = getattr(to_module, item, None)
|
| 245 |
+
|
| 246 |
+
if t is None:
|
| 247 |
+
t = torch.nn.Module()
|
| 248 |
+
setattr(to_module, item, t)
|
| 249 |
+
to_module = t
|
| 250 |
+
|
| 251 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
| 252 |
+
# So, we register it as a named buffer in the target module.
|
| 253 |
+
if isinstance(from_obj, torch.Tensor) and not isinstance(
|
| 254 |
+
from_obj, torch.nn.Parameter
|
| 255 |
+
):
|
| 256 |
+
to_module.register_buffer(field, from_obj)
|
| 257 |
+
else:
|
| 258 |
+
setattr(to_module, field, from_obj)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class _WrappedCall:
|
| 262 |
+
def __init__(self, cls, cls_call):
|
| 263 |
+
self.cls = cls
|
| 264 |
+
self.cls_call = cls_call
|
| 265 |
+
|
| 266 |
+
# Previously, if an error occurred when valid
|
| 267 |
+
# symbolically-traced code was run with an invalid input, the
|
| 268 |
+
# user would see the source of the error as coming from
|
| 269 |
+
# `File "<eval_with_key_N">`, where N is some number. We use
|
| 270 |
+
# this function to generate a more informative error message. We
|
| 271 |
+
# return the traceback itself, a message explaining that the
|
| 272 |
+
# error occurred in a traced Module's generated forward
|
| 273 |
+
# function, and five lines of context surrounding the faulty
|
| 274 |
+
# line
|
| 275 |
+
@staticmethod
|
| 276 |
+
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str:
|
| 277 |
+
# auxiliary variables (for readability)
|
| 278 |
+
err_lineno = frame_summary.lineno
|
| 279 |
+
assert err_lineno is not None
|
| 280 |
+
line = frame_summary.line
|
| 281 |
+
assert line is not None
|
| 282 |
+
err_line_len = len(line)
|
| 283 |
+
all_src_lines = linecache.getlines(frame_summary.filename)
|
| 284 |
+
|
| 285 |
+
# constituent substrings of the error message
|
| 286 |
+
tb_repr = traceback.format_exc()
|
| 287 |
+
custom_msg = (
|
| 288 |
+
"Call using an FX-traced Module, "
|
| 289 |
+
f"line {err_lineno} of the traced Module's "
|
| 290 |
+
"generated forward function:"
|
| 291 |
+
)
|
| 292 |
+
before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno])
|
| 293 |
+
marker = "~" * err_line_len + "~~~ <--- HERE"
|
| 294 |
+
err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2])
|
| 295 |
+
|
| 296 |
+
# joined message
|
| 297 |
+
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err])
|
| 298 |
+
|
| 299 |
+
def __call__(self, obj, *args, **kwargs):
|
| 300 |
+
try:
|
| 301 |
+
if self.cls_call is not None:
|
| 302 |
+
return self.cls_call(obj, *args, **kwargs)
|
| 303 |
+
else:
|
| 304 |
+
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
|
| 305 |
+
except Exception as e:
|
| 306 |
+
assert e.__traceback__
|
| 307 |
+
topmost_framesummary: traceback.FrameSummary = (
|
| 308 |
+
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1]
|
| 309 |
+
) # type: ignore[arg-type]
|
| 310 |
+
if "eval_with_key" in topmost_framesummary.filename:
|
| 311 |
+
print(
|
| 312 |
+
_WrappedCall._generate_error_message(topmost_framesummary),
|
| 313 |
+
file=sys.stderr,
|
| 314 |
+
)
|
| 315 |
+
raise e.with_traceback(None) # noqa: TRY200
|
| 316 |
+
else:
|
| 317 |
+
raise e
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
@compatibility(is_backward_compatible=True)
|
| 321 |
+
class GraphModule(torch.nn.Module):
|
| 322 |
+
"""
|
| 323 |
+
GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a
|
| 324 |
+
``graph`` attribute, as well as ``code`` and ``forward`` attributes generated
|
| 325 |
+
from that ``graph``.
|
| 326 |
+
|
| 327 |
+
.. warning::
|
| 328 |
+
|
| 329 |
+
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
|
| 330 |
+
regenerated. However, if you edit the contents of the ``graph`` without reassigning
|
| 331 |
+
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
|
| 332 |
+
code.
|
| 333 |
+
"""
|
| 334 |
+
|
| 335 |
+
def __new__(cls: "Type[GraphModule]", *args, **kwargs):
|
| 336 |
+
# each instance of a graph module needs its own forward method
|
| 337 |
+
# so create a new singleton class for each instance.
|
| 338 |
+
# it is a subclass of the user-defined class, the only difference
|
| 339 |
+
# is an extra layer to install the forward method
|
| 340 |
+
|
| 341 |
+
# address issue described at https://github.com/pytorch/pytorch/issues/63883
|
| 342 |
+
# in other words, traverse class hierarchy to fix the redundant class definition problem
|
| 343 |
+
for t in cls.__mro__:
|
| 344 |
+
c = t.__qualname__.split(".")[-1]
|
| 345 |
+
if c != "GraphModuleImpl":
|
| 346 |
+
cls = t
|
| 347 |
+
break
|
| 348 |
+
|
| 349 |
+
class GraphModuleImpl(cls): # type: ignore[misc, valid-type]
|
| 350 |
+
pass
|
| 351 |
+
|
| 352 |
+
return super().__new__(GraphModuleImpl)
|
| 353 |
+
|
| 354 |
+
@compatibility(is_backward_compatible=True)
|
| 355 |
+
def __init__(
|
| 356 |
+
self,
|
| 357 |
+
root: Union[torch.nn.Module, Dict[str, Any]],
|
| 358 |
+
graph: Graph,
|
| 359 |
+
class_name: str = "GraphModule",
|
| 360 |
+
):
|
| 361 |
+
"""
|
| 362 |
+
Construct a GraphModule.
|
| 363 |
+
|
| 364 |
+
Args:
|
| 365 |
+
|
| 366 |
+
root (Union[torch.nn.Module, Dict[str, Any]):
|
| 367 |
+
``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type.
|
| 368 |
+
In the case that ``root`` is a Module, any references to Module-based objects (via qualified
|
| 369 |
+
name) in the Graph's Nodes' ``target`` field will be copied over from the respective place
|
| 370 |
+
within ``root``'s Module hierarchy into the GraphModule's module hierarchy.
|
| 371 |
+
In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be
|
| 372 |
+
looked up directly in the dict's keys. The object mapped to by the Dict will be copied
|
| 373 |
+
over into the appropriate place within the GraphModule's module hierarchy.
|
| 374 |
+
|
| 375 |
+
graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation
|
| 376 |
+
|
| 377 |
+
class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all
|
| 378 |
+
error messages will report as originating from ``GraphModule``. It may be helpful to set this
|
| 379 |
+
to ``root``'s original name or a name that makes sense within the context of your transform.
|
| 380 |
+
"""
|
| 381 |
+
super().__init__()
|
| 382 |
+
self.__class__.__name__ = class_name
|
| 383 |
+
if isinstance(root, torch.nn.Module):
|
| 384 |
+
if hasattr(root, "training"):
|
| 385 |
+
self.training = root.training
|
| 386 |
+
|
| 387 |
+
# When we pickle/unpickle graph module, we don't want to drop any module or attributes.
|
| 388 |
+
if isinstance(root, _CodeOnlyModule):
|
| 389 |
+
for k, _ in root.named_children():
|
| 390 |
+
_copy_attr(root, self, k)
|
| 391 |
+
|
| 392 |
+
for k, _ in root.named_buffers():
|
| 393 |
+
_copy_attr(root, self, k)
|
| 394 |
+
|
| 395 |
+
for k, _ in root.named_parameters():
|
| 396 |
+
_copy_attr(root, self, k)
|
| 397 |
+
|
| 398 |
+
for node in graph.nodes:
|
| 399 |
+
if node.op in ["get_attr", "call_module"]:
|
| 400 |
+
assert isinstance(node.target, str)
|
| 401 |
+
_copy_attr(root, self, node.target)
|
| 402 |
+
elif isinstance(root, dict):
|
| 403 |
+
targets_to_copy = []
|
| 404 |
+
for node in graph.nodes:
|
| 405 |
+
if node.op in ["get_attr", "call_module"]:
|
| 406 |
+
assert isinstance(node.target, str)
|
| 407 |
+
if node.target not in root:
|
| 408 |
+
raise RuntimeError(
|
| 409 |
+
"Node "
|
| 410 |
+
+ str(node)
|
| 411 |
+
+ " referenced target "
|
| 412 |
+
+ node.target
|
| 413 |
+
+ " but that target was not provided in ``root``!"
|
| 414 |
+
)
|
| 415 |
+
targets_to_copy.append(node.target)
|
| 416 |
+
# Sort targets in ascending order of the # of atoms.
|
| 417 |
+
# This will ensure that less deeply nested attributes are assigned
|
| 418 |
+
# before more deeply nested attributes. For example, foo.bar
|
| 419 |
+
# will be assigned before foo.bar.baz. Otherwise, we might assign
|
| 420 |
+
# the user-provided ``foo.bar`` and wipe out the previously-assigned
|
| 421 |
+
# ``foo.bar.baz``
|
| 422 |
+
targets_to_copy.sort(key=lambda t: t.count("."))
|
| 423 |
+
for target_to_copy in targets_to_copy:
|
| 424 |
+
_assign_attr(root[target_to_copy], self, target_to_copy)
|
| 425 |
+
else:
|
| 426 |
+
raise RuntimeError("Unsupported type " + str(root) + " passed for root!")
|
| 427 |
+
|
| 428 |
+
self.graph = graph
|
| 429 |
+
|
| 430 |
+
# Store the Tracer class responsible for creating a Graph separately as part of the
|
| 431 |
+
# GraphModule state, except when the Tracer is defined in a local namespace.
|
| 432 |
+
# Locally defined Tracers are not pickleable. This is needed because torch.package will
|
| 433 |
+
# serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
|
| 434 |
+
# to re-create the Graph during deserialization.
|
| 435 |
+
self._tracer_cls = None
|
| 436 |
+
if (
|
| 437 |
+
self.graph._tracer_cls
|
| 438 |
+
and "<locals>" not in self.graph._tracer_cls.__qualname__
|
| 439 |
+
):
|
| 440 |
+
self._tracer_cls = self.graph._tracer_cls
|
| 441 |
+
|
| 442 |
+
self._tracer_extras = {}
|
| 443 |
+
if self.graph._tracer_extras:
|
| 444 |
+
self._tracer_extras = self.graph._tracer_extras
|
| 445 |
+
|
| 446 |
+
# Dictionary to store metadata
|
| 447 |
+
self.meta: Dict[str, Any] = {}
|
| 448 |
+
|
| 449 |
+
# TorchScript breaks trying to compile the graph setter because of the
|
| 450 |
+
# continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842
|
| 451 |
+
#
|
| 452 |
+
# Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway
|
| 453 |
+
__jit_unused_properties__ = ["graph"]
|
| 454 |
+
|
| 455 |
+
@property
|
| 456 |
+
def graph(self) -> Graph:
|
| 457 |
+
"""
|
| 458 |
+
Return the ``Graph`` underlying this ``GraphModule``
|
| 459 |
+
"""
|
| 460 |
+
return self._graph
|
| 461 |
+
|
| 462 |
+
@graph.setter
|
| 463 |
+
def graph(self, g: Graph) -> None:
|
| 464 |
+
"""
|
| 465 |
+
Set the underlying ``Graph`` for this ``GraphModule``. This will internally
|
| 466 |
+
recompile the ``GraphModule`` so that the generated ``forward()`` function
|
| 467 |
+
corresponds to ``g``
|
| 468 |
+
"""
|
| 469 |
+
assert isinstance(g, Graph), f"Expected a Graph instance, but got {type(g)}"
|
| 470 |
+
self._graph = g
|
| 471 |
+
g.owning_module = self
|
| 472 |
+
self.recompile()
|
| 473 |
+
|
| 474 |
+
@compatibility(is_backward_compatible=False)
|
| 475 |
+
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
|
| 476 |
+
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
| 477 |
+
imported with ``from <folder> import <module_name>``
|
| 478 |
+
|
| 479 |
+
Args:
|
| 480 |
+
|
| 481 |
+
folder (Union[str, os.PathLike]): The folder to write the code out to
|
| 482 |
+
|
| 483 |
+
module_name (str): Top-level name to use for the ``Module`` while
|
| 484 |
+
writing out the code
|
| 485 |
+
"""
|
| 486 |
+
folder = Path(folder)
|
| 487 |
+
Path(folder).mkdir(exist_ok=True)
|
| 488 |
+
torch.save(self.state_dict(), folder / "state_dict.pt")
|
| 489 |
+
tab = " " * 4
|
| 490 |
+
custom_builtins = "\n".join([v.import_str for v in _custom_builtins.values()])
|
| 491 |
+
model_str = f"""
|
| 492 |
+
import torch
|
| 493 |
+
{custom_builtins}
|
| 494 |
+
|
| 495 |
+
from torch.nn import *
|
| 496 |
+
class {module_name}(torch.nn.Module):
|
| 497 |
+
def __init__(self):
|
| 498 |
+
super().__init__()
|
| 499 |
+
"""
|
| 500 |
+
|
| 501 |
+
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
| 502 |
+
safe_reprs = [
|
| 503 |
+
nn.Linear,
|
| 504 |
+
nn.Conv1d,
|
| 505 |
+
nn.Conv2d,
|
| 506 |
+
nn.Conv3d,
|
| 507 |
+
nn.BatchNorm1d,
|
| 508 |
+
nn.BatchNorm2d,
|
| 509 |
+
nn.BatchNorm3d,
|
| 510 |
+
]
|
| 511 |
+
if type(module) in safe_reprs:
|
| 512 |
+
return f"{module.__repr__()}"
|
| 513 |
+
else:
|
| 514 |
+
return None
|
| 515 |
+
|
| 516 |
+
blobified_modules = []
|
| 517 |
+
for module_name, module in self.named_children():
|
| 518 |
+
module_str = _gen_model_repr(module_name, module)
|
| 519 |
+
if module_str is None:
|
| 520 |
+
module_file = folder / f"{module_name}.pt"
|
| 521 |
+
torch.save(module, module_file)
|
| 522 |
+
blobified_modules.append(module_name)
|
| 523 |
+
module_repr = module.__repr__().replace("\r", " ").replace("\n", " ")
|
| 524 |
+
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
| 525 |
+
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
| 526 |
+
|
| 527 |
+
for buffer_name, buffer in self._buffers.items():
|
| 528 |
+
if buffer is None:
|
| 529 |
+
continue
|
| 530 |
+
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
| 531 |
+
|
| 532 |
+
for param_name, param in self._parameters.items():
|
| 533 |
+
if param is None:
|
| 534 |
+
continue
|
| 535 |
+
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
| 536 |
+
|
| 537 |
+
model_str += (
|
| 538 |
+
f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
| 539 |
+
)
|
| 540 |
+
model_str += f"{_addindent(self.code, 4)}\n"
|
| 541 |
+
|
| 542 |
+
module_file = folder / "module.py"
|
| 543 |
+
module_file.write_text(model_str)
|
| 544 |
+
|
| 545 |
+
init_file = folder / "__init__.py"
|
| 546 |
+
init_file.write_text("from .module import *")
|
| 547 |
+
|
| 548 |
+
if len(blobified_modules) > 0:
|
| 549 |
+
warnings.warn(
|
| 550 |
+
"Was not able to save the following children modules as reprs -"
|
| 551 |
+
f"saved as pickled files instead: {blobified_modules}"
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
@compatibility(is_backward_compatible=True)
|
| 555 |
+
def add_submodule(self, target: str, m: torch.nn.Module) -> bool:
|
| 556 |
+
"""
|
| 557 |
+
Adds the given submodule to ``self``.
|
| 558 |
+
|
| 559 |
+
This installs empty Modules where none exist yet if they are
|
| 560 |
+
subpaths of ``target``.
|
| 561 |
+
|
| 562 |
+
Args:
|
| 563 |
+
target: The fully-qualified string name of the new submodule
|
| 564 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
| 565 |
+
specify a fully-qualified string.)
|
| 566 |
+
m: The submodule itself; the actual object we want to
|
| 567 |
+
install in the current Module
|
| 568 |
+
|
| 569 |
+
Return:
|
| 570 |
+
bool: Whether or not the submodule could be inserted. For
|
| 571 |
+
this method to return True, each object in the chain
|
| 572 |
+
denoted by ``target`` must either a) not exist yet,
|
| 573 |
+
or b) reference an ``nn.Module`` (not a parameter or
|
| 574 |
+
other attribute)
|
| 575 |
+
"""
|
| 576 |
+
*prefix, field = target.split(".")
|
| 577 |
+
mod: torch.nn.Module = self
|
| 578 |
+
|
| 579 |
+
for item in prefix:
|
| 580 |
+
|
| 581 |
+
submod = getattr(mod, item, None)
|
| 582 |
+
|
| 583 |
+
if submod is None:
|
| 584 |
+
submod = torch.nn.Module()
|
| 585 |
+
setattr(mod, item, submod)
|
| 586 |
+
|
| 587 |
+
if not isinstance(submod, torch.nn.Module):
|
| 588 |
+
return False
|
| 589 |
+
|
| 590 |
+
mod = submod
|
| 591 |
+
|
| 592 |
+
mod.add_module(field, m)
|
| 593 |
+
return True
|
| 594 |
+
|
| 595 |
+
@compatibility(is_backward_compatible=True)
|
| 596 |
+
def delete_submodule(self, target: str) -> bool:
|
| 597 |
+
"""
|
| 598 |
+
Deletes the given submodule from ``self``.
|
| 599 |
+
|
| 600 |
+
The module will not be deleted if ``target`` is not a valid
|
| 601 |
+
target.
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
target: The fully-qualified string name of the new submodule
|
| 605 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
| 606 |
+
specify a fully-qualified string.)
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
bool: Whether or not the target string referenced a
|
| 610 |
+
submodule we want to delete. A return value of ``False``
|
| 611 |
+
means that the ``target`` was not a valid reference to
|
| 612 |
+
a submodule.
|
| 613 |
+
"""
|
| 614 |
+
atoms = target.split(".")
|
| 615 |
+
path, target_submod = atoms[:-1], atoms[-1]
|
| 616 |
+
mod: torch.nn.Module = self
|
| 617 |
+
|
| 618 |
+
# Get the parent module
|
| 619 |
+
for item in path:
|
| 620 |
+
|
| 621 |
+
if not hasattr(mod, item):
|
| 622 |
+
return False
|
| 623 |
+
|
| 624 |
+
mod = getattr(mod, item)
|
| 625 |
+
|
| 626 |
+
if not isinstance(mod, torch.nn.Module):
|
| 627 |
+
return False
|
| 628 |
+
|
| 629 |
+
if not hasattr(mod, target_submod):
|
| 630 |
+
return False
|
| 631 |
+
|
| 632 |
+
if not isinstance(getattr(mod, target_submod), torch.nn.Module):
|
| 633 |
+
return False
|
| 634 |
+
|
| 635 |
+
delattr(mod, target_submod)
|
| 636 |
+
return True
|
| 637 |
+
|
| 638 |
+
@compatibility(is_backward_compatible=True)
|
| 639 |
+
def delete_all_unused_submodules(self) -> None:
|
| 640 |
+
"""
|
| 641 |
+
Deletes all unused submodules from ``self``.
|
| 642 |
+
|
| 643 |
+
A Module is considered "used" if any one of the following is
|
| 644 |
+
true:
|
| 645 |
+
1. It has children that are used
|
| 646 |
+
2. Its forward is called directly via a ``call_module`` node
|
| 647 |
+
3. It has a non-Module attribute that is used from a
|
| 648 |
+
``get_attr`` node
|
| 649 |
+
|
| 650 |
+
This method can be called to clean up an ``nn.Module`` without
|
| 651 |
+
manually calling ``delete_submodule`` on each unused submodule.
|
| 652 |
+
"""
|
| 653 |
+
used: List[str] = []
|
| 654 |
+
|
| 655 |
+
for node in self.graph.nodes:
|
| 656 |
+
|
| 657 |
+
if node.op == "call_module" or node.op == "get_attr":
|
| 658 |
+
|
| 659 |
+
# A list of strings representing the different parts
|
| 660 |
+
# of the path. For example, `foo.bar.baz` gives us
|
| 661 |
+
# ["foo", "bar", "baz"]
|
| 662 |
+
fullpath = node.target.split(".")
|
| 663 |
+
|
| 664 |
+
# If we're looking at multiple parts of a path, join
|
| 665 |
+
# join them with a dot. Otherwise, return that single
|
| 666 |
+
# element without doing anything to it.
|
| 667 |
+
def join_fn(x: str, y: str) -> str:
|
| 668 |
+
return ".".join([x, y] if y else [x])
|
| 669 |
+
|
| 670 |
+
# Progressively collect all the names of intermediate
|
| 671 |
+
# modules. For example, if we have the target
|
| 672 |
+
# `foo.bar.baz`, we'll add `foo`, `foo.bar`, and
|
| 673 |
+
# `foo.bar.baz` to the list.
|
| 674 |
+
for path in itertools.accumulate(fullpath, join_fn):
|
| 675 |
+
used.append(path)
|
| 676 |
+
|
| 677 |
+
# For a `call_module` node, also register all recursive submodules
|
| 678 |
+
# as used
|
| 679 |
+
if node.op == "call_module":
|
| 680 |
+
try:
|
| 681 |
+
submod = self.get_submodule(node.target)
|
| 682 |
+
|
| 683 |
+
for submod_name, _ in submod.named_modules():
|
| 684 |
+
if submod_name != "":
|
| 685 |
+
used.append(".".join([node.target, submod_name]))
|
| 686 |
+
except AttributeError:
|
| 687 |
+
# Node referenced nonexistent submodule, don't need to
|
| 688 |
+
# worry about GCing anything
|
| 689 |
+
pass
|
| 690 |
+
|
| 691 |
+
to_delete = [name for name, _ in self.named_modules() if name not in used]
|
| 692 |
+
|
| 693 |
+
for name in to_delete:
|
| 694 |
+
self.delete_submodule(name)
|
| 695 |
+
|
| 696 |
+
@property
|
| 697 |
+
def code(self) -> str:
|
| 698 |
+
"""
|
| 699 |
+
Return the Python code generated from the ``Graph`` underlying this
|
| 700 |
+
``GraphModule``.
|
| 701 |
+
"""
|
| 702 |
+
if not hasattr(self, "_code"):
|
| 703 |
+
raise RuntimeError(
|
| 704 |
+
"Code has not been generated! Please report a bug to PyTorch"
|
| 705 |
+
)
|
| 706 |
+
return self._code
|
| 707 |
+
|
| 708 |
+
@compatibility(is_backward_compatible=True)
|
| 709 |
+
def recompile(self) -> PythonCode:
|
| 710 |
+
"""
|
| 711 |
+
Recompile this GraphModule from its ``graph`` attribute. This should be
|
| 712 |
+
called after editing the contained ``graph``, otherwise the generated
|
| 713 |
+
code of this ``GraphModule`` will be out of date.
|
| 714 |
+
"""
|
| 715 |
+
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
| 716 |
+
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
| 717 |
+
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
| 718 |
+
python_code = self._graph.python_code(root_module="self")
|
| 719 |
+
self._code = python_code.src
|
| 720 |
+
self._lineno_map = python_code._lineno_map
|
| 721 |
+
|
| 722 |
+
cls = type(self)
|
| 723 |
+
co_fields = self._graph._co_fields if hasattr(self._graph, "_co_fields") else {}
|
| 724 |
+
cls.forward = _forward_from_src(self._code, python_code.globals, co_fields)
|
| 725 |
+
|
| 726 |
+
# Determine whether this class explicitly defines a __call__ implementation
|
| 727 |
+
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
| 728 |
+
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
| 729 |
+
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
| 730 |
+
# We do not want to hold a reference to Module.__call__ here; doing so will
|
| 731 |
+
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
| 732 |
+
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
| 733 |
+
|
| 734 |
+
if "_wrapped_call" not in vars(cls):
|
| 735 |
+
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
| 736 |
+
|
| 737 |
+
def call_wrapped(self, *args, **kwargs):
|
| 738 |
+
return self._wrapped_call(self, *args, **kwargs)
|
| 739 |
+
|
| 740 |
+
cls.__call__ = call_wrapped # type: ignore[method-assign]
|
| 741 |
+
|
| 742 |
+
return python_code
|
| 743 |
+
|
| 744 |
+
# Passing Tracer as argument allows subclasses extending fx.GraphModule
|
| 745 |
+
# define their own Tracer (extending fx.Tracer).
|
| 746 |
+
def __reduce_deploy__(self, importer: Importer):
|
| 747 |
+
dict_without_graph = self.__dict__.copy()
|
| 748 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
| 749 |
+
del dict_without_graph["_graph"]
|
| 750 |
+
|
| 751 |
+
python_code = self.recompile()
|
| 752 |
+
import_block = _format_import_block(python_code.globals, importer)
|
| 753 |
+
return (reduce_deploy_graph_module, (dict_without_graph, import_block))
|
| 754 |
+
|
| 755 |
+
def __reduce_package__(self, exporter: PackageExporter):
|
| 756 |
+
dict_without_graph = self.__dict__.copy()
|
| 757 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
| 758 |
+
del dict_without_graph["_graph"]
|
| 759 |
+
|
| 760 |
+
generated_module_name = f"fx-generated._{exporter.get_unique_id()}"
|
| 761 |
+
python_code = self.recompile()
|
| 762 |
+
import_block = _format_import_block(python_code.globals, exporter.importer)
|
| 763 |
+
module_code = import_block + self.code
|
| 764 |
+
exporter.save_source_string(generated_module_name, module_code)
|
| 765 |
+
return (
|
| 766 |
+
reduce_package_graph_module,
|
| 767 |
+
(dict_without_graph, generated_module_name),
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
def __reduce__(self):
|
| 771 |
+
"""
|
| 772 |
+
Serialization of GraphModule. We serialize only the generated code, not
|
| 773 |
+
the underlying ``Graph``. This is because ``Graph`` does not have on-disk
|
| 774 |
+
backward-compatibility guarantees, whereas Python source code does.
|
| 775 |
+
On the deserialization side, we symbolically trace through the generated
|
| 776 |
+
code to regenerate the underlying ``Graph``
|
| 777 |
+
"""
|
| 778 |
+
dict_without_graph = self.__dict__.copy()
|
| 779 |
+
python_code = self.recompile()
|
| 780 |
+
import_block = _format_import_block(python_code.globals, sys_importer)
|
| 781 |
+
del dict_without_graph["_graph"]
|
| 782 |
+
return (reduce_graph_module, (dict_without_graph, import_block))
|
| 783 |
+
|
| 784 |
+
def _deepcopy_init(self):
|
| 785 |
+
return GraphModule.__init__
|
| 786 |
+
|
| 787 |
+
# because __reduce__ is defined for serialization,
|
| 788 |
+
# we need to define deepcopy otherwise it will call __reduce__
|
| 789 |
+
# and cause symbolic tracing to occur every time we try to copy the object
|
| 790 |
+
def __deepcopy__(self, memo):
|
| 791 |
+
res = type(self).__new__(type(self))
|
| 792 |
+
memo[id(self)] = res
|
| 793 |
+
fake_mod = _CodeOnlyModule(copy.deepcopy(self.__dict__, memo))
|
| 794 |
+
self._deepcopy_init()(res, fake_mod, fake_mod.__dict__["_graph"])
|
| 795 |
+
# hooks are lost during `GraphModule.__init__`, so we need to copy over
|
| 796 |
+
# them explicitly, note right now we are only copying state_dict related
|
| 797 |
+
# hooks, to reduce bc-related issues, we can copy forward/backward related
|
| 798 |
+
# hooks in the future as well if needed
|
| 799 |
+
extra_preserved_attrs = [
|
| 800 |
+
"_state_dict_hooks",
|
| 801 |
+
"_load_state_dict_pre_hooks",
|
| 802 |
+
"_load_state_dict_post_hooks",
|
| 803 |
+
]
|
| 804 |
+
for attr in extra_preserved_attrs:
|
| 805 |
+
if attr in self.__dict__:
|
| 806 |
+
setattr(res, attr, copy.deepcopy(self.__dict__[attr], memo))
|
| 807 |
+
res.meta = copy.deepcopy(getattr(self, "meta", {}), memo)
|
| 808 |
+
if _USER_PRESERVED_ATTRIBUTES_KEY in res.meta:
|
| 809 |
+
for attr_name, attr in res.meta[_USER_PRESERVED_ATTRIBUTES_KEY].items():
|
| 810 |
+
setattr(res, attr_name, attr)
|
| 811 |
+
return res
|
| 812 |
+
|
| 813 |
+
def __copy__(self):
|
| 814 |
+
res = GraphModule(self, self.graph)
|
| 815 |
+
res.meta = getattr(self, "meta", {})
|
| 816 |
+
return res
|
| 817 |
+
|
| 818 |
+
@compatibility(is_backward_compatible=False)
|
| 819 |
+
def print_readable(self, print_output=True):
|
| 820 |
+
"""
|
| 821 |
+
Return the Python code generated for current GraphModule and its children GraphModules
|
| 822 |
+
"""
|
| 823 |
+
verbose_python_code = self._graph.python_code(root_module="self", verbose=True)
|
| 824 |
+
module_code = verbose_python_code.src
|
| 825 |
+
module_code = module_code.lstrip("\n")
|
| 826 |
+
module_code = f"class {self._get_name()}(torch.nn.Module):\n" + module_code
|
| 827 |
+
module_code = _addindent(module_code, 4)
|
| 828 |
+
|
| 829 |
+
submodule_code_list = [""]
|
| 830 |
+
for submodule in self.children():
|
| 831 |
+
if isinstance(submodule, GraphModule):
|
| 832 |
+
submodule_code_list.append(submodule.print_readable(print_output=False))
|
| 833 |
+
submodule_code = "\n".join(submodule_code_list)
|
| 834 |
+
submodule_code = _addindent(submodule_code, 4)
|
| 835 |
+
|
| 836 |
+
output = module_code + submodule_code
|
| 837 |
+
if print_output:
|
| 838 |
+
print(module_code + submodule_code)
|
| 839 |
+
return output
|
| 840 |
+
|
| 841 |
+
def __str__(self) -> str:
|
| 842 |
+
orig_str = super().__str__()
|
| 843 |
+
print_readable_reminder = (
|
| 844 |
+
"# To see more debug info, please use `graph_module.print_readable()`"
|
| 845 |
+
)
|
| 846 |
+
return "\n".join([orig_str, self._code, print_readable_reminder])
|
| 847 |
+
|
| 848 |
+
def _replicate_for_data_parallel(self):
|
| 849 |
+
new_gm = self.__copy__()
|
| 850 |
+
new_gm._is_replica = True
|
| 851 |
+
return new_gm
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
# workarounds for issues in __torch_function__
|
| 855 |
+
|
| 856 |
+
# WAR for __torch_function__ not handling tensor lists,
|
| 857 |
+
# fix is in https://github.com/pytorch/pytorch/pull/34725
|
| 858 |
+
# orig_cat = torch.cat
|
| 859 |
+
# def patched_cat(*args, **kwargs):
|
| 860 |
+
# tensors = args[0]
|
| 861 |
+
# for t in tensors:
|
| 862 |
+
# if isinstance(t, Proxy):
|
| 863 |
+
# return t.__torch_function__(patched_cat, (), args, kwargs)
|
| 864 |
+
# return orig_cat(*args, **kwargs)
|
| 865 |
+
# patched_cat.__module__ = 'torch'
|
| 866 |
+
# patched_cat.__name__ = 'cat'
|
| 867 |
+
# torch.cat = patched_cat
|
evalkit_tf437/lib/python3.10/site-packages/torch/fx/immutable_collections.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Iterable, List, Tuple
|
| 2 |
+
|
| 3 |
+
from ._compatibility import compatibility
|
| 4 |
+
from torch.utils._pytree import Context, register_pytree_node
|
| 5 |
+
|
| 6 |
+
__all__ = ["immutable_list", "immutable_dict"]
|
| 7 |
+
|
| 8 |
+
_help_mutation = """\
|
| 9 |
+
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
|
| 10 |
+
instead create a new copy of it and assign the copy to the node:
|
| 11 |
+
new_args = ... # copy and mutate args
|
| 12 |
+
node.args = new_args
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def _no_mutation(self, *args, **kwargs):
|
| 16 |
+
raise NotImplementedError(f"'{type(self).__name__}' object does not support mutation. {_help_mutation}")
|
| 17 |
+
|
| 18 |
+
def _create_immutable_container(base, mutable_functions):
|
| 19 |
+
container = type('immutable_' + base.__name__, (base,), {})
|
| 20 |
+
for attr in mutable_functions:
|
| 21 |
+
setattr(container, attr, _no_mutation)
|
| 22 |
+
return container
|
| 23 |
+
|
| 24 |
+
immutable_list = _create_immutable_container(list,
|
| 25 |
+
['__delitem__', '__iadd__', '__imul__', '__setitem__', 'append',
|
| 26 |
+
'clear', 'extend', 'insert', 'pop', 'remove'])
|
| 27 |
+
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
|
| 28 |
+
immutable_list.__hash__ = lambda self: hash(tuple(self))
|
| 29 |
+
|
| 30 |
+
compatibility(is_backward_compatible=True)(immutable_list)
|
| 31 |
+
|
| 32 |
+
immutable_dict = _create_immutable_container(dict, ['__delitem__', '__setitem__', 'clear', 'pop', 'popitem', 'update'])
|
| 33 |
+
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
|
| 34 |
+
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
|
| 35 |
+
compatibility(is_backward_compatible=True)(immutable_dict)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Register immutable collections for PyTree operations
|
| 39 |
+
|
| 40 |
+
def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
| 41 |
+
return list(d.values()), list(d.keys())
|
| 42 |
+
|
| 43 |
+
def _immutable_dict_unflatten(values: Iterable[Any], context: Context) -> Dict[Any, Any]:
|
| 44 |
+
return immutable_dict(dict(zip(context, values)))
|
| 45 |
+
|
| 46 |
+
def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
| 47 |
+
return d, None
|
| 48 |
+
|
| 49 |
+
def _immutable_list_unflatten(values: Iterable[Any], context: Context) -> List[Any]:
|
| 50 |
+
return immutable_list(values)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
register_pytree_node(immutable_dict, _immutable_dict_flatten, _immutable_dict_unflatten)
|
| 54 |
+
register_pytree_node(immutable_list, _immutable_list_flatten, _immutable_list_unflatten)
|
evalkit_tf437/lib/python3.10/site-packages/torch/fx/operator_schemas.py
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import inspect
|
| 3 |
+
import numbers
|
| 4 |
+
import types
|
| 5 |
+
import typing
|
| 6 |
+
import enum
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, NamedTuple, cast, TYPE_CHECKING
|
| 9 |
+
from torch._jit_internal import boolean_dispatched
|
| 10 |
+
from ._compatibility import compatibility
|
| 11 |
+
from torch._ops import OpOverloadPacket, OpOverload
|
| 12 |
+
|
| 13 |
+
if TYPE_CHECKING:
|
| 14 |
+
from .node import Argument
|
| 15 |
+
|
| 16 |
+
__all__ = ["ArgsKwargsPair", "check_for_mutable_operation", "get_signature_for_torch_op", "create_type_hint",
|
| 17 |
+
"type_matches", "normalize_function", "normalize_module"]
|
| 18 |
+
|
| 19 |
+
@compatibility(is_backward_compatible=False)
|
| 20 |
+
class ArgsKwargsPair(NamedTuple):
|
| 21 |
+
"""
|
| 22 |
+
Simple named tuple for wrapping args/kwargs pairs.
|
| 23 |
+
"""
|
| 24 |
+
args: Tuple[Any, ...]
|
| 25 |
+
kwargs: Dict[str, Any]
|
| 26 |
+
|
| 27 |
+
_manual_overrides : Dict[Callable, List[inspect.Signature]] = {}
|
| 28 |
+
|
| 29 |
+
def _nonzero_schemas():
|
| 30 |
+
signatures = []
|
| 31 |
+
|
| 32 |
+
def nonzero(self):
|
| 33 |
+
pass
|
| 34 |
+
signatures.append(inspect.signature(nonzero))
|
| 35 |
+
|
| 36 |
+
def nonzero(self, *, as_tuple : bool): # type: ignore[no-redef]
|
| 37 |
+
pass
|
| 38 |
+
signatures.append(inspect.signature(nonzero))
|
| 39 |
+
|
| 40 |
+
return signatures
|
| 41 |
+
|
| 42 |
+
_manual_overrides[torch.nonzero] = _nonzero_schemas()
|
| 43 |
+
|
| 44 |
+
class _FakeGlobalNamespace:
|
| 45 |
+
def __getattr__(self, name):
|
| 46 |
+
if name == 'torch':
|
| 47 |
+
return torch
|
| 48 |
+
raise RuntimeError('Expected a torch namespace lookup')
|
| 49 |
+
|
| 50 |
+
_type_eval_globals = {'Tensor' : torch.Tensor, 'Device' : torch.device, 'Layout' : torch.layout,
|
| 51 |
+
'number' : numbers.Number, 'Future' : torch.jit.Future,
|
| 52 |
+
'AnyEnumType' : enum.Enum, 'QScheme' : torch.qscheme,
|
| 53 |
+
'__torch__': _FakeGlobalNamespace(), 'NoneType': type(None),
|
| 54 |
+
't': typing.TypeVar('t')}
|
| 55 |
+
for k in dir(typing):
|
| 56 |
+
_type_eval_globals[k] = getattr(typing, k)
|
| 57 |
+
|
| 58 |
+
def _torchscript_type_to_python_type(ts_type : 'torch._C.JitType') -> Any:
|
| 59 |
+
"""
|
| 60 |
+
Convert a TorchScript type to a Python type (including subtypes) via
|
| 61 |
+
eval'ing the annotation_str. _type_eval_globals sets up expressions
|
| 62 |
+
like "List" and "Future" to map to actual types (typing.List and jit.Future)
|
| 63 |
+
"""
|
| 64 |
+
return eval(ts_type.annotation_str, _type_eval_globals)
|
| 65 |
+
|
| 66 |
+
def _torchscript_schema_to_signature_impl(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
| 67 |
+
from inspect import Parameter
|
| 68 |
+
parameters : List[Parameter] = []
|
| 69 |
+
for arg in ts_schema.arguments:
|
| 70 |
+
arg_type = _torchscript_type_to_python_type(arg.type)
|
| 71 |
+
default = arg.default_value if arg.has_default_value() else Parameter.empty
|
| 72 |
+
# TODO: Figure out if this is safe. It seems like when generating the type signatures for
|
| 73 |
+
# PythonArgParser, we emit signatures with `input` instead of `self` as the first tensor
|
| 74 |
+
# argument name. Downstream, if someone converts that positional argument to a keyword
|
| 75 |
+
# argument, the name mismatch will break things, so here we're going to normalize the
|
| 76 |
+
# name to "input"
|
| 77 |
+
name = arg.name if arg.name != 'self' else 'input'
|
| 78 |
+
kind = Parameter.KEYWORD_ONLY if arg.kwarg_only else Parameter.POSITIONAL_OR_KEYWORD
|
| 79 |
+
# "from" is a keyword therefore it must be a POSITIONAL_ONLY argument
|
| 80 |
+
if name == "from":
|
| 81 |
+
assert kind == Parameter.POSITIONAL_OR_KEYWORD
|
| 82 |
+
# ParameterKind type is internal implementation detail to inspec package
|
| 83 |
+
# which makes it hard to do type annotation
|
| 84 |
+
kind = Parameter.POSITIONAL_ONLY # type: ignore[assignment]
|
| 85 |
+
# This renders all previous arguments to positional only
|
| 86 |
+
for idx, p in enumerate(parameters):
|
| 87 |
+
assert p.kind == Parameter.POSITIONAL_OR_KEYWORD
|
| 88 |
+
parameters[idx] = Parameter(name=p.name, kind=Parameter.POSITIONAL_ONLY, default=p.default, annotation=p.annotation)
|
| 89 |
+
parameters.append(Parameter(name=name, kind=kind, default=default, annotation=arg_type))
|
| 90 |
+
return_types = [_torchscript_type_to_python_type(ret.type) for ret in ts_schema.returns]
|
| 91 |
+
if len(return_types) == 0:
|
| 92 |
+
return_type = None
|
| 93 |
+
elif len(return_types) == 1:
|
| 94 |
+
return_type = return_types[0]
|
| 95 |
+
else:
|
| 96 |
+
return_type = tuple(return_types)
|
| 97 |
+
|
| 98 |
+
return inspect.Signature(parameters, return_annotation=return_type)
|
| 99 |
+
|
| 100 |
+
_SCHEMA_TO_SIGNATURE_CACHE : Dict[Tuple[str, str], inspect.Signature] = {}
|
| 101 |
+
|
| 102 |
+
def _torchscript_schema_to_signature(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
| 103 |
+
# Cached as it's called in the hot path of FakeTensor dispatch
|
| 104 |
+
cache_key = ts_schema.name, ts_schema.overload_name
|
| 105 |
+
cache_val = _SCHEMA_TO_SIGNATURE_CACHE.get(cache_key)
|
| 106 |
+
if cache_val is not None:
|
| 107 |
+
return cache_val
|
| 108 |
+
|
| 109 |
+
res = _torchscript_schema_to_signature_impl(ts_schema)
|
| 110 |
+
_SCHEMA_TO_SIGNATURE_CACHE[cache_key] = res
|
| 111 |
+
return res
|
| 112 |
+
|
| 113 |
+
@compatibility(is_backward_compatible=False)
|
| 114 |
+
def check_for_mutable_operation(target : Callable, args : Tuple['Argument', ...], kwargs : Dict[str, 'Argument']):
|
| 115 |
+
signatures, schemas = get_signature_for_torch_op(target, return_schemas=True)
|
| 116 |
+
|
| 117 |
+
if signatures and schemas:
|
| 118 |
+
matched_schemas = []
|
| 119 |
+
|
| 120 |
+
# Iterate through all of the schema until we find one that matches
|
| 121 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
| 122 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
| 123 |
+
for candidate_signature, schema in zip(signatures, schemas):
|
| 124 |
+
try:
|
| 125 |
+
candidate_signature.bind(*args, **kwargs)
|
| 126 |
+
matched_schemas.append((candidate_signature, schema))
|
| 127 |
+
except TypeError as e:
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
def throw_if_mutable(schema):
|
| 131 |
+
if schema.is_mutable:
|
| 132 |
+
raise RuntimeError(f'Tried to trace mutable operation {schema}. FX only supports functional '
|
| 133 |
+
f'code, so operations that mutate operands in-place (e.g. via `out` arguments) '
|
| 134 |
+
f'are not supported')
|
| 135 |
+
|
| 136 |
+
if len(matched_schemas) == 0:
|
| 137 |
+
# Did not match any schema. Cannot check for mutation
|
| 138 |
+
pass
|
| 139 |
+
elif len(matched_schemas) == 1:
|
| 140 |
+
# Matched exactly one schema, unambiguous
|
| 141 |
+
_, schema_to_check = matched_schemas[0]
|
| 142 |
+
throw_if_mutable(schema_to_check)
|
| 143 |
+
pass
|
| 144 |
+
else:
|
| 145 |
+
# Ambiguous schema match. Since mutability checking is best effort,
|
| 146 |
+
# do nothing.
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
@compatibility(is_backward_compatible=False)
|
| 150 |
+
def get_signature_for_torch_op(op : Callable, return_schemas : bool = False):
|
| 151 |
+
"""
|
| 152 |
+
Given an operator on the `torch` namespace, return a list of `inspect.Signature`
|
| 153 |
+
objects corresponding to the overloads of that op.. May return `None` if a signature
|
| 154 |
+
could not be retrieved.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
op (Callable): An operator on the `torch` namespace to look up a signature for
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
Optional[List[inspect.Signature]]: A list of signatures for the overloads of this
|
| 161 |
+
operator, or None if the operator signatures could not be retrieved. If
|
| 162 |
+
return_schemas=True, returns a tuple containing the optional Python signatures
|
| 163 |
+
and the optional TorchScript Function signature
|
| 164 |
+
"""
|
| 165 |
+
if isinstance(op, OpOverload):
|
| 166 |
+
schemas = [op._schema]
|
| 167 |
+
elif isinstance(op, OpOverloadPacket):
|
| 168 |
+
schemas = [getattr(op, overload)._schema for overload in op.overloads()]
|
| 169 |
+
else:
|
| 170 |
+
override = _manual_overrides.get(op)
|
| 171 |
+
if override:
|
| 172 |
+
return (override, None) if return_schemas else None
|
| 173 |
+
|
| 174 |
+
aten_fn = torch.jit._builtins._find_builtin(op)
|
| 175 |
+
|
| 176 |
+
if aten_fn is None:
|
| 177 |
+
return (None, None) if return_schemas else None
|
| 178 |
+
schemas = torch._C._jit_get_schemas_for_operator(aten_fn)
|
| 179 |
+
|
| 180 |
+
signatures = [_torchscript_schema_to_signature(schema) for schema in schemas]
|
| 181 |
+
return (signatures, schemas) if return_schemas else signatures
|
| 182 |
+
|
| 183 |
+
@compatibility(is_backward_compatible=False)
|
| 184 |
+
def create_type_hint(x):
|
| 185 |
+
try:
|
| 186 |
+
if isinstance(x, (list, tuple)):
|
| 187 |
+
# todo(chilli): Figure out the right way for mypy to handle this
|
| 188 |
+
if isinstance(x, list):
|
| 189 |
+
def ret_type(x):
|
| 190 |
+
return List[x] # type: ignore[valid-type]
|
| 191 |
+
else:
|
| 192 |
+
def ret_type(x):
|
| 193 |
+
return Tuple[x, ...]
|
| 194 |
+
if len(x) == 0:
|
| 195 |
+
return ret_type(Any)
|
| 196 |
+
base_type = x[0]
|
| 197 |
+
for t in x:
|
| 198 |
+
if issubclass(t, base_type):
|
| 199 |
+
continue
|
| 200 |
+
elif issubclass(base_type, t):
|
| 201 |
+
base_type = t
|
| 202 |
+
else:
|
| 203 |
+
return ret_type(Any)
|
| 204 |
+
return ret_type(base_type)
|
| 205 |
+
except Exception as e:
|
| 206 |
+
# We tried to create a type hint for list but failed.
|
| 207 |
+
warnings.warn(f"We were not able to successfully create type hint from the type {x}")
|
| 208 |
+
pass
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
@compatibility(is_backward_compatible=False)
|
| 212 |
+
def type_matches(signature_type : Any, argument_type : Any):
|
| 213 |
+
sig_origin_type = getattr(signature_type, '__origin__', signature_type)
|
| 214 |
+
|
| 215 |
+
if signature_type is argument_type:
|
| 216 |
+
return True
|
| 217 |
+
|
| 218 |
+
# Union types in signature. Given type needs to match one of the
|
| 219 |
+
# contained types in the Union
|
| 220 |
+
if sig_origin_type is typing.Union and signature_type != argument_type:
|
| 221 |
+
sig_contained = signature_type.__args__
|
| 222 |
+
return any(type_matches(c, argument_type) for c in sig_contained)
|
| 223 |
+
|
| 224 |
+
if signature_type is List[int] and argument_type is int:
|
| 225 |
+
# int can be promoted to List[int]
|
| 226 |
+
return True
|
| 227 |
+
|
| 228 |
+
if getattr(signature_type, '__origin__', None) in {list, List}:
|
| 229 |
+
sig_el_type = signature_type.__args__[0]
|
| 230 |
+
if not inspect.isclass(sig_el_type):
|
| 231 |
+
warnings.warn(
|
| 232 |
+
f"Does not support nested parametric types, got {signature_type}. Please file a bug.")
|
| 233 |
+
return False
|
| 234 |
+
if getattr(argument_type, '__origin__', None) in {list, List}:
|
| 235 |
+
return issubclass(argument_type.__args__[0], sig_el_type)
|
| 236 |
+
|
| 237 |
+
def is_homogeneous_tuple(t):
|
| 238 |
+
if getattr(t, "__origin__", None) not in {tuple, Tuple}:
|
| 239 |
+
return False
|
| 240 |
+
contained = t.__args__
|
| 241 |
+
if t.__args__ == ((),): # Tuple[()].__args__ == ((),) for some reason
|
| 242 |
+
return True
|
| 243 |
+
return all((c is Ellipsis) or issubclass(c, sig_el_type) for c in contained)
|
| 244 |
+
|
| 245 |
+
# Tuple[T] is accepted for List[T] parameters
|
| 246 |
+
return is_homogeneous_tuple(argument_type)
|
| 247 |
+
|
| 248 |
+
# Dtype is an int in schemas
|
| 249 |
+
if signature_type is int and argument_type is torch.dtype:
|
| 250 |
+
return True
|
| 251 |
+
|
| 252 |
+
if signature_type is numbers.Number and argument_type in {int, float}:
|
| 253 |
+
return True
|
| 254 |
+
if inspect.isclass(argument_type) and inspect.isclass(signature_type):
|
| 255 |
+
return issubclass(argument_type, signature_type)
|
| 256 |
+
|
| 257 |
+
return False
|
| 258 |
+
|
| 259 |
+
@compatibility(is_backward_compatible=False)
|
| 260 |
+
def normalize_function(
|
| 261 |
+
target: Callable, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None, arg_types : Optional[Tuple[Any]] = None,
|
| 262 |
+
kwarg_types : Optional[Dict[str, Any]] = None,
|
| 263 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
| 264 |
+
"""
|
| 265 |
+
Returns normalized arguments to PyTorch functions. This means that
|
| 266 |
+
`args/kwargs` will be matched up to the functional's
|
| 267 |
+
signature and return exclusively kwargs in positional order if
|
| 268 |
+
`normalize_to_only_use_kwargs` is True.
|
| 269 |
+
Also populates default values. Does not support positional-only
|
| 270 |
+
parameters or varargs parameters (*args, **kwargs). Does not support modules.
|
| 271 |
+
|
| 272 |
+
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
target (Callable): Function that we are normalizing
|
| 276 |
+
args (Tuple[Any]): Tuple of args to the function
|
| 277 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
| 278 |
+
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
| 279 |
+
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
| 280 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
| 281 |
+
|
| 282 |
+
Returns:
|
| 283 |
+
|
| 284 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
| 285 |
+
"""
|
| 286 |
+
if kwargs is None:
|
| 287 |
+
kwargs = {}
|
| 288 |
+
new_args_and_kwargs = None
|
| 289 |
+
if not isinstance(target, types.BuiltinFunctionType) and not (
|
| 290 |
+
isinstance(target, (OpOverloadPacket, OpOverload))
|
| 291 |
+
):
|
| 292 |
+
target_for_analysis = target
|
| 293 |
+
if target in boolean_dispatched:
|
| 294 |
+
# HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
|
| 295 |
+
# a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
|
| 296 |
+
# branches of the dispatch have exactly the same signature. If they do, use the `true`
|
| 297 |
+
# branch signature for analysis. Otherwise, leave this un-normalized
|
| 298 |
+
assert not isinstance(target, str)
|
| 299 |
+
dispatched = boolean_dispatched[target]
|
| 300 |
+
if_true, if_false = dispatched['if_true'], dispatched['if_false']
|
| 301 |
+
if inspect.signature(if_true).parameters != inspect.signature(if_false).parameters:
|
| 302 |
+
return None
|
| 303 |
+
target_for_analysis = if_true
|
| 304 |
+
|
| 305 |
+
assert callable(target_for_analysis)
|
| 306 |
+
sig = inspect.signature(inspect.unwrap(target_for_analysis))
|
| 307 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs, normalize_to_only_use_kwargs)
|
| 308 |
+
else:
|
| 309 |
+
assert callable(target)
|
| 310 |
+
torch_op_schemas = get_signature_for_torch_op(target)
|
| 311 |
+
matched_schemas = []
|
| 312 |
+
if torch_op_schemas:
|
| 313 |
+
# Iterate through all of the schema until we find one that matches
|
| 314 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
| 315 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
| 316 |
+
for candidate_signature in torch_op_schemas:
|
| 317 |
+
try:
|
| 318 |
+
candidate_signature.bind(*args, **kwargs)
|
| 319 |
+
matched_schemas.append(candidate_signature)
|
| 320 |
+
except TypeError as e:
|
| 321 |
+
continue
|
| 322 |
+
|
| 323 |
+
if len(matched_schemas) == 0:
|
| 324 |
+
# Did not match any schema. Cannot normalize
|
| 325 |
+
pass
|
| 326 |
+
elif len(matched_schemas) == 1:
|
| 327 |
+
# Matched exactly one schema, unambiguous
|
| 328 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(matched_schemas[0], args, kwargs,
|
| 329 |
+
normalize_to_only_use_kwargs)
|
| 330 |
+
else:
|
| 331 |
+
if arg_types is not None or kwarg_types is not None:
|
| 332 |
+
arg_types = arg_types if arg_types else cast(Tuple[Any], ())
|
| 333 |
+
kwarg_types = kwarg_types if kwarg_types else {}
|
| 334 |
+
for candidate_signature in torch_op_schemas:
|
| 335 |
+
sig_matches = True
|
| 336 |
+
try:
|
| 337 |
+
bound_types = candidate_signature.bind(*arg_types, **kwarg_types)
|
| 338 |
+
for arg_name, arg_type in bound_types.arguments.items():
|
| 339 |
+
param = candidate_signature.parameters[arg_name]
|
| 340 |
+
sig_matches = sig_matches and type_matches(param.annotation, arg_type)
|
| 341 |
+
except TypeError as e:
|
| 342 |
+
sig_matches = False
|
| 343 |
+
if sig_matches:
|
| 344 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(candidate_signature, args, kwargs,
|
| 345 |
+
normalize_to_only_use_kwargs)
|
| 346 |
+
break
|
| 347 |
+
else:
|
| 348 |
+
# Matched more than one schema. In this situation, the caller must provide the types of
|
| 349 |
+
# the arguments of the overload they expect.
|
| 350 |
+
schema_printouts = '\n'.join(str(schema) for schema in matched_schemas)
|
| 351 |
+
raise RuntimeError(f'Tried to normalize arguments to {torch.typename(target)} but '
|
| 352 |
+
f'the schema match was ambiguous! Please provide argument types to '
|
| 353 |
+
f'the normalize_arguments() call. Available schemas:\n{schema_printouts}')
|
| 354 |
+
|
| 355 |
+
return new_args_and_kwargs
|
| 356 |
+
|
| 357 |
+
@compatibility(is_backward_compatible=False)
|
| 358 |
+
def normalize_module(
|
| 359 |
+
root: torch.nn.Module, target: str, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None,
|
| 360 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
| 361 |
+
"""
|
| 362 |
+
Returns normalized arguments to PyTorch modules. This means that
|
| 363 |
+
`args/kwargs` will be matched up to the functional's
|
| 364 |
+
signature and return exclusively kwargs in positional order if
|
| 365 |
+
`normalize_to_only_use_kwargs` is True.
|
| 366 |
+
Also populates default values. Does not support positional-only
|
| 367 |
+
parameters or varargs parameters (*args, **kwargs).
|
| 368 |
+
|
| 369 |
+
Args:
|
| 370 |
+
root (nn.Module): root module upon which we query modules
|
| 371 |
+
target (Callable): Function that we are normalizing
|
| 372 |
+
args (Tuple[Any]): Tuple of args to the function
|
| 373 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
| 374 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
| 375 |
+
|
| 376 |
+
Returns:
|
| 377 |
+
|
| 378 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
| 379 |
+
"""
|
| 380 |
+
try:
|
| 381 |
+
submod = root.get_submodule(target)
|
| 382 |
+
except AttributeError as e:
|
| 383 |
+
raise RuntimeError(f"Tried to normalize node with target {target} but root did not "
|
| 384 |
+
f"have that target!") from e
|
| 385 |
+
if hasattr(submod.__class__, '__name__'):
|
| 386 |
+
classname = submod.__class__.__name__
|
| 387 |
+
if getattr(torch.nn, classname, None) == submod.__class__:
|
| 388 |
+
sig = inspect.signature(inspect.unwrap(submod.forward))
|
| 389 |
+
if kwargs is None:
|
| 390 |
+
kwargs = {}
|
| 391 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs,
|
| 392 |
+
normalize_to_only_use_kwargs)
|
| 393 |
+
return new_args_and_kwargs
|
| 394 |
+
return None
|
| 395 |
+
|
| 396 |
+
def _args_kwargs_to_normalized_args_kwargs(sig : inspect.Signature, args : Tuple[Any, ...],
|
| 397 |
+
kwargs : Dict[str, Any],
|
| 398 |
+
normalize_to_only_use_kwargs : bool) -> Optional[ArgsKwargsPair]:
|
| 399 |
+
"""
|
| 400 |
+
Given a call target, args, and kwargs, return the arguments normalized into
|
| 401 |
+
an ArgsKwargsPair, or None if the type signature is not supported by
|
| 402 |
+
this normalization.
|
| 403 |
+
|
| 404 |
+
Args:
|
| 405 |
+
|
| 406 |
+
sig (inspect.Signature): Signature object for the target
|
| 407 |
+
args (Tuple): Arguments that appear at the callsite for `target`
|
| 408 |
+
kwargs (Dict): Keyword arguments that appear at the callsite for `target`
|
| 409 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
| 410 |
+
|
| 411 |
+
Returns:
|
| 412 |
+
|
| 413 |
+
Optional[ArgsKwargsPair]: Normalized args and kwargs for `target`, or `None` if
|
| 414 |
+
this target is not supported.
|
| 415 |
+
"""
|
| 416 |
+
|
| 417 |
+
# Don't currently support positional-only
|
| 418 |
+
# or varargs (*args, **kwargs) signatures
|
| 419 |
+
supported_parameter_types = {
|
| 420 |
+
inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY}
|
| 421 |
+
if any(p.kind not in supported_parameter_types for p in sig.parameters.values()):
|
| 422 |
+
# Add an exception for one signature, which is common for random/uniform, i.e.:
|
| 423 |
+
# Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None
|
| 424 |
+
# `from` is Python keyword and as such functions with that signature should have
|
| 425 |
+
# positional-only args, but at the same time they could be dispatched as kwargs
|
| 426 |
+
if list(sig.parameters.keys()) != ['input', 'from', 'to', 'generator']:
|
| 427 |
+
return None
|
| 428 |
+
|
| 429 |
+
bound_args = sig.bind(*args, **kwargs)
|
| 430 |
+
bound_args.apply_defaults()
|
| 431 |
+
|
| 432 |
+
new_kwargs : Dict[str, Any] = {}
|
| 433 |
+
new_args : List[Any] = []
|
| 434 |
+
for i, param in enumerate(sig.parameters):
|
| 435 |
+
if not normalize_to_only_use_kwargs and i < len(args):
|
| 436 |
+
new_args.append(bound_args.arguments[param])
|
| 437 |
+
else:
|
| 438 |
+
new_kwargs[param] = bound_args.arguments[param]
|
| 439 |
+
|
| 440 |
+
return ArgsKwargsPair(tuple(new_args), new_kwargs)
|
evalkit_tf437/lib/python3.10/site-packages/torch/utils/hipify/__pycache__/cuda_to_hip_mappings.cpython-310.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b34ef3bac735c84b15d0cb3df24157a758f9caa3d50e29490e1cbe6d2a9bc6a7
|
| 3 |
+
size 435665
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
float *src = (float*)argv[argc-1];
|
| 9 |
+
float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]);
|
| 10 |
+
/* MAXMIN */
|
| 11 |
+
int ret = (int)vgetq_lane_f32(vmaxnmq_f32(v1, v2), 0);
|
| 12 |
+
ret += (int)vgetq_lane_f32(vminnmq_f32(v1, v2), 0);
|
| 13 |
+
/* ROUNDING */
|
| 14 |
+
ret += (int)vgetq_lane_f32(vrndq_f32(v1), 0);
|
| 15 |
+
#ifdef __aarch64__
|
| 16 |
+
{
|
| 17 |
+
double *src2 = (double*)argv[argc-1];
|
| 18 |
+
float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]);
|
| 19 |
+
/* MAXMIN */
|
| 20 |
+
ret += (int)vgetq_lane_f64(vmaxnmq_f64(vd1, vd2), 0);
|
| 21 |
+
ret += (int)vgetq_lane_f64(vminnmq_f64(vd1, vd2), 0);
|
| 22 |
+
/* ROUNDING */
|
| 23 |
+
ret += (int)vgetq_lane_f64(vrndq_f64(vd1), 0);
|
| 24 |
+
}
|
| 25 |
+
#endif
|
| 26 |
+
return ret;
|
| 27 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimddp.c
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
unsigned char *src = (unsigned char*)argv[argc-1];
|
| 9 |
+
uint8x16_t v1 = vdupq_n_u8(src[0]), v2 = vdupq_n_u8(src[1]);
|
| 10 |
+
uint32x4_t va = vdupq_n_u32(3);
|
| 11 |
+
int ret = (int)vgetq_lane_u32(vdotq_u32(va, v1, v2), 0);
|
| 12 |
+
#ifdef __aarch64__
|
| 13 |
+
ret += (int)vgetq_lane_u32(vdotq_laneq_u32(va, v1, v2, 0), 0);
|
| 14 |
+
#endif
|
| 15 |
+
return ret;
|
| 16 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdfhm.c
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
float16_t *src = (float16_t*)argv[argc-1];
|
| 9 |
+
float *src2 = (float*)argv[argc-2];
|
| 10 |
+
float16x8_t vhp = vdupq_n_f16(src[0]);
|
| 11 |
+
float16x4_t vlhp = vdup_n_f16(src[1]);
|
| 12 |
+
float32x4_t vf = vdupq_n_f32(src2[0]);
|
| 13 |
+
float32x2_t vlf = vdup_n_f32(src2[1]);
|
| 14 |
+
|
| 15 |
+
int ret = (int)vget_lane_f32(vfmlal_low_f16(vlf, vlhp, vlhp), 0);
|
| 16 |
+
ret += (int)vgetq_lane_f32(vfmlslq_high_f16(vf, vhp, vhp), 0);
|
| 17 |
+
|
| 18 |
+
return ret;
|
| 19 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
float16_t *src = (float16_t*)argv[argc-1];
|
| 9 |
+
float16x8_t vhp = vdupq_n_f16(src[0]);
|
| 10 |
+
float16x4_t vlhp = vdup_n_f16(src[1]);
|
| 11 |
+
|
| 12 |
+
int ret = (int)vgetq_lane_f16(vabdq_f16(vhp, vhp), 0);
|
| 13 |
+
ret += (int)vget_lane_f16(vabd_f16(vlhp, vlhp), 0);
|
| 14 |
+
return ret;
|
| 15 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __AVX__
|
| 10 |
+
#error "HOST/ARCH doesn't support AVX"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m256 a = _mm256_add_ps(_mm256_loadu_ps((const float*)argv[argc-1]), _mm256_loadu_ps((const float*)argv[1]));
|
| 19 |
+
return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a));
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __AVX2__
|
| 10 |
+
#error "HOST/ARCH doesn't support AVX2"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m256i a = _mm256_abs_epi16(_mm256_loadu_si256((const __m256i*)argv[argc-1]));
|
| 19 |
+
return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __AVX512VNNI__
|
| 10 |
+
#error "HOST/ARCH doesn't support CascadeLake AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
/* VNNI */
|
| 19 |
+
__m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
|
| 20 |
+
a = _mm512_dpbusd_epi32(a, _mm512_setzero_si512(), a);
|
| 21 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 22 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX512VBMI__) || !defined(__AVX512IFMA__)
|
| 10 |
+
#error "HOST/ARCH doesn't support CannonLake AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
|
| 19 |
+
/* IFMA */
|
| 20 |
+
a = _mm512_madd52hi_epu64(a, a, _mm512_setzero_si512());
|
| 21 |
+
/* VMBI */
|
| 22 |
+
a = _mm512_permutex2var_epi8(a, _mm512_setzero_si512(), a);
|
| 23 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 24 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX512VPOPCNTDQ__) || !defined(__AVX512BITALG__) || !defined(__AVX512VPOPCNTDQ__)
|
| 10 |
+
#error "HOST/ARCH doesn't support IceLake AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
|
| 19 |
+
/* VBMI2 */
|
| 20 |
+
a = _mm512_shrdv_epi64(a, a, _mm512_setzero_si512());
|
| 21 |
+
/* BITLAG */
|
| 22 |
+
a = _mm512_popcnt_epi8(a);
|
| 23 |
+
/* VPOPCNTDQ */
|
| 24 |
+
a = _mm512_popcnt_epi64(a);
|
| 25 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 26 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX512ER__) || !defined(__AVX512PF__)
|
| 10 |
+
#error "HOST/ARCH doesn't support Knights Landing AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
int base[128]={};
|
| 19 |
+
__m512d ad = _mm512_loadu_pd((const __m512d*)argv[argc-1]);
|
| 20 |
+
/* ER */
|
| 21 |
+
__m512i a = _mm512_castpd_si512(_mm512_exp2a23_pd(ad));
|
| 22 |
+
/* PF */
|
| 23 |
+
_mm512_mask_prefetch_i64scatter_pd(base, _mm512_cmpeq_epi64_mask(a, a), a, 1, _MM_HINT_T1);
|
| 24 |
+
return base[0];
|
| 25 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX5124FMAPS__) || !defined(__AVX5124VNNIW__) || !defined(__AVX512VPOPCNTDQ__)
|
| 10 |
+
#error "HOST/ARCH doesn't support Knights Mill AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
|
| 19 |
+
__m512 b = _mm512_loadu_ps((const __m512*)argv[argc-2]);
|
| 20 |
+
|
| 21 |
+
/* 4FMAPS */
|
| 22 |
+
b = _mm512_4fmadd_ps(b, b, b, b, b, NULL);
|
| 23 |
+
/* 4VNNIW */
|
| 24 |
+
a = _mm512_4dpwssd_epi32(a, a, a, a, a, NULL);
|
| 25 |
+
/* VPOPCNTDQ */
|
| 26 |
+
a = _mm512_popcnt_epi64(a);
|
| 27 |
+
|
| 28 |
+
a = _mm512_add_epi32(a, _mm512_castps_si512(b));
|
| 29 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 30 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX512VL__) || !defined(__AVX512BW__) || !defined(__AVX512DQ__)
|
| 10 |
+
#error "HOST/ARCH doesn't support SkyLake AVX512 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i aa = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
|
| 19 |
+
/* VL */
|
| 20 |
+
__m256i a = _mm256_abs_epi64(_mm512_extracti64x4_epi64(aa, 1));
|
| 21 |
+
/* DQ */
|
| 22 |
+
__m512i b = _mm512_broadcast_i32x8(a);
|
| 23 |
+
/* BW */
|
| 24 |
+
b = _mm512_abs_epi16(b);
|
| 25 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(b));
|
| 26 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_spr.c
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__AVX512FP16__)
|
| 10 |
+
#error "HOST/ARCH doesn't support Sapphire Rapids AVX512FP16 features"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
/* clang has a bug regarding our spr coode, see gh-23730. */
|
| 19 |
+
#if __clang__
|
| 20 |
+
#error
|
| 21 |
+
#endif
|
| 22 |
+
__m512h a = _mm512_loadu_ph((void*)argv[argc-1]);
|
| 23 |
+
__m512h temp = _mm512_fmadd_ph(a, a, a);
|
| 24 |
+
_mm512_storeu_ph((void*)(argv[argc-1]), temp);
|
| 25 |
+
return 0;
|
| 26 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __AVX512CD__
|
| 10 |
+
#error "HOST/ARCH doesn't support AVX512CD"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i a = _mm512_lzcnt_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
|
| 19 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __AVX512F__
|
| 10 |
+
#error "HOST/ARCH doesn't support AVX512F"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <immintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(int argc, char **argv)
|
| 17 |
+
{
|
| 18 |
+
__m512i a = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
|
| 19 |
+
return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __F16C__
|
| 10 |
+
#error "HOST/ARCH doesn't support F16C"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <emmintrin.h>
|
| 15 |
+
#include <immintrin.h>
|
| 16 |
+
|
| 17 |
+
int main(int argc, char **argv)
|
| 18 |
+
{
|
| 19 |
+
__m128 a = _mm_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-1]));
|
| 20 |
+
__m256 a8 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-2]));
|
| 21 |
+
return (int)(_mm_cvtss_f32(a) + _mm_cvtss_f32(_mm256_castps256_ps128(a8)));
|
| 22 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__FMA__) && !defined(__AVX2__)
|
| 10 |
+
#error "HOST/ARCH doesn't support FMA3"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <xmmintrin.h>
|
| 15 |
+
#include <immintrin.h>
|
| 16 |
+
|
| 17 |
+
int main(int argc, char **argv)
|
| 18 |
+
{
|
| 19 |
+
__m256 a = _mm256_loadu_ps((const float*)argv[argc-1]);
|
| 20 |
+
a = _mm256_fmadd_ps(a, a, a);
|
| 21 |
+
return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a));
|
| 22 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma4.c
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <immintrin.h>
|
| 2 |
+
#ifdef _MSC_VER
|
| 3 |
+
#include <ammintrin.h>
|
| 4 |
+
#else
|
| 5 |
+
#include <x86intrin.h>
|
| 6 |
+
#endif
|
| 7 |
+
|
| 8 |
+
int main(int argc, char **argv)
|
| 9 |
+
{
|
| 10 |
+
__m256 a = _mm256_loadu_ps((const float*)argv[argc-1]);
|
| 11 |
+
a = _mm256_macc_ps(a, a, a);
|
| 12 |
+
return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a));
|
| 13 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
// passing from untraced pointers to avoid optimizing out any constants
|
| 9 |
+
// so we can test against the linker.
|
| 10 |
+
float *src = (float*)argv[argc-1];
|
| 11 |
+
float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]);
|
| 12 |
+
int ret = (int)vgetq_lane_f32(vmulq_f32(v1, v2), 0);
|
| 13 |
+
#ifdef __aarch64__
|
| 14 |
+
double *src2 = (double*)argv[argc-2];
|
| 15 |
+
float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]);
|
| 16 |
+
ret += (int)vgetq_lane_f64(vmulq_f64(vd1, vd2), 0);
|
| 17 |
+
#endif
|
| 18 |
+
return ret;
|
| 19 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
short *src = (short*)argv[argc-1];
|
| 9 |
+
float32x4_t v_z4 = vcvt_f32_f16((float16x4_t)vld1_s16(src));
|
| 10 |
+
return (int)vgetq_lane_f32(v_z4, 0);
|
| 11 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifdef _MSC_VER
|
| 2 |
+
#include <Intrin.h>
|
| 3 |
+
#endif
|
| 4 |
+
#include <arm_neon.h>
|
| 5 |
+
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
float *src = (float*)argv[argc-1];
|
| 9 |
+
float32x4_t v1 = vdupq_n_f32(src[0]);
|
| 10 |
+
float32x4_t v2 = vdupq_n_f32(src[1]);
|
| 11 |
+
float32x4_t v3 = vdupq_n_f32(src[2]);
|
| 12 |
+
int ret = (int)vgetq_lane_f32(vfmaq_f32(v1, v2, v3), 0);
|
| 13 |
+
#ifdef __aarch64__
|
| 14 |
+
double *src2 = (double*)argv[argc-2];
|
| 15 |
+
float64x2_t vd1 = vdupq_n_f64(src2[0]);
|
| 16 |
+
float64x2_t vd2 = vdupq_n_f64(src2[1]);
|
| 17 |
+
float64x2_t vd3 = vdupq_n_f64(src2[2]);
|
| 18 |
+
ret += (int)vgetq_lane_f64(vfmaq_f64(vd1, vd2, vd3), 0);
|
| 19 |
+
#endif
|
| 20 |
+
return ret;
|
| 21 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env vr `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#if !defined(__SSE4_2__) && !defined(__POPCNT__)
|
| 10 |
+
#error "HOST/ARCH doesn't support POPCNT"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#ifdef _MSC_VER
|
| 15 |
+
#include <nmmintrin.h>
|
| 16 |
+
#else
|
| 17 |
+
#include <popcntintrin.h>
|
| 18 |
+
#endif
|
| 19 |
+
|
| 20 |
+
int main(int argc, char **argv)
|
| 21 |
+
{
|
| 22 |
+
// To make sure popcnt instructions are generated
|
| 23 |
+
// and been tested against the assembler
|
| 24 |
+
unsigned long long a = *((unsigned long long*)argv[argc-1]);
|
| 25 |
+
unsigned int b = *((unsigned int*)argv[argc-2]);
|
| 26 |
+
|
| 27 |
+
#if defined(_M_X64) || defined(__x86_64__)
|
| 28 |
+
a = _mm_popcnt_u64(a);
|
| 29 |
+
#endif
|
| 30 |
+
b = _mm_popcnt_u32(b);
|
| 31 |
+
return (int)a + b;
|
| 32 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSE__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSE"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <xmmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128 a = _mm_add_ps(_mm_setzero_ps(), _mm_setzero_ps());
|
| 19 |
+
return (int)_mm_cvtss_f32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSE2__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSE2"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <emmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128i a = _mm_add_epi16(_mm_setzero_si128(), _mm_setzero_si128());
|
| 19 |
+
return _mm_cvtsi128_si32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSE3__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSE3"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <pmmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128 a = _mm_hadd_ps(_mm_setzero_ps(), _mm_setzero_ps());
|
| 19 |
+
return (int)_mm_cvtss_f32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSE4_1__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSE41"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <smmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128 a = _mm_floor_ps(_mm_setzero_ps());
|
| 19 |
+
return (int)_mm_cvtss_f32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse42.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSE4_2__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSE42"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <smmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128 a = _mm_hadd_ps(_mm_setzero_ps(), _mm_setzero_ps());
|
| 19 |
+
return (int)_mm_cvtss_f32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
|
| 2 |
+
/*
|
| 3 |
+
* Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
|
| 4 |
+
* whether or not the build options for those features are specified.
|
| 5 |
+
* Therefore, we must test #definitions of CPU features when option native/host
|
| 6 |
+
* is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
|
| 7 |
+
* the test will be broken and leads to enable all possible features.
|
| 8 |
+
*/
|
| 9 |
+
#ifndef __SSSE3__
|
| 10 |
+
#error "HOST/ARCH doesn't support SSSE3"
|
| 11 |
+
#endif
|
| 12 |
+
#endif
|
| 13 |
+
|
| 14 |
+
#include <tmmintrin.h>
|
| 15 |
+
|
| 16 |
+
int main(void)
|
| 17 |
+
{
|
| 18 |
+
__m128i a = _mm_hadd_epi16(_mm_setzero_si128(), _mm_setzero_si128());
|
| 19 |
+
return (int)_mm_cvtsi128_si32(a);
|
| 20 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx2.c
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifndef __VSX__
|
| 2 |
+
#error "VSX is not supported"
|
| 3 |
+
#endif
|
| 4 |
+
#include <altivec.h>
|
| 5 |
+
|
| 6 |
+
typedef __vector unsigned long long v_uint64x2;
|
| 7 |
+
|
| 8 |
+
int main(void)
|
| 9 |
+
{
|
| 10 |
+
v_uint64x2 z2 = (v_uint64x2){0, 0};
|
| 11 |
+
z2 = (v_uint64x2)vec_cmpeq(z2, z2);
|
| 12 |
+
return (int)vec_extract(z2, 0);
|
| 13 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifndef __VSX__
|
| 2 |
+
#error "VSX is not supported"
|
| 3 |
+
#endif
|
| 4 |
+
#include <altivec.h>
|
| 5 |
+
|
| 6 |
+
typedef __vector unsigned int v_uint32x4;
|
| 7 |
+
|
| 8 |
+
int main(void)
|
| 9 |
+
{
|
| 10 |
+
v_uint32x4 z4 = (v_uint32x4){0, 0, 0, 0};
|
| 11 |
+
z4 = vec_absd(z4, z4);
|
| 12 |
+
return (int)vec_extract(z4, 0);
|
| 13 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifndef __VSX__
|
| 2 |
+
#error "VSX is not supported"
|
| 3 |
+
#endif
|
| 4 |
+
#include <altivec.h>
|
| 5 |
+
|
| 6 |
+
typedef __vector unsigned int v_uint32x4;
|
| 7 |
+
|
| 8 |
+
int main(void)
|
| 9 |
+
{
|
| 10 |
+
v_uint32x4 v1 = (v_uint32x4){2, 4, 8, 16};
|
| 11 |
+
v_uint32x4 v2 = (v_uint32x4){2, 2, 2, 2};
|
| 12 |
+
v_uint32x4 v3 = vec_mod(v1, v2);
|
| 13 |
+
return (int)vec_extractm(v3);
|
| 14 |
+
}
|
falcon/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#if (__VEC__ < 10301) || (__ARCH__ < 11)
|
| 2 |
+
#error VX not supported
|
| 3 |
+
#endif
|
| 4 |
+
|
| 5 |
+
#include <vecintrin.h>
|
| 6 |
+
int main(int argc, char **argv)
|
| 7 |
+
{
|
| 8 |
+
__vector double x = vec_abs(vec_xl(argc, (double*)argv));
|
| 9 |
+
__vector double y = vec_load_len((double*)argv, (unsigned int)argc);
|
| 10 |
+
|
| 11 |
+
x = vec_round(vec_ceil(x) + vec_floor(y));
|
| 12 |
+
__vector bool long long m = vec_cmpge(x, y);
|
| 13 |
+
__vector long long i = vec_signed(vec_sel(x, y, m));
|
| 14 |
+
|
| 15 |
+
return (int)vec_extract(i, 0);
|
| 16 |
+
}
|