ZTWHHH commited on
Commit
807badb
·
verified ·
1 Parent(s): efba827

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/__init__.py +22 -0
  3. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py +641 -0
  4. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plot.py +1234 -0
  5. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py +233 -0
  6. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plotgrid.py +188 -0
  7. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py +138 -0
  8. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc +0 -0
  9. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/color_scheme.cpython-310.pyc +0 -0
  10. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/managed_window.cpython-310.pyc +0 -0
  11. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot.cpython-310.pyc +0 -0
  12. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_axes.cpython-310.pyc +0 -0
  13. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_camera.cpython-310.pyc +0 -0
  14. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_controller.cpython-310.pyc +0 -0
  15. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_curve.cpython-310.pyc +0 -0
  16. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_interval.cpython-310.pyc +0 -0
  17. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode.cpython-310.pyc +0 -0
  18. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode_base.cpython-310.pyc +0 -0
  19. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_modes.cpython-310.pyc +0 -0
  20. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_object.cpython-310.pyc +0 -0
  21. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_rotation.cpython-310.pyc +0 -0
  22. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_surface.cpython-310.pyc +0 -0
  23. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_window.cpython-310.pyc +0 -0
  24. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/color_scheme.py +336 -0
  25. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/managed_window.py +106 -0
  26. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot.py +464 -0
  27. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_axes.py +251 -0
  28. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_camera.py +124 -0
  29. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_controller.py +218 -0
  30. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_curve.py +82 -0
  31. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_interval.py +181 -0
  32. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode.py +400 -0
  33. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode_base.py +378 -0
  34. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_modes.py +209 -0
  35. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_object.py +17 -0
  36. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_rotation.py +68 -0
  37. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_surface.py +102 -0
  38. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_window.py +144 -0
  39. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__init__.py +0 -0
  40. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  41. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__pycache__/test_plotting.cpython-310.pyc +0 -0
  42. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/test_plotting.py +88 -0
  43. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/util.py +188 -0
  44. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/series.py +2591 -0
  45. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/textplot.py +168 -0
  46. evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/utils.py +323 -0
  47. evalkit_internvl/lib/python3.10/site-packages/sympy/sandbox/__pycache__/__init__.cpython-310.pyc +0 -0
  48. evalkit_internvl/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_wester.cpython-310.pyc +3 -0
  49. evalkit_tf437/lib/python3.10/site-packages/sklearn/decomposition/_factor_analysis.py +457 -0
  50. evalkit_tf437/lib/python3.10/site-packages/sklearn/decomposition/_incremental_pca.py +426 -0
.gitattributes CHANGED
@@ -1631,3 +1631,5 @@ evalkit_internvl/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/t
1631
  evalkit_internvl/lib/python3.10/site-packages/sympy/printing/__pycache__/latex.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1632
  evalkit_internvl/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1633
  evalkit_tf437/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1800 filter=lfs diff=lfs merge=lfs -text
 
 
 
1631
  evalkit_internvl/lib/python3.10/site-packages/sympy/printing/__pycache__/latex.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1632
  evalkit_internvl/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1633
  evalkit_tf437/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1800 filter=lfs diff=lfs merge=lfs -text
1634
+ falcon/bin/python filter=lfs diff=lfs merge=lfs -text
1635
+ evalkit_internvl/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_wester.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .plot import plot_backends
2
+ from .plot_implicit import plot_implicit
3
+ from .textplot import textplot
4
+ from .pygletplot import PygletPlot
5
+ from .plot import PlotGrid
6
+ from .plot import (plot, plot_parametric, plot3d, plot3d_parametric_surface,
7
+ plot3d_parametric_line, plot_contour)
8
+
9
+ __all__ = [
10
+ 'plot_backends',
11
+
12
+ 'plot_implicit',
13
+
14
+ 'textplot',
15
+
16
+ 'PygletPlot',
17
+
18
+ 'PlotGrid',
19
+
20
+ 'plot', 'plot_parametric', 'plot3d', 'plot3d_parametric_surface',
21
+ 'plot3d_parametric_line', 'plot_contour'
22
+ ]
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py ADDED
@@ -0,0 +1,641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ rewrite of lambdify - This stuff is not stable at all.
2
+
3
+ It is for internal use in the new plotting module.
4
+ It may (will! see the Q'n'A in the source) be rewritten.
5
+
6
+ It's completely self contained. Especially it does not use lambdarepr.
7
+
8
+ It does not aim to replace the current lambdify. Most importantly it will never
9
+ ever support anything else than SymPy expressions (no Matrices, dictionaries
10
+ and so on).
11
+ """
12
+
13
+
14
+ import re
15
+ from sympy.core.numbers import (I, NumberSymbol, oo, zoo)
16
+ from sympy.core.symbol import Symbol
17
+ from sympy.utilities.iterables import numbered_symbols
18
+
19
+ # We parse the expression string into a tree that identifies functions. Then
20
+ # we translate the names of the functions and we translate also some strings
21
+ # that are not names of functions (all this according to translation
22
+ # dictionaries).
23
+ # If the translation goes to another module (like numpy) the
24
+ # module is imported and 'func' is translated to 'module.func'.
25
+ # If a function can not be translated, the inner nodes of that part of the
26
+ # tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
27
+ # translated to np.sqrt and the Integral does not crash.
28
+ # A namespace for all this is generated by crawling the (func, args) tree of
29
+ # the expression. The creation of this namespace involves many ugly
30
+ # workarounds.
31
+ # The namespace consists of all the names needed for the SymPy expression and
32
+ # all the name of modules used for translation. Those modules are imported only
33
+ # as a name (import numpy as np) in order to keep the namespace small and
34
+ # manageable.
35
+
36
+ # Please, if there is a bug, do not try to fix it here! Rewrite this by using
37
+ # the method proposed in the last Q'n'A below. That way the new function will
38
+ # work just as well, be just as simple, but it wont need any new workarounds.
39
+ # If you insist on fixing it here, look at the workarounds in the function
40
+ # sympy_expression_namespace and in lambdify.
41
+
42
+ # Q: Why are you not using Python abstract syntax tree?
43
+ # A: Because it is more complicated and not much more powerful in this case.
44
+
45
+ # Q: What if I have Symbol('sin') or g=Function('f')?
46
+ # A: You will break the algorithm. We should use srepr to defend against this?
47
+ # The problem with Symbol('sin') is that it will be printed as 'sin'. The
48
+ # parser will distinguish it from the function 'sin' because functions are
49
+ # detected thanks to the opening parenthesis, but the lambda expression won't
50
+ # understand the difference if we have also the sin function.
51
+ # The solution (complicated) is to use srepr and maybe ast.
52
+ # The problem with the g=Function('f') is that it will be printed as 'f' but in
53
+ # the global namespace we have only 'g'. But as the same printer is used in the
54
+ # constructor of the namespace there will be no problem.
55
+
56
+ # Q: What if some of the printers are not printing as expected?
57
+ # A: The algorithm wont work. You must use srepr for those cases. But even
58
+ # srepr may not print well. All problems with printers should be considered
59
+ # bugs.
60
+
61
+ # Q: What about _imp_ functions?
62
+ # A: Those are taken care for by evalf. A special case treatment will work
63
+ # faster but it's not worth the code complexity.
64
+
65
+ # Q: Will ast fix all possible problems?
66
+ # A: No. You will always have to use some printer. Even srepr may not work in
67
+ # some cases. But if the printer does not work, that should be considered a
68
+ # bug.
69
+
70
+ # Q: Is there same way to fix all possible problems?
71
+ # A: Probably by constructing our strings ourself by traversing the (func,
72
+ # args) tree and creating the namespace at the same time. That actually sounds
73
+ # good.
74
+
75
+ from sympy.external import import_module
76
+ import warnings
77
+
78
+ #TODO debugging output
79
+
80
+
81
+ class vectorized_lambdify:
82
+ """ Return a sufficiently smart, vectorized and lambdified function.
83
+
84
+ Returns only reals.
85
+
86
+ Explanation
87
+ ===========
88
+
89
+ This function uses experimental_lambdify to created a lambdified
90
+ expression ready to be used with numpy. Many of the functions in SymPy
91
+ are not implemented in numpy so in some cases we resort to Python cmath or
92
+ even to evalf.
93
+
94
+ The following translations are tried:
95
+ only numpy complex
96
+ - on errors raised by SymPy trying to work with ndarray:
97
+ only Python cmath and then vectorize complex128
98
+
99
+ When using Python cmath there is no need for evalf or float/complex
100
+ because Python cmath calls those.
101
+
102
+ This function never tries to mix numpy directly with evalf because numpy
103
+ does not understand SymPy Float. If this is needed one can use the
104
+ float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
105
+ better one can be explicit about the dtypes that numpy works with.
106
+ Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
107
+ types of errors to expect.
108
+ """
109
+ def __init__(self, args, expr):
110
+ self.args = args
111
+ self.expr = expr
112
+ self.np = import_module('numpy')
113
+
114
+ self.lambda_func_1 = experimental_lambdify(
115
+ args, expr, use_np=True)
116
+ self.vector_func_1 = self.lambda_func_1
117
+
118
+ self.lambda_func_2 = experimental_lambdify(
119
+ args, expr, use_python_cmath=True)
120
+ self.vector_func_2 = self.np.vectorize(
121
+ self.lambda_func_2, otypes=[complex])
122
+
123
+ self.vector_func = self.vector_func_1
124
+ self.failure = False
125
+
126
+ def __call__(self, *args):
127
+ np = self.np
128
+
129
+ try:
130
+ temp_args = (np.array(a, dtype=complex) for a in args)
131
+ results = self.vector_func(*temp_args)
132
+ results = np.ma.masked_where(
133
+ np.abs(results.imag) > 1e-7 * np.abs(results),
134
+ results.real, copy=False)
135
+ return results
136
+ except ValueError:
137
+ if self.failure:
138
+ raise
139
+
140
+ self.failure = True
141
+ self.vector_func = self.vector_func_2
142
+ warnings.warn(
143
+ 'The evaluation of the expression is problematic. '
144
+ 'We are trying a failback method that may still work. '
145
+ 'Please report this as a bug.')
146
+ return self.__call__(*args)
147
+
148
+
149
+ class lambdify:
150
+ """Returns the lambdified function.
151
+
152
+ Explanation
153
+ ===========
154
+
155
+ This function uses experimental_lambdify to create a lambdified
156
+ expression. It uses cmath to lambdify the expression. If the function
157
+ is not implemented in Python cmath, Python cmath calls evalf on those
158
+ functions.
159
+ """
160
+
161
+ def __init__(self, args, expr):
162
+ self.args = args
163
+ self.expr = expr
164
+ self.lambda_func_1 = experimental_lambdify(
165
+ args, expr, use_python_cmath=True, use_evalf=True)
166
+ self.lambda_func_2 = experimental_lambdify(
167
+ args, expr, use_python_math=True, use_evalf=True)
168
+ self.lambda_func_3 = experimental_lambdify(
169
+ args, expr, use_evalf=True, complex_wrap_evalf=True)
170
+ self.lambda_func = self.lambda_func_1
171
+ self.failure = False
172
+
173
+ def __call__(self, args):
174
+ try:
175
+ #The result can be sympy.Float. Hence wrap it with complex type.
176
+ result = complex(self.lambda_func(args))
177
+ if abs(result.imag) > 1e-7 * abs(result):
178
+ return None
179
+ return result.real
180
+ except (ZeroDivisionError, OverflowError):
181
+ return None
182
+ except TypeError as e:
183
+ if self.failure:
184
+ raise e
185
+
186
+ if self.lambda_func == self.lambda_func_1:
187
+ self.lambda_func = self.lambda_func_2
188
+ return self.__call__(args)
189
+
190
+ self.failure = True
191
+ self.lambda_func = self.lambda_func_3
192
+ warnings.warn(
193
+ 'The evaluation of the expression is problematic. '
194
+ 'We are trying a failback method that may still work. '
195
+ 'Please report this as a bug.', stacklevel=2)
196
+ return self.__call__(args)
197
+
198
+
199
+ def experimental_lambdify(*args, **kwargs):
200
+ l = Lambdifier(*args, **kwargs)
201
+ return l
202
+
203
+
204
+ class Lambdifier:
205
+ def __init__(self, args, expr, print_lambda=False, use_evalf=False,
206
+ float_wrap_evalf=False, complex_wrap_evalf=False,
207
+ use_np=False, use_python_math=False, use_python_cmath=False,
208
+ use_interval=False):
209
+
210
+ self.print_lambda = print_lambda
211
+ self.use_evalf = use_evalf
212
+ self.float_wrap_evalf = float_wrap_evalf
213
+ self.complex_wrap_evalf = complex_wrap_evalf
214
+ self.use_np = use_np
215
+ self.use_python_math = use_python_math
216
+ self.use_python_cmath = use_python_cmath
217
+ self.use_interval = use_interval
218
+
219
+ # Constructing the argument string
220
+ # - check
221
+ if not all(isinstance(a, Symbol) for a in args):
222
+ raise ValueError('The arguments must be Symbols.')
223
+ # - use numbered symbols
224
+ syms = numbered_symbols(exclude=expr.free_symbols)
225
+ newargs = [next(syms) for _ in args]
226
+ expr = expr.xreplace(dict(zip(args, newargs)))
227
+ argstr = ', '.join([str(a) for a in newargs])
228
+ del syms, newargs, args
229
+
230
+ # Constructing the translation dictionaries and making the translation
231
+ self.dict_str = self.get_dict_str()
232
+ self.dict_fun = self.get_dict_fun()
233
+ exprstr = str(expr)
234
+ newexpr = self.tree2str_translate(self.str2tree(exprstr))
235
+
236
+ # Constructing the namespaces
237
+ namespace = {}
238
+ namespace.update(self.sympy_atoms_namespace(expr))
239
+ namespace.update(self.sympy_expression_namespace(expr))
240
+ # XXX Workaround
241
+ # Ugly workaround because Pow(a,Half) prints as sqrt(a)
242
+ # and sympy_expression_namespace can not catch it.
243
+ from sympy.functions.elementary.miscellaneous import sqrt
244
+ namespace.update({'sqrt': sqrt})
245
+ namespace.update({'Eq': lambda x, y: x == y})
246
+ namespace.update({'Ne': lambda x, y: x != y})
247
+ # End workaround.
248
+ if use_python_math:
249
+ namespace.update({'math': __import__('math')})
250
+ if use_python_cmath:
251
+ namespace.update({'cmath': __import__('cmath')})
252
+ if use_np:
253
+ try:
254
+ namespace.update({'np': __import__('numpy')})
255
+ except ImportError:
256
+ raise ImportError(
257
+ 'experimental_lambdify failed to import numpy.')
258
+ if use_interval:
259
+ namespace.update({'imath': __import__(
260
+ 'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
261
+ namespace.update({'math': __import__('math')})
262
+
263
+ # Construct the lambda
264
+ if self.print_lambda:
265
+ print(newexpr)
266
+ eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
267
+ self.eval_str = eval_str
268
+ exec("MYNEWLAMBDA = %s" % eval_str, namespace)
269
+ self.lambda_func = namespace['MYNEWLAMBDA']
270
+
271
+ def __call__(self, *args, **kwargs):
272
+ return self.lambda_func(*args, **kwargs)
273
+
274
+
275
+ ##############################################################################
276
+ # Dicts for translating from SymPy to other modules
277
+ ##############################################################################
278
+ ###
279
+ # builtins
280
+ ###
281
+ # Functions with different names in builtins
282
+ builtin_functions_different = {
283
+ 'Min': 'min',
284
+ 'Max': 'max',
285
+ 'Abs': 'abs',
286
+ }
287
+
288
+ # Strings that should be translated
289
+ builtin_not_functions = {
290
+ 'I': '1j',
291
+ # 'oo': '1e400',
292
+ }
293
+
294
+ ###
295
+ # numpy
296
+ ###
297
+
298
+ # Functions that are the same in numpy
299
+ numpy_functions_same = [
300
+ 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
301
+ 'sqrt', 'floor', 'conjugate', 'sign',
302
+ ]
303
+
304
+ # Functions with different names in numpy
305
+ numpy_functions_different = {
306
+ "acos": "arccos",
307
+ "acosh": "arccosh",
308
+ "arg": "angle",
309
+ "asin": "arcsin",
310
+ "asinh": "arcsinh",
311
+ "atan": "arctan",
312
+ "atan2": "arctan2",
313
+ "atanh": "arctanh",
314
+ "ceiling": "ceil",
315
+ "im": "imag",
316
+ "ln": "log",
317
+ "Max": "amax",
318
+ "Min": "amin",
319
+ "re": "real",
320
+ "Abs": "abs",
321
+ }
322
+
323
+ # Strings that should be translated
324
+ numpy_not_functions = {
325
+ 'pi': 'np.pi',
326
+ 'oo': 'np.inf',
327
+ 'E': 'np.e',
328
+ }
329
+
330
+ ###
331
+ # Python math
332
+ ###
333
+
334
+ # Functions that are the same in math
335
+ math_functions_same = [
336
+ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
337
+ 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
338
+ 'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
339
+ ]
340
+
341
+ # Functions with different names in math
342
+ math_functions_different = {
343
+ 'ceiling': 'ceil',
344
+ 'ln': 'log',
345
+ 'loggamma': 'lgamma'
346
+ }
347
+
348
+ # Strings that should be translated
349
+ math_not_functions = {
350
+ 'pi': 'math.pi',
351
+ 'E': 'math.e',
352
+ }
353
+
354
+ ###
355
+ # Python cmath
356
+ ###
357
+
358
+ # Functions that are the same in cmath
359
+ cmath_functions_same = [
360
+ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
361
+ 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
362
+ 'exp', 'log', 'sqrt',
363
+ ]
364
+
365
+ # Functions with different names in cmath
366
+ cmath_functions_different = {
367
+ 'ln': 'log',
368
+ 'arg': 'phase',
369
+ }
370
+
371
+ # Strings that should be translated
372
+ cmath_not_functions = {
373
+ 'pi': 'cmath.pi',
374
+ 'E': 'cmath.e',
375
+ }
376
+
377
+ ###
378
+ # intervalmath
379
+ ###
380
+
381
+ interval_not_functions = {
382
+ 'pi': 'math.pi',
383
+ 'E': 'math.e'
384
+ }
385
+
386
+ interval_functions_same = [
387
+ 'sin', 'cos', 'exp', 'tan', 'atan', 'log',
388
+ 'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
389
+ 'acos', 'asin', 'acosh', 'asinh', 'atanh',
390
+ 'Abs', 'And', 'Or'
391
+ ]
392
+
393
+ interval_functions_different = {
394
+ 'Min': 'imin',
395
+ 'Max': 'imax',
396
+ 'ceiling': 'ceil',
397
+
398
+ }
399
+
400
+ ###
401
+ # mpmath, etc
402
+ ###
403
+ #TODO
404
+
405
+ ###
406
+ # Create the final ordered tuples of dictionaries
407
+ ###
408
+
409
+ # For strings
410
+ def get_dict_str(self):
411
+ dict_str = dict(self.builtin_not_functions)
412
+ if self.use_np:
413
+ dict_str.update(self.numpy_not_functions)
414
+ if self.use_python_math:
415
+ dict_str.update(self.math_not_functions)
416
+ if self.use_python_cmath:
417
+ dict_str.update(self.cmath_not_functions)
418
+ if self.use_interval:
419
+ dict_str.update(self.interval_not_functions)
420
+ return dict_str
421
+
422
+ # For functions
423
+ def get_dict_fun(self):
424
+ dict_fun = dict(self.builtin_functions_different)
425
+ if self.use_np:
426
+ for s in self.numpy_functions_same:
427
+ dict_fun[s] = 'np.' + s
428
+ for k, v in self.numpy_functions_different.items():
429
+ dict_fun[k] = 'np.' + v
430
+ if self.use_python_math:
431
+ for s in self.math_functions_same:
432
+ dict_fun[s] = 'math.' + s
433
+ for k, v in self.math_functions_different.items():
434
+ dict_fun[k] = 'math.' + v
435
+ if self.use_python_cmath:
436
+ for s in self.cmath_functions_same:
437
+ dict_fun[s] = 'cmath.' + s
438
+ for k, v in self.cmath_functions_different.items():
439
+ dict_fun[k] = 'cmath.' + v
440
+ if self.use_interval:
441
+ for s in self.interval_functions_same:
442
+ dict_fun[s] = 'imath.' + s
443
+ for k, v in self.interval_functions_different.items():
444
+ dict_fun[k] = 'imath.' + v
445
+ return dict_fun
446
+
447
+ ##############################################################################
448
+ # The translator functions, tree parsers, etc.
449
+ ##############################################################################
450
+
451
+ def str2tree(self, exprstr):
452
+ """Converts an expression string to a tree.
453
+
454
+ Explanation
455
+ ===========
456
+
457
+ Functions are represented by ('func_name(', tree_of_arguments).
458
+ Other expressions are (head_string, mid_tree, tail_str).
459
+ Expressions that do not contain functions are directly returned.
460
+
461
+ Examples
462
+ ========
463
+
464
+ >>> from sympy.abc import x, y, z
465
+ >>> from sympy import Integral, sin
466
+ >>> from sympy.plotting.experimental_lambdify import Lambdifier
467
+ >>> str2tree = Lambdifier([x], x).str2tree
468
+
469
+ >>> str2tree(str(Integral(x, (x, 1, y))))
470
+ ('', ('Integral(', 'x, (x, 1, y)'), ')')
471
+ >>> str2tree(str(x+y))
472
+ 'x + y'
473
+ >>> str2tree(str(x+y*sin(z)+1))
474
+ ('x + y*', ('sin(', 'z'), ') + 1')
475
+ >>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
476
+ ('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
477
+ """
478
+ #matches the first 'function_name('
479
+ first_par = re.search(r'(\w+\()', exprstr)
480
+ if first_par is None:
481
+ return exprstr
482
+ else:
483
+ start = first_par.start()
484
+ end = first_par.end()
485
+ head = exprstr[:start]
486
+ func = exprstr[start:end]
487
+ tail = exprstr[end:]
488
+ count = 0
489
+ for i, c in enumerate(tail):
490
+ if c == '(':
491
+ count += 1
492
+ elif c == ')':
493
+ count -= 1
494
+ if count == -1:
495
+ break
496
+ func_tail = self.str2tree(tail[:i])
497
+ tail = self.str2tree(tail[i:])
498
+ return (head, (func, func_tail), tail)
499
+
500
+ @classmethod
501
+ def tree2str(cls, tree):
502
+ """Converts a tree to string without translations.
503
+
504
+ Examples
505
+ ========
506
+
507
+ >>> from sympy.abc import x, y, z
508
+ >>> from sympy import sin
509
+ >>> from sympy.plotting.experimental_lambdify import Lambdifier
510
+ >>> str2tree = Lambdifier([x], x).str2tree
511
+ >>> tree2str = Lambdifier([x], x).tree2str
512
+
513
+ >>> tree2str(str2tree(str(x+y*sin(z)+1)))
514
+ 'x + y*sin(z) + 1'
515
+ """
516
+ if isinstance(tree, str):
517
+ return tree
518
+ else:
519
+ return ''.join(map(cls.tree2str, tree))
520
+
521
+ def tree2str_translate(self, tree):
522
+ """Converts a tree to string with translations.
523
+
524
+ Explanation
525
+ ===========
526
+
527
+ Function names are translated by translate_func.
528
+ Other strings are translated by translate_str.
529
+ """
530
+ if isinstance(tree, str):
531
+ return self.translate_str(tree)
532
+ elif isinstance(tree, tuple) and len(tree) == 2:
533
+ return self.translate_func(tree[0][:-1], tree[1])
534
+ else:
535
+ return ''.join([self.tree2str_translate(t) for t in tree])
536
+
537
+ def translate_str(self, estr):
538
+ """Translate substrings of estr using in order the dictionaries in
539
+ dict_tuple_str."""
540
+ for pattern, repl in self.dict_str.items():
541
+ estr = re.sub(pattern, repl, estr)
542
+ return estr
543
+
544
+ def translate_func(self, func_name, argtree):
545
+ """Translate function names and the tree of arguments.
546
+
547
+ Explanation
548
+ ===========
549
+
550
+ If the function name is not in the dictionaries of dict_tuple_fun then the
551
+ function is surrounded by a float((...).evalf()).
552
+
553
+ The use of float is necessary as np.<function>(sympy.Float(..)) raises an
554
+ error."""
555
+ if func_name in self.dict_fun:
556
+ new_name = self.dict_fun[func_name]
557
+ argstr = self.tree2str_translate(argtree)
558
+ return new_name + '(' + argstr
559
+ elif func_name in ['Eq', 'Ne']:
560
+ op = {'Eq': '==', 'Ne': '!='}
561
+ return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
562
+ else:
563
+ template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
564
+ if self.float_wrap_evalf:
565
+ template = 'float(%s)' % template
566
+ elif self.complex_wrap_evalf:
567
+ template = 'complex(%s)' % template
568
+
569
+ # Wrapping should only happen on the outermost expression, which
570
+ # is the only thing we know will be a number.
571
+ float_wrap_evalf = self.float_wrap_evalf
572
+ complex_wrap_evalf = self.complex_wrap_evalf
573
+ self.float_wrap_evalf = False
574
+ self.complex_wrap_evalf = False
575
+ ret = template % (func_name, self.tree2str_translate(argtree))
576
+ self.float_wrap_evalf = float_wrap_evalf
577
+ self.complex_wrap_evalf = complex_wrap_evalf
578
+ return ret
579
+
580
+ ##############################################################################
581
+ # The namespace constructors
582
+ ##############################################################################
583
+
584
+ @classmethod
585
+ def sympy_expression_namespace(cls, expr):
586
+ """Traverses the (func, args) tree of an expression and creates a SymPy
587
+ namespace. All other modules are imported only as a module name. That way
588
+ the namespace is not polluted and rests quite small. It probably causes much
589
+ more variable lookups and so it takes more time, but there are no tests on
590
+ that for the moment."""
591
+ if expr is None:
592
+ return {}
593
+ else:
594
+ funcname = str(expr.func)
595
+ # XXX Workaround
596
+ # Here we add an ugly workaround because str(func(x))
597
+ # is not always the same as str(func). Eg
598
+ # >>> str(Integral(x))
599
+ # "Integral(x)"
600
+ # >>> str(Integral)
601
+ # "<class 'sympy.integrals.integrals.Integral'>"
602
+ # >>> str(sqrt(x))
603
+ # "sqrt(x)"
604
+ # >>> str(sqrt)
605
+ # "<function sqrt at 0x3d92de8>"
606
+ # >>> str(sin(x))
607
+ # "sin(x)"
608
+ # >>> str(sin)
609
+ # "sin"
610
+ # Either one of those can be used but not all at the same time.
611
+ # The code considers the sin example as the right one.
612
+ regexlist = [
613
+ r'<class \'sympy[\w.]*?.([\w]*)\'>$',
614
+ # the example Integral
615
+ r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
616
+ ]
617
+ for r in regexlist:
618
+ m = re.match(r, funcname)
619
+ if m is not None:
620
+ funcname = m.groups()[0]
621
+ # End of the workaround
622
+ # XXX debug: print funcname
623
+ args_dict = {}
624
+ for a in expr.args:
625
+ if (isinstance(a, (Symbol, NumberSymbol)) or a in [I, zoo, oo]):
626
+ continue
627
+ else:
628
+ args_dict.update(cls.sympy_expression_namespace(a))
629
+ args_dict.update({funcname: expr.func})
630
+ return args_dict
631
+
632
+ @staticmethod
633
+ def sympy_atoms_namespace(expr):
634
+ """For no real reason this function is separated from
635
+ sympy_expression_namespace. It can be moved to it."""
636
+ atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
637
+ d = {}
638
+ for a in atoms:
639
+ # XXX debug: print 'atom:' + str(a)
640
+ d[str(a)] = a
641
+ return d
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plot.py ADDED
@@ -0,0 +1,1234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Plotting module for SymPy.
2
+
3
+ A plot is represented by the ``Plot`` class that contains a reference to the
4
+ backend and a list of the data series to be plotted. The data series are
5
+ instances of classes meant to simplify getting points and meshes from SymPy
6
+ expressions. ``plot_backends`` is a dictionary with all the backends.
7
+
8
+ This module gives only the essential. For all the fancy stuff use directly
9
+ the backend. You can get the backend wrapper for every plot from the
10
+ ``_backend`` attribute. Moreover the data series classes have various useful
11
+ methods like ``get_points``, ``get_meshes``, etc, that may
12
+ be useful if you wish to use another plotting library.
13
+
14
+ Especially if you need publication ready graphs and this module is not enough
15
+ for you - just get the ``_backend`` attribute and add whatever you want
16
+ directly to it. In the case of matplotlib (the common way to graph data in
17
+ python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
18
+ which is the axis and work on them as you would on any other matplotlib object.
19
+
20
+ Simplicity of code takes much greater importance than performance. Do not use it
21
+ if you care at all about performance. A new backend instance is initialized
22
+ every time you call ``show()`` and the old one is left to the garbage collector.
23
+ """
24
+
25
+ from sympy.concrete.summations import Sum
26
+ from sympy.core.containers import Tuple
27
+ from sympy.core.expr import Expr
28
+ from sympy.core.function import Function, AppliedUndef
29
+ from sympy.core.symbol import (Dummy, Symbol, Wild)
30
+ from sympy.external import import_module
31
+ from sympy.functions import sign
32
+ from sympy.plotting.backends.base_backend import Plot
33
+ from sympy.plotting.backends.matplotlibbackend import MatplotlibBackend
34
+ from sympy.plotting.backends.textbackend import TextBackend
35
+ from sympy.plotting.series import (
36
+ LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries,
37
+ ParametricSurfaceSeries, SurfaceOver2DRangeSeries, ContourSeries)
38
+ from sympy.plotting.utils import _check_arguments, _plot_sympify
39
+ from sympy.tensor.indexed import Indexed
40
+ # to maintain back-compatibility
41
+ from sympy.plotting.plotgrid import PlotGrid # noqa: F401
42
+ from sympy.plotting.series import BaseSeries # noqa: F401
43
+ from sympy.plotting.series import Line2DBaseSeries # noqa: F401
44
+ from sympy.plotting.series import Line3DBaseSeries # noqa: F401
45
+ from sympy.plotting.series import SurfaceBaseSeries # noqa: F401
46
+ from sympy.plotting.series import List2DSeries # noqa: F401
47
+ from sympy.plotting.series import GenericDataSeries # noqa: F401
48
+ from sympy.plotting.series import centers_of_faces # noqa: F401
49
+ from sympy.plotting.series import centers_of_segments # noqa: F401
50
+ from sympy.plotting.series import flat # noqa: F401
51
+ from sympy.plotting.backends.base_backend import unset_show # noqa: F401
52
+ from sympy.plotting.backends.matplotlibbackend import _matplotlib_list # noqa: F401
53
+ from sympy.plotting.textplot import textplot # noqa: F401
54
+
55
+
56
+ __doctest_requires__ = {
57
+ ('plot3d',
58
+ 'plot3d_parametric_line',
59
+ 'plot3d_parametric_surface',
60
+ 'plot_parametric'): ['matplotlib'],
61
+ # XXX: The plot doctest possibly should not require matplotlib. It fails at
62
+ # plot(x**2, (x, -5, 5)) which should be fine for text backend.
63
+ ('plot',): ['matplotlib'],
64
+ }
65
+
66
+
67
+ def _process_summations(sum_bound, *args):
68
+ """Substitute oo (infinity) in the lower/upper bounds of a summation with
69
+ some integer number.
70
+
71
+ Parameters
72
+ ==========
73
+
74
+ sum_bound : int
75
+ oo will be substituted with this integer number.
76
+ *args : list/tuple
77
+ pre-processed arguments of the form (expr, range, ...)
78
+
79
+ Notes
80
+ =====
81
+ Let's consider the following summation: ``Sum(1 / x**2, (x, 1, oo))``.
82
+ The current implementation of lambdify (SymPy 1.12 at the time of
83
+ writing this) will create something of this form:
84
+ ``sum(1 / x**2 for x in range(1, INF))``
85
+ The problem is that ``type(INF)`` is float, while ``range`` requires
86
+ integers: the evaluation fails.
87
+ Instead of modifying ``lambdify`` (which requires a deep knowledge), just
88
+ replace it with some integer number.
89
+ """
90
+ def new_bound(t, bound):
91
+ if (not t.is_number) or t.is_finite:
92
+ return t
93
+ if sign(t) >= 0:
94
+ return bound
95
+ return -bound
96
+
97
+ args = list(args)
98
+ expr = args[0]
99
+
100
+ # select summations whose lower/upper bound is infinity
101
+ w = Wild("w", properties=[
102
+ lambda t: isinstance(t, Sum),
103
+ lambda t: any((not a[1].is_finite) or (not a[2].is_finite) for i, a in enumerate(t.args) if i > 0)
104
+ ])
105
+
106
+ for t in list(expr.find(w)):
107
+ sums_args = list(t.args)
108
+ for i, a in enumerate(sums_args):
109
+ if i > 0:
110
+ sums_args[i] = (a[0], new_bound(a[1], sum_bound),
111
+ new_bound(a[2], sum_bound))
112
+ s = Sum(*sums_args)
113
+ expr = expr.subs(t, s)
114
+ args[0] = expr
115
+ return args
116
+
117
+
118
+ def _build_line_series(*args, **kwargs):
119
+ """Loop over the provided arguments and create the necessary line series.
120
+ """
121
+ series = []
122
+ sum_bound = int(kwargs.get("sum_bound", 1000))
123
+ for arg in args:
124
+ expr, r, label, rendering_kw = arg
125
+ kw = kwargs.copy()
126
+ if rendering_kw is not None:
127
+ kw["rendering_kw"] = rendering_kw
128
+ # TODO: _process_piecewise check goes here
129
+ if not callable(expr):
130
+ arg = _process_summations(sum_bound, *arg)
131
+ series.append(LineOver1DRangeSeries(*arg[:-1], **kw))
132
+ return series
133
+
134
+
135
+ def _create_series(series_type, plot_expr, **kwargs):
136
+ """Extract the rendering_kw dictionary from the provided arguments and
137
+ create an appropriate data series.
138
+ """
139
+ series = []
140
+ for args in plot_expr:
141
+ kw = kwargs.copy()
142
+ if args[-1] is not None:
143
+ kw["rendering_kw"] = args[-1]
144
+ series.append(series_type(*args[:-1], **kw))
145
+ return series
146
+
147
+
148
+ def _set_labels(series, labels, rendering_kw):
149
+ """Apply the `label` and `rendering_kw` keyword arguments to the series.
150
+ """
151
+ if not isinstance(labels, (list, tuple)):
152
+ labels = [labels]
153
+ if len(labels) > 0:
154
+ if len(labels) == 1 and len(series) > 1:
155
+ # if one label is provided and multiple series are being plotted,
156
+ # set the same label to all data series. It maintains
157
+ # back-compatibility
158
+ labels *= len(series)
159
+ if len(series) != len(labels):
160
+ raise ValueError("The number of labels must be equal to the "
161
+ "number of expressions being plotted.\nReceived "
162
+ f"{len(series)} expressions and {len(labels)} labels")
163
+
164
+ for s, l in zip(series, labels):
165
+ s.label = l
166
+
167
+ if rendering_kw:
168
+ if isinstance(rendering_kw, dict):
169
+ rendering_kw = [rendering_kw]
170
+ if len(rendering_kw) == 1:
171
+ rendering_kw *= len(series)
172
+ elif len(series) != len(rendering_kw):
173
+ raise ValueError("The number of rendering dictionaries must be "
174
+ "equal to the number of expressions being plotted.\nReceived "
175
+ f"{len(series)} expressions and {len(labels)} labels")
176
+ for s, r in zip(series, rendering_kw):
177
+ s.rendering_kw = r
178
+
179
+
180
+ def plot_factory(*args, **kwargs):
181
+ backend = kwargs.pop("backend", "default")
182
+ if isinstance(backend, str):
183
+ if backend == "default":
184
+ matplotlib = import_module('matplotlib',
185
+ min_module_version='1.1.0', catch=(RuntimeError,))
186
+ if matplotlib:
187
+ return MatplotlibBackend(*args, **kwargs)
188
+ return TextBackend(*args, **kwargs)
189
+ return plot_backends[backend](*args, **kwargs)
190
+ elif (type(backend) == type) and issubclass(backend, Plot):
191
+ return backend(*args, **kwargs)
192
+ else:
193
+ raise TypeError("backend must be either a string or a subclass of ``Plot``.")
194
+
195
+
196
+ plot_backends = {
197
+ 'matplotlib': MatplotlibBackend,
198
+ 'text': TextBackend,
199
+ }
200
+
201
+
202
+ ####New API for plotting module ####
203
+
204
+ # TODO: Add color arrays for plots.
205
+ # TODO: Add more plotting options for 3d plots.
206
+ # TODO: Adaptive sampling for 3D plots.
207
+
208
+ def plot(*args, show=True, **kwargs):
209
+ """Plots a function of a single variable as a curve.
210
+
211
+ Parameters
212
+ ==========
213
+
214
+ args :
215
+ The first argument is the expression representing the function
216
+ of single variable to be plotted.
217
+
218
+ The last argument is a 3-tuple denoting the range of the free
219
+ variable. e.g. ``(x, 0, 5)``
220
+
221
+ Typical usage examples are in the following:
222
+
223
+ - Plotting a single expression with a single range.
224
+ ``plot(expr, range, **kwargs)``
225
+ - Plotting a single expression with the default range (-10, 10).
226
+ ``plot(expr, **kwargs)``
227
+ - Plotting multiple expressions with a single range.
228
+ ``plot(expr1, expr2, ..., range, **kwargs)``
229
+ - Plotting multiple expressions with multiple ranges.
230
+ ``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
231
+
232
+ It is best practice to specify range explicitly because default
233
+ range may change in the future if a more advanced default range
234
+ detection algorithm is implemented.
235
+
236
+ show : bool, optional
237
+ The default value is set to ``True``. Set show to ``False`` and
238
+ the function will not display the plot. The returned instance of
239
+ the ``Plot`` class can then be used to save or display the plot
240
+ by calling the ``save()`` and ``show()`` methods respectively.
241
+
242
+ line_color : string, or float, or function, optional
243
+ Specifies the color for the plot.
244
+ See ``Plot`` to see how to set color for the plots.
245
+ Note that by setting ``line_color``, it would be applied simultaneously
246
+ to all the series.
247
+
248
+ title : str, optional
249
+ Title of the plot. It is set to the latex representation of
250
+ the expression, if the plot has only one expression.
251
+
252
+ label : str, optional
253
+ The label of the expression in the plot. It will be used when
254
+ called with ``legend``. Default is the name of the expression.
255
+ e.g. ``sin(x)``
256
+
257
+ xlabel : str or expression, optional
258
+ Label for the x-axis.
259
+
260
+ ylabel : str or expression, optional
261
+ Label for the y-axis.
262
+
263
+ xscale : 'linear' or 'log', optional
264
+ Sets the scaling of the x-axis.
265
+
266
+ yscale : 'linear' or 'log', optional
267
+ Sets the scaling of the y-axis.
268
+
269
+ axis_center : (float, float), optional
270
+ Tuple of two floats denoting the coordinates of the center or
271
+ {'center', 'auto'}
272
+
273
+ xlim : (float, float), optional
274
+ Denotes the x-axis limits, ``(min, max)```.
275
+
276
+ ylim : (float, float), optional
277
+ Denotes the y-axis limits, ``(min, max)```.
278
+
279
+ annotations : list, optional
280
+ A list of dictionaries specifying the type of annotation
281
+ required. The keys in the dictionary should be equivalent
282
+ to the arguments of the :external:mod:`matplotlib`'s
283
+ :external:meth:`~matplotlib.axes.Axes.annotate` method.
284
+
285
+ markers : list, optional
286
+ A list of dictionaries specifying the type the markers required.
287
+ The keys in the dictionary should be equivalent to the arguments
288
+ of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
289
+ along with the marker related keyworded arguments.
290
+
291
+ rectangles : list, optional
292
+ A list of dictionaries specifying the dimensions of the
293
+ rectangles to be plotted. The keys in the dictionary should be
294
+ equivalent to the arguments of the :external:mod:`matplotlib`'s
295
+ :external:class:`~matplotlib.patches.Rectangle` class.
296
+
297
+ fill : dict, optional
298
+ A dictionary specifying the type of color filling required in
299
+ the plot. The keys in the dictionary should be equivalent to the
300
+ arguments of the :external:mod:`matplotlib`'s
301
+ :external:meth:`~matplotlib.axes.Axes.fill_between` method.
302
+
303
+ adaptive : bool, optional
304
+ The default value is set to ``True``. Set adaptive to ``False``
305
+ and specify ``n`` if uniform sampling is required.
306
+
307
+ The plotting uses an adaptive algorithm which samples
308
+ recursively to accurately plot. The adaptive algorithm uses a
309
+ random point near the midpoint of two points that has to be
310
+ further sampled. Hence the same plots can appear slightly
311
+ different.
312
+
313
+ depth : int, optional
314
+ Recursion depth of the adaptive algorithm. A depth of value
315
+ `n` samples a maximum of `2^{n}` points.
316
+
317
+ If the ``adaptive`` flag is set to ``False``, this will be
318
+ ignored.
319
+
320
+ n : int, optional
321
+ Used when the ``adaptive`` is set to ``False``. The function
322
+ is uniformly sampled at ``n`` number of points. If the ``adaptive``
323
+ flag is set to ``True``, this will be ignored.
324
+ This keyword argument replaces ``nb_of_points``, which should be
325
+ considered deprecated.
326
+
327
+ size : (float, float), optional
328
+ A tuple in the form (width, height) in inches to specify the size of
329
+ the overall figure. The default value is set to ``None``, meaning
330
+ the size will be set by the default backend.
331
+
332
+ Examples
333
+ ========
334
+
335
+ .. plot::
336
+ :context: close-figs
337
+ :format: doctest
338
+ :include-source: True
339
+
340
+ >>> from sympy import symbols
341
+ >>> from sympy.plotting import plot
342
+ >>> x = symbols('x')
343
+
344
+ Single Plot
345
+
346
+ .. plot::
347
+ :context: close-figs
348
+ :format: doctest
349
+ :include-source: True
350
+
351
+ >>> plot(x**2, (x, -5, 5))
352
+ Plot object containing:
353
+ [0]: cartesian line: x**2 for x over (-5.0, 5.0)
354
+
355
+ Multiple plots with single range.
356
+
357
+ .. plot::
358
+ :context: close-figs
359
+ :format: doctest
360
+ :include-source: True
361
+
362
+ >>> plot(x, x**2, x**3, (x, -5, 5))
363
+ Plot object containing:
364
+ [0]: cartesian line: x for x over (-5.0, 5.0)
365
+ [1]: cartesian line: x**2 for x over (-5.0, 5.0)
366
+ [2]: cartesian line: x**3 for x over (-5.0, 5.0)
367
+
368
+ Multiple plots with different ranges.
369
+
370
+ .. plot::
371
+ :context: close-figs
372
+ :format: doctest
373
+ :include-source: True
374
+
375
+ >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
376
+ Plot object containing:
377
+ [0]: cartesian line: x**2 for x over (-6.0, 6.0)
378
+ [1]: cartesian line: x for x over (-5.0, 5.0)
379
+
380
+ No adaptive sampling.
381
+
382
+ .. plot::
383
+ :context: close-figs
384
+ :format: doctest
385
+ :include-source: True
386
+
387
+ >>> plot(x**2, adaptive=False, n=400)
388
+ Plot object containing:
389
+ [0]: cartesian line: x**2 for x over (-10.0, 10.0)
390
+
391
+ See Also
392
+ ========
393
+
394
+ Plot, LineOver1DRangeSeries
395
+
396
+ """
397
+ args = _plot_sympify(args)
398
+ plot_expr = _check_arguments(args, 1, 1, **kwargs)
399
+ params = kwargs.get("params", None)
400
+ free = set()
401
+ for p in plot_expr:
402
+ if not isinstance(p[1][0], str):
403
+ free |= {p[1][0]}
404
+ else:
405
+ free |= {Symbol(p[1][0])}
406
+ if params:
407
+ free = free.difference(params.keys())
408
+ x = free.pop() if free else Symbol("x")
409
+ kwargs.setdefault('xlabel', x)
410
+ kwargs.setdefault('ylabel', Function('f')(x))
411
+
412
+ labels = kwargs.pop("label", [])
413
+ rendering_kw = kwargs.pop("rendering_kw", None)
414
+ series = _build_line_series(*plot_expr, **kwargs)
415
+ _set_labels(series, labels, rendering_kw)
416
+
417
+ plots = plot_factory(*series, **kwargs)
418
+ if show:
419
+ plots.show()
420
+ return plots
421
+
422
+
423
+ def plot_parametric(*args, show=True, **kwargs):
424
+ """
425
+ Plots a 2D parametric curve.
426
+
427
+ Parameters
428
+ ==========
429
+
430
+ args
431
+ Common specifications are:
432
+
433
+ - Plotting a single parametric curve with a range
434
+ ``plot_parametric((expr_x, expr_y), range)``
435
+ - Plotting multiple parametric curves with the same range
436
+ ``plot_parametric((expr_x, expr_y), ..., range)``
437
+ - Plotting multiple parametric curves with different ranges
438
+ ``plot_parametric((expr_x, expr_y, range), ...)``
439
+
440
+ ``expr_x`` is the expression representing $x$ component of the
441
+ parametric function.
442
+
443
+ ``expr_y`` is the expression representing $y$ component of the
444
+ parametric function.
445
+
446
+ ``range`` is a 3-tuple denoting the parameter symbol, start and
447
+ stop. For example, ``(u, 0, 5)``.
448
+
449
+ If the range is not specified, then a default range of (-10, 10)
450
+ is used.
451
+
452
+ However, if the arguments are specified as
453
+ ``(expr_x, expr_y, range), ...``, you must specify the ranges
454
+ for each expressions manually.
455
+
456
+ Default range may change in the future if a more advanced
457
+ algorithm is implemented.
458
+
459
+ adaptive : bool, optional
460
+ Specifies whether to use the adaptive sampling or not.
461
+
462
+ The default value is set to ``True``. Set adaptive to ``False``
463
+ and specify ``n`` if uniform sampling is required.
464
+
465
+ depth : int, optional
466
+ The recursion depth of the adaptive algorithm. A depth of
467
+ value $n$ samples a maximum of $2^n$ points.
468
+
469
+ n : int, optional
470
+ Used when the ``adaptive`` flag is set to ``False``. Specifies the
471
+ number of the points used for the uniform sampling.
472
+ This keyword argument replaces ``nb_of_points``, which should be
473
+ considered deprecated.
474
+
475
+ line_color : string, or float, or function, optional
476
+ Specifies the color for the plot.
477
+ See ``Plot`` to see how to set color for the plots.
478
+ Note that by setting ``line_color``, it would be applied simultaneously
479
+ to all the series.
480
+
481
+ label : str, optional
482
+ The label of the expression in the plot. It will be used when
483
+ called with ``legend``. Default is the name of the expression.
484
+ e.g. ``sin(x)``
485
+
486
+ xlabel : str, optional
487
+ Label for the x-axis.
488
+
489
+ ylabel : str, optional
490
+ Label for the y-axis.
491
+
492
+ xscale : 'linear' or 'log', optional
493
+ Sets the scaling of the x-axis.
494
+
495
+ yscale : 'linear' or 'log', optional
496
+ Sets the scaling of the y-axis.
497
+
498
+ axis_center : (float, float), optional
499
+ Tuple of two floats denoting the coordinates of the center or
500
+ {'center', 'auto'}
501
+
502
+ xlim : (float, float), optional
503
+ Denotes the x-axis limits, ``(min, max)```.
504
+
505
+ ylim : (float, float), optional
506
+ Denotes the y-axis limits, ``(min, max)```.
507
+
508
+ size : (float, float), optional
509
+ A tuple in the form (width, height) in inches to specify the size of
510
+ the overall figure. The default value is set to ``None``, meaning
511
+ the size will be set by the default backend.
512
+
513
+ Examples
514
+ ========
515
+
516
+ .. plot::
517
+ :context: reset
518
+ :format: doctest
519
+ :include-source: True
520
+
521
+ >>> from sympy import plot_parametric, symbols, cos, sin
522
+ >>> u = symbols('u')
523
+
524
+ A parametric plot with a single expression:
525
+
526
+ .. plot::
527
+ :context: close-figs
528
+ :format: doctest
529
+ :include-source: True
530
+
531
+ >>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
532
+ Plot object containing:
533
+ [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
534
+
535
+ A parametric plot with multiple expressions with the same range:
536
+
537
+ .. plot::
538
+ :context: close-figs
539
+ :format: doctest
540
+ :include-source: True
541
+
542
+ >>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
543
+ Plot object containing:
544
+ [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
545
+ [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
546
+
547
+ A parametric plot with multiple expressions with different ranges
548
+ for each curve:
549
+
550
+ .. plot::
551
+ :context: close-figs
552
+ :format: doctest
553
+ :include-source: True
554
+
555
+ >>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
556
+ ... (cos(u), u, (u, -5, 5)))
557
+ Plot object containing:
558
+ [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
559
+ [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
560
+
561
+ Notes
562
+ =====
563
+
564
+ The plotting uses an adaptive algorithm which samples recursively to
565
+ accurately plot the curve. The adaptive algorithm uses a random point
566
+ near the midpoint of two points that has to be further sampled.
567
+ Hence, repeating the same plot command can give slightly different
568
+ results because of the random sampling.
569
+
570
+ If there are multiple plots, then the same optional arguments are
571
+ applied to all the plots drawn in the same canvas. If you want to
572
+ set these options separately, you can index the returned ``Plot``
573
+ object and set it.
574
+
575
+ For example, when you specify ``line_color`` once, it would be
576
+ applied simultaneously to both series.
577
+
578
+ .. plot::
579
+ :context: close-figs
580
+ :format: doctest
581
+ :include-source: True
582
+
583
+ >>> from sympy import pi
584
+ >>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
585
+ >>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
586
+ >>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
587
+
588
+ If you want to specify the line color for the specific series, you
589
+ should index each item and apply the property manually.
590
+
591
+ .. plot::
592
+ :context: close-figs
593
+ :format: doctest
594
+ :include-source: True
595
+
596
+ >>> p[0].line_color = 'red'
597
+ >>> p.show()
598
+
599
+ See Also
600
+ ========
601
+
602
+ Plot, Parametric2DLineSeries
603
+ """
604
+ args = _plot_sympify(args)
605
+ plot_expr = _check_arguments(args, 2, 1, **kwargs)
606
+
607
+ labels = kwargs.pop("label", [])
608
+ rendering_kw = kwargs.pop("rendering_kw", None)
609
+ series = _create_series(Parametric2DLineSeries, plot_expr, **kwargs)
610
+ _set_labels(series, labels, rendering_kw)
611
+
612
+ plots = plot_factory(*series, **kwargs)
613
+ if show:
614
+ plots.show()
615
+ return plots
616
+
617
+
618
+ def plot3d_parametric_line(*args, show=True, **kwargs):
619
+ """
620
+ Plots a 3D parametric line plot.
621
+
622
+ Usage
623
+ =====
624
+
625
+ Single plot:
626
+
627
+ ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
628
+
629
+ If the range is not specified, then a default range of (-10, 10) is used.
630
+
631
+ Multiple plots.
632
+
633
+ ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
634
+
635
+ Ranges have to be specified for every expression.
636
+
637
+ Default range may change in the future if a more advanced default range
638
+ detection algorithm is implemented.
639
+
640
+ Arguments
641
+ =========
642
+
643
+ expr_x : Expression representing the function along x.
644
+
645
+ expr_y : Expression representing the function along y.
646
+
647
+ expr_z : Expression representing the function along z.
648
+
649
+ range : (:class:`~.Symbol`, float, float)
650
+ A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).
651
+
652
+ Keyword Arguments
653
+ =================
654
+
655
+ Arguments for ``Parametric3DLineSeries`` class.
656
+
657
+ n : int
658
+ The range is uniformly sampled at ``n`` number of points.
659
+ This keyword argument replaces ``nb_of_points``, which should be
660
+ considered deprecated.
661
+
662
+ Aesthetics:
663
+
664
+ line_color : string, or float, or function, optional
665
+ Specifies the color for the plot.
666
+ See ``Plot`` to see how to set color for the plots.
667
+ Note that by setting ``line_color``, it would be applied simultaneously
668
+ to all the series.
669
+
670
+ label : str
671
+ The label to the plot. It will be used when called with ``legend=True``
672
+ to denote the function with the given label in the plot.
673
+
674
+ If there are multiple plots, then the same series arguments are applied to
675
+ all the plots. If you want to set these options separately, you can index
676
+ the returned ``Plot`` object and set it.
677
+
678
+ Arguments for ``Plot`` class.
679
+
680
+ title : str
681
+ Title of the plot.
682
+
683
+ size : (float, float), optional
684
+ A tuple in the form (width, height) in inches to specify the size of
685
+ the overall figure. The default value is set to ``None``, meaning
686
+ the size will be set by the default backend.
687
+
688
+ Examples
689
+ ========
690
+
691
+ .. plot::
692
+ :context: reset
693
+ :format: doctest
694
+ :include-source: True
695
+
696
+ >>> from sympy import symbols, cos, sin
697
+ >>> from sympy.plotting import plot3d_parametric_line
698
+ >>> u = symbols('u')
699
+
700
+ Single plot.
701
+
702
+ .. plot::
703
+ :context: close-figs
704
+ :format: doctest
705
+ :include-source: True
706
+
707
+ >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
708
+ Plot object containing:
709
+ [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
710
+
711
+
712
+ Multiple plots.
713
+
714
+ .. plot::
715
+ :context: close-figs
716
+ :format: doctest
717
+ :include-source: True
718
+
719
+ >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
720
+ ... (sin(u), u**2, u, (u, -5, 5)))
721
+ Plot object containing:
722
+ [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
723
+ [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
724
+
725
+
726
+ See Also
727
+ ========
728
+
729
+ Plot, Parametric3DLineSeries
730
+
731
+ """
732
+ args = _plot_sympify(args)
733
+ plot_expr = _check_arguments(args, 3, 1, **kwargs)
734
+ kwargs.setdefault("xlabel", "x")
735
+ kwargs.setdefault("ylabel", "y")
736
+ kwargs.setdefault("zlabel", "z")
737
+
738
+ labels = kwargs.pop("label", [])
739
+ rendering_kw = kwargs.pop("rendering_kw", None)
740
+ series = _create_series(Parametric3DLineSeries, plot_expr, **kwargs)
741
+ _set_labels(series, labels, rendering_kw)
742
+
743
+ plots = plot_factory(*series, **kwargs)
744
+ if show:
745
+ plots.show()
746
+ return plots
747
+
748
+
749
+ def _plot3d_plot_contour_helper(Series, *args, **kwargs):
750
+ """plot3d and plot_contour are structurally identical. Let's reduce
751
+ code repetition.
752
+ """
753
+ # NOTE: if this import would be at the top-module level, it would trigger
754
+ # SymPy's optional-dependencies tests to fail.
755
+ from sympy.vector import BaseScalar
756
+
757
+ args = _plot_sympify(args)
758
+ plot_expr = _check_arguments(args, 1, 2, **kwargs)
759
+
760
+ free_x = set()
761
+ free_y = set()
762
+ _types = (Symbol, BaseScalar, Indexed, AppliedUndef)
763
+ for p in plot_expr:
764
+ free_x |= {p[1][0]} if isinstance(p[1][0], _types) else {Symbol(p[1][0])}
765
+ free_y |= {p[2][0]} if isinstance(p[2][0], _types) else {Symbol(p[2][0])}
766
+ x = free_x.pop() if free_x else Symbol("x")
767
+ y = free_y.pop() if free_y else Symbol("y")
768
+ kwargs.setdefault("xlabel", x)
769
+ kwargs.setdefault("ylabel", y)
770
+ kwargs.setdefault("zlabel", Function('f')(x, y))
771
+
772
+ # if a polar discretization is requested and automatic labelling has ben
773
+ # applied, hide the labels on the x-y axis.
774
+ if kwargs.get("is_polar", False):
775
+ if callable(kwargs["xlabel"]):
776
+ kwargs["xlabel"] = ""
777
+ if callable(kwargs["ylabel"]):
778
+ kwargs["ylabel"] = ""
779
+
780
+ labels = kwargs.pop("label", [])
781
+ rendering_kw = kwargs.pop("rendering_kw", None)
782
+ series = _create_series(Series, plot_expr, **kwargs)
783
+ _set_labels(series, labels, rendering_kw)
784
+ plots = plot_factory(*series, **kwargs)
785
+ if kwargs.get("show", True):
786
+ plots.show()
787
+ return plots
788
+
789
+
790
+ def plot3d(*args, show=True, **kwargs):
791
+ """
792
+ Plots a 3D surface plot.
793
+
794
+ Usage
795
+ =====
796
+
797
+ Single plot
798
+
799
+ ``plot3d(expr, range_x, range_y, **kwargs)``
800
+
801
+ If the ranges are not specified, then a default range of (-10, 10) is used.
802
+
803
+ Multiple plot with the same range.
804
+
805
+ ``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
806
+
807
+ If the ranges are not specified, then a default range of (-10, 10) is used.
808
+
809
+ Multiple plots with different ranges.
810
+
811
+ ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
812
+
813
+ Ranges have to be specified for every expression.
814
+
815
+ Default range may change in the future if a more advanced default range
816
+ detection algorithm is implemented.
817
+
818
+ Arguments
819
+ =========
820
+
821
+ expr : Expression representing the function along x.
822
+
823
+ range_x : (:class:`~.Symbol`, float, float)
824
+ A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
825
+
826
+ range_y : (:class:`~.Symbol`, float, float)
827
+ A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
828
+
829
+ Keyword Arguments
830
+ =================
831
+
832
+ Arguments for ``SurfaceOver2DRangeSeries`` class:
833
+
834
+ n1 : int
835
+ The x range is sampled uniformly at ``n1`` of points.
836
+ This keyword argument replaces ``nb_of_points_x``, which should be
837
+ considered deprecated.
838
+
839
+ n2 : int
840
+ The y range is sampled uniformly at ``n2`` of points.
841
+ This keyword argument replaces ``nb_of_points_y``, which should be
842
+ considered deprecated.
843
+
844
+ Aesthetics:
845
+
846
+ surface_color : Function which returns a float
847
+ Specifies the color for the surface of the plot.
848
+ See :class:`~.Plot` for more details.
849
+
850
+ If there are multiple plots, then the same series arguments are applied to
851
+ all the plots. If you want to set these options separately, you can index
852
+ the returned ``Plot`` object and set it.
853
+
854
+ Arguments for ``Plot`` class:
855
+
856
+ title : str
857
+ Title of the plot.
858
+
859
+ size : (float, float), optional
860
+ A tuple in the form (width, height) in inches to specify the size of the
861
+ overall figure. The default value is set to ``None``, meaning the size will
862
+ be set by the default backend.
863
+
864
+ Examples
865
+ ========
866
+
867
+ .. plot::
868
+ :context: reset
869
+ :format: doctest
870
+ :include-source: True
871
+
872
+ >>> from sympy import symbols
873
+ >>> from sympy.plotting import plot3d
874
+ >>> x, y = symbols('x y')
875
+
876
+ Single plot
877
+
878
+ .. plot::
879
+ :context: close-figs
880
+ :format: doctest
881
+ :include-source: True
882
+
883
+ >>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
884
+ Plot object containing:
885
+ [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
886
+
887
+
888
+ Multiple plots with same range
889
+
890
+ .. plot::
891
+ :context: close-figs
892
+ :format: doctest
893
+ :include-source: True
894
+
895
+ >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
896
+ Plot object containing:
897
+ [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
898
+ [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
899
+
900
+
901
+ Multiple plots with different ranges.
902
+
903
+ .. plot::
904
+ :context: close-figs
905
+ :format: doctest
906
+ :include-source: True
907
+
908
+ >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
909
+ ... (x*y, (x, -3, 3), (y, -3, 3)))
910
+ Plot object containing:
911
+ [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
912
+ [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
913
+
914
+
915
+ See Also
916
+ ========
917
+
918
+ Plot, SurfaceOver2DRangeSeries
919
+
920
+ """
921
+ kwargs.setdefault("show", show)
922
+ return _plot3d_plot_contour_helper(
923
+ SurfaceOver2DRangeSeries, *args, **kwargs)
924
+
925
+
926
+ def plot3d_parametric_surface(*args, show=True, **kwargs):
927
+ """
928
+ Plots a 3D parametric surface plot.
929
+
930
+ Explanation
931
+ ===========
932
+
933
+ Single plot.
934
+
935
+ ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
936
+
937
+ If the ranges is not specified, then a default range of (-10, 10) is used.
938
+
939
+ Multiple plots.
940
+
941
+ ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
942
+
943
+ Ranges have to be specified for every expression.
944
+
945
+ Default range may change in the future if a more advanced default range
946
+ detection algorithm is implemented.
947
+
948
+ Arguments
949
+ =========
950
+
951
+ expr_x : Expression representing the function along ``x``.
952
+
953
+ expr_y : Expression representing the function along ``y``.
954
+
955
+ expr_z : Expression representing the function along ``z``.
956
+
957
+ range_u : (:class:`~.Symbol`, float, float)
958
+ A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
959
+
960
+ range_v : (:class:`~.Symbol`, float, float)
961
+ A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
962
+
963
+ Keyword Arguments
964
+ =================
965
+
966
+ Arguments for ``ParametricSurfaceSeries`` class:
967
+
968
+ n1 : int
969
+ The ``u`` range is sampled uniformly at ``n1`` of points.
970
+ This keyword argument replaces ``nb_of_points_u``, which should be
971
+ considered deprecated.
972
+
973
+ n2 : int
974
+ The ``v`` range is sampled uniformly at ``n2`` of points.
975
+ This keyword argument replaces ``nb_of_points_v``, which should be
976
+ considered deprecated.
977
+
978
+ Aesthetics:
979
+
980
+ surface_color : Function which returns a float
981
+ Specifies the color for the surface of the plot. See
982
+ :class:`~Plot` for more details.
983
+
984
+ If there are multiple plots, then the same series arguments are applied for
985
+ all the plots. If you want to set these options separately, you can index
986
+ the returned ``Plot`` object and set it.
987
+
988
+
989
+ Arguments for ``Plot`` class:
990
+
991
+ title : str
992
+ Title of the plot.
993
+
994
+ size : (float, float), optional
995
+ A tuple in the form (width, height) in inches to specify the size of the
996
+ overall figure. The default value is set to ``None``, meaning the size will
997
+ be set by the default backend.
998
+
999
+ Examples
1000
+ ========
1001
+
1002
+ .. plot::
1003
+ :context: reset
1004
+ :format: doctest
1005
+ :include-source: True
1006
+
1007
+ >>> from sympy import symbols, cos, sin
1008
+ >>> from sympy.plotting import plot3d_parametric_surface
1009
+ >>> u, v = symbols('u v')
1010
+
1011
+ Single plot.
1012
+
1013
+ .. plot::
1014
+ :context: close-figs
1015
+ :format: doctest
1016
+ :include-source: True
1017
+
1018
+ >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
1019
+ ... (u, -5, 5), (v, -5, 5))
1020
+ Plot object containing:
1021
+ [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
1022
+
1023
+
1024
+ See Also
1025
+ ========
1026
+
1027
+ Plot, ParametricSurfaceSeries
1028
+
1029
+ """
1030
+
1031
+ args = _plot_sympify(args)
1032
+ plot_expr = _check_arguments(args, 3, 2, **kwargs)
1033
+ kwargs.setdefault("xlabel", "x")
1034
+ kwargs.setdefault("ylabel", "y")
1035
+ kwargs.setdefault("zlabel", "z")
1036
+
1037
+ labels = kwargs.pop("label", [])
1038
+ rendering_kw = kwargs.pop("rendering_kw", None)
1039
+ series = _create_series(ParametricSurfaceSeries, plot_expr, **kwargs)
1040
+ _set_labels(series, labels, rendering_kw)
1041
+
1042
+ plots = plot_factory(*series, **kwargs)
1043
+ if show:
1044
+ plots.show()
1045
+ return plots
1046
+
1047
+ def plot_contour(*args, show=True, **kwargs):
1048
+ """
1049
+ Draws contour plot of a function
1050
+
1051
+ Usage
1052
+ =====
1053
+
1054
+ Single plot
1055
+
1056
+ ``plot_contour(expr, range_x, range_y, **kwargs)``
1057
+
1058
+ If the ranges are not specified, then a default range of (-10, 10) is used.
1059
+
1060
+ Multiple plot with the same range.
1061
+
1062
+ ``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
1063
+
1064
+ If the ranges are not specified, then a default range of (-10, 10) is used.
1065
+
1066
+ Multiple plots with different ranges.
1067
+
1068
+ ``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
1069
+
1070
+ Ranges have to be specified for every expression.
1071
+
1072
+ Default range may change in the future if a more advanced default range
1073
+ detection algorithm is implemented.
1074
+
1075
+ Arguments
1076
+ =========
1077
+
1078
+ expr : Expression representing the function along x.
1079
+
1080
+ range_x : (:class:`Symbol`, float, float)
1081
+ A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
1082
+
1083
+ range_y : (:class:`Symbol`, float, float)
1084
+ A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
1085
+
1086
+ Keyword Arguments
1087
+ =================
1088
+
1089
+ Arguments for ``ContourSeries`` class:
1090
+
1091
+ n1 : int
1092
+ The x range is sampled uniformly at ``n1`` of points.
1093
+ This keyword argument replaces ``nb_of_points_x``, which should be
1094
+ considered deprecated.
1095
+
1096
+ n2 : int
1097
+ The y range is sampled uniformly at ``n2`` of points.
1098
+ This keyword argument replaces ``nb_of_points_y``, which should be
1099
+ considered deprecated.
1100
+
1101
+ Aesthetics:
1102
+
1103
+ surface_color : Function which returns a float
1104
+ Specifies the color for the surface of the plot. See
1105
+ :class:`sympy.plotting.Plot` for more details.
1106
+
1107
+ If there are multiple plots, then the same series arguments are applied to
1108
+ all the plots. If you want to set these options separately, you can index
1109
+ the returned ``Plot`` object and set it.
1110
+
1111
+ Arguments for ``Plot`` class:
1112
+
1113
+ title : str
1114
+ Title of the plot.
1115
+
1116
+ size : (float, float), optional
1117
+ A tuple in the form (width, height) in inches to specify the size of
1118
+ the overall figure. The default value is set to ``None``, meaning
1119
+ the size will be set by the default backend.
1120
+
1121
+ See Also
1122
+ ========
1123
+
1124
+ Plot, ContourSeries
1125
+
1126
+ """
1127
+ kwargs.setdefault("show", show)
1128
+ return _plot3d_plot_contour_helper(ContourSeries, *args, **kwargs)
1129
+
1130
+
1131
+ def check_arguments(args, expr_len, nb_of_free_symbols):
1132
+ """
1133
+ Checks the arguments and converts into tuples of the
1134
+ form (exprs, ranges).
1135
+
1136
+ Examples
1137
+ ========
1138
+
1139
+ .. plot::
1140
+ :context: reset
1141
+ :format: doctest
1142
+ :include-source: True
1143
+
1144
+ >>> from sympy import cos, sin, symbols
1145
+ >>> from sympy.plotting.plot import check_arguments
1146
+ >>> x = symbols('x')
1147
+ >>> check_arguments([cos(x), sin(x)], 2, 1)
1148
+ [(cos(x), sin(x), (x, -10, 10))]
1149
+
1150
+ >>> check_arguments([x, x**2], 1, 1)
1151
+ [(x, (x, -10, 10)), (x**2, (x, -10, 10))]
1152
+ """
1153
+ if not args:
1154
+ return []
1155
+ if expr_len > 1 and isinstance(args[0], Expr):
1156
+ # Multiple expressions same range.
1157
+ # The arguments are tuples when the expression length is
1158
+ # greater than 1.
1159
+ if len(args) < expr_len:
1160
+ raise ValueError("len(args) should not be less than expr_len")
1161
+ for i in range(len(args)):
1162
+ if isinstance(args[i], Tuple):
1163
+ break
1164
+ else:
1165
+ i = len(args) + 1
1166
+
1167
+ exprs = Tuple(*args[:i])
1168
+ free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
1169
+ if len(args) == expr_len + nb_of_free_symbols:
1170
+ #Ranges given
1171
+ plots = [exprs + Tuple(*args[expr_len:])]
1172
+ else:
1173
+ default_range = Tuple(-10, 10)
1174
+ ranges = []
1175
+ for symbol in free_symbols:
1176
+ ranges.append(Tuple(symbol) + default_range)
1177
+
1178
+ for i in range(len(free_symbols) - nb_of_free_symbols):
1179
+ ranges.append(Tuple(Dummy()) + default_range)
1180
+ plots = [exprs + Tuple(*ranges)]
1181
+ return plots
1182
+
1183
+ if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
1184
+ len(args[0]) == expr_len and
1185
+ expr_len != 3):
1186
+ # Cannot handle expressions with number of expression = 3. It is
1187
+ # not possible to differentiate between expressions and ranges.
1188
+ #Series of plots with same range
1189
+ for i in range(len(args)):
1190
+ if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
1191
+ break
1192
+ if not isinstance(args[i], Tuple):
1193
+ args[i] = Tuple(args[i])
1194
+ else:
1195
+ i = len(args) + 1
1196
+
1197
+ exprs = args[:i]
1198
+ assert all(isinstance(e, Expr) for expr in exprs for e in expr)
1199
+ free_symbols = list(set().union(*[e.free_symbols for expr in exprs
1200
+ for e in expr]))
1201
+
1202
+ if len(free_symbols) > nb_of_free_symbols:
1203
+ raise ValueError("The number of free_symbols in the expression "
1204
+ "is greater than %d" % nb_of_free_symbols)
1205
+ if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
1206
+ ranges = Tuple(*list(args[
1207
+ i:i + nb_of_free_symbols]))
1208
+ plots = [expr + ranges for expr in exprs]
1209
+ return plots
1210
+ else:
1211
+ # Use default ranges.
1212
+ default_range = Tuple(-10, 10)
1213
+ ranges = []
1214
+ for symbol in free_symbols:
1215
+ ranges.append(Tuple(symbol) + default_range)
1216
+
1217
+ for i in range(nb_of_free_symbols - len(free_symbols)):
1218
+ ranges.append(Tuple(Dummy()) + default_range)
1219
+ ranges = Tuple(*ranges)
1220
+ plots = [expr + ranges for expr in exprs]
1221
+ return plots
1222
+
1223
+ elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
1224
+ # Multiple plots with different ranges.
1225
+ for arg in args:
1226
+ for i in range(expr_len):
1227
+ if not isinstance(arg[i], Expr):
1228
+ raise ValueError("Expected an expression, given %s" %
1229
+ str(arg[i]))
1230
+ for i in range(nb_of_free_symbols):
1231
+ if not len(arg[i + expr_len]) == 3:
1232
+ raise ValueError("The ranges should be a tuple of "
1233
+ "length 3, got %s" % str(arg[i + expr_len]))
1234
+ return args
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implicit plotting module for SymPy.
2
+
3
+ Explanation
4
+ ===========
5
+
6
+ The module implements a data series called ImplicitSeries which is used by
7
+ ``Plot`` class to plot implicit plots for different backends. The module,
8
+ by default, implements plotting using interval arithmetic. It switches to a
9
+ fall back algorithm if the expression cannot be plotted using interval arithmetic.
10
+ It is also possible to specify to use the fall back algorithm for all plots.
11
+
12
+ Boolean combinations of expressions cannot be plotted by the fall back
13
+ algorithm.
14
+
15
+ See Also
16
+ ========
17
+
18
+ sympy.plotting.plot
19
+
20
+ References
21
+ ==========
22
+
23
+ .. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
24
+ Mathematical Formulae with Two Free Variables.
25
+
26
+ .. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
27
+ Arithmetic. Master's thesis. University of Toronto, 1996
28
+
29
+ """
30
+
31
+
32
+ from sympy.core.containers import Tuple
33
+ from sympy.core.symbol import (Dummy, Symbol)
34
+ from sympy.polys.polyutils import _sort_gens
35
+ from sympy.plotting.series import ImplicitSeries, _set_discretization_points
36
+ from sympy.plotting.plot import plot_factory
37
+ from sympy.utilities.decorator import doctest_depends_on
38
+ from sympy.utilities.iterables import flatten
39
+
40
+
41
+ __doctest_requires__ = {'plot_implicit': ['matplotlib']}
42
+
43
+
44
+ @doctest_depends_on(modules=('matplotlib',))
45
+ def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
46
+ n=300, line_color="blue", show=True, **kwargs):
47
+ """A plot function to plot implicit equations / inequalities.
48
+
49
+ Arguments
50
+ =========
51
+
52
+ - expr : The equation / inequality that is to be plotted.
53
+ - x_var (optional) : symbol to plot on x-axis or tuple giving symbol
54
+ and range as ``(symbol, xmin, xmax)``
55
+ - y_var (optional) : symbol to plot on y-axis or tuple giving symbol
56
+ and range as ``(symbol, ymin, ymax)``
57
+
58
+ If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
59
+ expression will be assigned in the order they are sorted.
60
+
61
+ The following keyword arguments can also be used:
62
+
63
+ - ``adaptive`` Boolean. The default value is set to True. It has to be
64
+ set to False if you want to use a mesh grid.
65
+
66
+ - ``depth`` integer. The depth of recursion for adaptive mesh grid.
67
+ Default value is 0. Takes value in the range (0, 4).
68
+
69
+ - ``n`` integer. The number of points if adaptive mesh grid is not
70
+ used. Default value is 300. This keyword argument replaces ``points``,
71
+ which should be considered deprecated.
72
+
73
+ - ``show`` Boolean. Default value is True. If set to False, the plot will
74
+ not be shown. See ``Plot`` for further information.
75
+
76
+ - ``title`` string. The title for the plot.
77
+
78
+ - ``xlabel`` string. The label for the x-axis
79
+
80
+ - ``ylabel`` string. The label for the y-axis
81
+
82
+ Aesthetics options:
83
+
84
+ - ``line_color``: float or string. Specifies the color for the plot.
85
+ See ``Plot`` to see how to set color for the plots.
86
+ Default value is "Blue"
87
+
88
+ plot_implicit, by default, uses interval arithmetic to plot functions. If
89
+ the expression cannot be plotted using interval arithmetic, it defaults to
90
+ a generating a contour using a mesh grid of fixed number of points. By
91
+ setting adaptive to False, you can force plot_implicit to use the mesh
92
+ grid. The mesh grid method can be effective when adaptive plotting using
93
+ interval arithmetic, fails to plot with small line width.
94
+
95
+ Examples
96
+ ========
97
+
98
+ Plot expressions:
99
+
100
+ .. plot::
101
+ :context: reset
102
+ :format: doctest
103
+ :include-source: True
104
+
105
+ >>> from sympy import plot_implicit, symbols, Eq, And
106
+ >>> x, y = symbols('x y')
107
+
108
+ Without any ranges for the symbols in the expression:
109
+
110
+ .. plot::
111
+ :context: close-figs
112
+ :format: doctest
113
+ :include-source: True
114
+
115
+ >>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
116
+
117
+ With the range for the symbols:
118
+
119
+ .. plot::
120
+ :context: close-figs
121
+ :format: doctest
122
+ :include-source: True
123
+
124
+ >>> p2 = plot_implicit(
125
+ ... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
126
+
127
+ With depth of recursion as argument:
128
+
129
+ .. plot::
130
+ :context: close-figs
131
+ :format: doctest
132
+ :include-source: True
133
+
134
+ >>> p3 = plot_implicit(
135
+ ... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2)
136
+
137
+ Using mesh grid and not using adaptive meshing:
138
+
139
+ .. plot::
140
+ :context: close-figs
141
+ :format: doctest
142
+ :include-source: True
143
+
144
+ >>> p4 = plot_implicit(
145
+ ... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
146
+ ... adaptive=False)
147
+
148
+ Using mesh grid without using adaptive meshing with number of points
149
+ specified:
150
+
151
+ .. plot::
152
+ :context: close-figs
153
+ :format: doctest
154
+ :include-source: True
155
+
156
+ >>> p5 = plot_implicit(
157
+ ... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
158
+ ... adaptive=False, n=400)
159
+
160
+ Plotting regions:
161
+
162
+ .. plot::
163
+ :context: close-figs
164
+ :format: doctest
165
+ :include-source: True
166
+
167
+ >>> p6 = plot_implicit(y > x**2)
168
+
169
+ Plotting Using boolean conjunctions:
170
+
171
+ .. plot::
172
+ :context: close-figs
173
+ :format: doctest
174
+ :include-source: True
175
+
176
+ >>> p7 = plot_implicit(And(y > x, y > -x))
177
+
178
+ When plotting an expression with a single variable (y - 1, for example),
179
+ specify the x or the y variable explicitly:
180
+
181
+ .. plot::
182
+ :context: close-figs
183
+ :format: doctest
184
+ :include-source: True
185
+
186
+ >>> p8 = plot_implicit(y - 1, y_var=y)
187
+ >>> p9 = plot_implicit(x - 1, x_var=x)
188
+ """
189
+
190
+ xyvar = [i for i in (x_var, y_var) if i is not None]
191
+ free_symbols = expr.free_symbols
192
+ range_symbols = Tuple(*flatten(xyvar)).free_symbols
193
+ undeclared = free_symbols - range_symbols
194
+ if len(free_symbols & range_symbols) > 2:
195
+ raise NotImplementedError("Implicit plotting is not implemented for "
196
+ "more than 2 variables")
197
+
198
+ #Create default ranges if the range is not provided.
199
+ default_range = Tuple(-5, 5)
200
+ def _range_tuple(s):
201
+ if isinstance(s, Symbol):
202
+ return Tuple(s) + default_range
203
+ if len(s) == 3:
204
+ return Tuple(*s)
205
+ raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
206
+
207
+ if len(xyvar) == 0:
208
+ xyvar = list(_sort_gens(free_symbols))
209
+ var_start_end_x = _range_tuple(xyvar[0])
210
+ x = var_start_end_x[0]
211
+ if len(xyvar) != 2:
212
+ if x in undeclared or not undeclared:
213
+ xyvar.append(Dummy('f(%s)' % x.name))
214
+ else:
215
+ xyvar.append(undeclared.pop())
216
+ var_start_end_y = _range_tuple(xyvar[1])
217
+
218
+ kwargs = _set_discretization_points(kwargs, ImplicitSeries)
219
+ series_argument = ImplicitSeries(
220
+ expr, var_start_end_x, var_start_end_y,
221
+ adaptive=adaptive, depth=depth,
222
+ n=n, line_color=line_color)
223
+
224
+ #set the x and y limits
225
+ kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
226
+ kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
227
+ # set the x and y labels
228
+ kwargs.setdefault('xlabel', var_start_end_x[0])
229
+ kwargs.setdefault('ylabel', var_start_end_y[0])
230
+ p = plot_factory(series_argument, **kwargs)
231
+ if show:
232
+ p.show()
233
+ return p
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/plotgrid.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from sympy.external import import_module
3
+ import sympy.plotting.backends.base_backend as base_backend
4
+
5
+
6
+ # N.B.
7
+ # When changing the minimum module version for matplotlib, please change
8
+ # the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
9
+
10
+
11
+ __doctest_requires__ = {
12
+ ("PlotGrid",): ["matplotlib"],
13
+ }
14
+
15
+
16
+ class PlotGrid:
17
+ """This class helps to plot subplots from already created SymPy plots
18
+ in a single figure.
19
+
20
+ Examples
21
+ ========
22
+
23
+ .. plot::
24
+ :context: close-figs
25
+ :format: doctest
26
+ :include-source: True
27
+
28
+ >>> from sympy import symbols
29
+ >>> from sympy.plotting import plot, plot3d, PlotGrid
30
+ >>> x, y = symbols('x, y')
31
+ >>> p1 = plot(x, x**2, x**3, (x, -5, 5))
32
+ >>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
33
+ >>> p3 = plot(x**3, (x, -5, 5))
34
+ >>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
35
+
36
+ Plotting vertically in a single line:
37
+
38
+ .. plot::
39
+ :context: close-figs
40
+ :format: doctest
41
+ :include-source: True
42
+
43
+ >>> PlotGrid(2, 1, p1, p2)
44
+ PlotGrid object containing:
45
+ Plot[0]:Plot object containing:
46
+ [0]: cartesian line: x for x over (-5.0, 5.0)
47
+ [1]: cartesian line: x**2 for x over (-5.0, 5.0)
48
+ [2]: cartesian line: x**3 for x over (-5.0, 5.0)
49
+ Plot[1]:Plot object containing:
50
+ [0]: cartesian line: x**2 for x over (-6.0, 6.0)
51
+ [1]: cartesian line: x for x over (-5.0, 5.0)
52
+
53
+ Plotting horizontally in a single line:
54
+
55
+ .. plot::
56
+ :context: close-figs
57
+ :format: doctest
58
+ :include-source: True
59
+
60
+ >>> PlotGrid(1, 3, p2, p3, p4)
61
+ PlotGrid object containing:
62
+ Plot[0]:Plot object containing:
63
+ [0]: cartesian line: x**2 for x over (-6.0, 6.0)
64
+ [1]: cartesian line: x for x over (-5.0, 5.0)
65
+ Plot[1]:Plot object containing:
66
+ [0]: cartesian line: x**3 for x over (-5.0, 5.0)
67
+ Plot[2]:Plot object containing:
68
+ [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
69
+
70
+ Plotting in a grid form:
71
+
72
+ .. plot::
73
+ :context: close-figs
74
+ :format: doctest
75
+ :include-source: True
76
+
77
+ >>> PlotGrid(2, 2, p1, p2, p3, p4)
78
+ PlotGrid object containing:
79
+ Plot[0]:Plot object containing:
80
+ [0]: cartesian line: x for x over (-5.0, 5.0)
81
+ [1]: cartesian line: x**2 for x over (-5.0, 5.0)
82
+ [2]: cartesian line: x**3 for x over (-5.0, 5.0)
83
+ Plot[1]:Plot object containing:
84
+ [0]: cartesian line: x**2 for x over (-6.0, 6.0)
85
+ [1]: cartesian line: x for x over (-5.0, 5.0)
86
+ Plot[2]:Plot object containing:
87
+ [0]: cartesian line: x**3 for x over (-5.0, 5.0)
88
+ Plot[3]:Plot object containing:
89
+ [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
90
+
91
+ """
92
+ def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs):
93
+ """
94
+ Parameters
95
+ ==========
96
+
97
+ nrows :
98
+ The number of rows that should be in the grid of the
99
+ required subplot.
100
+ ncolumns :
101
+ The number of columns that should be in the grid
102
+ of the required subplot.
103
+
104
+ nrows and ncolumns together define the required grid.
105
+
106
+ Arguments
107
+ =========
108
+
109
+ A list of predefined plot objects entered in a row-wise sequence
110
+ i.e. plot objects which are to be in the top row of the required
111
+ grid are written first, then the second row objects and so on
112
+
113
+ Keyword arguments
114
+ =================
115
+
116
+ show : Boolean
117
+ The default value is set to ``True``. Set show to ``False`` and
118
+ the function will not display the subplot. The returned instance
119
+ of the ``PlotGrid`` class can then be used to save or display the
120
+ plot by calling the ``save()`` and ``show()`` methods
121
+ respectively.
122
+ size : (float, float), optional
123
+ A tuple in the form (width, height) in inches to specify the size of
124
+ the overall figure. The default value is set to ``None``, meaning
125
+ the size will be set by the default backend.
126
+ """
127
+ self.matplotlib = import_module('matplotlib',
128
+ import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
129
+ min_module_version='1.1.0', catch=(RuntimeError,))
130
+ self.nrows = nrows
131
+ self.ncolumns = ncolumns
132
+ self._series = []
133
+ self._fig = None
134
+ self.args = args
135
+ for arg in args:
136
+ self._series.append(arg._series)
137
+ self.size = size
138
+ if show and self.matplotlib:
139
+ self.show()
140
+
141
+ def _create_figure(self):
142
+ gs = self.matplotlib.gridspec.GridSpec(self.nrows, self.ncolumns)
143
+ mapping = {}
144
+ c = 0
145
+ for i in range(self.nrows):
146
+ for j in range(self.ncolumns):
147
+ if c < len(self.args):
148
+ mapping[gs[i, j]] = self.args[c]
149
+ c += 1
150
+
151
+ kw = {} if not self.size else {"figsize": self.size}
152
+ self._fig = self.matplotlib.pyplot.figure(**kw)
153
+ for spec, p in mapping.items():
154
+ kw = ({"projection": "3d"} if (len(p._series) > 0 and
155
+ p._series[0].is_3D) else {})
156
+ cur_ax = self._fig.add_subplot(spec, **kw)
157
+ p._plotgrid_fig = self._fig
158
+ p._plotgrid_ax = cur_ax
159
+ p.process_series()
160
+
161
+ @property
162
+ def fig(self):
163
+ if not self._fig:
164
+ self._create_figure()
165
+ return self._fig
166
+
167
+ @property
168
+ def _backend(self):
169
+ return self
170
+
171
+ def close(self):
172
+ self.matplotlib.pyplot.close(self.fig)
173
+
174
+ def show(self):
175
+ if base_backend._show:
176
+ self.fig.tight_layout()
177
+ self.matplotlib.pyplot.show()
178
+ else:
179
+ self.close()
180
+
181
+ def save(self, path):
182
+ self.fig.savefig(path)
183
+
184
+ def __str__(self):
185
+ plot_strs = [('Plot[%d]:' % i) + str(plot)
186
+ for i, plot in enumerate(self.args)]
187
+
188
+ return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Plotting module that can plot 2D and 3D functions
2
+ """
3
+
4
+ from sympy.utilities.decorator import doctest_depends_on
5
+
6
+ @doctest_depends_on(modules=('pyglet',))
7
+ def PygletPlot(*args, **kwargs):
8
+ """
9
+
10
+ Plot Examples
11
+ =============
12
+
13
+ See examples/advanced/pyglet_plotting.py for many more examples.
14
+
15
+ >>> from sympy.plotting.pygletplot import PygletPlot as Plot
16
+ >>> from sympy.abc import x, y, z
17
+
18
+ >>> Plot(x*y**3-y*x**3)
19
+ [0]: -x**3*y + x*y**3, 'mode=cartesian'
20
+
21
+ >>> p = Plot()
22
+ >>> p[1] = x*y
23
+ >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
24
+
25
+ >>> p = Plot()
26
+ >>> p[1] = x**2+y**2
27
+ >>> p[2] = -x**2-y**2
28
+
29
+
30
+ Variable Intervals
31
+ ==================
32
+
33
+ The basic format is [var, min, max, steps], but the
34
+ syntax is flexible and arguments left out are taken
35
+ from the defaults for the current coordinate mode:
36
+
37
+ >>> Plot(x**2) # implies [x,-5,5,100]
38
+ [0]: x**2, 'mode=cartesian'
39
+
40
+ >>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
41
+ [0]: x**2, 'mode=cartesian'
42
+ >>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
43
+ [0]: x**2 - y**2, 'mode=cartesian'
44
+ >>> Plot(x**2, [x,-13,13,100])
45
+ [0]: x**2, 'mode=cartesian'
46
+ >>> Plot(x**2, [-13,13]) # [x,-13,13,100]
47
+ [0]: x**2, 'mode=cartesian'
48
+ >>> Plot(x**2, [x,-13,13]) # [x,-13,13,100]
49
+ [0]: x**2, 'mode=cartesian'
50
+ >>> Plot(1*x, [], [x], mode='cylindrical')
51
+ ... # [unbound_theta,0,2*Pi,40], [x,-1,1,20]
52
+ [0]: x, 'mode=cartesian'
53
+
54
+
55
+ Coordinate Modes
56
+ ================
57
+
58
+ Plot supports several curvilinear coordinate modes, and
59
+ they independent for each plotted function. You can specify
60
+ a coordinate mode explicitly with the 'mode' named argument,
61
+ but it can be automatically determined for Cartesian or
62
+ parametric plots, and therefore must only be specified for
63
+ polar, cylindrical, and spherical modes.
64
+
65
+ Specifically, Plot(function arguments) and Plot[n] =
66
+ (function arguments) will interpret your arguments as a
67
+ Cartesian plot if you provide one function and a parametric
68
+ plot if you provide two or three functions. Similarly, the
69
+ arguments will be interpreted as a curve if one variable is
70
+ used, and a surface if two are used.
71
+
72
+ Supported mode names by number of variables:
73
+
74
+ 1: parametric, cartesian, polar
75
+ 2: parametric, cartesian, cylindrical = polar, spherical
76
+
77
+ >>> Plot(1, mode='spherical')
78
+
79
+
80
+ Calculator-like Interface
81
+ =========================
82
+
83
+ >>> p = Plot(visible=False)
84
+ >>> f = x**2
85
+ >>> p[1] = f
86
+ >>> p[2] = f.diff(x)
87
+ >>> p[3] = f.diff(x).diff(x)
88
+ >>> p
89
+ [1]: x**2, 'mode=cartesian'
90
+ [2]: 2*x, 'mode=cartesian'
91
+ [3]: 2, 'mode=cartesian'
92
+ >>> p.show()
93
+ >>> p.clear()
94
+ >>> p
95
+ <blank plot>
96
+ >>> p[1] = x**2+y**2
97
+ >>> p[1].style = 'solid'
98
+ >>> p[2] = -x**2-y**2
99
+ >>> p[2].style = 'wireframe'
100
+ >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
101
+ >>> p[1].style = 'both'
102
+ >>> p[2].style = 'both'
103
+ >>> p.close()
104
+
105
+
106
+ Plot Window Keyboard Controls
107
+ =============================
108
+
109
+ Screen Rotation:
110
+ X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2
111
+ Z axis Q,E, Numpad 7,9
112
+
113
+ Model Rotation:
114
+ Z axis Z,C, Numpad 1,3
115
+
116
+ Zoom: R,F, PgUp,PgDn, Numpad +,-
117
+
118
+ Reset Camera: X, Numpad 5
119
+
120
+ Camera Presets:
121
+ XY F1
122
+ XZ F2
123
+ YZ F3
124
+ Perspective F4
125
+
126
+ Sensitivity Modifier: SHIFT
127
+
128
+ Axes Toggle:
129
+ Visible F5
130
+ Colors F6
131
+
132
+ Close Window: ESCAPE
133
+
134
+ =============================
135
+ """
136
+
137
+ from sympy.plotting.pygletplot.plot import PygletPlot
138
+ return PygletPlot(*args, **kwargs)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.99 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/color_scheme.cpython-310.pyc ADDED
Binary file (9.98 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/managed_window.cpython-310.pyc ADDED
Binary file (3.3 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot.cpython-310.pyc ADDED
Binary file (13.7 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_axes.cpython-310.pyc ADDED
Binary file (8.51 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_camera.cpython-310.pyc ADDED
Binary file (4.25 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_controller.cpython-310.pyc ADDED
Binary file (5.01 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_curve.cpython-310.pyc ADDED
Binary file (2.92 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_interval.cpython-310.pyc ADDED
Binary file (5.84 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode.cpython-310.pyc ADDED
Binary file (9.36 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode_base.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_modes.cpython-310.pyc ADDED
Binary file (7.33 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_object.cpython-310.pyc ADDED
Binary file (795 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_rotation.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_surface.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_window.cpython-310.pyc ADDED
Binary file (3.88 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/color_scheme.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.symbol import (Symbol, symbols)
3
+ from sympy.utilities.lambdify import lambdify
4
+ from .util import interpolate, rinterpolate, create_bounds, update_bounds
5
+ from sympy.utilities.iterables import sift
6
+
7
+
8
+ class ColorGradient:
9
+ colors = [0.4, 0.4, 0.4], [0.9, 0.9, 0.9]
10
+ intervals = 0.0, 1.0
11
+
12
+ def __init__(self, *args):
13
+ if len(args) == 2:
14
+ self.colors = list(args)
15
+ self.intervals = [0.0, 1.0]
16
+ elif len(args) > 0:
17
+ if len(args) % 2 != 0:
18
+ raise ValueError("len(args) should be even")
19
+ self.colors = [args[i] for i in range(1, len(args), 2)]
20
+ self.intervals = [args[i] for i in range(0, len(args), 2)]
21
+ assert len(self.colors) == len(self.intervals)
22
+
23
+ def copy(self):
24
+ c = ColorGradient()
25
+ c.colors = [e[::] for e in self.colors]
26
+ c.intervals = self.intervals[::]
27
+ return c
28
+
29
+ def _find_interval(self, v):
30
+ m = len(self.intervals)
31
+ i = 0
32
+ while i < m - 1 and self.intervals[i] <= v:
33
+ i += 1
34
+ return i
35
+
36
+ def _interpolate_axis(self, axis, v):
37
+ i = self._find_interval(v)
38
+ v = rinterpolate(self.intervals[i - 1], self.intervals[i], v)
39
+ return interpolate(self.colors[i - 1][axis], self.colors[i][axis], v)
40
+
41
+ def __call__(self, r, g, b):
42
+ c = self._interpolate_axis
43
+ return c(0, r), c(1, g), c(2, b)
44
+
45
+ default_color_schemes = {} # defined at the bottom of this file
46
+
47
+
48
+ class ColorScheme:
49
+
50
+ def __init__(self, *args, **kwargs):
51
+ self.args = args
52
+ self.f, self.gradient = None, ColorGradient()
53
+
54
+ if len(args) == 1 and not isinstance(args[0], Basic) and callable(args[0]):
55
+ self.f = args[0]
56
+ elif len(args) == 1 and isinstance(args[0], str):
57
+ if args[0] in default_color_schemes:
58
+ cs = default_color_schemes[args[0]]
59
+ self.f, self.gradient = cs.f, cs.gradient.copy()
60
+ else:
61
+ self.f = lambdify('x,y,z,u,v', args[0])
62
+ else:
63
+ self.f, self.gradient = self._interpret_args(args)
64
+ self._test_color_function()
65
+ if not isinstance(self.gradient, ColorGradient):
66
+ raise ValueError("Color gradient not properly initialized. "
67
+ "(Not a ColorGradient instance.)")
68
+
69
+ def _interpret_args(self, args):
70
+ f, gradient = None, self.gradient
71
+ atoms, lists = self._sort_args(args)
72
+ s = self._pop_symbol_list(lists)
73
+ s = self._fill_in_vars(s)
74
+
75
+ # prepare the error message for lambdification failure
76
+ f_str = ', '.join(str(fa) for fa in atoms)
77
+ s_str = (str(sa) for sa in s)
78
+ s_str = ', '.join(sa for sa in s_str if sa.find('unbound') < 0)
79
+ f_error = ValueError("Could not interpret arguments "
80
+ "%s as functions of %s." % (f_str, s_str))
81
+
82
+ # try to lambdify args
83
+ if len(atoms) == 1:
84
+ fv = atoms[0]
85
+ try:
86
+ f = lambdify(s, [fv, fv, fv])
87
+ except TypeError:
88
+ raise f_error
89
+
90
+ elif len(atoms) == 3:
91
+ fr, fg, fb = atoms
92
+ try:
93
+ f = lambdify(s, [fr, fg, fb])
94
+ except TypeError:
95
+ raise f_error
96
+
97
+ else:
98
+ raise ValueError("A ColorScheme must provide 1 or 3 "
99
+ "functions in x, y, z, u, and/or v.")
100
+
101
+ # try to intrepret any given color information
102
+ if len(lists) == 0:
103
+ gargs = []
104
+
105
+ elif len(lists) == 1:
106
+ gargs = lists[0]
107
+
108
+ elif len(lists) == 2:
109
+ try:
110
+ (r1, g1, b1), (r2, g2, b2) = lists
111
+ except TypeError:
112
+ raise ValueError("If two color arguments are given, "
113
+ "they must be given in the format "
114
+ "(r1, g1, b1), (r2, g2, b2).")
115
+ gargs = lists
116
+
117
+ elif len(lists) == 3:
118
+ try:
119
+ (r1, r2), (g1, g2), (b1, b2) = lists
120
+ except Exception:
121
+ raise ValueError("If three color arguments are given, "
122
+ "they must be given in the format "
123
+ "(r1, r2), (g1, g2), (b1, b2). To create "
124
+ "a multi-step gradient, use the syntax "
125
+ "[0, colorStart, step1, color1, ..., 1, "
126
+ "colorEnd].")
127
+ gargs = [[r1, g1, b1], [r2, g2, b2]]
128
+
129
+ else:
130
+ raise ValueError("Don't know what to do with collection "
131
+ "arguments %s." % (', '.join(str(l) for l in lists)))
132
+
133
+ if gargs:
134
+ try:
135
+ gradient = ColorGradient(*gargs)
136
+ except Exception as ex:
137
+ raise ValueError(("Could not initialize a gradient "
138
+ "with arguments %s. Inner "
139
+ "exception: %s") % (gargs, str(ex)))
140
+
141
+ return f, gradient
142
+
143
+ def _pop_symbol_list(self, lists):
144
+ symbol_lists = []
145
+ for l in lists:
146
+ mark = True
147
+ for s in l:
148
+ if s is not None and not isinstance(s, Symbol):
149
+ mark = False
150
+ break
151
+ if mark:
152
+ lists.remove(l)
153
+ symbol_lists.append(l)
154
+ if len(symbol_lists) == 1:
155
+ return symbol_lists[0]
156
+ elif len(symbol_lists) == 0:
157
+ return []
158
+ else:
159
+ raise ValueError("Only one list of Symbols "
160
+ "can be given for a color scheme.")
161
+
162
+ def _fill_in_vars(self, args):
163
+ defaults = symbols('x,y,z,u,v')
164
+ v_error = ValueError("Could not find what to plot.")
165
+ if len(args) == 0:
166
+ return defaults
167
+ if not isinstance(args, (tuple, list)):
168
+ raise v_error
169
+ if len(args) == 0:
170
+ return defaults
171
+ for s in args:
172
+ if s is not None and not isinstance(s, Symbol):
173
+ raise v_error
174
+ # when vars are given explicitly, any vars
175
+ # not given are marked 'unbound' as to not
176
+ # be accidentally used in an expression
177
+ vars = [Symbol('unbound%i' % (i)) for i in range(1, 6)]
178
+ # interpret as t
179
+ if len(args) == 1:
180
+ vars[3] = args[0]
181
+ # interpret as u,v
182
+ elif len(args) == 2:
183
+ if args[0] is not None:
184
+ vars[3] = args[0]
185
+ if args[1] is not None:
186
+ vars[4] = args[1]
187
+ # interpret as x,y,z
188
+ elif len(args) >= 3:
189
+ # allow some of x,y,z to be
190
+ # left unbound if not given
191
+ if args[0] is not None:
192
+ vars[0] = args[0]
193
+ if args[1] is not None:
194
+ vars[1] = args[1]
195
+ if args[2] is not None:
196
+ vars[2] = args[2]
197
+ # interpret the rest as t
198
+ if len(args) >= 4:
199
+ vars[3] = args[3]
200
+ # ...or u,v
201
+ if len(args) >= 5:
202
+ vars[4] = args[4]
203
+ return vars
204
+
205
+ def _sort_args(self, args):
206
+ lists, atoms = sift(args,
207
+ lambda a: isinstance(a, (tuple, list)), binary=True)
208
+ return atoms, lists
209
+
210
+ def _test_color_function(self):
211
+ if not callable(self.f):
212
+ raise ValueError("Color function is not callable.")
213
+ try:
214
+ result = self.f(0, 0, 0, 0, 0)
215
+ if len(result) != 3:
216
+ raise ValueError("length should be equal to 3")
217
+ except TypeError:
218
+ raise ValueError("Color function needs to accept x,y,z,u,v, "
219
+ "as arguments even if it doesn't use all of them.")
220
+ except AssertionError:
221
+ raise ValueError("Color function needs to return 3-tuple r,g,b.")
222
+ except Exception:
223
+ pass # color function probably not valid at 0,0,0,0,0
224
+
225
+ def __call__(self, x, y, z, u, v):
226
+ try:
227
+ return self.f(x, y, z, u, v)
228
+ except Exception:
229
+ return None
230
+
231
+ def apply_to_curve(self, verts, u_set, set_len=None, inc_pos=None):
232
+ """
233
+ Apply this color scheme to a
234
+ set of vertices over a single
235
+ independent variable u.
236
+ """
237
+ bounds = create_bounds()
238
+ cverts = []
239
+ if callable(set_len):
240
+ set_len(len(u_set)*2)
241
+ # calculate f() = r,g,b for each vert
242
+ # and find the min and max for r,g,b
243
+ for _u in range(len(u_set)):
244
+ if verts[_u] is None:
245
+ cverts.append(None)
246
+ else:
247
+ x, y, z = verts[_u]
248
+ u, v = u_set[_u], None
249
+ c = self(x, y, z, u, v)
250
+ if c is not None:
251
+ c = list(c)
252
+ update_bounds(bounds, c)
253
+ cverts.append(c)
254
+ if callable(inc_pos):
255
+ inc_pos()
256
+ # scale and apply gradient
257
+ for _u in range(len(u_set)):
258
+ if cverts[_u] is not None:
259
+ for _c in range(3):
260
+ # scale from [f_min, f_max] to [0,1]
261
+ cverts[_u][_c] = rinterpolate(bounds[_c][0], bounds[_c][1],
262
+ cverts[_u][_c])
263
+ # apply gradient
264
+ cverts[_u] = self.gradient(*cverts[_u])
265
+ if callable(inc_pos):
266
+ inc_pos()
267
+ return cverts
268
+
269
+ def apply_to_surface(self, verts, u_set, v_set, set_len=None, inc_pos=None):
270
+ """
271
+ Apply this color scheme to a
272
+ set of vertices over two
273
+ independent variables u and v.
274
+ """
275
+ bounds = create_bounds()
276
+ cverts = []
277
+ if callable(set_len):
278
+ set_len(len(u_set)*len(v_set)*2)
279
+ # calculate f() = r,g,b for each vert
280
+ # and find the min and max for r,g,b
281
+ for _u in range(len(u_set)):
282
+ column = []
283
+ for _v in range(len(v_set)):
284
+ if verts[_u][_v] is None:
285
+ column.append(None)
286
+ else:
287
+ x, y, z = verts[_u][_v]
288
+ u, v = u_set[_u], v_set[_v]
289
+ c = self(x, y, z, u, v)
290
+ if c is not None:
291
+ c = list(c)
292
+ update_bounds(bounds, c)
293
+ column.append(c)
294
+ if callable(inc_pos):
295
+ inc_pos()
296
+ cverts.append(column)
297
+ # scale and apply gradient
298
+ for _u in range(len(u_set)):
299
+ for _v in range(len(v_set)):
300
+ if cverts[_u][_v] is not None:
301
+ # scale from [f_min, f_max] to [0,1]
302
+ for _c in range(3):
303
+ cverts[_u][_v][_c] = rinterpolate(bounds[_c][0],
304
+ bounds[_c][1], cverts[_u][_v][_c])
305
+ # apply gradient
306
+ cverts[_u][_v] = self.gradient(*cverts[_u][_v])
307
+ if callable(inc_pos):
308
+ inc_pos()
309
+ return cverts
310
+
311
+ def str_base(self):
312
+ return ", ".join(str(a) for a in self.args)
313
+
314
+ def __repr__(self):
315
+ return "%s" % (self.str_base())
316
+
317
+
318
+ x, y, z, t, u, v = symbols('x,y,z,t,u,v')
319
+
320
+ default_color_schemes['rainbow'] = ColorScheme(z, y, x)
321
+ default_color_schemes['zfade'] = ColorScheme(z, (0.4, 0.4, 0.97),
322
+ (0.97, 0.4, 0.4), (None, None, z))
323
+ default_color_schemes['zfade3'] = ColorScheme(z, (None, None, z),
324
+ [0.00, (0.2, 0.2, 1.0),
325
+ 0.35, (0.2, 0.8, 0.4),
326
+ 0.50, (0.3, 0.9, 0.3),
327
+ 0.65, (0.4, 0.8, 0.2),
328
+ 1.00, (1.0, 0.2, 0.2)])
329
+
330
+ default_color_schemes['zfade4'] = ColorScheme(z, (None, None, z),
331
+ [0.0, (0.3, 0.3, 1.0),
332
+ 0.30, (0.3, 1.0, 0.3),
333
+ 0.55, (0.95, 1.0, 0.2),
334
+ 0.65, (1.0, 0.95, 0.2),
335
+ 0.85, (1.0, 0.7, 0.2),
336
+ 1.0, (1.0, 0.3, 0.2)])
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/managed_window.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pyglet.window import Window
2
+ from pyglet.clock import Clock
3
+
4
+ from threading import Thread, Lock
5
+
6
+ gl_lock = Lock()
7
+
8
+
9
+ class ManagedWindow(Window):
10
+ """
11
+ A pyglet window with an event loop which executes automatically
12
+ in a separate thread. Behavior is added by creating a subclass
13
+ which overrides setup, update, and/or draw.
14
+ """
15
+ fps_limit = 30
16
+ default_win_args = {"width": 600,
17
+ "height": 500,
18
+ "vsync": False,
19
+ "resizable": True}
20
+
21
+ def __init__(self, **win_args):
22
+ """
23
+ It is best not to override this function in the child
24
+ class, unless you need to take additional arguments.
25
+ Do any OpenGL initialization calls in setup().
26
+ """
27
+
28
+ # check if this is run from the doctester
29
+ if win_args.get('runfromdoctester', False):
30
+ return
31
+
32
+ self.win_args = dict(self.default_win_args, **win_args)
33
+ self.Thread = Thread(target=self.__event_loop__)
34
+ self.Thread.start()
35
+
36
+ def __event_loop__(self, **win_args):
37
+ """
38
+ The event loop thread function. Do not override or call
39
+ directly (it is called by __init__).
40
+ """
41
+ gl_lock.acquire()
42
+ try:
43
+ try:
44
+ super().__init__(**self.win_args)
45
+ self.switch_to()
46
+ self.setup()
47
+ except Exception as e:
48
+ print("Window initialization failed: %s" % (str(e)))
49
+ self.has_exit = True
50
+ finally:
51
+ gl_lock.release()
52
+
53
+ clock = Clock()
54
+ clock.fps_limit = self.fps_limit
55
+ while not self.has_exit:
56
+ dt = clock.tick()
57
+ gl_lock.acquire()
58
+ try:
59
+ try:
60
+ self.switch_to()
61
+ self.dispatch_events()
62
+ self.clear()
63
+ self.update(dt)
64
+ self.draw()
65
+ self.flip()
66
+ except Exception as e:
67
+ print("Uncaught exception in event loop: %s" % str(e))
68
+ self.has_exit = True
69
+ finally:
70
+ gl_lock.release()
71
+ super().close()
72
+
73
+ def close(self):
74
+ """
75
+ Closes the window.
76
+ """
77
+ self.has_exit = True
78
+
79
+ def setup(self):
80
+ """
81
+ Called once before the event loop begins.
82
+ Override this method in a child class. This
83
+ is the best place to put things like OpenGL
84
+ initialization calls.
85
+ """
86
+ pass
87
+
88
+ def update(self, dt):
89
+ """
90
+ Called before draw during each iteration of
91
+ the event loop. dt is the elapsed time in
92
+ seconds since the last update. OpenGL rendering
93
+ calls are best put in draw() rather than here.
94
+ """
95
+ pass
96
+
97
+ def draw(self):
98
+ """
99
+ Called after update during each iteration of
100
+ the event loop. Put OpenGL rendering calls
101
+ here.
102
+ """
103
+ pass
104
+
105
+ if __name__ == '__main__':
106
+ ManagedWindow()
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from threading import RLock
2
+
3
+ # it is sufficient to import "pyglet" here once
4
+ try:
5
+ import pyglet.gl as pgl
6
+ except ImportError:
7
+ raise ImportError("pyglet is required for plotting.\n "
8
+ "visit https://pyglet.org/")
9
+
10
+ from sympy.core.numbers import Integer
11
+ from sympy.external.gmpy import SYMPY_INTS
12
+ from sympy.geometry.entity import GeometryEntity
13
+ from sympy.plotting.pygletplot.plot_axes import PlotAxes
14
+ from sympy.plotting.pygletplot.plot_mode import PlotMode
15
+ from sympy.plotting.pygletplot.plot_object import PlotObject
16
+ from sympy.plotting.pygletplot.plot_window import PlotWindow
17
+ from sympy.plotting.pygletplot.util import parse_option_string
18
+ from sympy.utilities.decorator import doctest_depends_on
19
+ from sympy.utilities.iterables import is_sequence
20
+
21
+ from time import sleep
22
+ from os import getcwd, listdir
23
+
24
+ import ctypes
25
+
26
+ @doctest_depends_on(modules=('pyglet',))
27
+ class PygletPlot:
28
+ """
29
+ Plot Examples
30
+ =============
31
+
32
+ See examples/advanced/pyglet_plotting.py for many more examples.
33
+
34
+ >>> from sympy.plotting.pygletplot import PygletPlot as Plot
35
+ >>> from sympy.abc import x, y, z
36
+
37
+ >>> Plot(x*y**3-y*x**3)
38
+ [0]: -x**3*y + x*y**3, 'mode=cartesian'
39
+
40
+ >>> p = Plot()
41
+ >>> p[1] = x*y
42
+ >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
43
+
44
+ >>> p = Plot()
45
+ >>> p[1] = x**2+y**2
46
+ >>> p[2] = -x**2-y**2
47
+
48
+
49
+ Variable Intervals
50
+ ==================
51
+
52
+ The basic format is [var, min, max, steps], but the
53
+ syntax is flexible and arguments left out are taken
54
+ from the defaults for the current coordinate mode:
55
+
56
+ >>> Plot(x**2) # implies [x,-5,5,100]
57
+ [0]: x**2, 'mode=cartesian'
58
+ >>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
59
+ [0]: x**2, 'mode=cartesian'
60
+ >>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
61
+ [0]: x**2 - y**2, 'mode=cartesian'
62
+ >>> Plot(x**2, [x,-13,13,100])
63
+ [0]: x**2, 'mode=cartesian'
64
+ >>> Plot(x**2, [-13,13]) # [x,-13,13,100]
65
+ [0]: x**2, 'mode=cartesian'
66
+ >>> Plot(x**2, [x,-13,13]) # [x,-13,13,10]
67
+ [0]: x**2, 'mode=cartesian'
68
+ >>> Plot(1*x, [], [x], mode='cylindrical')
69
+ ... # [unbound_theta,0,2*Pi,40], [x,-1,1,20]
70
+ [0]: x, 'mode=cartesian'
71
+
72
+
73
+ Coordinate Modes
74
+ ================
75
+
76
+ Plot supports several curvilinear coordinate modes, and
77
+ they independent for each plotted function. You can specify
78
+ a coordinate mode explicitly with the 'mode' named argument,
79
+ but it can be automatically determined for Cartesian or
80
+ parametric plots, and therefore must only be specified for
81
+ polar, cylindrical, and spherical modes.
82
+
83
+ Specifically, Plot(function arguments) and Plot[n] =
84
+ (function arguments) will interpret your arguments as a
85
+ Cartesian plot if you provide one function and a parametric
86
+ plot if you provide two or three functions. Similarly, the
87
+ arguments will be interpreted as a curve if one variable is
88
+ used, and a surface if two are used.
89
+
90
+ Supported mode names by number of variables:
91
+
92
+ 1: parametric, cartesian, polar
93
+ 2: parametric, cartesian, cylindrical = polar, spherical
94
+
95
+ >>> Plot(1, mode='spherical')
96
+
97
+
98
+ Calculator-like Interface
99
+ =========================
100
+
101
+ >>> p = Plot(visible=False)
102
+ >>> f = x**2
103
+ >>> p[1] = f
104
+ >>> p[2] = f.diff(x)
105
+ >>> p[3] = f.diff(x).diff(x)
106
+ >>> p
107
+ [1]: x**2, 'mode=cartesian'
108
+ [2]: 2*x, 'mode=cartesian'
109
+ [3]: 2, 'mode=cartesian'
110
+ >>> p.show()
111
+ >>> p.clear()
112
+ >>> p
113
+ <blank plot>
114
+ >>> p[1] = x**2+y**2
115
+ >>> p[1].style = 'solid'
116
+ >>> p[2] = -x**2-y**2
117
+ >>> p[2].style = 'wireframe'
118
+ >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
119
+ >>> p[1].style = 'both'
120
+ >>> p[2].style = 'both'
121
+ >>> p.close()
122
+
123
+
124
+ Plot Window Keyboard Controls
125
+ =============================
126
+
127
+ Screen Rotation:
128
+ X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2
129
+ Z axis Q,E, Numpad 7,9
130
+
131
+ Model Rotation:
132
+ Z axis Z,C, Numpad 1,3
133
+
134
+ Zoom: R,F, PgUp,PgDn, Numpad +,-
135
+
136
+ Reset Camera: X, Numpad 5
137
+
138
+ Camera Presets:
139
+ XY F1
140
+ XZ F2
141
+ YZ F3
142
+ Perspective F4
143
+
144
+ Sensitivity Modifier: SHIFT
145
+
146
+ Axes Toggle:
147
+ Visible F5
148
+ Colors F6
149
+
150
+ Close Window: ESCAPE
151
+
152
+ =============================
153
+
154
+ """
155
+
156
+ @doctest_depends_on(modules=('pyglet',))
157
+ def __init__(self, *fargs, **win_args):
158
+ """
159
+ Positional Arguments
160
+ ====================
161
+
162
+ Any given positional arguments are used to
163
+ initialize a plot function at index 1. In
164
+ other words...
165
+
166
+ >>> from sympy.plotting.pygletplot import PygletPlot as Plot
167
+ >>> from sympy.abc import x
168
+ >>> p = Plot(x**2, visible=False)
169
+
170
+ ...is equivalent to...
171
+
172
+ >>> p = Plot(visible=False)
173
+ >>> p[1] = x**2
174
+
175
+ Note that in earlier versions of the plotting
176
+ module, you were able to specify multiple
177
+ functions in the initializer. This functionality
178
+ has been dropped in favor of better automatic
179
+ plot plot_mode detection.
180
+
181
+
182
+ Named Arguments
183
+ ===============
184
+
185
+ axes
186
+ An option string of the form
187
+ "key1=value1; key2 = value2" which
188
+ can use the following options:
189
+
190
+ style = ordinate
191
+ none OR frame OR box OR ordinate
192
+
193
+ stride = 0.25
194
+ val OR (val_x, val_y, val_z)
195
+
196
+ overlay = True (draw on top of plot)
197
+ True OR False
198
+
199
+ colored = False (False uses Black,
200
+ True uses colors
201
+ R,G,B = X,Y,Z)
202
+ True OR False
203
+
204
+ label_axes = False (display axis names
205
+ at endpoints)
206
+ True OR False
207
+
208
+ visible = True (show immediately
209
+ True OR False
210
+
211
+
212
+ The following named arguments are passed as
213
+ arguments to window initialization:
214
+
215
+ antialiasing = True
216
+ True OR False
217
+
218
+ ortho = False
219
+ True OR False
220
+
221
+ invert_mouse_zoom = False
222
+ True OR False
223
+
224
+ """
225
+ # Register the plot modes
226
+ from . import plot_modes # noqa
227
+
228
+ self._win_args = win_args
229
+ self._window = None
230
+
231
+ self._render_lock = RLock()
232
+
233
+ self._functions = {}
234
+ self._pobjects = []
235
+ self._screenshot = ScreenShot(self)
236
+
237
+ axe_options = parse_option_string(win_args.pop('axes', ''))
238
+ self.axes = PlotAxes(**axe_options)
239
+ self._pobjects.append(self.axes)
240
+
241
+ self[0] = fargs
242
+ if win_args.get('visible', True):
243
+ self.show()
244
+
245
+ ## Window Interfaces
246
+
247
+ def show(self):
248
+ """
249
+ Creates and displays a plot window, or activates it
250
+ (gives it focus) if it has already been created.
251
+ """
252
+ if self._window and not self._window.has_exit:
253
+ self._window.activate()
254
+ else:
255
+ self._win_args['visible'] = True
256
+ self.axes.reset_resources()
257
+
258
+ #if hasattr(self, '_doctest_depends_on'):
259
+ # self._win_args['runfromdoctester'] = True
260
+
261
+ self._window = PlotWindow(self, **self._win_args)
262
+
263
+ def close(self):
264
+ """
265
+ Closes the plot window.
266
+ """
267
+ if self._window:
268
+ self._window.close()
269
+
270
+ def saveimage(self, outfile=None, format='', size=(600, 500)):
271
+ """
272
+ Saves a screen capture of the plot window to an
273
+ image file.
274
+
275
+ If outfile is given, it can either be a path
276
+ or a file object. Otherwise a png image will
277
+ be saved to the current working directory.
278
+ If the format is omitted, it is determined from
279
+ the filename extension.
280
+ """
281
+ self._screenshot.save(outfile, format, size)
282
+
283
+ ## Function List Interfaces
284
+
285
+ def clear(self):
286
+ """
287
+ Clears the function list of this plot.
288
+ """
289
+ self._render_lock.acquire()
290
+ self._functions = {}
291
+ self.adjust_all_bounds()
292
+ self._render_lock.release()
293
+
294
+ def __getitem__(self, i):
295
+ """
296
+ Returns the function at position i in the
297
+ function list.
298
+ """
299
+ return self._functions[i]
300
+
301
+ def __setitem__(self, i, args):
302
+ """
303
+ Parses and adds a PlotMode to the function
304
+ list.
305
+ """
306
+ if not (isinstance(i, (SYMPY_INTS, Integer)) and i >= 0):
307
+ raise ValueError("Function index must "
308
+ "be an integer >= 0.")
309
+
310
+ if isinstance(args, PlotObject):
311
+ f = args
312
+ else:
313
+ if (not is_sequence(args)) or isinstance(args, GeometryEntity):
314
+ args = [args]
315
+ if len(args) == 0:
316
+ return # no arguments given
317
+ kwargs = {"bounds_callback": self.adjust_all_bounds}
318
+ f = PlotMode(*args, **kwargs)
319
+
320
+ if f:
321
+ self._render_lock.acquire()
322
+ self._functions[i] = f
323
+ self._render_lock.release()
324
+ else:
325
+ raise ValueError("Failed to parse '%s'."
326
+ % ', '.join(str(a) for a in args))
327
+
328
+ def __delitem__(self, i):
329
+ """
330
+ Removes the function in the function list at
331
+ position i.
332
+ """
333
+ self._render_lock.acquire()
334
+ del self._functions[i]
335
+ self.adjust_all_bounds()
336
+ self._render_lock.release()
337
+
338
+ def firstavailableindex(self):
339
+ """
340
+ Returns the first unused index in the function list.
341
+ """
342
+ i = 0
343
+ self._render_lock.acquire()
344
+ while i in self._functions:
345
+ i += 1
346
+ self._render_lock.release()
347
+ return i
348
+
349
+ def append(self, *args):
350
+ """
351
+ Parses and adds a PlotMode to the function
352
+ list at the first available index.
353
+ """
354
+ self.__setitem__(self.firstavailableindex(), args)
355
+
356
+ def __len__(self):
357
+ """
358
+ Returns the number of functions in the function list.
359
+ """
360
+ return len(self._functions)
361
+
362
+ def __iter__(self):
363
+ """
364
+ Allows iteration of the function list.
365
+ """
366
+ return self._functions.itervalues()
367
+
368
+ def __repr__(self):
369
+ return str(self)
370
+
371
+ def __str__(self):
372
+ """
373
+ Returns a string containing a new-line separated
374
+ list of the functions in the function list.
375
+ """
376
+ s = ""
377
+ if len(self._functions) == 0:
378
+ s += "<blank plot>"
379
+ else:
380
+ self._render_lock.acquire()
381
+ s += "\n".join(["%s[%i]: %s" % ("", i, str(self._functions[i]))
382
+ for i in self._functions])
383
+ self._render_lock.release()
384
+ return s
385
+
386
+ def adjust_all_bounds(self):
387
+ self._render_lock.acquire()
388
+ self.axes.reset_bounding_box()
389
+ for f in self._functions:
390
+ self.axes.adjust_bounds(self._functions[f].bounds)
391
+ self._render_lock.release()
392
+
393
+ def wait_for_calculations(self):
394
+ sleep(0)
395
+ self._render_lock.acquire()
396
+ for f in self._functions:
397
+ a = self._functions[f]._get_calculating_verts
398
+ b = self._functions[f]._get_calculating_cverts
399
+ while a() or b():
400
+ sleep(0)
401
+ self._render_lock.release()
402
+
403
+ class ScreenShot:
404
+ def __init__(self, plot):
405
+ self._plot = plot
406
+ self.screenshot_requested = False
407
+ self.outfile = None
408
+ self.format = ''
409
+ self.invisibleMode = False
410
+ self.flag = 0
411
+
412
+ def __bool__(self):
413
+ return self.screenshot_requested
414
+
415
+ def _execute_saving(self):
416
+ if self.flag < 3:
417
+ self.flag += 1
418
+ return
419
+
420
+ size_x, size_y = self._plot._window.get_size()
421
+ size = size_x*size_y*4*ctypes.sizeof(ctypes.c_ubyte)
422
+ image = ctypes.create_string_buffer(size)
423
+ pgl.glReadPixels(0, 0, size_x, size_y, pgl.GL_RGBA, pgl.GL_UNSIGNED_BYTE, image)
424
+ from PIL import Image
425
+ im = Image.frombuffer('RGBA', (size_x, size_y),
426
+ image.raw, 'raw', 'RGBA', 0, 1)
427
+ im.transpose(Image.FLIP_TOP_BOTTOM).save(self.outfile, self.format)
428
+
429
+ self.flag = 0
430
+ self.screenshot_requested = False
431
+ if self.invisibleMode:
432
+ self._plot._window.close()
433
+
434
+ def save(self, outfile=None, format='', size=(600, 500)):
435
+ self.outfile = outfile
436
+ self.format = format
437
+ self.size = size
438
+ self.screenshot_requested = True
439
+
440
+ if not self._plot._window or self._plot._window.has_exit:
441
+ self._plot._win_args['visible'] = False
442
+
443
+ self._plot._win_args['width'] = size[0]
444
+ self._plot._win_args['height'] = size[1]
445
+
446
+ self._plot.axes.reset_resources()
447
+ self._plot._window = PlotWindow(self._plot, **self._plot._win_args)
448
+ self.invisibleMode = True
449
+
450
+ if self.outfile is None:
451
+ self.outfile = self._create_unique_path()
452
+ print(self.outfile)
453
+
454
+ def _create_unique_path(self):
455
+ cwd = getcwd()
456
+ l = listdir(cwd)
457
+ path = ''
458
+ i = 0
459
+ while True:
460
+ if not 'plot_%s.png' % i in l:
461
+ path = cwd + '/plot_%s.png' % i
462
+ break
463
+ i += 1
464
+ return path
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_axes.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyglet.gl as pgl
2
+ from pyglet import font
3
+
4
+ from sympy.core import S
5
+ from sympy.plotting.pygletplot.plot_object import PlotObject
6
+ from sympy.plotting.pygletplot.util import billboard_matrix, dot_product, \
7
+ get_direction_vectors, strided_range, vec_mag, vec_sub
8
+ from sympy.utilities.iterables import is_sequence
9
+
10
+
11
+ class PlotAxes(PlotObject):
12
+
13
+ def __init__(self, *args,
14
+ style='', none=None, frame=None, box=None, ordinate=None,
15
+ stride=0.25,
16
+ visible='', overlay='', colored='', label_axes='', label_ticks='',
17
+ tick_length=0.1,
18
+ font_face='Arial', font_size=28,
19
+ **kwargs):
20
+ # initialize style parameter
21
+ style = style.lower()
22
+
23
+ # allow alias kwargs to override style kwarg
24
+ if none is not None:
25
+ style = 'none'
26
+ if frame is not None:
27
+ style = 'frame'
28
+ if box is not None:
29
+ style = 'box'
30
+ if ordinate is not None:
31
+ style = 'ordinate'
32
+
33
+ if style in ['', 'ordinate']:
34
+ self._render_object = PlotAxesOrdinate(self)
35
+ elif style in ['frame', 'box']:
36
+ self._render_object = PlotAxesFrame(self)
37
+ elif style in ['none']:
38
+ self._render_object = None
39
+ else:
40
+ raise ValueError(("Unrecognized axes style %s.") % (style))
41
+
42
+ # initialize stride parameter
43
+ try:
44
+ stride = eval(stride)
45
+ except TypeError:
46
+ pass
47
+ if is_sequence(stride):
48
+ if len(stride) != 3:
49
+ raise ValueError("length should be equal to 3")
50
+ self._stride = stride
51
+ else:
52
+ self._stride = [stride, stride, stride]
53
+ self._tick_length = float(tick_length)
54
+
55
+ # setup bounding box and ticks
56
+ self._origin = [0, 0, 0]
57
+ self.reset_bounding_box()
58
+
59
+ def flexible_boolean(input, default):
60
+ if input in [True, False]:
61
+ return input
62
+ if input in ('f', 'F', 'false', 'False'):
63
+ return False
64
+ if input in ('t', 'T', 'true', 'True'):
65
+ return True
66
+ return default
67
+
68
+ # initialize remaining parameters
69
+ self.visible = flexible_boolean(kwargs, True)
70
+ self._overlay = flexible_boolean(overlay, True)
71
+ self._colored = flexible_boolean(colored, False)
72
+ self._label_axes = flexible_boolean(label_axes, False)
73
+ self._label_ticks = flexible_boolean(label_ticks, True)
74
+
75
+ # setup label font
76
+ self.font_face = font_face
77
+ self.font_size = font_size
78
+
79
+ # this is also used to reinit the
80
+ # font on window close/reopen
81
+ self.reset_resources()
82
+
83
+ def reset_resources(self):
84
+ self.label_font = None
85
+
86
+ def reset_bounding_box(self):
87
+ self._bounding_box = [[None, None], [None, None], [None, None]]
88
+ self._axis_ticks = [[], [], []]
89
+
90
+ def draw(self):
91
+ if self._render_object:
92
+ pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT | pgl.GL_DEPTH_BUFFER_BIT)
93
+ if self._overlay:
94
+ pgl.glDisable(pgl.GL_DEPTH_TEST)
95
+ self._render_object.draw()
96
+ pgl.glPopAttrib()
97
+
98
+ def adjust_bounds(self, child_bounds):
99
+ b = self._bounding_box
100
+ c = child_bounds
101
+ for i in range(3):
102
+ if abs(c[i][0]) is S.Infinity or abs(c[i][1]) is S.Infinity:
103
+ continue
104
+ b[i][0] = c[i][0] if b[i][0] is None else min([b[i][0], c[i][0]])
105
+ b[i][1] = c[i][1] if b[i][1] is None else max([b[i][1], c[i][1]])
106
+ self._bounding_box = b
107
+ self._recalculate_axis_ticks(i)
108
+
109
+ def _recalculate_axis_ticks(self, axis):
110
+ b = self._bounding_box
111
+ if b[axis][0] is None or b[axis][1] is None:
112
+ self._axis_ticks[axis] = []
113
+ else:
114
+ self._axis_ticks[axis] = strided_range(b[axis][0], b[axis][1],
115
+ self._stride[axis])
116
+
117
+ def toggle_visible(self):
118
+ self.visible = not self.visible
119
+
120
+ def toggle_colors(self):
121
+ self._colored = not self._colored
122
+
123
+
124
+ class PlotAxesBase(PlotObject):
125
+
126
+ def __init__(self, parent_axes):
127
+ self._p = parent_axes
128
+
129
+ def draw(self):
130
+ color = [([0.2, 0.1, 0.3], [0.2, 0.1, 0.3], [0.2, 0.1, 0.3]),
131
+ ([0.9, 0.3, 0.5], [0.5, 1.0, 0.5], [0.3, 0.3, 0.9])][self._p._colored]
132
+ self.draw_background(color)
133
+ self.draw_axis(2, color[2])
134
+ self.draw_axis(1, color[1])
135
+ self.draw_axis(0, color[0])
136
+
137
+ def draw_background(self, color):
138
+ pass # optional
139
+
140
+ def draw_axis(self, axis, color):
141
+ raise NotImplementedError()
142
+
143
+ def draw_text(self, text, position, color, scale=1.0):
144
+ if len(color) == 3:
145
+ color = (color[0], color[1], color[2], 1.0)
146
+
147
+ if self._p.label_font is None:
148
+ self._p.label_font = font.load(self._p.font_face,
149
+ self._p.font_size,
150
+ bold=True, italic=False)
151
+
152
+ label = font.Text(self._p.label_font, text,
153
+ color=color,
154
+ valign=font.Text.BASELINE,
155
+ halign=font.Text.CENTER)
156
+
157
+ pgl.glPushMatrix()
158
+ pgl.glTranslatef(*position)
159
+ billboard_matrix()
160
+ scale_factor = 0.005 * scale
161
+ pgl.glScalef(scale_factor, scale_factor, scale_factor)
162
+ pgl.glColor4f(0, 0, 0, 0)
163
+ label.draw()
164
+ pgl.glPopMatrix()
165
+
166
+ def draw_line(self, v, color):
167
+ o = self._p._origin
168
+ pgl.glBegin(pgl.GL_LINES)
169
+ pgl.glColor3f(*color)
170
+ pgl.glVertex3f(v[0][0] + o[0], v[0][1] + o[1], v[0][2] + o[2])
171
+ pgl.glVertex3f(v[1][0] + o[0], v[1][1] + o[1], v[1][2] + o[2])
172
+ pgl.glEnd()
173
+
174
+
175
+ class PlotAxesOrdinate(PlotAxesBase):
176
+
177
+ def __init__(self, parent_axes):
178
+ super().__init__(parent_axes)
179
+
180
+ def draw_axis(self, axis, color):
181
+ ticks = self._p._axis_ticks[axis]
182
+ radius = self._p._tick_length / 2.0
183
+ if len(ticks) < 2:
184
+ return
185
+
186
+ # calculate the vector for this axis
187
+ axis_lines = [[0, 0, 0], [0, 0, 0]]
188
+ axis_lines[0][axis], axis_lines[1][axis] = ticks[0], ticks[-1]
189
+ axis_vector = vec_sub(axis_lines[1], axis_lines[0])
190
+
191
+ # calculate angle to the z direction vector
192
+ pos_z = get_direction_vectors()[2]
193
+ d = abs(dot_product(axis_vector, pos_z))
194
+ d = d / vec_mag(axis_vector)
195
+
196
+ # don't draw labels if we're looking down the axis
197
+ labels_visible = abs(d - 1.0) > 0.02
198
+
199
+ # draw the ticks and labels
200
+ for tick in ticks:
201
+ self.draw_tick_line(axis, color, radius, tick, labels_visible)
202
+
203
+ # draw the axis line and labels
204
+ self.draw_axis_line(axis, color, ticks[0], ticks[-1], labels_visible)
205
+
206
+ def draw_axis_line(self, axis, color, a_min, a_max, labels_visible):
207
+ axis_line = [[0, 0, 0], [0, 0, 0]]
208
+ axis_line[0][axis], axis_line[1][axis] = a_min, a_max
209
+ self.draw_line(axis_line, color)
210
+ if labels_visible:
211
+ self.draw_axis_line_labels(axis, color, axis_line)
212
+
213
+ def draw_axis_line_labels(self, axis, color, axis_line):
214
+ if not self._p._label_axes:
215
+ return
216
+ axis_labels = [axis_line[0][::], axis_line[1][::]]
217
+ axis_labels[0][axis] -= 0.3
218
+ axis_labels[1][axis] += 0.3
219
+ a_str = ['X', 'Y', 'Z'][axis]
220
+ self.draw_text("-" + a_str, axis_labels[0], color)
221
+ self.draw_text("+" + a_str, axis_labels[1], color)
222
+
223
+ def draw_tick_line(self, axis, color, radius, tick, labels_visible):
224
+ tick_axis = {0: 1, 1: 0, 2: 1}[axis]
225
+ tick_line = [[0, 0, 0], [0, 0, 0]]
226
+ tick_line[0][axis] = tick_line[1][axis] = tick
227
+ tick_line[0][tick_axis], tick_line[1][tick_axis] = -radius, radius
228
+ self.draw_line(tick_line, color)
229
+ if labels_visible:
230
+ self.draw_tick_line_label(axis, color, radius, tick)
231
+
232
+ def draw_tick_line_label(self, axis, color, radius, tick):
233
+ if not self._p._label_axes:
234
+ return
235
+ tick_label_vector = [0, 0, 0]
236
+ tick_label_vector[axis] = tick
237
+ tick_label_vector[{0: 1, 1: 0, 2: 1}[axis]] = [-1, 1, 1][
238
+ axis] * radius * 3.5
239
+ self.draw_text(str(tick), tick_label_vector, color, scale=0.5)
240
+
241
+
242
+ class PlotAxesFrame(PlotAxesBase):
243
+
244
+ def __init__(self, parent_axes):
245
+ super().__init__(parent_axes)
246
+
247
+ def draw_background(self, color):
248
+ pass
249
+
250
+ def draw_axis(self, axis, color):
251
+ raise NotImplementedError()
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_camera.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyglet.gl as pgl
2
+ from sympy.plotting.pygletplot.plot_rotation import get_spherical_rotatation
3
+ from sympy.plotting.pygletplot.util import get_model_matrix, model_to_screen, \
4
+ screen_to_model, vec_subs
5
+
6
+
7
+ class PlotCamera:
8
+
9
+ min_dist = 0.05
10
+ max_dist = 500.0
11
+
12
+ min_ortho_dist = 100.0
13
+ max_ortho_dist = 10000.0
14
+
15
+ _default_dist = 6.0
16
+ _default_ortho_dist = 600.0
17
+
18
+ rot_presets = {
19
+ 'xy': (0, 0, 0),
20
+ 'xz': (-90, 0, 0),
21
+ 'yz': (0, 90, 0),
22
+ 'perspective': (-45, 0, -45)
23
+ }
24
+
25
+ def __init__(self, window, ortho=False):
26
+ self.window = window
27
+ self.axes = self.window.plot.axes
28
+ self.ortho = ortho
29
+ self.reset()
30
+
31
+ def init_rot_matrix(self):
32
+ pgl.glPushMatrix()
33
+ pgl.glLoadIdentity()
34
+ self._rot = get_model_matrix()
35
+ pgl.glPopMatrix()
36
+
37
+ def set_rot_preset(self, preset_name):
38
+ self.init_rot_matrix()
39
+ if preset_name not in self.rot_presets:
40
+ raise ValueError(
41
+ "%s is not a valid rotation preset." % preset_name)
42
+ r = self.rot_presets[preset_name]
43
+ self.euler_rotate(r[0], 1, 0, 0)
44
+ self.euler_rotate(r[1], 0, 1, 0)
45
+ self.euler_rotate(r[2], 0, 0, 1)
46
+
47
+ def reset(self):
48
+ self._dist = 0.0
49
+ self._x, self._y = 0.0, 0.0
50
+ self._rot = None
51
+ if self.ortho:
52
+ self._dist = self._default_ortho_dist
53
+ else:
54
+ self._dist = self._default_dist
55
+ self.init_rot_matrix()
56
+
57
+ def mult_rot_matrix(self, rot):
58
+ pgl.glPushMatrix()
59
+ pgl.glLoadMatrixf(rot)
60
+ pgl.glMultMatrixf(self._rot)
61
+ self._rot = get_model_matrix()
62
+ pgl.glPopMatrix()
63
+
64
+ def setup_projection(self):
65
+ pgl.glMatrixMode(pgl.GL_PROJECTION)
66
+ pgl.glLoadIdentity()
67
+ if self.ortho:
68
+ # yep, this is pseudo ortho (don't tell anyone)
69
+ pgl.gluPerspective(
70
+ 0.3, float(self.window.width)/float(self.window.height),
71
+ self.min_ortho_dist - 0.01, self.max_ortho_dist + 0.01)
72
+ else:
73
+ pgl.gluPerspective(
74
+ 30.0, float(self.window.width)/float(self.window.height),
75
+ self.min_dist - 0.01, self.max_dist + 0.01)
76
+ pgl.glMatrixMode(pgl.GL_MODELVIEW)
77
+
78
+ def _get_scale(self):
79
+ return 1.0, 1.0, 1.0
80
+
81
+ def apply_transformation(self):
82
+ pgl.glLoadIdentity()
83
+ pgl.glTranslatef(self._x, self._y, -self._dist)
84
+ if self._rot is not None:
85
+ pgl.glMultMatrixf(self._rot)
86
+ pgl.glScalef(*self._get_scale())
87
+
88
+ def spherical_rotate(self, p1, p2, sensitivity=1.0):
89
+ mat = get_spherical_rotatation(p1, p2, self.window.width,
90
+ self.window.height, sensitivity)
91
+ if mat is not None:
92
+ self.mult_rot_matrix(mat)
93
+
94
+ def euler_rotate(self, angle, x, y, z):
95
+ pgl.glPushMatrix()
96
+ pgl.glLoadMatrixf(self._rot)
97
+ pgl.glRotatef(angle, x, y, z)
98
+ self._rot = get_model_matrix()
99
+ pgl.glPopMatrix()
100
+
101
+ def zoom_relative(self, clicks, sensitivity):
102
+
103
+ if self.ortho:
104
+ dist_d = clicks * sensitivity * 50.0
105
+ min_dist = self.min_ortho_dist
106
+ max_dist = self.max_ortho_dist
107
+ else:
108
+ dist_d = clicks * sensitivity
109
+ min_dist = self.min_dist
110
+ max_dist = self.max_dist
111
+
112
+ new_dist = (self._dist - dist_d)
113
+ if (clicks < 0 and new_dist < max_dist) or new_dist > min_dist:
114
+ self._dist = new_dist
115
+
116
+ def mouse_translate(self, x, y, dx, dy):
117
+ pgl.glPushMatrix()
118
+ pgl.glLoadIdentity()
119
+ pgl.glTranslatef(0, 0, -self._dist)
120
+ z = model_to_screen(0, 0, 0)[2]
121
+ d = vec_subs(screen_to_model(x, y, z), screen_to_model(x - dx, y - dy, z))
122
+ pgl.glPopMatrix()
123
+ self._x += d[0]
124
+ self._y += d[1]
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_controller.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pyglet.window import key
2
+ from pyglet.window.mouse import LEFT, RIGHT, MIDDLE
3
+ from sympy.plotting.pygletplot.util import get_direction_vectors, get_basis_vectors
4
+
5
+
6
+ class PlotController:
7
+
8
+ normal_mouse_sensitivity = 4.0
9
+ modified_mouse_sensitivity = 1.0
10
+
11
+ normal_key_sensitivity = 160.0
12
+ modified_key_sensitivity = 40.0
13
+
14
+ keymap = {
15
+ key.LEFT: 'left',
16
+ key.A: 'left',
17
+ key.NUM_4: 'left',
18
+
19
+ key.RIGHT: 'right',
20
+ key.D: 'right',
21
+ key.NUM_6: 'right',
22
+
23
+ key.UP: 'up',
24
+ key.W: 'up',
25
+ key.NUM_8: 'up',
26
+
27
+ key.DOWN: 'down',
28
+ key.S: 'down',
29
+ key.NUM_2: 'down',
30
+
31
+ key.Z: 'rotate_z_neg',
32
+ key.NUM_1: 'rotate_z_neg',
33
+
34
+ key.C: 'rotate_z_pos',
35
+ key.NUM_3: 'rotate_z_pos',
36
+
37
+ key.Q: 'spin_left',
38
+ key.NUM_7: 'spin_left',
39
+ key.E: 'spin_right',
40
+ key.NUM_9: 'spin_right',
41
+
42
+ key.X: 'reset_camera',
43
+ key.NUM_5: 'reset_camera',
44
+
45
+ key.NUM_ADD: 'zoom_in',
46
+ key.PAGEUP: 'zoom_in',
47
+ key.R: 'zoom_in',
48
+
49
+ key.NUM_SUBTRACT: 'zoom_out',
50
+ key.PAGEDOWN: 'zoom_out',
51
+ key.F: 'zoom_out',
52
+
53
+ key.RSHIFT: 'modify_sensitivity',
54
+ key.LSHIFT: 'modify_sensitivity',
55
+
56
+ key.F1: 'rot_preset_xy',
57
+ key.F2: 'rot_preset_xz',
58
+ key.F3: 'rot_preset_yz',
59
+ key.F4: 'rot_preset_perspective',
60
+
61
+ key.F5: 'toggle_axes',
62
+ key.F6: 'toggle_axe_colors',
63
+
64
+ key.F8: 'save_image'
65
+ }
66
+
67
+ def __init__(self, window, *, invert_mouse_zoom=False, **kwargs):
68
+ self.invert_mouse_zoom = invert_mouse_zoom
69
+ self.window = window
70
+ self.camera = window.camera
71
+ self.action = {
72
+ # Rotation around the view Y (up) vector
73
+ 'left': False,
74
+ 'right': False,
75
+ # Rotation around the view X vector
76
+ 'up': False,
77
+ 'down': False,
78
+ # Rotation around the view Z vector
79
+ 'spin_left': False,
80
+ 'spin_right': False,
81
+ # Rotation around the model Z vector
82
+ 'rotate_z_neg': False,
83
+ 'rotate_z_pos': False,
84
+ # Reset to the default rotation
85
+ 'reset_camera': False,
86
+ # Performs camera z-translation
87
+ 'zoom_in': False,
88
+ 'zoom_out': False,
89
+ # Use alternative sensitivity (speed)
90
+ 'modify_sensitivity': False,
91
+ # Rotation presets
92
+ 'rot_preset_xy': False,
93
+ 'rot_preset_xz': False,
94
+ 'rot_preset_yz': False,
95
+ 'rot_preset_perspective': False,
96
+ # axes
97
+ 'toggle_axes': False,
98
+ 'toggle_axe_colors': False,
99
+ # screenshot
100
+ 'save_image': False
101
+ }
102
+
103
+ def update(self, dt):
104
+ z = 0
105
+ if self.action['zoom_out']:
106
+ z -= 1
107
+ if self.action['zoom_in']:
108
+ z += 1
109
+ if z != 0:
110
+ self.camera.zoom_relative(z/10.0, self.get_key_sensitivity()/10.0)
111
+
112
+ dx, dy, dz = 0, 0, 0
113
+ if self.action['left']:
114
+ dx -= 1
115
+ if self.action['right']:
116
+ dx += 1
117
+ if self.action['up']:
118
+ dy -= 1
119
+ if self.action['down']:
120
+ dy += 1
121
+ if self.action['spin_left']:
122
+ dz += 1
123
+ if self.action['spin_right']:
124
+ dz -= 1
125
+
126
+ if not self.is_2D():
127
+ if dx != 0:
128
+ self.camera.euler_rotate(dx*dt*self.get_key_sensitivity(),
129
+ *(get_direction_vectors()[1]))
130
+ if dy != 0:
131
+ self.camera.euler_rotate(dy*dt*self.get_key_sensitivity(),
132
+ *(get_direction_vectors()[0]))
133
+ if dz != 0:
134
+ self.camera.euler_rotate(dz*dt*self.get_key_sensitivity(),
135
+ *(get_direction_vectors()[2]))
136
+ else:
137
+ self.camera.mouse_translate(0, 0, dx*dt*self.get_key_sensitivity(),
138
+ -dy*dt*self.get_key_sensitivity())
139
+
140
+ rz = 0
141
+ if self.action['rotate_z_neg'] and not self.is_2D():
142
+ rz -= 1
143
+ if self.action['rotate_z_pos'] and not self.is_2D():
144
+ rz += 1
145
+
146
+ if rz != 0:
147
+ self.camera.euler_rotate(rz*dt*self.get_key_sensitivity(),
148
+ *(get_basis_vectors()[2]))
149
+
150
+ if self.action['reset_camera']:
151
+ self.camera.reset()
152
+
153
+ if self.action['rot_preset_xy']:
154
+ self.camera.set_rot_preset('xy')
155
+ if self.action['rot_preset_xz']:
156
+ self.camera.set_rot_preset('xz')
157
+ if self.action['rot_preset_yz']:
158
+ self.camera.set_rot_preset('yz')
159
+ if self.action['rot_preset_perspective']:
160
+ self.camera.set_rot_preset('perspective')
161
+
162
+ if self.action['toggle_axes']:
163
+ self.action['toggle_axes'] = False
164
+ self.camera.axes.toggle_visible()
165
+
166
+ if self.action['toggle_axe_colors']:
167
+ self.action['toggle_axe_colors'] = False
168
+ self.camera.axes.toggle_colors()
169
+
170
+ if self.action['save_image']:
171
+ self.action['save_image'] = False
172
+ self.window.plot.saveimage()
173
+
174
+ return True
175
+
176
+ def get_mouse_sensitivity(self):
177
+ if self.action['modify_sensitivity']:
178
+ return self.modified_mouse_sensitivity
179
+ else:
180
+ return self.normal_mouse_sensitivity
181
+
182
+ def get_key_sensitivity(self):
183
+ if self.action['modify_sensitivity']:
184
+ return self.modified_key_sensitivity
185
+ else:
186
+ return self.normal_key_sensitivity
187
+
188
+ def on_key_press(self, symbol, modifiers):
189
+ if symbol in self.keymap:
190
+ self.action[self.keymap[symbol]] = True
191
+
192
+ def on_key_release(self, symbol, modifiers):
193
+ if symbol in self.keymap:
194
+ self.action[self.keymap[symbol]] = False
195
+
196
+ def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers):
197
+ if buttons & LEFT:
198
+ if self.is_2D():
199
+ self.camera.mouse_translate(x, y, dx, dy)
200
+ else:
201
+ self.camera.spherical_rotate((x - dx, y - dy), (x, y),
202
+ self.get_mouse_sensitivity())
203
+ if buttons & MIDDLE:
204
+ self.camera.zoom_relative([1, -1][self.invert_mouse_zoom]*dy,
205
+ self.get_mouse_sensitivity()/20.0)
206
+ if buttons & RIGHT:
207
+ self.camera.mouse_translate(x, y, dx, dy)
208
+
209
+ def on_mouse_scroll(self, x, y, dx, dy):
210
+ self.camera.zoom_relative([1, -1][self.invert_mouse_zoom]*dy,
211
+ self.get_mouse_sensitivity())
212
+
213
+ def is_2D(self):
214
+ functions = self.window.plot._functions
215
+ for i in functions:
216
+ if len(functions[i].i_vars) > 1 or len(functions[i].d_vars) > 2:
217
+ return False
218
+ return True
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_curve.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyglet.gl as pgl
2
+ from sympy.core import S
3
+ from sympy.plotting.pygletplot.plot_mode_base import PlotModeBase
4
+
5
+
6
+ class PlotCurve(PlotModeBase):
7
+
8
+ style_override = 'wireframe'
9
+
10
+ def _on_calculate_verts(self):
11
+ self.t_interval = self.intervals[0]
12
+ self.t_set = list(self.t_interval.frange())
13
+ self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
14
+ [S.Infinity, S.NegativeInfinity, 0],
15
+ [S.Infinity, S.NegativeInfinity, 0]]
16
+ evaluate = self._get_evaluator()
17
+
18
+ self._calculating_verts_pos = 0.0
19
+ self._calculating_verts_len = float(self.t_interval.v_len)
20
+
21
+ self.verts = []
22
+ b = self.bounds
23
+ for t in self.t_set:
24
+ try:
25
+ _e = evaluate(t) # calculate vertex
26
+ except (NameError, ZeroDivisionError):
27
+ _e = None
28
+ if _e is not None: # update bounding box
29
+ for axis in range(3):
30
+ b[axis][0] = min([b[axis][0], _e[axis]])
31
+ b[axis][1] = max([b[axis][1], _e[axis]])
32
+ self.verts.append(_e)
33
+ self._calculating_verts_pos += 1.0
34
+
35
+ for axis in range(3):
36
+ b[axis][2] = b[axis][1] - b[axis][0]
37
+ if b[axis][2] == 0.0:
38
+ b[axis][2] = 1.0
39
+
40
+ self.push_wireframe(self.draw_verts(False))
41
+
42
+ def _on_calculate_cverts(self):
43
+ if not self.verts or not self.color:
44
+ return
45
+
46
+ def set_work_len(n):
47
+ self._calculating_cverts_len = float(n)
48
+
49
+ def inc_work_pos():
50
+ self._calculating_cverts_pos += 1.0
51
+ set_work_len(1)
52
+ self._calculating_cverts_pos = 0
53
+ self.cverts = self.color.apply_to_curve(self.verts,
54
+ self.t_set,
55
+ set_len=set_work_len,
56
+ inc_pos=inc_work_pos)
57
+ self.push_wireframe(self.draw_verts(True))
58
+
59
+ def calculate_one_cvert(self, t):
60
+ vert = self.verts[t]
61
+ return self.color(vert[0], vert[1], vert[2],
62
+ self.t_set[t], None)
63
+
64
+ def draw_verts(self, use_cverts):
65
+ def f():
66
+ pgl.glBegin(pgl.GL_LINE_STRIP)
67
+ for t in range(len(self.t_set)):
68
+ p = self.verts[t]
69
+ if p is None:
70
+ pgl.glEnd()
71
+ pgl.glBegin(pgl.GL_LINE_STRIP)
72
+ continue
73
+ if use_cverts:
74
+ c = self.cverts[t]
75
+ if c is None:
76
+ c = (0, 0, 0)
77
+ pgl.glColor3f(*c)
78
+ else:
79
+ pgl.glColor3f(*self.default_wireframe_color)
80
+ pgl.glVertex3f(*p)
81
+ pgl.glEnd()
82
+ return f
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_interval.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.symbol import Symbol
3
+ from sympy.core.sympify import sympify
4
+ from sympy.core.numbers import Integer
5
+
6
+
7
+ class PlotInterval:
8
+ """
9
+ """
10
+ _v, _v_min, _v_max, _v_steps = None, None, None, None
11
+
12
+ def require_all_args(f):
13
+ def check(self, *args, **kwargs):
14
+ for g in [self._v, self._v_min, self._v_max, self._v_steps]:
15
+ if g is None:
16
+ raise ValueError("PlotInterval is incomplete.")
17
+ return f(self, *args, **kwargs)
18
+ return check
19
+
20
+ def __init__(self, *args):
21
+ if len(args) == 1:
22
+ if isinstance(args[0], PlotInterval):
23
+ self.fill_from(args[0])
24
+ return
25
+ elif isinstance(args[0], str):
26
+ try:
27
+ args = eval(args[0])
28
+ except TypeError:
29
+ s_eval_error = "Could not interpret string %s."
30
+ raise ValueError(s_eval_error % (args[0]))
31
+ elif isinstance(args[0], (tuple, list)):
32
+ args = args[0]
33
+ else:
34
+ raise ValueError("Not an interval.")
35
+ if not isinstance(args, (tuple, list)) or len(args) > 4:
36
+ f_error = "PlotInterval must be a tuple or list of length 4 or less."
37
+ raise ValueError(f_error)
38
+
39
+ args = list(args)
40
+ if len(args) > 0 and (args[0] is None or isinstance(args[0], Symbol)):
41
+ self.v = args.pop(0)
42
+ if len(args) in [2, 3]:
43
+ self.v_min = args.pop(0)
44
+ self.v_max = args.pop(0)
45
+ if len(args) == 1:
46
+ self.v_steps = args.pop(0)
47
+ elif len(args) == 1:
48
+ self.v_steps = args.pop(0)
49
+
50
+ def get_v(self):
51
+ return self._v
52
+
53
+ def set_v(self, v):
54
+ if v is None:
55
+ self._v = None
56
+ return
57
+ if not isinstance(v, Symbol):
58
+ raise ValueError("v must be a SymPy Symbol.")
59
+ self._v = v
60
+
61
+ def get_v_min(self):
62
+ return self._v_min
63
+
64
+ def set_v_min(self, v_min):
65
+ if v_min is None:
66
+ self._v_min = None
67
+ return
68
+ try:
69
+ self._v_min = sympify(v_min)
70
+ float(self._v_min.evalf())
71
+ except TypeError:
72
+ raise ValueError("v_min could not be interpreted as a number.")
73
+
74
+ def get_v_max(self):
75
+ return self._v_max
76
+
77
+ def set_v_max(self, v_max):
78
+ if v_max is None:
79
+ self._v_max = None
80
+ return
81
+ try:
82
+ self._v_max = sympify(v_max)
83
+ float(self._v_max.evalf())
84
+ except TypeError:
85
+ raise ValueError("v_max could not be interpreted as a number.")
86
+
87
+ def get_v_steps(self):
88
+ return self._v_steps
89
+
90
+ def set_v_steps(self, v_steps):
91
+ if v_steps is None:
92
+ self._v_steps = None
93
+ return
94
+ if isinstance(v_steps, int):
95
+ v_steps = Integer(v_steps)
96
+ elif not isinstance(v_steps, Integer):
97
+ raise ValueError("v_steps must be an int or SymPy Integer.")
98
+ if v_steps <= S.Zero:
99
+ raise ValueError("v_steps must be positive.")
100
+ self._v_steps = v_steps
101
+
102
+ @require_all_args
103
+ def get_v_len(self):
104
+ return self.v_steps + 1
105
+
106
+ v = property(get_v, set_v)
107
+ v_min = property(get_v_min, set_v_min)
108
+ v_max = property(get_v_max, set_v_max)
109
+ v_steps = property(get_v_steps, set_v_steps)
110
+ v_len = property(get_v_len)
111
+
112
+ def fill_from(self, b):
113
+ if b.v is not None:
114
+ self.v = b.v
115
+ if b.v_min is not None:
116
+ self.v_min = b.v_min
117
+ if b.v_max is not None:
118
+ self.v_max = b.v_max
119
+ if b.v_steps is not None:
120
+ self.v_steps = b.v_steps
121
+
122
+ @staticmethod
123
+ def try_parse(*args):
124
+ """
125
+ Returns a PlotInterval if args can be interpreted
126
+ as such, otherwise None.
127
+ """
128
+ if len(args) == 1 and isinstance(args[0], PlotInterval):
129
+ return args[0]
130
+ try:
131
+ return PlotInterval(*args)
132
+ except ValueError:
133
+ return None
134
+
135
+ def _str_base(self):
136
+ return ",".join([str(self.v), str(self.v_min),
137
+ str(self.v_max), str(self.v_steps)])
138
+
139
+ def __repr__(self):
140
+ """
141
+ A string representing the interval in class constructor form.
142
+ """
143
+ return "PlotInterval(%s)" % (self._str_base())
144
+
145
+ def __str__(self):
146
+ """
147
+ A string representing the interval in list form.
148
+ """
149
+ return "[%s]" % (self._str_base())
150
+
151
+ @require_all_args
152
+ def assert_complete(self):
153
+ pass
154
+
155
+ @require_all_args
156
+ def vrange(self):
157
+ """
158
+ Yields v_steps+1 SymPy numbers ranging from
159
+ v_min to v_max.
160
+ """
161
+ d = (self.v_max - self.v_min) / self.v_steps
162
+ for i in range(self.v_steps + 1):
163
+ a = self.v_min + (d * Integer(i))
164
+ yield a
165
+
166
+ @require_all_args
167
+ def vrange2(self):
168
+ """
169
+ Yields v_steps pairs of SymPy numbers ranging from
170
+ (v_min, v_min + step) to (v_max - step, v_max).
171
+ """
172
+ d = (self.v_max - self.v_min) / self.v_steps
173
+ a = self.v_min + (d * S.Zero)
174
+ for i in range(self.v_steps):
175
+ b = self.v_min + (d * Integer(i + 1))
176
+ yield a, b
177
+ a = b
178
+
179
+ def frange(self):
180
+ for i in self.vrange():
181
+ yield float(i.evalf())
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode.py ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .plot_interval import PlotInterval
2
+ from .plot_object import PlotObject
3
+ from .util import parse_option_string
4
+ from sympy.core.symbol import Symbol
5
+ from sympy.core.sympify import sympify
6
+ from sympy.geometry.entity import GeometryEntity
7
+ from sympy.utilities.iterables import is_sequence
8
+
9
+
10
+ class PlotMode(PlotObject):
11
+ """
12
+ Grandparent class for plotting
13
+ modes. Serves as interface for
14
+ registration, lookup, and init
15
+ of modes.
16
+
17
+ To create a new plot mode,
18
+ inherit from PlotModeBase
19
+ or one of its children, such
20
+ as PlotSurface or PlotCurve.
21
+ """
22
+
23
+ ## Class-level attributes
24
+ ## used to register and lookup
25
+ ## plot modes. See PlotModeBase
26
+ ## for descriptions and usage.
27
+
28
+ i_vars, d_vars = '', ''
29
+ intervals = []
30
+ aliases = []
31
+ is_default = False
32
+
33
+ ## Draw is the only method here which
34
+ ## is meant to be overridden in child
35
+ ## classes, and PlotModeBase provides
36
+ ## a base implementation.
37
+ def draw(self):
38
+ raise NotImplementedError()
39
+
40
+ ## Everything else in this file has to
41
+ ## do with registration and retrieval
42
+ ## of plot modes. This is where I've
43
+ ## hidden much of the ugliness of automatic
44
+ ## plot mode divination...
45
+
46
+ ## Plot mode registry data structures
47
+ _mode_alias_list = []
48
+ _mode_map = {
49
+ 1: {1: {}, 2: {}},
50
+ 2: {1: {}, 2: {}},
51
+ 3: {1: {}, 2: {}},
52
+ } # [d][i][alias_str]: class
53
+ _mode_default_map = {
54
+ 1: {},
55
+ 2: {},
56
+ 3: {},
57
+ } # [d][i]: class
58
+ _i_var_max, _d_var_max = 2, 3
59
+
60
+ def __new__(cls, *args, **kwargs):
61
+ """
62
+ This is the function which interprets
63
+ arguments given to Plot.__init__ and
64
+ Plot.__setattr__. Returns an initialized
65
+ instance of the appropriate child class.
66
+ """
67
+
68
+ newargs, newkwargs = PlotMode._extract_options(args, kwargs)
69
+ mode_arg = newkwargs.get('mode', '')
70
+
71
+ # Interpret the arguments
72
+ d_vars, intervals = PlotMode._interpret_args(newargs)
73
+ i_vars = PlotMode._find_i_vars(d_vars, intervals)
74
+ i, d = max([len(i_vars), len(intervals)]), len(d_vars)
75
+
76
+ # Find the appropriate mode
77
+ subcls = PlotMode._get_mode(mode_arg, i, d)
78
+
79
+ # Create the object
80
+ o = object.__new__(subcls)
81
+
82
+ # Do some setup for the mode instance
83
+ o.d_vars = d_vars
84
+ o._fill_i_vars(i_vars)
85
+ o._fill_intervals(intervals)
86
+ o.options = newkwargs
87
+
88
+ return o
89
+
90
+ @staticmethod
91
+ def _get_mode(mode_arg, i_var_count, d_var_count):
92
+ """
93
+ Tries to return an appropriate mode class.
94
+ Intended to be called only by __new__.
95
+
96
+ mode_arg
97
+ Can be a string or a class. If it is a
98
+ PlotMode subclass, it is simply returned.
99
+ If it is a string, it can an alias for
100
+ a mode or an empty string. In the latter
101
+ case, we try to find a default mode for
102
+ the i_var_count and d_var_count.
103
+
104
+ i_var_count
105
+ The number of independent variables
106
+ needed to evaluate the d_vars.
107
+
108
+ d_var_count
109
+ The number of dependent variables;
110
+ usually the number of functions to
111
+ be evaluated in plotting.
112
+
113
+ For example, a Cartesian function y = f(x) has
114
+ one i_var (x) and one d_var (y). A parametric
115
+ form x,y,z = f(u,v), f(u,v), f(u,v) has two
116
+ two i_vars (u,v) and three d_vars (x,y,z).
117
+ """
118
+ # if the mode_arg is simply a PlotMode class,
119
+ # check that the mode supports the numbers
120
+ # of independent and dependent vars, then
121
+ # return it
122
+ try:
123
+ m = None
124
+ if issubclass(mode_arg, PlotMode):
125
+ m = mode_arg
126
+ except TypeError:
127
+ pass
128
+ if m:
129
+ if not m._was_initialized:
130
+ raise ValueError(("To use unregistered plot mode %s "
131
+ "you must first call %s._init_mode().")
132
+ % (m.__name__, m.__name__))
133
+ if d_var_count != m.d_var_count:
134
+ raise ValueError(("%s can only plot functions "
135
+ "with %i dependent variables.")
136
+ % (m.__name__,
137
+ m.d_var_count))
138
+ if i_var_count > m.i_var_count:
139
+ raise ValueError(("%s cannot plot functions "
140
+ "with more than %i independent "
141
+ "variables.")
142
+ % (m.__name__,
143
+ m.i_var_count))
144
+ return m
145
+ # If it is a string, there are two possibilities.
146
+ if isinstance(mode_arg, str):
147
+ i, d = i_var_count, d_var_count
148
+ if i > PlotMode._i_var_max:
149
+ raise ValueError(var_count_error(True, True))
150
+ if d > PlotMode._d_var_max:
151
+ raise ValueError(var_count_error(False, True))
152
+ # If the string is '', try to find a suitable
153
+ # default mode
154
+ if not mode_arg:
155
+ return PlotMode._get_default_mode(i, d)
156
+ # Otherwise, interpret the string as a mode
157
+ # alias (e.g. 'cartesian', 'parametric', etc)
158
+ else:
159
+ return PlotMode._get_aliased_mode(mode_arg, i, d)
160
+ else:
161
+ raise ValueError("PlotMode argument must be "
162
+ "a class or a string")
163
+
164
+ @staticmethod
165
+ def _get_default_mode(i, d, i_vars=-1):
166
+ if i_vars == -1:
167
+ i_vars = i
168
+ try:
169
+ return PlotMode._mode_default_map[d][i]
170
+ except KeyError:
171
+ # Keep looking for modes in higher i var counts
172
+ # which support the given d var count until we
173
+ # reach the max i_var count.
174
+ if i < PlotMode._i_var_max:
175
+ return PlotMode._get_default_mode(i + 1, d, i_vars)
176
+ else:
177
+ raise ValueError(("Couldn't find a default mode "
178
+ "for %i independent and %i "
179
+ "dependent variables.") % (i_vars, d))
180
+
181
+ @staticmethod
182
+ def _get_aliased_mode(alias, i, d, i_vars=-1):
183
+ if i_vars == -1:
184
+ i_vars = i
185
+ if alias not in PlotMode._mode_alias_list:
186
+ raise ValueError(("Couldn't find a mode called"
187
+ " %s. Known modes: %s.")
188
+ % (alias, ", ".join(PlotMode._mode_alias_list)))
189
+ try:
190
+ return PlotMode._mode_map[d][i][alias]
191
+ except TypeError:
192
+ # Keep looking for modes in higher i var counts
193
+ # which support the given d var count and alias
194
+ # until we reach the max i_var count.
195
+ if i < PlotMode._i_var_max:
196
+ return PlotMode._get_aliased_mode(alias, i + 1, d, i_vars)
197
+ else:
198
+ raise ValueError(("Couldn't find a %s mode "
199
+ "for %i independent and %i "
200
+ "dependent variables.")
201
+ % (alias, i_vars, d))
202
+
203
+ @classmethod
204
+ def _register(cls):
205
+ """
206
+ Called once for each user-usable plot mode.
207
+ For Cartesian2D, it is invoked after the
208
+ class definition: Cartesian2D._register()
209
+ """
210
+ name = cls.__name__
211
+ cls._init_mode()
212
+
213
+ try:
214
+ i, d = cls.i_var_count, cls.d_var_count
215
+ # Add the mode to _mode_map under all
216
+ # given aliases
217
+ for a in cls.aliases:
218
+ if a not in PlotMode._mode_alias_list:
219
+ # Also track valid aliases, so
220
+ # we can quickly know when given
221
+ # an invalid one in _get_mode.
222
+ PlotMode._mode_alias_list.append(a)
223
+ PlotMode._mode_map[d][i][a] = cls
224
+ if cls.is_default:
225
+ # If this mode was marked as the
226
+ # default for this d,i combination,
227
+ # also set that.
228
+ PlotMode._mode_default_map[d][i] = cls
229
+
230
+ except Exception as e:
231
+ raise RuntimeError(("Failed to register "
232
+ "plot mode %s. Reason: %s")
233
+ % (name, (str(e))))
234
+
235
+ @classmethod
236
+ def _init_mode(cls):
237
+ """
238
+ Initializes the plot mode based on
239
+ the 'mode-specific parameters' above.
240
+ Only intended to be called by
241
+ PlotMode._register(). To use a mode without
242
+ registering it, you can directly call
243
+ ModeSubclass._init_mode().
244
+ """
245
+ def symbols_list(symbol_str):
246
+ return [Symbol(s) for s in symbol_str]
247
+
248
+ # Convert the vars strs into
249
+ # lists of symbols.
250
+ cls.i_vars = symbols_list(cls.i_vars)
251
+ cls.d_vars = symbols_list(cls.d_vars)
252
+
253
+ # Var count is used often, calculate
254
+ # it once here
255
+ cls.i_var_count = len(cls.i_vars)
256
+ cls.d_var_count = len(cls.d_vars)
257
+
258
+ if cls.i_var_count > PlotMode._i_var_max:
259
+ raise ValueError(var_count_error(True, False))
260
+ if cls.d_var_count > PlotMode._d_var_max:
261
+ raise ValueError(var_count_error(False, False))
262
+
263
+ # Try to use first alias as primary_alias
264
+ if len(cls.aliases) > 0:
265
+ cls.primary_alias = cls.aliases[0]
266
+ else:
267
+ cls.primary_alias = cls.__name__
268
+
269
+ di = cls.intervals
270
+ if len(di) != cls.i_var_count:
271
+ raise ValueError("Plot mode must provide a "
272
+ "default interval for each i_var.")
273
+ for i in range(cls.i_var_count):
274
+ # default intervals must be given [min,max,steps]
275
+ # (no var, but they must be in the same order as i_vars)
276
+ if len(di[i]) != 3:
277
+ raise ValueError("length should be equal to 3")
278
+
279
+ # Initialize an incomplete interval,
280
+ # to later be filled with a var when
281
+ # the mode is instantiated.
282
+ di[i] = PlotInterval(None, *di[i])
283
+
284
+ # To prevent people from using modes
285
+ # without these required fields set up.
286
+ cls._was_initialized = True
287
+
288
+ _was_initialized = False
289
+
290
+ ## Initializer Helper Methods
291
+
292
+ @staticmethod
293
+ def _find_i_vars(functions, intervals):
294
+ i_vars = []
295
+
296
+ # First, collect i_vars in the
297
+ # order they are given in any
298
+ # intervals.
299
+ for i in intervals:
300
+ if i.v is None:
301
+ continue
302
+ elif i.v in i_vars:
303
+ raise ValueError(("Multiple intervals given "
304
+ "for %s.") % (str(i.v)))
305
+ i_vars.append(i.v)
306
+
307
+ # Then, find any remaining
308
+ # i_vars in given functions
309
+ # (aka d_vars)
310
+ for f in functions:
311
+ for a in f.free_symbols:
312
+ if a not in i_vars:
313
+ i_vars.append(a)
314
+
315
+ return i_vars
316
+
317
+ def _fill_i_vars(self, i_vars):
318
+ # copy default i_vars
319
+ self.i_vars = [Symbol(str(i)) for i in self.i_vars]
320
+ # replace with given i_vars
321
+ for i in range(len(i_vars)):
322
+ self.i_vars[i] = i_vars[i]
323
+
324
+ def _fill_intervals(self, intervals):
325
+ # copy default intervals
326
+ self.intervals = [PlotInterval(i) for i in self.intervals]
327
+ # track i_vars used so far
328
+ v_used = []
329
+ # fill copy of default
330
+ # intervals with given info
331
+ for i in range(len(intervals)):
332
+ self.intervals[i].fill_from(intervals[i])
333
+ if self.intervals[i].v is not None:
334
+ v_used.append(self.intervals[i].v)
335
+ # Find any orphan intervals and
336
+ # assign them i_vars
337
+ for i in range(len(self.intervals)):
338
+ if self.intervals[i].v is None:
339
+ u = [v for v in self.i_vars if v not in v_used]
340
+ if len(u) == 0:
341
+ raise ValueError("length should not be equal to 0")
342
+ self.intervals[i].v = u[0]
343
+ v_used.append(u[0])
344
+
345
+ @staticmethod
346
+ def _interpret_args(args):
347
+ interval_wrong_order = "PlotInterval %s was given before any function(s)."
348
+ interpret_error = "Could not interpret %s as a function or interval."
349
+
350
+ functions, intervals = [], []
351
+ if isinstance(args[0], GeometryEntity):
352
+ for coords in list(args[0].arbitrary_point()):
353
+ functions.append(coords)
354
+ intervals.append(PlotInterval.try_parse(args[0].plot_interval()))
355
+ else:
356
+ for a in args:
357
+ i = PlotInterval.try_parse(a)
358
+ if i is not None:
359
+ if len(functions) == 0:
360
+ raise ValueError(interval_wrong_order % (str(i)))
361
+ else:
362
+ intervals.append(i)
363
+ else:
364
+ if is_sequence(a, include=str):
365
+ raise ValueError(interpret_error % (str(a)))
366
+ try:
367
+ f = sympify(a)
368
+ functions.append(f)
369
+ except TypeError:
370
+ raise ValueError(interpret_error % str(a))
371
+
372
+ return functions, intervals
373
+
374
+ @staticmethod
375
+ def _extract_options(args, kwargs):
376
+ newkwargs, newargs = {}, []
377
+ for a in args:
378
+ if isinstance(a, str):
379
+ newkwargs = dict(newkwargs, **parse_option_string(a))
380
+ else:
381
+ newargs.append(a)
382
+ newkwargs = dict(newkwargs, **kwargs)
383
+ return newargs, newkwargs
384
+
385
+
386
+ def var_count_error(is_independent, is_plotting):
387
+ """
388
+ Used to format an error message which differs
389
+ slightly in 4 places.
390
+ """
391
+ if is_plotting:
392
+ v = "Plotting"
393
+ else:
394
+ v = "Registering plot modes"
395
+ if is_independent:
396
+ n, s = PlotMode._i_var_max, "independent"
397
+ else:
398
+ n, s = PlotMode._d_var_max, "dependent"
399
+ return ("%s with more than %i %s variables "
400
+ "is not supported.") % (v, n, s)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode_base.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyglet.gl as pgl
2
+ from sympy.core import S
3
+ from sympy.plotting.pygletplot.color_scheme import ColorScheme
4
+ from sympy.plotting.pygletplot.plot_mode import PlotMode
5
+ from sympy.utilities.iterables import is_sequence
6
+ from time import sleep
7
+ from threading import Thread, Event, RLock
8
+ import warnings
9
+
10
+
11
+ class PlotModeBase(PlotMode):
12
+ """
13
+ Intended parent class for plotting
14
+ modes. Provides base functionality
15
+ in conjunction with its parent,
16
+ PlotMode.
17
+ """
18
+
19
+ ##
20
+ ## Class-Level Attributes
21
+ ##
22
+
23
+ """
24
+ The following attributes are meant
25
+ to be set at the class level, and serve
26
+ as parameters to the plot mode registry
27
+ (in PlotMode). See plot_modes.py for
28
+ concrete examples.
29
+ """
30
+
31
+ """
32
+ i_vars
33
+ 'x' for Cartesian2D
34
+ 'xy' for Cartesian3D
35
+ etc.
36
+
37
+ d_vars
38
+ 'y' for Cartesian2D
39
+ 'r' for Polar
40
+ etc.
41
+ """
42
+ i_vars, d_vars = '', ''
43
+
44
+ """
45
+ intervals
46
+ Default intervals for each i_var, and in the
47
+ same order. Specified [min, max, steps].
48
+ No variable can be given (it is bound later).
49
+ """
50
+ intervals = []
51
+
52
+ """
53
+ aliases
54
+ A list of strings which can be used to
55
+ access this mode.
56
+ 'cartesian' for Cartesian2D and Cartesian3D
57
+ 'polar' for Polar
58
+ 'cylindrical', 'polar' for Cylindrical
59
+
60
+ Note that _init_mode chooses the first alias
61
+ in the list as the mode's primary_alias, which
62
+ will be displayed to the end user in certain
63
+ contexts.
64
+ """
65
+ aliases = []
66
+
67
+ """
68
+ is_default
69
+ Whether to set this mode as the default
70
+ for arguments passed to PlotMode() containing
71
+ the same number of d_vars as this mode and
72
+ at most the same number of i_vars.
73
+ """
74
+ is_default = False
75
+
76
+ """
77
+ All of the above attributes are defined in PlotMode.
78
+ The following ones are specific to PlotModeBase.
79
+ """
80
+
81
+ """
82
+ A list of the render styles. Do not modify.
83
+ """
84
+ styles = {'wireframe': 1, 'solid': 2, 'both': 3}
85
+
86
+ """
87
+ style_override
88
+ Always use this style if not blank.
89
+ """
90
+ style_override = ''
91
+
92
+ """
93
+ default_wireframe_color
94
+ default_solid_color
95
+ Can be used when color is None or being calculated.
96
+ Used by PlotCurve and PlotSurface, but not anywhere
97
+ in PlotModeBase.
98
+ """
99
+
100
+ default_wireframe_color = (0.85, 0.85, 0.85)
101
+ default_solid_color = (0.6, 0.6, 0.9)
102
+ default_rot_preset = 'xy'
103
+
104
+ ##
105
+ ## Instance-Level Attributes
106
+ ##
107
+
108
+ ## 'Abstract' member functions
109
+ def _get_evaluator(self):
110
+ if self.use_lambda_eval:
111
+ try:
112
+ e = self._get_lambda_evaluator()
113
+ return e
114
+ except Exception:
115
+ warnings.warn("\nWarning: creating lambda evaluator failed. "
116
+ "Falling back on SymPy subs evaluator.")
117
+ return self._get_sympy_evaluator()
118
+
119
+ def _get_sympy_evaluator(self):
120
+ raise NotImplementedError()
121
+
122
+ def _get_lambda_evaluator(self):
123
+ raise NotImplementedError()
124
+
125
+ def _on_calculate_verts(self):
126
+ raise NotImplementedError()
127
+
128
+ def _on_calculate_cverts(self):
129
+ raise NotImplementedError()
130
+
131
+ ## Base member functions
132
+ def __init__(self, *args, bounds_callback=None, **kwargs):
133
+ self.verts = []
134
+ self.cverts = []
135
+ self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
136
+ [S.Infinity, S.NegativeInfinity, 0],
137
+ [S.Infinity, S.NegativeInfinity, 0]]
138
+ self.cbounds = [[S.Infinity, S.NegativeInfinity, 0],
139
+ [S.Infinity, S.NegativeInfinity, 0],
140
+ [S.Infinity, S.NegativeInfinity, 0]]
141
+
142
+ self._draw_lock = RLock()
143
+
144
+ self._calculating_verts = Event()
145
+ self._calculating_cverts = Event()
146
+ self._calculating_verts_pos = 0.0
147
+ self._calculating_verts_len = 0.0
148
+ self._calculating_cverts_pos = 0.0
149
+ self._calculating_cverts_len = 0.0
150
+
151
+ self._max_render_stack_size = 3
152
+ self._draw_wireframe = [-1]
153
+ self._draw_solid = [-1]
154
+
155
+ self._style = None
156
+ self._color = None
157
+
158
+ self.predraw = []
159
+ self.postdraw = []
160
+
161
+ self.use_lambda_eval = self.options.pop('use_sympy_eval', None) is None
162
+ self.style = self.options.pop('style', '')
163
+ self.color = self.options.pop('color', 'rainbow')
164
+ self.bounds_callback = bounds_callback
165
+
166
+ self._on_calculate()
167
+
168
+ def synchronized(f):
169
+ def w(self, *args, **kwargs):
170
+ self._draw_lock.acquire()
171
+ try:
172
+ r = f(self, *args, **kwargs)
173
+ return r
174
+ finally:
175
+ self._draw_lock.release()
176
+ return w
177
+
178
+ @synchronized
179
+ def push_wireframe(self, function):
180
+ """
181
+ Push a function which performs gl commands
182
+ used to build a display list. (The list is
183
+ built outside of the function)
184
+ """
185
+ assert callable(function)
186
+ self._draw_wireframe.append(function)
187
+ if len(self._draw_wireframe) > self._max_render_stack_size:
188
+ del self._draw_wireframe[1] # leave marker element
189
+
190
+ @synchronized
191
+ def push_solid(self, function):
192
+ """
193
+ Push a function which performs gl commands
194
+ used to build a display list. (The list is
195
+ built outside of the function)
196
+ """
197
+ assert callable(function)
198
+ self._draw_solid.append(function)
199
+ if len(self._draw_solid) > self._max_render_stack_size:
200
+ del self._draw_solid[1] # leave marker element
201
+
202
+ def _create_display_list(self, function):
203
+ dl = pgl.glGenLists(1)
204
+ pgl.glNewList(dl, pgl.GL_COMPILE)
205
+ function()
206
+ pgl.glEndList()
207
+ return dl
208
+
209
+ def _render_stack_top(self, render_stack):
210
+ top = render_stack[-1]
211
+ if top == -1:
212
+ return -1 # nothing to display
213
+ elif callable(top):
214
+ dl = self._create_display_list(top)
215
+ render_stack[-1] = (dl, top)
216
+ return dl # display newly added list
217
+ elif len(top) == 2:
218
+ if pgl.GL_TRUE == pgl.glIsList(top[0]):
219
+ return top[0] # display stored list
220
+ dl = self._create_display_list(top[1])
221
+ render_stack[-1] = (dl, top[1])
222
+ return dl # display regenerated list
223
+
224
+ def _draw_solid_display_list(self, dl):
225
+ pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT)
226
+ pgl.glPolygonMode(pgl.GL_FRONT_AND_BACK, pgl.GL_FILL)
227
+ pgl.glCallList(dl)
228
+ pgl.glPopAttrib()
229
+
230
+ def _draw_wireframe_display_list(self, dl):
231
+ pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT)
232
+ pgl.glPolygonMode(pgl.GL_FRONT_AND_BACK, pgl.GL_LINE)
233
+ pgl.glEnable(pgl.GL_POLYGON_OFFSET_LINE)
234
+ pgl.glPolygonOffset(-0.005, -50.0)
235
+ pgl.glCallList(dl)
236
+ pgl.glPopAttrib()
237
+
238
+ @synchronized
239
+ def draw(self):
240
+ for f in self.predraw:
241
+ if callable(f):
242
+ f()
243
+ if self.style_override:
244
+ style = self.styles[self.style_override]
245
+ else:
246
+ style = self.styles[self._style]
247
+ # Draw solid component if style includes solid
248
+ if style & 2:
249
+ dl = self._render_stack_top(self._draw_solid)
250
+ if dl > 0 and pgl.GL_TRUE == pgl.glIsList(dl):
251
+ self._draw_solid_display_list(dl)
252
+ # Draw wireframe component if style includes wireframe
253
+ if style & 1:
254
+ dl = self._render_stack_top(self._draw_wireframe)
255
+ if dl > 0 and pgl.GL_TRUE == pgl.glIsList(dl):
256
+ self._draw_wireframe_display_list(dl)
257
+ for f in self.postdraw:
258
+ if callable(f):
259
+ f()
260
+
261
+ def _on_change_color(self, color):
262
+ Thread(target=self._calculate_cverts).start()
263
+
264
+ def _on_calculate(self):
265
+ Thread(target=self._calculate_all).start()
266
+
267
+ def _calculate_all(self):
268
+ self._calculate_verts()
269
+ self._calculate_cverts()
270
+
271
+ def _calculate_verts(self):
272
+ if self._calculating_verts.is_set():
273
+ return
274
+ self._calculating_verts.set()
275
+ try:
276
+ self._on_calculate_verts()
277
+ finally:
278
+ self._calculating_verts.clear()
279
+ if callable(self.bounds_callback):
280
+ self.bounds_callback()
281
+
282
+ def _calculate_cverts(self):
283
+ if self._calculating_verts.is_set():
284
+ return
285
+ while self._calculating_cverts.is_set():
286
+ sleep(0) # wait for previous calculation
287
+ self._calculating_cverts.set()
288
+ try:
289
+ self._on_calculate_cverts()
290
+ finally:
291
+ self._calculating_cverts.clear()
292
+
293
+ def _get_calculating_verts(self):
294
+ return self._calculating_verts.is_set()
295
+
296
+ def _get_calculating_verts_pos(self):
297
+ return self._calculating_verts_pos
298
+
299
+ def _get_calculating_verts_len(self):
300
+ return self._calculating_verts_len
301
+
302
+ def _get_calculating_cverts(self):
303
+ return self._calculating_cverts.is_set()
304
+
305
+ def _get_calculating_cverts_pos(self):
306
+ return self._calculating_cverts_pos
307
+
308
+ def _get_calculating_cverts_len(self):
309
+ return self._calculating_cverts_len
310
+
311
+ ## Property handlers
312
+ def _get_style(self):
313
+ return self._style
314
+
315
+ @synchronized
316
+ def _set_style(self, v):
317
+ if v is None:
318
+ return
319
+ if v == '':
320
+ step_max = 0
321
+ for i in self.intervals:
322
+ if i.v_steps is None:
323
+ continue
324
+ step_max = max([step_max, int(i.v_steps)])
325
+ v = ['both', 'solid'][step_max > 40]
326
+ if v not in self.styles:
327
+ raise ValueError("v should be there in self.styles")
328
+ if v == self._style:
329
+ return
330
+ self._style = v
331
+
332
+ def _get_color(self):
333
+ return self._color
334
+
335
+ @synchronized
336
+ def _set_color(self, v):
337
+ try:
338
+ if v is not None:
339
+ if is_sequence(v):
340
+ v = ColorScheme(*v)
341
+ else:
342
+ v = ColorScheme(v)
343
+ if repr(v) == repr(self._color):
344
+ return
345
+ self._on_change_color(v)
346
+ self._color = v
347
+ except Exception as e:
348
+ raise RuntimeError("Color change failed. "
349
+ "Reason: %s" % (str(e)))
350
+
351
+ style = property(_get_style, _set_style)
352
+ color = property(_get_color, _set_color)
353
+
354
+ calculating_verts = property(_get_calculating_verts)
355
+ calculating_verts_pos = property(_get_calculating_verts_pos)
356
+ calculating_verts_len = property(_get_calculating_verts_len)
357
+
358
+ calculating_cverts = property(_get_calculating_cverts)
359
+ calculating_cverts_pos = property(_get_calculating_cverts_pos)
360
+ calculating_cverts_len = property(_get_calculating_cverts_len)
361
+
362
+ ## String representations
363
+
364
+ def __str__(self):
365
+ f = ", ".join(str(d) for d in self.d_vars)
366
+ o = "'mode=%s'" % (self.primary_alias)
367
+ return ", ".join([f, o])
368
+
369
+ def __repr__(self):
370
+ f = ", ".join(str(d) for d in self.d_vars)
371
+ i = ", ".join(str(i) for i in self.intervals)
372
+ d = [('mode', self.primary_alias),
373
+ ('color', str(self.color)),
374
+ ('style', str(self.style))]
375
+
376
+ o = "'%s'" % ("; ".join("%s=%s" % (k, v)
377
+ for k, v in d if v != 'None'))
378
+ return ", ".join([f, i, o])
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_modes.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.utilities.lambdify import lambdify
2
+ from sympy.core.numbers import pi
3
+ from sympy.functions import sin, cos
4
+ from sympy.plotting.pygletplot.plot_curve import PlotCurve
5
+ from sympy.plotting.pygletplot.plot_surface import PlotSurface
6
+
7
+ from math import sin as p_sin
8
+ from math import cos as p_cos
9
+
10
+
11
+ def float_vec3(f):
12
+ def inner(*args):
13
+ v = f(*args)
14
+ return float(v[0]), float(v[1]), float(v[2])
15
+ return inner
16
+
17
+
18
+ class Cartesian2D(PlotCurve):
19
+ i_vars, d_vars = 'x', 'y'
20
+ intervals = [[-5, 5, 100]]
21
+ aliases = ['cartesian']
22
+ is_default = True
23
+
24
+ def _get_sympy_evaluator(self):
25
+ fy = self.d_vars[0]
26
+ x = self.t_interval.v
27
+
28
+ @float_vec3
29
+ def e(_x):
30
+ return (_x, fy.subs(x, _x), 0.0)
31
+ return e
32
+
33
+ def _get_lambda_evaluator(self):
34
+ fy = self.d_vars[0]
35
+ x = self.t_interval.v
36
+ return lambdify([x], [x, fy, 0.0])
37
+
38
+
39
+ class Cartesian3D(PlotSurface):
40
+ i_vars, d_vars = 'xy', 'z'
41
+ intervals = [[-1, 1, 40], [-1, 1, 40]]
42
+ aliases = ['cartesian', 'monge']
43
+ is_default = True
44
+
45
+ def _get_sympy_evaluator(self):
46
+ fz = self.d_vars[0]
47
+ x = self.u_interval.v
48
+ y = self.v_interval.v
49
+
50
+ @float_vec3
51
+ def e(_x, _y):
52
+ return (_x, _y, fz.subs(x, _x).subs(y, _y))
53
+ return e
54
+
55
+ def _get_lambda_evaluator(self):
56
+ fz = self.d_vars[0]
57
+ x = self.u_interval.v
58
+ y = self.v_interval.v
59
+ return lambdify([x, y], [x, y, fz])
60
+
61
+
62
+ class ParametricCurve2D(PlotCurve):
63
+ i_vars, d_vars = 't', 'xy'
64
+ intervals = [[0, 2*pi, 100]]
65
+ aliases = ['parametric']
66
+ is_default = True
67
+
68
+ def _get_sympy_evaluator(self):
69
+ fx, fy = self.d_vars
70
+ t = self.t_interval.v
71
+
72
+ @float_vec3
73
+ def e(_t):
74
+ return (fx.subs(t, _t), fy.subs(t, _t), 0.0)
75
+ return e
76
+
77
+ def _get_lambda_evaluator(self):
78
+ fx, fy = self.d_vars
79
+ t = self.t_interval.v
80
+ return lambdify([t], [fx, fy, 0.0])
81
+
82
+
83
+ class ParametricCurve3D(PlotCurve):
84
+ i_vars, d_vars = 't', 'xyz'
85
+ intervals = [[0, 2*pi, 100]]
86
+ aliases = ['parametric']
87
+ is_default = True
88
+
89
+ def _get_sympy_evaluator(self):
90
+ fx, fy, fz = self.d_vars
91
+ t = self.t_interval.v
92
+
93
+ @float_vec3
94
+ def e(_t):
95
+ return (fx.subs(t, _t), fy.subs(t, _t), fz.subs(t, _t))
96
+ return e
97
+
98
+ def _get_lambda_evaluator(self):
99
+ fx, fy, fz = self.d_vars
100
+ t = self.t_interval.v
101
+ return lambdify([t], [fx, fy, fz])
102
+
103
+
104
+ class ParametricSurface(PlotSurface):
105
+ i_vars, d_vars = 'uv', 'xyz'
106
+ intervals = [[-1, 1, 40], [-1, 1, 40]]
107
+ aliases = ['parametric']
108
+ is_default = True
109
+
110
+ def _get_sympy_evaluator(self):
111
+ fx, fy, fz = self.d_vars
112
+ u = self.u_interval.v
113
+ v = self.v_interval.v
114
+
115
+ @float_vec3
116
+ def e(_u, _v):
117
+ return (fx.subs(u, _u).subs(v, _v),
118
+ fy.subs(u, _u).subs(v, _v),
119
+ fz.subs(u, _u).subs(v, _v))
120
+ return e
121
+
122
+ def _get_lambda_evaluator(self):
123
+ fx, fy, fz = self.d_vars
124
+ u = self.u_interval.v
125
+ v = self.v_interval.v
126
+ return lambdify([u, v], [fx, fy, fz])
127
+
128
+
129
+ class Polar(PlotCurve):
130
+ i_vars, d_vars = 't', 'r'
131
+ intervals = [[0, 2*pi, 100]]
132
+ aliases = ['polar']
133
+ is_default = False
134
+
135
+ def _get_sympy_evaluator(self):
136
+ fr = self.d_vars[0]
137
+ t = self.t_interval.v
138
+
139
+ def e(_t):
140
+ _r = float(fr.subs(t, _t))
141
+ return (_r*p_cos(_t), _r*p_sin(_t), 0.0)
142
+ return e
143
+
144
+ def _get_lambda_evaluator(self):
145
+ fr = self.d_vars[0]
146
+ t = self.t_interval.v
147
+ fx, fy = fr*cos(t), fr*sin(t)
148
+ return lambdify([t], [fx, fy, 0.0])
149
+
150
+
151
+ class Cylindrical(PlotSurface):
152
+ i_vars, d_vars = 'th', 'r'
153
+ intervals = [[0, 2*pi, 40], [-1, 1, 20]]
154
+ aliases = ['cylindrical', 'polar']
155
+ is_default = False
156
+
157
+ def _get_sympy_evaluator(self):
158
+ fr = self.d_vars[0]
159
+ t = self.u_interval.v
160
+ h = self.v_interval.v
161
+
162
+ def e(_t, _h):
163
+ _r = float(fr.subs(t, _t).subs(h, _h))
164
+ return (_r*p_cos(_t), _r*p_sin(_t), _h)
165
+ return e
166
+
167
+ def _get_lambda_evaluator(self):
168
+ fr = self.d_vars[0]
169
+ t = self.u_interval.v
170
+ h = self.v_interval.v
171
+ fx, fy = fr*cos(t), fr*sin(t)
172
+ return lambdify([t, h], [fx, fy, h])
173
+
174
+
175
+ class Spherical(PlotSurface):
176
+ i_vars, d_vars = 'tp', 'r'
177
+ intervals = [[0, 2*pi, 40], [0, pi, 20]]
178
+ aliases = ['spherical']
179
+ is_default = False
180
+
181
+ def _get_sympy_evaluator(self):
182
+ fr = self.d_vars[0]
183
+ t = self.u_interval.v
184
+ p = self.v_interval.v
185
+
186
+ def e(_t, _p):
187
+ _r = float(fr.subs(t, _t).subs(p, _p))
188
+ return (_r*p_cos(_t)*p_sin(_p),
189
+ _r*p_sin(_t)*p_sin(_p),
190
+ _r*p_cos(_p))
191
+ return e
192
+
193
+ def _get_lambda_evaluator(self):
194
+ fr = self.d_vars[0]
195
+ t = self.u_interval.v
196
+ p = self.v_interval.v
197
+ fx = fr * cos(t) * sin(p)
198
+ fy = fr * sin(t) * sin(p)
199
+ fz = fr * cos(p)
200
+ return lambdify([t, p], [fx, fy, fz])
201
+
202
+ Cartesian2D._register()
203
+ Cartesian3D._register()
204
+ ParametricCurve2D._register()
205
+ ParametricCurve3D._register()
206
+ ParametricSurface._register()
207
+ Polar._register()
208
+ Cylindrical._register()
209
+ Spherical._register()
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_object.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class PlotObject:
2
+ """
3
+ Base class for objects which can be displayed in
4
+ a Plot.
5
+ """
6
+ visible = True
7
+
8
+ def _draw(self):
9
+ if self.visible:
10
+ self.draw()
11
+
12
+ def draw(self):
13
+ """
14
+ OpenGL rendering code for the plot object.
15
+ Override in base class.
16
+ """
17
+ pass
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_rotation.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ from ctypes import c_float
3
+ except ImportError:
4
+ pass
5
+
6
+ import pyglet.gl as pgl
7
+ from math import sqrt as _sqrt, acos as _acos
8
+
9
+
10
+ def cross(a, b):
11
+ return (a[1] * b[2] - a[2] * b[1],
12
+ a[2] * b[0] - a[0] * b[2],
13
+ a[0] * b[1] - a[1] * b[0])
14
+
15
+
16
+ def dot(a, b):
17
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
18
+
19
+
20
+ def mag(a):
21
+ return _sqrt(a[0]**2 + a[1]**2 + a[2]**2)
22
+
23
+
24
+ def norm(a):
25
+ m = mag(a)
26
+ return (a[0] / m, a[1] / m, a[2] / m)
27
+
28
+
29
+ def get_sphere_mapping(x, y, width, height):
30
+ x = min([max([x, 0]), width])
31
+ y = min([max([y, 0]), height])
32
+
33
+ sr = _sqrt((width/2)**2 + (height/2)**2)
34
+ sx = ((x - width / 2) / sr)
35
+ sy = ((y - height / 2) / sr)
36
+
37
+ sz = 1.0 - sx**2 - sy**2
38
+
39
+ if sz > 0.0:
40
+ sz = _sqrt(sz)
41
+ return (sx, sy, sz)
42
+ else:
43
+ sz = 0
44
+ return norm((sx, sy, sz))
45
+
46
+ rad2deg = 180.0 / 3.141592
47
+
48
+
49
+ def get_spherical_rotatation(p1, p2, width, height, theta_multiplier):
50
+ v1 = get_sphere_mapping(p1[0], p1[1], width, height)
51
+ v2 = get_sphere_mapping(p2[0], p2[1], width, height)
52
+
53
+ d = min(max([dot(v1, v2), -1]), 1)
54
+
55
+ if abs(d - 1.0) < 0.000001:
56
+ return None
57
+
58
+ raxis = norm( cross(v1, v2) )
59
+ rtheta = theta_multiplier * rad2deg * _acos(d)
60
+
61
+ pgl.glPushMatrix()
62
+ pgl.glLoadIdentity()
63
+ pgl.glRotatef(rtheta, *raxis)
64
+ mat = (c_float*16)()
65
+ pgl.glGetFloatv(pgl.GL_MODELVIEW_MATRIX, mat)
66
+ pgl.glPopMatrix()
67
+
68
+ return mat
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_surface.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyglet.gl as pgl
2
+
3
+ from sympy.core import S
4
+ from sympy.plotting.pygletplot.plot_mode_base import PlotModeBase
5
+
6
+
7
+ class PlotSurface(PlotModeBase):
8
+
9
+ default_rot_preset = 'perspective'
10
+
11
+ def _on_calculate_verts(self):
12
+ self.u_interval = self.intervals[0]
13
+ self.u_set = list(self.u_interval.frange())
14
+ self.v_interval = self.intervals[1]
15
+ self.v_set = list(self.v_interval.frange())
16
+ self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
17
+ [S.Infinity, S.NegativeInfinity, 0],
18
+ [S.Infinity, S.NegativeInfinity, 0]]
19
+ evaluate = self._get_evaluator()
20
+
21
+ self._calculating_verts_pos = 0.0
22
+ self._calculating_verts_len = float(
23
+ self.u_interval.v_len*self.v_interval.v_len)
24
+
25
+ verts = []
26
+ b = self.bounds
27
+ for u in self.u_set:
28
+ column = []
29
+ for v in self.v_set:
30
+ try:
31
+ _e = evaluate(u, v) # calculate vertex
32
+ except ZeroDivisionError:
33
+ _e = None
34
+ if _e is not None: # update bounding box
35
+ for axis in range(3):
36
+ b[axis][0] = min([b[axis][0], _e[axis]])
37
+ b[axis][1] = max([b[axis][1], _e[axis]])
38
+ column.append(_e)
39
+ self._calculating_verts_pos += 1.0
40
+
41
+ verts.append(column)
42
+ for axis in range(3):
43
+ b[axis][2] = b[axis][1] - b[axis][0]
44
+ if b[axis][2] == 0.0:
45
+ b[axis][2] = 1.0
46
+
47
+ self.verts = verts
48
+ self.push_wireframe(self.draw_verts(False, False))
49
+ self.push_solid(self.draw_verts(False, True))
50
+
51
+ def _on_calculate_cverts(self):
52
+ if not self.verts or not self.color:
53
+ return
54
+
55
+ def set_work_len(n):
56
+ self._calculating_cverts_len = float(n)
57
+
58
+ def inc_work_pos():
59
+ self._calculating_cverts_pos += 1.0
60
+ set_work_len(1)
61
+ self._calculating_cverts_pos = 0
62
+ self.cverts = self.color.apply_to_surface(self.verts,
63
+ self.u_set,
64
+ self.v_set,
65
+ set_len=set_work_len,
66
+ inc_pos=inc_work_pos)
67
+ self.push_solid(self.draw_verts(True, True))
68
+
69
+ def calculate_one_cvert(self, u, v):
70
+ vert = self.verts[u][v]
71
+ return self.color(vert[0], vert[1], vert[2],
72
+ self.u_set[u], self.v_set[v])
73
+
74
+ def draw_verts(self, use_cverts, use_solid_color):
75
+ def f():
76
+ for u in range(1, len(self.u_set)):
77
+ pgl.glBegin(pgl.GL_QUAD_STRIP)
78
+ for v in range(len(self.v_set)):
79
+ pa = self.verts[u - 1][v]
80
+ pb = self.verts[u][v]
81
+ if pa is None or pb is None:
82
+ pgl.glEnd()
83
+ pgl.glBegin(pgl.GL_QUAD_STRIP)
84
+ continue
85
+ if use_cverts:
86
+ ca = self.cverts[u - 1][v]
87
+ cb = self.cverts[u][v]
88
+ if ca is None:
89
+ ca = (0, 0, 0)
90
+ if cb is None:
91
+ cb = (0, 0, 0)
92
+ else:
93
+ if use_solid_color:
94
+ ca = cb = self.default_solid_color
95
+ else:
96
+ ca = cb = self.default_wireframe_color
97
+ pgl.glColor3f(*ca)
98
+ pgl.glVertex3f(*pa)
99
+ pgl.glColor3f(*cb)
100
+ pgl.glVertex3f(*pb)
101
+ pgl.glEnd()
102
+ return f
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_window.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from time import perf_counter
2
+
3
+
4
+ import pyglet.gl as pgl
5
+
6
+ from sympy.plotting.pygletplot.managed_window import ManagedWindow
7
+ from sympy.plotting.pygletplot.plot_camera import PlotCamera
8
+ from sympy.plotting.pygletplot.plot_controller import PlotController
9
+
10
+
11
+ class PlotWindow(ManagedWindow):
12
+
13
+ def __init__(self, plot, antialiasing=True, ortho=False,
14
+ invert_mouse_zoom=False, linewidth=1.5, caption="SymPy Plot",
15
+ **kwargs):
16
+ """
17
+ Named Arguments
18
+ ===============
19
+
20
+ antialiasing = True
21
+ True OR False
22
+ ortho = False
23
+ True OR False
24
+ invert_mouse_zoom = False
25
+ True OR False
26
+ """
27
+ self.plot = plot
28
+
29
+ self.camera = None
30
+ self._calculating = False
31
+
32
+ self.antialiasing = antialiasing
33
+ self.ortho = ortho
34
+ self.invert_mouse_zoom = invert_mouse_zoom
35
+ self.linewidth = linewidth
36
+ self.title = caption
37
+ self.last_caption_update = 0
38
+ self.caption_update_interval = 0.2
39
+ self.drawing_first_object = True
40
+
41
+ super().__init__(**kwargs)
42
+
43
+ def setup(self):
44
+ self.camera = PlotCamera(self, ortho=self.ortho)
45
+ self.controller = PlotController(self,
46
+ invert_mouse_zoom=self.invert_mouse_zoom)
47
+ self.push_handlers(self.controller)
48
+
49
+ pgl.glClearColor(1.0, 1.0, 1.0, 0.0)
50
+ pgl.glClearDepth(1.0)
51
+
52
+ pgl.glDepthFunc(pgl.GL_LESS)
53
+ pgl.glEnable(pgl.GL_DEPTH_TEST)
54
+
55
+ pgl.glEnable(pgl.GL_LINE_SMOOTH)
56
+ pgl.glShadeModel(pgl.GL_SMOOTH)
57
+ pgl.glLineWidth(self.linewidth)
58
+
59
+ pgl.glEnable(pgl.GL_BLEND)
60
+ pgl.glBlendFunc(pgl.GL_SRC_ALPHA, pgl.GL_ONE_MINUS_SRC_ALPHA)
61
+
62
+ if self.antialiasing:
63
+ pgl.glHint(pgl.GL_LINE_SMOOTH_HINT, pgl.GL_NICEST)
64
+ pgl.glHint(pgl.GL_POLYGON_SMOOTH_HINT, pgl.GL_NICEST)
65
+
66
+ self.camera.setup_projection()
67
+
68
+ def on_resize(self, w, h):
69
+ super().on_resize(w, h)
70
+ if self.camera is not None:
71
+ self.camera.setup_projection()
72
+
73
+ def update(self, dt):
74
+ self.controller.update(dt)
75
+
76
+ def draw(self):
77
+ self.plot._render_lock.acquire()
78
+ self.camera.apply_transformation()
79
+
80
+ calc_verts_pos, calc_verts_len = 0, 0
81
+ calc_cverts_pos, calc_cverts_len = 0, 0
82
+
83
+ should_update_caption = (perf_counter() - self.last_caption_update >
84
+ self.caption_update_interval)
85
+
86
+ if len(self.plot._functions.values()) == 0:
87
+ self.drawing_first_object = True
88
+
89
+ iterfunctions = iter(self.plot._functions.values())
90
+
91
+ for r in iterfunctions:
92
+ if self.drawing_first_object:
93
+ self.camera.set_rot_preset(r.default_rot_preset)
94
+ self.drawing_first_object = False
95
+
96
+ pgl.glPushMatrix()
97
+ r._draw()
98
+ pgl.glPopMatrix()
99
+
100
+ # might as well do this while we are
101
+ # iterating and have the lock rather
102
+ # than locking and iterating twice
103
+ # per frame:
104
+
105
+ if should_update_caption:
106
+ try:
107
+ if r.calculating_verts:
108
+ calc_verts_pos += r.calculating_verts_pos
109
+ calc_verts_len += r.calculating_verts_len
110
+ if r.calculating_cverts:
111
+ calc_cverts_pos += r.calculating_cverts_pos
112
+ calc_cverts_len += r.calculating_cverts_len
113
+ except ValueError:
114
+ pass
115
+
116
+ for r in self.plot._pobjects:
117
+ pgl.glPushMatrix()
118
+ r._draw()
119
+ pgl.glPopMatrix()
120
+
121
+ if should_update_caption:
122
+ self.update_caption(calc_verts_pos, calc_verts_len,
123
+ calc_cverts_pos, calc_cverts_len)
124
+ self.last_caption_update = perf_counter()
125
+
126
+ if self.plot._screenshot:
127
+ self.plot._screenshot._execute_saving()
128
+
129
+ self.plot._render_lock.release()
130
+
131
+ def update_caption(self, calc_verts_pos, calc_verts_len,
132
+ calc_cverts_pos, calc_cverts_len):
133
+ caption = self.title
134
+ if calc_verts_len or calc_cverts_len:
135
+ caption += " (calculating"
136
+ if calc_verts_len > 0:
137
+ p = (calc_verts_pos / calc_verts_len) * 100
138
+ caption += " vertices %i%%" % (p)
139
+ if calc_cverts_len > 0:
140
+ p = (calc_cverts_pos / calc_cverts_len) * 100
141
+ caption += " colors %i%%" % (p)
142
+ caption += ")"
143
+ if self.caption != caption:
144
+ self.set_caption(caption)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__init__.py ADDED
File without changes
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__pycache__/test_plotting.cpython-310.pyc ADDED
Binary file (3.2 kB). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/test_plotting.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.external.importtools import import_module
2
+
3
+ disabled = False
4
+
5
+ # if pyglet.gl fails to import, e.g. opengl is missing, we disable the tests
6
+ pyglet_gl = import_module("pyglet.gl", catch=(OSError,))
7
+ pyglet_window = import_module("pyglet.window", catch=(OSError,))
8
+ if not pyglet_gl or not pyglet_window:
9
+ disabled = True
10
+
11
+
12
+ from sympy.core.symbol import symbols
13
+ from sympy.functions.elementary.exponential import log
14
+ from sympy.functions.elementary.trigonometric import (cos, sin)
15
+ x, y, z = symbols('x, y, z')
16
+
17
+
18
+ def test_plot_2d():
19
+ from sympy.plotting.pygletplot import PygletPlot
20
+ p = PygletPlot(x, [x, -5, 5, 4], visible=False)
21
+ p.wait_for_calculations()
22
+
23
+
24
+ def test_plot_2d_discontinuous():
25
+ from sympy.plotting.pygletplot import PygletPlot
26
+ p = PygletPlot(1/x, [x, -1, 1, 2], visible=False)
27
+ p.wait_for_calculations()
28
+
29
+
30
+ def test_plot_3d():
31
+ from sympy.plotting.pygletplot import PygletPlot
32
+ p = PygletPlot(x*y, [x, -5, 5, 5], [y, -5, 5, 5], visible=False)
33
+ p.wait_for_calculations()
34
+
35
+
36
+ def test_plot_3d_discontinuous():
37
+ from sympy.plotting.pygletplot import PygletPlot
38
+ p = PygletPlot(1/x, [x, -3, 3, 6], [y, -1, 1, 1], visible=False)
39
+ p.wait_for_calculations()
40
+
41
+
42
+ def test_plot_2d_polar():
43
+ from sympy.plotting.pygletplot import PygletPlot
44
+ p = PygletPlot(1/x, [x, -1, 1, 4], 'mode=polar', visible=False)
45
+ p.wait_for_calculations()
46
+
47
+
48
+ def test_plot_3d_cylinder():
49
+ from sympy.plotting.pygletplot import PygletPlot
50
+ p = PygletPlot(
51
+ 1/y, [x, 0, 6.282, 4], [y, -1, 1, 4], 'mode=polar;style=solid',
52
+ visible=False)
53
+ p.wait_for_calculations()
54
+
55
+
56
+ def test_plot_3d_spherical():
57
+ from sympy.plotting.pygletplot import PygletPlot
58
+ p = PygletPlot(
59
+ 1, [x, 0, 6.282, 4], [y, 0, 3.141,
60
+ 4], 'mode=spherical;style=wireframe',
61
+ visible=False)
62
+ p.wait_for_calculations()
63
+
64
+
65
+ def test_plot_2d_parametric():
66
+ from sympy.plotting.pygletplot import PygletPlot
67
+ p = PygletPlot(sin(x), cos(x), [x, 0, 6.282, 4], visible=False)
68
+ p.wait_for_calculations()
69
+
70
+
71
+ def test_plot_3d_parametric():
72
+ from sympy.plotting.pygletplot import PygletPlot
73
+ p = PygletPlot(sin(x), cos(x), x/5.0, [x, 0, 6.282, 4], visible=False)
74
+ p.wait_for_calculations()
75
+
76
+
77
+ def _test_plot_log():
78
+ from sympy.plotting.pygletplot import PygletPlot
79
+ p = PygletPlot(log(x), [x, 0, 6.282, 4], 'mode=polar', visible=False)
80
+ p.wait_for_calculations()
81
+
82
+
83
+ def test_plot_integral():
84
+ # Make sure it doesn't treat x as an independent variable
85
+ from sympy.plotting.pygletplot import PygletPlot
86
+ from sympy.integrals.integrals import Integral
87
+ p = PygletPlot(Integral(z*x, (x, 1, z), (z, 1, y)), visible=False)
88
+ p.wait_for_calculations()
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/pygletplot/util.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ from ctypes import c_float, c_int, c_double
3
+ except ImportError:
4
+ pass
5
+
6
+ import pyglet.gl as pgl
7
+ from sympy.core import S
8
+
9
+
10
+ def get_model_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv):
11
+ """
12
+ Returns the current modelview matrix.
13
+ """
14
+ m = (array_type*16)()
15
+ glGetMethod(pgl.GL_MODELVIEW_MATRIX, m)
16
+ return m
17
+
18
+
19
+ def get_projection_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv):
20
+ """
21
+ Returns the current modelview matrix.
22
+ """
23
+ m = (array_type*16)()
24
+ glGetMethod(pgl.GL_PROJECTION_MATRIX, m)
25
+ return m
26
+
27
+
28
+ def get_viewport():
29
+ """
30
+ Returns the current viewport.
31
+ """
32
+ m = (c_int*4)()
33
+ pgl.glGetIntegerv(pgl.GL_VIEWPORT, m)
34
+ return m
35
+
36
+
37
+ def get_direction_vectors():
38
+ m = get_model_matrix()
39
+ return ((m[0], m[4], m[8]),
40
+ (m[1], m[5], m[9]),
41
+ (m[2], m[6], m[10]))
42
+
43
+
44
+ def get_view_direction_vectors():
45
+ m = get_model_matrix()
46
+ return ((m[0], m[1], m[2]),
47
+ (m[4], m[5], m[6]),
48
+ (m[8], m[9], m[10]))
49
+
50
+
51
+ def get_basis_vectors():
52
+ return ((1, 0, 0), (0, 1, 0), (0, 0, 1))
53
+
54
+
55
+ def screen_to_model(x, y, z):
56
+ m = get_model_matrix(c_double, pgl.glGetDoublev)
57
+ p = get_projection_matrix(c_double, pgl.glGetDoublev)
58
+ w = get_viewport()
59
+ mx, my, mz = c_double(), c_double(), c_double()
60
+ pgl.gluUnProject(x, y, z, m, p, w, mx, my, mz)
61
+ return float(mx.value), float(my.value), float(mz.value)
62
+
63
+
64
+ def model_to_screen(x, y, z):
65
+ m = get_model_matrix(c_double, pgl.glGetDoublev)
66
+ p = get_projection_matrix(c_double, pgl.glGetDoublev)
67
+ w = get_viewport()
68
+ mx, my, mz = c_double(), c_double(), c_double()
69
+ pgl.gluProject(x, y, z, m, p, w, mx, my, mz)
70
+ return float(mx.value), float(my.value), float(mz.value)
71
+
72
+
73
+ def vec_subs(a, b):
74
+ return tuple(a[i] - b[i] for i in range(len(a)))
75
+
76
+
77
+ def billboard_matrix():
78
+ """
79
+ Removes rotational components of
80
+ current matrix so that primitives
81
+ are always drawn facing the viewer.
82
+
83
+ |1|0|0|x|
84
+ |0|1|0|x|
85
+ |0|0|1|x| (x means left unchanged)
86
+ |x|x|x|x|
87
+ """
88
+ m = get_model_matrix()
89
+ # XXX: for i in range(11): m[i] = i ?
90
+ m[0] = 1
91
+ m[1] = 0
92
+ m[2] = 0
93
+ m[4] = 0
94
+ m[5] = 1
95
+ m[6] = 0
96
+ m[8] = 0
97
+ m[9] = 0
98
+ m[10] = 1
99
+ pgl.glLoadMatrixf(m)
100
+
101
+
102
+ def create_bounds():
103
+ return [[S.Infinity, S.NegativeInfinity, 0],
104
+ [S.Infinity, S.NegativeInfinity, 0],
105
+ [S.Infinity, S.NegativeInfinity, 0]]
106
+
107
+
108
+ def update_bounds(b, v):
109
+ if v is None:
110
+ return
111
+ for axis in range(3):
112
+ b[axis][0] = min([b[axis][0], v[axis]])
113
+ b[axis][1] = max([b[axis][1], v[axis]])
114
+
115
+
116
+ def interpolate(a_min, a_max, a_ratio):
117
+ return a_min + a_ratio * (a_max - a_min)
118
+
119
+
120
+ def rinterpolate(a_min, a_max, a_value):
121
+ a_range = a_max - a_min
122
+ if a_max == a_min:
123
+ a_range = 1.0
124
+ return (a_value - a_min) / float(a_range)
125
+
126
+
127
+ def interpolate_color(color1, color2, ratio):
128
+ return tuple(interpolate(color1[i], color2[i], ratio) for i in range(3))
129
+
130
+
131
+ def scale_value(v, v_min, v_len):
132
+ return (v - v_min) / v_len
133
+
134
+
135
+ def scale_value_list(flist):
136
+ v_min, v_max = min(flist), max(flist)
137
+ v_len = v_max - v_min
138
+ return [scale_value(f, v_min, v_len) for f in flist]
139
+
140
+
141
+ def strided_range(r_min, r_max, stride, max_steps=50):
142
+ o_min, o_max = r_min, r_max
143
+ if abs(r_min - r_max) < 0.001:
144
+ return []
145
+ try:
146
+ range(int(r_min - r_max))
147
+ except (TypeError, OverflowError):
148
+ return []
149
+ if r_min > r_max:
150
+ raise ValueError("r_min cannot be greater than r_max")
151
+ r_min_s = (r_min % stride)
152
+ r_max_s = stride - (r_max % stride)
153
+ if abs(r_max_s - stride) < 0.001:
154
+ r_max_s = 0.0
155
+ r_min -= r_min_s
156
+ r_max += r_max_s
157
+ r_steps = int((r_max - r_min)/stride)
158
+ if max_steps and r_steps > max_steps:
159
+ return strided_range(o_min, o_max, stride*2)
160
+ return [r_min] + [r_min + e*stride for e in range(1, r_steps + 1)] + [r_max]
161
+
162
+
163
+ def parse_option_string(s):
164
+ if not isinstance(s, str):
165
+ return None
166
+ options = {}
167
+ for token in s.split(';'):
168
+ pieces = token.split('=')
169
+ if len(pieces) == 1:
170
+ option, value = pieces[0], ""
171
+ elif len(pieces) == 2:
172
+ option, value = pieces
173
+ else:
174
+ raise ValueError("Plot option string '%s' is malformed." % (s))
175
+ options[option.strip()] = value.strip()
176
+ return options
177
+
178
+
179
+ def dot_product(v1, v2):
180
+ return sum(v1[i]*v2[i] for i in range(3))
181
+
182
+
183
+ def vec_sub(v1, v2):
184
+ return tuple(v1[i] - v2[i] for i in range(3))
185
+
186
+
187
+ def vec_mag(v):
188
+ return sum(v[i]**2 for i in range(3))**(0.5)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/series.py ADDED
@@ -0,0 +1,2591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### The base class for all series
2
+ from collections.abc import Callable
3
+ from sympy.calculus.util import continuous_domain
4
+ from sympy.concrete import Sum, Product
5
+ from sympy.core.containers import Tuple
6
+ from sympy.core.expr import Expr
7
+ from sympy.core.function import arity
8
+ from sympy.core.sorting import default_sort_key
9
+ from sympy.core.symbol import Symbol
10
+ from sympy.functions import atan2, zeta, frac, ceiling, floor, im
11
+ from sympy.core.relational import (Equality, GreaterThan,
12
+ LessThan, Relational, Ne)
13
+ from sympy.core.sympify import sympify
14
+ from sympy.external import import_module
15
+ from sympy.logic.boolalg import BooleanFunction
16
+ from sympy.plotting.utils import _get_free_symbols, extract_solution
17
+ from sympy.printing.latex import latex
18
+ from sympy.printing.pycode import PythonCodePrinter
19
+ from sympy.printing.precedence import precedence
20
+ from sympy.sets.sets import Set, Interval, Union
21
+ from sympy.simplify.simplify import nsimplify
22
+ from sympy.utilities.exceptions import sympy_deprecation_warning
23
+ from sympy.utilities.lambdify import lambdify
24
+ from .intervalmath import interval
25
+ import warnings
26
+
27
+
28
+ class IntervalMathPrinter(PythonCodePrinter):
29
+ """A printer to be used inside `plot_implicit` when `adaptive=True`,
30
+ in which case the interval arithmetic module is going to be used, which
31
+ requires the following edits.
32
+ """
33
+ def _print_And(self, expr):
34
+ PREC = precedence(expr)
35
+ return " & ".join(self.parenthesize(a, PREC)
36
+ for a in sorted(expr.args, key=default_sort_key))
37
+
38
+ def _print_Or(self, expr):
39
+ PREC = precedence(expr)
40
+ return " | ".join(self.parenthesize(a, PREC)
41
+ for a in sorted(expr.args, key=default_sort_key))
42
+
43
+
44
+ def _uniform_eval(f1, f2, *args, modules=None,
45
+ force_real_eval=False, has_sum=False):
46
+ """
47
+ Note: this is an experimental function, as such it is prone to changes.
48
+ Please, do not use it in your code.
49
+ """
50
+ np = import_module('numpy')
51
+
52
+ def wrapper_func(func, *args):
53
+ try:
54
+ return complex(func(*args))
55
+ except (ZeroDivisionError, OverflowError):
56
+ return complex(np.nan, np.nan)
57
+
58
+ # NOTE: np.vectorize is much slower than numpy vectorized operations.
59
+ # However, this modules must be able to evaluate functions also with
60
+ # mpmath or sympy.
61
+ wrapper_func = np.vectorize(wrapper_func, otypes=[complex])
62
+
63
+ def _eval_with_sympy(err=None):
64
+ if f2 is None:
65
+ msg = "Impossible to evaluate the provided numerical function"
66
+ if err is None:
67
+ msg += "."
68
+ else:
69
+ msg += "because the following exception was raised:\n"
70
+ "{}: {}".format(type(err).__name__, err)
71
+ raise RuntimeError(msg)
72
+ if err:
73
+ warnings.warn(
74
+ "The evaluation with %s failed.\n" % (
75
+ "NumPy/SciPy" if not modules else modules) +
76
+ "{}: {}\n".format(type(err).__name__, err) +
77
+ "Trying to evaluate the expression with Sympy, but it might "
78
+ "be a slow operation."
79
+ )
80
+ return wrapper_func(f2, *args)
81
+
82
+ if modules == "sympy":
83
+ return _eval_with_sympy()
84
+
85
+ try:
86
+ return wrapper_func(f1, *args)
87
+ except Exception as err:
88
+ return _eval_with_sympy(err)
89
+
90
+
91
+ def _adaptive_eval(f, x):
92
+ """Evaluate f(x) with an adaptive algorithm. Post-process the result.
93
+ If a symbolic expression is evaluated with SymPy, it might returns
94
+ another symbolic expression, containing additions, ...
95
+ Force evaluation to a float.
96
+
97
+ Parameters
98
+ ==========
99
+ f : callable
100
+ x : float
101
+ """
102
+ np = import_module('numpy')
103
+
104
+ y = f(x)
105
+ if isinstance(y, Expr) and (not y.is_Number):
106
+ y = y.evalf()
107
+ y = complex(y)
108
+ if y.imag > 1e-08:
109
+ return np.nan
110
+ return y.real
111
+
112
+
113
+ def _get_wrapper_for_expr(ret):
114
+ wrapper = "%s"
115
+ if ret == "real":
116
+ wrapper = "re(%s)"
117
+ elif ret == "imag":
118
+ wrapper = "im(%s)"
119
+ elif ret == "abs":
120
+ wrapper = "abs(%s)"
121
+ elif ret == "arg":
122
+ wrapper = "arg(%s)"
123
+ return wrapper
124
+
125
+
126
+ class BaseSeries:
127
+ """Base class for the data objects containing stuff to be plotted.
128
+
129
+ Notes
130
+ =====
131
+
132
+ The backend should check if it supports the data series that is given.
133
+ (e.g. TextBackend supports only LineOver1DRangeSeries).
134
+ It is the backend responsibility to know how to use the class of
135
+ data series that is given.
136
+
137
+ Some data series classes are grouped (using a class attribute like is_2Dline)
138
+ according to the api they present (based only on convention). The backend is
139
+ not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the
140
+ is_2Dline group and presents the get_points method, but the
141
+ TextBackend does not use the get_points method).
142
+
143
+ BaseSeries
144
+ """
145
+
146
+ # Some flags follow. The rationale for using flags instead of checking base
147
+ # classes is that setting multiple flags is simpler than multiple
148
+ # inheritance.
149
+
150
+ is_2Dline = False
151
+ # Some of the backends expect:
152
+ # - get_points returning 1D np.arrays list_x, list_y
153
+ # - get_color_array returning 1D np.array (done in Line2DBaseSeries)
154
+ # with the colors calculated at the points from get_points
155
+
156
+ is_3Dline = False
157
+ # Some of the backends expect:
158
+ # - get_points returning 1D np.arrays list_x, list_y, list_y
159
+ # - get_color_array returning 1D np.array (done in Line2DBaseSeries)
160
+ # with the colors calculated at the points from get_points
161
+
162
+ is_3Dsurface = False
163
+ # Some of the backends expect:
164
+ # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
165
+ # - get_points an alias for get_meshes
166
+
167
+ is_contour = False
168
+ # Some of the backends expect:
169
+ # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
170
+ # - get_points an alias for get_meshes
171
+
172
+ is_implicit = False
173
+ # Some of the backends expect:
174
+ # - get_meshes returning mesh_x (1D array), mesh_y(1D array,
175
+ # mesh_z (2D np.arrays)
176
+ # - get_points an alias for get_meshes
177
+ # Different from is_contour as the colormap in backend will be
178
+ # different
179
+
180
+ is_interactive = False
181
+ # An interactive series can update its data.
182
+
183
+ is_parametric = False
184
+ # The calculation of aesthetics expects:
185
+ # - get_parameter_points returning one or two np.arrays (1D or 2D)
186
+ # used for calculation aesthetics
187
+
188
+ is_generic = False
189
+ # Represent generic user-provided numerical data
190
+
191
+ is_vector = False
192
+ is_2Dvector = False
193
+ is_3Dvector = False
194
+ # Represents a 2D or 3D vector data series
195
+
196
+ _N = 100
197
+ # default number of discretization points for uniform sampling. Each
198
+ # subclass can set its number.
199
+
200
+ def __init__(self, *args, **kwargs):
201
+ kwargs = _set_discretization_points(kwargs.copy(), type(self))
202
+ # discretize the domain using only integer numbers
203
+ self.only_integers = kwargs.get("only_integers", False)
204
+ # represents the evaluation modules to be used by lambdify
205
+ self.modules = kwargs.get("modules", None)
206
+ # plot functions might create data series that might not be useful to
207
+ # be shown on the legend, for example wireframe lines on 3D plots.
208
+ self.show_in_legend = kwargs.get("show_in_legend", True)
209
+ # line and surface series can show data with a colormap, hence a
210
+ # colorbar is essential to understand the data. However, sometime it
211
+ # is useful to hide it on series-by-series base. The following keyword
212
+ # controls wheter the series should show a colorbar or not.
213
+ self.colorbar = kwargs.get("colorbar", True)
214
+ # Some series might use a colormap as default coloring. Setting this
215
+ # attribute to False will inform the backends to use solid color.
216
+ self.use_cm = kwargs.get("use_cm", False)
217
+ # If True, the backend will attempt to render it on a polar-projection
218
+ # axis, or using a polar discretization if a 3D plot is requested
219
+ self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
220
+ # If True, the rendering will use points, not lines.
221
+ self.is_point = kwargs.get("is_point", kwargs.get("point", False))
222
+ # some backend is able to render latex, other needs standard text
223
+ self._label = self._latex_label = ""
224
+
225
+ self._ranges = []
226
+ self._n = [
227
+ int(kwargs.get("n1", self._N)),
228
+ int(kwargs.get("n2", self._N)),
229
+ int(kwargs.get("n3", self._N))
230
+ ]
231
+ self._scales = [
232
+ kwargs.get("xscale", "linear"),
233
+ kwargs.get("yscale", "linear"),
234
+ kwargs.get("zscale", "linear")
235
+ ]
236
+
237
+ # enable interactive widget plots
238
+ self._params = kwargs.get("params", {})
239
+ if not isinstance(self._params, dict):
240
+ raise TypeError("`params` must be a dictionary mapping symbols "
241
+ "to numeric values.")
242
+ if len(self._params) > 0:
243
+ self.is_interactive = True
244
+
245
+ # contains keyword arguments that will be passed to the rendering
246
+ # function of the chosen plotting library
247
+ self.rendering_kw = kwargs.get("rendering_kw", {})
248
+
249
+ # numerical transformation functions to be applied to the output data:
250
+ # x, y, z (coordinates), p (parameter on parametric plots)
251
+ self._tx = kwargs.get("tx", None)
252
+ self._ty = kwargs.get("ty", None)
253
+ self._tz = kwargs.get("tz", None)
254
+ self._tp = kwargs.get("tp", None)
255
+ if not all(callable(t) or (t is None) for t in
256
+ [self._tx, self._ty, self._tz, self._tp]):
257
+ raise TypeError("`tx`, `ty`, `tz`, `tp` must be functions.")
258
+
259
+ # list of numerical functions representing the expressions to evaluate
260
+ self._functions = []
261
+ # signature for the numerical functions
262
+ self._signature = []
263
+ # some expressions don't like to be evaluated over complex data.
264
+ # if that's the case, set this to True
265
+ self._force_real_eval = kwargs.get("force_real_eval", None)
266
+ # this attribute will eventually contain a dictionary with the
267
+ # discretized ranges
268
+ self._discretized_domain = None
269
+ # wheter the series contains any interactive range, which is a range
270
+ # where the minimum and maximum values can be changed with an
271
+ # interactive widget
272
+ self._interactive_ranges = False
273
+ # NOTE: consider a generic summation, for example:
274
+ # s = Sum(cos(pi * x), (x, 1, y))
275
+ # This gets lambdified to something:
276
+ # sum(cos(pi*x) for x in range(1, y+1))
277
+ # Hence, y needs to be an integer, otherwise it raises:
278
+ # TypeError: 'complex' object cannot be interpreted as an integer
279
+ # This list will contains symbols that are upper bound to summations
280
+ # or products
281
+ self._needs_to_be_int = []
282
+ # a color function will be responsible to set the line/surface color
283
+ # according to some logic. Each data series will et an appropriate
284
+ # default value.
285
+ self.color_func = None
286
+ # NOTE: color_func usually receives numerical functions that are going
287
+ # to be evaluated over the coordinates of the computed points (or the
288
+ # discretized meshes).
289
+ # However, if an expression is given to color_func, then it will be
290
+ # lambdified with symbols in self._signature, and it will be evaluated
291
+ # with the same data used to evaluate the plotted expression.
292
+ self._eval_color_func_with_signature = False
293
+
294
+ def _block_lambda_functions(self, *exprs):
295
+ """Some data series can be used to plot numerical functions, others
296
+ cannot. Execute this method inside the `__init__` to prevent the
297
+ processing of numerical functions.
298
+ """
299
+ if any(callable(e) for e in exprs):
300
+ raise TypeError(type(self).__name__ + " requires a symbolic "
301
+ "expression.")
302
+
303
+ def _check_fs(self):
304
+ """ Checks if there are enogh parameters and free symbols.
305
+ """
306
+ exprs, ranges = self.expr, self.ranges
307
+ params, label = self.params, self.label
308
+ exprs = exprs if hasattr(exprs, "__iter__") else [exprs]
309
+ if any(callable(e) for e in exprs):
310
+ return
311
+
312
+ # from the expression's free symbols, remove the ones used in
313
+ # the parameters and the ranges
314
+ fs = _get_free_symbols(exprs)
315
+ fs = fs.difference(params.keys())
316
+ if ranges is not None:
317
+ fs = fs.difference([r[0] for r in ranges])
318
+
319
+ if len(fs) > 0:
320
+ raise ValueError(
321
+ "Incompatible expression and parameters.\n"
322
+ + "Expression: {}\n".format(
323
+ (exprs, ranges, label) if ranges is not None else (exprs, label))
324
+ + "params: {}\n".format(params)
325
+ + "Specify what these symbols represent: {}\n".format(fs)
326
+ + "Are they ranges or parameters?"
327
+ )
328
+
329
+ # verify that all symbols are known (they either represent plotting
330
+ # ranges or parameters)
331
+ range_symbols = [r[0] for r in ranges]
332
+ for r in ranges:
333
+ fs = set().union(*[e.free_symbols for e in r[1:]])
334
+ if any(t in fs for t in range_symbols):
335
+ # ranges can't depend on each other, for example this are
336
+ # not allowed:
337
+ # (x, 0, y), (y, 0, 3)
338
+ # (x, 0, y), (y, x + 2, 3)
339
+ raise ValueError("Range symbols can't be included into "
340
+ "minimum and maximum of a range. "
341
+ "Received range: %s" % str(r))
342
+ if len(fs) > 0:
343
+ self._interactive_ranges = True
344
+ remaining_fs = fs.difference(params.keys())
345
+ if len(remaining_fs) > 0:
346
+ raise ValueError(
347
+ "Unkown symbols found in plotting range: %s. " % (r,) +
348
+ "Are the following parameters? %s" % remaining_fs)
349
+
350
+ def _create_lambda_func(self):
351
+ """Create the lambda functions to be used by the uniform meshing
352
+ strategy.
353
+
354
+ Notes
355
+ =====
356
+ The old sympy.plotting used experimental_lambdify. It created one
357
+ lambda function each time an evaluation was requested. If that failed,
358
+ it went on to create a different lambda function and evaluated it,
359
+ and so on.
360
+
361
+ This new module changes strategy: it creates right away the default
362
+ lambda function as well as the backup one. The reason is that the
363
+ series could be interactive, hence the numerical function will be
364
+ evaluated multiple times. So, let's create the functions just once.
365
+
366
+ This approach works fine for the majority of cases, in which the
367
+ symbolic expression is relatively short, hence the lambdification
368
+ is fast. If the expression is very long, this approach takes twice
369
+ the time to create the lambda functions. Be aware of that!
370
+ """
371
+ exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr]
372
+ if not any(callable(e) for e in exprs):
373
+ fs = _get_free_symbols(exprs)
374
+ self._signature = sorted(fs, key=lambda t: t.name)
375
+
376
+ # Generate a list of lambda functions, two for each expression:
377
+ # 1. the default one.
378
+ # 2. the backup one, in case of failures with the default one.
379
+ self._functions = []
380
+ for e in exprs:
381
+ # TODO: set cse=True once this issue is solved:
382
+ # https://github.com/sympy/sympy/issues/24246
383
+ self._functions.append([
384
+ lambdify(self._signature, e, modules=self.modules),
385
+ lambdify(self._signature, e, modules="sympy", dummify=True),
386
+ ])
387
+ else:
388
+ self._signature = sorted([r[0] for r in self.ranges], key=lambda t: t.name)
389
+ self._functions = [(e, None) for e in exprs]
390
+
391
+ # deal with symbolic color_func
392
+ if isinstance(self.color_func, Expr):
393
+ self.color_func = lambdify(self._signature, self.color_func)
394
+ self._eval_color_func_with_signature = True
395
+
396
+ def _update_range_value(self, t):
397
+ """If the value of a plotting range is a symbolic expression,
398
+ substitute the parameters in order to get a numerical value.
399
+ """
400
+ if not self._interactive_ranges:
401
+ return complex(t)
402
+ return complex(t.subs(self.params))
403
+
404
+ def _create_discretized_domain(self):
405
+ """Discretize the ranges for uniform meshing strategy.
406
+ """
407
+ # NOTE: the goal is to create a dictionary stored in
408
+ # self._discretized_domain, mapping symbols to a numpy array
409
+ # representing the discretization
410
+ discr_symbols = []
411
+ discretizations = []
412
+
413
+ # create a 1D discretization
414
+ for i, r in enumerate(self.ranges):
415
+ discr_symbols.append(r[0])
416
+ c_start = self._update_range_value(r[1])
417
+ c_end = self._update_range_value(r[2])
418
+ start = c_start.real if c_start.imag == c_end.imag == 0 else c_start
419
+ end = c_end.real if c_start.imag == c_end.imag == 0 else c_end
420
+ needs_integer_discr = self.only_integers or (r[0] in self._needs_to_be_int)
421
+ d = BaseSeries._discretize(start, end, self.n[i],
422
+ scale=self.scales[i],
423
+ only_integers=needs_integer_discr)
424
+
425
+ if ((not self._force_real_eval) and (not needs_integer_discr) and
426
+ (d.dtype != "complex")):
427
+ d = d + 1j * c_start.imag
428
+
429
+ if needs_integer_discr:
430
+ d = d.astype(int)
431
+
432
+ discretizations.append(d)
433
+
434
+ # create 2D or 3D
435
+ self._create_discretized_domain_helper(discr_symbols, discretizations)
436
+
437
+ def _create_discretized_domain_helper(self, discr_symbols, discretizations):
438
+ """Create 2D or 3D discretized grids.
439
+
440
+ Subclasses should override this method in order to implement a
441
+ different behaviour.
442
+ """
443
+ np = import_module('numpy')
444
+
445
+ # discretization suitable for 2D line plots, 3D surface plots,
446
+ # contours plots, vector plots
447
+ # NOTE: why indexing='ij'? Because it produces consistent results with
448
+ # np.mgrid. This is important as Mayavi requires this indexing
449
+ # to correctly compute 3D streamlines. While VTK is able to compute
450
+ # streamlines regardless of the indexing, with indexing='xy' it
451
+ # produces "strange" results with "voids" into the
452
+ # discretization volume. indexing='ij' solves the problem.
453
+ # Also note that matplotlib 2D streamlines requires indexing='xy'.
454
+ indexing = "xy"
455
+ if self.is_3Dvector or (self.is_3Dsurface and self.is_implicit):
456
+ indexing = "ij"
457
+ meshes = np.meshgrid(*discretizations, indexing=indexing)
458
+ self._discretized_domain = dict(zip(discr_symbols, meshes))
459
+
460
+ def _evaluate(self, cast_to_real=True):
461
+ """Evaluation of the symbolic expression (or expressions) with the
462
+ uniform meshing strategy, based on current values of the parameters.
463
+ """
464
+ np = import_module('numpy')
465
+
466
+ # create lambda functions
467
+ if not self._functions:
468
+ self._create_lambda_func()
469
+ # create (or update) the discretized domain
470
+ if (not self._discretized_domain) or self._interactive_ranges:
471
+ self._create_discretized_domain()
472
+ # ensure that discretized domains are returned with the proper order
473
+ discr = [self._discretized_domain[s[0]] for s in self.ranges]
474
+
475
+ args = self._aggregate_args()
476
+
477
+ results = []
478
+ for f in self._functions:
479
+ r = _uniform_eval(*f, *args)
480
+ # the evaluation might produce an int/float. Need this correction.
481
+ r = self._correct_shape(np.array(r), discr[0])
482
+ # sometime the evaluation is performed over arrays of type object.
483
+ # hence, `result` might be of type object, which don't work well
484
+ # with numpy real and imag functions.
485
+ r = r.astype(complex)
486
+ results.append(r)
487
+
488
+ if cast_to_real:
489
+ discr = [np.real(d.astype(complex)) for d in discr]
490
+ return [*discr, *results]
491
+
492
+ def _aggregate_args(self):
493
+ """Create a list of arguments to be passed to the lambda function,
494
+ sorted accoring to self._signature.
495
+ """
496
+ args = []
497
+ for s in self._signature:
498
+ if s in self._params.keys():
499
+ args.append(
500
+ int(self._params[s]) if s in self._needs_to_be_int else
501
+ self._params[s] if self._force_real_eval
502
+ else complex(self._params[s]))
503
+ else:
504
+ args.append(self._discretized_domain[s])
505
+ return args
506
+
507
+ @property
508
+ def expr(self):
509
+ """Return the expression (or expressions) of the series."""
510
+ return self._expr
511
+
512
+ @expr.setter
513
+ def expr(self, e):
514
+ """Set the expression (or expressions) of the series."""
515
+ is_iter = hasattr(e, "__iter__")
516
+ is_callable = callable(e) if not is_iter else any(callable(t) for t in e)
517
+ if is_callable:
518
+ self._expr = e
519
+ else:
520
+ self._expr = sympify(e) if not is_iter else Tuple(*e)
521
+
522
+ # look for the upper bound of summations and products
523
+ s = set()
524
+ for e in self._expr.atoms(Sum, Product):
525
+ for a in e.args[1:]:
526
+ if isinstance(a[-1], Symbol):
527
+ s.add(a[-1])
528
+ self._needs_to_be_int = list(s)
529
+
530
+ # list of sympy functions that when lambdified, the corresponding
531
+ # numpy functions don't like complex-type arguments
532
+ pf = [ceiling, floor, atan2, frac, zeta]
533
+ if self._force_real_eval is not True:
534
+ check_res = [self._expr.has(f) for f in pf]
535
+ self._force_real_eval = any(check_res)
536
+ if self._force_real_eval and ((self.modules is None) or
537
+ (isinstance(self.modules, str) and "numpy" in self.modules)):
538
+ funcs = [f for f, c in zip(pf, check_res) if c]
539
+ warnings.warn("NumPy is unable to evaluate with complex "
540
+ "numbers some of the functions included in this "
541
+ "symbolic expression: %s. " % funcs +
542
+ "Hence, the evaluation will use real numbers. "
543
+ "If you believe the resulting plot is incorrect, "
544
+ "change the evaluation module by setting the "
545
+ "`modules` keyword argument.")
546
+ if self._functions:
547
+ # update lambda functions
548
+ self._create_lambda_func()
549
+
550
+ @property
551
+ def is_3D(self):
552
+ flags3D = [self.is_3Dline, self.is_3Dsurface, self.is_3Dvector]
553
+ return any(flags3D)
554
+
555
+ @property
556
+ def is_line(self):
557
+ flagslines = [self.is_2Dline, self.is_3Dline]
558
+ return any(flagslines)
559
+
560
+ def _line_surface_color(self, prop, val):
561
+ """This method enables back-compatibility with old sympy.plotting"""
562
+ # NOTE: color_func is set inside the init method of the series.
563
+ # If line_color/surface_color is not a callable, then color_func will
564
+ # be set to None.
565
+ setattr(self, prop, val)
566
+ if callable(val) or isinstance(val, Expr):
567
+ self.color_func = val
568
+ setattr(self, prop, None)
569
+ elif val is not None:
570
+ self.color_func = None
571
+
572
+ @property
573
+ def line_color(self):
574
+ return self._line_color
575
+
576
+ @line_color.setter
577
+ def line_color(self, val):
578
+ self._line_surface_color("_line_color", val)
579
+
580
+ @property
581
+ def n(self):
582
+ """Returns a list [n1, n2, n3] of numbers of discratization points.
583
+ """
584
+ return self._n
585
+
586
+ @n.setter
587
+ def n(self, v):
588
+ """Set the numbers of discretization points. ``v`` must be an int or
589
+ a list.
590
+
591
+ Let ``s`` be a series. Then:
592
+
593
+ * to set the number of discretization points along the x direction (or
594
+ first parameter): ``s.n = 10``
595
+ * to set the number of discretization points along the x and y
596
+ directions (or first and second parameters): ``s.n = [10, 15]``
597
+ * to set the number of discretization points along the x, y and z
598
+ directions: ``s.n = [10, 15, 20]``
599
+
600
+ The following is highly unreccomended, because it prevents
601
+ the execution of necessary code in order to keep updated data:
602
+ ``s.n[1] = 15``
603
+ """
604
+ if not hasattr(v, "__iter__"):
605
+ self._n[0] = v
606
+ else:
607
+ self._n[:len(v)] = v
608
+ if self._discretized_domain:
609
+ # update the discretized domain
610
+ self._create_discretized_domain()
611
+
612
+ @property
613
+ def params(self):
614
+ """Get or set the current parameters dictionary.
615
+
616
+ Parameters
617
+ ==========
618
+
619
+ p : dict
620
+
621
+ * key: symbol associated to the parameter
622
+ * val: the numeric value
623
+ """
624
+ return self._params
625
+
626
+ @params.setter
627
+ def params(self, p):
628
+ self._params = p
629
+
630
+ def _post_init(self):
631
+ exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr]
632
+ if any(callable(e) for e in exprs) and self.params:
633
+ raise TypeError("`params` was provided, hence an interactive plot "
634
+ "is expected. However, interactive plots do not support "
635
+ "user-provided numerical functions.")
636
+
637
+ # if the expressions is a lambda function and no label has been
638
+ # provided, then its better to do the following in order to avoid
639
+ # suprises on the backend
640
+ if any(callable(e) for e in exprs):
641
+ if self._label == str(self.expr):
642
+ self.label = ""
643
+
644
+ self._check_fs()
645
+
646
+ if hasattr(self, "adaptive") and self.adaptive and self.params:
647
+ warnings.warn("`params` was provided, hence an interactive plot "
648
+ "is expected. However, interactive plots do not support "
649
+ "adaptive evaluation. Automatically switched to "
650
+ "adaptive=False.")
651
+ self.adaptive = False
652
+
653
+ @property
654
+ def scales(self):
655
+ return self._scales
656
+
657
+ @scales.setter
658
+ def scales(self, v):
659
+ if isinstance(v, str):
660
+ self._scales[0] = v
661
+ else:
662
+ self._scales[:len(v)] = v
663
+
664
+ @property
665
+ def surface_color(self):
666
+ return self._surface_color
667
+
668
+ @surface_color.setter
669
+ def surface_color(self, val):
670
+ self._line_surface_color("_surface_color", val)
671
+
672
+ @property
673
+ def rendering_kw(self):
674
+ return self._rendering_kw
675
+
676
+ @rendering_kw.setter
677
+ def rendering_kw(self, kwargs):
678
+ if isinstance(kwargs, dict):
679
+ self._rendering_kw = kwargs
680
+ else:
681
+ self._rendering_kw = {}
682
+ if kwargs is not None:
683
+ warnings.warn(
684
+ "`rendering_kw` must be a dictionary, instead an "
685
+ "object of type %s was received. " % type(kwargs) +
686
+ "Automatically setting `rendering_kw` to an empty "
687
+ "dictionary")
688
+
689
+ @staticmethod
690
+ def _discretize(start, end, N, scale="linear", only_integers=False):
691
+ """Discretize a 1D domain.
692
+
693
+ Returns
694
+ =======
695
+
696
+ domain : np.ndarray with dtype=float or complex
697
+ The domain's dtype will be float or complex (depending on the
698
+ type of start/end) even if only_integers=True. It is left for
699
+ the downstream code to perform further casting, if necessary.
700
+ """
701
+ np = import_module('numpy')
702
+
703
+ if only_integers is True:
704
+ start, end = int(start), int(end)
705
+ N = end - start + 1
706
+
707
+ if scale == "linear":
708
+ return np.linspace(start, end, N)
709
+ return np.geomspace(start, end, N)
710
+
711
+ @staticmethod
712
+ def _correct_shape(a, b):
713
+ """Convert ``a`` to a np.ndarray of the same shape of ``b``.
714
+
715
+ Parameters
716
+ ==========
717
+
718
+ a : int, float, complex, np.ndarray
719
+ Usually, this is the result of a numerical evaluation of a
720
+ symbolic expression. Even if a discretized domain was used to
721
+ evaluate the function, the result can be a scalar (int, float,
722
+ complex). Think for example to ``expr = Float(2)`` and
723
+ ``f = lambdify(x, expr)``. No matter the shape of the numerical
724
+ array representing x, the result of the evaluation will be
725
+ a single value.
726
+
727
+ b : np.ndarray
728
+ It represents the correct shape that ``a`` should have.
729
+
730
+ Returns
731
+ =======
732
+ new_a : np.ndarray
733
+ An array with the correct shape.
734
+ """
735
+ np = import_module('numpy')
736
+
737
+ if not isinstance(a, np.ndarray):
738
+ a = np.array(a)
739
+ if a.shape != b.shape:
740
+ if a.shape == ():
741
+ a = a * np.ones_like(b)
742
+ else:
743
+ a = a.reshape(b.shape)
744
+ return a
745
+
746
+ def eval_color_func(self, *args):
747
+ """Evaluate the color function.
748
+
749
+ Parameters
750
+ ==========
751
+
752
+ args : tuple
753
+ Arguments to be passed to the coloring function. Can be coordinates
754
+ or parameters or both.
755
+
756
+ Notes
757
+ =====
758
+
759
+ The backend will request the data series to generate the numerical
760
+ data. Depending on the data series, either the data series itself or
761
+ the backend will eventually execute this function to generate the
762
+ appropriate coloring value.
763
+ """
764
+ np = import_module('numpy')
765
+ if self.color_func is None:
766
+ # NOTE: with the line_color and surface_color attributes
767
+ # (back-compatibility with the old sympy.plotting module) it is
768
+ # possible to create a plot with a callable line_color (or
769
+ # surface_color). For example:
770
+ # p = plot(sin(x), line_color=lambda x, y: -y)
771
+ # This creates a ColoredLineOver1DRangeSeries with line_color=None
772
+ # and color_func=lambda x, y: -y, which efffectively is a
773
+ # parametric series. Later we could change it to a string value:
774
+ # p[0].line_color = "red"
775
+ # However, this sets ine_color="red" and color_func=None, but the
776
+ # series is still ColoredLineOver1DRangeSeries (a parametric
777
+ # series), which will render using a color_func...
778
+ warnings.warn("This is likely not the result you were "
779
+ "looking for. Please, re-execute the plot command, this time "
780
+ "with the appropriate an appropriate value to line_color "
781
+ "or surface_color.")
782
+ return np.ones_like(args[0])
783
+
784
+ if self._eval_color_func_with_signature:
785
+ args = self._aggregate_args()
786
+ color = self.color_func(*args)
787
+ _re, _im = np.real(color), np.imag(color)
788
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
789
+ return _re
790
+
791
+ nargs = arity(self.color_func)
792
+ if nargs == 1:
793
+ if self.is_2Dline and self.is_parametric:
794
+ if len(args) == 2:
795
+ # ColoredLineOver1DRangeSeries
796
+ return self._correct_shape(self.color_func(args[0]), args[0])
797
+ # Parametric2DLineSeries
798
+ return self._correct_shape(self.color_func(args[2]), args[2])
799
+ elif self.is_3Dline and self.is_parametric:
800
+ return self._correct_shape(self.color_func(args[3]), args[3])
801
+ elif self.is_3Dsurface and self.is_parametric:
802
+ return self._correct_shape(self.color_func(args[3]), args[3])
803
+ return self._correct_shape(self.color_func(args[0]), args[0])
804
+ elif nargs == 2:
805
+ if self.is_3Dsurface and self.is_parametric:
806
+ return self._correct_shape(self.color_func(*args[3:]), args[3])
807
+ return self._correct_shape(self.color_func(*args[:2]), args[0])
808
+ return self._correct_shape(self.color_func(*args[:nargs]), args[0])
809
+
810
+ def get_data(self):
811
+ """Compute and returns the numerical data.
812
+
813
+ The number of parameters returned by this method depends on the
814
+ specific instance. If ``s`` is the series, make sure to read
815
+ ``help(s.get_data)`` to understand what it returns.
816
+ """
817
+ raise NotImplementedError
818
+
819
+ def _get_wrapped_label(self, label, wrapper):
820
+ """Given a latex representation of an expression, wrap it inside
821
+ some characters. Matplotlib needs "$%s%$", K3D-Jupyter needs "%s".
822
+ """
823
+ return wrapper % label
824
+
825
+ def get_label(self, use_latex=False, wrapper="$%s$"):
826
+ """Return the label to be used to display the expression.
827
+
828
+ Parameters
829
+ ==========
830
+ use_latex : bool
831
+ If False, the string representation of the expression is returned.
832
+ If True, the latex representation is returned.
833
+ wrapper : str
834
+ The backend might need the latex representation to be wrapped by
835
+ some characters. Default to ``"$%s$"``.
836
+
837
+ Returns
838
+ =======
839
+ label : str
840
+ """
841
+ if use_latex is False:
842
+ return self._label
843
+ if self._label == str(self.expr):
844
+ # when the backend requests a latex label and user didn't provide
845
+ # any label
846
+ return self._get_wrapped_label(self._latex_label, wrapper)
847
+ return self._latex_label
848
+
849
+ @property
850
+ def label(self):
851
+ return self.get_label()
852
+
853
+ @label.setter
854
+ def label(self, val):
855
+ """Set the labels associated to this series."""
856
+ # NOTE: the init method of any series requires a label. If the user do
857
+ # not provide it, the preprocessing function will set label=None, which
858
+ # informs the series to initialize two attributes:
859
+ # _label contains the string representation of the expression.
860
+ # _latex_label contains the latex representation of the expression.
861
+ self._label = self._latex_label = val
862
+
863
+ @property
864
+ def ranges(self):
865
+ return self._ranges
866
+
867
+ @ranges.setter
868
+ def ranges(self, val):
869
+ new_vals = []
870
+ for v in val:
871
+ if v is not None:
872
+ new_vals.append(tuple([sympify(t) for t in v]))
873
+ self._ranges = new_vals
874
+
875
+ def _apply_transform(self, *args):
876
+ """Apply transformations to the results of numerical evaluation.
877
+
878
+ Parameters
879
+ ==========
880
+ args : tuple
881
+ Results of numerical evaluation.
882
+
883
+ Returns
884
+ =======
885
+ transformed_args : tuple
886
+ Tuple containing the transformed results.
887
+ """
888
+ t = lambda x, transform: x if transform is None else transform(x)
889
+ x, y, z = None, None, None
890
+ if len(args) == 2:
891
+ x, y = args
892
+ return t(x, self._tx), t(y, self._ty)
893
+ elif (len(args) == 3) and isinstance(self, Parametric2DLineSeries):
894
+ x, y, u = args
895
+ return (t(x, self._tx), t(y, self._ty), t(u, self._tp))
896
+ elif len(args) == 3:
897
+ x, y, z = args
898
+ return t(x, self._tx), t(y, self._ty), t(z, self._tz)
899
+ elif (len(args) == 4) and isinstance(self, Parametric3DLineSeries):
900
+ x, y, z, u = args
901
+ return (t(x, self._tx), t(y, self._ty), t(z, self._tz), t(u, self._tp))
902
+ elif len(args) == 4: # 2D vector plot
903
+ x, y, u, v = args
904
+ return (
905
+ t(x, self._tx), t(y, self._ty),
906
+ t(u, self._tx), t(v, self._ty)
907
+ )
908
+ elif (len(args) == 5) and isinstance(self, ParametricSurfaceSeries):
909
+ x, y, z, u, v = args
910
+ return (t(x, self._tx), t(y, self._ty), t(z, self._tz), u, v)
911
+ elif (len(args) == 6) and self.is_3Dvector: # 3D vector plot
912
+ x, y, z, u, v, w = args
913
+ return (
914
+ t(x, self._tx), t(y, self._ty), t(z, self._tz),
915
+ t(u, self._tx), t(v, self._ty), t(w, self._tz)
916
+ )
917
+ elif len(args) == 6: # complex plot
918
+ x, y, _abs, _arg, img, colors = args
919
+ return (
920
+ x, y, t(_abs, self._tz), _arg, img, colors)
921
+ return args
922
+
923
+ def _str_helper(self, s):
924
+ pre, post = "", ""
925
+ if self.is_interactive:
926
+ pre = "interactive "
927
+ post = " and parameters " + str(tuple(self.params.keys()))
928
+ return pre + s + post
929
+
930
+
931
+ def _detect_poles_numerical_helper(x, y, eps=0.01, expr=None, symb=None, symbolic=False):
932
+ """Compute the steepness of each segment. If it's greater than a
933
+ threshold, set the right-point y-value non NaN and record the
934
+ corresponding x-location for further processing.
935
+
936
+ Returns
937
+ =======
938
+ x : np.ndarray
939
+ Unchanged x-data.
940
+ yy : np.ndarray
941
+ Modified y-data with NaN values.
942
+ """
943
+ np = import_module('numpy')
944
+
945
+ yy = y.copy()
946
+ threshold = np.pi / 2 - eps
947
+ for i in range(len(x) - 1):
948
+ dx = x[i + 1] - x[i]
949
+ dy = abs(y[i + 1] - y[i])
950
+ angle = np.arctan(dy / dx)
951
+ if abs(angle) >= threshold:
952
+ yy[i + 1] = np.nan
953
+
954
+ return x, yy
955
+
956
+ def _detect_poles_symbolic_helper(expr, symb, start, end):
957
+ """Attempts to compute symbolic discontinuities.
958
+
959
+ Returns
960
+ =======
961
+ pole : list
962
+ List of symbolic poles, possibily empty.
963
+ """
964
+ poles = []
965
+ interval = Interval(nsimplify(start), nsimplify(end))
966
+ res = continuous_domain(expr, symb, interval)
967
+ res = res.simplify()
968
+ if res == interval:
969
+ pass
970
+ elif (isinstance(res, Union) and
971
+ all(isinstance(t, Interval) for t in res.args)):
972
+ poles = []
973
+ for s in res.args:
974
+ if s.left_open:
975
+ poles.append(s.left)
976
+ if s.right_open:
977
+ poles.append(s.right)
978
+ poles = list(set(poles))
979
+ else:
980
+ raise ValueError(
981
+ f"Could not parse the following object: {res} .\n"
982
+ "Please, submit this as a bug. Consider also to set "
983
+ "`detect_poles=True`."
984
+ )
985
+ return poles
986
+
987
+
988
+ ### 2D lines
989
+ class Line2DBaseSeries(BaseSeries):
990
+ """A base class for 2D lines.
991
+
992
+ - adding the label, steps and only_integers options
993
+ - making is_2Dline true
994
+ - defining get_segments and get_color_array
995
+ """
996
+
997
+ is_2Dline = True
998
+ _dim = 2
999
+ _N = 1000
1000
+
1001
+ def __init__(self, **kwargs):
1002
+ super().__init__(**kwargs)
1003
+ self.steps = kwargs.get("steps", False)
1004
+ self.is_point = kwargs.get("is_point", kwargs.get("point", False))
1005
+ self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True))
1006
+ self.adaptive = kwargs.get("adaptive", False)
1007
+ self.depth = kwargs.get('depth', 12)
1008
+ self.use_cm = kwargs.get("use_cm", False)
1009
+ self.color_func = kwargs.get("color_func", None)
1010
+ self.line_color = kwargs.get("line_color", None)
1011
+ self.detect_poles = kwargs.get("detect_poles", False)
1012
+ self.eps = kwargs.get("eps", 0.01)
1013
+ self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
1014
+ self.unwrap = kwargs.get("unwrap", False)
1015
+ # when detect_poles="symbolic", stores the location of poles so that
1016
+ # they can be appropriately rendered
1017
+ self.poles_locations = []
1018
+ exclude = kwargs.get("exclude", [])
1019
+ if isinstance(exclude, Set):
1020
+ exclude = list(extract_solution(exclude, n=100))
1021
+ if not hasattr(exclude, "__iter__"):
1022
+ exclude = [exclude]
1023
+ exclude = [float(e) for e in exclude]
1024
+ self.exclude = sorted(exclude)
1025
+
1026
+ def get_data(self):
1027
+ """Return coordinates for plotting the line.
1028
+
1029
+ Returns
1030
+ =======
1031
+
1032
+ x: np.ndarray
1033
+ x-coordinates
1034
+
1035
+ y: np.ndarray
1036
+ y-coordinates
1037
+
1038
+ z: np.ndarray (optional)
1039
+ z-coordinates in case of Parametric3DLineSeries,
1040
+ Parametric3DLineInteractiveSeries
1041
+
1042
+ param : np.ndarray (optional)
1043
+ The parameter in case of Parametric2DLineSeries,
1044
+ Parametric3DLineSeries or AbsArgLineSeries (and their
1045
+ corresponding interactive series).
1046
+ """
1047
+ np = import_module('numpy')
1048
+ points = self._get_data_helper()
1049
+
1050
+ if (isinstance(self, LineOver1DRangeSeries) and
1051
+ (self.detect_poles == "symbolic")):
1052
+ poles = _detect_poles_symbolic_helper(
1053
+ self.expr.subs(self.params), *self.ranges[0])
1054
+ poles = np.array([float(t) for t in poles])
1055
+ t = lambda x, transform: x if transform is None else transform(x)
1056
+ self.poles_locations = t(np.array(poles), self._tx)
1057
+
1058
+ # postprocessing
1059
+ points = self._apply_transform(*points)
1060
+
1061
+ if self.is_2Dline and self.detect_poles:
1062
+ if len(points) == 2:
1063
+ x, y = points
1064
+ x, y = _detect_poles_numerical_helper(
1065
+ x, y, self.eps)
1066
+ points = (x, y)
1067
+ else:
1068
+ x, y, p = points
1069
+ x, y = _detect_poles_numerical_helper(x, y, self.eps)
1070
+ points = (x, y, p)
1071
+
1072
+ if self.unwrap:
1073
+ kw = {}
1074
+ if self.unwrap is not True:
1075
+ kw = self.unwrap
1076
+ if self.is_2Dline:
1077
+ if len(points) == 2:
1078
+ x, y = points
1079
+ y = np.unwrap(y, **kw)
1080
+ points = (x, y)
1081
+ else:
1082
+ x, y, p = points
1083
+ y = np.unwrap(y, **kw)
1084
+ points = (x, y, p)
1085
+
1086
+ if self.steps is True:
1087
+ if self.is_2Dline:
1088
+ x, y = points[0], points[1]
1089
+ x = np.array((x, x)).T.flatten()[1:]
1090
+ y = np.array((y, y)).T.flatten()[:-1]
1091
+ if self.is_parametric:
1092
+ points = (x, y, points[2])
1093
+ else:
1094
+ points = (x, y)
1095
+ elif self.is_3Dline:
1096
+ x = np.repeat(points[0], 3)[2:]
1097
+ y = np.repeat(points[1], 3)[:-2]
1098
+ z = np.repeat(points[2], 3)[1:-1]
1099
+ if len(points) > 3:
1100
+ points = (x, y, z, points[3])
1101
+ else:
1102
+ points = (x, y, z)
1103
+
1104
+ if len(self.exclude) > 0:
1105
+ points = self._insert_exclusions(points)
1106
+ return points
1107
+
1108
+ def get_segments(self):
1109
+ sympy_deprecation_warning(
1110
+ """
1111
+ The Line2DBaseSeries.get_segments() method is deprecated.
1112
+
1113
+ Instead, use the MatplotlibBackend.get_segments() method, or use
1114
+ The get_points() or get_data() methods.
1115
+ """,
1116
+ deprecated_since_version="1.9",
1117
+ active_deprecations_target="deprecated-get-segments")
1118
+
1119
+ np = import_module('numpy')
1120
+ points = type(self).get_data(self)
1121
+ points = np.ma.array(points).T.reshape(-1, 1, self._dim)
1122
+ return np.ma.concatenate([points[:-1], points[1:]], axis=1)
1123
+
1124
+ def _insert_exclusions(self, points):
1125
+ """Add NaN to each of the exclusion point. Practically, this adds a
1126
+ NaN to the exlusion point, plus two other nearby points evaluated with
1127
+ the numerical functions associated to this data series.
1128
+ These nearby points are important when the number of discretization
1129
+ points is low, or the scale is logarithm.
1130
+
1131
+ NOTE: it would be easier to just add exclusion points to the
1132
+ discretized domain before evaluation, then after evaluation add NaN
1133
+ to the exclusion points. But that's only work with adaptive=False.
1134
+ The following approach work even with adaptive=True.
1135
+ """
1136
+ np = import_module("numpy")
1137
+ points = list(points)
1138
+ n = len(points)
1139
+ # index of the x-coordinate (for 2d plots) or parameter (for 2d/3d
1140
+ # parametric plots)
1141
+ k = n - 1
1142
+ if n == 2:
1143
+ k = 0
1144
+ # indeces of the other coordinates
1145
+ j_indeces = sorted(set(range(n)).difference([k]))
1146
+ # TODO: for now, I assume that numpy functions are going to succeed
1147
+ funcs = [f[0] for f in self._functions]
1148
+
1149
+ for e in self.exclude:
1150
+ res = points[k] - e >= 0
1151
+ # if res contains both True and False, ie, if e is found
1152
+ if any(res) and any(~res):
1153
+ idx = np.nanargmax(res)
1154
+ # select the previous point with respect to e
1155
+ idx -= 1
1156
+ # TODO: what if points[k][idx]==e or points[k][idx+1]==e?
1157
+
1158
+ if idx > 0 and idx < len(points[k]) - 1:
1159
+ delta_prev = abs(e - points[k][idx])
1160
+ delta_post = abs(e - points[k][idx + 1])
1161
+ delta = min(delta_prev, delta_post) / 100
1162
+ prev = e - delta
1163
+ post = e + delta
1164
+
1165
+ # add points to the x-coord or the parameter
1166
+ points[k] = np.concatenate(
1167
+ (points[k][:idx], [prev, e, post], points[k][idx+1:]))
1168
+
1169
+ # add points to the other coordinates
1170
+ c = 0
1171
+ for j in j_indeces:
1172
+ values = funcs[c](np.array([prev, post]))
1173
+ c += 1
1174
+ points[j] = np.concatenate(
1175
+ (points[j][:idx], [values[0], np.nan, values[1]], points[j][idx+1:]))
1176
+ return points
1177
+
1178
+ @property
1179
+ def var(self):
1180
+ return None if not self.ranges else self.ranges[0][0]
1181
+
1182
+ @property
1183
+ def start(self):
1184
+ if not self.ranges:
1185
+ return None
1186
+ try:
1187
+ return self._cast(self.ranges[0][1])
1188
+ except TypeError:
1189
+ return self.ranges[0][1]
1190
+
1191
+ @property
1192
+ def end(self):
1193
+ if not self.ranges:
1194
+ return None
1195
+ try:
1196
+ return self._cast(self.ranges[0][2])
1197
+ except TypeError:
1198
+ return self.ranges[0][2]
1199
+
1200
+ @property
1201
+ def xscale(self):
1202
+ return self._scales[0]
1203
+
1204
+ @xscale.setter
1205
+ def xscale(self, v):
1206
+ self.scales = v
1207
+
1208
+ def get_color_array(self):
1209
+ np = import_module('numpy')
1210
+ c = self.line_color
1211
+ if hasattr(c, '__call__'):
1212
+ f = np.vectorize(c)
1213
+ nargs = arity(c)
1214
+ if nargs == 1 and self.is_parametric:
1215
+ x = self.get_parameter_points()
1216
+ return f(centers_of_segments(x))
1217
+ else:
1218
+ variables = list(map(centers_of_segments, self.get_points()))
1219
+ if nargs == 1:
1220
+ return f(variables[0])
1221
+ elif nargs == 2:
1222
+ return f(*variables[:2])
1223
+ else: # only if the line is 3D (otherwise raises an error)
1224
+ return f(*variables)
1225
+ else:
1226
+ return c*np.ones(self.nb_of_points)
1227
+
1228
+
1229
+ class List2DSeries(Line2DBaseSeries):
1230
+ """Representation for a line consisting of list of points."""
1231
+
1232
+ def __init__(self, list_x, list_y, label="", **kwargs):
1233
+ super().__init__(**kwargs)
1234
+ np = import_module('numpy')
1235
+ if len(list_x) != len(list_y):
1236
+ raise ValueError(
1237
+ "The two lists of coordinates must have the same "
1238
+ "number of elements.\n"
1239
+ "Received: len(list_x) = {} ".format(len(list_x)) +
1240
+ "and len(list_y) = {}".format(len(list_y))
1241
+ )
1242
+ self._block_lambda_functions(list_x, list_y)
1243
+ check = lambda l: [isinstance(t, Expr) and (not t.is_number) for t in l]
1244
+ if any(check(list_x) + check(list_y)) or self.params:
1245
+ if not self.params:
1246
+ raise ValueError("Some or all elements of the provided lists "
1247
+ "are symbolic expressions, but the ``params`` dictionary "
1248
+ "was not provided: those elements can't be evaluated.")
1249
+ self.list_x = Tuple(*list_x)
1250
+ self.list_y = Tuple(*list_y)
1251
+ else:
1252
+ self.list_x = np.array(list_x, dtype=np.float64)
1253
+ self.list_y = np.array(list_y, dtype=np.float64)
1254
+
1255
+ self._expr = (self.list_x, self.list_y)
1256
+ if not any(isinstance(t, np.ndarray) for t in [self.list_x, self.list_y]):
1257
+ self._check_fs()
1258
+ self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
1259
+ self.label = label
1260
+ self.rendering_kw = kwargs.get("rendering_kw", {})
1261
+ if self.use_cm and self.color_func:
1262
+ self.is_parametric = True
1263
+ if isinstance(self.color_func, Expr):
1264
+ raise TypeError(
1265
+ "%s don't support symbolic " % self.__class__.__name__ +
1266
+ "expression for `color_func`.")
1267
+
1268
+ def __str__(self):
1269
+ return "2D list plot"
1270
+
1271
+ def _get_data_helper(self):
1272
+ """Returns coordinates that needs to be postprocessed."""
1273
+ lx, ly = self.list_x, self.list_y
1274
+
1275
+ if not self.is_interactive:
1276
+ return self._eval_color_func_and_return(lx, ly)
1277
+
1278
+ np = import_module('numpy')
1279
+ lx = np.array([t.evalf(subs=self.params) for t in lx], dtype=float)
1280
+ ly = np.array([t.evalf(subs=self.params) for t in ly], dtype=float)
1281
+ return self._eval_color_func_and_return(lx, ly)
1282
+
1283
+ def _eval_color_func_and_return(self, *data):
1284
+ if self.use_cm and callable(self.color_func):
1285
+ return [*data, self.eval_color_func(*data)]
1286
+ return data
1287
+
1288
+
1289
+ class LineOver1DRangeSeries(Line2DBaseSeries):
1290
+ """Representation for a line consisting of a SymPy expression over a range."""
1291
+
1292
+ def __init__(self, expr, var_start_end, label="", **kwargs):
1293
+ super().__init__(**kwargs)
1294
+ self.expr = expr if callable(expr) else sympify(expr)
1295
+ self._label = str(self.expr) if label is None else label
1296
+ self._latex_label = latex(self.expr) if label is None else label
1297
+ self.ranges = [var_start_end]
1298
+ self._cast = complex
1299
+ # for complex-related data series, this determines what data to return
1300
+ # on the y-axis
1301
+ self._return = kwargs.get("return", None)
1302
+ self._post_init()
1303
+
1304
+ if not self._interactive_ranges:
1305
+ # NOTE: the following check is only possible when the minimum and
1306
+ # maximum values of a plotting range are numeric
1307
+ start, end = [complex(t) for t in self.ranges[0][1:]]
1308
+ if im(start) != im(end):
1309
+ raise ValueError(
1310
+ "%s requires the imaginary " % self.__class__.__name__ +
1311
+ "part of the start and end values of the range "
1312
+ "to be the same.")
1313
+
1314
+ if self.adaptive and self._return:
1315
+ warnings.warn("The adaptive algorithm is unable to deal with "
1316
+ "complex numbers. Automatically switching to uniform meshing.")
1317
+ self.adaptive = False
1318
+
1319
+ @property
1320
+ def nb_of_points(self):
1321
+ return self.n[0]
1322
+
1323
+ @nb_of_points.setter
1324
+ def nb_of_points(self, v):
1325
+ self.n = v
1326
+
1327
+ def __str__(self):
1328
+ def f(t):
1329
+ if isinstance(t, complex):
1330
+ if t.imag != 0:
1331
+ return t
1332
+ return t.real
1333
+ return t
1334
+ pre = "interactive " if self.is_interactive else ""
1335
+ post = ""
1336
+ if self.is_interactive:
1337
+ post = " and parameters " + str(tuple(self.params.keys()))
1338
+ wrapper = _get_wrapper_for_expr(self._return)
1339
+ return pre + "cartesian line: %s for %s over %s" % (
1340
+ wrapper % self.expr,
1341
+ str(self.var),
1342
+ str((f(self.start), f(self.end))),
1343
+ ) + post
1344
+
1345
+ def get_points(self):
1346
+ """Return lists of coordinates for plotting. Depending on the
1347
+ ``adaptive`` option, this function will either use an adaptive algorithm
1348
+ or it will uniformly sample the expression over the provided range.
1349
+
1350
+ This function is available for back-compatibility purposes. Consider
1351
+ using ``get_data()`` instead.
1352
+
1353
+ Returns
1354
+ =======
1355
+ x : list
1356
+ List of x-coordinates
1357
+
1358
+ y : list
1359
+ List of y-coordinates
1360
+ """
1361
+ return self._get_data_helper()
1362
+
1363
+ def _adaptive_sampling(self):
1364
+ try:
1365
+ if callable(self.expr):
1366
+ f = self.expr
1367
+ else:
1368
+ f = lambdify([self.var], self.expr, self.modules)
1369
+ x, y = self._adaptive_sampling_helper(f)
1370
+ except Exception as err:
1371
+ warnings.warn(
1372
+ "The evaluation with %s failed.\n" % (
1373
+ "NumPy/SciPy" if not self.modules else self.modules) +
1374
+ "{}: {}\n".format(type(err).__name__, err) +
1375
+ "Trying to evaluate the expression with Sympy, but it might "
1376
+ "be a slow operation."
1377
+ )
1378
+ f = lambdify([self.var], self.expr, "sympy")
1379
+ x, y = self._adaptive_sampling_helper(f)
1380
+ return x, y
1381
+
1382
+ def _adaptive_sampling_helper(self, f):
1383
+ """The adaptive sampling is done by recursively checking if three
1384
+ points are almost collinear. If they are not collinear, then more
1385
+ points are added between those points.
1386
+
1387
+ References
1388
+ ==========
1389
+
1390
+ .. [1] Adaptive polygonal approximation of parametric curves,
1391
+ Luiz Henrique de Figueiredo.
1392
+ """
1393
+ np = import_module('numpy')
1394
+
1395
+ x_coords = []
1396
+ y_coords = []
1397
+ def sample(p, q, depth):
1398
+ """ Samples recursively if three points are almost collinear.
1399
+ For depth < 6, points are added irrespective of whether they
1400
+ satisfy the collinearity condition or not. The maximum depth
1401
+ allowed is 12.
1402
+ """
1403
+ # Randomly sample to avoid aliasing.
1404
+ random = 0.45 + np.random.rand() * 0.1
1405
+ if self.xscale == 'log':
1406
+ xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
1407
+ np.log10(p[0])))
1408
+ else:
1409
+ xnew = p[0] + random * (q[0] - p[0])
1410
+ ynew = _adaptive_eval(f, xnew)
1411
+ new_point = np.array([xnew, ynew])
1412
+
1413
+ # Maximum depth
1414
+ if depth > self.depth:
1415
+ x_coords.append(q[0])
1416
+ y_coords.append(q[1])
1417
+
1418
+ # Sample to depth of 6 (whether the line is flat or not)
1419
+ # without using linspace (to avoid aliasing).
1420
+ elif depth < 6:
1421
+ sample(p, new_point, depth + 1)
1422
+ sample(new_point, q, depth + 1)
1423
+
1424
+ # Sample ten points if complex values are encountered
1425
+ # at both ends. If there is a real value in between, then
1426
+ # sample those points further.
1427
+ elif p[1] is None and q[1] is None:
1428
+ if self.xscale == 'log':
1429
+ xarray = np.logspace(p[0], q[0], 10)
1430
+ else:
1431
+ xarray = np.linspace(p[0], q[0], 10)
1432
+ yarray = list(map(f, xarray))
1433
+ if not all(y is None for y in yarray):
1434
+ for i in range(len(yarray) - 1):
1435
+ if not (yarray[i] is None and yarray[i + 1] is None):
1436
+ sample([xarray[i], yarray[i]],
1437
+ [xarray[i + 1], yarray[i + 1]], depth + 1)
1438
+
1439
+ # Sample further if one of the end points in None (i.e. a
1440
+ # complex value) or the three points are not almost collinear.
1441
+ elif (p[1] is None or q[1] is None or new_point[1] is None
1442
+ or not flat(p, new_point, q)):
1443
+ sample(p, new_point, depth + 1)
1444
+ sample(new_point, q, depth + 1)
1445
+ else:
1446
+ x_coords.append(q[0])
1447
+ y_coords.append(q[1])
1448
+
1449
+ f_start = _adaptive_eval(f, self.start.real)
1450
+ f_end = _adaptive_eval(f, self.end.real)
1451
+ x_coords.append(self.start.real)
1452
+ y_coords.append(f_start)
1453
+ sample(np.array([self.start.real, f_start]),
1454
+ np.array([self.end.real, f_end]), 0)
1455
+
1456
+ return (x_coords, y_coords)
1457
+
1458
+ def _uniform_sampling(self):
1459
+ np = import_module('numpy')
1460
+
1461
+ x, result = self._evaluate()
1462
+ _re, _im = np.real(result), np.imag(result)
1463
+ _re = self._correct_shape(_re, x)
1464
+ _im = self._correct_shape(_im, x)
1465
+ return x, _re, _im
1466
+
1467
+ def _get_data_helper(self):
1468
+ """Returns coordinates that needs to be postprocessed.
1469
+ """
1470
+ np = import_module('numpy')
1471
+ if self.adaptive and (not self.only_integers):
1472
+ x, y = self._adaptive_sampling()
1473
+ return [np.array(t) for t in [x, y]]
1474
+
1475
+ x, _re, _im = self._uniform_sampling()
1476
+
1477
+ if self._return is None:
1478
+ # The evaluation could produce complex numbers. Set real elements
1479
+ # to NaN where there are non-zero imaginary elements
1480
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
1481
+ elif self._return == "real":
1482
+ pass
1483
+ elif self._return == "imag":
1484
+ _re = _im
1485
+ elif self._return == "abs":
1486
+ _re = np.sqrt(_re**2 + _im**2)
1487
+ elif self._return == "arg":
1488
+ _re = np.arctan2(_im, _re)
1489
+ else:
1490
+ raise ValueError("`_return` not recognized. "
1491
+ "Received: %s" % self._return)
1492
+
1493
+ return x, _re
1494
+
1495
+
1496
+ class ParametricLineBaseSeries(Line2DBaseSeries):
1497
+ is_parametric = True
1498
+
1499
+ def _set_parametric_line_label(self, label):
1500
+ """Logic to set the correct label to be shown on the plot.
1501
+ If `use_cm=True` there will be a colorbar, so we show the parameter.
1502
+ If `use_cm=False`, there might be a legend, so we show the expressions.
1503
+
1504
+ Parameters
1505
+ ==========
1506
+ label : str
1507
+ label passed in by the pre-processor or the user
1508
+ """
1509
+ self._label = str(self.var) if label is None else label
1510
+ self._latex_label = latex(self.var) if label is None else label
1511
+ if (self.use_cm is False) and (self._label == str(self.var)):
1512
+ self._label = str(self.expr)
1513
+ self._latex_label = latex(self.expr)
1514
+ # if the expressions is a lambda function and use_cm=False and no label
1515
+ # has been provided, then its better to do the following in order to
1516
+ # avoid suprises on the backend
1517
+ if any(callable(e) for e in self.expr) and (not self.use_cm):
1518
+ if self._label == str(self.expr):
1519
+ self._label = ""
1520
+
1521
+ def get_label(self, use_latex=False, wrapper="$%s$"):
1522
+ # parametric lines returns the representation of the parameter to be
1523
+ # shown on the colorbar if `use_cm=True`, otherwise it returns the
1524
+ # representation of the expression to be placed on the legend.
1525
+ if self.use_cm:
1526
+ if str(self.var) == self._label:
1527
+ if use_latex:
1528
+ return self._get_wrapped_label(latex(self.var), wrapper)
1529
+ return str(self.var)
1530
+ # here the user has provided a custom label
1531
+ return self._label
1532
+ if use_latex:
1533
+ if self._label != str(self.expr):
1534
+ return self._latex_label
1535
+ return self._get_wrapped_label(self._latex_label, wrapper)
1536
+ return self._label
1537
+
1538
+ def _get_data_helper(self):
1539
+ """Returns coordinates that needs to be postprocessed.
1540
+ Depending on the `adaptive` option, this function will either use an
1541
+ adaptive algorithm or it will uniformly sample the expression over the
1542
+ provided range.
1543
+ """
1544
+ if self.adaptive:
1545
+ np = import_module("numpy")
1546
+ coords = self._adaptive_sampling()
1547
+ coords = [np.array(t) for t in coords]
1548
+ else:
1549
+ coords = self._uniform_sampling()
1550
+
1551
+ if self.is_2Dline and self.is_polar:
1552
+ # when plot_polar is executed with polar_axis=True
1553
+ np = import_module('numpy')
1554
+ x, y, _ = coords
1555
+ r = np.sqrt(x**2 + y**2)
1556
+ t = np.arctan2(y, x)
1557
+ coords = [t, r, coords[-1]]
1558
+
1559
+ if callable(self.color_func):
1560
+ coords = list(coords)
1561
+ coords[-1] = self.eval_color_func(*coords)
1562
+
1563
+ return coords
1564
+
1565
+ def _uniform_sampling(self):
1566
+ """Returns coordinates that needs to be postprocessed."""
1567
+ np = import_module('numpy')
1568
+
1569
+ results = self._evaluate()
1570
+ for i, r in enumerate(results):
1571
+ _re, _im = np.real(r), np.imag(r)
1572
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
1573
+ results[i] = _re
1574
+
1575
+ return [*results[1:], results[0]]
1576
+
1577
+ def get_parameter_points(self):
1578
+ return self.get_data()[-1]
1579
+
1580
+ def get_points(self):
1581
+ """ Return lists of coordinates for plotting. Depending on the
1582
+ ``adaptive`` option, this function will either use an adaptive algorithm
1583
+ or it will uniformly sample the expression over the provided range.
1584
+
1585
+ This function is available for back-compatibility purposes. Consider
1586
+ using ``get_data()`` instead.
1587
+
1588
+ Returns
1589
+ =======
1590
+ x : list
1591
+ List of x-coordinates
1592
+ y : list
1593
+ List of y-coordinates
1594
+ z : list
1595
+ List of z-coordinates, only for 3D parametric line plot.
1596
+ """
1597
+ return self._get_data_helper()[:-1]
1598
+
1599
+ @property
1600
+ def nb_of_points(self):
1601
+ return self.n[0]
1602
+
1603
+ @nb_of_points.setter
1604
+ def nb_of_points(self, v):
1605
+ self.n = v
1606
+
1607
+
1608
+ class Parametric2DLineSeries(ParametricLineBaseSeries):
1609
+ """Representation for a line consisting of two parametric SymPy expressions
1610
+ over a range."""
1611
+
1612
+ is_2Dline = True
1613
+
1614
+ def __init__(self, expr_x, expr_y, var_start_end, label="", **kwargs):
1615
+ super().__init__(**kwargs)
1616
+ self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
1617
+ self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
1618
+ self.expr = (self.expr_x, self.expr_y)
1619
+ self.ranges = [var_start_end]
1620
+ self._cast = float
1621
+ self.use_cm = kwargs.get("use_cm", True)
1622
+ self._set_parametric_line_label(label)
1623
+ self._post_init()
1624
+
1625
+ def __str__(self):
1626
+ return self._str_helper(
1627
+ "parametric cartesian line: (%s, %s) for %s over %s" % (
1628
+ str(self.expr_x),
1629
+ str(self.expr_y),
1630
+ str(self.var),
1631
+ str((self.start, self.end))
1632
+ ))
1633
+
1634
+ def _adaptive_sampling(self):
1635
+ try:
1636
+ if callable(self.expr_x) and callable(self.expr_y):
1637
+ f_x = self.expr_x
1638
+ f_y = self.expr_y
1639
+ else:
1640
+ f_x = lambdify([self.var], self.expr_x)
1641
+ f_y = lambdify([self.var], self.expr_y)
1642
+ x, y, p = self._adaptive_sampling_helper(f_x, f_y)
1643
+ except Exception as err:
1644
+ warnings.warn(
1645
+ "The evaluation with %s failed.\n" % (
1646
+ "NumPy/SciPy" if not self.modules else self.modules) +
1647
+ "{}: {}\n".format(type(err).__name__, err) +
1648
+ "Trying to evaluate the expression with Sympy, but it might "
1649
+ "be a slow operation."
1650
+ )
1651
+ f_x = lambdify([self.var], self.expr_x, "sympy")
1652
+ f_y = lambdify([self.var], self.expr_y, "sympy")
1653
+ x, y, p = self._adaptive_sampling_helper(f_x, f_y)
1654
+ return x, y, p
1655
+
1656
+ def _adaptive_sampling_helper(self, f_x, f_y):
1657
+ """The adaptive sampling is done by recursively checking if three
1658
+ points are almost collinear. If they are not collinear, then more
1659
+ points are added between those points.
1660
+
1661
+ References
1662
+ ==========
1663
+
1664
+ .. [1] Adaptive polygonal approximation of parametric curves,
1665
+ Luiz Henrique de Figueiredo.
1666
+ """
1667
+ x_coords = []
1668
+ y_coords = []
1669
+ param = []
1670
+
1671
+ def sample(param_p, param_q, p, q, depth):
1672
+ """ Samples recursively if three points are almost collinear.
1673
+ For depth < 6, points are added irrespective of whether they
1674
+ satisfy the collinearity condition or not. The maximum depth
1675
+ allowed is 12.
1676
+ """
1677
+ # Randomly sample to avoid aliasing.
1678
+ np = import_module('numpy')
1679
+ random = 0.45 + np.random.rand() * 0.1
1680
+ param_new = param_p + random * (param_q - param_p)
1681
+ xnew = _adaptive_eval(f_x, param_new)
1682
+ ynew = _adaptive_eval(f_y, param_new)
1683
+ new_point = np.array([xnew, ynew])
1684
+
1685
+ # Maximum depth
1686
+ if depth > self.depth:
1687
+ x_coords.append(q[0])
1688
+ y_coords.append(q[1])
1689
+ param.append(param_p)
1690
+
1691
+ # Sample irrespective of whether the line is flat till the
1692
+ # depth of 6. We are not using linspace to avoid aliasing.
1693
+ elif depth < 6:
1694
+ sample(param_p, param_new, p, new_point, depth + 1)
1695
+ sample(param_new, param_q, new_point, q, depth + 1)
1696
+
1697
+ # Sample ten points if complex values are encountered
1698
+ # at both ends. If there is a real value in between, then
1699
+ # sample those points further.
1700
+ elif ((p[0] is None and q[1] is None) or
1701
+ (p[1] is None and q[1] is None)):
1702
+ param_array = np.linspace(param_p, param_q, 10)
1703
+ x_array = [_adaptive_eval(f_x, t) for t in param_array]
1704
+ y_array = [_adaptive_eval(f_y, t) for t in param_array]
1705
+ if not all(x is None and y is None
1706
+ for x, y in zip(x_array, y_array)):
1707
+ for i in range(len(y_array) - 1):
1708
+ if ((x_array[i] is not None and y_array[i] is not None) or
1709
+ (x_array[i + 1] is not None and y_array[i + 1] is not None)):
1710
+ point_a = [x_array[i], y_array[i]]
1711
+ point_b = [x_array[i + 1], y_array[i + 1]]
1712
+ sample(param_array[i], param_array[i], point_a,
1713
+ point_b, depth + 1)
1714
+
1715
+ # Sample further if one of the end points in None (i.e. a complex
1716
+ # value) or the three points are not almost collinear.
1717
+ elif (p[0] is None or p[1] is None
1718
+ or q[1] is None or q[0] is None
1719
+ or not flat(p, new_point, q)):
1720
+ sample(param_p, param_new, p, new_point, depth + 1)
1721
+ sample(param_new, param_q, new_point, q, depth + 1)
1722
+ else:
1723
+ x_coords.append(q[0])
1724
+ y_coords.append(q[1])
1725
+ param.append(param_p)
1726
+
1727
+ f_start_x = _adaptive_eval(f_x, self.start)
1728
+ f_start_y = _adaptive_eval(f_y, self.start)
1729
+ start = [f_start_x, f_start_y]
1730
+ f_end_x = _adaptive_eval(f_x, self.end)
1731
+ f_end_y = _adaptive_eval(f_y, self.end)
1732
+ end = [f_end_x, f_end_y]
1733
+ x_coords.append(f_start_x)
1734
+ y_coords.append(f_start_y)
1735
+ param.append(self.start)
1736
+ sample(self.start, self.end, start, end, 0)
1737
+
1738
+ return x_coords, y_coords, param
1739
+
1740
+
1741
+ ### 3D lines
1742
+ class Line3DBaseSeries(Line2DBaseSeries):
1743
+ """A base class for 3D lines.
1744
+
1745
+ Most of the stuff is derived from Line2DBaseSeries."""
1746
+
1747
+ is_2Dline = False
1748
+ is_3Dline = True
1749
+ _dim = 3
1750
+
1751
+ def __init__(self):
1752
+ super().__init__()
1753
+
1754
+
1755
+ class Parametric3DLineSeries(ParametricLineBaseSeries):
1756
+ """Representation for a 3D line consisting of three parametric SymPy
1757
+ expressions and a range."""
1758
+
1759
+ is_2Dline = False
1760
+ is_3Dline = True
1761
+
1762
+ def __init__(self, expr_x, expr_y, expr_z, var_start_end, label="", **kwargs):
1763
+ super().__init__(**kwargs)
1764
+ self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
1765
+ self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
1766
+ self.expr_z = expr_z if callable(expr_z) else sympify(expr_z)
1767
+ self.expr = (self.expr_x, self.expr_y, self.expr_z)
1768
+ self.ranges = [var_start_end]
1769
+ self._cast = float
1770
+ self.adaptive = False
1771
+ self.use_cm = kwargs.get("use_cm", True)
1772
+ self._set_parametric_line_label(label)
1773
+ self._post_init()
1774
+ # TODO: remove this
1775
+ self._xlim = None
1776
+ self._ylim = None
1777
+ self._zlim = None
1778
+
1779
+ def __str__(self):
1780
+ return self._str_helper(
1781
+ "3D parametric cartesian line: (%s, %s, %s) for %s over %s" % (
1782
+ str(self.expr_x),
1783
+ str(self.expr_y),
1784
+ str(self.expr_z),
1785
+ str(self.var),
1786
+ str((self.start, self.end))
1787
+ ))
1788
+
1789
+ def get_data(self):
1790
+ # TODO: remove this
1791
+ np = import_module("numpy")
1792
+ x, y, z, p = super().get_data()
1793
+ self._xlim = (np.amin(x), np.amax(x))
1794
+ self._ylim = (np.amin(y), np.amax(y))
1795
+ self._zlim = (np.amin(z), np.amax(z))
1796
+ return x, y, z, p
1797
+
1798
+
1799
+ ### Surfaces
1800
+ class SurfaceBaseSeries(BaseSeries):
1801
+ """A base class for 3D surfaces."""
1802
+
1803
+ is_3Dsurface = True
1804
+
1805
+ def __init__(self, *args, **kwargs):
1806
+ super().__init__(**kwargs)
1807
+ self.use_cm = kwargs.get("use_cm", False)
1808
+ # NOTE: why should SurfaceOver2DRangeSeries support is polar?
1809
+ # After all, the same result can be achieve with
1810
+ # ParametricSurfaceSeries. For example:
1811
+ # sin(r) for (r, 0, 2 * pi) and (theta, 0, pi/2) can be parameterized
1812
+ # as (r * cos(theta), r * sin(theta), sin(t)) for (r, 0, 2 * pi) and
1813
+ # (theta, 0, pi/2).
1814
+ # Because it is faster to evaluate (important for interactive plots).
1815
+ self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
1816
+ self.surface_color = kwargs.get("surface_color", None)
1817
+ self.color_func = kwargs.get("color_func", lambda x, y, z: z)
1818
+ if callable(self.surface_color):
1819
+ self.color_func = self.surface_color
1820
+ self.surface_color = None
1821
+
1822
+ def _set_surface_label(self, label):
1823
+ exprs = self.expr
1824
+ self._label = str(exprs) if label is None else label
1825
+ self._latex_label = latex(exprs) if label is None else label
1826
+ # if the expressions is a lambda function and no label
1827
+ # has been provided, then its better to do the following to avoid
1828
+ # suprises on the backend
1829
+ is_lambda = (callable(exprs) if not hasattr(exprs, "__iter__")
1830
+ else any(callable(e) for e in exprs))
1831
+ if is_lambda and (self._label == str(exprs)):
1832
+ self._label = ""
1833
+ self._latex_label = ""
1834
+
1835
+ def get_color_array(self):
1836
+ np = import_module('numpy')
1837
+ c = self.surface_color
1838
+ if isinstance(c, Callable):
1839
+ f = np.vectorize(c)
1840
+ nargs = arity(c)
1841
+ if self.is_parametric:
1842
+ variables = list(map(centers_of_faces, self.get_parameter_meshes()))
1843
+ if nargs == 1:
1844
+ return f(variables[0])
1845
+ elif nargs == 2:
1846
+ return f(*variables)
1847
+ variables = list(map(centers_of_faces, self.get_meshes()))
1848
+ if nargs == 1:
1849
+ return f(variables[0])
1850
+ elif nargs == 2:
1851
+ return f(*variables[:2])
1852
+ else:
1853
+ return f(*variables)
1854
+ else:
1855
+ if isinstance(self, SurfaceOver2DRangeSeries):
1856
+ return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
1857
+ else:
1858
+ return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))
1859
+
1860
+
1861
+ class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
1862
+ """Representation for a 3D surface consisting of a SymPy expression and 2D
1863
+ range."""
1864
+
1865
+ def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs):
1866
+ super().__init__(**kwargs)
1867
+ self.expr = expr if callable(expr) else sympify(expr)
1868
+ self.ranges = [var_start_end_x, var_start_end_y]
1869
+ self._set_surface_label(label)
1870
+ self._post_init()
1871
+ # TODO: remove this
1872
+ self._xlim = (self.start_x, self.end_x)
1873
+ self._ylim = (self.start_y, self.end_y)
1874
+
1875
+ @property
1876
+ def var_x(self):
1877
+ return self.ranges[0][0]
1878
+
1879
+ @property
1880
+ def var_y(self):
1881
+ return self.ranges[1][0]
1882
+
1883
+ @property
1884
+ def start_x(self):
1885
+ try:
1886
+ return float(self.ranges[0][1])
1887
+ except TypeError:
1888
+ return self.ranges[0][1]
1889
+
1890
+ @property
1891
+ def end_x(self):
1892
+ try:
1893
+ return float(self.ranges[0][2])
1894
+ except TypeError:
1895
+ return self.ranges[0][2]
1896
+
1897
+ @property
1898
+ def start_y(self):
1899
+ try:
1900
+ return float(self.ranges[1][1])
1901
+ except TypeError:
1902
+ return self.ranges[1][1]
1903
+
1904
+ @property
1905
+ def end_y(self):
1906
+ try:
1907
+ return float(self.ranges[1][2])
1908
+ except TypeError:
1909
+ return self.ranges[1][2]
1910
+
1911
+ @property
1912
+ def nb_of_points_x(self):
1913
+ return self.n[0]
1914
+
1915
+ @nb_of_points_x.setter
1916
+ def nb_of_points_x(self, v):
1917
+ n = self.n
1918
+ self.n = [v, n[1:]]
1919
+
1920
+ @property
1921
+ def nb_of_points_y(self):
1922
+ return self.n[1]
1923
+
1924
+ @nb_of_points_y.setter
1925
+ def nb_of_points_y(self, v):
1926
+ n = self.n
1927
+ self.n = [n[0], v, n[2]]
1928
+
1929
+ def __str__(self):
1930
+ series_type = "cartesian surface" if self.is_3Dsurface else "contour"
1931
+ return self._str_helper(
1932
+ series_type + ": %s for" " %s over %s and %s over %s" % (
1933
+ str(self.expr),
1934
+ str(self.var_x), str((self.start_x, self.end_x)),
1935
+ str(self.var_y), str((self.start_y, self.end_y)),
1936
+ ))
1937
+
1938
+ def get_meshes(self):
1939
+ """Return the x,y,z coordinates for plotting the surface.
1940
+ This function is available for back-compatibility purposes. Consider
1941
+ using ``get_data()`` instead.
1942
+ """
1943
+ return self.get_data()
1944
+
1945
+ def get_data(self):
1946
+ """Return arrays of coordinates for plotting.
1947
+
1948
+ Returns
1949
+ =======
1950
+ mesh_x : np.ndarray
1951
+ Discretized x-domain.
1952
+ mesh_y : np.ndarray
1953
+ Discretized y-domain.
1954
+ mesh_z : np.ndarray
1955
+ Results of the evaluation.
1956
+ """
1957
+ np = import_module('numpy')
1958
+
1959
+ results = self._evaluate()
1960
+ # mask out complex values
1961
+ for i, r in enumerate(results):
1962
+ _re, _im = np.real(r), np.imag(r)
1963
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
1964
+ results[i] = _re
1965
+
1966
+ x, y, z = results
1967
+ if self.is_polar and self.is_3Dsurface:
1968
+ r = x.copy()
1969
+ x = r * np.cos(y)
1970
+ y = r * np.sin(y)
1971
+
1972
+ # TODO: remove this
1973
+ self._zlim = (np.amin(z), np.amax(z))
1974
+
1975
+ return self._apply_transform(x, y, z)
1976
+
1977
+
1978
+ class ParametricSurfaceSeries(SurfaceBaseSeries):
1979
+ """Representation for a 3D surface consisting of three parametric SymPy
1980
+ expressions and a range."""
1981
+
1982
+ is_parametric = True
1983
+
1984
+ def __init__(self, expr_x, expr_y, expr_z,
1985
+ var_start_end_u, var_start_end_v, label="", **kwargs):
1986
+ super().__init__(**kwargs)
1987
+ self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
1988
+ self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
1989
+ self.expr_z = expr_z if callable(expr_z) else sympify(expr_z)
1990
+ self.expr = (self.expr_x, self.expr_y, self.expr_z)
1991
+ self.ranges = [var_start_end_u, var_start_end_v]
1992
+ self.color_func = kwargs.get("color_func", lambda x, y, z, u, v: z)
1993
+ self._set_surface_label(label)
1994
+ self._post_init()
1995
+
1996
+ @property
1997
+ def var_u(self):
1998
+ return self.ranges[0][0]
1999
+
2000
+ @property
2001
+ def var_v(self):
2002
+ return self.ranges[1][0]
2003
+
2004
+ @property
2005
+ def start_u(self):
2006
+ try:
2007
+ return float(self.ranges[0][1])
2008
+ except TypeError:
2009
+ return self.ranges[0][1]
2010
+
2011
+ @property
2012
+ def end_u(self):
2013
+ try:
2014
+ return float(self.ranges[0][2])
2015
+ except TypeError:
2016
+ return self.ranges[0][2]
2017
+
2018
+ @property
2019
+ def start_v(self):
2020
+ try:
2021
+ return float(self.ranges[1][1])
2022
+ except TypeError:
2023
+ return self.ranges[1][1]
2024
+
2025
+ @property
2026
+ def end_v(self):
2027
+ try:
2028
+ return float(self.ranges[1][2])
2029
+ except TypeError:
2030
+ return self.ranges[1][2]
2031
+
2032
+ @property
2033
+ def nb_of_points_u(self):
2034
+ return self.n[0]
2035
+
2036
+ @nb_of_points_u.setter
2037
+ def nb_of_points_u(self, v):
2038
+ n = self.n
2039
+ self.n = [v, n[1:]]
2040
+
2041
+ @property
2042
+ def nb_of_points_v(self):
2043
+ return self.n[1]
2044
+
2045
+ @nb_of_points_v.setter
2046
+ def nb_of_points_v(self, v):
2047
+ n = self.n
2048
+ self.n = [n[0], v, n[2]]
2049
+
2050
+ def __str__(self):
2051
+ return self._str_helper(
2052
+ "parametric cartesian surface: (%s, %s, %s) for"
2053
+ " %s over %s and %s over %s" % (
2054
+ str(self.expr_x), str(self.expr_y), str(self.expr_z),
2055
+ str(self.var_u), str((self.start_u, self.end_u)),
2056
+ str(self.var_v), str((self.start_v, self.end_v)),
2057
+ ))
2058
+
2059
+ def get_parameter_meshes(self):
2060
+ return self.get_data()[3:]
2061
+
2062
+ def get_meshes(self):
2063
+ """Return the x,y,z coordinates for plotting the surface.
2064
+ This function is available for back-compatibility purposes. Consider
2065
+ using ``get_data()`` instead.
2066
+ """
2067
+ return self.get_data()[:3]
2068
+
2069
+ def get_data(self):
2070
+ """Return arrays of coordinates for plotting.
2071
+
2072
+ Returns
2073
+ =======
2074
+ x : np.ndarray [n2 x n1]
2075
+ x-coordinates.
2076
+ y : np.ndarray [n2 x n1]
2077
+ y-coordinates.
2078
+ z : np.ndarray [n2 x n1]
2079
+ z-coordinates.
2080
+ mesh_u : np.ndarray [n2 x n1]
2081
+ Discretized u range.
2082
+ mesh_v : np.ndarray [n2 x n1]
2083
+ Discretized v range.
2084
+ """
2085
+ np = import_module('numpy')
2086
+
2087
+ results = self._evaluate()
2088
+ # mask out complex values
2089
+ for i, r in enumerate(results):
2090
+ _re, _im = np.real(r), np.imag(r)
2091
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
2092
+ results[i] = _re
2093
+
2094
+ # TODO: remove this
2095
+ x, y, z = results[2:]
2096
+ self._xlim = (np.amin(x), np.amax(x))
2097
+ self._ylim = (np.amin(y), np.amax(y))
2098
+ self._zlim = (np.amin(z), np.amax(z))
2099
+
2100
+ return self._apply_transform(*results[2:], *results[:2])
2101
+
2102
+
2103
+ ### Contours
2104
+ class ContourSeries(SurfaceOver2DRangeSeries):
2105
+ """Representation for a contour plot."""
2106
+
2107
+ is_3Dsurface = False
2108
+ is_contour = True
2109
+
2110
+ def __init__(self, *args, **kwargs):
2111
+ super().__init__(*args, **kwargs)
2112
+ self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True))
2113
+ self.show_clabels = kwargs.get("clabels", True)
2114
+
2115
+ # NOTE: contour plots are used by plot_contour, plot_vector and
2116
+ # plot_complex_vector. By implementing contour_kw we are able to
2117
+ # quickly target the contour plot.
2118
+ self.rendering_kw = kwargs.get("contour_kw",
2119
+ kwargs.get("rendering_kw", {}))
2120
+
2121
+
2122
+ class GenericDataSeries(BaseSeries):
2123
+ """Represents generic numerical data.
2124
+
2125
+ Notes
2126
+ =====
2127
+ This class serves the purpose of back-compatibility with the "markers,
2128
+ annotations, fill, rectangles" keyword arguments that represent
2129
+ user-provided numerical data. In particular, it solves the problem of
2130
+ combining together two or more plot-objects with the ``extend`` or
2131
+ ``append`` methods: user-provided numerical data is also taken into
2132
+ consideration because it is stored in this series class.
2133
+
2134
+ Also note that the current implementation is far from optimal, as each
2135
+ keyword argument is stored into an attribute in the ``Plot`` class, which
2136
+ requires a hard-coded if-statement in the ``MatplotlibBackend`` class.
2137
+ The implementation suggests that it is ok to add attributes and
2138
+ if-statements to provide more and more functionalities for user-provided
2139
+ numerical data (e.g. adding horizontal lines, or vertical lines, or bar
2140
+ plots, etc). However, in doing so one would reinvent the wheel: plotting
2141
+ libraries (like Matplotlib) already implements the necessary API.
2142
+
2143
+ Instead of adding more keyword arguments and attributes, users interested
2144
+ in adding custom numerical data to a plot should retrieve the figure
2145
+ created by this plotting module. For example, this code:
2146
+
2147
+ .. plot::
2148
+ :context: close-figs
2149
+ :include-source: True
2150
+
2151
+ from sympy import Symbol, plot, cos
2152
+ x = Symbol("x")
2153
+ p = plot(cos(x), markers=[{"args": [[0, 1, 2], [0, 1, -1], "*"]}])
2154
+
2155
+ Becomes:
2156
+
2157
+ .. plot::
2158
+ :context: close-figs
2159
+ :include-source: True
2160
+
2161
+ p = plot(cos(x), backend="matplotlib")
2162
+ fig, ax = p._backend.fig, p._backend.ax[0]
2163
+ ax.plot([0, 1, 2], [0, 1, -1], "*")
2164
+ fig
2165
+
2166
+ Which is far better in terms of readibility. Also, it gives access to the
2167
+ full plotting library capabilities, without the need to reinvent the wheel.
2168
+ """
2169
+ is_generic = True
2170
+
2171
+ def __init__(self, tp, *args, **kwargs):
2172
+ self.type = tp
2173
+ self.args = args
2174
+ self.rendering_kw = kwargs
2175
+
2176
+ def get_data(self):
2177
+ return self.args
2178
+
2179
+
2180
+ class ImplicitSeries(BaseSeries):
2181
+ """Representation for 2D Implicit plot."""
2182
+
2183
+ is_implicit = True
2184
+ use_cm = False
2185
+ _N = 100
2186
+
2187
+ def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs):
2188
+ super().__init__(**kwargs)
2189
+ self.adaptive = kwargs.get("adaptive", False)
2190
+ self.expr = expr
2191
+ self._label = str(expr) if label is None else label
2192
+ self._latex_label = latex(expr) if label is None else label
2193
+ self.ranges = [var_start_end_x, var_start_end_y]
2194
+ self.var_x, self.start_x, self.end_x = self.ranges[0]
2195
+ self.var_y, self.start_y, self.end_y = self.ranges[1]
2196
+ self._color = kwargs.get("color", kwargs.get("line_color", None))
2197
+
2198
+ if self.is_interactive and self.adaptive:
2199
+ raise NotImplementedError("Interactive plot with `adaptive=True` "
2200
+ "is not supported.")
2201
+
2202
+ # Check whether the depth is greater than 4 or less than 0.
2203
+ depth = kwargs.get("depth", 0)
2204
+ if depth > 4:
2205
+ depth = 4
2206
+ elif depth < 0:
2207
+ depth = 0
2208
+ self.depth = 4 + depth
2209
+ self._post_init()
2210
+
2211
+ @property
2212
+ def expr(self):
2213
+ if self.adaptive:
2214
+ return self._adaptive_expr
2215
+ return self._non_adaptive_expr
2216
+
2217
+ @expr.setter
2218
+ def expr(self, expr):
2219
+ self._block_lambda_functions(expr)
2220
+ # these are needed for adaptive evaluation
2221
+ expr, has_equality = self._has_equality(sympify(expr))
2222
+ self._adaptive_expr = expr
2223
+ self.has_equality = has_equality
2224
+ self._label = str(expr)
2225
+ self._latex_label = latex(expr)
2226
+
2227
+ if isinstance(expr, (BooleanFunction, Ne)) and (not self.adaptive):
2228
+ self.adaptive = True
2229
+ msg = "contains Boolean functions. "
2230
+ if isinstance(expr, Ne):
2231
+ msg = "is an unequality. "
2232
+ warnings.warn(
2233
+ "The provided expression " + msg
2234
+ + "In order to plot the expression, the algorithm "
2235
+ + "automatically switched to an adaptive sampling."
2236
+ )
2237
+
2238
+ if isinstance(expr, BooleanFunction):
2239
+ self._non_adaptive_expr = None
2240
+ self._is_equality = False
2241
+ else:
2242
+ # these are needed for uniform meshing evaluation
2243
+ expr, is_equality = self._preprocess_meshgrid_expression(expr, self.adaptive)
2244
+ self._non_adaptive_expr = expr
2245
+ self._is_equality = is_equality
2246
+
2247
+ @property
2248
+ def line_color(self):
2249
+ return self._color
2250
+
2251
+ @line_color.setter
2252
+ def line_color(self, v):
2253
+ self._color = v
2254
+
2255
+ color = line_color
2256
+
2257
+ def _has_equality(self, expr):
2258
+ # Represents whether the expression contains an Equality, GreaterThan
2259
+ # or LessThan
2260
+ has_equality = False
2261
+
2262
+ def arg_expand(bool_expr):
2263
+ """Recursively expands the arguments of an Boolean Function"""
2264
+ for arg in bool_expr.args:
2265
+ if isinstance(arg, BooleanFunction):
2266
+ arg_expand(arg)
2267
+ elif isinstance(arg, Relational):
2268
+ arg_list.append(arg)
2269
+
2270
+ arg_list = []
2271
+ if isinstance(expr, BooleanFunction):
2272
+ arg_expand(expr)
2273
+ # Check whether there is an equality in the expression provided.
2274
+ if any(isinstance(e, (Equality, GreaterThan, LessThan)) for e in arg_list):
2275
+ has_equality = True
2276
+ elif not isinstance(expr, Relational):
2277
+ expr = Equality(expr, 0)
2278
+ has_equality = True
2279
+ elif isinstance(expr, (Equality, GreaterThan, LessThan)):
2280
+ has_equality = True
2281
+
2282
+ return expr, has_equality
2283
+
2284
+ def __str__(self):
2285
+ f = lambda t: float(t) if len(t.free_symbols) == 0 else t
2286
+
2287
+ return self._str_helper(
2288
+ "Implicit expression: %s for %s over %s and %s over %s") % (
2289
+ str(self._adaptive_expr),
2290
+ str(self.var_x),
2291
+ str((f(self.start_x), f(self.end_x))),
2292
+ str(self.var_y),
2293
+ str((f(self.start_y), f(self.end_y))),
2294
+ )
2295
+
2296
+ def get_data(self):
2297
+ """Returns numerical data.
2298
+
2299
+ Returns
2300
+ =======
2301
+
2302
+ If the series is evaluated with the `adaptive=True` it returns:
2303
+
2304
+ interval_list : list
2305
+ List of bounding rectangular intervals to be postprocessed and
2306
+ eventually used with Matplotlib's ``fill`` command.
2307
+ dummy : str
2308
+ A string containing ``"fill"``.
2309
+
2310
+ Otherwise, it returns 2D numpy arrays to be used with Matplotlib's
2311
+ ``contour`` or ``contourf`` commands:
2312
+
2313
+ x_array : np.ndarray
2314
+ y_array : np.ndarray
2315
+ z_array : np.ndarray
2316
+ plot_type : str
2317
+ A string specifying which plot command to use, ``"contour"``
2318
+ or ``"contourf"``.
2319
+ """
2320
+ if self.adaptive:
2321
+ data = self._adaptive_eval()
2322
+ if data is not None:
2323
+ return data
2324
+
2325
+ return self._get_meshes_grid()
2326
+
2327
+ def _adaptive_eval(self):
2328
+ """
2329
+ References
2330
+ ==========
2331
+
2332
+ .. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
2333
+ Mathematical Formulae with Two Free Variables.
2334
+
2335
+ .. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
2336
+ Arithmetic. Master's thesis. University of Toronto, 1996
2337
+ """
2338
+ import sympy.plotting.intervalmath.lib_interval as li
2339
+
2340
+ user_functions = {}
2341
+ printer = IntervalMathPrinter({
2342
+ 'fully_qualified_modules': False, 'inline': True,
2343
+ 'allow_unknown_functions': True,
2344
+ 'user_functions': user_functions})
2345
+
2346
+ keys = [t for t in dir(li) if ("__" not in t) and (t not in ["import_module", "interval"])]
2347
+ vals = [getattr(li, k) for k in keys]
2348
+ d = dict(zip(keys, vals))
2349
+ func = lambdify((self.var_x, self.var_y), self.expr, modules=[d], printer=printer)
2350
+ data = None
2351
+
2352
+ try:
2353
+ data = self._get_raster_interval(func)
2354
+ except NameError as err:
2355
+ warnings.warn(
2356
+ "Adaptive meshing could not be applied to the"
2357
+ " expression, as some functions are not yet implemented"
2358
+ " in the interval math module:\n\n"
2359
+ "NameError: %s\n\n" % err +
2360
+ "Proceeding with uniform meshing."
2361
+ )
2362
+ self.adaptive = False
2363
+ except TypeError:
2364
+ warnings.warn(
2365
+ "Adaptive meshing could not be applied to the"
2366
+ " expression. Using uniform meshing.")
2367
+ self.adaptive = False
2368
+
2369
+ return data
2370
+
2371
+ def _get_raster_interval(self, func):
2372
+ """Uses interval math to adaptively mesh and obtain the plot"""
2373
+ np = import_module('numpy')
2374
+
2375
+ k = self.depth
2376
+ interval_list = []
2377
+ sx, sy = [float(t) for t in [self.start_x, self.start_y]]
2378
+ ex, ey = [float(t) for t in [self.end_x, self.end_y]]
2379
+ # Create initial 32 divisions
2380
+ xsample = np.linspace(sx, ex, 33)
2381
+ ysample = np.linspace(sy, ey, 33)
2382
+
2383
+ # Add a small jitter so that there are no false positives for equality.
2384
+ # Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
2385
+ # which will draw a rectangle.
2386
+ jitterx = (
2387
+ (np.random.rand(len(xsample)) * 2 - 1)
2388
+ * (ex - sx)
2389
+ / 2 ** 20
2390
+ )
2391
+ jittery = (
2392
+ (np.random.rand(len(ysample)) * 2 - 1)
2393
+ * (ey - sy)
2394
+ / 2 ** 20
2395
+ )
2396
+ xsample += jitterx
2397
+ ysample += jittery
2398
+
2399
+ xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], xsample[1:])]
2400
+ yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], ysample[1:])]
2401
+ interval_list = [[x, y] for x in xinter for y in yinter]
2402
+ plot_list = []
2403
+
2404
+ # recursive call refinepixels which subdivides the intervals which are
2405
+ # neither True nor False according to the expression.
2406
+ def refine_pixels(interval_list):
2407
+ """Evaluates the intervals and subdivides the interval if the
2408
+ expression is partially satisfied."""
2409
+ temp_interval_list = []
2410
+ plot_list = []
2411
+ for intervals in interval_list:
2412
+
2413
+ # Convert the array indices to x and y values
2414
+ intervalx = intervals[0]
2415
+ intervaly = intervals[1]
2416
+ func_eval = func(intervalx, intervaly)
2417
+ # The expression is valid in the interval. Change the contour
2418
+ # array values to 1.
2419
+ if func_eval[1] is False or func_eval[0] is False:
2420
+ pass
2421
+ elif func_eval == (True, True):
2422
+ plot_list.append([intervalx, intervaly])
2423
+ elif func_eval[1] is None or func_eval[0] is None:
2424
+ # Subdivide
2425
+ avgx = intervalx.mid
2426
+ avgy = intervaly.mid
2427
+ a = interval(intervalx.start, avgx)
2428
+ b = interval(avgx, intervalx.end)
2429
+ c = interval(intervaly.start, avgy)
2430
+ d = interval(avgy, intervaly.end)
2431
+ temp_interval_list.append([a, c])
2432
+ temp_interval_list.append([a, d])
2433
+ temp_interval_list.append([b, c])
2434
+ temp_interval_list.append([b, d])
2435
+ return temp_interval_list, plot_list
2436
+
2437
+ while k >= 0 and len(interval_list):
2438
+ interval_list, plot_list_temp = refine_pixels(interval_list)
2439
+ plot_list.extend(plot_list_temp)
2440
+ k = k - 1
2441
+ # Check whether the expression represents an equality
2442
+ # If it represents an equality, then none of the intervals
2443
+ # would have satisfied the expression due to floating point
2444
+ # differences. Add all the undecided values to the plot.
2445
+ if self.has_equality:
2446
+ for intervals in interval_list:
2447
+ intervalx = intervals[0]
2448
+ intervaly = intervals[1]
2449
+ func_eval = func(intervalx, intervaly)
2450
+ if func_eval[1] and func_eval[0] is not False:
2451
+ plot_list.append([intervalx, intervaly])
2452
+ return plot_list, "fill"
2453
+
2454
+ def _get_meshes_grid(self):
2455
+ """Generates the mesh for generating a contour.
2456
+
2457
+ In the case of equality, ``contour`` function of matplotlib can
2458
+ be used. In other cases, matplotlib's ``contourf`` is used.
2459
+ """
2460
+ np = import_module('numpy')
2461
+
2462
+ xarray, yarray, z_grid = self._evaluate()
2463
+ _re, _im = np.real(z_grid), np.imag(z_grid)
2464
+ _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
2465
+ if self._is_equality:
2466
+ return xarray, yarray, _re, 'contour'
2467
+ return xarray, yarray, _re, 'contourf'
2468
+
2469
+ @staticmethod
2470
+ def _preprocess_meshgrid_expression(expr, adaptive):
2471
+ """If the expression is a Relational, rewrite it as a single
2472
+ expression.
2473
+
2474
+ Returns
2475
+ =======
2476
+
2477
+ expr : Expr
2478
+ The rewritten expression
2479
+
2480
+ equality : Boolean
2481
+ Wheter the original expression was an Equality or not.
2482
+ """
2483
+ equality = False
2484
+ if isinstance(expr, Equality):
2485
+ expr = expr.lhs - expr.rhs
2486
+ equality = True
2487
+ elif isinstance(expr, Relational):
2488
+ expr = expr.gts - expr.lts
2489
+ elif not adaptive:
2490
+ raise NotImplementedError(
2491
+ "The expression is not supported for "
2492
+ "plotting in uniform meshed plot."
2493
+ )
2494
+ return expr, equality
2495
+
2496
+ def get_label(self, use_latex=False, wrapper="$%s$"):
2497
+ """Return the label to be used to display the expression.
2498
+
2499
+ Parameters
2500
+ ==========
2501
+ use_latex : bool
2502
+ If False, the string representation of the expression is returned.
2503
+ If True, the latex representation is returned.
2504
+ wrapper : str
2505
+ The backend might need the latex representation to be wrapped by
2506
+ some characters. Default to ``"$%s$"``.
2507
+
2508
+ Returns
2509
+ =======
2510
+ label : str
2511
+ """
2512
+ if use_latex is False:
2513
+ return self._label
2514
+ if self._label == str(self._adaptive_expr):
2515
+ return self._get_wrapped_label(self._latex_label, wrapper)
2516
+ return self._latex_label
2517
+
2518
+
2519
+ ##############################################################################
2520
+ # Finding the centers of line segments or mesh faces
2521
+ ##############################################################################
2522
+
2523
+ def centers_of_segments(array):
2524
+ np = import_module('numpy')
2525
+ return np.mean(np.vstack((array[:-1], array[1:])), 0)
2526
+
2527
+
2528
+ def centers_of_faces(array):
2529
+ np = import_module('numpy')
2530
+ return np.mean(np.dstack((array[:-1, :-1],
2531
+ array[1:, :-1],
2532
+ array[:-1, 1:],
2533
+ array[:-1, :-1],
2534
+ )), 2)
2535
+
2536
+
2537
+ def flat(x, y, z, eps=1e-3):
2538
+ """Checks whether three points are almost collinear"""
2539
+ np = import_module('numpy')
2540
+ # Workaround plotting piecewise (#8577)
2541
+ vector_a = (x - y).astype(float)
2542
+ vector_b = (z - y).astype(float)
2543
+ dot_product = np.dot(vector_a, vector_b)
2544
+ vector_a_norm = np.linalg.norm(vector_a)
2545
+ vector_b_norm = np.linalg.norm(vector_b)
2546
+ cos_theta = dot_product / (vector_a_norm * vector_b_norm)
2547
+ return abs(cos_theta + 1) < eps
2548
+
2549
+
2550
+ def _set_discretization_points(kwargs, pt):
2551
+ """Allow the use of the keyword arguments ``n, n1, n2`` to
2552
+ specify the number of discretization points in one and two
2553
+ directions, while keeping back-compatibility with older keyword arguments
2554
+ like, ``nb_of_points, nb_of_points_*, points``.
2555
+
2556
+ Parameters
2557
+ ==========
2558
+
2559
+ kwargs : dict
2560
+ Dictionary of keyword arguments passed into a plotting function.
2561
+ pt : type
2562
+ The type of the series, which indicates the kind of plot we are
2563
+ trying to create.
2564
+ """
2565
+ replace_old_keywords = {
2566
+ "nb_of_points": "n",
2567
+ "nb_of_points_x": "n1",
2568
+ "nb_of_points_y": "n2",
2569
+ "nb_of_points_u": "n1",
2570
+ "nb_of_points_v": "n2",
2571
+ "points": "n"
2572
+ }
2573
+ for k, v in replace_old_keywords.items():
2574
+ if k in kwargs.keys():
2575
+ kwargs[v] = kwargs.pop(k)
2576
+
2577
+ if pt in [LineOver1DRangeSeries, Parametric2DLineSeries,
2578
+ Parametric3DLineSeries]:
2579
+ if "n" in kwargs.keys():
2580
+ kwargs["n1"] = kwargs["n"]
2581
+ if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 0):
2582
+ kwargs["n1"] = kwargs["n"][0]
2583
+ elif pt in [SurfaceOver2DRangeSeries, ContourSeries,
2584
+ ParametricSurfaceSeries, ImplicitSeries]:
2585
+ if "n" in kwargs.keys():
2586
+ if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 1):
2587
+ kwargs["n1"] = kwargs["n"][0]
2588
+ kwargs["n2"] = kwargs["n"][1]
2589
+ else:
2590
+ kwargs["n1"] = kwargs["n2"] = kwargs["n"]
2591
+ return kwargs
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/textplot.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Float
2
+ from sympy.core.symbol import Dummy
3
+ from sympy.utilities.lambdify import lambdify
4
+
5
+ import math
6
+
7
+
8
+ def is_valid(x):
9
+ """Check if a floating point number is valid"""
10
+ if x is None:
11
+ return False
12
+ if isinstance(x, complex):
13
+ return False
14
+ return not math.isinf(x) and not math.isnan(x)
15
+
16
+
17
+ def rescale(y, W, H, mi, ma):
18
+ """Rescale the given array `y` to fit into the integer values
19
+ between `0` and `H-1` for the values between ``mi`` and ``ma``.
20
+ """
21
+ y_new = []
22
+
23
+ norm = ma - mi
24
+ offset = (ma + mi) / 2
25
+
26
+ for x in range(W):
27
+ if is_valid(y[x]):
28
+ normalized = (y[x] - offset) / norm
29
+ if not is_valid(normalized):
30
+ y_new.append(None)
31
+ else:
32
+ rescaled = Float((normalized*H + H/2) * (H-1)/H).round()
33
+ rescaled = int(rescaled)
34
+ y_new.append(rescaled)
35
+ else:
36
+ y_new.append(None)
37
+ return y_new
38
+
39
+
40
+ def linspace(start, stop, num):
41
+ return [start + (stop - start) * x / (num-1) for x in range(num)]
42
+
43
+
44
+ def textplot_str(expr, a, b, W=55, H=21):
45
+ """Generator for the lines of the plot"""
46
+ free = expr.free_symbols
47
+ if len(free) > 1:
48
+ raise ValueError(
49
+ "The expression must have a single variable. (Got {})"
50
+ .format(free))
51
+ x = free.pop() if free else Dummy()
52
+ f = lambdify([x], expr)
53
+ if isinstance(a, complex):
54
+ if a.imag == 0:
55
+ a = a.real
56
+ if isinstance(b, complex):
57
+ if b.imag == 0:
58
+ b = b.real
59
+ a = float(a)
60
+ b = float(b)
61
+
62
+ # Calculate function values
63
+ x = linspace(a, b, W)
64
+ y = []
65
+ for val in x:
66
+ try:
67
+ y.append(f(val))
68
+ # Not sure what exceptions to catch here or why...
69
+ except (ValueError, TypeError, ZeroDivisionError):
70
+ y.append(None)
71
+
72
+ # Normalize height to screen space
73
+ y_valid = list(filter(is_valid, y))
74
+ if y_valid:
75
+ ma = max(y_valid)
76
+ mi = min(y_valid)
77
+ if ma == mi:
78
+ if ma:
79
+ mi, ma = sorted([0, 2*ma])
80
+ else:
81
+ mi, ma = -1, 1
82
+ else:
83
+ mi, ma = -1, 1
84
+ y_range = ma - mi
85
+ precision = math.floor(math.log10(y_range)) - 1
86
+ precision *= -1
87
+ mi = round(mi, precision)
88
+ ma = round(ma, precision)
89
+ y = rescale(y, W, H, mi, ma)
90
+
91
+ y_bins = linspace(mi, ma, H)
92
+
93
+ # Draw plot
94
+ margin = 7
95
+ for h in range(H - 1, -1, -1):
96
+ s = [' '] * W
97
+ for i in range(W):
98
+ if y[i] == h:
99
+ if (i == 0 or y[i - 1] == h - 1) and (i == W - 1 or y[i + 1] == h + 1):
100
+ s[i] = '/'
101
+ elif (i == 0 or y[i - 1] == h + 1) and (i == W - 1 or y[i + 1] == h - 1):
102
+ s[i] = '\\'
103
+ else:
104
+ s[i] = '.'
105
+
106
+ if h == 0:
107
+ for i in range(W):
108
+ s[i] = '_'
109
+
110
+ # Print y values
111
+ if h in (0, H//2, H - 1):
112
+ prefix = ("%g" % y_bins[h]).rjust(margin)[:margin]
113
+ else:
114
+ prefix = " "*margin
115
+ s = "".join(s)
116
+ if h == H//2:
117
+ s = s.replace(" ", "-")
118
+ yield prefix + " |" + s
119
+
120
+ # Print x values
121
+ bottom = " " * (margin + 2)
122
+ bottom += ("%g" % x[0]).ljust(W//2)
123
+ if W % 2 == 1:
124
+ bottom += ("%g" % x[W//2]).ljust(W//2)
125
+ else:
126
+ bottom += ("%g" % x[W//2]).ljust(W//2-1)
127
+ bottom += "%g" % x[-1]
128
+ yield bottom
129
+
130
+
131
+ def textplot(expr, a, b, W=55, H=21):
132
+ r"""
133
+ Print a crude ASCII art plot of the SymPy expression 'expr' (which
134
+ should contain a single symbol, e.g. x or something else) over the
135
+ interval [a, b].
136
+
137
+ Examples
138
+ ========
139
+
140
+ >>> from sympy import Symbol, sin
141
+ >>> from sympy.plotting import textplot
142
+ >>> t = Symbol('t')
143
+ >>> textplot(sin(t)*t, 0, 15)
144
+ 14 | ...
145
+ | .
146
+ | .
147
+ | .
148
+ | .
149
+ | ...
150
+ | / . .
151
+ | /
152
+ | / .
153
+ | . . .
154
+ 1.5 |----.......--------------------------------------------
155
+ |.... \ . .
156
+ | \ / .
157
+ | .. / .
158
+ | \ / .
159
+ | ....
160
+ | .
161
+ | . .
162
+ |
163
+ | . .
164
+ -11 |_______________________________________________________
165
+ 0 7.5 15
166
+ """
167
+ for line in textplot_str(expr, a, b, W, H):
168
+ print(line)
evalkit_internvl/lib/python3.10/site-packages/sympy/plotting/utils.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.containers import Tuple
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.expr import Expr
4
+ from sympy.core.function import AppliedUndef
5
+ from sympy.core.relational import Relational
6
+ from sympy.core.symbol import Dummy
7
+ from sympy.core.sympify import sympify
8
+ from sympy.logic.boolalg import BooleanFunction
9
+ from sympy.sets.fancysets import ImageSet
10
+ from sympy.sets.sets import FiniteSet
11
+ from sympy.tensor.indexed import Indexed
12
+
13
+
14
+ def _get_free_symbols(exprs):
15
+ """Returns the free symbols of a symbolic expression.
16
+
17
+ If the expression contains any of these elements, assume that they are
18
+ the "free symbols" of the expression:
19
+
20
+ * indexed objects
21
+ * applied undefined function (useful for sympy.physics.mechanics module)
22
+ """
23
+ if not isinstance(exprs, (list, tuple, set)):
24
+ exprs = [exprs]
25
+ if all(callable(e) for e in exprs):
26
+ return set()
27
+
28
+ free = set().union(*[e.atoms(Indexed) for e in exprs])
29
+ free = free.union(*[e.atoms(AppliedUndef) for e in exprs])
30
+ return free or set().union(*[e.free_symbols for e in exprs])
31
+
32
+
33
+ def extract_solution(set_sol, n=10):
34
+ """Extract numerical solutions from a set solution (computed by solveset,
35
+ linsolve, nonlinsolve). Often, it is not trivial do get something useful
36
+ out of them.
37
+
38
+ Parameters
39
+ ==========
40
+
41
+ n : int, optional
42
+ In order to replace ImageSet with FiniteSet, an iterator is created
43
+ for each ImageSet contained in `set_sol`, starting from 0 up to `n`.
44
+ Default value: 10.
45
+ """
46
+ images = set_sol.find(ImageSet)
47
+ for im in images:
48
+ it = iter(im)
49
+ s = FiniteSet(*[next(it) for n in range(0, n)])
50
+ set_sol = set_sol.subs(im, s)
51
+ return set_sol
52
+
53
+
54
+ def _plot_sympify(args):
55
+ """This function recursively loop over the arguments passed to the plot
56
+ functions: the sympify function will be applied to all arguments except
57
+ those of type string/dict.
58
+
59
+ Generally, users can provide the following arguments to a plot function:
60
+
61
+ expr, range1 [tuple, opt], ..., label [str, opt], rendering_kw [dict, opt]
62
+
63
+ `expr, range1, ...` can be sympified, whereas `label, rendering_kw` can't.
64
+ In particular, whenever a special character like $, {, }, ... is used in
65
+ the `label`, sympify will raise an error.
66
+ """
67
+ if isinstance(args, Expr):
68
+ return args
69
+
70
+ args = list(args)
71
+ for i, a in enumerate(args):
72
+ if isinstance(a, (list, tuple)):
73
+ args[i] = Tuple(*_plot_sympify(a), sympify=False)
74
+ elif not (isinstance(a, (str, dict)) or callable(a)
75
+ # NOTE: check if it is a vector from sympy.physics.vector module
76
+ # without importing the module (because it slows down SymPy's
77
+ # import process and triggers SymPy's optional-dependencies
78
+ # tests to fail).
79
+ or ((a.__class__.__name__ == "Vector") and not isinstance(a, Basic))
80
+ ):
81
+ args[i] = sympify(a)
82
+ return args
83
+
84
+
85
+ def _create_ranges(exprs, ranges, npar, label="", params=None):
86
+ """This function does two things:
87
+
88
+ 1. Check if the number of free symbols is in agreement with the type of
89
+ plot chosen. For example, plot() requires 1 free symbol;
90
+ plot3d() requires 2 free symbols.
91
+ 2. Sometime users create plots without providing ranges for the variables.
92
+ Here we create the necessary ranges.
93
+
94
+ Parameters
95
+ ==========
96
+
97
+ exprs : iterable
98
+ The expressions from which to extract the free symbols
99
+ ranges : iterable
100
+ The limiting ranges provided by the user
101
+ npar : int
102
+ The number of free symbols required by the plot functions.
103
+ For example,
104
+ npar=1 for plot, npar=2 for plot3d, ...
105
+ params : dict
106
+ A dictionary mapping symbols to parameters for interactive plot.
107
+ """
108
+ get_default_range = lambda symbol: Tuple(symbol, -10, 10)
109
+
110
+ free_symbols = _get_free_symbols(exprs)
111
+ if params is not None:
112
+ free_symbols = free_symbols.difference(params.keys())
113
+
114
+ if len(free_symbols) > npar:
115
+ raise ValueError(
116
+ "Too many free symbols.\n"
117
+ + "Expected {} free symbols.\n".format(npar)
118
+ + "Received {}: {}".format(len(free_symbols), free_symbols)
119
+ )
120
+
121
+ if len(ranges) > npar:
122
+ raise ValueError(
123
+ "Too many ranges. Received %s, expected %s" % (len(ranges), npar))
124
+
125
+ # free symbols in the ranges provided by the user
126
+ rfs = set().union([r[0] for r in ranges])
127
+ if len(rfs) != len(ranges):
128
+ raise ValueError("Multiple ranges with the same symbol")
129
+
130
+ if len(ranges) < npar:
131
+ symbols = free_symbols.difference(rfs)
132
+ if symbols != set():
133
+ # add a range for each missing free symbols
134
+ for s in symbols:
135
+ ranges.append(get_default_range(s))
136
+ # if there is still room, fill them with dummys
137
+ for i in range(npar - len(ranges)):
138
+ ranges.append(get_default_range(Dummy()))
139
+
140
+ if len(free_symbols) == npar:
141
+ # there could be times when this condition is not met, for example
142
+ # plotting the function f(x, y) = x (which is a plane); in this case,
143
+ # free_symbols = {x} whereas rfs = {x, y} (or x and Dummy)
144
+ rfs = set().union([r[0] for r in ranges])
145
+ if len(free_symbols.difference(rfs)) > 0:
146
+ raise ValueError(
147
+ "Incompatible free symbols of the expressions with "
148
+ "the ranges.\n"
149
+ + "Free symbols in the expressions: {}\n".format(free_symbols)
150
+ + "Free symbols in the ranges: {}".format(rfs)
151
+ )
152
+ return ranges
153
+
154
+
155
+ def _is_range(r):
156
+ """A range is defined as (symbol, start, end). start and end should
157
+ be numbers.
158
+ """
159
+ # TODO: prange check goes here
160
+ return (
161
+ isinstance(r, Tuple)
162
+ and (len(r) == 3)
163
+ and (not isinstance(r.args[1], str)) and r.args[1].is_number
164
+ and (not isinstance(r.args[2], str)) and r.args[2].is_number
165
+ )
166
+
167
+
168
+ def _unpack_args(*args):
169
+ """Given a list/tuple of arguments previously processed by _plot_sympify()
170
+ and/or _check_arguments(), separates and returns its components:
171
+ expressions, ranges, label and rendering keywords.
172
+
173
+ Examples
174
+ ========
175
+
176
+ >>> from sympy import cos, sin, symbols
177
+ >>> from sympy.plotting.utils import _plot_sympify, _unpack_args
178
+ >>> x, y = symbols('x, y')
179
+ >>> args = (sin(x), (x, -10, 10), "f1")
180
+ >>> args = _plot_sympify(args)
181
+ >>> _unpack_args(*args)
182
+ ([sin(x)], [(x, -10, 10)], 'f1', None)
183
+
184
+ >>> args = (sin(x**2 + y**2), (x, -2, 2), (y, -3, 3), "f2")
185
+ >>> args = _plot_sympify(args)
186
+ >>> _unpack_args(*args)
187
+ ([sin(x**2 + y**2)], [(x, -2, 2), (y, -3, 3)], 'f2', None)
188
+
189
+ >>> args = (sin(x + y), cos(x - y), x + y, (x, -2, 2), (y, -3, 3), "f3")
190
+ >>> args = _plot_sympify(args)
191
+ >>> _unpack_args(*args)
192
+ ([sin(x + y), cos(x - y), x + y], [(x, -2, 2), (y, -3, 3)], 'f3', None)
193
+ """
194
+ ranges = [t for t in args if _is_range(t)]
195
+ labels = [t for t in args if isinstance(t, str)]
196
+ label = None if not labels else labels[0]
197
+ rendering_kw = [t for t in args if isinstance(t, dict)]
198
+ rendering_kw = None if not rendering_kw else rendering_kw[0]
199
+ # NOTE: why None? because args might have been preprocessed by
200
+ # _check_arguments, so None might represent the rendering_kw
201
+ results = [not (_is_range(a) or isinstance(a, (str, dict)) or (a is None)) for a in args]
202
+ exprs = [a for a, b in zip(args, results) if b]
203
+ return exprs, ranges, label, rendering_kw
204
+
205
+
206
+ def _check_arguments(args, nexpr, npar, **kwargs):
207
+ """Checks the arguments and converts into tuples of the
208
+ form (exprs, ranges, label, rendering_kw).
209
+
210
+ Parameters
211
+ ==========
212
+
213
+ args
214
+ The arguments provided to the plot functions
215
+ nexpr
216
+ The number of sub-expression forming an expression to be plotted.
217
+ For example:
218
+ nexpr=1 for plot.
219
+ nexpr=2 for plot_parametric: a curve is represented by a tuple of two
220
+ elements.
221
+ nexpr=1 for plot3d.
222
+ nexpr=3 for plot3d_parametric_line: a curve is represented by a tuple
223
+ of three elements.
224
+ npar
225
+ The number of free symbols required by the plot functions. For example,
226
+ npar=1 for plot, npar=2 for plot3d, ...
227
+ **kwargs :
228
+ keyword arguments passed to the plotting function. It will be used to
229
+ verify if ``params`` has ben provided.
230
+
231
+ Examples
232
+ ========
233
+
234
+ .. plot::
235
+ :context: reset
236
+ :format: doctest
237
+ :include-source: True
238
+
239
+ >>> from sympy import cos, sin, symbols
240
+ >>> from sympy.plotting.plot import _check_arguments
241
+ >>> x = symbols('x')
242
+ >>> _check_arguments([cos(x), sin(x)], 2, 1)
243
+ [(cos(x), sin(x), (x, -10, 10), None, None)]
244
+
245
+ >>> _check_arguments([cos(x), sin(x), "test"], 2, 1)
246
+ [(cos(x), sin(x), (x, -10, 10), 'test', None)]
247
+
248
+ >>> _check_arguments([cos(x), sin(x), "test", {"a": 0, "b": 1}], 2, 1)
249
+ [(cos(x), sin(x), (x, -10, 10), 'test', {'a': 0, 'b': 1})]
250
+
251
+ >>> _check_arguments([x, x**2], 1, 1)
252
+ [(x, (x, -10, 10), None, None), (x**2, (x, -10, 10), None, None)]
253
+ """
254
+ if not args:
255
+ return []
256
+ output = []
257
+ params = kwargs.get("params", None)
258
+
259
+ if all(isinstance(a, (Expr, Relational, BooleanFunction)) for a in args[:nexpr]):
260
+ # In this case, with a single plot command, we are plotting either:
261
+ # 1. one expression
262
+ # 2. multiple expressions over the same range
263
+
264
+ exprs, ranges, label, rendering_kw = _unpack_args(*args)
265
+ free_symbols = set().union(*[e.free_symbols for e in exprs])
266
+ ranges = _create_ranges(exprs, ranges, npar, label, params)
267
+
268
+ if nexpr > 1:
269
+ # in case of plot_parametric or plot3d_parametric_line, there will
270
+ # be 2 or 3 expressions defining a curve. Group them together.
271
+ if len(exprs) == nexpr:
272
+ exprs = (tuple(exprs),)
273
+ for expr in exprs:
274
+ # need this if-else to deal with both plot/plot3d and
275
+ # plot_parametric/plot3d_parametric_line
276
+ is_expr = isinstance(expr, (Expr, Relational, BooleanFunction))
277
+ e = (expr,) if is_expr else expr
278
+ output.append((*e, *ranges, label, rendering_kw))
279
+
280
+ else:
281
+ # In this case, we are plotting multiple expressions, each one with its
282
+ # range. Each "expression" to be plotted has the following form:
283
+ # (expr, range, label) where label is optional
284
+
285
+ _, ranges, labels, rendering_kw = _unpack_args(*args)
286
+ labels = [labels] if labels else []
287
+
288
+ # number of expressions
289
+ n = (len(ranges) + len(labels) +
290
+ (len(rendering_kw) if rendering_kw is not None else 0))
291
+ new_args = args[:-n] if n > 0 else args
292
+
293
+ # at this point, new_args might just be [expr]. But I need it to be
294
+ # [[expr]] in order to be able to loop over
295
+ # [expr, range [opt], label [opt]]
296
+ if not isinstance(new_args[0], (list, tuple, Tuple)):
297
+ new_args = [new_args]
298
+
299
+ # Each arg has the form (expr1, expr2, ..., range1 [optional], ...,
300
+ # label [optional], rendering_kw [optional])
301
+ for arg in new_args:
302
+ # look for "local" range and label. If there is not, use "global".
303
+ l = [a for a in arg if isinstance(a, str)]
304
+ if not l:
305
+ l = labels
306
+ r = [a for a in arg if _is_range(a)]
307
+ if not r:
308
+ r = ranges.copy()
309
+ rend_kw = [a for a in arg if isinstance(a, dict)]
310
+ rend_kw = rendering_kw if len(rend_kw) == 0 else rend_kw[0]
311
+
312
+ # NOTE: arg = arg[:nexpr] may raise an exception if lambda
313
+ # functions are used. Execute the following instead:
314
+ arg = [arg[i] for i in range(nexpr)]
315
+ free_symbols = set()
316
+ if all(not callable(a) for a in arg):
317
+ free_symbols = free_symbols.union(*[a.free_symbols for a in arg])
318
+ if len(r) != npar:
319
+ r = _create_ranges(arg, r, npar, "", params)
320
+
321
+ label = None if not l else l[0]
322
+ output.append((*arg, *r, label, rend_kw))
323
+ return output
evalkit_internvl/lib/python3.10/site-packages/sympy/sandbox/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (369 Bytes). View file
 
evalkit_internvl/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_wester.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1f9b5f4ae26e18e8306a2e92d624a75677b0e01f26c9d971d9ac24ed803e397
3
+ size 113430
evalkit_tf437/lib/python3.10/site-packages/sklearn/decomposition/_factor_analysis.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Factor Analysis.
2
+
3
+ A latent linear variable model.
4
+
5
+ FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
6
+ While PCA assumes Gaussian noise with the same variance for each
7
+ feature, the FactorAnalysis model assumes different variances for
8
+ each of them.
9
+
10
+ This implementation is based on David Barber's Book,
11
+ Bayesian Reasoning and Machine Learning,
12
+ http://www.cs.ucl.ac.uk/staff/d.barber/brml,
13
+ Algorithm 21.1
14
+ """
15
+
16
+ # Authors: The scikit-learn developers
17
+ # SPDX-License-Identifier: BSD-3-Clause
18
+
19
+ import warnings
20
+ from math import log, sqrt
21
+ from numbers import Integral, Real
22
+
23
+ import numpy as np
24
+ from scipy import linalg
25
+
26
+ from ..base import (
27
+ BaseEstimator,
28
+ ClassNamePrefixFeaturesOutMixin,
29
+ TransformerMixin,
30
+ _fit_context,
31
+ )
32
+ from ..exceptions import ConvergenceWarning
33
+ from ..utils import check_random_state
34
+ from ..utils._param_validation import Interval, StrOptions
35
+ from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
36
+ from ..utils.validation import check_is_fitted, validate_data
37
+
38
+
39
+ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
40
+ """Factor Analysis (FA).
41
+
42
+ A simple linear generative model with Gaussian latent variables.
43
+
44
+ The observations are assumed to be caused by a linear transformation of
45
+ lower dimensional latent factors and added Gaussian noise.
46
+ Without loss of generality the factors are distributed according to a
47
+ Gaussian with zero mean and unit covariance. The noise is also zero mean
48
+ and has an arbitrary diagonal covariance matrix.
49
+
50
+ If we would restrict the model further, by assuming that the Gaussian
51
+ noise is even isotropic (all diagonal entries are the same) we would obtain
52
+ :class:`PCA`.
53
+
54
+ FactorAnalysis performs a maximum likelihood estimate of the so-called
55
+ `loading` matrix, the transformation of the latent variables to the
56
+ observed ones, using SVD based approach.
57
+
58
+ Read more in the :ref:`User Guide <FA>`.
59
+
60
+ .. versionadded:: 0.13
61
+
62
+ Parameters
63
+ ----------
64
+ n_components : int, default=None
65
+ Dimensionality of latent space, the number of components
66
+ of ``X`` that are obtained after ``transform``.
67
+ If None, n_components is set to the number of features.
68
+
69
+ tol : float, default=1e-2
70
+ Stopping tolerance for log-likelihood increase.
71
+
72
+ copy : bool, default=True
73
+ Whether to make a copy of X. If ``False``, the input X gets overwritten
74
+ during fitting.
75
+
76
+ max_iter : int, default=1000
77
+ Maximum number of iterations.
78
+
79
+ noise_variance_init : array-like of shape (n_features,), default=None
80
+ The initial guess of the noise variance for each feature.
81
+ If None, it defaults to np.ones(n_features).
82
+
83
+ svd_method : {'lapack', 'randomized'}, default='randomized'
84
+ Which SVD method to use. If 'lapack' use standard SVD from
85
+ scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
86
+ Defaults to 'randomized'. For most applications 'randomized' will
87
+ be sufficiently precise while providing significant speed gains.
88
+ Accuracy can also be improved by setting higher values for
89
+ `iterated_power`. If this is not sufficient, for maximum precision
90
+ you should choose 'lapack'.
91
+
92
+ iterated_power : int, default=3
93
+ Number of iterations for the power method. 3 by default. Only used
94
+ if ``svd_method`` equals 'randomized'.
95
+
96
+ rotation : {'varimax', 'quartimax'}, default=None
97
+ If not None, apply the indicated rotation. Currently, varimax and
98
+ quartimax are implemented. See
99
+ `"The varimax criterion for analytic rotation in factor analysis"
100
+ <https://link.springer.com/article/10.1007%2FBF02289233>`_
101
+ H. F. Kaiser, 1958.
102
+
103
+ .. versionadded:: 0.24
104
+
105
+ random_state : int or RandomState instance, default=0
106
+ Only used when ``svd_method`` equals 'randomized'. Pass an int for
107
+ reproducible results across multiple function calls.
108
+ See :term:`Glossary <random_state>`.
109
+
110
+ Attributes
111
+ ----------
112
+ components_ : ndarray of shape (n_components, n_features)
113
+ Components with maximum variance.
114
+
115
+ loglike_ : list of shape (n_iterations,)
116
+ The log likelihood at each iteration.
117
+
118
+ noise_variance_ : ndarray of shape (n_features,)
119
+ The estimated noise variance for each feature.
120
+
121
+ n_iter_ : int
122
+ Number of iterations run.
123
+
124
+ mean_ : ndarray of shape (n_features,)
125
+ Per-feature empirical mean, estimated from the training set.
126
+
127
+ n_features_in_ : int
128
+ Number of features seen during :term:`fit`.
129
+
130
+ .. versionadded:: 0.24
131
+
132
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
133
+ Names of features seen during :term:`fit`. Defined only when `X`
134
+ has feature names that are all strings.
135
+
136
+ .. versionadded:: 1.0
137
+
138
+ See Also
139
+ --------
140
+ PCA: Principal component analysis is also a latent linear variable model
141
+ which however assumes equal noise variance for each feature.
142
+ This extra assumption makes probabilistic PCA faster as it can be
143
+ computed in closed form.
144
+ FastICA: Independent component analysis, a latent variable model with
145
+ non-Gaussian latent variables.
146
+
147
+ References
148
+ ----------
149
+ - David Barber, Bayesian Reasoning and Machine Learning,
150
+ Algorithm 21.1.
151
+
152
+ - Christopher M. Bishop: Pattern Recognition and Machine Learning,
153
+ Chapter 12.2.4.
154
+
155
+ Examples
156
+ --------
157
+ >>> from sklearn.datasets import load_digits
158
+ >>> from sklearn.decomposition import FactorAnalysis
159
+ >>> X, _ = load_digits(return_X_y=True)
160
+ >>> transformer = FactorAnalysis(n_components=7, random_state=0)
161
+ >>> X_transformed = transformer.fit_transform(X)
162
+ >>> X_transformed.shape
163
+ (1797, 7)
164
+ """
165
+
166
+ _parameter_constraints: dict = {
167
+ "n_components": [Interval(Integral, 0, None, closed="left"), None],
168
+ "tol": [Interval(Real, 0.0, None, closed="left")],
169
+ "copy": ["boolean"],
170
+ "max_iter": [Interval(Integral, 1, None, closed="left")],
171
+ "noise_variance_init": ["array-like", None],
172
+ "svd_method": [StrOptions({"randomized", "lapack"})],
173
+ "iterated_power": [Interval(Integral, 0, None, closed="left")],
174
+ "rotation": [StrOptions({"varimax", "quartimax"}), None],
175
+ "random_state": ["random_state"],
176
+ }
177
+
178
+ def __init__(
179
+ self,
180
+ n_components=None,
181
+ *,
182
+ tol=1e-2,
183
+ copy=True,
184
+ max_iter=1000,
185
+ noise_variance_init=None,
186
+ svd_method="randomized",
187
+ iterated_power=3,
188
+ rotation=None,
189
+ random_state=0,
190
+ ):
191
+ self.n_components = n_components
192
+ self.copy = copy
193
+ self.tol = tol
194
+ self.max_iter = max_iter
195
+ self.svd_method = svd_method
196
+
197
+ self.noise_variance_init = noise_variance_init
198
+ self.iterated_power = iterated_power
199
+ self.random_state = random_state
200
+ self.rotation = rotation
201
+
202
+ @_fit_context(prefer_skip_nested_validation=True)
203
+ def fit(self, X, y=None):
204
+ """Fit the FactorAnalysis model to X using SVD based approach.
205
+
206
+ Parameters
207
+ ----------
208
+ X : array-like of shape (n_samples, n_features)
209
+ Training data.
210
+
211
+ y : Ignored
212
+ Ignored parameter.
213
+
214
+ Returns
215
+ -------
216
+ self : object
217
+ FactorAnalysis class instance.
218
+ """
219
+ X = validate_data(
220
+ self, X, copy=self.copy, dtype=np.float64, force_writeable=True
221
+ )
222
+
223
+ n_samples, n_features = X.shape
224
+ n_components = self.n_components
225
+ if n_components is None:
226
+ n_components = n_features
227
+
228
+ self.mean_ = np.mean(X, axis=0)
229
+ X -= self.mean_
230
+
231
+ # some constant terms
232
+ nsqrt = sqrt(n_samples)
233
+ llconst = n_features * log(2.0 * np.pi) + n_components
234
+ var = np.var(X, axis=0)
235
+
236
+ if self.noise_variance_init is None:
237
+ psi = np.ones(n_features, dtype=X.dtype)
238
+ else:
239
+ if len(self.noise_variance_init) != n_features:
240
+ raise ValueError(
241
+ "noise_variance_init dimension does not "
242
+ "with number of features : %d != %d"
243
+ % (len(self.noise_variance_init), n_features)
244
+ )
245
+ psi = np.array(self.noise_variance_init)
246
+
247
+ loglike = []
248
+ old_ll = -np.inf
249
+ SMALL = 1e-12
250
+
251
+ # we'll modify svd outputs to return unexplained variance
252
+ # to allow for unified computation of loglikelihood
253
+ if self.svd_method == "lapack":
254
+
255
+ def my_svd(X):
256
+ _, s, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
257
+ return (
258
+ s[:n_components],
259
+ Vt[:n_components],
260
+ squared_norm(s[n_components:]),
261
+ )
262
+
263
+ else: # svd_method == "randomized"
264
+ random_state = check_random_state(self.random_state)
265
+
266
+ def my_svd(X):
267
+ _, s, Vt = randomized_svd(
268
+ X,
269
+ n_components,
270
+ random_state=random_state,
271
+ n_iter=self.iterated_power,
272
+ )
273
+ return s, Vt, squared_norm(X) - squared_norm(s)
274
+
275
+ for i in range(self.max_iter):
276
+ # SMALL helps numerics
277
+ sqrt_psi = np.sqrt(psi) + SMALL
278
+ s, Vt, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
279
+ s **= 2
280
+ # Use 'maximum' here to avoid sqrt problems.
281
+ W = np.sqrt(np.maximum(s - 1.0, 0.0))[:, np.newaxis] * Vt
282
+ del Vt
283
+ W *= sqrt_psi
284
+
285
+ # loglikelihood
286
+ ll = llconst + np.sum(np.log(s))
287
+ ll += unexp_var + np.sum(np.log(psi))
288
+ ll *= -n_samples / 2.0
289
+ loglike.append(ll)
290
+ if (ll - old_ll) < self.tol:
291
+ break
292
+ old_ll = ll
293
+
294
+ psi = np.maximum(var - np.sum(W**2, axis=0), SMALL)
295
+ else:
296
+ warnings.warn(
297
+ "FactorAnalysis did not converge."
298
+ + " You might want"
299
+ + " to increase the number of iterations.",
300
+ ConvergenceWarning,
301
+ )
302
+
303
+ self.components_ = W
304
+ if self.rotation is not None:
305
+ self.components_ = self._rotate(W)
306
+ self.noise_variance_ = psi
307
+ self.loglike_ = loglike
308
+ self.n_iter_ = i + 1
309
+ return self
310
+
311
+ def transform(self, X):
312
+ """Apply dimensionality reduction to X using the model.
313
+
314
+ Compute the expected mean of the latent variables.
315
+ See Barber, 21.2.33 (or Bishop, 12.66).
316
+
317
+ Parameters
318
+ ----------
319
+ X : array-like of shape (n_samples, n_features)
320
+ Training data.
321
+
322
+ Returns
323
+ -------
324
+ X_new : ndarray of shape (n_samples, n_components)
325
+ The latent variables of X.
326
+ """
327
+ check_is_fitted(self)
328
+
329
+ X = validate_data(self, X, reset=False)
330
+ Ih = np.eye(len(self.components_))
331
+
332
+ X_transformed = X - self.mean_
333
+
334
+ Wpsi = self.components_ / self.noise_variance_
335
+ cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
336
+ tmp = np.dot(X_transformed, Wpsi.T)
337
+ X_transformed = np.dot(tmp, cov_z)
338
+
339
+ return X_transformed
340
+
341
+ def get_covariance(self):
342
+ """Compute data covariance with the FactorAnalysis model.
343
+
344
+ ``cov = components_.T * components_ + diag(noise_variance)``
345
+
346
+ Returns
347
+ -------
348
+ cov : ndarray of shape (n_features, n_features)
349
+ Estimated covariance of data.
350
+ """
351
+ check_is_fitted(self)
352
+
353
+ cov = np.dot(self.components_.T, self.components_)
354
+ cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace
355
+ return cov
356
+
357
+ def get_precision(self):
358
+ """Compute data precision matrix with the FactorAnalysis model.
359
+
360
+ Returns
361
+ -------
362
+ precision : ndarray of shape (n_features, n_features)
363
+ Estimated precision of data.
364
+ """
365
+ check_is_fitted(self)
366
+
367
+ n_features = self.components_.shape[1]
368
+
369
+ # handle corner cases first
370
+ if self.n_components == 0:
371
+ return np.diag(1.0 / self.noise_variance_)
372
+ if self.n_components == n_features:
373
+ return linalg.inv(self.get_covariance())
374
+
375
+ # Get precision using matrix inversion lemma
376
+ components_ = self.components_
377
+ precision = np.dot(components_ / self.noise_variance_, components_.T)
378
+ precision.flat[:: len(precision) + 1] += 1.0
379
+ precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_))
380
+ precision /= self.noise_variance_[:, np.newaxis]
381
+ precision /= -self.noise_variance_[np.newaxis, :]
382
+ precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_
383
+ return precision
384
+
385
+ def score_samples(self, X):
386
+ """Compute the log-likelihood of each sample.
387
+
388
+ Parameters
389
+ ----------
390
+ X : ndarray of shape (n_samples, n_features)
391
+ The data.
392
+
393
+ Returns
394
+ -------
395
+ ll : ndarray of shape (n_samples,)
396
+ Log-likelihood of each sample under the current model.
397
+ """
398
+ check_is_fitted(self)
399
+ X = validate_data(self, X, reset=False)
400
+ Xr = X - self.mean_
401
+ precision = self.get_precision()
402
+ n_features = X.shape[1]
403
+ log_like = -0.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
404
+ log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
405
+ return log_like
406
+
407
+ def score(self, X, y=None):
408
+ """Compute the average log-likelihood of the samples.
409
+
410
+ Parameters
411
+ ----------
412
+ X : ndarray of shape (n_samples, n_features)
413
+ The data.
414
+
415
+ y : Ignored
416
+ Ignored parameter.
417
+
418
+ Returns
419
+ -------
420
+ ll : float
421
+ Average log-likelihood of the samples under the current model.
422
+ """
423
+ return np.mean(self.score_samples(X))
424
+
425
+ def _rotate(self, components, n_components=None, tol=1e-6):
426
+ "Rotate the factor analysis solution."
427
+ # note that tol is not exposed
428
+ return _ortho_rotation(components.T, method=self.rotation, tol=tol)[
429
+ : self.n_components
430
+ ]
431
+
432
+ @property
433
+ def _n_features_out(self):
434
+ """Number of transformed output features."""
435
+ return self.components_.shape[0]
436
+
437
+
438
+ def _ortho_rotation(components, method="varimax", tol=1e-6, max_iter=100):
439
+ """Return rotated components."""
440
+ nrow, ncol = components.shape
441
+ rotation_matrix = np.eye(ncol)
442
+ var = 0
443
+
444
+ for _ in range(max_iter):
445
+ comp_rot = np.dot(components, rotation_matrix)
446
+ if method == "varimax":
447
+ tmp = comp_rot * np.transpose((comp_rot**2).sum(axis=0) / nrow)
448
+ elif method == "quartimax":
449
+ tmp = 0
450
+ u, s, v = np.linalg.svd(np.dot(components.T, comp_rot**3 - tmp))
451
+ rotation_matrix = np.dot(u, v)
452
+ var_new = np.sum(s)
453
+ if var != 0 and var_new < var * (1 + tol):
454
+ break
455
+ var = var_new
456
+
457
+ return np.dot(components, rotation_matrix).T
evalkit_tf437/lib/python3.10/site-packages/sklearn/decomposition/_incremental_pca.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Incremental Principal Components Analysis."""
2
+
3
+ # Authors: The scikit-learn developers
4
+ # SPDX-License-Identifier: BSD-3-Clause
5
+
6
+ from numbers import Integral
7
+
8
+ import numpy as np
9
+ from scipy import linalg, sparse
10
+
11
+ from sklearn.utils import metadata_routing
12
+
13
+ from ..base import _fit_context
14
+ from ..utils import gen_batches
15
+ from ..utils._param_validation import Interval
16
+ from ..utils.extmath import _incremental_mean_and_var, svd_flip
17
+ from ..utils.validation import validate_data
18
+ from ._base import _BasePCA
19
+
20
+
21
+ class IncrementalPCA(_BasePCA):
22
+ """Incremental principal components analysis (IPCA).
23
+
24
+ Linear dimensionality reduction using Singular Value Decomposition of
25
+ the data, keeping only the most significant singular vectors to
26
+ project the data to a lower dimensional space. The input data is centered
27
+ but not scaled for each feature before applying the SVD.
28
+
29
+ Depending on the size of the input data, this algorithm can be much more
30
+ memory efficient than a PCA, and allows sparse input.
31
+
32
+ This algorithm has constant memory complexity, on the order
33
+ of ``batch_size * n_features``, enabling use of np.memmap files without
34
+ loading the entire file into memory. For sparse matrices, the input
35
+ is converted to dense in batches (in order to be able to subtract the
36
+ mean) which avoids storing the entire dense matrix at any one time.
37
+
38
+ The computational overhead of each SVD is
39
+ ``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
40
+ remain in memory at a time. There will be ``n_samples / batch_size`` SVD
41
+ computations to get the principal components, versus 1 large SVD of
42
+ complexity ``O(n_samples * n_features ** 2)`` for PCA.
43
+
44
+ For a usage example, see
45
+ :ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py`.
46
+
47
+ Read more in the :ref:`User Guide <IncrementalPCA>`.
48
+
49
+ .. versionadded:: 0.16
50
+
51
+ Parameters
52
+ ----------
53
+ n_components : int, default=None
54
+ Number of components to keep. If ``n_components`` is ``None``,
55
+ then ``n_components`` is set to ``min(n_samples, n_features)``.
56
+
57
+ whiten : bool, default=False
58
+ When True (False by default) the ``components_`` vectors are divided
59
+ by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
60
+ with unit component-wise variances.
61
+
62
+ Whitening will remove some information from the transformed signal
63
+ (the relative variance scales of the components) but can sometimes
64
+ improve the predictive accuracy of the downstream estimators by
65
+ making data respect some hard-wired assumptions.
66
+
67
+ copy : bool, default=True
68
+ If False, X will be overwritten. ``copy=False`` can be used to
69
+ save memory but is unsafe for general use.
70
+
71
+ batch_size : int, default=None
72
+ The number of samples to use for each batch. Only used when calling
73
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
74
+ is inferred from the data and set to ``5 * n_features``, to provide a
75
+ balance between approximation accuracy and memory consumption.
76
+
77
+ Attributes
78
+ ----------
79
+ components_ : ndarray of shape (n_components, n_features)
80
+ Principal axes in feature space, representing the directions of
81
+ maximum variance in the data. Equivalently, the right singular
82
+ vectors of the centered input data, parallel to its eigenvectors.
83
+ The components are sorted by decreasing ``explained_variance_``.
84
+
85
+ explained_variance_ : ndarray of shape (n_components,)
86
+ Variance explained by each of the selected components.
87
+
88
+ explained_variance_ratio_ : ndarray of shape (n_components,)
89
+ Percentage of variance explained by each of the selected components.
90
+ If all components are stored, the sum of explained variances is equal
91
+ to 1.0.
92
+
93
+ singular_values_ : ndarray of shape (n_components,)
94
+ The singular values corresponding to each of the selected components.
95
+ The singular values are equal to the 2-norms of the ``n_components``
96
+ variables in the lower-dimensional space.
97
+
98
+ mean_ : ndarray of shape (n_features,)
99
+ Per-feature empirical mean, aggregate over calls to ``partial_fit``.
100
+
101
+ var_ : ndarray of shape (n_features,)
102
+ Per-feature empirical variance, aggregate over calls to
103
+ ``partial_fit``.
104
+
105
+ noise_variance_ : float
106
+ The estimated noise covariance following the Probabilistic PCA model
107
+ from Tipping and Bishop 1999. See "Pattern Recognition and
108
+ Machine Learning" by C. Bishop, 12.2.1 p. 574 or
109
+ http://www.miketipping.com/papers/met-mppca.pdf.
110
+
111
+ n_components_ : int
112
+ The estimated number of components. Relevant when
113
+ ``n_components=None``.
114
+
115
+ n_samples_seen_ : int
116
+ The number of samples processed by the estimator. Will be reset on
117
+ new calls to fit, but increments across ``partial_fit`` calls.
118
+
119
+ batch_size_ : int
120
+ Inferred batch size from ``batch_size``.
121
+
122
+ n_features_in_ : int
123
+ Number of features seen during :term:`fit`.
124
+
125
+ .. versionadded:: 0.24
126
+
127
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
128
+ Names of features seen during :term:`fit`. Defined only when `X`
129
+ has feature names that are all strings.
130
+
131
+ .. versionadded:: 1.0
132
+
133
+ See Also
134
+ --------
135
+ PCA : Principal component analysis (PCA).
136
+ KernelPCA : Kernel Principal component analysis (KPCA).
137
+ SparsePCA : Sparse Principal Components Analysis (SparsePCA).
138
+ TruncatedSVD : Dimensionality reduction using truncated SVD.
139
+
140
+ Notes
141
+ -----
142
+ Implements the incremental PCA model from:
143
+ *D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
144
+ Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
145
+ pp. 125-141, May 2008.*
146
+ See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
147
+
148
+ This model is an extension of the Sequential Karhunen-Loeve Transform from:
149
+ :doi:`A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
150
+ its Application to Images, IEEE Transactions on Image Processing, Volume 9,
151
+ Number 8, pp. 1371-1374, August 2000. <10.1109/83.855432>`
152
+
153
+ We have specifically abstained from an optimization used by authors of both
154
+ papers, a QR decomposition used in specific situations to reduce the
155
+ algorithmic complexity of the SVD. The source for this technique is
156
+ *Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
157
+ section 5.4.4, pp 252-253.*. This technique has been omitted because it is
158
+ advantageous only when decomposing a matrix with ``n_samples`` (rows)
159
+ >= 5/3 * ``n_features`` (columns), and hurts the readability of the
160
+ implemented algorithm. This would be a good opportunity for future
161
+ optimization, if it is deemed necessary.
162
+
163
+ References
164
+ ----------
165
+ D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
166
+ Tracking, International Journal of Computer Vision, Volume 77,
167
+ Issue 1-3, pp. 125-141, May 2008.
168
+
169
+ G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
170
+ Section 5.4.4, pp. 252-253.
171
+
172
+ Examples
173
+ --------
174
+ >>> from sklearn.datasets import load_digits
175
+ >>> from sklearn.decomposition import IncrementalPCA
176
+ >>> from scipy import sparse
177
+ >>> X, _ = load_digits(return_X_y=True)
178
+ >>> transformer = IncrementalPCA(n_components=7, batch_size=200)
179
+ >>> # either partially fit on smaller batches of data
180
+ >>> transformer.partial_fit(X[:100, :])
181
+ IncrementalPCA(batch_size=200, n_components=7)
182
+ >>> # or let the fit function itself divide the data into batches
183
+ >>> X_sparse = sparse.csr_matrix(X)
184
+ >>> X_transformed = transformer.fit_transform(X_sparse)
185
+ >>> X_transformed.shape
186
+ (1797, 7)
187
+ """
188
+
189
+ __metadata_request__partial_fit = {"check_input": metadata_routing.UNUSED}
190
+
191
+ _parameter_constraints: dict = {
192
+ "n_components": [Interval(Integral, 1, None, closed="left"), None],
193
+ "whiten": ["boolean"],
194
+ "copy": ["boolean"],
195
+ "batch_size": [Interval(Integral, 1, None, closed="left"), None],
196
+ }
197
+
198
+ def __init__(self, n_components=None, *, whiten=False, copy=True, batch_size=None):
199
+ self.n_components = n_components
200
+ self.whiten = whiten
201
+ self.copy = copy
202
+ self.batch_size = batch_size
203
+
204
+ @_fit_context(prefer_skip_nested_validation=True)
205
+ def fit(self, X, y=None):
206
+ """Fit the model with X, using minibatches of size batch_size.
207
+
208
+ Parameters
209
+ ----------
210
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
211
+ Training data, where `n_samples` is the number of samples and
212
+ `n_features` is the number of features.
213
+
214
+ y : Ignored
215
+ Not used, present for API consistency by convention.
216
+
217
+ Returns
218
+ -------
219
+ self : object
220
+ Returns the instance itself.
221
+ """
222
+ self.components_ = None
223
+ self.n_samples_seen_ = 0
224
+ self.mean_ = 0.0
225
+ self.var_ = 0.0
226
+ self.singular_values_ = None
227
+ self.explained_variance_ = None
228
+ self.explained_variance_ratio_ = None
229
+ self.noise_variance_ = None
230
+
231
+ X = validate_data(
232
+ self,
233
+ X,
234
+ accept_sparse=["csr", "csc", "lil"],
235
+ copy=self.copy,
236
+ dtype=[np.float64, np.float32],
237
+ force_writeable=True,
238
+ )
239
+ n_samples, n_features = X.shape
240
+
241
+ if self.batch_size is None:
242
+ self.batch_size_ = 5 * n_features
243
+ else:
244
+ self.batch_size_ = self.batch_size
245
+
246
+ for batch in gen_batches(
247
+ n_samples, self.batch_size_, min_batch_size=self.n_components or 0
248
+ ):
249
+ X_batch = X[batch]
250
+ if sparse.issparse(X_batch):
251
+ X_batch = X_batch.toarray()
252
+ self.partial_fit(X_batch, check_input=False)
253
+
254
+ return self
255
+
256
+ @_fit_context(prefer_skip_nested_validation=True)
257
+ def partial_fit(self, X, y=None, check_input=True):
258
+ """Incremental fit with X. All of X is processed as a single batch.
259
+
260
+ Parameters
261
+ ----------
262
+ X : array-like of shape (n_samples, n_features)
263
+ Training data, where `n_samples` is the number of samples and
264
+ `n_features` is the number of features.
265
+
266
+ y : Ignored
267
+ Not used, present for API consistency by convention.
268
+
269
+ check_input : bool, default=True
270
+ Run check_array on X.
271
+
272
+ Returns
273
+ -------
274
+ self : object
275
+ Returns the instance itself.
276
+ """
277
+ first_pass = not hasattr(self, "components_")
278
+
279
+ if check_input:
280
+ if sparse.issparse(X):
281
+ raise TypeError(
282
+ "IncrementalPCA.partial_fit does not support "
283
+ "sparse input. Either convert data to dense "
284
+ "or use IncrementalPCA.fit to do so in batches."
285
+ )
286
+ X = validate_data(
287
+ self,
288
+ X,
289
+ copy=self.copy,
290
+ dtype=[np.float64, np.float32],
291
+ force_writeable=True,
292
+ reset=first_pass,
293
+ )
294
+ n_samples, n_features = X.shape
295
+ if first_pass:
296
+ self.components_ = None
297
+
298
+ if self.n_components is None:
299
+ if self.components_ is None:
300
+ self.n_components_ = min(n_samples, n_features)
301
+ else:
302
+ self.n_components_ = self.components_.shape[0]
303
+ elif not self.n_components <= n_features:
304
+ raise ValueError(
305
+ "n_components=%r invalid for n_features=%d, need "
306
+ "more rows than columns for IncrementalPCA "
307
+ "processing" % (self.n_components, n_features)
308
+ )
309
+ elif self.n_components > n_samples and first_pass:
310
+ raise ValueError(
311
+ f"n_components={self.n_components} must be less or equal to "
312
+ f"the batch number of samples {n_samples} for the first "
313
+ "partial_fit call."
314
+ )
315
+ else:
316
+ self.n_components_ = self.n_components
317
+
318
+ if (self.components_ is not None) and (
319
+ self.components_.shape[0] != self.n_components_
320
+ ):
321
+ raise ValueError(
322
+ "Number of input features has changed from %i "
323
+ "to %i between calls to partial_fit! Try "
324
+ "setting n_components to a fixed value."
325
+ % (self.components_.shape[0], self.n_components_)
326
+ )
327
+
328
+ # This is the first partial_fit
329
+ if not hasattr(self, "n_samples_seen_"):
330
+ self.n_samples_seen_ = 0
331
+ self.mean_ = 0.0
332
+ self.var_ = 0.0
333
+
334
+ # Update stats - they are 0 if this is the first step
335
+ col_mean, col_var, n_total_samples = _incremental_mean_and_var(
336
+ X,
337
+ last_mean=self.mean_,
338
+ last_variance=self.var_,
339
+ last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]),
340
+ )
341
+ n_total_samples = n_total_samples[0]
342
+
343
+ # Whitening
344
+ if self.n_samples_seen_ == 0:
345
+ # If it is the first step, simply whiten X
346
+ X -= col_mean
347
+ else:
348
+ col_batch_mean = np.mean(X, axis=0)
349
+ X -= col_batch_mean
350
+ # Build matrix of combined previous basis and new data
351
+ mean_correction = np.sqrt(
352
+ (self.n_samples_seen_ / n_total_samples) * n_samples
353
+ ) * (self.mean_ - col_batch_mean)
354
+ X = np.vstack(
355
+ (
356
+ self.singular_values_.reshape((-1, 1)) * self.components_,
357
+ X,
358
+ mean_correction,
359
+ )
360
+ )
361
+
362
+ U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
363
+ U, Vt = svd_flip(U, Vt, u_based_decision=False)
364
+ explained_variance = S**2 / (n_total_samples - 1)
365
+ explained_variance_ratio = S**2 / np.sum(col_var * n_total_samples)
366
+
367
+ self.n_samples_seen_ = n_total_samples
368
+ self.components_ = Vt[: self.n_components_]
369
+ self.singular_values_ = S[: self.n_components_]
370
+ self.mean_ = col_mean
371
+ self.var_ = col_var
372
+ self.explained_variance_ = explained_variance[: self.n_components_]
373
+ self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components_]
374
+ # we already checked `self.n_components <= n_samples` above
375
+ if self.n_components_ not in (n_samples, n_features):
376
+ self.noise_variance_ = explained_variance[self.n_components_ :].mean()
377
+ else:
378
+ self.noise_variance_ = 0.0
379
+ return self
380
+
381
+ def transform(self, X):
382
+ """Apply dimensionality reduction to X.
383
+
384
+ X is projected on the first principal components previously extracted
385
+ from a training set, using minibatches of size batch_size if X is
386
+ sparse.
387
+
388
+ Parameters
389
+ ----------
390
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
391
+ New data, where `n_samples` is the number of samples
392
+ and `n_features` is the number of features.
393
+
394
+ Returns
395
+ -------
396
+ X_new : ndarray of shape (n_samples, n_components)
397
+ Projection of X in the first principal components.
398
+
399
+ Examples
400
+ --------
401
+
402
+ >>> import numpy as np
403
+ >>> from sklearn.decomposition import IncrementalPCA
404
+ >>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
405
+ ... [1, 1], [2, 1], [3, 2]])
406
+ >>> ipca = IncrementalPCA(n_components=2, batch_size=3)
407
+ >>> ipca.fit(X)
408
+ IncrementalPCA(batch_size=3, n_components=2)
409
+ >>> ipca.transform(X) # doctest: +SKIP
410
+ """
411
+ if sparse.issparse(X):
412
+ n_samples = X.shape[0]
413
+ output = []
414
+ for batch in gen_batches(
415
+ n_samples, self.batch_size_, min_batch_size=self.n_components or 0
416
+ ):
417
+ output.append(super().transform(X[batch].toarray()))
418
+ return np.vstack(output)
419
+ else:
420
+ return super().transform(X)
421
+
422
+ def __sklearn_tags__(self):
423
+ tags = super().__sklearn_tags__()
424
+ # Beware that fit accepts sparse data but partial_fit doesn't
425
+ tags.input_tags.sparse = True
426
+ return tags