Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +14 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/action_dist.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/catalog.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/distributions.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/modelv2.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/preprocessors.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/repeated_values.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/utils.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__init__.py +11 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/attention_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/complex_input_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/fcnet.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/misc.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/noop.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/recurrent_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_action_dist.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_distributions.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_modelv2.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/visionnet.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/attention_net.py +573 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/complex_input_net.py +214 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/fcnet.py +148 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/gru_gate.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/multi_head_attention.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/relative_multi_head_attention.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/skip_connection.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/relative_multi_head_attention.py +147 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/recurrent_net.py +292 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/tf_distributions.py +552 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/tf_modelv2.py +142 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/attention_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/complex_input_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/fcnet.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/mingpt.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/misc.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/noop.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/recurrent_net.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_action_dist.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_distributions.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_modelv2.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/visionnet.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/gru_gate.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/multi_head_attention.cpython-310.pyc +0 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/utils/__init__.py +141 -0
- infer_4_37_2/lib/python3.10/site-packages/ray/rllib/utils/from_config.py +325 -0
.gitattributes
CHANGED
|
@@ -1513,3 +1513,17 @@ infer_4_33_0/lib/ossl-modules/legacy.so filter=lfs diff=lfs merge=lfs -text
|
|
| 1513 |
emu3/lib/python3.10/site-packages/numpy.libs/libscipy_openblas64_-ff651d7f.so filter=lfs diff=lfs merge=lfs -text
|
| 1514 |
infer_4_37_2/lib/python3.10/site-packages/xxhash/_xxhash.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1515 |
infer_4_37_2/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_api.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1513 |
emu3/lib/python3.10/site-packages/numpy.libs/libscipy_openblas64_-ff651d7f.so filter=lfs diff=lfs merge=lfs -text
|
| 1514 |
infer_4_37_2/lib/python3.10/site-packages/xxhash/_xxhash.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1515 |
infer_4_37_2/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_api.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1516 |
+
janus/lib/liblzma.so.5 filter=lfs diff=lfs merge=lfs -text
|
| 1517 |
+
janus/lib/libquadmath.so filter=lfs diff=lfs merge=lfs -text
|
| 1518 |
+
janus/lib/libbz2.so filter=lfs diff=lfs merge=lfs -text
|
| 1519 |
+
janus/lib/libncurses++.a filter=lfs diff=lfs merge=lfs -text
|
| 1520 |
+
janus/lib/libncurses.so filter=lfs diff=lfs merge=lfs -text
|
| 1521 |
+
janus/lib/libatomic.so.1.2.0 filter=lfs diff=lfs merge=lfs -text
|
| 1522 |
+
janus/lib/libtsan.so.0 filter=lfs diff=lfs merge=lfs -text
|
| 1523 |
+
janus/lib/libasan.so.6 filter=lfs diff=lfs merge=lfs -text
|
| 1524 |
+
janus/lib/liblsan.so.0 filter=lfs diff=lfs merge=lfs -text
|
| 1525 |
+
janus/lib/libsqlite3.so.0.8.6 filter=lfs diff=lfs merge=lfs -text
|
| 1526 |
+
janus/lib/liblsan.so filter=lfs diff=lfs merge=lfs -text
|
| 1527 |
+
janus/lib/libncursesw.so.6 filter=lfs diff=lfs merge=lfs -text
|
| 1528 |
+
janus/lib/libtsan.so.0.0.0 filter=lfs diff=lfs merge=lfs -text
|
| 1529 |
+
janus/lib/libtsan.so filter=lfs diff=lfs merge=lfs -text
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (500 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/action_dist.cpython-310.pyc
ADDED
|
Binary file (4.33 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/catalog.cpython-310.pyc
ADDED
|
Binary file (21.1 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/distributions.cpython-310.pyc
ADDED
|
Binary file (8.97 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/modelv2.cpython-310.pyc
ADDED
|
Binary file (14.9 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/preprocessors.cpython-310.pyc
ADDED
|
Binary file (14.4 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/repeated_values.cpython-310.pyc
ADDED
|
Binary file (7.16 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (6.52 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
| 2 |
+
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
|
| 3 |
+
from ray.rllib.models.tf.recurrent_net import RecurrentNetwork
|
| 4 |
+
from ray.rllib.models.tf.visionnet import VisionNetwork
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"FullyConnectedNetwork",
|
| 8 |
+
"RecurrentNetwork",
|
| 9 |
+
"TFModelV2",
|
| 10 |
+
"VisionNetwork",
|
| 11 |
+
]
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (494 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/attention_net.cpython-310.pyc
ADDED
|
Binary file (15.8 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/complex_input_net.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/fcnet.cpython-310.pyc
ADDED
|
Binary file (3.5 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/misc.cpython-310.pyc
ADDED
|
Binary file (2.55 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/noop.cpython-310.pyc
ADDED
|
Binary file (964 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/recurrent_net.cpython-310.pyc
ADDED
|
Binary file (8.73 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_action_dist.cpython-310.pyc
ADDED
|
Binary file (28.2 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_distributions.cpython-310.pyc
ADDED
|
Binary file (20.9 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/tf_modelv2.cpython-310.pyc
ADDED
|
Binary file (5.06 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/__pycache__/visionnet.cpython-310.pyc
ADDED
|
Binary file (5.03 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/attention_net.py
ADDED
|
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] - Attention Is All You Need - Vaswani, Jones, Shazeer, Parmar,
|
| 3 |
+
Uszkoreit, Gomez, Kaiser - Google Brain/Research, U Toronto - 2017.
|
| 4 |
+
https://arxiv.org/pdf/1706.03762.pdf
|
| 5 |
+
[2] - Stabilizing Transformers for Reinforcement Learning - E. Parisotto
|
| 6 |
+
et al. - DeepMind - 2019. https://arxiv.org/pdf/1910.06764.pdf
|
| 7 |
+
[3] - Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context.
|
| 8 |
+
Z. Dai, Z. Yang, et al. - Carnegie Mellon U - 2019.
|
| 9 |
+
https://www.aclweb.org/anthology/P19-1285.pdf
|
| 10 |
+
"""
|
| 11 |
+
import gymnasium as gym
|
| 12 |
+
from gymnasium.spaces import Box, Discrete, MultiDiscrete
|
| 13 |
+
import numpy as np
|
| 14 |
+
import tree # pip install dm_tree
|
| 15 |
+
from typing import Any, Dict, Optional, Union
|
| 16 |
+
|
| 17 |
+
from ray.rllib.models.modelv2 import ModelV2
|
| 18 |
+
from ray.rllib.models.tf.layers import (
|
| 19 |
+
GRUGate,
|
| 20 |
+
RelativeMultiHeadAttention,
|
| 21 |
+
SkipConnection,
|
| 22 |
+
)
|
| 23 |
+
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
| 24 |
+
from ray.rllib.models.tf.recurrent_net import RecurrentNetwork
|
| 25 |
+
from ray.rllib.policy.sample_batch import SampleBatch
|
| 26 |
+
from ray.rllib.policy.view_requirement import ViewRequirement
|
| 27 |
+
from ray.rllib.utils.annotations import OldAPIStack, override
|
| 28 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 29 |
+
from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space
|
| 30 |
+
from ray.rllib.utils.tf_utils import flatten_inputs_to_1d_tensor, one_hot
|
| 31 |
+
from ray.rllib.utils.typing import ModelConfigDict, TensorType, List
|
| 32 |
+
from ray.rllib.utils.deprecation import deprecation_warning
|
| 33 |
+
from ray.util import log_once
|
| 34 |
+
|
| 35 |
+
tf1, tf, tfv = try_import_tf()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@OldAPIStack
|
| 39 |
+
class PositionwiseFeedforward(tf.keras.layers.Layer if tf else object):
|
| 40 |
+
"""A 2x linear layer with ReLU activation in between described in [1].
|
| 41 |
+
|
| 42 |
+
Each timestep coming from the attention head will be passed through this
|
| 43 |
+
layer separately.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
out_dim: int,
|
| 49 |
+
hidden_dim: int,
|
| 50 |
+
output_activation: Optional[Any] = None,
|
| 51 |
+
**kwargs,
|
| 52 |
+
):
|
| 53 |
+
super().__init__(**kwargs)
|
| 54 |
+
|
| 55 |
+
self._hidden_layer = tf.keras.layers.Dense(
|
| 56 |
+
hidden_dim,
|
| 57 |
+
activation=tf.nn.relu,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self._output_layer = tf.keras.layers.Dense(
|
| 61 |
+
out_dim, activation=output_activation
|
| 62 |
+
)
|
| 63 |
+
if log_once("positionwise_feedforward_tf"):
|
| 64 |
+
deprecation_warning(
|
| 65 |
+
old="rllib.models.tf.attention_net.PositionwiseFeedforward",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def call(self, inputs: TensorType, **kwargs) -> TensorType:
|
| 69 |
+
del kwargs
|
| 70 |
+
output = self._hidden_layer(inputs)
|
| 71 |
+
return self._output_layer(output)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@OldAPIStack
|
| 75 |
+
class TrXLNet(RecurrentNetwork):
|
| 76 |
+
"""A TrXL net Model described in [1]."""
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
observation_space: gym.spaces.Space,
|
| 81 |
+
action_space: gym.spaces.Space,
|
| 82 |
+
num_outputs: int,
|
| 83 |
+
model_config: ModelConfigDict,
|
| 84 |
+
name: str,
|
| 85 |
+
num_transformer_units: int,
|
| 86 |
+
attention_dim: int,
|
| 87 |
+
num_heads: int,
|
| 88 |
+
head_dim: int,
|
| 89 |
+
position_wise_mlp_dim: int,
|
| 90 |
+
):
|
| 91 |
+
"""Initializes a TrXLNet object.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
num_transformer_units: The number of Transformer repeats to
|
| 95 |
+
use (denoted L in [2]).
|
| 96 |
+
attention_dim: The input and output dimensions of one
|
| 97 |
+
Transformer unit.
|
| 98 |
+
num_heads: The number of attention heads to use in parallel.
|
| 99 |
+
Denoted as `H` in [3].
|
| 100 |
+
head_dim: The dimension of a single(!) attention head within
|
| 101 |
+
a multi-head attention unit. Denoted as `d` in [3].
|
| 102 |
+
position_wise_mlp_dim: The dimension of the hidden layer
|
| 103 |
+
within the position-wise MLP (after the multi-head attention
|
| 104 |
+
block within one Transformer unit). This is the size of the
|
| 105 |
+
first of the two layers within the PositionwiseFeedforward. The
|
| 106 |
+
second layer always has size=`attention_dim`.
|
| 107 |
+
"""
|
| 108 |
+
if log_once("trxl_net_tf"):
|
| 109 |
+
deprecation_warning(
|
| 110 |
+
old="rllib.models.tf.attention_net.TrXLNet",
|
| 111 |
+
)
|
| 112 |
+
super().__init__(
|
| 113 |
+
observation_space, action_space, num_outputs, model_config, name
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.num_transformer_units = num_transformer_units
|
| 117 |
+
self.attention_dim = attention_dim
|
| 118 |
+
self.num_heads = num_heads
|
| 119 |
+
self.head_dim = head_dim
|
| 120 |
+
self.max_seq_len = model_config["max_seq_len"]
|
| 121 |
+
self.obs_dim = observation_space.shape[0]
|
| 122 |
+
|
| 123 |
+
inputs = tf.keras.layers.Input(
|
| 124 |
+
shape=(self.max_seq_len, self.obs_dim), name="inputs"
|
| 125 |
+
)
|
| 126 |
+
E_out = tf.keras.layers.Dense(attention_dim)(inputs)
|
| 127 |
+
|
| 128 |
+
for _ in range(self.num_transformer_units):
|
| 129 |
+
MHA_out = SkipConnection(
|
| 130 |
+
RelativeMultiHeadAttention(
|
| 131 |
+
out_dim=attention_dim,
|
| 132 |
+
num_heads=num_heads,
|
| 133 |
+
head_dim=head_dim,
|
| 134 |
+
input_layernorm=False,
|
| 135 |
+
output_activation=None,
|
| 136 |
+
),
|
| 137 |
+
fan_in_layer=None,
|
| 138 |
+
)(E_out)
|
| 139 |
+
E_out = SkipConnection(
|
| 140 |
+
PositionwiseFeedforward(attention_dim, position_wise_mlp_dim)
|
| 141 |
+
)(MHA_out)
|
| 142 |
+
E_out = tf.keras.layers.LayerNormalization(axis=-1)(E_out)
|
| 143 |
+
|
| 144 |
+
# Postprocess TrXL output with another hidden layer and compute values.
|
| 145 |
+
logits = tf.keras.layers.Dense(
|
| 146 |
+
self.num_outputs, activation=tf.keras.activations.linear, name="logits"
|
| 147 |
+
)(E_out)
|
| 148 |
+
|
| 149 |
+
self.base_model = tf.keras.models.Model([inputs], [logits])
|
| 150 |
+
|
| 151 |
+
@override(RecurrentNetwork)
|
| 152 |
+
def forward_rnn(
|
| 153 |
+
self, inputs: TensorType, state: List[TensorType], seq_lens: TensorType
|
| 154 |
+
) -> (TensorType, List[TensorType]):
|
| 155 |
+
# To make Attention work with current RLlib's ModelV2 API:
|
| 156 |
+
# We assume `state` is the history of L recent observations (all
|
| 157 |
+
# concatenated into one tensor) and append the current inputs to the
|
| 158 |
+
# end and only keep the most recent (up to `max_seq_len`). This allows
|
| 159 |
+
# us to deal with timestep-wise inference and full sequence training
|
| 160 |
+
# within the same logic.
|
| 161 |
+
observations = state[0]
|
| 162 |
+
observations = tf.concat((observations, inputs), axis=1)[:, -self.max_seq_len :]
|
| 163 |
+
logits = self.base_model([observations])
|
| 164 |
+
T = tf.shape(inputs)[1] # Length of input segment (time).
|
| 165 |
+
logits = logits[:, -T:]
|
| 166 |
+
|
| 167 |
+
return logits, [observations]
|
| 168 |
+
|
| 169 |
+
@override(RecurrentNetwork)
|
| 170 |
+
def get_initial_state(self) -> List[np.ndarray]:
|
| 171 |
+
# State is the T last observations concat'd together into one Tensor.
|
| 172 |
+
# Plus all Transformer blocks' E(l) outputs concat'd together (up to
|
| 173 |
+
# tau timesteps).
|
| 174 |
+
return [np.zeros((self.max_seq_len, self.obs_dim), np.float32)]
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class GTrXLNet(RecurrentNetwork):
|
| 178 |
+
"""A GTrXL net Model described in [2].
|
| 179 |
+
|
| 180 |
+
This is still in an experimental phase.
|
| 181 |
+
Can be used as a drop-in replacement for LSTMs in PPO and IMPALA.
|
| 182 |
+
|
| 183 |
+
To use this network as a replacement for an RNN, configure your Algorithm
|
| 184 |
+
as follows:
|
| 185 |
+
|
| 186 |
+
Examples:
|
| 187 |
+
>> config["model"]["custom_model"] = GTrXLNet
|
| 188 |
+
>> config["model"]["max_seq_len"] = 10
|
| 189 |
+
>> config["model"]["custom_model_config"] = {
|
| 190 |
+
>> num_transformer_units=1,
|
| 191 |
+
>> attention_dim=32,
|
| 192 |
+
>> num_heads=2,
|
| 193 |
+
>> memory_inference=100,
|
| 194 |
+
>> memory_training=50,
|
| 195 |
+
>> etc..
|
| 196 |
+
>> }
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(
|
| 200 |
+
self,
|
| 201 |
+
observation_space: gym.spaces.Space,
|
| 202 |
+
action_space: gym.spaces.Space,
|
| 203 |
+
num_outputs: Optional[int],
|
| 204 |
+
model_config: ModelConfigDict,
|
| 205 |
+
name: str,
|
| 206 |
+
*,
|
| 207 |
+
num_transformer_units: int = 1,
|
| 208 |
+
attention_dim: int = 64,
|
| 209 |
+
num_heads: int = 2,
|
| 210 |
+
memory_inference: int = 50,
|
| 211 |
+
memory_training: int = 50,
|
| 212 |
+
head_dim: int = 32,
|
| 213 |
+
position_wise_mlp_dim: int = 32,
|
| 214 |
+
init_gru_gate_bias: float = 2.0,
|
| 215 |
+
):
|
| 216 |
+
"""Initializes a GTrXLNet instance.
|
| 217 |
+
|
| 218 |
+
Args:
|
| 219 |
+
num_transformer_units: The number of Transformer repeats to
|
| 220 |
+
use (denoted L in [2]).
|
| 221 |
+
attention_dim: The input and output dimensions of one
|
| 222 |
+
Transformer unit.
|
| 223 |
+
num_heads: The number of attention heads to use in parallel.
|
| 224 |
+
Denoted as `H` in [3].
|
| 225 |
+
memory_inference: The number of timesteps to concat (time
|
| 226 |
+
axis) and feed into the next transformer unit as inference
|
| 227 |
+
input. The first transformer unit will receive this number of
|
| 228 |
+
past observations (plus the current one), instead.
|
| 229 |
+
memory_training: The number of timesteps to concat (time
|
| 230 |
+
axis) and feed into the next transformer unit as training
|
| 231 |
+
input (plus the actual input sequence of len=max_seq_len).
|
| 232 |
+
The first transformer unit will receive this number of
|
| 233 |
+
past observations (plus the input sequence), instead.
|
| 234 |
+
head_dim: The dimension of a single(!) attention head within
|
| 235 |
+
a multi-head attention unit. Denoted as `d` in [3].
|
| 236 |
+
position_wise_mlp_dim: The dimension of the hidden layer
|
| 237 |
+
within the position-wise MLP (after the multi-head attention
|
| 238 |
+
block within one Transformer unit). This is the size of the
|
| 239 |
+
first of the two layers within the PositionwiseFeedforward. The
|
| 240 |
+
second layer always has size=`attention_dim`.
|
| 241 |
+
init_gru_gate_bias: Initial bias values for the GRU gates
|
| 242 |
+
(two GRUs per Transformer unit, one after the MHA, one after
|
| 243 |
+
the position-wise MLP).
|
| 244 |
+
"""
|
| 245 |
+
super().__init__(
|
| 246 |
+
observation_space, action_space, num_outputs, model_config, name
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.num_transformer_units = num_transformer_units
|
| 250 |
+
self.attention_dim = attention_dim
|
| 251 |
+
self.num_heads = num_heads
|
| 252 |
+
self.memory_inference = memory_inference
|
| 253 |
+
self.memory_training = memory_training
|
| 254 |
+
self.head_dim = head_dim
|
| 255 |
+
self.max_seq_len = model_config["max_seq_len"]
|
| 256 |
+
self.obs_dim = observation_space.shape[0]
|
| 257 |
+
|
| 258 |
+
# Raw observation input (plus (None) time axis).
|
| 259 |
+
input_layer = tf.keras.layers.Input(shape=(None, self.obs_dim), name="inputs")
|
| 260 |
+
memory_ins = [
|
| 261 |
+
tf.keras.layers.Input(
|
| 262 |
+
shape=(None, self.attention_dim),
|
| 263 |
+
dtype=tf.float32,
|
| 264 |
+
name="memory_in_{}".format(i),
|
| 265 |
+
)
|
| 266 |
+
for i in range(self.num_transformer_units)
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
# Map observation dim to input/output transformer (attention) dim.
|
| 270 |
+
E_out = tf.keras.layers.Dense(self.attention_dim)(input_layer)
|
| 271 |
+
# Output, collected and concat'd to build the internal, tau-len
|
| 272 |
+
# Memory units used for additional contextual information.
|
| 273 |
+
memory_outs = [E_out]
|
| 274 |
+
|
| 275 |
+
# 2) Create L Transformer blocks according to [2].
|
| 276 |
+
for i in range(self.num_transformer_units):
|
| 277 |
+
# RelativeMultiHeadAttention part.
|
| 278 |
+
MHA_out = SkipConnection(
|
| 279 |
+
RelativeMultiHeadAttention(
|
| 280 |
+
out_dim=self.attention_dim,
|
| 281 |
+
num_heads=num_heads,
|
| 282 |
+
head_dim=head_dim,
|
| 283 |
+
input_layernorm=True,
|
| 284 |
+
output_activation=tf.nn.relu,
|
| 285 |
+
),
|
| 286 |
+
fan_in_layer=GRUGate(init_gru_gate_bias),
|
| 287 |
+
name="mha_{}".format(i + 1),
|
| 288 |
+
)(E_out, memory=memory_ins[i])
|
| 289 |
+
# Position-wise MLP part.
|
| 290 |
+
E_out = SkipConnection(
|
| 291 |
+
tf.keras.Sequential(
|
| 292 |
+
(
|
| 293 |
+
tf.keras.layers.LayerNormalization(axis=-1),
|
| 294 |
+
PositionwiseFeedforward(
|
| 295 |
+
out_dim=self.attention_dim,
|
| 296 |
+
hidden_dim=position_wise_mlp_dim,
|
| 297 |
+
output_activation=tf.nn.relu,
|
| 298 |
+
),
|
| 299 |
+
)
|
| 300 |
+
),
|
| 301 |
+
fan_in_layer=GRUGate(init_gru_gate_bias),
|
| 302 |
+
name="pos_wise_mlp_{}".format(i + 1),
|
| 303 |
+
)(MHA_out)
|
| 304 |
+
# Output of position-wise MLP == E(l-1), which is concat'd
|
| 305 |
+
# to the current Mem block (M(l-1)) to yield E~(l-1), which is then
|
| 306 |
+
# used by the next transformer block.
|
| 307 |
+
memory_outs.append(E_out)
|
| 308 |
+
|
| 309 |
+
self._logits = None
|
| 310 |
+
self._value_out = None
|
| 311 |
+
|
| 312 |
+
# Postprocess TrXL output with another hidden layer and compute values.
|
| 313 |
+
if num_outputs is not None:
|
| 314 |
+
self._logits = tf.keras.layers.Dense(
|
| 315 |
+
self.num_outputs, activation=None, name="logits"
|
| 316 |
+
)(E_out)
|
| 317 |
+
values_out = tf.keras.layers.Dense(1, activation=None, name="values")(E_out)
|
| 318 |
+
outs = [self._logits, values_out]
|
| 319 |
+
else:
|
| 320 |
+
outs = [E_out]
|
| 321 |
+
self.num_outputs = self.attention_dim
|
| 322 |
+
|
| 323 |
+
self.trxl_model = tf.keras.Model(
|
| 324 |
+
inputs=[input_layer] + memory_ins, outputs=outs + memory_outs[:-1]
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
self.trxl_model.summary()
|
| 328 |
+
|
| 329 |
+
# __sphinx_doc_begin__
|
| 330 |
+
# Setup trajectory views (`memory-inference` x past memory outs).
|
| 331 |
+
for i in range(self.num_transformer_units):
|
| 332 |
+
space = Box(-1.0, 1.0, shape=(self.attention_dim,))
|
| 333 |
+
self.view_requirements["state_in_{}".format(i)] = ViewRequirement(
|
| 334 |
+
"state_out_{}".format(i),
|
| 335 |
+
shift="-{}:-1".format(self.memory_inference),
|
| 336 |
+
# Repeat the incoming state every max-seq-len times.
|
| 337 |
+
batch_repeat_value=self.max_seq_len,
|
| 338 |
+
space=space,
|
| 339 |
+
)
|
| 340 |
+
self.view_requirements["state_out_{}".format(i)] = ViewRequirement(
|
| 341 |
+
space=space, used_for_training=False
|
| 342 |
+
)
|
| 343 |
+
# __sphinx_doc_end__
|
| 344 |
+
|
| 345 |
+
@override(ModelV2)
|
| 346 |
+
def forward(
|
| 347 |
+
self, input_dict, state: List[TensorType], seq_lens: TensorType
|
| 348 |
+
) -> (TensorType, List[TensorType]):
|
| 349 |
+
assert seq_lens is not None
|
| 350 |
+
|
| 351 |
+
# Add the time dim to observations.
|
| 352 |
+
B = tf.shape(seq_lens)[0]
|
| 353 |
+
observations = input_dict[SampleBatch.OBS]
|
| 354 |
+
|
| 355 |
+
shape = tf.shape(observations)
|
| 356 |
+
T = shape[0] // B
|
| 357 |
+
observations = tf.reshape(observations, tf.concat([[-1, T], shape[1:]], axis=0))
|
| 358 |
+
|
| 359 |
+
all_out = self.trxl_model([observations] + state)
|
| 360 |
+
|
| 361 |
+
if self._logits is not None:
|
| 362 |
+
out = tf.reshape(all_out[0], [-1, self.num_outputs])
|
| 363 |
+
self._value_out = all_out[1]
|
| 364 |
+
memory_outs = all_out[2:]
|
| 365 |
+
else:
|
| 366 |
+
out = tf.reshape(all_out[0], [-1, self.attention_dim])
|
| 367 |
+
memory_outs = all_out[1:]
|
| 368 |
+
|
| 369 |
+
return out, [tf.reshape(m, [-1, self.attention_dim]) for m in memory_outs]
|
| 370 |
+
|
| 371 |
+
@override(RecurrentNetwork)
|
| 372 |
+
def get_initial_state(self) -> List[np.ndarray]:
|
| 373 |
+
return [
|
| 374 |
+
tf.zeros(self.view_requirements["state_in_{}".format(i)].space.shape)
|
| 375 |
+
for i in range(self.num_transformer_units)
|
| 376 |
+
]
|
| 377 |
+
|
| 378 |
+
@override(ModelV2)
|
| 379 |
+
def value_function(self) -> TensorType:
|
| 380 |
+
return tf.reshape(self._value_out, [-1])
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
class AttentionWrapper(TFModelV2):
|
| 384 |
+
"""GTrXL wrapper serving as interface for ModelV2s that set use_attention."""
|
| 385 |
+
|
| 386 |
+
def __init__(
|
| 387 |
+
self,
|
| 388 |
+
obs_space: gym.spaces.Space,
|
| 389 |
+
action_space: gym.spaces.Space,
|
| 390 |
+
num_outputs: int,
|
| 391 |
+
model_config: ModelConfigDict,
|
| 392 |
+
name: str,
|
| 393 |
+
):
|
| 394 |
+
if log_once("attention_wrapper_tf_deprecation"):
|
| 395 |
+
deprecation_warning(
|
| 396 |
+
old="ray.rllib.models.tf.attention_net.AttentionWrapper"
|
| 397 |
+
)
|
| 398 |
+
super().__init__(obs_space, action_space, None, model_config, name)
|
| 399 |
+
|
| 400 |
+
self.use_n_prev_actions = model_config["attention_use_n_prev_actions"]
|
| 401 |
+
self.use_n_prev_rewards = model_config["attention_use_n_prev_rewards"]
|
| 402 |
+
|
| 403 |
+
self.action_space_struct = get_base_struct_from_space(self.action_space)
|
| 404 |
+
self.action_dim = 0
|
| 405 |
+
|
| 406 |
+
for space in tree.flatten(self.action_space_struct):
|
| 407 |
+
if isinstance(space, Discrete):
|
| 408 |
+
self.action_dim += space.n
|
| 409 |
+
elif isinstance(space, MultiDiscrete):
|
| 410 |
+
self.action_dim += np.sum(space.nvec)
|
| 411 |
+
elif space.shape is not None:
|
| 412 |
+
self.action_dim += int(np.prod(space.shape))
|
| 413 |
+
else:
|
| 414 |
+
self.action_dim += int(len(space))
|
| 415 |
+
|
| 416 |
+
# Add prev-action/reward nodes to input to LSTM.
|
| 417 |
+
if self.use_n_prev_actions:
|
| 418 |
+
self.num_outputs += self.use_n_prev_actions * self.action_dim
|
| 419 |
+
if self.use_n_prev_rewards:
|
| 420 |
+
self.num_outputs += self.use_n_prev_rewards
|
| 421 |
+
|
| 422 |
+
cfg = model_config
|
| 423 |
+
|
| 424 |
+
self.attention_dim = cfg["attention_dim"]
|
| 425 |
+
|
| 426 |
+
if self.num_outputs is not None:
|
| 427 |
+
in_space = gym.spaces.Box(
|
| 428 |
+
float("-inf"), float("inf"), shape=(self.num_outputs,), dtype=np.float32
|
| 429 |
+
)
|
| 430 |
+
else:
|
| 431 |
+
in_space = obs_space
|
| 432 |
+
|
| 433 |
+
# Construct GTrXL sub-module w/ num_outputs=None (so it does not
|
| 434 |
+
# create a logits/value output; we'll do this ourselves in this wrapper
|
| 435 |
+
# here).
|
| 436 |
+
self.gtrxl = GTrXLNet(
|
| 437 |
+
in_space,
|
| 438 |
+
action_space,
|
| 439 |
+
None,
|
| 440 |
+
model_config,
|
| 441 |
+
"gtrxl",
|
| 442 |
+
num_transformer_units=cfg["attention_num_transformer_units"],
|
| 443 |
+
attention_dim=self.attention_dim,
|
| 444 |
+
num_heads=cfg["attention_num_heads"],
|
| 445 |
+
head_dim=cfg["attention_head_dim"],
|
| 446 |
+
memory_inference=cfg["attention_memory_inference"],
|
| 447 |
+
memory_training=cfg["attention_memory_training"],
|
| 448 |
+
position_wise_mlp_dim=cfg["attention_position_wise_mlp_dim"],
|
| 449 |
+
init_gru_gate_bias=cfg["attention_init_gru_gate_bias"],
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# `self.num_outputs` right now is the number of nodes coming from the
|
| 453 |
+
# attention net.
|
| 454 |
+
input_ = tf.keras.layers.Input(shape=(self.gtrxl.num_outputs,))
|
| 455 |
+
|
| 456 |
+
# Set final num_outputs to correct value (depending on action space).
|
| 457 |
+
self.num_outputs = num_outputs
|
| 458 |
+
|
| 459 |
+
# Postprocess GTrXL output with another hidden layer and compute
|
| 460 |
+
# values.
|
| 461 |
+
out = tf.keras.layers.Dense(self.num_outputs, activation=None)(input_)
|
| 462 |
+
self._logits_branch = tf.keras.models.Model([input_], [out])
|
| 463 |
+
|
| 464 |
+
out = tf.keras.layers.Dense(1, activation=None)(input_)
|
| 465 |
+
self._value_branch = tf.keras.models.Model([input_], [out])
|
| 466 |
+
|
| 467 |
+
self.view_requirements = self.gtrxl.view_requirements
|
| 468 |
+
self.view_requirements["obs"].space = self.obs_space
|
| 469 |
+
|
| 470 |
+
# Add prev-a/r to this model's view, if required.
|
| 471 |
+
if self.use_n_prev_actions:
|
| 472 |
+
self.view_requirements[SampleBatch.PREV_ACTIONS] = ViewRequirement(
|
| 473 |
+
SampleBatch.ACTIONS,
|
| 474 |
+
space=self.action_space,
|
| 475 |
+
shift="-{}:-1".format(self.use_n_prev_actions),
|
| 476 |
+
)
|
| 477 |
+
if self.use_n_prev_rewards:
|
| 478 |
+
self.view_requirements[SampleBatch.PREV_REWARDS] = ViewRequirement(
|
| 479 |
+
SampleBatch.REWARDS, shift="-{}:-1".format(self.use_n_prev_rewards)
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
@override(RecurrentNetwork)
|
| 483 |
+
def forward(
|
| 484 |
+
self,
|
| 485 |
+
input_dict: Dict[str, TensorType],
|
| 486 |
+
state: List[TensorType],
|
| 487 |
+
seq_lens: TensorType,
|
| 488 |
+
) -> (TensorType, List[TensorType]):
|
| 489 |
+
assert seq_lens is not None
|
| 490 |
+
# Push obs through "unwrapped" net's `forward()` first.
|
| 491 |
+
wrapped_out, _ = self._wrapped_forward(input_dict, [], None)
|
| 492 |
+
|
| 493 |
+
# Concat. prev-action/reward if required.
|
| 494 |
+
prev_a_r = []
|
| 495 |
+
|
| 496 |
+
# Prev actions.
|
| 497 |
+
if self.use_n_prev_actions:
|
| 498 |
+
prev_n_actions = input_dict[SampleBatch.PREV_ACTIONS]
|
| 499 |
+
# If actions are not processed yet (in their original form as
|
| 500 |
+
# have been sent to environment):
|
| 501 |
+
# Flatten/one-hot into 1D array.
|
| 502 |
+
if self.model_config["_disable_action_flattening"]:
|
| 503 |
+
# Merge prev n actions into flat tensor.
|
| 504 |
+
flat = flatten_inputs_to_1d_tensor(
|
| 505 |
+
prev_n_actions,
|
| 506 |
+
spaces_struct=self.action_space_struct,
|
| 507 |
+
time_axis=True,
|
| 508 |
+
)
|
| 509 |
+
# Fold time-axis into flattened data.
|
| 510 |
+
flat = tf.reshape(flat, [tf.shape(flat)[0], -1])
|
| 511 |
+
prev_a_r.append(flat)
|
| 512 |
+
# If actions are already flattened (but not one-hot'd yet!),
|
| 513 |
+
# one-hot discrete/multi-discrete actions here and concatenate the
|
| 514 |
+
# n most recent actions together.
|
| 515 |
+
else:
|
| 516 |
+
if isinstance(self.action_space, Discrete):
|
| 517 |
+
for i in range(self.use_n_prev_actions):
|
| 518 |
+
prev_a_r.append(
|
| 519 |
+
one_hot(prev_n_actions[:, i], self.action_space)
|
| 520 |
+
)
|
| 521 |
+
elif isinstance(self.action_space, MultiDiscrete):
|
| 522 |
+
for i in range(
|
| 523 |
+
0, self.use_n_prev_actions, self.action_space.shape[0]
|
| 524 |
+
):
|
| 525 |
+
prev_a_r.append(
|
| 526 |
+
one_hot(
|
| 527 |
+
tf.cast(
|
| 528 |
+
prev_n_actions[
|
| 529 |
+
:, i : i + self.action_space.shape[0]
|
| 530 |
+
],
|
| 531 |
+
tf.float32,
|
| 532 |
+
),
|
| 533 |
+
space=self.action_space,
|
| 534 |
+
)
|
| 535 |
+
)
|
| 536 |
+
else:
|
| 537 |
+
prev_a_r.append(
|
| 538 |
+
tf.reshape(
|
| 539 |
+
tf.cast(prev_n_actions, tf.float32),
|
| 540 |
+
[-1, self.use_n_prev_actions * self.action_dim],
|
| 541 |
+
)
|
| 542 |
+
)
|
| 543 |
+
# Prev rewards.
|
| 544 |
+
if self.use_n_prev_rewards:
|
| 545 |
+
prev_a_r.append(
|
| 546 |
+
tf.reshape(
|
| 547 |
+
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32),
|
| 548 |
+
[-1, self.use_n_prev_rewards],
|
| 549 |
+
)
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
# Concat prev. actions + rewards to the "main" input.
|
| 553 |
+
if prev_a_r:
|
| 554 |
+
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
|
| 555 |
+
|
| 556 |
+
# Then through our GTrXL.
|
| 557 |
+
input_dict["obs_flat"] = input_dict["obs"] = wrapped_out
|
| 558 |
+
|
| 559 |
+
self._features, memory_outs = self.gtrxl(input_dict, state, seq_lens)
|
| 560 |
+
model_out = self._logits_branch(self._features)
|
| 561 |
+
return model_out, memory_outs
|
| 562 |
+
|
| 563 |
+
@override(ModelV2)
|
| 564 |
+
def value_function(self) -> TensorType:
|
| 565 |
+
assert self._features is not None, "Must call forward() first!"
|
| 566 |
+
return tf.reshape(self._value_branch(self._features), [-1])
|
| 567 |
+
|
| 568 |
+
@override(ModelV2)
|
| 569 |
+
def get_initial_state(self) -> Union[List[np.ndarray], List[TensorType]]:
|
| 570 |
+
return [
|
| 571 |
+
np.zeros(self.gtrxl.view_requirements["state_in_{}".format(i)].space.shape)
|
| 572 |
+
for i in range(self.gtrxl.num_transformer_units)
|
| 573 |
+
]
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/complex_input_net.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gymnasium.spaces import Box, Discrete, MultiDiscrete
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tree # pip install dm_tree
|
| 4 |
+
|
| 5 |
+
from ray.rllib.models.catalog import ModelCatalog
|
| 6 |
+
from ray.rllib.models.modelv2 import ModelV2, restore_original_dimensions
|
| 7 |
+
from ray.rllib.models.tf.misc import normc_initializer
|
| 8 |
+
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
| 9 |
+
from ray.rllib.models.utils import get_filter_config
|
| 10 |
+
from ray.rllib.policy.sample_batch import SampleBatch
|
| 11 |
+
from ray.rllib.utils.annotations import OldAPIStack, override
|
| 12 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 13 |
+
from ray.rllib.utils.spaces.space_utils import flatten_space
|
| 14 |
+
from ray.rllib.utils.tf_utils import one_hot
|
| 15 |
+
|
| 16 |
+
tf1, tf, tfv = try_import_tf()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# __sphinx_doc_begin__
|
| 20 |
+
@OldAPIStack
|
| 21 |
+
class ComplexInputNetwork(TFModelV2):
|
| 22 |
+
"""TFModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
|
| 23 |
+
|
| 24 |
+
Note: This model should be used for complex (Dict or Tuple) observation
|
| 25 |
+
spaces that have one or more image components.
|
| 26 |
+
|
| 27 |
+
The data flow is as follows:
|
| 28 |
+
|
| 29 |
+
`obs` (e.g. Tuple[img0, img1, discrete0]) -> `CNN0 + CNN1 + ONE-HOT`
|
| 30 |
+
`CNN0 + CNN1 + ONE-HOT` -> concat all flat outputs -> `out`
|
| 31 |
+
`out` -> (optional) FC-stack -> `out2`
|
| 32 |
+
`out2` -> action (logits) and vaulue heads.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
|
| 36 |
+
|
| 37 |
+
self.original_space = (
|
| 38 |
+
obs_space.original_space
|
| 39 |
+
if hasattr(obs_space, "original_space")
|
| 40 |
+
else obs_space
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
self.processed_obs_space = (
|
| 44 |
+
self.original_space
|
| 45 |
+
if model_config.get("_disable_preprocessor_api")
|
| 46 |
+
else obs_space
|
| 47 |
+
)
|
| 48 |
+
super().__init__(
|
| 49 |
+
self.original_space, action_space, num_outputs, model_config, name
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
self.flattened_input_space = flatten_space(self.original_space)
|
| 53 |
+
|
| 54 |
+
# Build the CNN(s) given obs_space's image components.
|
| 55 |
+
self.cnns = {}
|
| 56 |
+
self.one_hot = {}
|
| 57 |
+
self.flatten_dims = {}
|
| 58 |
+
self.flatten = {}
|
| 59 |
+
concat_size = 0
|
| 60 |
+
for i, component in enumerate(self.flattened_input_space):
|
| 61 |
+
# Image space.
|
| 62 |
+
if len(component.shape) == 3 and isinstance(component, Box):
|
| 63 |
+
config = {
|
| 64 |
+
"conv_filters": model_config["conv_filters"]
|
| 65 |
+
if "conv_filters" in model_config
|
| 66 |
+
else get_filter_config(component.shape),
|
| 67 |
+
"conv_activation": model_config.get("conv_activation"),
|
| 68 |
+
"post_fcnet_hiddens": [],
|
| 69 |
+
}
|
| 70 |
+
self.cnns[i] = ModelCatalog.get_model_v2(
|
| 71 |
+
component,
|
| 72 |
+
action_space,
|
| 73 |
+
num_outputs=None,
|
| 74 |
+
model_config=config,
|
| 75 |
+
framework="tf",
|
| 76 |
+
name="cnn_{}".format(i),
|
| 77 |
+
)
|
| 78 |
+
concat_size += int(self.cnns[i].num_outputs)
|
| 79 |
+
# Discrete|MultiDiscrete inputs -> One-hot encode.
|
| 80 |
+
elif isinstance(component, (Discrete, MultiDiscrete)):
|
| 81 |
+
if isinstance(component, Discrete):
|
| 82 |
+
size = component.n
|
| 83 |
+
else:
|
| 84 |
+
size = np.sum(component.nvec)
|
| 85 |
+
config = {
|
| 86 |
+
"fcnet_hiddens": model_config["fcnet_hiddens"],
|
| 87 |
+
"fcnet_activation": model_config.get("fcnet_activation"),
|
| 88 |
+
"post_fcnet_hiddens": [],
|
| 89 |
+
}
|
| 90 |
+
self.one_hot[i] = ModelCatalog.get_model_v2(
|
| 91 |
+
Box(-1.0, 1.0, (size,), np.float32),
|
| 92 |
+
action_space,
|
| 93 |
+
num_outputs=None,
|
| 94 |
+
model_config=config,
|
| 95 |
+
framework="tf",
|
| 96 |
+
name="one_hot_{}".format(i),
|
| 97 |
+
)
|
| 98 |
+
concat_size += int(self.one_hot[i].num_outputs)
|
| 99 |
+
# Everything else (1D Box).
|
| 100 |
+
else:
|
| 101 |
+
size = int(np.prod(component.shape))
|
| 102 |
+
config = {
|
| 103 |
+
"fcnet_hiddens": model_config["fcnet_hiddens"],
|
| 104 |
+
"fcnet_activation": model_config.get("fcnet_activation"),
|
| 105 |
+
"post_fcnet_hiddens": [],
|
| 106 |
+
}
|
| 107 |
+
self.flatten[i] = ModelCatalog.get_model_v2(
|
| 108 |
+
Box(-1.0, 1.0, (size,), np.float32),
|
| 109 |
+
action_space,
|
| 110 |
+
num_outputs=None,
|
| 111 |
+
model_config=config,
|
| 112 |
+
framework="tf",
|
| 113 |
+
name="flatten_{}".format(i),
|
| 114 |
+
)
|
| 115 |
+
self.flatten_dims[i] = size
|
| 116 |
+
concat_size += int(self.flatten[i].num_outputs)
|
| 117 |
+
|
| 118 |
+
# Optional post-concat FC-stack.
|
| 119 |
+
post_fc_stack_config = {
|
| 120 |
+
"fcnet_hiddens": model_config.get("post_fcnet_hiddens", []),
|
| 121 |
+
"fcnet_activation": model_config.get("post_fcnet_activation", "relu"),
|
| 122 |
+
}
|
| 123 |
+
self.post_fc_stack = ModelCatalog.get_model_v2(
|
| 124 |
+
Box(float("-inf"), float("inf"), shape=(concat_size,), dtype=np.float32),
|
| 125 |
+
self.action_space,
|
| 126 |
+
None,
|
| 127 |
+
post_fc_stack_config,
|
| 128 |
+
framework="tf",
|
| 129 |
+
name="post_fc_stack",
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Actions and value heads.
|
| 133 |
+
self.logits_and_value_model = None
|
| 134 |
+
self._value_out = None
|
| 135 |
+
if num_outputs:
|
| 136 |
+
# Action-distribution head.
|
| 137 |
+
concat_layer = tf.keras.layers.Input((self.post_fc_stack.num_outputs,))
|
| 138 |
+
logits_layer = tf.keras.layers.Dense(
|
| 139 |
+
num_outputs,
|
| 140 |
+
activation=None,
|
| 141 |
+
kernel_initializer=normc_initializer(0.01),
|
| 142 |
+
name="logits",
|
| 143 |
+
)(concat_layer)
|
| 144 |
+
|
| 145 |
+
# Create the value branch model.
|
| 146 |
+
value_layer = tf.keras.layers.Dense(
|
| 147 |
+
1,
|
| 148 |
+
activation=None,
|
| 149 |
+
kernel_initializer=normc_initializer(0.01),
|
| 150 |
+
name="value_out",
|
| 151 |
+
)(concat_layer)
|
| 152 |
+
self.logits_and_value_model = tf.keras.models.Model(
|
| 153 |
+
concat_layer, [logits_layer, value_layer]
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
self.num_outputs = self.post_fc_stack.num_outputs
|
| 157 |
+
|
| 158 |
+
@override(ModelV2)
|
| 159 |
+
def forward(self, input_dict, state, seq_lens):
|
| 160 |
+
if SampleBatch.OBS in input_dict and "obs_flat" in input_dict:
|
| 161 |
+
orig_obs = input_dict[SampleBatch.OBS]
|
| 162 |
+
else:
|
| 163 |
+
orig_obs = restore_original_dimensions(
|
| 164 |
+
input_dict[SampleBatch.OBS], self.processed_obs_space, tensorlib="tf"
|
| 165 |
+
)
|
| 166 |
+
# Push image observations through our CNNs.
|
| 167 |
+
outs = []
|
| 168 |
+
for i, component in enumerate(tree.flatten(orig_obs)):
|
| 169 |
+
if i in self.cnns:
|
| 170 |
+
cnn_out, _ = self.cnns[i](SampleBatch({SampleBatch.OBS: component}))
|
| 171 |
+
outs.append(cnn_out)
|
| 172 |
+
elif i in self.one_hot:
|
| 173 |
+
if "int" in component.dtype.name:
|
| 174 |
+
one_hot_in = {
|
| 175 |
+
SampleBatch.OBS: one_hot(
|
| 176 |
+
component, self.flattened_input_space[i]
|
| 177 |
+
)
|
| 178 |
+
}
|
| 179 |
+
else:
|
| 180 |
+
one_hot_in = {SampleBatch.OBS: component}
|
| 181 |
+
one_hot_out, _ = self.one_hot[i](SampleBatch(one_hot_in))
|
| 182 |
+
outs.append(one_hot_out)
|
| 183 |
+
else:
|
| 184 |
+
nn_out, _ = self.flatten[i](
|
| 185 |
+
SampleBatch(
|
| 186 |
+
{
|
| 187 |
+
SampleBatch.OBS: tf.cast(
|
| 188 |
+
tf.reshape(component, [-1, self.flatten_dims[i]]),
|
| 189 |
+
tf.float32,
|
| 190 |
+
)
|
| 191 |
+
}
|
| 192 |
+
)
|
| 193 |
+
)
|
| 194 |
+
outs.append(nn_out)
|
| 195 |
+
# Concat all outputs and the non-image inputs.
|
| 196 |
+
out = tf.concat(outs, axis=1)
|
| 197 |
+
# Push through (optional) FC-stack (this may be an empty stack).
|
| 198 |
+
out, _ = self.post_fc_stack(SampleBatch({SampleBatch.OBS: out}))
|
| 199 |
+
|
| 200 |
+
# No logits/value branches.
|
| 201 |
+
if not self.logits_and_value_model:
|
| 202 |
+
return out, []
|
| 203 |
+
|
| 204 |
+
# Logits- and value branches.
|
| 205 |
+
logits, values = self.logits_and_value_model(out)
|
| 206 |
+
self._value_out = tf.reshape(values, [-1])
|
| 207 |
+
return logits, []
|
| 208 |
+
|
| 209 |
+
@override(ModelV2)
|
| 210 |
+
def value_function(self):
|
| 211 |
+
return self._value_out
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# __sphinx_doc_end__
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/fcnet.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import gymnasium as gym
|
| 3 |
+
from typing import Dict
|
| 4 |
+
|
| 5 |
+
from ray.rllib.models.tf.misc import normc_initializer
|
| 6 |
+
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
| 7 |
+
from ray.rllib.models.utils import get_activation_fn
|
| 8 |
+
from ray.rllib.utils.annotations import OldAPIStack
|
| 9 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 10 |
+
from ray.rllib.utils.typing import TensorType, List, ModelConfigDict
|
| 11 |
+
|
| 12 |
+
tf1, tf, tfv = try_import_tf()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@OldAPIStack
|
| 16 |
+
class FullyConnectedNetwork(TFModelV2):
|
| 17 |
+
"""Generic fully connected network implemented in ModelV2 API."""
|
| 18 |
+
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
obs_space: gym.spaces.Space,
|
| 22 |
+
action_space: gym.spaces.Space,
|
| 23 |
+
num_outputs: int,
|
| 24 |
+
model_config: ModelConfigDict,
|
| 25 |
+
name: str,
|
| 26 |
+
):
|
| 27 |
+
super(FullyConnectedNetwork, self).__init__(
|
| 28 |
+
obs_space, action_space, num_outputs, model_config, name
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
hiddens = list(model_config.get("fcnet_hiddens", [])) + list(
|
| 32 |
+
model_config.get("post_fcnet_hiddens", [])
|
| 33 |
+
)
|
| 34 |
+
activation = model_config.get("fcnet_activation")
|
| 35 |
+
if not model_config.get("fcnet_hiddens", []):
|
| 36 |
+
activation = model_config.get("post_fcnet_activation")
|
| 37 |
+
activation = get_activation_fn(activation)
|
| 38 |
+
no_final_linear = model_config.get("no_final_linear")
|
| 39 |
+
vf_share_layers = model_config.get("vf_share_layers")
|
| 40 |
+
free_log_std = model_config.get("free_log_std")
|
| 41 |
+
|
| 42 |
+
# Generate free-floating bias variables for the second half of
|
| 43 |
+
# the outputs.
|
| 44 |
+
if free_log_std:
|
| 45 |
+
assert num_outputs % 2 == 0, (
|
| 46 |
+
"num_outputs must be divisible by two",
|
| 47 |
+
num_outputs,
|
| 48 |
+
)
|
| 49 |
+
num_outputs = num_outputs // 2
|
| 50 |
+
self.log_std_var = tf.Variable(
|
| 51 |
+
[0.0] * num_outputs, dtype=tf.float32, name="log_std"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# We are using obs_flat, so take the flattened shape as input.
|
| 55 |
+
inputs = tf.keras.layers.Input(
|
| 56 |
+
shape=(int(np.prod(obs_space.shape)),), name="observations"
|
| 57 |
+
)
|
| 58 |
+
# Last hidden layer output (before logits outputs).
|
| 59 |
+
last_layer = inputs
|
| 60 |
+
# The action distribution outputs.
|
| 61 |
+
logits_out = None
|
| 62 |
+
i = 1
|
| 63 |
+
|
| 64 |
+
# Create layers 0 to second-last.
|
| 65 |
+
for size in hiddens[:-1]:
|
| 66 |
+
last_layer = tf.keras.layers.Dense(
|
| 67 |
+
size,
|
| 68 |
+
name="fc_{}".format(i),
|
| 69 |
+
activation=activation,
|
| 70 |
+
kernel_initializer=normc_initializer(1.0),
|
| 71 |
+
)(last_layer)
|
| 72 |
+
i += 1
|
| 73 |
+
|
| 74 |
+
# The last layer is adjusted to be of size num_outputs, but it's a
|
| 75 |
+
# layer with activation.
|
| 76 |
+
if no_final_linear and num_outputs:
|
| 77 |
+
logits_out = tf.keras.layers.Dense(
|
| 78 |
+
num_outputs,
|
| 79 |
+
name="fc_out",
|
| 80 |
+
activation=activation,
|
| 81 |
+
kernel_initializer=normc_initializer(1.0),
|
| 82 |
+
)(last_layer)
|
| 83 |
+
# Finish the layers with the provided sizes (`hiddens`), plus -
|
| 84 |
+
# iff num_outputs > 0 - a last linear layer of size num_outputs.
|
| 85 |
+
else:
|
| 86 |
+
if len(hiddens) > 0:
|
| 87 |
+
last_layer = tf.keras.layers.Dense(
|
| 88 |
+
hiddens[-1],
|
| 89 |
+
name="fc_{}".format(i),
|
| 90 |
+
activation=activation,
|
| 91 |
+
kernel_initializer=normc_initializer(1.0),
|
| 92 |
+
)(last_layer)
|
| 93 |
+
if num_outputs:
|
| 94 |
+
logits_out = tf.keras.layers.Dense(
|
| 95 |
+
num_outputs,
|
| 96 |
+
name="fc_out",
|
| 97 |
+
activation=None,
|
| 98 |
+
kernel_initializer=normc_initializer(0.01),
|
| 99 |
+
)(last_layer)
|
| 100 |
+
# Adjust num_outputs to be the number of nodes in the last layer.
|
| 101 |
+
else:
|
| 102 |
+
self.num_outputs = ([int(np.prod(obs_space.shape))] + hiddens[-1:])[-1]
|
| 103 |
+
|
| 104 |
+
# Concat the log std vars to the end of the state-dependent means.
|
| 105 |
+
if free_log_std and logits_out is not None:
|
| 106 |
+
|
| 107 |
+
def tiled_log_std(x):
|
| 108 |
+
return tf.tile(tf.expand_dims(self.log_std_var, 0), [tf.shape(x)[0], 1])
|
| 109 |
+
|
| 110 |
+
log_std_out = tf.keras.layers.Lambda(tiled_log_std)(inputs)
|
| 111 |
+
logits_out = tf.keras.layers.Concatenate(axis=1)([logits_out, log_std_out])
|
| 112 |
+
|
| 113 |
+
last_vf_layer = None
|
| 114 |
+
if not vf_share_layers:
|
| 115 |
+
# Build a parallel set of hidden layers for the value net.
|
| 116 |
+
last_vf_layer = inputs
|
| 117 |
+
i = 1
|
| 118 |
+
for size in hiddens:
|
| 119 |
+
last_vf_layer = tf.keras.layers.Dense(
|
| 120 |
+
size,
|
| 121 |
+
name="fc_value_{}".format(i),
|
| 122 |
+
activation=activation,
|
| 123 |
+
kernel_initializer=normc_initializer(1.0),
|
| 124 |
+
)(last_vf_layer)
|
| 125 |
+
i += 1
|
| 126 |
+
|
| 127 |
+
value_out = tf.keras.layers.Dense(
|
| 128 |
+
1,
|
| 129 |
+
name="value_out",
|
| 130 |
+
activation=None,
|
| 131 |
+
kernel_initializer=normc_initializer(0.01),
|
| 132 |
+
)(last_vf_layer if last_vf_layer is not None else last_layer)
|
| 133 |
+
|
| 134 |
+
self.base_model = tf.keras.Model(
|
| 135 |
+
inputs, [(logits_out if logits_out is not None else last_layer), value_out]
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
def forward(
|
| 139 |
+
self,
|
| 140 |
+
input_dict: Dict[str, TensorType],
|
| 141 |
+
state: List[TensorType],
|
| 142 |
+
seq_lens: TensorType,
|
| 143 |
+
) -> (TensorType, List[TensorType]):
|
| 144 |
+
model_out, self._value_out = self.base_model(input_dict["obs_flat"])
|
| 145 |
+
return model_out, state
|
| 146 |
+
|
| 147 |
+
def value_function(self) -> TensorType:
|
| 148 |
+
return tf.reshape(self._value_out, [-1])
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (683 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/gru_gate.cpython-310.pyc
ADDED
|
Binary file (2.21 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/multi_head_attention.cpython-310.pyc
ADDED
|
Binary file (2.3 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/relative_multi_head_attention.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/__pycache__/skip_connection.cpython-310.pyc
ADDED
|
Binary file (1.85 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/layers/relative_multi_head_attention.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 4 |
+
from ray.rllib.utils.typing import TensorType
|
| 5 |
+
from ray.rllib.utils.deprecation import deprecation_warning
|
| 6 |
+
from ray.util import log_once
|
| 7 |
+
|
| 8 |
+
tf1, tf, tfv = try_import_tf()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class RelativeMultiHeadAttention(tf.keras.layers.Layer if tf else object):
|
| 12 |
+
"""A RelativeMultiHeadAttention layer as described in [3].
|
| 13 |
+
|
| 14 |
+
Uses segment level recurrence with state reuse.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
out_dim: int,
|
| 20 |
+
num_heads: int,
|
| 21 |
+
head_dim: int,
|
| 22 |
+
input_layernorm: bool = False,
|
| 23 |
+
output_activation: Optional["tf.nn.activation"] = None,
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
"""Initializes a RelativeMultiHeadAttention keras Layer object.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
out_dim: The output dimensions of the multi-head attention
|
| 30 |
+
unit.
|
| 31 |
+
num_heads: The number of attention heads to use.
|
| 32 |
+
Denoted `H` in [2].
|
| 33 |
+
head_dim: The dimension of a single(!) attention head within
|
| 34 |
+
a multi-head attention unit. Denoted as `d` in [3].
|
| 35 |
+
input_layernorm: Whether to prepend a LayerNorm before
|
| 36 |
+
everything else. Should be True for building a GTrXL.
|
| 37 |
+
output_activation (Optional[tf.nn.activation]): Optional tf.nn
|
| 38 |
+
activation function. Should be relu for GTrXL.
|
| 39 |
+
**kwargs:
|
| 40 |
+
"""
|
| 41 |
+
if log_once("relative_multi_head_attention"):
|
| 42 |
+
deprecation_warning(
|
| 43 |
+
old="rllib.models.tf.layers.RelativeMultiHeadAttention",
|
| 44 |
+
)
|
| 45 |
+
super().__init__(**kwargs)
|
| 46 |
+
|
| 47 |
+
# No bias or non-linearity.
|
| 48 |
+
self._num_heads = num_heads
|
| 49 |
+
self._head_dim = head_dim
|
| 50 |
+
# 3=Query, key, and value inputs.
|
| 51 |
+
self._qkv_layer = tf.keras.layers.Dense(
|
| 52 |
+
3 * num_heads * head_dim, use_bias=False
|
| 53 |
+
)
|
| 54 |
+
self._linear_layer = tf.keras.layers.TimeDistributed(
|
| 55 |
+
tf.keras.layers.Dense(out_dim, use_bias=False, activation=output_activation)
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self._uvar = self.add_weight(shape=(num_heads, head_dim))
|
| 59 |
+
self._vvar = self.add_weight(shape=(num_heads, head_dim))
|
| 60 |
+
|
| 61 |
+
# Constant (non-trainable) sinusoid rel pos encoding matrix, which
|
| 62 |
+
# depends on this incoming time dimension.
|
| 63 |
+
# For inference, we prepend the memory to the current timestep's
|
| 64 |
+
# input: Tau + 1. For training, we prepend the memory to the input
|
| 65 |
+
# sequence: Tau + T.
|
| 66 |
+
self._pos_embedding = PositionalEmbedding(out_dim)
|
| 67 |
+
self._pos_proj = tf.keras.layers.Dense(num_heads * head_dim, use_bias=False)
|
| 68 |
+
|
| 69 |
+
self._input_layernorm = None
|
| 70 |
+
if input_layernorm:
|
| 71 |
+
self._input_layernorm = tf.keras.layers.LayerNormalization(axis=-1)
|
| 72 |
+
|
| 73 |
+
def call(
|
| 74 |
+
self, inputs: TensorType, memory: Optional[TensorType] = None
|
| 75 |
+
) -> TensorType:
|
| 76 |
+
T = tf.shape(inputs)[1] # length of segment (time)
|
| 77 |
+
H = self._num_heads # number of attention heads
|
| 78 |
+
d = self._head_dim # attention head dimension
|
| 79 |
+
|
| 80 |
+
# Add previous memory chunk (as const, w/o gradient) to input.
|
| 81 |
+
# Tau (number of (prev) time slices in each memory chunk).
|
| 82 |
+
Tau = tf.shape(memory)[1]
|
| 83 |
+
inputs = tf.concat([tf.stop_gradient(memory), inputs], axis=1)
|
| 84 |
+
|
| 85 |
+
# Apply the Layer-Norm.
|
| 86 |
+
if self._input_layernorm is not None:
|
| 87 |
+
inputs = self._input_layernorm(inputs)
|
| 88 |
+
|
| 89 |
+
qkv = self._qkv_layer(inputs)
|
| 90 |
+
|
| 91 |
+
queries, keys, values = tf.split(qkv, 3, -1)
|
| 92 |
+
# Cut out memory timesteps from query.
|
| 93 |
+
queries = queries[:, -T:]
|
| 94 |
+
|
| 95 |
+
# Splitting up queries into per-head dims (d).
|
| 96 |
+
queries = tf.reshape(queries, [-1, T, H, d])
|
| 97 |
+
keys = tf.reshape(keys, [-1, Tau + T, H, d])
|
| 98 |
+
values = tf.reshape(values, [-1, Tau + T, H, d])
|
| 99 |
+
|
| 100 |
+
R = self._pos_embedding(Tau + T)
|
| 101 |
+
R = self._pos_proj(R)
|
| 102 |
+
R = tf.reshape(R, [Tau + T, H, d])
|
| 103 |
+
|
| 104 |
+
# b=batch
|
| 105 |
+
# i and j=time indices (i=max-timesteps (inputs); j=Tau memory space)
|
| 106 |
+
# h=head
|
| 107 |
+
# d=head-dim (over which we will reduce-sum)
|
| 108 |
+
score = tf.einsum("bihd,bjhd->bijh", queries + self._uvar, keys)
|
| 109 |
+
pos_score = tf.einsum("bihd,jhd->bijh", queries + self._vvar, R)
|
| 110 |
+
score = score + self.rel_shift(pos_score)
|
| 111 |
+
score = score / d**0.5
|
| 112 |
+
|
| 113 |
+
# Causal mask of the same length as the sequence.
|
| 114 |
+
mask = tf.sequence_mask(tf.range(Tau + 1, Tau + T + 1), dtype=score.dtype)
|
| 115 |
+
mask = mask[None, :, :, None]
|
| 116 |
+
|
| 117 |
+
masked_score = score * mask + 1e30 * (mask - 1.0)
|
| 118 |
+
wmat = tf.nn.softmax(masked_score, axis=2)
|
| 119 |
+
|
| 120 |
+
out = tf.einsum("bijh,bjhd->bihd", wmat, values)
|
| 121 |
+
out = tf.reshape(out, tf.concat((tf.shape(out)[:2], [H * d]), axis=0))
|
| 122 |
+
return self._linear_layer(out)
|
| 123 |
+
|
| 124 |
+
@staticmethod
|
| 125 |
+
def rel_shift(x: TensorType) -> TensorType:
|
| 126 |
+
# Transposed version of the shift approach described in [3].
|
| 127 |
+
# https://github.com/kimiyoung/transformer-xl/blob/
|
| 128 |
+
# 44781ed21dbaec88b280f74d9ae2877f52b492a5/tf/model.py#L31
|
| 129 |
+
x_size = tf.shape(x)
|
| 130 |
+
|
| 131 |
+
x = tf.pad(x, [[0, 0], [0, 0], [1, 0], [0, 0]])
|
| 132 |
+
x = tf.reshape(x, [x_size[0], x_size[2] + 1, x_size[1], x_size[3]])
|
| 133 |
+
x = x[:, 1:, :, :]
|
| 134 |
+
x = tf.reshape(x, x_size)
|
| 135 |
+
|
| 136 |
+
return x
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class PositionalEmbedding(tf.keras.layers.Layer if tf else object):
|
| 140 |
+
def __init__(self, out_dim, **kwargs):
|
| 141 |
+
super().__init__(**kwargs)
|
| 142 |
+
self.inverse_freq = 1 / (10000 ** (tf.range(0, out_dim, 2.0) / out_dim))
|
| 143 |
+
|
| 144 |
+
def call(self, seq_length):
|
| 145 |
+
pos_offsets = tf.cast(tf.range(seq_length - 1, -1, -1), tf.float32)
|
| 146 |
+
inputs = pos_offsets[:, None] * self.inverse_freq[None, :]
|
| 147 |
+
return tf.concat((tf.sin(inputs), tf.cos(inputs)), axis=-1)
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/recurrent_net.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import gymnasium as gym
|
| 3 |
+
from gymnasium.spaces import Discrete, MultiDiscrete
|
| 4 |
+
import logging
|
| 5 |
+
import tree # pip install dm_tree
|
| 6 |
+
from typing import Dict, List, Tuple
|
| 7 |
+
|
| 8 |
+
from ray.rllib.models.modelv2 import ModelV2
|
| 9 |
+
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
| 10 |
+
from ray.rllib.policy.rnn_sequencing import add_time_dimension
|
| 11 |
+
from ray.rllib.policy.sample_batch import SampleBatch
|
| 12 |
+
from ray.rllib.policy.view_requirement import ViewRequirement
|
| 13 |
+
from ray.rllib.utils.annotations import OldAPIStack, override
|
| 14 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 15 |
+
from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space
|
| 16 |
+
from ray.rllib.utils.tf_utils import flatten_inputs_to_1d_tensor, one_hot
|
| 17 |
+
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
| 18 |
+
from ray.rllib.utils.deprecation import deprecation_warning
|
| 19 |
+
from ray.util.debug import log_once
|
| 20 |
+
|
| 21 |
+
tf1, tf, tfv = try_import_tf()
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@OldAPIStack
|
| 26 |
+
class RecurrentNetwork(TFModelV2):
|
| 27 |
+
"""Helper class to simplify implementing RNN models with TFModelV2.
|
| 28 |
+
|
| 29 |
+
Instead of implementing forward(), you can implement forward_rnn() which
|
| 30 |
+
takes batches with the time dimension added already.
|
| 31 |
+
|
| 32 |
+
Here is an example implementation for a subclass
|
| 33 |
+
``MyRNNClass(RecurrentNetwork)``::
|
| 34 |
+
|
| 35 |
+
def __init__(self, *args, **kwargs):
|
| 36 |
+
super(MyModelClass, self).__init__(*args, **kwargs)
|
| 37 |
+
cell_size = 256
|
| 38 |
+
|
| 39 |
+
# Define input layers
|
| 40 |
+
input_layer = tf.keras.layers.Input(
|
| 41 |
+
shape=(None, obs_space.shape[0]))
|
| 42 |
+
state_in_h = tf.keras.layers.Input(shape=(256, ))
|
| 43 |
+
state_in_c = tf.keras.layers.Input(shape=(256, ))
|
| 44 |
+
seq_in = tf.keras.layers.Input(shape=(), dtype=tf.int32)
|
| 45 |
+
|
| 46 |
+
# Send to LSTM cell
|
| 47 |
+
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
|
| 48 |
+
cell_size, return_sequences=True, return_state=True,
|
| 49 |
+
name="lstm")(
|
| 50 |
+
inputs=input_layer,
|
| 51 |
+
mask=tf.sequence_mask(seq_in),
|
| 52 |
+
initial_state=[state_in_h, state_in_c])
|
| 53 |
+
output_layer = tf.keras.layers.Dense(...)(lstm_out)
|
| 54 |
+
|
| 55 |
+
# Create the RNN model
|
| 56 |
+
self.rnn_model = tf.keras.Model(
|
| 57 |
+
inputs=[input_layer, seq_in, state_in_h, state_in_c],
|
| 58 |
+
outputs=[output_layer, state_h, state_c])
|
| 59 |
+
self.rnn_model.summary()
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
@override(ModelV2)
|
| 63 |
+
def forward(
|
| 64 |
+
self,
|
| 65 |
+
input_dict: Dict[str, TensorType],
|
| 66 |
+
state: List[TensorType],
|
| 67 |
+
seq_lens: TensorType,
|
| 68 |
+
) -> Tuple[TensorType, List[TensorType]]:
|
| 69 |
+
"""Adds time dimension to batch before sending inputs to forward_rnn().
|
| 70 |
+
|
| 71 |
+
You should implement forward_rnn() in your subclass."""
|
| 72 |
+
# Creating a __init__ function that acts as a passthrough and adding the warning
|
| 73 |
+
# there led to errors probably due to the multiple inheritance. We encountered
|
| 74 |
+
# the same error if we add the Deprecated decorator. We therefore add the
|
| 75 |
+
# deprecation warning here.
|
| 76 |
+
if log_once("recurrent_network_tf"):
|
| 77 |
+
deprecation_warning(
|
| 78 |
+
old="ray.rllib.models.tf.recurrent_net.RecurrentNetwork"
|
| 79 |
+
)
|
| 80 |
+
assert seq_lens is not None
|
| 81 |
+
flat_inputs = input_dict["obs_flat"]
|
| 82 |
+
inputs = add_time_dimension(
|
| 83 |
+
padded_inputs=flat_inputs, seq_lens=seq_lens, framework="tf"
|
| 84 |
+
)
|
| 85 |
+
output, new_state = self.forward_rnn(
|
| 86 |
+
inputs,
|
| 87 |
+
state,
|
| 88 |
+
seq_lens,
|
| 89 |
+
)
|
| 90 |
+
return tf.reshape(output, [-1, self.num_outputs]), new_state
|
| 91 |
+
|
| 92 |
+
def forward_rnn(
|
| 93 |
+
self, inputs: TensorType, state: List[TensorType], seq_lens: TensorType
|
| 94 |
+
) -> Tuple[TensorType, List[TensorType]]:
|
| 95 |
+
"""Call the model with the given input tensors and state.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
inputs: observation tensor with shape [B, T, obs_size].
|
| 99 |
+
state: list of state tensors, each with shape [B, T, size].
|
| 100 |
+
seq_lens: 1d tensor holding input sequence lengths.
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
(outputs, new_state): The model output tensor of shape
|
| 104 |
+
[B, T, num_outputs] and the list of new state tensors each with
|
| 105 |
+
shape [B, size].
|
| 106 |
+
|
| 107 |
+
Sample implementation for the ``MyRNNClass`` example::
|
| 108 |
+
|
| 109 |
+
def forward_rnn(self, inputs, state, seq_lens):
|
| 110 |
+
model_out, h, c = self.rnn_model([inputs, seq_lens] + state)
|
| 111 |
+
return model_out, [h, c]
|
| 112 |
+
"""
|
| 113 |
+
raise NotImplementedError("You must implement this for a RNN model")
|
| 114 |
+
|
| 115 |
+
def get_initial_state(self) -> List[TensorType]:
|
| 116 |
+
"""Get the initial recurrent state values for the model.
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
list of np.array objects, if any
|
| 120 |
+
|
| 121 |
+
Sample implementation for the ``MyRNNClass`` example::
|
| 122 |
+
|
| 123 |
+
def get_initial_state(self):
|
| 124 |
+
return [
|
| 125 |
+
np.zeros(self.cell_size, np.float32),
|
| 126 |
+
np.zeros(self.cell_size, np.float32),
|
| 127 |
+
]
|
| 128 |
+
"""
|
| 129 |
+
raise NotImplementedError("You must implement this for a RNN model")
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
@OldAPIStack
|
| 133 |
+
class LSTMWrapper(RecurrentNetwork):
|
| 134 |
+
"""An LSTM wrapper serving as an interface for ModelV2s that set use_lstm."""
|
| 135 |
+
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
obs_space: gym.spaces.Space,
|
| 139 |
+
action_space: gym.spaces.Space,
|
| 140 |
+
num_outputs: int,
|
| 141 |
+
model_config: ModelConfigDict,
|
| 142 |
+
name: str,
|
| 143 |
+
):
|
| 144 |
+
super(LSTMWrapper, self).__init__(
|
| 145 |
+
obs_space, action_space, None, model_config, name
|
| 146 |
+
)
|
| 147 |
+
# At this point, self.num_outputs is the number of nodes coming
|
| 148 |
+
# from the wrapped (underlying) model. In other words, self.num_outputs
|
| 149 |
+
# is the input size for the LSTM layer.
|
| 150 |
+
# If None, set it to the observation space.
|
| 151 |
+
if self.num_outputs is None:
|
| 152 |
+
self.num_outputs = int(np.prod(self.obs_space.shape))
|
| 153 |
+
|
| 154 |
+
self.cell_size = model_config["lstm_cell_size"]
|
| 155 |
+
self.use_prev_action = model_config["lstm_use_prev_action"]
|
| 156 |
+
self.use_prev_reward = model_config["lstm_use_prev_reward"]
|
| 157 |
+
|
| 158 |
+
self.action_space_struct = get_base_struct_from_space(self.action_space)
|
| 159 |
+
self.action_dim = 0
|
| 160 |
+
|
| 161 |
+
for space in tree.flatten(self.action_space_struct):
|
| 162 |
+
if isinstance(space, Discrete):
|
| 163 |
+
self.action_dim += space.n
|
| 164 |
+
elif isinstance(space, MultiDiscrete):
|
| 165 |
+
self.action_dim += np.sum(space.nvec)
|
| 166 |
+
elif space.shape is not None:
|
| 167 |
+
self.action_dim += int(np.prod(space.shape))
|
| 168 |
+
else:
|
| 169 |
+
self.action_dim += int(len(space))
|
| 170 |
+
|
| 171 |
+
# Add prev-action/reward nodes to input to LSTM.
|
| 172 |
+
if self.use_prev_action:
|
| 173 |
+
self.num_outputs += self.action_dim
|
| 174 |
+
if self.use_prev_reward:
|
| 175 |
+
self.num_outputs += 1
|
| 176 |
+
|
| 177 |
+
# Define input layers.
|
| 178 |
+
input_layer = tf.keras.layers.Input(
|
| 179 |
+
shape=(None, self.num_outputs), name="inputs"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Set self.num_outputs to the number of output nodes desired by the
|
| 183 |
+
# caller of this constructor.
|
| 184 |
+
self.num_outputs = num_outputs
|
| 185 |
+
|
| 186 |
+
state_in_h = tf.keras.layers.Input(shape=(self.cell_size,), name="h")
|
| 187 |
+
state_in_c = tf.keras.layers.Input(shape=(self.cell_size,), name="c")
|
| 188 |
+
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
|
| 189 |
+
|
| 190 |
+
# Preprocess observation with a hidden layer and send to LSTM cell
|
| 191 |
+
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
|
| 192 |
+
self.cell_size, return_sequences=True, return_state=True, name="lstm"
|
| 193 |
+
)(
|
| 194 |
+
inputs=input_layer,
|
| 195 |
+
mask=tf.sequence_mask(seq_in),
|
| 196 |
+
initial_state=[state_in_h, state_in_c],
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Postprocess LSTM output with another hidden layer and compute values
|
| 200 |
+
logits = tf.keras.layers.Dense(
|
| 201 |
+
self.num_outputs, activation=tf.keras.activations.linear, name="logits"
|
| 202 |
+
)(lstm_out)
|
| 203 |
+
values = tf.keras.layers.Dense(1, activation=None, name="values")(lstm_out)
|
| 204 |
+
|
| 205 |
+
# Create the RNN model
|
| 206 |
+
self._rnn_model = tf.keras.Model(
|
| 207 |
+
inputs=[input_layer, seq_in, state_in_h, state_in_c],
|
| 208 |
+
outputs=[logits, values, state_h, state_c],
|
| 209 |
+
)
|
| 210 |
+
# Print out model summary in INFO logging mode.
|
| 211 |
+
if logger.isEnabledFor(logging.INFO):
|
| 212 |
+
self._rnn_model.summary()
|
| 213 |
+
|
| 214 |
+
# Add prev-a/r to this model's view, if required.
|
| 215 |
+
if model_config["lstm_use_prev_action"]:
|
| 216 |
+
self.view_requirements[SampleBatch.PREV_ACTIONS] = ViewRequirement(
|
| 217 |
+
SampleBatch.ACTIONS, space=self.action_space, shift=-1
|
| 218 |
+
)
|
| 219 |
+
if model_config["lstm_use_prev_reward"]:
|
| 220 |
+
self.view_requirements[SampleBatch.PREV_REWARDS] = ViewRequirement(
|
| 221 |
+
SampleBatch.REWARDS, shift=-1
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
@override(RecurrentNetwork)
|
| 225 |
+
def forward(
|
| 226 |
+
self,
|
| 227 |
+
input_dict: Dict[str, TensorType],
|
| 228 |
+
state: List[TensorType],
|
| 229 |
+
seq_lens: TensorType,
|
| 230 |
+
) -> Tuple[TensorType, List[TensorType]]:
|
| 231 |
+
assert seq_lens is not None
|
| 232 |
+
# Push obs through "unwrapped" net's `forward()` first.
|
| 233 |
+
wrapped_out, _ = self._wrapped_forward(input_dict, [], None)
|
| 234 |
+
|
| 235 |
+
# Concat. prev-action/reward if required.
|
| 236 |
+
prev_a_r = []
|
| 237 |
+
|
| 238 |
+
# Prev actions.
|
| 239 |
+
if self.model_config["lstm_use_prev_action"]:
|
| 240 |
+
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
|
| 241 |
+
# If actions are not processed yet (in their original form as
|
| 242 |
+
# have been sent to environment):
|
| 243 |
+
# Flatten/one-hot into 1D array.
|
| 244 |
+
if self.model_config["_disable_action_flattening"]:
|
| 245 |
+
prev_a_r.append(
|
| 246 |
+
flatten_inputs_to_1d_tensor(
|
| 247 |
+
prev_a,
|
| 248 |
+
spaces_struct=self.action_space_struct,
|
| 249 |
+
time_axis=False,
|
| 250 |
+
)
|
| 251 |
+
)
|
| 252 |
+
# If actions are already flattened (but not one-hot'd yet!),
|
| 253 |
+
# one-hot discrete/multi-discrete actions here.
|
| 254 |
+
else:
|
| 255 |
+
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
|
| 256 |
+
prev_a = one_hot(prev_a, self.action_space)
|
| 257 |
+
prev_a_r.append(
|
| 258 |
+
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim])
|
| 259 |
+
)
|
| 260 |
+
# Prev rewards.
|
| 261 |
+
if self.model_config["lstm_use_prev_reward"]:
|
| 262 |
+
prev_a_r.append(
|
| 263 |
+
tf.reshape(
|
| 264 |
+
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32), [-1, 1]
|
| 265 |
+
)
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
# Concat prev. actions + rewards to the "main" input.
|
| 269 |
+
if prev_a_r:
|
| 270 |
+
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
|
| 271 |
+
|
| 272 |
+
# Push everything through our LSTM.
|
| 273 |
+
input_dict["obs_flat"] = wrapped_out
|
| 274 |
+
return super().forward(input_dict, state, seq_lens)
|
| 275 |
+
|
| 276 |
+
@override(RecurrentNetwork)
|
| 277 |
+
def forward_rnn(
|
| 278 |
+
self, inputs: TensorType, state: List[TensorType], seq_lens: TensorType
|
| 279 |
+
) -> Tuple[TensorType, List[TensorType]]:
|
| 280 |
+
model_out, self._value_out, h, c = self._rnn_model([inputs, seq_lens] + state)
|
| 281 |
+
return model_out, [h, c]
|
| 282 |
+
|
| 283 |
+
@override(ModelV2)
|
| 284 |
+
def get_initial_state(self) -> List[np.ndarray]:
|
| 285 |
+
return [
|
| 286 |
+
np.zeros(self.cell_size, np.float32),
|
| 287 |
+
np.zeros(self.cell_size, np.float32),
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
@override(ModelV2)
|
| 291 |
+
def value_function(self) -> TensorType:
|
| 292 |
+
return tf.reshape(self._value_out, [-1])
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/tf_distributions.py
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""The main difference between this and the old ActionDistribution is that this one
|
| 2 |
+
has more explicit input args. So that the input format does not have to be guessed from
|
| 3 |
+
the code. This matches the design pattern of torch distribution which developers may
|
| 4 |
+
already be familiar with.
|
| 5 |
+
"""
|
| 6 |
+
import gymnasium as gym
|
| 7 |
+
import tree
|
| 8 |
+
import numpy as np
|
| 9 |
+
from typing import Dict, Iterable, List, Optional
|
| 10 |
+
import abc
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from ray.rllib.models.distributions import Distribution
|
| 14 |
+
from ray.rllib.utils.annotations import override, DeveloperAPI
|
| 15 |
+
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
|
| 16 |
+
from ray.rllib.utils.typing import TensorType, Union, Tuple
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
_, tf, _ = try_import_tf()
|
| 20 |
+
tfp = try_import_tfp()
|
| 21 |
+
|
| 22 |
+
# TODO (Kourosh) Write unittest for this class similar to torch distributions.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@DeveloperAPI
|
| 26 |
+
class TfDistribution(Distribution, abc.ABC):
|
| 27 |
+
"""Wrapper class for tfp.distributions."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, *args, **kwargs):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self._dist = self._get_tf_distribution(*args, **kwargs)
|
| 32 |
+
|
| 33 |
+
@abc.abstractmethod
|
| 34 |
+
def _get_tf_distribution(self, *args, **kwargs) -> "tfp.distributions.Distribution":
|
| 35 |
+
"""Returns the tfp.distributions.Distribution object to use."""
|
| 36 |
+
|
| 37 |
+
@override(Distribution)
|
| 38 |
+
def logp(self, value: TensorType, **kwargs) -> TensorType:
|
| 39 |
+
return self._dist.log_prob(value, **kwargs)
|
| 40 |
+
|
| 41 |
+
@override(Distribution)
|
| 42 |
+
def entropy(self) -> TensorType:
|
| 43 |
+
return self._dist.entropy()
|
| 44 |
+
|
| 45 |
+
@override(Distribution)
|
| 46 |
+
def kl(self, other: "Distribution") -> TensorType:
|
| 47 |
+
return self._dist.kl_divergence(other._dist)
|
| 48 |
+
|
| 49 |
+
@override(Distribution)
|
| 50 |
+
def sample(
|
| 51 |
+
self, *, sample_shape=()
|
| 52 |
+
) -> Union[TensorType, Tuple[TensorType, TensorType]]:
|
| 53 |
+
sample = self._dist.sample(sample_shape)
|
| 54 |
+
return sample
|
| 55 |
+
|
| 56 |
+
@override(Distribution)
|
| 57 |
+
def rsample(
|
| 58 |
+
self, *, sample_shape=()
|
| 59 |
+
) -> Union[TensorType, Tuple[TensorType, TensorType]]:
|
| 60 |
+
raise NotImplementedError
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@DeveloperAPI
|
| 64 |
+
class TfCategorical(TfDistribution):
|
| 65 |
+
"""Wrapper class for Categorical distribution.
|
| 66 |
+
|
| 67 |
+
Creates a categorical distribution parameterized by either :attr:`probs` or
|
| 68 |
+
:attr:`logits` (but not both).
|
| 69 |
+
|
| 70 |
+
Samples are integers from :math:`\{0, \ldots, K-1\}` where `K` is
|
| 71 |
+
``probs.size(-1)``.
|
| 72 |
+
|
| 73 |
+
If `probs` is 1-dimensional with length-`K`, each element is the relative
|
| 74 |
+
probability of sampling the class at that index.
|
| 75 |
+
|
| 76 |
+
If `probs` is N-dimensional, the first N-1 dimensions are treated as a batch of
|
| 77 |
+
relative probability vectors.
|
| 78 |
+
|
| 79 |
+
.. testcode::
|
| 80 |
+
:skipif: True
|
| 81 |
+
|
| 82 |
+
m = TfCategorical([ 0.25, 0.25, 0.25, 0.25 ])
|
| 83 |
+
m.sample(sample_shape=(2,)) # equal probability of 0, 1, 2, 3
|
| 84 |
+
|
| 85 |
+
.. testoutput::
|
| 86 |
+
|
| 87 |
+
tf.Tensor([2 3], shape=(2,), dtype=int32)
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
probs: The probablities of each event.
|
| 91 |
+
logits: Event log probabilities (unnormalized)
|
| 92 |
+
temperature: In case of using logits, this parameter can be used to determine
|
| 93 |
+
the sharpness of the distribution. i.e.
|
| 94 |
+
``probs = softmax(logits / temperature)``. The temperature must be strictly
|
| 95 |
+
positive. A low value (e.g. 1e-10) will result in argmax sampling while a
|
| 96 |
+
larger value will result in uniform sampling.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
@override(TfDistribution)
|
| 100 |
+
def __init__(
|
| 101 |
+
self,
|
| 102 |
+
probs: "tf.Tensor" = None,
|
| 103 |
+
logits: "tf.Tensor" = None,
|
| 104 |
+
) -> None:
|
| 105 |
+
# We assert this here because to_deterministic makes this assumption.
|
| 106 |
+
assert (probs is None) != (
|
| 107 |
+
logits is None
|
| 108 |
+
), "Exactly one out of `probs` and `logits` must be set!"
|
| 109 |
+
|
| 110 |
+
self.probs = probs
|
| 111 |
+
self.logits = logits
|
| 112 |
+
self.one_hot = tfp.distributions.OneHotCategorical(logits=logits, probs=probs)
|
| 113 |
+
super().__init__(logits=logits, probs=probs)
|
| 114 |
+
|
| 115 |
+
@override(Distribution)
|
| 116 |
+
def logp(self, value: TensorType, **kwargs) -> TensorType:
|
| 117 |
+
# This prevents an error in which float values at the boundaries of the range
|
| 118 |
+
# of the distribution are passed to this function.
|
| 119 |
+
return -tf.nn.sparse_softmax_cross_entropy_with_logits(
|
| 120 |
+
logits=self.logits if self.logits is not None else tf.log(self.probs),
|
| 121 |
+
labels=tf.cast(value, tf.int32),
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
@override(TfDistribution)
|
| 125 |
+
def _get_tf_distribution(
|
| 126 |
+
self,
|
| 127 |
+
probs: "tf.Tensor" = None,
|
| 128 |
+
logits: "tf.Tensor" = None,
|
| 129 |
+
) -> "tfp.distributions.Distribution":
|
| 130 |
+
return tfp.distributions.Categorical(probs=probs, logits=logits)
|
| 131 |
+
|
| 132 |
+
@staticmethod
|
| 133 |
+
@override(Distribution)
|
| 134 |
+
def required_input_dim(space: gym.Space, **kwargs) -> int:
|
| 135 |
+
assert isinstance(space, gym.spaces.Discrete)
|
| 136 |
+
return int(space.n)
|
| 137 |
+
|
| 138 |
+
@override(Distribution)
|
| 139 |
+
def rsample(self, sample_shape=()):
|
| 140 |
+
one_hot_sample = self.one_hot.sample(sample_shape)
|
| 141 |
+
return tf.stop_gradients(one_hot_sample - self.probs) + self.probs
|
| 142 |
+
|
| 143 |
+
@classmethod
|
| 144 |
+
@override(Distribution)
|
| 145 |
+
def from_logits(cls, logits: TensorType, **kwargs) -> "TfCategorical":
|
| 146 |
+
return TfCategorical(logits=logits, **kwargs)
|
| 147 |
+
|
| 148 |
+
def to_deterministic(self) -> "TfDeterministic":
|
| 149 |
+
if self.probs is not None:
|
| 150 |
+
probs_or_logits = self.probs
|
| 151 |
+
else:
|
| 152 |
+
probs_or_logits = self.logits
|
| 153 |
+
|
| 154 |
+
return TfDeterministic(loc=tf.math.argmax(probs_or_logits, axis=-1))
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@DeveloperAPI
|
| 158 |
+
class TfDiagGaussian(TfDistribution):
|
| 159 |
+
"""Wrapper class for Normal distribution.
|
| 160 |
+
|
| 161 |
+
Creates a normal distribution parameterized by :attr:`loc` and :attr:`scale`. In
|
| 162 |
+
case of multi-dimensional distribution, the variance is assumed to be diagonal.
|
| 163 |
+
|
| 164 |
+
.. testcode::
|
| 165 |
+
:skipif: True
|
| 166 |
+
|
| 167 |
+
m = TfDiagGaussian(loc=[0.0, 0.0], scale=[1.0, 1.0])
|
| 168 |
+
m.sample(sample_shape=(2,)) # 2d normal dist with loc=0 and scale=1
|
| 169 |
+
|
| 170 |
+
.. testoutput::
|
| 171 |
+
|
| 172 |
+
tensor([[ 0.1046, -0.6120], [ 0.234, 0.556]])
|
| 173 |
+
|
| 174 |
+
.. testcode::
|
| 175 |
+
:skipif: True
|
| 176 |
+
|
| 177 |
+
# scale is None
|
| 178 |
+
m = TfDiagGaussian(loc=[0.0, 1.0])
|
| 179 |
+
m.sample(sample_shape=(2,)) # normally distributed with loc=0 and scale=1
|
| 180 |
+
|
| 181 |
+
.. testoutput::
|
| 182 |
+
|
| 183 |
+
tensor([0.1046, 0.6120])
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
loc: mean of the distribution (often referred to as mu). If scale is None, the
|
| 188 |
+
second half of the `loc` will be used as the log of scale.
|
| 189 |
+
scale: standard deviation of the distribution (often referred to as sigma).
|
| 190 |
+
Has to be positive.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
@override(TfDistribution)
|
| 194 |
+
def __init__(
|
| 195 |
+
self,
|
| 196 |
+
loc: Union[float, TensorType],
|
| 197 |
+
scale: Optional[Union[float, TensorType]] = None,
|
| 198 |
+
):
|
| 199 |
+
self.loc = loc
|
| 200 |
+
super().__init__(loc=loc, scale=scale)
|
| 201 |
+
|
| 202 |
+
@override(TfDistribution)
|
| 203 |
+
def _get_tf_distribution(self, loc, scale) -> "tfp.distributions.Distribution":
|
| 204 |
+
return tfp.distributions.Normal(loc=loc, scale=scale)
|
| 205 |
+
|
| 206 |
+
@override(TfDistribution)
|
| 207 |
+
def logp(self, value: TensorType) -> TensorType:
|
| 208 |
+
return tf.math.reduce_sum(super().logp(value), axis=-1)
|
| 209 |
+
|
| 210 |
+
@override(TfDistribution)
|
| 211 |
+
def entropy(self) -> TensorType:
|
| 212 |
+
return tf.math.reduce_sum(super().entropy(), axis=-1)
|
| 213 |
+
|
| 214 |
+
@override(TfDistribution)
|
| 215 |
+
def kl(self, other: "TfDistribution") -> TensorType:
|
| 216 |
+
return tf.math.reduce_sum(super().kl(other), axis=-1)
|
| 217 |
+
|
| 218 |
+
@staticmethod
|
| 219 |
+
@override(Distribution)
|
| 220 |
+
def required_input_dim(space: gym.Space, **kwargs) -> int:
|
| 221 |
+
assert isinstance(space, gym.spaces.Box)
|
| 222 |
+
return int(np.prod(space.shape, dtype=np.int32) * 2)
|
| 223 |
+
|
| 224 |
+
@override(Distribution)
|
| 225 |
+
def rsample(self, sample_shape=()):
|
| 226 |
+
eps = tf.random.normal(sample_shape)
|
| 227 |
+
return self._dist.loc + eps * self._dist.scale
|
| 228 |
+
|
| 229 |
+
@classmethod
|
| 230 |
+
@override(Distribution)
|
| 231 |
+
def from_logits(cls, logits: TensorType, **kwargs) -> "TfDiagGaussian":
|
| 232 |
+
loc, log_std = tf.split(logits, num_or_size_splits=2, axis=-1)
|
| 233 |
+
scale = tf.math.exp(log_std)
|
| 234 |
+
return TfDiagGaussian(loc=loc, scale=scale)
|
| 235 |
+
|
| 236 |
+
def to_deterministic(self) -> "TfDeterministic":
|
| 237 |
+
return TfDeterministic(loc=self.loc)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
@DeveloperAPI
|
| 241 |
+
class TfDeterministic(Distribution):
|
| 242 |
+
"""The distribution that returns the input values directly.
|
| 243 |
+
|
| 244 |
+
This is similar to DiagGaussian with standard deviation zero (thus only
|
| 245 |
+
requiring the "mean" values as NN output).
|
| 246 |
+
|
| 247 |
+
Note: entropy is always zero, ang logp and kl are not implemented.
|
| 248 |
+
|
| 249 |
+
.. testcode::
|
| 250 |
+
:skipif: True
|
| 251 |
+
|
| 252 |
+
m = TfDeterministic(loc=tf.constant([0.0, 0.0]))
|
| 253 |
+
m.sample(sample_shape=(2,))
|
| 254 |
+
|
| 255 |
+
.. testoutput::
|
| 256 |
+
|
| 257 |
+
Tensor([[ 0.0, 0.0], [ 0.0, 0.0]])
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
loc: the determinsitic value to return
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
@override(Distribution)
|
| 264 |
+
def __init__(self, loc: "tf.Tensor") -> None:
|
| 265 |
+
super().__init__()
|
| 266 |
+
self.loc = loc
|
| 267 |
+
|
| 268 |
+
@override(Distribution)
|
| 269 |
+
def sample(
|
| 270 |
+
self,
|
| 271 |
+
*,
|
| 272 |
+
sample_shape: Tuple[int, ...] = (),
|
| 273 |
+
**kwargs,
|
| 274 |
+
) -> Union[TensorType, Tuple[TensorType, TensorType]]:
|
| 275 |
+
shape = sample_shape + self.loc.shape
|
| 276 |
+
return tf.ones(shape, dtype=self.loc.dtype) * self.loc
|
| 277 |
+
|
| 278 |
+
@override(Distribution)
|
| 279 |
+
def rsample(
|
| 280 |
+
self,
|
| 281 |
+
*,
|
| 282 |
+
sample_shape: Tuple[int, ...] = None,
|
| 283 |
+
**kwargs,
|
| 284 |
+
) -> Union[TensorType, Tuple[TensorType, TensorType]]:
|
| 285 |
+
raise NotImplementedError
|
| 286 |
+
|
| 287 |
+
@override(Distribution)
|
| 288 |
+
def logp(self, value: TensorType, **kwargs) -> TensorType:
|
| 289 |
+
return tf.zeros_like(self.loc)
|
| 290 |
+
|
| 291 |
+
@override(Distribution)
|
| 292 |
+
def entropy(self, **kwargs) -> TensorType:
|
| 293 |
+
raise RuntimeError(f"`entropy()` not supported for {self.__class__.__name__}.")
|
| 294 |
+
|
| 295 |
+
@override(Distribution)
|
| 296 |
+
def kl(self, other: "Distribution", **kwargs) -> TensorType:
|
| 297 |
+
raise RuntimeError(f"`kl()` not supported for {self.__class__.__name__}.")
|
| 298 |
+
|
| 299 |
+
@staticmethod
|
| 300 |
+
@override(Distribution)
|
| 301 |
+
def required_input_dim(space: gym.Space, **kwargs) -> int:
|
| 302 |
+
assert isinstance(space, gym.spaces.Box)
|
| 303 |
+
return int(np.prod(space.shape, dtype=np.int32))
|
| 304 |
+
|
| 305 |
+
@classmethod
|
| 306 |
+
@override(Distribution)
|
| 307 |
+
def from_logits(cls, logits: TensorType, **kwargs) -> "TfDeterministic":
|
| 308 |
+
return TfDeterministic(loc=logits)
|
| 309 |
+
|
| 310 |
+
def to_deterministic(self) -> "TfDeterministic":
|
| 311 |
+
return self
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
@DeveloperAPI
|
| 315 |
+
class TfMultiCategorical(Distribution):
|
| 316 |
+
"""MultiCategorical distribution for MultiDiscrete action spaces."""
|
| 317 |
+
|
| 318 |
+
@override(Distribution)
|
| 319 |
+
def __init__(
|
| 320 |
+
self,
|
| 321 |
+
categoricals: List[TfCategorical],
|
| 322 |
+
):
|
| 323 |
+
super().__init__()
|
| 324 |
+
self._cats = categoricals
|
| 325 |
+
|
| 326 |
+
@override(Distribution)
|
| 327 |
+
def sample(self) -> TensorType:
|
| 328 |
+
arr = [cat.sample() for cat in self._cats]
|
| 329 |
+
sample_ = tf.stack(arr, axis=-1)
|
| 330 |
+
return sample_
|
| 331 |
+
|
| 332 |
+
@override(Distribution)
|
| 333 |
+
def rsample(self, sample_shape=()):
|
| 334 |
+
arr = [cat.rsample() for cat in self._cats]
|
| 335 |
+
sample_ = tf.stack(arr, axis=-1)
|
| 336 |
+
return sample_
|
| 337 |
+
|
| 338 |
+
@override(Distribution)
|
| 339 |
+
def logp(self, value: tf.Tensor) -> TensorType:
|
| 340 |
+
actions = tf.unstack(tf.cast(value, tf.int32), axis=-1)
|
| 341 |
+
logps = tf.stack([cat.logp(act) for cat, act in zip(self._cats, actions)])
|
| 342 |
+
return tf.reduce_sum(logps, axis=0)
|
| 343 |
+
|
| 344 |
+
@override(Distribution)
|
| 345 |
+
def entropy(self) -> TensorType:
|
| 346 |
+
return tf.reduce_sum(
|
| 347 |
+
tf.stack([cat.entropy() for cat in self._cats], axis=-1), axis=-1
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
@override(Distribution)
|
| 351 |
+
def kl(self, other: Distribution) -> TensorType:
|
| 352 |
+
kls = tf.stack(
|
| 353 |
+
[cat.kl(oth_cat) for cat, oth_cat in zip(self._cats, other._cats)], axis=-1
|
| 354 |
+
)
|
| 355 |
+
return tf.reduce_sum(kls, axis=-1)
|
| 356 |
+
|
| 357 |
+
@staticmethod
|
| 358 |
+
@override(Distribution)
|
| 359 |
+
def required_input_dim(space: gym.Space, **kwargs) -> int:
|
| 360 |
+
assert isinstance(space, gym.spaces.MultiDiscrete)
|
| 361 |
+
return int(np.sum(space.nvec))
|
| 362 |
+
|
| 363 |
+
@classmethod
|
| 364 |
+
@override(Distribution)
|
| 365 |
+
def from_logits(
|
| 366 |
+
cls,
|
| 367 |
+
logits: tf.Tensor,
|
| 368 |
+
input_lens: List[int],
|
| 369 |
+
**kwargs,
|
| 370 |
+
) -> "TfMultiCategorical":
|
| 371 |
+
"""Creates this Distribution from logits (and additional arguments).
|
| 372 |
+
|
| 373 |
+
If you wish to create this distribution from logits only, please refer to
|
| 374 |
+
`Distribution.get_partial_dist_cls()`.
|
| 375 |
+
|
| 376 |
+
Args:
|
| 377 |
+
logits: The tensor containing logits to be separated by logit_lens.
|
| 378 |
+
child_distribution_cls_struct: A struct of Distribution classes that can
|
| 379 |
+
be instantiated from the given logits.
|
| 380 |
+
input_lens: A list of integers that indicate the length of the logits
|
| 381 |
+
vectors to be passed into each child distribution.
|
| 382 |
+
**kwargs: Forward compatibility kwargs.
|
| 383 |
+
"""
|
| 384 |
+
categoricals = [
|
| 385 |
+
TfCategorical(logits=logits)
|
| 386 |
+
for logits in tf.split(logits, input_lens, axis=-1)
|
| 387 |
+
]
|
| 388 |
+
|
| 389 |
+
return TfMultiCategorical(categoricals=categoricals)
|
| 390 |
+
|
| 391 |
+
def to_deterministic(self) -> "TfMultiDistribution":
|
| 392 |
+
return TfMultiDistribution([cat.to_deterministic() for cat in self._cats])
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
@DeveloperAPI
|
| 396 |
+
class TfMultiDistribution(Distribution):
|
| 397 |
+
"""Action distribution that operates on multiple, possibly nested actions."""
|
| 398 |
+
|
| 399 |
+
def __init__(
|
| 400 |
+
self,
|
| 401 |
+
child_distribution_struct: Union[Tuple, List, Dict],
|
| 402 |
+
):
|
| 403 |
+
"""Initializes a TfMultiDistribution object.
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
child_distribution_struct: Any struct
|
| 407 |
+
that contains the child distribution classes to use to
|
| 408 |
+
instantiate the child distributions from `logits`.
|
| 409 |
+
"""
|
| 410 |
+
super().__init__()
|
| 411 |
+
self._original_struct = child_distribution_struct
|
| 412 |
+
self._flat_child_distributions = tree.flatten(child_distribution_struct)
|
| 413 |
+
|
| 414 |
+
@override(Distribution)
|
| 415 |
+
def rsample(
|
| 416 |
+
self,
|
| 417 |
+
*,
|
| 418 |
+
sample_shape: Tuple[int, ...] = None,
|
| 419 |
+
**kwargs,
|
| 420 |
+
) -> Union[TensorType, Tuple[TensorType, TensorType]]:
|
| 421 |
+
rsamples = []
|
| 422 |
+
for dist in self._flat_child_distributions:
|
| 423 |
+
rsample = dist.rsample(sample_shape=sample_shape, **kwargs)
|
| 424 |
+
rsamples.append(rsample)
|
| 425 |
+
|
| 426 |
+
rsamples = tree.unflatten_as(self._original_struct, rsamples)
|
| 427 |
+
return rsamples
|
| 428 |
+
|
| 429 |
+
@override(Distribution)
|
| 430 |
+
def logp(self, value):
|
| 431 |
+
# Single tensor input (all merged).
|
| 432 |
+
if isinstance(value, (tf.Tensor, np.ndarray)):
|
| 433 |
+
split_indices = []
|
| 434 |
+
for dist in self._flat_child_distributions:
|
| 435 |
+
if isinstance(dist, TfCategorical):
|
| 436 |
+
split_indices.append(1)
|
| 437 |
+
elif isinstance(dist, TfMultiCategorical):
|
| 438 |
+
split_indices.append(len(dist._cats))
|
| 439 |
+
else:
|
| 440 |
+
sample = dist.sample()
|
| 441 |
+
# Cover Box(shape=()) case.
|
| 442 |
+
if len(sample.shape) == 1:
|
| 443 |
+
split_indices.append(1)
|
| 444 |
+
else:
|
| 445 |
+
split_indices.append(tf.shape(sample)[1])
|
| 446 |
+
split_value = tf.split(value, split_indices, axis=1)
|
| 447 |
+
# Structured or flattened (by single action component) input.
|
| 448 |
+
else:
|
| 449 |
+
split_value = tree.flatten(value)
|
| 450 |
+
|
| 451 |
+
def map_(val, dist):
|
| 452 |
+
# Remove extra dimension if present.
|
| 453 |
+
if (
|
| 454 |
+
isinstance(dist, TfCategorical)
|
| 455 |
+
and len(val.shape) > 1
|
| 456 |
+
and val.shape[-1] == 1
|
| 457 |
+
):
|
| 458 |
+
val = tf.squeeze(val, axis=-1)
|
| 459 |
+
|
| 460 |
+
return dist.logp(val)
|
| 461 |
+
|
| 462 |
+
# Remove extra categorical dimension and take the logp of each
|
| 463 |
+
# component.
|
| 464 |
+
flat_logps = tree.map_structure(
|
| 465 |
+
map_, split_value, self._flat_child_distributions
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
return sum(flat_logps)
|
| 469 |
+
|
| 470 |
+
@override(Distribution)
|
| 471 |
+
def kl(self, other):
|
| 472 |
+
kl_list = [
|
| 473 |
+
d.kl(o)
|
| 474 |
+
for d, o in zip(
|
| 475 |
+
self._flat_child_distributions, other._flat_child_distributions
|
| 476 |
+
)
|
| 477 |
+
]
|
| 478 |
+
return sum(kl_list)
|
| 479 |
+
|
| 480 |
+
@override(Distribution)
|
| 481 |
+
def entropy(self):
|
| 482 |
+
entropy_list = [d.entropy() for d in self._flat_child_distributions]
|
| 483 |
+
return sum(entropy_list)
|
| 484 |
+
|
| 485 |
+
@override(Distribution)
|
| 486 |
+
def sample(self):
|
| 487 |
+
child_distributions_struct = tree.unflatten_as(
|
| 488 |
+
self._original_struct, self._flat_child_distributions
|
| 489 |
+
)
|
| 490 |
+
return tree.map_structure(lambda s: s.sample(), child_distributions_struct)
|
| 491 |
+
|
| 492 |
+
@staticmethod
|
| 493 |
+
@override(Distribution)
|
| 494 |
+
def required_input_dim(space: gym.Space, input_lens: List[int], **kwargs) -> int:
|
| 495 |
+
return sum(input_lens)
|
| 496 |
+
|
| 497 |
+
@classmethod
|
| 498 |
+
@override(Distribution)
|
| 499 |
+
def from_logits(
|
| 500 |
+
cls,
|
| 501 |
+
logits: tf.Tensor,
|
| 502 |
+
child_distribution_cls_struct: Union[Dict, Iterable],
|
| 503 |
+
input_lens: Union[Dict, List[int]],
|
| 504 |
+
space: gym.Space,
|
| 505 |
+
**kwargs,
|
| 506 |
+
) -> "TfMultiDistribution":
|
| 507 |
+
"""Creates this Distribution from logits (and additional arguments).
|
| 508 |
+
|
| 509 |
+
If you wish to create this distribution from logits only, please refer to
|
| 510 |
+
`Distribution.get_partial_dist_cls()`.
|
| 511 |
+
|
| 512 |
+
Args:
|
| 513 |
+
logits: The tensor containing logits to be separated by `input_lens`.
|
| 514 |
+
child_distribution_cls_struct: A struct of Distribution classes that can
|
| 515 |
+
be instantiated from the given logits.
|
| 516 |
+
child_distribution_cls_struct: A struct of Distribution classes that can
|
| 517 |
+
be instantiated from the given logits.
|
| 518 |
+
input_lens: A list or dict of integers that indicate the length of each
|
| 519 |
+
logit. If this is given as a dict, the structure should match the
|
| 520 |
+
structure of child_distribution_cls_struct.
|
| 521 |
+
space: The possibly nested output space.
|
| 522 |
+
**kwargs: Forward compatibility kwargs.
|
| 523 |
+
|
| 524 |
+
Returns:
|
| 525 |
+
A TfMultiDistribution object.
|
| 526 |
+
"""
|
| 527 |
+
logit_lens = tree.flatten(input_lens)
|
| 528 |
+
child_distribution_cls_list = tree.flatten(child_distribution_cls_struct)
|
| 529 |
+
split_logits = tf.split(logits, logit_lens, axis=1)
|
| 530 |
+
|
| 531 |
+
child_distribution_list = tree.map_structure(
|
| 532 |
+
lambda dist, input_: dist.from_logits(input_),
|
| 533 |
+
child_distribution_cls_list,
|
| 534 |
+
list(split_logits),
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
child_distribution_struct = tree.unflatten_as(
|
| 538 |
+
child_distribution_cls_struct, child_distribution_list
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
return TfMultiDistribution(
|
| 542 |
+
child_distribution_struct=child_distribution_struct,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
def to_deterministic(self) -> "TfMultiDistribution":
|
| 546 |
+
flat_deterministic_dists = [
|
| 547 |
+
dist.to_deterministic for dist in self._flat_child_distributions
|
| 548 |
+
]
|
| 549 |
+
deterministic_dists = tree.unflatten_as(
|
| 550 |
+
self._original_struct, flat_deterministic_dists
|
| 551 |
+
)
|
| 552 |
+
return TfMultiDistribution(deterministic_dists)
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/tf/tf_modelv2.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import gymnasium as gym
|
| 3 |
+
import re
|
| 4 |
+
from typing import Dict, List, Union
|
| 5 |
+
|
| 6 |
+
from ray.util import log_once
|
| 7 |
+
from ray.rllib.models.modelv2 import ModelV2
|
| 8 |
+
from ray.rllib.utils.annotations import OldAPIStack, override
|
| 9 |
+
from ray.rllib.utils.deprecation import deprecation_warning
|
| 10 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 11 |
+
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
| 12 |
+
|
| 13 |
+
tf1, tf, tfv = try_import_tf()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@OldAPIStack
|
| 17 |
+
class TFModelV2(ModelV2):
|
| 18 |
+
"""TF version of ModelV2, which should contain a tf keras Model.
|
| 19 |
+
|
| 20 |
+
Note that this class by itself is not a valid model unless you
|
| 21 |
+
implement forward() in a subclass."""
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
obs_space: gym.spaces.Space,
|
| 26 |
+
action_space: gym.spaces.Space,
|
| 27 |
+
num_outputs: int,
|
| 28 |
+
model_config: ModelConfigDict,
|
| 29 |
+
name: str,
|
| 30 |
+
):
|
| 31 |
+
"""Initializes a TFModelV2 instance.
|
| 32 |
+
|
| 33 |
+
Here is an example implementation for a subclass
|
| 34 |
+
``MyModelClass(TFModelV2)``::
|
| 35 |
+
|
| 36 |
+
def __init__(self, *args, **kwargs):
|
| 37 |
+
super(MyModelClass, self).__init__(*args, **kwargs)
|
| 38 |
+
input_layer = tf.keras.layers.Input(...)
|
| 39 |
+
hidden_layer = tf.keras.layers.Dense(...)(input_layer)
|
| 40 |
+
output_layer = tf.keras.layers.Dense(...)(hidden_layer)
|
| 41 |
+
value_layer = tf.keras.layers.Dense(...)(hidden_layer)
|
| 42 |
+
self.base_model = tf.keras.Model(
|
| 43 |
+
input_layer, [output_layer, value_layer])
|
| 44 |
+
"""
|
| 45 |
+
super().__init__(
|
| 46 |
+
obs_space, action_space, num_outputs, model_config, name, framework="tf"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Deprecated: TFModelV2 now automatically track their variables.
|
| 50 |
+
self.var_list = []
|
| 51 |
+
|
| 52 |
+
if tf1.executing_eagerly():
|
| 53 |
+
self.graph = None
|
| 54 |
+
else:
|
| 55 |
+
self.graph = tf1.get_default_graph()
|
| 56 |
+
|
| 57 |
+
def context(self) -> contextlib.AbstractContextManager:
|
| 58 |
+
"""Returns a contextmanager for the current TF graph."""
|
| 59 |
+
if self.graph:
|
| 60 |
+
return self.graph.as_default()
|
| 61 |
+
else:
|
| 62 |
+
return ModelV2.context(self)
|
| 63 |
+
|
| 64 |
+
def update_ops(self) -> List[TensorType]:
|
| 65 |
+
"""Return the list of update ops for this model.
|
| 66 |
+
|
| 67 |
+
For example, this should include any BatchNorm update ops."""
|
| 68 |
+
return []
|
| 69 |
+
|
| 70 |
+
def register_variables(self, variables: List[TensorType]) -> None:
|
| 71 |
+
"""Register the given list of variables with this model."""
|
| 72 |
+
if log_once("deprecated_tfmodelv2_register_variables"):
|
| 73 |
+
deprecation_warning(old="TFModelV2.register_variables", error=False)
|
| 74 |
+
self.var_list.extend(variables)
|
| 75 |
+
|
| 76 |
+
@override(ModelV2)
|
| 77 |
+
def variables(
|
| 78 |
+
self, as_dict: bool = False
|
| 79 |
+
) -> Union[List[TensorType], Dict[str, TensorType]]:
|
| 80 |
+
if as_dict:
|
| 81 |
+
# Old way using `register_variables`.
|
| 82 |
+
if self.var_list:
|
| 83 |
+
return {v.name: v for v in self.var_list}
|
| 84 |
+
# New way: Automatically determine the var tree.
|
| 85 |
+
else:
|
| 86 |
+
return self._find_sub_modules("", self.__dict__)
|
| 87 |
+
|
| 88 |
+
# Old way using `register_variables`.
|
| 89 |
+
if self.var_list:
|
| 90 |
+
return list(self.var_list)
|
| 91 |
+
# New way: Automatically determine the var tree.
|
| 92 |
+
else:
|
| 93 |
+
return list(self.variables(as_dict=True).values())
|
| 94 |
+
|
| 95 |
+
@override(ModelV2)
|
| 96 |
+
def trainable_variables(
|
| 97 |
+
self, as_dict: bool = False
|
| 98 |
+
) -> Union[List[TensorType], Dict[str, TensorType]]:
|
| 99 |
+
if as_dict:
|
| 100 |
+
return {
|
| 101 |
+
k: v for k, v in self.variables(as_dict=True).items() if v.trainable
|
| 102 |
+
}
|
| 103 |
+
return [v for v in self.variables() if v.trainable]
|
| 104 |
+
|
| 105 |
+
@staticmethod
|
| 106 |
+
def _find_sub_modules(current_key, struct):
|
| 107 |
+
# Keras Model: key=k + "." + var-name (replace '/' by '.').
|
| 108 |
+
if isinstance(struct, tf.keras.models.Model) or isinstance(struct, tf.Module):
|
| 109 |
+
ret = {}
|
| 110 |
+
for var in struct.variables:
|
| 111 |
+
name = re.sub("/", ".", var.name)
|
| 112 |
+
key = current_key + "." + name
|
| 113 |
+
ret[key] = var
|
| 114 |
+
return ret
|
| 115 |
+
# Other TFModelV2: Include its vars into ours.
|
| 116 |
+
elif isinstance(struct, TFModelV2):
|
| 117 |
+
return {
|
| 118 |
+
current_key + "." + key: var
|
| 119 |
+
for key, var in struct.variables(as_dict=True).items()
|
| 120 |
+
}
|
| 121 |
+
# tf.Variable
|
| 122 |
+
elif isinstance(struct, tf.Variable):
|
| 123 |
+
return {current_key: struct}
|
| 124 |
+
# List/Tuple.
|
| 125 |
+
elif isinstance(struct, (tuple, list)):
|
| 126 |
+
ret = {}
|
| 127 |
+
for i, value in enumerate(struct):
|
| 128 |
+
sub_vars = TFModelV2._find_sub_modules(
|
| 129 |
+
current_key + "_{}".format(i), value
|
| 130 |
+
)
|
| 131 |
+
ret.update(sub_vars)
|
| 132 |
+
return ret
|
| 133 |
+
# Dict.
|
| 134 |
+
elif isinstance(struct, dict):
|
| 135 |
+
if current_key:
|
| 136 |
+
current_key += "_"
|
| 137 |
+
ret = {}
|
| 138 |
+
for key, value in struct.items():
|
| 139 |
+
sub_vars = TFModelV2._find_sub_modules(current_key + str(key), value)
|
| 140 |
+
ret.update(sub_vars)
|
| 141 |
+
return ret
|
| 142 |
+
return {}
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (180 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/attention_net.cpython-310.pyc
ADDED
|
Binary file (11.6 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/complex_input_net.cpython-310.pyc
ADDED
|
Binary file (4.81 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/fcnet.cpython-310.pyc
ADDED
|
Binary file (3.35 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/mingpt.cpython-310.pyc
ADDED
|
Binary file (8.34 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/misc.cpython-310.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/noop.cpython-310.pyc
ADDED
|
Binary file (883 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/recurrent_net.cpython-310.pyc
ADDED
|
Binary file (8.45 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_action_dist.cpython-310.pyc
ADDED
|
Binary file (25 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_distributions.cpython-310.pyc
ADDED
|
Binary file (24.4 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/torch_modelv2.cpython-310.pyc
ADDED
|
Binary file (3.02 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/__pycache__/visionnet.cpython-310.pyc
ADDED
|
Binary file (4.81 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (590 Bytes). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/gru_gate.cpython-310.pyc
ADDED
|
Binary file (2.02 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/models/torch/modules/__pycache__/multi_head_attention.cpython-310.pyc
ADDED
|
Binary file (2.43 kB). View file
|
|
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/utils/__init__.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
from ray.rllib.utils.annotations import override, PublicAPI, DeveloperAPI
|
| 5 |
+
from ray.rllib.utils.deprecation import deprecation_warning
|
| 6 |
+
from ray.rllib.utils.filter import Filter
|
| 7 |
+
from ray.rllib.utils.filter_manager import FilterManager
|
| 8 |
+
from ray.rllib.utils.framework import (
|
| 9 |
+
try_import_jax,
|
| 10 |
+
try_import_tf,
|
| 11 |
+
try_import_tfp,
|
| 12 |
+
try_import_torch,
|
| 13 |
+
)
|
| 14 |
+
from ray.rllib.utils.numpy import (
|
| 15 |
+
sigmoid,
|
| 16 |
+
softmax,
|
| 17 |
+
relu,
|
| 18 |
+
one_hot,
|
| 19 |
+
fc,
|
| 20 |
+
lstm,
|
| 21 |
+
SMALL_NUMBER,
|
| 22 |
+
LARGE_INTEGER,
|
| 23 |
+
MIN_LOG_NN_OUTPUT,
|
| 24 |
+
MAX_LOG_NN_OUTPUT,
|
| 25 |
+
)
|
| 26 |
+
from ray.rllib.utils.schedules import (
|
| 27 |
+
LinearSchedule,
|
| 28 |
+
PiecewiseSchedule,
|
| 29 |
+
PolynomialSchedule,
|
| 30 |
+
ExponentialSchedule,
|
| 31 |
+
ConstantSchedule,
|
| 32 |
+
)
|
| 33 |
+
from ray.rllib.utils.test_utils import (
|
| 34 |
+
check,
|
| 35 |
+
check_compute_single_action,
|
| 36 |
+
check_train_results,
|
| 37 |
+
)
|
| 38 |
+
from ray.tune.utils import merge_dicts, deep_update
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@DeveloperAPI
|
| 42 |
+
def add_mixins(base, mixins, reversed=False):
|
| 43 |
+
"""Returns a new class with mixins applied in priority order."""
|
| 44 |
+
|
| 45 |
+
mixins = list(mixins or [])
|
| 46 |
+
|
| 47 |
+
while mixins:
|
| 48 |
+
if reversed:
|
| 49 |
+
|
| 50 |
+
class new_base(base, mixins.pop()):
|
| 51 |
+
pass
|
| 52 |
+
|
| 53 |
+
else:
|
| 54 |
+
|
| 55 |
+
class new_base(mixins.pop(), base):
|
| 56 |
+
pass
|
| 57 |
+
|
| 58 |
+
base = new_base
|
| 59 |
+
|
| 60 |
+
return base
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@DeveloperAPI
|
| 64 |
+
def force_list(elements=None, to_tuple=False):
|
| 65 |
+
"""
|
| 66 |
+
Makes sure `elements` is returned as a list, whether `elements` is a single
|
| 67 |
+
item, already a list, or a tuple.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
elements (Optional[any]): The inputs as single item, list, or tuple to
|
| 71 |
+
be converted into a list/tuple. If None, returns empty list/tuple.
|
| 72 |
+
to_tuple: Whether to use tuple (instead of list).
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
Union[list,tuple]: All given elements in a list/tuple depending on
|
| 76 |
+
`to_tuple`'s value. If elements is None,
|
| 77 |
+
returns an empty list/tuple.
|
| 78 |
+
"""
|
| 79 |
+
ctor = list
|
| 80 |
+
if to_tuple is True:
|
| 81 |
+
ctor = tuple
|
| 82 |
+
return (
|
| 83 |
+
ctor()
|
| 84 |
+
if elements is None
|
| 85 |
+
else ctor(elements)
|
| 86 |
+
if type(elements) in [list, set, tuple]
|
| 87 |
+
else ctor([elements])
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@DeveloperAPI
|
| 92 |
+
class NullContextManager(contextlib.AbstractContextManager):
|
| 93 |
+
"""No-op context manager"""
|
| 94 |
+
|
| 95 |
+
def __init__(self):
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
def __enter__(self):
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
def __exit__(self, *args):
|
| 102 |
+
pass
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
force_tuple = partial(force_list, to_tuple=True)
|
| 106 |
+
|
| 107 |
+
__all__ = [
|
| 108 |
+
"add_mixins",
|
| 109 |
+
"check",
|
| 110 |
+
"check_compute_single_action",
|
| 111 |
+
"check_train_results",
|
| 112 |
+
"deep_update",
|
| 113 |
+
"deprecation_warning",
|
| 114 |
+
"fc",
|
| 115 |
+
"force_list",
|
| 116 |
+
"force_tuple",
|
| 117 |
+
"lstm",
|
| 118 |
+
"merge_dicts",
|
| 119 |
+
"one_hot",
|
| 120 |
+
"override",
|
| 121 |
+
"relu",
|
| 122 |
+
"sigmoid",
|
| 123 |
+
"softmax",
|
| 124 |
+
"try_import_jax",
|
| 125 |
+
"try_import_tf",
|
| 126 |
+
"try_import_tfp",
|
| 127 |
+
"try_import_torch",
|
| 128 |
+
"ConstantSchedule",
|
| 129 |
+
"DeveloperAPI",
|
| 130 |
+
"ExponentialSchedule",
|
| 131 |
+
"Filter",
|
| 132 |
+
"FilterManager",
|
| 133 |
+
"LARGE_INTEGER",
|
| 134 |
+
"LinearSchedule",
|
| 135 |
+
"MAX_LOG_NN_OUTPUT",
|
| 136 |
+
"MIN_LOG_NN_OUTPUT",
|
| 137 |
+
"PiecewiseSchedule",
|
| 138 |
+
"PolynomialSchedule",
|
| 139 |
+
"PublicAPI",
|
| 140 |
+
"SMALL_NUMBER",
|
| 141 |
+
]
|
infer_4_37_2/lib/python3.10/site-packages/ray/rllib/utils/from_config.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from copy import deepcopy
|
| 2 |
+
from functools import partial
|
| 3 |
+
import importlib
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
import re
|
| 7 |
+
import yaml
|
| 8 |
+
|
| 9 |
+
from ray.rllib.utils.annotations import DeveloperAPI
|
| 10 |
+
from ray.rllib.utils import force_list, merge_dicts
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@DeveloperAPI
|
| 14 |
+
def from_config(cls, config=None, **kwargs):
|
| 15 |
+
"""Uses the given config to create an object.
|
| 16 |
+
|
| 17 |
+
If `config` is a dict, an optional "type" key can be used as a
|
| 18 |
+
"constructor hint" to specify a certain class of the object.
|
| 19 |
+
If `config` is not a dict, `config`'s value is used directly as this
|
| 20 |
+
"constructor hint".
|
| 21 |
+
|
| 22 |
+
The rest of `config` (if it's a dict) will be used as kwargs for the
|
| 23 |
+
constructor. Additional keys in **kwargs will always have precedence
|
| 24 |
+
(overwrite keys in `config` (if a dict)).
|
| 25 |
+
Also, if the config-dict or **kwargs contains the special key "_args",
|
| 26 |
+
it will be popped from the dict and used as *args list to be passed
|
| 27 |
+
separately to the constructor.
|
| 28 |
+
|
| 29 |
+
The following constructor hints are valid:
|
| 30 |
+
- None: Use `cls` as constructor.
|
| 31 |
+
- An already instantiated object: Will be returned as is; no
|
| 32 |
+
constructor call.
|
| 33 |
+
- A string or an object that is a key in `cls`'s `__type_registry__`
|
| 34 |
+
dict: The value in `__type_registry__` for that key will be used
|
| 35 |
+
as the constructor.
|
| 36 |
+
- A python callable: Use that very callable as constructor.
|
| 37 |
+
- A string: Either a json/yaml filename or the name of a python
|
| 38 |
+
module+class (e.g. "ray.rllib. [...] .[some class name]")
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
cls: The class to build an instance for (from `config`).
|
| 42 |
+
config (Optional[dict, str]): The config dict or type-string or
|
| 43 |
+
filename.
|
| 44 |
+
|
| 45 |
+
Keyword Args:
|
| 46 |
+
kwargs: Optional possibility to pass the constructor arguments in
|
| 47 |
+
here and use `config` as the type-only info. Then we can call
|
| 48 |
+
this like: from_config([type]?, [**kwargs for constructor])
|
| 49 |
+
If `config` is already a dict, then `kwargs` will be merged
|
| 50 |
+
with `config` (overwriting keys in `config`) after "type" has
|
| 51 |
+
been popped out of `config`.
|
| 52 |
+
If a constructor of a Configurable needs *args, the special
|
| 53 |
+
key `_args` can be passed inside `kwargs` with a list value
|
| 54 |
+
(e.g. kwargs={"_args": [arg1, arg2, arg3]}).
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
any: The object generated from the config.
|
| 58 |
+
"""
|
| 59 |
+
# `cls` is the config (config is None).
|
| 60 |
+
if config is None and isinstance(cls, (dict, str)):
|
| 61 |
+
config = cls
|
| 62 |
+
cls = None
|
| 63 |
+
# `config` is already a created object of this class ->
|
| 64 |
+
# Take it as is.
|
| 65 |
+
elif isinstance(cls, type) and isinstance(config, cls):
|
| 66 |
+
return config
|
| 67 |
+
|
| 68 |
+
# `type_`: Indicator for the Configurable's constructor.
|
| 69 |
+
# `ctor_args`: *args arguments for the constructor.
|
| 70 |
+
# `ctor_kwargs`: **kwargs arguments for the constructor.
|
| 71 |
+
# Try to copy, so caller can reuse safely.
|
| 72 |
+
try:
|
| 73 |
+
config = deepcopy(config)
|
| 74 |
+
except Exception:
|
| 75 |
+
pass
|
| 76 |
+
if isinstance(config, dict):
|
| 77 |
+
type_ = config.pop("type", None)
|
| 78 |
+
if type_ is None and isinstance(cls, str):
|
| 79 |
+
type_ = cls
|
| 80 |
+
ctor_kwargs = config
|
| 81 |
+
# Give kwargs priority over things defined in config dict.
|
| 82 |
+
# This way, one can pass a generic `spec` and then override single
|
| 83 |
+
# constructor parameters via the kwargs in the call to `from_config`.
|
| 84 |
+
ctor_kwargs.update(kwargs)
|
| 85 |
+
else:
|
| 86 |
+
type_ = config
|
| 87 |
+
if type_ is None and "type" in kwargs:
|
| 88 |
+
type_ = kwargs.pop("type")
|
| 89 |
+
ctor_kwargs = kwargs
|
| 90 |
+
# Special `_args` field in kwargs for *args-utilizing constructors.
|
| 91 |
+
ctor_args = force_list(ctor_kwargs.pop("_args", []))
|
| 92 |
+
|
| 93 |
+
# Figure out the actual constructor (class) from `type_`.
|
| 94 |
+
# None: Try __default__object (if no args/kwargs), only then
|
| 95 |
+
# constructor of cls (using args/kwargs).
|
| 96 |
+
if type_ is None:
|
| 97 |
+
# We have a default constructor that was defined directly by cls
|
| 98 |
+
# (not by its children).
|
| 99 |
+
if (
|
| 100 |
+
cls is not None
|
| 101 |
+
and hasattr(cls, "__default_constructor__")
|
| 102 |
+
and cls.__default_constructor__ is not None
|
| 103 |
+
and ctor_args == []
|
| 104 |
+
and (
|
| 105 |
+
not hasattr(cls.__bases__[0], "__default_constructor__")
|
| 106 |
+
or cls.__bases__[0].__default_constructor__ is None
|
| 107 |
+
or cls.__bases__[0].__default_constructor__
|
| 108 |
+
is not cls.__default_constructor__
|
| 109 |
+
)
|
| 110 |
+
):
|
| 111 |
+
constructor = cls.__default_constructor__
|
| 112 |
+
# Default constructor's keywords into ctor_kwargs.
|
| 113 |
+
if isinstance(constructor, partial):
|
| 114 |
+
kwargs = merge_dicts(ctor_kwargs, constructor.keywords)
|
| 115 |
+
constructor = partial(constructor.func, **kwargs)
|
| 116 |
+
ctor_kwargs = {} # erase to avoid duplicate kwarg error
|
| 117 |
+
# No default constructor -> Try cls itself as constructor.
|
| 118 |
+
else:
|
| 119 |
+
constructor = cls
|
| 120 |
+
# Try the __type_registry__ of this class.
|
| 121 |
+
else:
|
| 122 |
+
constructor = _lookup_type(cls, type_)
|
| 123 |
+
|
| 124 |
+
# Found in cls.__type_registry__.
|
| 125 |
+
if constructor is not None:
|
| 126 |
+
pass
|
| 127 |
+
# type_ is False or None (and this value is not registered) ->
|
| 128 |
+
# return value of type_.
|
| 129 |
+
elif type_ is False or type_ is None:
|
| 130 |
+
return type_
|
| 131 |
+
# Python callable.
|
| 132 |
+
elif callable(type_):
|
| 133 |
+
constructor = type_
|
| 134 |
+
# A string: Filename or a python module+class or a json/yaml str.
|
| 135 |
+
elif isinstance(type_, str):
|
| 136 |
+
if re.search("\\.(yaml|yml|json)$", type_):
|
| 137 |
+
return from_file(cls, type_, *ctor_args, **ctor_kwargs)
|
| 138 |
+
# Try un-json/un-yaml'ing the string into a dict.
|
| 139 |
+
obj = yaml.safe_load(type_)
|
| 140 |
+
if isinstance(obj, dict):
|
| 141 |
+
return from_config(cls, obj)
|
| 142 |
+
try:
|
| 143 |
+
obj = from_config(cls, json.loads(type_))
|
| 144 |
+
except json.JSONDecodeError:
|
| 145 |
+
pass
|
| 146 |
+
else:
|
| 147 |
+
return obj
|
| 148 |
+
|
| 149 |
+
# Test for absolute module.class path specifier.
|
| 150 |
+
if type_.find(".") != -1:
|
| 151 |
+
module_name, function_name = type_.rsplit(".", 1)
|
| 152 |
+
try:
|
| 153 |
+
module = importlib.import_module(module_name)
|
| 154 |
+
constructor = getattr(module, function_name)
|
| 155 |
+
# Module not found.
|
| 156 |
+
except (ModuleNotFoundError, ImportError, AttributeError):
|
| 157 |
+
pass
|
| 158 |
+
|
| 159 |
+
# If constructor still not found, try attaching cls' module,
|
| 160 |
+
# then look for type_ in there.
|
| 161 |
+
if constructor is None:
|
| 162 |
+
if isinstance(cls, str):
|
| 163 |
+
# Module found, but doesn't have the specified
|
| 164 |
+
# c'tor/function.
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Full classpath specifier ({type_}) must be a valid "
|
| 167 |
+
"full [module].[class] string! E.g.: "
|
| 168 |
+
"`my.cool.module.MyCoolClass`."
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
try:
|
| 172 |
+
module = importlib.import_module(cls.__module__)
|
| 173 |
+
constructor = getattr(module, type_)
|
| 174 |
+
except (ModuleNotFoundError, ImportError, AttributeError):
|
| 175 |
+
# Try the package as well.
|
| 176 |
+
try:
|
| 177 |
+
package_name = importlib.import_module(
|
| 178 |
+
cls.__module__
|
| 179 |
+
).__package__
|
| 180 |
+
module = __import__(package_name, fromlist=[type_])
|
| 181 |
+
constructor = getattr(module, type_)
|
| 182 |
+
except (ModuleNotFoundError, ImportError, AttributeError):
|
| 183 |
+
pass
|
| 184 |
+
|
| 185 |
+
if constructor is None:
|
| 186 |
+
raise ValueError(
|
| 187 |
+
f"String specifier ({type_}) must be a valid filename, "
|
| 188 |
+
f"a [module].[class], a class within '{cls.__module__}', "
|
| 189 |
+
f"or a key into {cls.__name__}.__type_registry__!"
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
if not constructor:
|
| 193 |
+
raise TypeError("Invalid type '{}'. Cannot create `from_config`.".format(type_))
|
| 194 |
+
|
| 195 |
+
# Create object with inferred constructor.
|
| 196 |
+
try:
|
| 197 |
+
object_ = constructor(*ctor_args, **ctor_kwargs)
|
| 198 |
+
# Catch attempts to construct from an abstract class and return None.
|
| 199 |
+
except TypeError as e:
|
| 200 |
+
if re.match("Can't instantiate abstract class", e.args[0]):
|
| 201 |
+
return None
|
| 202 |
+
raise e # Re-raise
|
| 203 |
+
# No sanity check for fake (lambda)-"constructors".
|
| 204 |
+
if type(constructor).__name__ != "function":
|
| 205 |
+
assert isinstance(
|
| 206 |
+
object_,
|
| 207 |
+
constructor.func if isinstance(constructor, partial) else constructor,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
return object_
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
@DeveloperAPI
|
| 214 |
+
def from_file(cls, filename, *args, **kwargs):
|
| 215 |
+
"""
|
| 216 |
+
Create object from config saved in filename. Expects json or yaml file.
|
| 217 |
+
|
| 218 |
+
Args:
|
| 219 |
+
filename: File containing the config (json or yaml).
|
| 220 |
+
|
| 221 |
+
Returns:
|
| 222 |
+
any: The object generated from the file.
|
| 223 |
+
"""
|
| 224 |
+
path = os.path.join(os.getcwd(), filename)
|
| 225 |
+
if not os.path.isfile(path):
|
| 226 |
+
raise FileNotFoundError("File '{}' not found!".format(filename))
|
| 227 |
+
|
| 228 |
+
with open(path, "rt") as fp:
|
| 229 |
+
if path.endswith(".yaml") or path.endswith(".yml"):
|
| 230 |
+
config = yaml.safe_load(fp)
|
| 231 |
+
else:
|
| 232 |
+
config = json.load(fp)
|
| 233 |
+
|
| 234 |
+
# Add possible *args.
|
| 235 |
+
config["_args"] = args
|
| 236 |
+
return from_config(cls, config=config, **kwargs)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def _lookup_type(cls, type_):
|
| 240 |
+
if (
|
| 241 |
+
cls is not None
|
| 242 |
+
and hasattr(cls, "__type_registry__")
|
| 243 |
+
and isinstance(cls.__type_registry__, dict)
|
| 244 |
+
and (
|
| 245 |
+
type_ in cls.__type_registry__
|
| 246 |
+
or (
|
| 247 |
+
isinstance(type_, str)
|
| 248 |
+
and re.sub("[\\W_]", "", type_.lower()) in cls.__type_registry__
|
| 249 |
+
)
|
| 250 |
+
)
|
| 251 |
+
):
|
| 252 |
+
available_class_for_type = cls.__type_registry__.get(type_)
|
| 253 |
+
if available_class_for_type is None:
|
| 254 |
+
available_class_for_type = cls.__type_registry__[
|
| 255 |
+
re.sub("[\\W_]", "", type_.lower())
|
| 256 |
+
]
|
| 257 |
+
return available_class_for_type
|
| 258 |
+
return None
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class _NotProvided:
|
| 262 |
+
"""Singleton class to provide a "not provided" value for AlgorithmConfig signatures.
|
| 263 |
+
|
| 264 |
+
Using the only instance of this class indicates that the user does NOT wish to
|
| 265 |
+
change the value of some property.
|
| 266 |
+
|
| 267 |
+
.. testcode::
|
| 268 |
+
:skipif: True
|
| 269 |
+
|
| 270 |
+
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig
|
| 271 |
+
config = AlgorithmConfig()
|
| 272 |
+
# Print out the default learning rate.
|
| 273 |
+
print(config.lr)
|
| 274 |
+
|
| 275 |
+
.. testoutput::
|
| 276 |
+
|
| 277 |
+
0.001
|
| 278 |
+
|
| 279 |
+
.. testcode::
|
| 280 |
+
:skipif: True
|
| 281 |
+
|
| 282 |
+
# Print out the default `preprocessor_pref`.
|
| 283 |
+
print(config.preprocessor_pref)
|
| 284 |
+
|
| 285 |
+
.. testoutput::
|
| 286 |
+
|
| 287 |
+
"deepmind"
|
| 288 |
+
|
| 289 |
+
.. testcode::
|
| 290 |
+
:skipif: True
|
| 291 |
+
|
| 292 |
+
# Will only set the `preprocessor_pref` property (to None) and leave
|
| 293 |
+
# all other properties at their default values.
|
| 294 |
+
config.training(preprocessor_pref=None)
|
| 295 |
+
config.preprocessor_pref is None
|
| 296 |
+
|
| 297 |
+
.. testoutput::
|
| 298 |
+
|
| 299 |
+
True
|
| 300 |
+
|
| 301 |
+
.. testcode::
|
| 302 |
+
:skipif: True
|
| 303 |
+
|
| 304 |
+
# Still the same value (didn't touch it in the call to `.training()`.
|
| 305 |
+
print(config.lr)
|
| 306 |
+
|
| 307 |
+
.. testoutput::
|
| 308 |
+
|
| 309 |
+
0.001
|
| 310 |
+
"""
|
| 311 |
+
|
| 312 |
+
class __NotProvided:
|
| 313 |
+
pass
|
| 314 |
+
|
| 315 |
+
instance = None
|
| 316 |
+
|
| 317 |
+
def __init__(self):
|
| 318 |
+
if _NotProvided.instance is None:
|
| 319 |
+
_NotProvided.instance = _NotProvided.__NotProvided()
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Use this object as default values in all method signatures of
|
| 323 |
+
# AlgorithmConfig, indicating that the respective property should NOT be touched
|
| 324 |
+
# in the call.
|
| 325 |
+
NotProvided = _NotProvided()
|