Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- .gitattributes +1 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py +134 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py +33 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py +109 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/__init__.py +65 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/convert_univnet.py +162 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/feature_extraction_univnet.py +456 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/modeling_univnet.py +636 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc +0 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py +108 -0
- evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py +1304 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__init__.py +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__main__.py +78 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/__main__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/ast.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/error.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/lexer.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/location.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/lookupDebugInfo.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/parser.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/variableScalar.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/error.py +22 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lookupDebugInfo.py +12 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/parser.py +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/variableScalar.py +113 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__init__.py +248 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__main__.py +6 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/__main__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/base.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/cmap.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/layout.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/options.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/tables.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/unicode.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/util.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/base.py +81 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/cmap.py +141 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/layout.py +526 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/options.py +85 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/tables.py +341 -0
- infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/unicode.py +78 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -1576,3 +1576,4 @@ evalkit_tf446/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.10 filte | |
| 1576 | 
             
            evalkit_tf449/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
         | 
| 1577 | 
             
            infer_4_47_1/lib/python3.10/site-packages/gradio/_frontend_code/lite/dist/assets/gradio_client-1.5.3-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
         | 
| 1578 | 
             
            evalkit_cambrian/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 1576 | 
             
            evalkit_tf449/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
         | 
| 1577 | 
             
            infer_4_47_1/lib/python3.10/site-packages/gradio/_frontend_code/lite/dist/assets/gradio_client-1.5.3-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
         | 
| 1578 | 
             
            evalkit_cambrian/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
         | 
| 1579 | 
            +
            infer_4_47_1/lib/python3.10/site-packages/fontTools/pens/momentsPen.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py
    ADDED
    
    | @@ -0,0 +1,134 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import argparse
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import torch
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from transformers import ChineseCLIPConfig, ChineseCLIPModel
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
         | 
| 24 | 
            +
                q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
         | 
| 25 | 
            +
                q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
         | 
| 28 | 
            +
                out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                hf_attn_layer.q_proj.weight.data = q_proj
         | 
| 31 | 
            +
                hf_attn_layer.q_proj.bias.data = q_proj_bias
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                hf_attn_layer.k_proj.weight.data = k_proj
         | 
| 34 | 
            +
                hf_attn_layer.k_proj.bias.data = k_proj_bias
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                hf_attn_layer.v_proj.weight.data = v_proj
         | 
| 37 | 
            +
                hf_attn_layer.v_proj.bias.data = v_proj_bias
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                hf_attn_layer.out_proj.weight.data = out_proj_weights
         | 
| 40 | 
            +
                hf_attn_layer.out_proj.bias.data = out_proj_bias
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            def copy_mlp(hf_mlp, pt_weights, prefix):
         | 
| 44 | 
            +
                copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
         | 
| 45 | 
            +
                copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            def copy_linear(hf_linear, pt_weights, prefix):
         | 
| 49 | 
            +
                hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
         | 
| 50 | 
            +
                hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            def copy_layer(hf_layer, pt_weights, prefix):
         | 
| 54 | 
            +
                # copy layer norms
         | 
| 55 | 
            +
                copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
         | 
| 56 | 
            +
                copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # copy MLP
         | 
| 59 | 
            +
                copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                # copy attn
         | 
| 62 | 
            +
                copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def copy_layers(hf_layers, pt_weights, prefix):
         | 
| 66 | 
            +
                for layer_id, hf_layer in enumerate(hf_layers):
         | 
| 67 | 
            +
                    copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            def copy_text_model_and_projection(hf_model, pt_weights):
         | 
| 71 | 
            +
                # copy projection
         | 
| 72 | 
            +
                hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                # copy text encoder
         | 
| 75 | 
            +
                for name, param in hf_model.text_model.named_parameters():
         | 
| 76 | 
            +
                    param.data = pt_weights[f"bert.{name}"].data
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def copy_vision_model_and_projection(hf_model, pt_weights):
         | 
| 80 | 
            +
                # copy projection
         | 
| 81 | 
            +
                hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                # copy layer norms
         | 
| 84 | 
            +
                copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
         | 
| 85 | 
            +
                copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                # copy embeddings
         | 
| 88 | 
            +
                hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
         | 
| 89 | 
            +
                hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
         | 
| 90 | 
            +
                hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                # copy encoder
         | 
| 93 | 
            +
                copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            @torch.no_grad()
         | 
| 97 | 
            +
            def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
         | 
| 98 | 
            +
                """
         | 
| 99 | 
            +
                Copy/paste/tweak model's weights to transformers design.
         | 
| 100 | 
            +
                """
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
         | 
| 103 | 
            +
                config = ChineseCLIPConfig.from_pretrained(config_path)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                hf_model = ChineseCLIPModel(config).eval()
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
         | 
| 108 | 
            +
                pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                copy_text_model_and_projection(hf_model, pt_weights)
         | 
| 111 | 
            +
                copy_vision_model_and_projection(hf_model, pt_weights)
         | 
| 112 | 
            +
                hf_model.logit_scale.data = pt_weights["logit_scale"].data
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                hf_model.save_pretrained(pytorch_dump_folder_path)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            if __name__ == "__main__":
         | 
| 118 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 119 | 
            +
                parser.add_argument(
         | 
| 120 | 
            +
                    "--pytorch_dump_folder_path",
         | 
| 121 | 
            +
                    default=None,
         | 
| 122 | 
            +
                    type=str,
         | 
| 123 | 
            +
                    help="Path to the output folder storing converted hf PyTorch model.",
         | 
| 124 | 
            +
                )
         | 
| 125 | 
            +
                parser.add_argument(
         | 
| 126 | 
            +
                    "--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
         | 
| 127 | 
            +
                )
         | 
| 128 | 
            +
                parser.add_argument(
         | 
| 129 | 
            +
                    "--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
         | 
| 130 | 
            +
                )
         | 
| 131 | 
            +
                args = parser.parse_args()
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
         | 
| 134 | 
            +
                print("The conversion is finished!")
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """Feature extractor class for Chinese-CLIP."""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import warnings
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from ...utils import logging
         | 
| 20 | 
            +
            from .image_processing_chinese_clip import ChineseCLIPImageProcessor
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
         | 
| 27 | 
            +
                def __init__(self, *args, **kwargs) -> None:
         | 
| 28 | 
            +
                    warnings.warn(
         | 
| 29 | 
            +
                        "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
         | 
| 30 | 
            +
                        " Please use ChineseCLIPImageProcessor instead.",
         | 
| 31 | 
            +
                        FutureWarning,
         | 
| 32 | 
            +
                    )
         | 
| 33 | 
            +
                    super().__init__(*args, **kwargs)
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py
    ADDED
    
    | @@ -0,0 +1,109 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2022 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from typing import TYPE_CHECKING
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from ...utils import (
         | 
| 17 | 
            +
                OptionalDependencyNotAvailable,
         | 
| 18 | 
            +
                _LazyModule,
         | 
| 19 | 
            +
                is_tf_available,
         | 
| 20 | 
            +
                is_torch_available,
         | 
| 21 | 
            +
                is_vision_available,
         | 
| 22 | 
            +
            )
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            _import_structure = {
         | 
| 26 | 
            +
                "configuration_efficientformer": [
         | 
| 27 | 
            +
                    "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
         | 
| 28 | 
            +
                    "EfficientFormerConfig",
         | 
| 29 | 
            +
                ]
         | 
| 30 | 
            +
            }
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            try:
         | 
| 33 | 
            +
                if not is_vision_available():
         | 
| 34 | 
            +
                    raise OptionalDependencyNotAvailable()
         | 
| 35 | 
            +
            except OptionalDependencyNotAvailable:
         | 
| 36 | 
            +
                pass
         | 
| 37 | 
            +
            else:
         | 
| 38 | 
            +
                _import_structure["image_processing_efficientformer"] = ["EfficientFormerImageProcessor"]
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            try:
         | 
| 41 | 
            +
                if not is_torch_available():
         | 
| 42 | 
            +
                    raise OptionalDependencyNotAvailable()
         | 
| 43 | 
            +
            except OptionalDependencyNotAvailable:
         | 
| 44 | 
            +
                pass
         | 
| 45 | 
            +
            else:
         | 
| 46 | 
            +
                _import_structure["modeling_efficientformer"] = [
         | 
| 47 | 
            +
                    "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
         | 
| 48 | 
            +
                    "EfficientFormerForImageClassification",
         | 
| 49 | 
            +
                    "EfficientFormerForImageClassificationWithTeacher",
         | 
| 50 | 
            +
                    "EfficientFormerModel",
         | 
| 51 | 
            +
                    "EfficientFormerPreTrainedModel",
         | 
| 52 | 
            +
                ]
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            try:
         | 
| 55 | 
            +
                if not is_tf_available():
         | 
| 56 | 
            +
                    raise OptionalDependencyNotAvailable()
         | 
| 57 | 
            +
            except OptionalDependencyNotAvailable:
         | 
| 58 | 
            +
                pass
         | 
| 59 | 
            +
            else:
         | 
| 60 | 
            +
                _import_structure["modeling_tf_efficientformer"] = [
         | 
| 61 | 
            +
                    "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
         | 
| 62 | 
            +
                    "TFEfficientFormerForImageClassification",
         | 
| 63 | 
            +
                    "TFEfficientFormerForImageClassificationWithTeacher",
         | 
| 64 | 
            +
                    "TFEfficientFormerModel",
         | 
| 65 | 
            +
                    "TFEfficientFormerPreTrainedModel",
         | 
| 66 | 
            +
                ]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            if TYPE_CHECKING:
         | 
| 69 | 
            +
                from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                try:
         | 
| 72 | 
            +
                    if not is_vision_available():
         | 
| 73 | 
            +
                        raise OptionalDependencyNotAvailable()
         | 
| 74 | 
            +
                except OptionalDependencyNotAvailable:
         | 
| 75 | 
            +
                    pass
         | 
| 76 | 
            +
                else:
         | 
| 77 | 
            +
                    from .image_processing_efficientformer import EfficientFormerImageProcessor
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                try:
         | 
| 80 | 
            +
                    if not is_torch_available():
         | 
| 81 | 
            +
                        raise OptionalDependencyNotAvailable()
         | 
| 82 | 
            +
                except OptionalDependencyNotAvailable:
         | 
| 83 | 
            +
                    pass
         | 
| 84 | 
            +
                else:
         | 
| 85 | 
            +
                    from .modeling_efficientformer import (
         | 
| 86 | 
            +
                        EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
         | 
| 87 | 
            +
                        EfficientFormerForImageClassification,
         | 
| 88 | 
            +
                        EfficientFormerForImageClassificationWithTeacher,
         | 
| 89 | 
            +
                        EfficientFormerModel,
         | 
| 90 | 
            +
                        EfficientFormerPreTrainedModel,
         | 
| 91 | 
            +
                    )
         | 
| 92 | 
            +
                try:
         | 
| 93 | 
            +
                    if not is_tf_available():
         | 
| 94 | 
            +
                        raise OptionalDependencyNotAvailable()
         | 
| 95 | 
            +
                except OptionalDependencyNotAvailable:
         | 
| 96 | 
            +
                    pass
         | 
| 97 | 
            +
                else:
         | 
| 98 | 
            +
                    from .modeling_tf_efficientformer import (
         | 
| 99 | 
            +
                        TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
         | 
| 100 | 
            +
                        TFEfficientFormerForImageClassification,
         | 
| 101 | 
            +
                        TFEfficientFormerForImageClassificationWithTeacher,
         | 
| 102 | 
            +
                        TFEfficientFormerModel,
         | 
| 103 | 
            +
                        TFEfficientFormerPreTrainedModel,
         | 
| 104 | 
            +
                    )
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            else:
         | 
| 107 | 
            +
                import sys
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (1.73 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
    ADDED
    
    | Binary file (6.14 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc
    ADDED
    
    | Binary file (12.8 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc
    ADDED
    
    | Binary file (37.2 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/__init__.py
    ADDED
    
    | @@ -0,0 +1,65 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from typing import TYPE_CHECKING
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from ...utils import (
         | 
| 18 | 
            +
                OptionalDependencyNotAvailable,
         | 
| 19 | 
            +
                _LazyModule,
         | 
| 20 | 
            +
                is_torch_available,
         | 
| 21 | 
            +
            )
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            _import_structure = {
         | 
| 25 | 
            +
                "configuration_univnet": [
         | 
| 26 | 
            +
                    "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
         | 
| 27 | 
            +
                    "UnivNetConfig",
         | 
| 28 | 
            +
                ],
         | 
| 29 | 
            +
                "feature_extraction_univnet": ["UnivNetFeatureExtractor"],
         | 
| 30 | 
            +
            }
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            try:
         | 
| 33 | 
            +
                if not is_torch_available():
         | 
| 34 | 
            +
                    raise OptionalDependencyNotAvailable()
         | 
| 35 | 
            +
            except OptionalDependencyNotAvailable:
         | 
| 36 | 
            +
                pass
         | 
| 37 | 
            +
            else:
         | 
| 38 | 
            +
                _import_structure["modeling_univnet"] = [
         | 
| 39 | 
            +
                    "UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST",
         | 
| 40 | 
            +
                    "UnivNetModel",
         | 
| 41 | 
            +
                ]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            if TYPE_CHECKING:
         | 
| 45 | 
            +
                from .configuration_univnet import (
         | 
| 46 | 
            +
                    UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
         | 
| 47 | 
            +
                    UnivNetConfig,
         | 
| 48 | 
            +
                )
         | 
| 49 | 
            +
                from .feature_extraction_univnet import UnivNetFeatureExtractor
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                try:
         | 
| 52 | 
            +
                    if not is_torch_available():
         | 
| 53 | 
            +
                        raise OptionalDependencyNotAvailable()
         | 
| 54 | 
            +
                except OptionalDependencyNotAvailable:
         | 
| 55 | 
            +
                    pass
         | 
| 56 | 
            +
                else:
         | 
| 57 | 
            +
                    from .modeling_univnet import (
         | 
| 58 | 
            +
                        UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST,
         | 
| 59 | 
            +
                        UnivNetModel,
         | 
| 60 | 
            +
                    )
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            else:
         | 
| 63 | 
            +
                import sys
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc
    ADDED
    
    | Binary file (19.5 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/convert_univnet.py
    ADDED
    
    | @@ -0,0 +1,162 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import argparse
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from transformers import UnivNetConfig, UnivNetModel, logging
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            logging.set_verbosity_info()
         | 
| 23 | 
            +
            logger = logging.get_logger("transformers.models.univnet")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def get_kernel_predictor_key_mapping(config: UnivNetConfig, old_prefix: str = "", new_prefix: str = ""):
         | 
| 27 | 
            +
                mapping = {}
         | 
| 28 | 
            +
                # Initial conv layer
         | 
| 29 | 
            +
                mapping[f"{old_prefix}.input_conv.0.weight_g"] = f"{new_prefix}.input_conv.weight_g"
         | 
| 30 | 
            +
                mapping[f"{old_prefix}.input_conv.0.weight_v"] = f"{new_prefix}.input_conv.weight_v"
         | 
| 31 | 
            +
                mapping[f"{old_prefix}.input_conv.0.bias"] = f"{new_prefix}.input_conv.bias"
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # Kernel predictor resnet blocks
         | 
| 34 | 
            +
                for i in range(config.kernel_predictor_num_blocks):
         | 
| 35 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.1.weight_g"] = f"{new_prefix}.resblocks.{i}.conv1.weight_g"
         | 
| 36 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.1.weight_v"] = f"{new_prefix}.resblocks.{i}.conv1.weight_v"
         | 
| 37 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.1.bias"] = f"{new_prefix}.resblocks.{i}.conv1.bias"
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.3.weight_g"] = f"{new_prefix}.resblocks.{i}.conv2.weight_g"
         | 
| 40 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.3.weight_v"] = f"{new_prefix}.resblocks.{i}.conv2.weight_v"
         | 
| 41 | 
            +
                    mapping[f"{old_prefix}.residual_convs.{i}.3.bias"] = f"{new_prefix}.resblocks.{i}.conv2.bias"
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                # Kernel output conv
         | 
| 44 | 
            +
                mapping[f"{old_prefix}.kernel_conv.weight_g"] = f"{new_prefix}.kernel_conv.weight_g"
         | 
| 45 | 
            +
                mapping[f"{old_prefix}.kernel_conv.weight_v"] = f"{new_prefix}.kernel_conv.weight_v"
         | 
| 46 | 
            +
                mapping[f"{old_prefix}.kernel_conv.bias"] = f"{new_prefix}.kernel_conv.bias"
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                # Bias output conv
         | 
| 49 | 
            +
                mapping[f"{old_prefix}.bias_conv.weight_g"] = f"{new_prefix}.bias_conv.weight_g"
         | 
| 50 | 
            +
                mapping[f"{old_prefix}.bias_conv.weight_v"] = f"{new_prefix}.bias_conv.weight_v"
         | 
| 51 | 
            +
                mapping[f"{old_prefix}.bias_conv.bias"] = f"{new_prefix}.bias_conv.bias"
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                return mapping
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
            def get_key_mapping(config: UnivNetConfig):
         | 
| 57 | 
            +
                mapping = {}
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                # NOTE: inital conv layer keys are the same
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                # LVC Residual blocks
         | 
| 62 | 
            +
                for i in range(len(config.resblock_stride_sizes)):
         | 
| 63 | 
            +
                    # LVCBlock initial convt layer
         | 
| 64 | 
            +
                    mapping[f"res_stack.{i}.convt_pre.1.weight_g"] = f"resblocks.{i}.convt_pre.weight_g"
         | 
| 65 | 
            +
                    mapping[f"res_stack.{i}.convt_pre.1.weight_v"] = f"resblocks.{i}.convt_pre.weight_v"
         | 
| 66 | 
            +
                    mapping[f"res_stack.{i}.convt_pre.1.bias"] = f"resblocks.{i}.convt_pre.bias"
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    # Kernel predictor
         | 
| 69 | 
            +
                    kernel_predictor_mapping = get_kernel_predictor_key_mapping(
         | 
| 70 | 
            +
                        config, old_prefix=f"res_stack.{i}.kernel_predictor", new_prefix=f"resblocks.{i}.kernel_predictor"
         | 
| 71 | 
            +
                    )
         | 
| 72 | 
            +
                    mapping.update(kernel_predictor_mapping)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    # LVC Residual blocks
         | 
| 75 | 
            +
                    for j in range(len(config.resblock_dilation_sizes[i])):
         | 
| 76 | 
            +
                        mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_g"] = f"resblocks.{i}.resblocks.{j}.conv.weight_g"
         | 
| 77 | 
            +
                        mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_v"] = f"resblocks.{i}.resblocks.{j}.conv.weight_v"
         | 
| 78 | 
            +
                        mapping[f"res_stack.{i}.conv_blocks.{j}.1.bias"] = f"resblocks.{i}.resblocks.{j}.conv.bias"
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                # Output conv layer
         | 
| 81 | 
            +
                mapping["conv_post.1.weight_g"] = "conv_post.weight_g"
         | 
| 82 | 
            +
                mapping["conv_post.1.weight_v"] = "conv_post.weight_v"
         | 
| 83 | 
            +
                mapping["conv_post.1.bias"] = "conv_post.bias"
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                return mapping
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            def rename_state_dict(state_dict, keys_to_modify, keys_to_remove):
         | 
| 89 | 
            +
                model_state_dict = {}
         | 
| 90 | 
            +
                for key, value in state_dict.items():
         | 
| 91 | 
            +
                    if key in keys_to_remove:
         | 
| 92 | 
            +
                        continue
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    if key in keys_to_modify:
         | 
| 95 | 
            +
                        new_key = keys_to_modify[key]
         | 
| 96 | 
            +
                        model_state_dict[new_key] = value
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        model_state_dict[key] = value
         | 
| 99 | 
            +
                return model_state_dict
         | 
| 100 | 
            +
             | 
| 101 | 
            +
             | 
| 102 | 
            +
            def convert_univnet_checkpoint(
         | 
| 103 | 
            +
                checkpoint_path,
         | 
| 104 | 
            +
                pytorch_dump_folder_path,
         | 
| 105 | 
            +
                config_path=None,
         | 
| 106 | 
            +
                repo_id=None,
         | 
| 107 | 
            +
                safe_serialization=False,
         | 
| 108 | 
            +
            ):
         | 
| 109 | 
            +
                model_state_dict_base = torch.load(checkpoint_path, map_location="cpu")
         | 
| 110 | 
            +
                # Get the generator's state dict
         | 
| 111 | 
            +
                state_dict = model_state_dict_base["model_g"]
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                if config_path is not None:
         | 
| 114 | 
            +
                    config = UnivNetConfig.from_pretrained(config_path)
         | 
| 115 | 
            +
                else:
         | 
| 116 | 
            +
                    config = UnivNetConfig()
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                keys_to_modify = get_key_mapping(config)
         | 
| 119 | 
            +
                keys_to_remove = set()
         | 
| 120 | 
            +
                hf_state_dict = rename_state_dict(state_dict, keys_to_modify, keys_to_remove)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                model = UnivNetModel(config)
         | 
| 123 | 
            +
                # Apply weight norm since the original checkpoint has weight norm applied
         | 
| 124 | 
            +
                model.apply_weight_norm()
         | 
| 125 | 
            +
                model.load_state_dict(hf_state_dict)
         | 
| 126 | 
            +
                # Remove weight norm in preparation for inference
         | 
| 127 | 
            +
                model.remove_weight_norm()
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                if repo_id:
         | 
| 132 | 
            +
                    print("Pushing to the hub...")
         | 
| 133 | 
            +
                    model.push_to_hub(repo_id)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
             | 
| 136 | 
            +
            def main():
         | 
| 137 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 138 | 
            +
                parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
         | 
| 139 | 
            +
                parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
         | 
| 140 | 
            +
                parser.add_argument(
         | 
| 141 | 
            +
                    "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
         | 
| 142 | 
            +
                )
         | 
| 143 | 
            +
                parser.add_argument(
         | 
| 144 | 
            +
                    "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
         | 
| 145 | 
            +
                )
         | 
| 146 | 
            +
                parser.add_argument(
         | 
| 147 | 
            +
                    "--safe_serialization", action="store_true", help="Whether to save the model using `safetensors`."
         | 
| 148 | 
            +
                )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                args = parser.parse_args()
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                convert_univnet_checkpoint(
         | 
| 153 | 
            +
                    args.checkpoint_path,
         | 
| 154 | 
            +
                    args.pytorch_dump_folder_path,
         | 
| 155 | 
            +
                    args.config_path,
         | 
| 156 | 
            +
                    args.push_to_hub,
         | 
| 157 | 
            +
                    args.safe_serialization,
         | 
| 158 | 
            +
                )
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            if __name__ == "__main__":
         | 
| 162 | 
            +
                main()
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/feature_extraction_univnet.py
    ADDED
    
    | @@ -0,0 +1,456 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            """Feature extractor class for UnivNetModel."""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from typing import Any, Dict, List, Optional, Union
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import numpy as np
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
         | 
| 21 | 
            +
            from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
         | 
| 22 | 
            +
            from ...feature_extraction_utils import BatchFeature
         | 
| 23 | 
            +
            from ...utils import PaddingStrategy, TensorType, logging
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class UnivNetFeatureExtractor(SequenceFeatureExtractor):
         | 
| 30 | 
            +
                r"""
         | 
| 31 | 
            +
                Constructs a UnivNet feature extractor.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                This class extracts log-mel-filter bank features from raw speech using the short time Fourier Transform (STFT). The
         | 
| 34 | 
            +
                STFT implementation follows that of TacoTron 2 and Hifi-GAN.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
         | 
| 37 | 
            +
                most of the main methods. Users should refer to this superclass for more information regarding those methods.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                Args:
         | 
| 40 | 
            +
                    feature_size (`int`, *optional*, defaults to 1):
         | 
| 41 | 
            +
                        The feature dimension of the extracted features.
         | 
| 42 | 
            +
                    sampling_rate (`int`, *optional*, defaults to 24000):
         | 
| 43 | 
            +
                        The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
         | 
| 44 | 
            +
                    padding_value (`float`, *optional*, defaults to 0.0):
         | 
| 45 | 
            +
                        The value to pad with when applying the padding strategy defined by the `padding` argument to
         | 
| 46 | 
            +
                        [`UnivNetFeatureExtractor.__call__`]. Should correspond to audio silence. The `pad_end` argument to
         | 
| 47 | 
            +
                        `__call__` will also use this padding value.
         | 
| 48 | 
            +
                    do_normalize (`bool`, *optional*, defaults to `False`):
         | 
| 49 | 
            +
                        Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve the
         | 
| 50 | 
            +
                        performance for some models.
         | 
| 51 | 
            +
                    num_mel_bins (`int`, *optional*, defaults to 100):
         | 
| 52 | 
            +
                        The number of mel-frequency bins in the extracted spectrogram features. This should match
         | 
| 53 | 
            +
                        `UnivNetModel.config.num_mel_bins`.
         | 
| 54 | 
            +
                    hop_length (`int`, *optional*, defaults to 256):
         | 
| 55 | 
            +
                        The direct number of samples between sliding windows. Otherwise referred to as "shift" in many papers. Note
         | 
| 56 | 
            +
                        that this is different from other audio feature extractors such as [`SpeechT5FeatureExtractor`] which take
         | 
| 57 | 
            +
                        the `hop_length` in ms.
         | 
| 58 | 
            +
                    win_length (`int`, *optional*, defaults to 1024):
         | 
| 59 | 
            +
                        The direct number of samples for each sliding window. Note that this is different from other audio feature
         | 
| 60 | 
            +
                        extractors such as [`SpeechT5FeatureExtractor`] which take the `win_length` in ms.
         | 
| 61 | 
            +
                    win_function (`str`, *optional*, defaults to `"hann_window"`):
         | 
| 62 | 
            +
                        Name for the window function used for windowing, must be accessible via `torch.{win_function}`
         | 
| 63 | 
            +
                    filter_length (`int`, *optional*, defaults to 1024):
         | 
| 64 | 
            +
                        The number of FFT components to use. If `None`, this is determined using
         | 
| 65 | 
            +
                        `transformers.audio_utils.optimal_fft_length`.
         | 
| 66 | 
            +
                    max_length_s (`int`, *optional*, defaults to 10):
         | 
| 67 | 
            +
                        The maximum input lenght of the model in seconds. This is used to pad the audio.
         | 
| 68 | 
            +
                    fmin (`float`, *optional*, defaults to 0.0):
         | 
| 69 | 
            +
                        Minimum mel frequency in Hz.
         | 
| 70 | 
            +
                    fmax (`float`, *optional*):
         | 
| 71 | 
            +
                        Maximum mel frequency in Hz. If not set, defaults to `sampling_rate / 2`.
         | 
| 72 | 
            +
                    mel_floor (`float`, *optional*, defaults to 1e-09):
         | 
| 73 | 
            +
                        Minimum value of mel frequency banks. Note that the way [`UnivNetFeatureExtractor`] uses `mel_floor` is
         | 
| 74 | 
            +
                        different than in [`transformers.audio_utils.spectrogram`].
         | 
| 75 | 
            +
                    center (`bool`, *optional*, defaults to `False`):
         | 
| 76 | 
            +
                        Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
         | 
| 77 | 
            +
                        `t` will start at time `t * hop_length`.
         | 
| 78 | 
            +
                    compression_factor (`float`, *optional*, defaults to 1.0):
         | 
| 79 | 
            +
                        The multiplicative compression factor for dynamic range compression during spectral normalization.
         | 
| 80 | 
            +
                    compression_clip_val (`float`, *optional*, defaults to 1e-05):
         | 
| 81 | 
            +
                        The clip value applied to the waveform before applying dynamic range compression during spectral
         | 
| 82 | 
            +
                        normalization.
         | 
| 83 | 
            +
                    normalize_min (`float`, *optional*, defaults to -11.512925148010254):
         | 
| 84 | 
            +
                        The min value used for Tacotron 2-style linear normalization. The default is the original value from the
         | 
| 85 | 
            +
                        Tacotron 2 implementation.
         | 
| 86 | 
            +
                    normalize_max (`float`, *optional*, defaults to 2.3143386840820312):
         | 
| 87 | 
            +
                        The max value used for Tacotron 2-style linear normalization. The default is the original value from the
         | 
| 88 | 
            +
                        Tacotron 2 implementation.
         | 
| 89 | 
            +
                    model_in_channels (`int`, *optional*, defaults to 64):
         | 
| 90 | 
            +
                        The number of input channels to the [`UnivNetModel`] model. This should match
         | 
| 91 | 
            +
                        `UnivNetModel.config.model_in_channels`.
         | 
| 92 | 
            +
                    pad_end_length (`int`, *optional*, defaults to 10):
         | 
| 93 | 
            +
                        If padding the end of each waveform, the number of spectrogram frames worth of samples to append. The
         | 
| 94 | 
            +
                        number of appended samples will be `pad_end_length * hop_length`.
         | 
| 95 | 
            +
                    return_attention_mask (`bool`, *optional*, defaults to `True`):
         | 
| 96 | 
            +
                        Whether or not [`~UnivNetFeatureExtractor.__call__`] should return `attention_mask`.
         | 
| 97 | 
            +
                """
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                model_input_names = ["input_features", "noise_sequence", "padding_mask"]
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                def __init__(
         | 
| 102 | 
            +
                    self,
         | 
| 103 | 
            +
                    feature_size: int = 1,
         | 
| 104 | 
            +
                    sampling_rate: int = 24000,
         | 
| 105 | 
            +
                    padding_value: float = 0.0,
         | 
| 106 | 
            +
                    do_normalize: bool = False,
         | 
| 107 | 
            +
                    num_mel_bins: int = 100,
         | 
| 108 | 
            +
                    hop_length: int = 256,
         | 
| 109 | 
            +
                    win_length: int = 1024,
         | 
| 110 | 
            +
                    win_function: str = "hann_window",
         | 
| 111 | 
            +
                    filter_length: Optional[int] = 1024,
         | 
| 112 | 
            +
                    max_length_s: int = 10,
         | 
| 113 | 
            +
                    fmin: float = 0.0,
         | 
| 114 | 
            +
                    fmax: Optional[float] = None,
         | 
| 115 | 
            +
                    mel_floor: float = 1e-9,
         | 
| 116 | 
            +
                    center: bool = False,
         | 
| 117 | 
            +
                    compression_factor: float = 1.0,
         | 
| 118 | 
            +
                    compression_clip_val: float = 1e-5,
         | 
| 119 | 
            +
                    normalize_min: float = -11.512925148010254,
         | 
| 120 | 
            +
                    normalize_max: float = 2.3143386840820312,
         | 
| 121 | 
            +
                    model_in_channels: int = 64,
         | 
| 122 | 
            +
                    pad_end_length: int = 10,
         | 
| 123 | 
            +
                    return_attention_mask=True,
         | 
| 124 | 
            +
                    **kwargs,
         | 
| 125 | 
            +
                ):
         | 
| 126 | 
            +
                    super().__init__(
         | 
| 127 | 
            +
                        feature_size=feature_size,
         | 
| 128 | 
            +
                        sampling_rate=sampling_rate,
         | 
| 129 | 
            +
                        padding_value=padding_value,
         | 
| 130 | 
            +
                        return_attention_mask=return_attention_mask,
         | 
| 131 | 
            +
                        **kwargs,
         | 
| 132 | 
            +
                    )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    self.do_normalize = do_normalize
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    self.num_mel_bins = num_mel_bins
         | 
| 137 | 
            +
                    self.hop_length = hop_length
         | 
| 138 | 
            +
                    self.win_length = win_length
         | 
| 139 | 
            +
                    self.win_function = win_function
         | 
| 140 | 
            +
                    self.filter_length = filter_length
         | 
| 141 | 
            +
                    self.fmin = fmin
         | 
| 142 | 
            +
                    if fmax is None:
         | 
| 143 | 
            +
                        # Follows the librosa.filters.mel implementation
         | 
| 144 | 
            +
                        fmax = float(sampling_rate) / 2
         | 
| 145 | 
            +
                    self.fmax = fmax
         | 
| 146 | 
            +
                    self.mel_floor = mel_floor
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    self.max_length_s = max_length_s
         | 
| 149 | 
            +
                    self.num_max_samples = max_length_s * sampling_rate
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    if self.filter_length is None:
         | 
| 152 | 
            +
                        self.n_fft = optimal_fft_length(self.win_length)
         | 
| 153 | 
            +
                    else:
         | 
| 154 | 
            +
                        self.n_fft = self.filter_length
         | 
| 155 | 
            +
                    self.n_freqs = (self.n_fft // 2) + 1
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.window = window_function(window_length=self.win_length, name=self.win_function, periodic=True)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    self.mel_filters = mel_filter_bank(
         | 
| 160 | 
            +
                        num_frequency_bins=self.n_freqs,
         | 
| 161 | 
            +
                        num_mel_filters=self.num_mel_bins,
         | 
| 162 | 
            +
                        min_frequency=self.fmin,
         | 
| 163 | 
            +
                        max_frequency=self.fmax,
         | 
| 164 | 
            +
                        sampling_rate=self.sampling_rate,
         | 
| 165 | 
            +
                        norm="slaney",
         | 
| 166 | 
            +
                        mel_scale="slaney",
         | 
| 167 | 
            +
                    )
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    self.center = center
         | 
| 170 | 
            +
                    self.compression_factor = compression_factor
         | 
| 171 | 
            +
                    self.compression_clip_val = compression_clip_val
         | 
| 172 | 
            +
                    self.normalize_min = normalize_min
         | 
| 173 | 
            +
                    self.normalize_max = normalize_max
         | 
| 174 | 
            +
                    self.model_in_channels = model_in_channels
         | 
| 175 | 
            +
                    self.pad_end_length = pad_end_length
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def normalize(self, spectrogram):
         | 
| 178 | 
            +
                    return 2 * ((spectrogram - self.normalize_min) / (self.normalize_max - self.normalize_min)) - 1
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                def denormalize(self, spectrogram):
         | 
| 181 | 
            +
                    return self.normalize_min + (self.normalize_max - self.normalize_min) * ((spectrogram + 1) / 2)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                def mel_spectrogram(self, waveform: np.ndarray) -> np.ndarray:
         | 
| 184 | 
            +
                    """
         | 
| 185 | 
            +
                    Calculates log MEL spectrograms from a batch of waveforms. Note that the input waveform(s) will be padded by
         | 
| 186 | 
            +
                    `int(self.n_fft - self.hop_length) / 2` on both sides using the `reflect` padding mode.
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    Args:
         | 
| 189 | 
            +
                        waveform (`np.ndarray` of shape `(length,)`):
         | 
| 190 | 
            +
                            The input waveform. This must be a single real-valued, mono waveform.
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    Returns:
         | 
| 193 | 
            +
                        `numpy.ndarray`: Array containing a log-mel spectrogram of shape `(num_frames, num_mel_bins)`.
         | 
| 194 | 
            +
                    """
         | 
| 195 | 
            +
                    # Do custom padding based on the official MelGAN and Hifi-GAN implementations
         | 
| 196 | 
            +
                    # See https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/utils/stft.py#L84-L86
         | 
| 197 | 
            +
                    waveform = np.pad(
         | 
| 198 | 
            +
                        waveform,
         | 
| 199 | 
            +
                        (int((self.n_fft - self.hop_length) / 2), int((self.n_fft - self.hop_length) / 2)),
         | 
| 200 | 
            +
                        mode="reflect",
         | 
| 201 | 
            +
                    )
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    # Get the complex spectrogram.
         | 
| 204 | 
            +
                    # Note: waveform must be unbatched currently due to the implementation of spectrogram(...).
         | 
| 205 | 
            +
                    complex_spectrogram = spectrogram(
         | 
| 206 | 
            +
                        waveform,
         | 
| 207 | 
            +
                        window=self.window,
         | 
| 208 | 
            +
                        frame_length=self.n_fft,
         | 
| 209 | 
            +
                        hop_length=self.hop_length,
         | 
| 210 | 
            +
                        fft_length=self.n_fft,
         | 
| 211 | 
            +
                        power=None,
         | 
| 212 | 
            +
                        center=self.center,
         | 
| 213 | 
            +
                        mel_filters=None,
         | 
| 214 | 
            +
                        mel_floor=None,
         | 
| 215 | 
            +
                    )
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    # Apply the MEL filter bank and MEL floor manually since UnivNet uses a slightly different implementation
         | 
| 218 | 
            +
                    amplitude_spectrogram = np.sqrt(
         | 
| 219 | 
            +
                        np.real(complex_spectrogram) ** 2 + np.imag(complex_spectrogram) ** 2 + self.mel_floor
         | 
| 220 | 
            +
                    )
         | 
| 221 | 
            +
                    mel_spectrogram = np.matmul(self.mel_filters.T, amplitude_spectrogram)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    # Perform spectral normalization to get the log mel spectrogram.
         | 
| 224 | 
            +
                    log_mel_spectrogram = np.log(
         | 
| 225 | 
            +
                        np.clip(mel_spectrogram, a_min=self.compression_clip_val, a_max=None) * self.compression_factor
         | 
| 226 | 
            +
                    )
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    # Return spectrogram with num_mel_bins last
         | 
| 229 | 
            +
                    return log_mel_spectrogram.T
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                def generate_noise(
         | 
| 232 | 
            +
                    self,
         | 
| 233 | 
            +
                    noise_length: int,
         | 
| 234 | 
            +
                    generator: Optional[np.random.Generator] = None,
         | 
| 235 | 
            +
                ) -> np.ndarray:
         | 
| 236 | 
            +
                    """
         | 
| 237 | 
            +
                    Generates a random noise sequence of standard Gaussian noise for use in the `noise_sequence` argument of
         | 
| 238 | 
            +
                    [`UnivNetModel.forward`].
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    Args:
         | 
| 241 | 
            +
                        spectrogram_length (`int`):
         | 
| 242 | 
            +
                            The length (dim 0) of the generated noise.
         | 
| 243 | 
            +
                        model_in_channels (`int`, *optional*, defaults to `None`):
         | 
| 244 | 
            +
                            The number of features (dim 1) of the generated noise. This should correspond to the
         | 
| 245 | 
            +
                            `model_in_channels` of the [`UnivNetGan`] model. If not set, this will default to
         | 
| 246 | 
            +
                            `self.config.model_in_channels`.
         | 
| 247 | 
            +
                        generator (`numpy.random.Generator`, *optional*, defaults to `None`)
         | 
| 248 | 
            +
                            An optional `numpy.random.Generator` random number generator to control noise generation. If not set, a
         | 
| 249 | 
            +
                            new generator with fresh entropy will be created.
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    Returns:
         | 
| 252 | 
            +
                        `numpy.ndarray`: Array containing random standard Gaussian noise of shape `(noise_length,
         | 
| 253 | 
            +
                        model_in_channels)`.
         | 
| 254 | 
            +
                    """
         | 
| 255 | 
            +
                    if generator is None:
         | 
| 256 | 
            +
                        generator = np.random.default_rng()
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    noise_shape = (noise_length, self.model_in_channels)
         | 
| 259 | 
            +
                    noise = generator.standard_normal(noise_shape, dtype=np.float32)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    return noise
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                def batch_decode(self, waveforms, waveform_lengths=None) -> List[np.ndarray]:
         | 
| 264 | 
            +
                    r"""
         | 
| 265 | 
            +
                    Removes padding from generated audio after running [`UnivNetModel.forward`]. This returns a ragged list of 1D
         | 
| 266 | 
            +
                    audio waveform arrays and not a single tensor/array because in general the waveforms will have different
         | 
| 267 | 
            +
                    lengths after removing padding.
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    Args:
         | 
| 270 | 
            +
                        waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
         | 
| 271 | 
            +
                            The batched output waveforms from the [`UnivNetModel`].
         | 
| 272 | 
            +
                        waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`, *optional*):
         | 
| 273 | 
            +
                            The batched lengths of each waveform before padding.
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    Returns:
         | 
| 276 | 
            +
                        `List[np.ndarray]`: A ragged list of 1D waveform arrays with padding removed.
         | 
| 277 | 
            +
                    """
         | 
| 278 | 
            +
                    # Collapse the batched waveform tensor to a list of 1D audio waveforms
         | 
| 279 | 
            +
                    waveforms = [waveform.detach().clone().cpu().numpy() for waveform in waveforms]
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    if waveform_lengths is not None:
         | 
| 282 | 
            +
                        waveforms = [waveform[: waveform_lengths[i]] for i, waveform in enumerate(waveforms)]
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    return waveforms
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                def __call__(
         | 
| 287 | 
            +
                    self,
         | 
| 288 | 
            +
                    raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
         | 
| 289 | 
            +
                    sampling_rate: Optional[int] = None,
         | 
| 290 | 
            +
                    padding: Union[bool, str, PaddingStrategy] = True,
         | 
| 291 | 
            +
                    max_length: Optional[int] = None,
         | 
| 292 | 
            +
                    truncation: bool = True,
         | 
| 293 | 
            +
                    pad_to_multiple_of: Optional[int] = None,
         | 
| 294 | 
            +
                    return_noise: bool = True,
         | 
| 295 | 
            +
                    generator: Optional[np.random.Generator] = None,
         | 
| 296 | 
            +
                    pad_end: bool = False,
         | 
| 297 | 
            +
                    pad_length: Optional[int] = None,
         | 
| 298 | 
            +
                    do_normalize: Optional[str] = None,
         | 
| 299 | 
            +
                    return_attention_mask: Optional[bool] = None,
         | 
| 300 | 
            +
                    return_tensors: Optional[Union[str, TensorType]] = None,
         | 
| 301 | 
            +
                ) -> BatchFeature:
         | 
| 302 | 
            +
                    """
         | 
| 303 | 
            +
                    Main method to featurize and prepare for the model one or several sequence(s).
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    Args:
         | 
| 306 | 
            +
                        raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
         | 
| 307 | 
            +
                            The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
         | 
| 308 | 
            +
                            values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
         | 
| 309 | 
            +
                            stereo, i.e. single float per timestep.
         | 
| 310 | 
            +
                        sampling_rate (`int`, *optional*):
         | 
| 311 | 
            +
                            The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
         | 
| 312 | 
            +
                            `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
         | 
| 313 | 
            +
                            pipeline.
         | 
| 314 | 
            +
                        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
         | 
| 315 | 
            +
                            Select a strategy to pad the input `raw_speech` waveforms (according to the model's padding side and
         | 
| 316 | 
            +
                            padding index) among:
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                            - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
         | 
| 319 | 
            +
                              sequence if provided).
         | 
| 320 | 
            +
                            - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
         | 
| 321 | 
            +
                              acceptable input length for the model if that argument is not provided.
         | 
| 322 | 
            +
                            - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
         | 
| 323 | 
            +
                              lengths).
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                            If `pad_end = True`, that padding will occur before the `padding` strategy is applied.
         | 
| 326 | 
            +
                        max_length (`int`, *optional*):
         | 
| 327 | 
            +
                            Maximum length of the returned list and optionally padding length (see above).
         | 
| 328 | 
            +
                        truncation (`bool`, *optional*, defaults to `True`):
         | 
| 329 | 
            +
                            Activates truncation to cut input sequences longer than `max_length` to `max_length`.
         | 
| 330 | 
            +
                        pad_to_multiple_of (`int`, *optional*):
         | 
| 331 | 
            +
                            If set will pad the sequence to a multiple of the provided value.
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
         | 
| 334 | 
            +
                            `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
         | 
| 335 | 
            +
                        return_noise (`bool`, *optional*, defaults to `True`):
         | 
| 336 | 
            +
                            Whether to generate and return a noise waveform for use in [`UnivNetModel.forward`].
         | 
| 337 | 
            +
                        generator (`numpy.random.Generator`, *optional*, defaults to `None`):
         | 
| 338 | 
            +
                            An optional `numpy.random.Generator` random number generator to use when generating noise.
         | 
| 339 | 
            +
                        pad_end (`bool`, *optional*, defaults to `False`):
         | 
| 340 | 
            +
                            Whether to pad the end of each waveform with silence. This can help reduce artifacts at the end of the
         | 
| 341 | 
            +
                            generated audio sample; see https://github.com/seungwonpark/melgan/issues/8 for more details. This
         | 
| 342 | 
            +
                            padding will be done before the padding strategy specified in `padding` is performed.
         | 
| 343 | 
            +
                        pad_length (`int`, *optional*, defaults to `None`):
         | 
| 344 | 
            +
                            If padding the end of each waveform, the length of the padding in spectrogram frames. If not set, this
         | 
| 345 | 
            +
                            will default to `self.config.pad_end_length`.
         | 
| 346 | 
            +
                        do_normalize (`bool`, *optional*):
         | 
| 347 | 
            +
                            Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve
         | 
| 348 | 
            +
                            the performance for some models. If not set, this will default to `self.config.do_normalize`.
         | 
| 349 | 
            +
                        return_attention_mask (`bool`, *optional*):
         | 
| 350 | 
            +
                            Whether to return the attention mask. If left to the default, will return the attention mask according
         | 
| 351 | 
            +
                            to the specific feature_extractor's default.
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                            [What are attention masks?](../glossary#attention-mask)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                        return_tensors (`str` or [`~utils.TensorType`], *optional*):
         | 
| 356 | 
            +
                            If set, will return tensors instead of list of python integers. Acceptable values are:
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                            - `'tf'`: Return TensorFlow `tf.constant` objects.
         | 
| 359 | 
            +
                            - `'pt'`: Return PyTorch `torch.np.array` objects.
         | 
| 360 | 
            +
                            - `'np'`: Return Numpy `np.ndarray` objects.
         | 
| 361 | 
            +
                    """
         | 
| 362 | 
            +
                    do_normalize = do_normalize if do_normalize is not None else self.do_normalize
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    if sampling_rate is not None:
         | 
| 365 | 
            +
                        if sampling_rate != self.sampling_rate:
         | 
| 366 | 
            +
                            raise ValueError(
         | 
| 367 | 
            +
                                f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
         | 
| 368 | 
            +
                                f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
         | 
| 369 | 
            +
                                f" was sampled with {self.sampling_rate} and not {sampling_rate}."
         | 
| 370 | 
            +
                            )
         | 
| 371 | 
            +
                    else:
         | 
| 372 | 
            +
                        logger.warning(
         | 
| 373 | 
            +
                            "It is strongly recommended to pass the `sampling_rate` argument to this function. "
         | 
| 374 | 
            +
                            "Failing to do so can result in silent errors that might be hard to debug."
         | 
| 375 | 
            +
                        )
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
         | 
| 378 | 
            +
                    if is_batched_numpy and len(raw_speech.shape) > 2:
         | 
| 379 | 
            +
                        raise ValueError(f"Only mono-channel audio is supported for input to {self}")
         | 
| 380 | 
            +
                    is_batched = is_batched_numpy or (
         | 
| 381 | 
            +
                        isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
         | 
| 382 | 
            +
                    )
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    if is_batched:
         | 
| 385 | 
            +
                        raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
         | 
| 386 | 
            +
                    elif not is_batched and not isinstance(raw_speech, np.ndarray):
         | 
| 387 | 
            +
                        raw_speech = np.asarray(raw_speech, dtype=np.float32)
         | 
| 388 | 
            +
                    elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
         | 
| 389 | 
            +
                        raw_speech = raw_speech.astype(np.float32)
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    # always return batch
         | 
| 392 | 
            +
                    if not is_batched:
         | 
| 393 | 
            +
                        raw_speech = [np.asarray(raw_speech, dtype=np.float32)]
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    # Pad end to reduce artifacts
         | 
| 396 | 
            +
                    if pad_end:
         | 
| 397 | 
            +
                        pad_length = pad_length if pad_length is not None else self.pad_end_length
         | 
| 398 | 
            +
                        raw_speech = [
         | 
| 399 | 
            +
                            np.pad(waveform, (0, pad_length * self.hop_length), constant_values=self.padding_value)
         | 
| 400 | 
            +
                            for waveform in raw_speech
         | 
| 401 | 
            +
                        ]
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    batched_speech = BatchFeature({"input_features": raw_speech})
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    padded_inputs = self.pad(
         | 
| 406 | 
            +
                        batched_speech,
         | 
| 407 | 
            +
                        padding=padding,
         | 
| 408 | 
            +
                        max_length=max_length if max_length is not None else self.num_max_samples,
         | 
| 409 | 
            +
                        truncation=truncation,
         | 
| 410 | 
            +
                        pad_to_multiple_of=pad_to_multiple_of,
         | 
| 411 | 
            +
                        return_attention_mask=return_attention_mask,
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    # make sure list is in array format
         | 
| 415 | 
            +
                    # input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
         | 
| 416 | 
            +
                    input_features = padded_inputs.get("input_features")
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    mel_spectrograms = [self.mel_spectrogram(waveform) for waveform in input_features]
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    if isinstance(input_features[0], List):
         | 
| 421 | 
            +
                        batched_speech["input_features"] = [np.asarray(mel, dtype=np.float32) for mel in mel_spectrograms]
         | 
| 422 | 
            +
                    else:
         | 
| 423 | 
            +
                        batched_speech["input_features"] = [mel.astype(np.float32) for mel in mel_spectrograms]
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    # convert attention_mask to correct format
         | 
| 426 | 
            +
                    attention_mask = padded_inputs.get("attention_mask")
         | 
| 427 | 
            +
                    if attention_mask is not None:
         | 
| 428 | 
            +
                        batched_speech["padding_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    if return_noise:
         | 
| 431 | 
            +
                        noise = [
         | 
| 432 | 
            +
                            self.generate_noise(spectrogram.shape[0], generator)
         | 
| 433 | 
            +
                            for spectrogram in batched_speech["input_features"]
         | 
| 434 | 
            +
                        ]
         | 
| 435 | 
            +
                        batched_speech["noise_sequence"] = noise
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    if do_normalize:
         | 
| 438 | 
            +
                        batched_speech["input_features"] = [
         | 
| 439 | 
            +
                            self.normalize(spectrogram) for spectrogram in batched_speech["input_features"]
         | 
| 440 | 
            +
                        ]
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    if return_tensors is not None:
         | 
| 443 | 
            +
                        batched_speech = batched_speech.convert_to_tensors(return_tensors)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    return batched_speech
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                def to_dict(self) -> Dict[str, Any]:
         | 
| 448 | 
            +
                    output = super().to_dict()
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    # Don't serialize these as they are derived from the other properties.
         | 
| 451 | 
            +
                    names = ["window", "mel_filters", "n_fft", "n_freqs", "num_max_samples"]
         | 
| 452 | 
            +
                    for name in names:
         | 
| 453 | 
            +
                        if name in output:
         | 
| 454 | 
            +
                            del output[name]
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    return output
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/univnet/modeling_univnet.py
    ADDED
    
    | @@ -0,0 +1,636 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            """ PyTorch UnivNetModel model."""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from dataclasses import dataclass
         | 
| 17 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            import torch.utils.checkpoint
         | 
| 21 | 
            +
            from torch import nn
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from ...modeling_utils import ModelOutput, PreTrainedModel
         | 
| 24 | 
            +
            from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
         | 
| 25 | 
            +
            from .configuration_univnet import UnivNetConfig
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # General docstring
         | 
| 31 | 
            +
            _CONFIG_FOR_DOC = "UnivNetConfig"
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            _CHECKPOINT_FOR_DOC = "dg845/univnet-dev"
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
         | 
| 36 | 
            +
                "dg845/univnet-dev",
         | 
| 37 | 
            +
                # See all UnivNet models at https://huggingface.co/models?filter=univnet
         | 
| 38 | 
            +
            ]
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            @dataclass
         | 
| 42 | 
            +
            class UnivNetModelOutput(ModelOutput):
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                Output class for the [`UnivNetModel`], which includes the generated audio waveforms and the original unpadded
         | 
| 45 | 
            +
                lengths of those waveforms (so that the padding can be removed by [`UnivNetModel.batch_decode`]).
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                Args:
         | 
| 48 | 
            +
                    waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
         | 
| 49 | 
            +
                        Batched 1D (mono-channel) output audio waveforms.
         | 
| 50 | 
            +
                    waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
         | 
| 51 | 
            +
                        The batched length in samples of each unpadded waveform in `waveforms`.
         | 
| 52 | 
            +
                """
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                waveforms: torch.FloatTensor = None
         | 
| 55 | 
            +
                waveform_lengths: torch.FloatTensor = None
         | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
            class UnivNetKernelPredictorResidualBlock(nn.Module):
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
                Implementation of the residual block for the kernel predictor network inside each location variable convolution
         | 
| 61 | 
            +
                block (LVCBlock).
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                Parameters:
         | 
| 64 | 
            +
                    config: (`UnivNetConfig`):
         | 
| 65 | 
            +
                        Config for the `UnivNetModel` model.
         | 
| 66 | 
            +
                """
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def __init__(
         | 
| 69 | 
            +
                    self,
         | 
| 70 | 
            +
                    config: UnivNetConfig,
         | 
| 71 | 
            +
                ):
         | 
| 72 | 
            +
                    super().__init__()
         | 
| 73 | 
            +
                    self.channels = config.model_in_channels
         | 
| 74 | 
            +
                    self.kernel_size = config.kernel_predictor_conv_size
         | 
| 75 | 
            +
                    self.dropout_prob = config.kernel_predictor_dropout
         | 
| 76 | 
            +
                    self.leaky_relu_slope = config.leaky_relu_slope
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    padding = (self.kernel_size - 1) // 2
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    self.dropout = nn.Dropout(self.dropout_prob)
         | 
| 81 | 
            +
                    self.conv1 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
         | 
| 82 | 
            +
                    self.conv2 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def forward(self, hidden_states: torch.FloatTensor):
         | 
| 85 | 
            +
                    # hidden_states should have shape (batch_size, channels, seq_length)
         | 
| 86 | 
            +
                    residual = hidden_states
         | 
| 87 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 88 | 
            +
                    hidden_states = self.conv1(hidden_states)
         | 
| 89 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 90 | 
            +
                    hidden_states = self.conv2(hidden_states)
         | 
| 91 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 92 | 
            +
                    return hidden_states + residual
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def apply_weight_norm(self):
         | 
| 95 | 
            +
                    nn.utils.weight_norm(self.conv1)
         | 
| 96 | 
            +
                    nn.utils.weight_norm(self.conv2)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def remove_weight_norm(self):
         | 
| 99 | 
            +
                    nn.utils.remove_weight_norm(self.conv1)
         | 
| 100 | 
            +
                    nn.utils.remove_weight_norm(self.conv2)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
            class UnivNetKernelPredictor(nn.Module):
         | 
| 104 | 
            +
                """
         | 
| 105 | 
            +
                Implementation of the kernel predictor network which supplies the kernel and bias for the location variable
         | 
| 106 | 
            +
                convolutional layers (LVCs) in each UnivNet LVCBlock.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                Based on the KernelPredictor implementation in
         | 
| 109 | 
            +
                [maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L7).
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                Parameters:
         | 
| 112 | 
            +
                    config: (`UnivNetConfig`):
         | 
| 113 | 
            +
                        Config for the `UnivNetModel` model.
         | 
| 114 | 
            +
                    conv_kernel_size (`int`, *optional*, defaults to 3):
         | 
| 115 | 
            +
                        The kernel size for the location variable convolutional layer kernels (convolutional weight tensor).
         | 
| 116 | 
            +
                    conv_layers (`int`, *optional*, defaults to 4):
         | 
| 117 | 
            +
                        The number of location variable convolutional layers to output kernels and biases for.
         | 
| 118 | 
            +
                """
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def __init__(
         | 
| 121 | 
            +
                    self,
         | 
| 122 | 
            +
                    config: UnivNetConfig,
         | 
| 123 | 
            +
                    conv_kernel_size: int = 3,
         | 
| 124 | 
            +
                    conv_layers: int = 4,
         | 
| 125 | 
            +
                ):
         | 
| 126 | 
            +
                    super().__init__()
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    self.conv_in_channels = config.model_hidden_channels
         | 
| 129 | 
            +
                    self.conv_out_channels = 2 * config.model_hidden_channels
         | 
| 130 | 
            +
                    self.conv_kernel_size = conv_kernel_size
         | 
| 131 | 
            +
                    self.conv_layers = conv_layers
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    self.kernel_channels = (
         | 
| 134 | 
            +
                        self.conv_in_channels * self.conv_out_channels * self.conv_kernel_size * self.conv_layers
         | 
| 135 | 
            +
                    )
         | 
| 136 | 
            +
                    self.bias_channels = self.conv_out_channels * self.conv_layers
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    self.resnet_in_channels = config.num_mel_bins
         | 
| 139 | 
            +
                    self.resnet_hidden_channels = config.kernel_predictor_hidden_channels
         | 
| 140 | 
            +
                    self.resnet_kernel_size = config.kernel_predictor_conv_size
         | 
| 141 | 
            +
                    self.num_blocks = config.kernel_predictor_num_blocks
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    self.leaky_relu_slope = config.leaky_relu_slope
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    padding = (self.resnet_kernel_size - 1) // 2
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    self.input_conv = nn.Conv1d(self.resnet_in_channels, self.resnet_hidden_channels, 5, padding=2, bias=True)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    self.resblocks = nn.ModuleList([UnivNetKernelPredictorResidualBlock(config) for _ in range(self.num_blocks)])
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    self.kernel_conv = nn.Conv1d(
         | 
| 152 | 
            +
                        self.resnet_hidden_channels, self.kernel_channels, self.resnet_kernel_size, padding=padding, bias=True
         | 
| 153 | 
            +
                    )
         | 
| 154 | 
            +
                    self.bias_conv = nn.Conv1d(
         | 
| 155 | 
            +
                        self.resnet_hidden_channels, self.bias_channels, self.resnet_kernel_size, padding=padding, bias=True
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                def forward(self, spectrogram: torch.FloatTensor):
         | 
| 159 | 
            +
                    """
         | 
| 160 | 
            +
                    Maps a conditioning log-mel spectrogram to a tensor of convolutional kernels and biases, for use in location
         | 
| 161 | 
            +
                    variable convolutional layers. Note that the input spectrogram should have shape (batch_size, input_channels,
         | 
| 162 | 
            +
                    seq_length).
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    Args:
         | 
| 165 | 
            +
                        spectrogram (`torch.FloatTensor` of shape `(batch_size, input_channels, seq_length)`):
         | 
| 166 | 
            +
                            Tensor containing the log-mel spectrograms.
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    Returns:
         | 
| 169 | 
            +
                        Tuple[`torch.FloatTensor, `torch.FloatTensor`]: tuple of tensors where the first element is the tensor of
         | 
| 170 | 
            +
                        location variable convolution kernels of shape `(batch_size, self.conv_layers, self.conv_in_channels,
         | 
| 171 | 
            +
                        self.conv_out_channels, self.conv_kernel_size, seq_length)` and the second element is the tensor of
         | 
| 172 | 
            +
                        location variable convolution biases of shape `(batch_size, self.conv_layers. self.conv_out_channels,
         | 
| 173 | 
            +
                        seq_length)`.
         | 
| 174 | 
            +
                    """
         | 
| 175 | 
            +
                    batch_size, _, seq_length = spectrogram.shape
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    hidden_states = self.input_conv(spectrogram)
         | 
| 178 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    for resblock in self.resblocks:
         | 
| 181 | 
            +
                        hidden_states = resblock(hidden_states)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    kernel_hidden_states = self.kernel_conv(hidden_states)
         | 
| 184 | 
            +
                    bias_hidden_states = self.bias_conv(hidden_states)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    # Reshape kernels and biases to appropriate shape
         | 
| 187 | 
            +
                    kernels = kernel_hidden_states.view(
         | 
| 188 | 
            +
                        batch_size,
         | 
| 189 | 
            +
                        self.conv_layers,
         | 
| 190 | 
            +
                        self.conv_in_channels,
         | 
| 191 | 
            +
                        self.conv_out_channels,
         | 
| 192 | 
            +
                        self.conv_kernel_size,
         | 
| 193 | 
            +
                        seq_length,
         | 
| 194 | 
            +
                    ).contiguous()
         | 
| 195 | 
            +
                    biases = bias_hidden_states.view(
         | 
| 196 | 
            +
                        batch_size,
         | 
| 197 | 
            +
                        self.conv_layers,
         | 
| 198 | 
            +
                        self.conv_out_channels,
         | 
| 199 | 
            +
                        seq_length,
         | 
| 200 | 
            +
                    ).contiguous()
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    return kernels, biases
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def apply_weight_norm(self):
         | 
| 205 | 
            +
                    nn.utils.weight_norm(self.input_conv)
         | 
| 206 | 
            +
                    for layer in self.resblocks:
         | 
| 207 | 
            +
                        layer.apply_weight_norm()
         | 
| 208 | 
            +
                    nn.utils.weight_norm(self.kernel_conv)
         | 
| 209 | 
            +
                    nn.utils.weight_norm(self.bias_conv)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                def remove_weight_norm(self):
         | 
| 212 | 
            +
                    nn.utils.remove_weight_norm(self.input_conv)
         | 
| 213 | 
            +
                    for layer in self.resblocks:
         | 
| 214 | 
            +
                        layer.remove_weight_norm()
         | 
| 215 | 
            +
                    nn.utils.remove_weight_norm(self.kernel_conv)
         | 
| 216 | 
            +
                    nn.utils.remove_weight_norm(self.bias_conv)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            class UnivNetLvcResidualBlock(nn.Module):
         | 
| 220 | 
            +
                """
         | 
| 221 | 
            +
                Implementation of the location variable convolution (LVC) residual block for the UnivNet residual network.
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                Parameters:
         | 
| 224 | 
            +
                    config: (`UnivNetConfig`):
         | 
| 225 | 
            +
                        Config for the `UnivNetModel` model.
         | 
| 226 | 
            +
                    kernel_size (`int`):
         | 
| 227 | 
            +
                        The kernel size for the dilated 1D convolutional layer.
         | 
| 228 | 
            +
                    dilation (`int`):
         | 
| 229 | 
            +
                        The dilation for the dilated 1D convolutional layer.
         | 
| 230 | 
            +
                """
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                def __init__(
         | 
| 233 | 
            +
                    self,
         | 
| 234 | 
            +
                    config: UnivNetConfig,
         | 
| 235 | 
            +
                    kernel_size: int,
         | 
| 236 | 
            +
                    dilation: int,
         | 
| 237 | 
            +
                ):
         | 
| 238 | 
            +
                    super().__init__()
         | 
| 239 | 
            +
                    self.hidden_channels = config.model_hidden_channels
         | 
| 240 | 
            +
                    self.kernel_size = kernel_size
         | 
| 241 | 
            +
                    self.dilation = dilation
         | 
| 242 | 
            +
                    self.leaky_relu_slope = config.leaky_relu_slope
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    padding = self.dilation * (self.kernel_size - 1) // 2
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    self.conv = nn.Conv1d(
         | 
| 247 | 
            +
                        self.hidden_channels,
         | 
| 248 | 
            +
                        self.hidden_channels,
         | 
| 249 | 
            +
                        self.kernel_size,
         | 
| 250 | 
            +
                        padding=padding,
         | 
| 251 | 
            +
                        dilation=self.dilation,
         | 
| 252 | 
            +
                    )
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def forward(self, hidden_states, kernel, bias, hop_size=256):
         | 
| 255 | 
            +
                    residual = hidden_states
         | 
| 256 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 257 | 
            +
                    hidden_states = self.conv(hidden_states)
         | 
| 258 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 259 | 
            +
                    hidden_states = self.location_variable_convolution(hidden_states, kernel, bias, hop_size=hop_size)
         | 
| 260 | 
            +
                    # Gated activation unit
         | 
| 261 | 
            +
                    hidden_states = torch.sigmoid(hidden_states[:, : self.hidden_channels, :]) * torch.tanh(
         | 
| 262 | 
            +
                        hidden_states[:, self.hidden_channels :, :]
         | 
| 263 | 
            +
                    )
         | 
| 264 | 
            +
                    # Skip connection
         | 
| 265 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    return hidden_states
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                # Based on https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L171
         | 
| 270 | 
            +
                def location_variable_convolution(
         | 
| 271 | 
            +
                    self,
         | 
| 272 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 273 | 
            +
                    kernel: torch.FloatTensor,
         | 
| 274 | 
            +
                    bias: torch.FloatTensor,
         | 
| 275 | 
            +
                    dilation: int = 1,
         | 
| 276 | 
            +
                    hop_size: int = 256,
         | 
| 277 | 
            +
                ):
         | 
| 278 | 
            +
                    """
         | 
| 279 | 
            +
                    Performs location-variable convolution operation on the input sequence (hidden_states) using the local
         | 
| 280 | 
            +
                    convolution kernel. This was introduced in [LVCNet: Efficient Condition-Dependent Modeling Network for Waveform
         | 
| 281 | 
            +
                    Generation](https://arxiv.org/abs/2102.10815) by Zhen Zheng, Jianzong Wang, Ning Cheng, and Jing Xiao.
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    Args:
         | 
| 286 | 
            +
                        hidden_states (`torch.FloatTensor` of shape `(batch_size, in_channels, in_length)`):
         | 
| 287 | 
            +
                            The input sequence of shape (batch, in_channels, in_length).
         | 
| 288 | 
            +
                        kernel (`torch.FloatTensor` of shape `(batch_size, in_channels, out_channels, kernel_size, kernel_length)`):
         | 
| 289 | 
            +
                            The local convolution kernel of shape (batch, in_channels, out_channels, kernel_size, kernel_length).
         | 
| 290 | 
            +
                        bias (`torch.FloatTensor` of shape `(batch_size, out_channels, kernel_length)`):
         | 
| 291 | 
            +
                            The bias for the local convolution of shape (batch, out_channels, kernel_length).
         | 
| 292 | 
            +
                        dilation (`int`, *optional*, defaults to 1):
         | 
| 293 | 
            +
                            The dilation of convolution.
         | 
| 294 | 
            +
                        hop_size (`int`, *optional*, defaults to 256):
         | 
| 295 | 
            +
                            The hop_size of the conditioning sequence.
         | 
| 296 | 
            +
                    Returns:
         | 
| 297 | 
            +
                        `torch.FloatTensor`: the output sequence after performing local convolution with shape (batch_size,
         | 
| 298 | 
            +
                        out_channels, in_length).
         | 
| 299 | 
            +
                    """
         | 
| 300 | 
            +
                    batch, _, in_length = hidden_states.shape
         | 
| 301 | 
            +
                    batch, _, out_channels, kernel_size, kernel_length = kernel.shape
         | 
| 302 | 
            +
                    if in_length != (kernel_length * hop_size):
         | 
| 303 | 
            +
                        raise ValueError(
         | 
| 304 | 
            +
                            f"Dim 2 of `hidden_states` should be {kernel_length * hop_size}) but got {in_length}. Please check"
         | 
| 305 | 
            +
                            " `hidden_states` or `kernel` and `hop_size` to make sure they are correct."
         | 
| 306 | 
            +
                        )
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    padding = dilation * int((kernel_size - 1) / 2)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    # (batch, in_channels, in_length + 2*padding)
         | 
| 311 | 
            +
                    hidden_states = nn.functional.pad(hidden_states, (padding, padding), "constant", 0)
         | 
| 312 | 
            +
                    # (batch, in_channels, kernel_length, hop_size + 2*padding)
         | 
| 313 | 
            +
                    hidden_states = hidden_states.unfold(2, hop_size + 2 * padding, hop_size)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    if hop_size < dilation:
         | 
| 316 | 
            +
                        hidden_states = nn.functional.pad(hidden_states, (0, dilation), "constant", 0)
         | 
| 317 | 
            +
                    # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
         | 
| 318 | 
            +
                    hidden_states = hidden_states.unfold(3, dilation, dilation)
         | 
| 319 | 
            +
                    hidden_states = hidden_states[:, :, :, :, :hop_size]
         | 
| 320 | 
            +
                    # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
         | 
| 321 | 
            +
                    hidden_states = hidden_states.transpose(3, 4)
         | 
| 322 | 
            +
                    # (batch, in_channels, kernel_length, dilation, _, kernel_size)
         | 
| 323 | 
            +
                    hidden_states = hidden_states.unfold(4, kernel_size, 1)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    # Apply local convolution kernel to hidden_states.
         | 
| 326 | 
            +
                    output_hidden_states = torch.einsum("bildsk,biokl->bolsd", hidden_states, kernel)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    output_hidden_states = output_hidden_states.to(memory_format=torch.channels_last_3d)
         | 
| 329 | 
            +
                    bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
         | 
| 330 | 
            +
                    output_hidden_states = output_hidden_states + bias
         | 
| 331 | 
            +
                    output_hidden_states = output_hidden_states.contiguous().view(batch, out_channels, -1)
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    return output_hidden_states
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                def apply_weight_norm(self):
         | 
| 336 | 
            +
                    nn.utils.weight_norm(self.conv)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                def remove_weight_norm(self):
         | 
| 339 | 
            +
                    nn.utils.remove_weight_norm(self.conv)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
             | 
| 342 | 
            +
            class UnivNetLvcBlock(nn.Module):
         | 
| 343 | 
            +
                """
         | 
| 344 | 
            +
                Implementation of the location variable convolution (LVC) residual block of the UnivNet residual block. Includes a
         | 
| 345 | 
            +
                `UnivNetKernelPredictor` inside to predict the kernels and biases of the LVC layers.
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                Based on LVCBlock in
         | 
| 348 | 
            +
                [maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L98)
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                Parameters:
         | 
| 351 | 
            +
                    config (`UnivNetConfig`):
         | 
| 352 | 
            +
                        Config for the `UnivNetModel` model.
         | 
| 353 | 
            +
                    layer_id (`int`):
         | 
| 354 | 
            +
                        An integer corresponding to the index of the current LVC resnet block layer. This should be between 0 and
         | 
| 355 | 
            +
                        `len(config.resblock_stride_sizes) - 1)` inclusive.
         | 
| 356 | 
            +
                    lvc_hop_size (`int`, *optional*, defaults to 256):
         | 
| 357 | 
            +
                        The hop size for the location variable convolutional layers.
         | 
| 358 | 
            +
                """
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                def __init__(
         | 
| 361 | 
            +
                    self,
         | 
| 362 | 
            +
                    config: UnivNetConfig,
         | 
| 363 | 
            +
                    layer_id: int,
         | 
| 364 | 
            +
                    lvc_hop_size: int = 256,
         | 
| 365 | 
            +
                ):
         | 
| 366 | 
            +
                    super().__init__()
         | 
| 367 | 
            +
                    self.hidden_channels = config.model_hidden_channels
         | 
| 368 | 
            +
                    self.kernel_size = config.resblock_kernel_sizes[layer_id]
         | 
| 369 | 
            +
                    self.stride = config.resblock_stride_sizes[layer_id]
         | 
| 370 | 
            +
                    self.dilations = config.resblock_dilation_sizes[layer_id]
         | 
| 371 | 
            +
                    self.cond_hop_length = lvc_hop_size
         | 
| 372 | 
            +
                    self.leaky_relu_slope = config.leaky_relu_slope
         | 
| 373 | 
            +
                    self.num_blocks = len(self.dilations)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    self.convt_pre = nn.ConvTranspose1d(
         | 
| 376 | 
            +
                        self.hidden_channels,
         | 
| 377 | 
            +
                        self.hidden_channels,
         | 
| 378 | 
            +
                        2 * self.stride,
         | 
| 379 | 
            +
                        stride=self.stride,
         | 
| 380 | 
            +
                        padding=self.stride // 2 + self.stride % 2,
         | 
| 381 | 
            +
                        output_padding=self.stride % 2,
         | 
| 382 | 
            +
                    )
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    self.kernel_predictor = UnivNetKernelPredictor(config, self.kernel_size, self.num_blocks)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    self.resblocks = nn.ModuleList(
         | 
| 387 | 
            +
                        [UnivNetLvcResidualBlock(config, self.kernel_size, self.dilations[i]) for i in range(self.num_blocks)]
         | 
| 388 | 
            +
                    )
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                def forward(self, hidden_states: torch.FloatTensor, spectrogram: torch.FloatTensor):
         | 
| 391 | 
            +
                    # hidden_states: (batch_size, hidden_channels, seq_length)
         | 
| 392 | 
            +
                    # spectrogram: (batch_size, cond_channels, cond_length)
         | 
| 393 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 394 | 
            +
                    hidden_states = self.convt_pre(hidden_states)
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    kernels, biases = self.kernel_predictor(spectrogram)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    for i, resblock in enumerate(self.resblocks):
         | 
| 399 | 
            +
                        kernel = kernels[:, i, :, :, :, :]
         | 
| 400 | 
            +
                        bias = biases[:, i, :, :]
         | 
| 401 | 
            +
                        hidden_states = resblock(hidden_states, kernel, bias, hop_size=self.cond_hop_length)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    return hidden_states
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                def apply_weight_norm(self):
         | 
| 406 | 
            +
                    nn.utils.weight_norm(self.convt_pre)
         | 
| 407 | 
            +
                    self.kernel_predictor.apply_weight_norm()
         | 
| 408 | 
            +
                    for layer in self.resblocks:
         | 
| 409 | 
            +
                        layer.apply_weight_norm()
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                def remove_weight_norm(self):
         | 
| 412 | 
            +
                    nn.utils.remove_weight_norm(self.convt_pre)
         | 
| 413 | 
            +
                    self.kernel_predictor.remove_weight_norm()
         | 
| 414 | 
            +
                    for layer in self.resblocks:
         | 
| 415 | 
            +
                        layer.remove_weight_norm()
         | 
| 416 | 
            +
             | 
| 417 | 
            +
             | 
| 418 | 
            +
            UNIVNET_START_DOCSTRING = r"""
         | 
| 419 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 420 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 421 | 
            +
                etc.)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 424 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 425 | 
            +
                and behavior.
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                Parameters:
         | 
| 428 | 
            +
                    config ([`UnivNetConfig`]):
         | 
| 429 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 430 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 431 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 432 | 
            +
            """
         | 
| 433 | 
            +
             | 
| 434 | 
            +
             | 
| 435 | 
            +
            UNIVNET_INPUTS_DOCSTRING = r"""
         | 
| 436 | 
            +
                Converts a noise waveform and a conditioning spectrogram to a speech waveform. Passing a batch of log-mel
         | 
| 437 | 
            +
                spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a
         | 
| 438 | 
            +
                single, un-batched speech waveform.
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                Args:
         | 
| 441 | 
            +
                    input_features (`torch.FloatTensor`):
         | 
| 442 | 
            +
                        Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
         | 
| 443 | 
            +
                        config.num_mel_channels)`, or un-batched and of shape `(sequence_length, config.num_mel_channels)`.
         | 
| 444 | 
            +
                    noise_sequence (`torch.FloatTensor`, *optional*):
         | 
| 445 | 
            +
                        Tensor containing a noise sequence of standard Gaussian noise. Can be batched and of shape `(batch_size,
         | 
| 446 | 
            +
                        sequence_length, config.model_in_channels)`, or un-batched and of shape (sequence_length,
         | 
| 447 | 
            +
                        config.model_in_channels)`. If not supplied, will be randomly generated.
         | 
| 448 | 
            +
                    padding_mask (`torch.BoolTensor`, *optional*):
         | 
| 449 | 
            +
                        Mask indicating which parts of each sequence are padded. Mask values are selected in `[0, 1]`:
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                        - 1 for tokens that are **not masked**
         | 
| 452 | 
            +
                        - 0 for tokens that are **masked**
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                        The mask can be batched and of shape `(batch_size, sequence_length)` or un-batched and of shape
         | 
| 455 | 
            +
                        `(sequence_length,)`.
         | 
| 456 | 
            +
                    generator (`torch.Generator`, *optional*):
         | 
| 457 | 
            +
                        A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
         | 
| 458 | 
            +
                        deterministic.
         | 
| 459 | 
            +
                    return_dict:
         | 
| 460 | 
            +
                        Whether to return a [`~utils.ModelOutput`] subclass instead of a plain tuple.
         | 
| 461 | 
            +
            """
         | 
| 462 | 
            +
             | 
| 463 | 
            +
             | 
| 464 | 
            +
            @add_start_docstrings(
         | 
| 465 | 
            +
                """UnivNet GAN vocoder.""",
         | 
| 466 | 
            +
                UNIVNET_START_DOCSTRING,
         | 
| 467 | 
            +
            )
         | 
| 468 | 
            +
            class UnivNetModel(PreTrainedModel):
         | 
| 469 | 
            +
                config_class = UnivNetConfig
         | 
| 470 | 
            +
                main_input_name = "input_features"
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                def __init__(self, config: UnivNetConfig):
         | 
| 473 | 
            +
                    super().__init__(config)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    self.num_kernels = len(config.resblock_kernel_sizes)
         | 
| 476 | 
            +
                    self.leaky_relu_slope = config.leaky_relu_slope
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    self.conv_pre = nn.Conv1d(
         | 
| 479 | 
            +
                        config.model_in_channels,
         | 
| 480 | 
            +
                        config.model_hidden_channels,
         | 
| 481 | 
            +
                        kernel_size=7,
         | 
| 482 | 
            +
                        stride=1,
         | 
| 483 | 
            +
                        padding=3,
         | 
| 484 | 
            +
                        padding_mode="reflect",
         | 
| 485 | 
            +
                    )
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    # Initialize location-variable convolution ResNet Blocks.
         | 
| 488 | 
            +
                    num_layers = len(config.resblock_stride_sizes)
         | 
| 489 | 
            +
                    hop_length = 1
         | 
| 490 | 
            +
                    hop_lengths = []
         | 
| 491 | 
            +
                    for stride in config.resblock_stride_sizes:
         | 
| 492 | 
            +
                        hop_length = hop_length * stride
         | 
| 493 | 
            +
                        hop_lengths.append(hop_length)
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    self.resblocks = nn.ModuleList(
         | 
| 496 | 
            +
                        [
         | 
| 497 | 
            +
                            UnivNetLvcBlock(
         | 
| 498 | 
            +
                                config,
         | 
| 499 | 
            +
                                layer_id=i,
         | 
| 500 | 
            +
                                lvc_hop_size=hop_lengths[i],
         | 
| 501 | 
            +
                            )
         | 
| 502 | 
            +
                            for i in range(num_layers)
         | 
| 503 | 
            +
                        ]
         | 
| 504 | 
            +
                    )
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    self.conv_post = nn.Conv1d(config.model_hidden_channels, 1, 7, padding=3, padding_mode="reflect")
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    # Initialize weights and apply final processing
         | 
| 509 | 
            +
                    self.post_init()
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                @add_start_docstrings_to_model_forward(UNIVNET_INPUTS_DOCSTRING)
         | 
| 512 | 
            +
                @replace_return_docstrings(output_type=UnivNetModelOutput, config_class=_CONFIG_FOR_DOC)
         | 
| 513 | 
            +
                def forward(
         | 
| 514 | 
            +
                    self,
         | 
| 515 | 
            +
                    input_features: torch.FloatTensor,
         | 
| 516 | 
            +
                    noise_sequence: Optional[torch.FloatTensor] = None,
         | 
| 517 | 
            +
                    padding_mask: Optional[torch.FloatTensor] = None,
         | 
| 518 | 
            +
                    generator: Optional[torch.Generator] = None,
         | 
| 519 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 520 | 
            +
                ) -> Union[Tuple[torch.FloatTensor], UnivNetModelOutput]:
         | 
| 521 | 
            +
                    r"""
         | 
| 522 | 
            +
                    Returns:
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    Example:
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                     ```python
         | 
| 527 | 
            +
                     >>> from transformers import UnivNetFeatureExtractor, UnivNetModel
         | 
| 528 | 
            +
                     >>> from datasets import load_dataset, Audio
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                     >>> model = UnivNetModel.from_pretrained("dg845/univnet-dev")
         | 
| 531 | 
            +
                     >>> feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                     >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
         | 
| 534 | 
            +
                     >>> # Resample the audio to the feature extractor's sampling rate.
         | 
| 535 | 
            +
                     >>> ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
         | 
| 536 | 
            +
                     >>> inputs = feature_extractor(
         | 
| 537 | 
            +
                     ...     ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
         | 
| 538 | 
            +
                     ... )
         | 
| 539 | 
            +
                     >>> audio = model(**inputs).waveforms
         | 
| 540 | 
            +
                     >>> list(audio.shape)
         | 
| 541 | 
            +
                     [1, 140288]
         | 
| 542 | 
            +
                     ```
         | 
| 543 | 
            +
                    """
         | 
| 544 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    # Resolve batch sizes for noise_sequence and spectrogram
         | 
| 547 | 
            +
                    spectrogram_batched = input_features.dim() == 3
         | 
| 548 | 
            +
                    if not spectrogram_batched:
         | 
| 549 | 
            +
                        input_features = input_features.unsqueeze(0)
         | 
| 550 | 
            +
                    spectrogram_batch_size, spectrogram_length, _ = input_features.shape
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    if noise_sequence is not None:
         | 
| 553 | 
            +
                        noise_sequence_batched = noise_sequence.dim() == 3
         | 
| 554 | 
            +
                        if not noise_sequence_batched:
         | 
| 555 | 
            +
                            noise_sequence = noise_sequence.unsqueeze(0)
         | 
| 556 | 
            +
                    else:
         | 
| 557 | 
            +
                        # Randomly generate noise_sequence
         | 
| 558 | 
            +
                        noise_sequence_shape = (spectrogram_batch_size, spectrogram_length, self.config.model_in_channels)
         | 
| 559 | 
            +
                        noise_sequence = torch.randn(
         | 
| 560 | 
            +
                            noise_sequence_shape, generator=generator, dtype=input_features.dtype, device=input_features.device
         | 
| 561 | 
            +
                        )
         | 
| 562 | 
            +
                    noise_sequence_batch_size = noise_sequence.shape[0]
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                    if spectrogram_batch_size > 1 and noise_sequence_batch_size == 1:
         | 
| 565 | 
            +
                        # Repeat noise_sequence spectrogram_batch_size times
         | 
| 566 | 
            +
                        noise_sequence = noise_sequence.repeat(spectrogram_batch_size, 1, 1)
         | 
| 567 | 
            +
                    elif noise_sequence_batch_size > 1 and spectrogram_batch_size == 1:
         | 
| 568 | 
            +
                        # Repeat spectrogram noise_sequence_batch_size times
         | 
| 569 | 
            +
                        input_features = input_features.repeat(noise_sequence_batch_size, 1, 1)
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    if noise_sequence_batch_size != spectrogram_batch_size:
         | 
| 572 | 
            +
                        raise ValueError(
         | 
| 573 | 
            +
                            f"The batch size of `noise_sequence` is {noise_sequence_batch_size} and the batch size of"
         | 
| 574 | 
            +
                            f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
         | 
| 575 | 
            +
                        )
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    if padding_mask is not None:
         | 
| 578 | 
            +
                        if padding_mask.dim() == 1:
         | 
| 579 | 
            +
                            padding_mask = padding_mask.unsqueeze(0)
         | 
| 580 | 
            +
                        padding_mask_batch_size = padding_mask.shape[0]
         | 
| 581 | 
            +
                        if padding_mask_batch_size != spectrogram_batch_size:
         | 
| 582 | 
            +
                            raise ValueError(
         | 
| 583 | 
            +
                                f"The batch size of `padding_mask` is {padding_mask_batch_size} and the batch size of"
         | 
| 584 | 
            +
                                f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
         | 
| 585 | 
            +
                            )
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    # Change shapes to have channels before sequence lengths
         | 
| 588 | 
            +
                    hidden_states = noise_sequence.transpose(2, 1)
         | 
| 589 | 
            +
                    input_features = input_features.transpose(2, 1)
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                    hidden_states = self.conv_pre(hidden_states)
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                    for resblock in self.resblocks:
         | 
| 594 | 
            +
                        hidden_states = resblock(hidden_states, input_features)
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
         | 
| 597 | 
            +
                    hidden_states = self.conv_post(hidden_states)
         | 
| 598 | 
            +
                    hidden_states = torch.tanh(hidden_states)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                    # Remove sequence length dimension since this collapses to 1
         | 
| 601 | 
            +
                    # NOTE: keep waveforms batched even if there's only one
         | 
| 602 | 
            +
                    waveform = hidden_states.squeeze(1)
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                    # Get sequence lengths for UnivNetFeatureExtractor.batch_decode.
         | 
| 605 | 
            +
                    waveform_lengths = None
         | 
| 606 | 
            +
                    if padding_mask is not None:
         | 
| 607 | 
            +
                        # Padding is always contiguous and added on the right
         | 
| 608 | 
            +
                        waveform_lengths = torch.sum(padding_mask, dim=1)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    if not return_dict:
         | 
| 611 | 
            +
                        outputs = (waveform, waveform_lengths)
         | 
| 612 | 
            +
                        return outputs
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    return UnivNetModelOutput(
         | 
| 615 | 
            +
                        waveforms=waveform,
         | 
| 616 | 
            +
                        waveform_lengths=waveform_lengths,
         | 
| 617 | 
            +
                    )
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                def _init_weights(self, module):
         | 
| 620 | 
            +
                    """Initialize the weights."""
         | 
| 621 | 
            +
                    if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
         | 
| 622 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 623 | 
            +
                        if module.bias is not None:
         | 
| 624 | 
            +
                            module.bias.data.zero_()
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                def apply_weight_norm(self):
         | 
| 627 | 
            +
                    nn.utils.weight_norm(self.conv_pre)
         | 
| 628 | 
            +
                    for layer in self.resblocks:
         | 
| 629 | 
            +
                        layer.apply_weight_norm()
         | 
| 630 | 
            +
                    nn.utils.weight_norm(self.conv_post)
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                def remove_weight_norm(self):
         | 
| 633 | 
            +
                    nn.utils.remove_weight_norm(self.conv_pre)
         | 
| 634 | 
            +
                    for layer in self.resblocks:
         | 
| 635 | 
            +
                        layer.remove_weight_norm()
         | 
| 636 | 
            +
                    nn.utils.remove_weight_norm(self.conv_post)
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (1.05 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc
    ADDED
    
    | Binary file (5.93 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc
    ADDED
    
    | Binary file (35.8 kB). View file | 
|  | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py
    ADDED
    
    | @@ -0,0 +1,108 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 The HuggingFace Inc. team.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """Convert YOSO checkpoints from the original repository. URL: https://github.com/mlpen/YOSO"""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import argparse
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from transformers import YosoConfig, YosoForMaskedLM
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            def rename_key(orig_key):
         | 
| 25 | 
            +
                if "model" in orig_key:
         | 
| 26 | 
            +
                    orig_key = orig_key.replace("model.", "")
         | 
| 27 | 
            +
                if "norm1" in orig_key:
         | 
| 28 | 
            +
                    orig_key = orig_key.replace("norm1", "attention.output.LayerNorm")
         | 
| 29 | 
            +
                if "norm2" in orig_key:
         | 
| 30 | 
            +
                    orig_key = orig_key.replace("norm2", "output.LayerNorm")
         | 
| 31 | 
            +
                if "norm" in orig_key:
         | 
| 32 | 
            +
                    orig_key = orig_key.replace("norm", "LayerNorm")
         | 
| 33 | 
            +
                if "transformer" in orig_key:
         | 
| 34 | 
            +
                    layer_num = orig_key.split(".")[0].split("_")[-1]
         | 
| 35 | 
            +
                    orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}")
         | 
| 36 | 
            +
                if "mha.attn" in orig_key:
         | 
| 37 | 
            +
                    orig_key = orig_key.replace("mha.attn", "attention.self")
         | 
| 38 | 
            +
                if "mha" in orig_key:
         | 
| 39 | 
            +
                    orig_key = orig_key.replace("mha", "attention")
         | 
| 40 | 
            +
                if "W_q" in orig_key:
         | 
| 41 | 
            +
                    orig_key = orig_key.replace("W_q", "self.query")
         | 
| 42 | 
            +
                if "W_k" in orig_key:
         | 
| 43 | 
            +
                    orig_key = orig_key.replace("W_k", "self.key")
         | 
| 44 | 
            +
                if "W_v" in orig_key:
         | 
| 45 | 
            +
                    orig_key = orig_key.replace("W_v", "self.value")
         | 
| 46 | 
            +
                if "ff1" in orig_key:
         | 
| 47 | 
            +
                    orig_key = orig_key.replace("ff1", "intermediate.dense")
         | 
| 48 | 
            +
                if "ff2" in orig_key:
         | 
| 49 | 
            +
                    orig_key = orig_key.replace("ff2", "output.dense")
         | 
| 50 | 
            +
                if "ff" in orig_key:
         | 
| 51 | 
            +
                    orig_key = orig_key.replace("ff", "output.dense")
         | 
| 52 | 
            +
                if "mlm_class" in orig_key:
         | 
| 53 | 
            +
                    orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder")
         | 
| 54 | 
            +
                if "mlm" in orig_key:
         | 
| 55 | 
            +
                    orig_key = orig_key.replace("mlm", "cls.predictions.transform")
         | 
| 56 | 
            +
                if "cls" not in orig_key:
         | 
| 57 | 
            +
                    orig_key = "yoso." + orig_key
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                return orig_key
         | 
| 60 | 
            +
             | 
| 61 | 
            +
             | 
| 62 | 
            +
            def convert_checkpoint_helper(max_position_embeddings, orig_state_dict):
         | 
| 63 | 
            +
                for key in orig_state_dict.copy().keys():
         | 
| 64 | 
            +
                    val = orig_state_dict.pop(key)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    if ("pooler" in key) or ("sen_class" in key):
         | 
| 67 | 
            +
                        continue
         | 
| 68 | 
            +
                    else:
         | 
| 69 | 
            +
                        orig_state_dict[rename_key(key)] = val
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"]
         | 
| 72 | 
            +
                orig_state_dict["yoso.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                return orig_state_dict
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            def convert_yoso_checkpoint(checkpoint_path, yoso_config_file, pytorch_dump_path):
         | 
| 78 | 
            +
                orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
         | 
| 79 | 
            +
                config = YosoConfig.from_json_file(yoso_config_file)
         | 
| 80 | 
            +
                model = YosoForMaskedLM(config)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                print(model.load_state_dict(new_state_dict))
         | 
| 85 | 
            +
                model.eval()
         | 
| 86 | 
            +
                model.save_pretrained(pytorch_dump_path)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            if __name__ == "__main__":
         | 
| 92 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 93 | 
            +
                # Required parameters
         | 
| 94 | 
            +
                parser.add_argument(
         | 
| 95 | 
            +
                    "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint."
         | 
| 96 | 
            +
                )
         | 
| 97 | 
            +
                parser.add_argument(
         | 
| 98 | 
            +
                    "--config_file",
         | 
| 99 | 
            +
                    default=None,
         | 
| 100 | 
            +
                    type=str,
         | 
| 101 | 
            +
                    required=True,
         | 
| 102 | 
            +
                    help="The json file for YOSO model config.",
         | 
| 103 | 
            +
                )
         | 
| 104 | 
            +
                parser.add_argument(
         | 
| 105 | 
            +
                    "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
                args = parser.parse_args()
         | 
| 108 | 
            +
                convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
         | 
    	
        evalkit_cambrian/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py
    ADDED
    
    | @@ -0,0 +1,1304 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """ PyTorch YOSO model."""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            import math
         | 
| 19 | 
            +
            from pathlib import Path
         | 
| 20 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.utils.checkpoint
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from ...activations import ACT2FN
         | 
| 28 | 
            +
            from ...modeling_outputs import (
         | 
| 29 | 
            +
                BaseModelOutputWithCrossAttentions,
         | 
| 30 | 
            +
                MaskedLMOutput,
         | 
| 31 | 
            +
                MultipleChoiceModelOutput,
         | 
| 32 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 33 | 
            +
                SequenceClassifierOutput,
         | 
| 34 | 
            +
                TokenClassifierOutput,
         | 
| 35 | 
            +
            )
         | 
| 36 | 
            +
            from ...modeling_utils import PreTrainedModel
         | 
| 37 | 
            +
            from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
         | 
| 38 | 
            +
            from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
         | 
| 39 | 
            +
            from .configuration_yoso import YosoConfig
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            _CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096"
         | 
| 45 | 
            +
            _CONFIG_FOR_DOC = "YosoConfig"
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = [
         | 
| 48 | 
            +
                "uw-madison/yoso-4096",
         | 
| 49 | 
            +
                # See all YOSO models at https://huggingface.co/models?filter=yoso
         | 
| 50 | 
            +
            ]
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            def load_cuda_kernels():
         | 
| 54 | 
            +
                global lsh_cumulation
         | 
| 55 | 
            +
                try:
         | 
| 56 | 
            +
                    from torch.utils.cpp_extension import load
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    def append_root(files):
         | 
| 59 | 
            +
                        src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso"
         | 
| 60 | 
            +
                        return [src_folder / file for file in files]
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    src_files = append_root(
         | 
| 63 | 
            +
                        ["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]
         | 
| 64 | 
            +
                    )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    load("fast_lsh_cumulation", src_files, verbose=True)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    import fast_lsh_cumulation as lsh_cumulation
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    return True
         | 
| 71 | 
            +
                except Exception:
         | 
| 72 | 
            +
                    lsh_cumulation = None
         | 
| 73 | 
            +
                    return False
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            def to_contiguous(input_tensors):
         | 
| 77 | 
            +
                if isinstance(input_tensors, list):
         | 
| 78 | 
            +
                    out = []
         | 
| 79 | 
            +
                    for tensor in input_tensors:
         | 
| 80 | 
            +
                        if not tensor.is_contiguous():
         | 
| 81 | 
            +
                            tensor = tensor.contiguous()
         | 
| 82 | 
            +
                        out.append(tensor)
         | 
| 83 | 
            +
                    return out
         | 
| 84 | 
            +
                else:
         | 
| 85 | 
            +
                    if not input_tensors.is_contiguous():
         | 
| 86 | 
            +
                        input_tensors = input_tensors.contiguous()
         | 
| 87 | 
            +
                    return input_tensors
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            def normalize(input_tensors):
         | 
| 91 | 
            +
                if isinstance(input_tensors, list):
         | 
| 92 | 
            +
                    out = []
         | 
| 93 | 
            +
                    for tensor in input_tensors:
         | 
| 94 | 
            +
                        out.append(nn.functional.normalize(tensor, p=2, dim=-1))
         | 
| 95 | 
            +
                    return out
         | 
| 96 | 
            +
                else:
         | 
| 97 | 
            +
                    return nn.functional.normalize(input_tensors, p=2, dim=-1)
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def hashing(query, key, num_hash, hash_len):
         | 
| 101 | 
            +
                if len(query.size()) != 3:
         | 
| 102 | 
            +
                    raise ValueError("Query has incorrect size.")
         | 
| 103 | 
            +
                if len(key.size()) != 3:
         | 
| 104 | 
            +
                    raise ValueError("Key has incorrect size.")
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device)
         | 
| 107 | 
            +
                raise_pow = 2 ** torch.arange(hash_len, device=query.device)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len)
         | 
| 110 | 
            +
                key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len)
         | 
| 111 | 
            +
                query_binary = (query_projection > 0).int()
         | 
| 112 | 
            +
                key_binary = (key_projection > 0).int()
         | 
| 113 | 
            +
                query_hash = torch.sum(query_binary * raise_pow, dim=-1)
         | 
| 114 | 
            +
                query_hash = torch.sum(key_binary * raise_pow, dim=-1)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                return query_hash.int(), query_hash.int()
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            class YosoCumulation(torch.autograd.Function):
         | 
| 120 | 
            +
                @staticmethod
         | 
| 121 | 
            +
                def forward(ctx, query_mask, key_mask, query, key, value, config):
         | 
| 122 | 
            +
                    hash_code_len = config["hash_code_len"]
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
         | 
| 125 | 
            +
                    expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
         | 
| 126 | 
            +
                    cumulation_value = torch.matmul(expectation, value)
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value)
         | 
| 129 | 
            +
                    ctx.config = config
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    return cumulation_value
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                @staticmethod
         | 
| 134 | 
            +
                def backward(ctx, grad):
         | 
| 135 | 
            +
                    grad = to_contiguous(grad)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors
         | 
| 138 | 
            +
                    config = ctx.config
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    hash_code_len = config["hash_code_len"]
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
         | 
| 143 | 
            +
                    grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
         | 
| 144 | 
            +
                    grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
         | 
| 145 | 
            +
                    grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    return None, None, grad_query, grad_key, grad_value, None
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            class YosoLSHCumulation(torch.autograd.Function):
         | 
| 151 | 
            +
                @staticmethod
         | 
| 152 | 
            +
                def forward(ctx, query_mask, key_mask, query, key, value, config):
         | 
| 153 | 
            +
                    if query_mask.size(0) != key_mask.size(0):
         | 
| 154 | 
            +
                        raise ValueError("Query mask and Key mask differ in sizes in dimension 0")
         | 
| 155 | 
            +
                    if query_mask.size(0) != query.size(0):
         | 
| 156 | 
            +
                        raise ValueError("Query mask and Query differ in sizes in dimension 0")
         | 
| 157 | 
            +
                    if query_mask.size(0) != key.size(0):
         | 
| 158 | 
            +
                        raise ValueError("Query mask and Key differ in sizes in dimension 0")
         | 
| 159 | 
            +
                    if query_mask.size(0) != value.size(0):
         | 
| 160 | 
            +
                        raise ValueError("Query mask and Value mask differ in sizes in dimension 0")
         | 
| 161 | 
            +
                    if key.size(1) != value.size(1):
         | 
| 162 | 
            +
                        raise ValueError("Key and Value differ in sizes in dimension 1")
         | 
| 163 | 
            +
                    if query.size(2) != key.size(2):
         | 
| 164 | 
            +
                        raise ValueError("Query and Key differ in sizes in dimension 2")
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value])
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    use_cuda = query_mask.is_cuda
         | 
| 169 | 
            +
                    num_hash = config["num_hash"]
         | 
| 170 | 
            +
                    hash_code_len = config["hash_code_len"]
         | 
| 171 | 
            +
                    hashtable_capacity = int(2**hash_code_len)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    if config["use_fast_hash"]:
         | 
| 174 | 
            +
                        query_hash_code, key_hash_code = lsh_cumulation.fast_hash(
         | 
| 175 | 
            +
                            query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1
         | 
| 176 | 
            +
                        )
         | 
| 177 | 
            +
                    else:
         | 
| 178 | 
            +
                        query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    cumulation_value = lsh_cumulation.lsh_cumulation(
         | 
| 181 | 
            +
                        query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1
         | 
| 182 | 
            +
                    )
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value)
         | 
| 185 | 
            +
                    ctx.config = config
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    return cumulation_value
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                @staticmethod
         | 
| 190 | 
            +
                def backward(ctx, grad):
         | 
| 191 | 
            +
                    grad = to_contiguous(grad)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors
         | 
| 194 | 
            +
                    config = ctx.config
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    use_cuda = grad.is_cuda
         | 
| 197 | 
            +
                    hash_code_len = config["hash_code_len"]
         | 
| 198 | 
            +
                    hashtable_capacity = int(2**hash_code_len)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    if config["lsh_backward"]:
         | 
| 201 | 
            +
                        grad_value = lsh_cumulation.lsh_cumulation(
         | 
| 202 | 
            +
                            key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1
         | 
| 203 | 
            +
                        )
         | 
| 204 | 
            +
                        grad_query = lsh_cumulation.lsh_weighted_cumulation(
         | 
| 205 | 
            +
                            query_mask,
         | 
| 206 | 
            +
                            query_hash_code,
         | 
| 207 | 
            +
                            grad,
         | 
| 208 | 
            +
                            key_mask,
         | 
| 209 | 
            +
                            key_hash_code,
         | 
| 210 | 
            +
                            value,
         | 
| 211 | 
            +
                            (hash_code_len / 2) * key,
         | 
| 212 | 
            +
                            hashtable_capacity,
         | 
| 213 | 
            +
                            use_cuda,
         | 
| 214 | 
            +
                            4,
         | 
| 215 | 
            +
                        )
         | 
| 216 | 
            +
                        grad_key = lsh_cumulation.lsh_weighted_cumulation(
         | 
| 217 | 
            +
                            key_mask,
         | 
| 218 | 
            +
                            key_hash_code,
         | 
| 219 | 
            +
                            value,
         | 
| 220 | 
            +
                            query_mask,
         | 
| 221 | 
            +
                            query_hash_code,
         | 
| 222 | 
            +
                            grad,
         | 
| 223 | 
            +
                            (hash_code_len / 2) * query,
         | 
| 224 | 
            +
                            hashtable_capacity,
         | 
| 225 | 
            +
                            use_cuda,
         | 
| 226 | 
            +
                            4,
         | 
| 227 | 
            +
                        )
         | 
| 228 | 
            +
                    else:
         | 
| 229 | 
            +
                        expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
         | 
| 230 | 
            +
                        expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
         | 
| 231 | 
            +
                        weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
         | 
| 232 | 
            +
                        grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
         | 
| 233 | 
            +
                        grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
         | 
| 234 | 
            +
                        grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    return None, None, grad_query, grad_key, grad_value, None
         | 
| 237 | 
            +
             | 
| 238 | 
            +
             | 
| 239 | 
            +
            # Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings
         | 
| 240 | 
            +
            class YosoEmbeddings(nn.Module):
         | 
| 241 | 
            +
                """Construct the embeddings from word, position and token_type embeddings."""
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                def __init__(self, config):
         | 
| 244 | 
            +
                    super().__init__()
         | 
| 245 | 
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
         | 
| 246 | 
            +
                    self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
         | 
| 247 | 
            +
                    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         | 
| 250 | 
            +
                    # any TensorFlow checkpoint file
         | 
| 251 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 252 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         | 
| 255 | 
            +
                    self.register_buffer(
         | 
| 256 | 
            +
                        "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
         | 
| 257 | 
            +
                    )
         | 
| 258 | 
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         | 
| 259 | 
            +
                    self.register_buffer(
         | 
| 260 | 
            +
                        "token_type_ids",
         | 
| 261 | 
            +
                        torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
         | 
| 262 | 
            +
                        persistent=False,
         | 
| 263 | 
            +
                    )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
         | 
| 266 | 
            +
                    if input_ids is not None:
         | 
| 267 | 
            +
                        input_shape = input_ids.size()
         | 
| 268 | 
            +
                    else:
         | 
| 269 | 
            +
                        input_shape = inputs_embeds.size()[:-1]
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    seq_length = input_shape[1]
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    if position_ids is None:
         | 
| 274 | 
            +
                        position_ids = self.position_ids[:, :seq_length]
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
         | 
| 277 | 
            +
                    # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
         | 
| 278 | 
            +
                    # issue #5664
         | 
| 279 | 
            +
                    if token_type_ids is None:
         | 
| 280 | 
            +
                        if hasattr(self, "token_type_ids"):
         | 
| 281 | 
            +
                            buffered_token_type_ids = self.token_type_ids[:, :seq_length]
         | 
| 282 | 
            +
                            buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
         | 
| 283 | 
            +
                            token_type_ids = buffered_token_type_ids_expanded
         | 
| 284 | 
            +
                        else:
         | 
| 285 | 
            +
                            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    if inputs_embeds is None:
         | 
| 288 | 
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         | 
| 289 | 
            +
                    token_type_embeddings = self.token_type_embeddings(token_type_ids)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    embeddings = inputs_embeds + token_type_embeddings
         | 
| 292 | 
            +
                    if self.position_embedding_type == "absolute":
         | 
| 293 | 
            +
                        position_embeddings = self.position_embeddings(position_ids)
         | 
| 294 | 
            +
                        embeddings += position_embeddings
         | 
| 295 | 
            +
                    embeddings = self.LayerNorm(embeddings)
         | 
| 296 | 
            +
                    embeddings = self.dropout(embeddings)
         | 
| 297 | 
            +
                    return embeddings
         | 
| 298 | 
            +
             | 
| 299 | 
            +
             | 
| 300 | 
            +
            class YosoSelfAttention(nn.Module):
         | 
| 301 | 
            +
                def __init__(self, config, position_embedding_type=None):
         | 
| 302 | 
            +
                    super().__init__()
         | 
| 303 | 
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         | 
| 304 | 
            +
                        raise ValueError(
         | 
| 305 | 
            +
                            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
         | 
| 306 | 
            +
                            f"heads ({config.num_attention_heads})"
         | 
| 307 | 
            +
                        )
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    self.num_attention_heads = config.num_attention_heads
         | 
| 310 | 
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         | 
| 311 | 
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 314 | 
            +
                    self.key = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 315 | 
            +
                    self.value = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         | 
| 318 | 
            +
                    self.position_embedding_type = (
         | 
| 319 | 
            +
                        position_embedding_type if position_embedding_type is not None else config.position_embedding_type
         | 
| 320 | 
            +
                    )
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    self.use_expectation = config.use_expectation
         | 
| 323 | 
            +
                    self.hash_code_len = config.hash_code_len
         | 
| 324 | 
            +
                    self.use_conv = config.conv_window is not None
         | 
| 325 | 
            +
                    self.use_fast_hash = config.use_fast_hash
         | 
| 326 | 
            +
                    self.num_hash = config.num_hash
         | 
| 327 | 
            +
                    self.lsh_backward = config.lsh_backward
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    self.lsh_config = {
         | 
| 330 | 
            +
                        "hash_code_len": self.hash_code_len,
         | 
| 331 | 
            +
                        "use_fast_hash": self.use_fast_hash,
         | 
| 332 | 
            +
                        "num_hash": self.num_hash,
         | 
| 333 | 
            +
                        "lsh_backward": self.lsh_backward,
         | 
| 334 | 
            +
                    }
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                    if config.conv_window is not None:
         | 
| 337 | 
            +
                        self.conv = nn.Conv2d(
         | 
| 338 | 
            +
                            in_channels=config.num_attention_heads,
         | 
| 339 | 
            +
                            out_channels=config.num_attention_heads,
         | 
| 340 | 
            +
                            kernel_size=(config.conv_window, 1),
         | 
| 341 | 
            +
                            padding=(config.conv_window // 2, 0),
         | 
| 342 | 
            +
                            bias=False,
         | 
| 343 | 
            +
                            groups=config.num_attention_heads,
         | 
| 344 | 
            +
                        )
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                def transpose_for_scores(self, layer):
         | 
| 347 | 
            +
                    new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         | 
| 348 | 
            +
                    layer = layer.view(*new_layer_shape)
         | 
| 349 | 
            +
                    return layer.permute(0, 2, 1, 3)
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                def forward(self, hidden_states, attention_mask=None, output_attentions=False):
         | 
| 352 | 
            +
                    mixed_query_layer = self.query(hidden_states)
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    key_layer = self.transpose_for_scores(self.key(hidden_states))
         | 
| 355 | 
            +
                    value_layer = self.transpose_for_scores(self.value(hidden_states))
         | 
| 356 | 
            +
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    if self.use_conv:
         | 
| 359 | 
            +
                        conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None])
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    batch_size, num_heads, seq_len, head_dim = query_layer.size()
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim)
         | 
| 364 | 
            +
                    key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim)
         | 
| 365 | 
            +
                    value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim)
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    # revert changes made by get_extended_attention_mask
         | 
| 368 | 
            +
                    attention_mask = 1.0 + attention_mask / 10000.0
         | 
| 369 | 
            +
                    attention_mask = (
         | 
| 370 | 
            +
                        attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
         | 
| 371 | 
            +
                    )
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
         | 
| 374 | 
            +
                    # smaller than this are padded with zeros.
         | 
| 375 | 
            +
                    gpu_warp_size = 32
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    if (not self.use_expectation) and head_dim < gpu_warp_size:
         | 
| 378 | 
            +
                        pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                        query_layer = torch.cat(
         | 
| 381 | 
            +
                            [
         | 
| 382 | 
            +
                                query_layer,
         | 
| 383 | 
            +
                                torch.zeros(pad_size, device=query_layer.device),
         | 
| 384 | 
            +
                            ],
         | 
| 385 | 
            +
                            dim=-1,
         | 
| 386 | 
            +
                        )
         | 
| 387 | 
            +
                        key_layer = torch.cat(
         | 
| 388 | 
            +
                            [
         | 
| 389 | 
            +
                                key_layer,
         | 
| 390 | 
            +
                                torch.zeros(pad_size, device=key_layer.device),
         | 
| 391 | 
            +
                            ],
         | 
| 392 | 
            +
                            dim=-1,
         | 
| 393 | 
            +
                        )
         | 
| 394 | 
            +
                        value_layer = torch.cat(
         | 
| 395 | 
            +
                            [
         | 
| 396 | 
            +
                                value_layer,
         | 
| 397 | 
            +
                                torch.zeros(pad_size, device=value_layer.device),
         | 
| 398 | 
            +
                            ],
         | 
| 399 | 
            +
                            dim=-1,
         | 
| 400 | 
            +
                        )
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    if self.use_expectation or self.training:
         | 
| 403 | 
            +
                        query_layer, key_layer = normalize([query_layer, key_layer])
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    if self.use_expectation:
         | 
| 406 | 
            +
                        context_layer = YosoCumulation.apply(
         | 
| 407 | 
            +
                            attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
         | 
| 408 | 
            +
                        )
         | 
| 409 | 
            +
                    else:
         | 
| 410 | 
            +
                        context_layer = YosoLSHCumulation.apply(
         | 
| 411 | 
            +
                            attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
         | 
| 412 | 
            +
                        )
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    if (not self.use_expectation) and head_dim < gpu_warp_size:
         | 
| 415 | 
            +
                        context_layer = context_layer[:, :, :head_dim]
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    context_layer = normalize(context_layer)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    if self.use_conv:
         | 
| 422 | 
            +
                        context_layer += conv_value_layer
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         | 
| 425 | 
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         | 
| 426 | 
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    outputs = (context_layer, context_layer) if output_attentions else (context_layer,)
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    return outputs
         | 
| 431 | 
            +
             | 
| 432 | 
            +
             | 
| 433 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
         | 
| 434 | 
            +
            class YosoSelfOutput(nn.Module):
         | 
| 435 | 
            +
                def __init__(self, config):
         | 
| 436 | 
            +
                    super().__init__()
         | 
| 437 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 438 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 439 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         | 
| 442 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 443 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 444 | 
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 445 | 
            +
                    return hidden_states
         | 
| 446 | 
            +
             | 
| 447 | 
            +
             | 
| 448 | 
            +
            class YosoAttention(nn.Module):
         | 
| 449 | 
            +
                def __init__(self, config, position_embedding_type=None):
         | 
| 450 | 
            +
                    super().__init__()
         | 
| 451 | 
            +
                    self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type)
         | 
| 452 | 
            +
                    self.output = YosoSelfOutput(config)
         | 
| 453 | 
            +
                    self.pruned_heads = set()
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                def prune_heads(self, heads):
         | 
| 456 | 
            +
                    if len(heads) == 0:
         | 
| 457 | 
            +
                        return
         | 
| 458 | 
            +
                    heads, index = find_pruneable_heads_and_indices(
         | 
| 459 | 
            +
                        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
         | 
| 460 | 
            +
                    )
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    # Prune linear layers
         | 
| 463 | 
            +
                    self.self.query = prune_linear_layer(self.self.query, index)
         | 
| 464 | 
            +
                    self.self.key = prune_linear_layer(self.self.key, index)
         | 
| 465 | 
            +
                    self.self.value = prune_linear_layer(self.self.value, index)
         | 
| 466 | 
            +
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                    # Update hyper params and store pruned heads
         | 
| 469 | 
            +
                    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
         | 
| 470 | 
            +
                    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
         | 
| 471 | 
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                def forward(self, hidden_states, attention_mask=None, output_attentions=False):
         | 
| 474 | 
            +
                    self_outputs = self.self(hidden_states, attention_mask, output_attentions)
         | 
| 475 | 
            +
                    attention_output = self.output(self_outputs[0], hidden_states)
         | 
| 476 | 
            +
                    outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         | 
| 477 | 
            +
                    return outputs
         | 
| 478 | 
            +
             | 
| 479 | 
            +
             | 
| 480 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertIntermediate
         | 
| 481 | 
            +
            class YosoIntermediate(nn.Module):
         | 
| 482 | 
            +
                def __init__(self, config):
         | 
| 483 | 
            +
                    super().__init__()
         | 
| 484 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 485 | 
            +
                    if isinstance(config.hidden_act, str):
         | 
| 486 | 
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         | 
| 487 | 
            +
                    else:
         | 
| 488 | 
            +
                        self.intermediate_act_fn = config.hidden_act
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 491 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 492 | 
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         | 
| 493 | 
            +
                    return hidden_states
         | 
| 494 | 
            +
             | 
| 495 | 
            +
             | 
| 496 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertOutput
         | 
| 497 | 
            +
            class YosoOutput(nn.Module):
         | 
| 498 | 
            +
                def __init__(self, config):
         | 
| 499 | 
            +
                    super().__init__()
         | 
| 500 | 
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 501 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 502 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         | 
| 505 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 506 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 507 | 
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 508 | 
            +
                    return hidden_states
         | 
| 509 | 
            +
             | 
| 510 | 
            +
             | 
| 511 | 
            +
            class YosoLayer(nn.Module):
         | 
| 512 | 
            +
                def __init__(self, config):
         | 
| 513 | 
            +
                    super().__init__()
         | 
| 514 | 
            +
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         | 
| 515 | 
            +
                    self.seq_len_dim = 1
         | 
| 516 | 
            +
                    self.attention = YosoAttention(config)
         | 
| 517 | 
            +
                    self.add_cross_attention = config.add_cross_attention
         | 
| 518 | 
            +
                    self.intermediate = YosoIntermediate(config)
         | 
| 519 | 
            +
                    self.output = YosoOutput(config)
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                def forward(self, hidden_states, attention_mask=None, output_attentions=False):
         | 
| 522 | 
            +
                    self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
         | 
| 523 | 
            +
                    attention_output = self_attention_outputs[0]
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    layer_output = apply_chunking_to_forward(
         | 
| 528 | 
            +
                        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
         | 
| 529 | 
            +
                    )
         | 
| 530 | 
            +
                    outputs = (layer_output,) + outputs
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    return outputs
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                def feed_forward_chunk(self, attention_output):
         | 
| 535 | 
            +
                    intermediate_output = self.intermediate(attention_output)
         | 
| 536 | 
            +
                    layer_output = self.output(intermediate_output, attention_output)
         | 
| 537 | 
            +
                    return layer_output
         | 
| 538 | 
            +
             | 
| 539 | 
            +
             | 
| 540 | 
            +
            class YosoEncoder(nn.Module):
         | 
| 541 | 
            +
                def __init__(self, config):
         | 
| 542 | 
            +
                    super().__init__()
         | 
| 543 | 
            +
                    self.config = config
         | 
| 544 | 
            +
                    self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 545 | 
            +
                    self.gradient_checkpointing = False
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                def forward(
         | 
| 548 | 
            +
                    self,
         | 
| 549 | 
            +
                    hidden_states,
         | 
| 550 | 
            +
                    attention_mask=None,
         | 
| 551 | 
            +
                    head_mask=None,
         | 
| 552 | 
            +
                    output_attentions=False,
         | 
| 553 | 
            +
                    output_hidden_states=False,
         | 
| 554 | 
            +
                    return_dict=True,
         | 
| 555 | 
            +
                ):
         | 
| 556 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 557 | 
            +
                    all_self_attentions = () if output_attentions else None
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    for i, layer_module in enumerate(self.layer):
         | 
| 560 | 
            +
                        if output_hidden_states:
         | 
| 561 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 564 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 565 | 
            +
                                layer_module.__call__,
         | 
| 566 | 
            +
                                hidden_states,
         | 
| 567 | 
            +
                                attention_mask,
         | 
| 568 | 
            +
                                output_attentions,
         | 
| 569 | 
            +
                            )
         | 
| 570 | 
            +
                        else:
         | 
| 571 | 
            +
                            layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 574 | 
            +
                        if output_attentions:
         | 
| 575 | 
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    if output_hidden_states:
         | 
| 578 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                    if not return_dict:
         | 
| 581 | 
            +
                        return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
         | 
| 582 | 
            +
                    return BaseModelOutputWithCrossAttentions(
         | 
| 583 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 584 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 585 | 
            +
                        attentions=all_self_attentions,
         | 
| 586 | 
            +
                    )
         | 
| 587 | 
            +
             | 
| 588 | 
            +
             | 
| 589 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
         | 
| 590 | 
            +
            class YosoPredictionHeadTransform(nn.Module):
         | 
| 591 | 
            +
                def __init__(self, config):
         | 
| 592 | 
            +
                    super().__init__()
         | 
| 593 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 594 | 
            +
                    if isinstance(config.hidden_act, str):
         | 
| 595 | 
            +
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         | 
| 596 | 
            +
                    else:
         | 
| 597 | 
            +
                        self.transform_act_fn = config.hidden_act
         | 
| 598 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 601 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 602 | 
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         | 
| 603 | 
            +
                    hidden_states = self.LayerNorm(hidden_states)
         | 
| 604 | 
            +
                    return hidden_states
         | 
| 605 | 
            +
             | 
| 606 | 
            +
             | 
| 607 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso
         | 
| 608 | 
            +
            class YosoLMPredictionHead(nn.Module):
         | 
| 609 | 
            +
                def __init__(self, config):
         | 
| 610 | 
            +
                    super().__init__()
         | 
| 611 | 
            +
                    self.transform = YosoPredictionHeadTransform(config)
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    # The output weights are the same as the input embeddings, but there is
         | 
| 614 | 
            +
                    # an output-only bias for each token.
         | 
| 615 | 
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         | 
| 620 | 
            +
                    self.decoder.bias = self.bias
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                def forward(self, hidden_states):
         | 
| 623 | 
            +
                    hidden_states = self.transform(hidden_states)
         | 
| 624 | 
            +
                    hidden_states = self.decoder(hidden_states)
         | 
| 625 | 
            +
                    return hidden_states
         | 
| 626 | 
            +
             | 
| 627 | 
            +
             | 
| 628 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso
         | 
| 629 | 
            +
            class YosoOnlyMLMHead(nn.Module):
         | 
| 630 | 
            +
                def __init__(self, config):
         | 
| 631 | 
            +
                    super().__init__()
         | 
| 632 | 
            +
                    self.predictions = YosoLMPredictionHead(config)
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
         | 
| 635 | 
            +
                    prediction_scores = self.predictions(sequence_output)
         | 
| 636 | 
            +
                    return prediction_scores
         | 
| 637 | 
            +
             | 
| 638 | 
            +
             | 
| 639 | 
            +
            class YosoPreTrainedModel(PreTrainedModel):
         | 
| 640 | 
            +
                """
         | 
| 641 | 
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 642 | 
            +
                models.
         | 
| 643 | 
            +
                """
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                config_class = YosoConfig
         | 
| 646 | 
            +
                base_model_prefix = "yoso"
         | 
| 647 | 
            +
                supports_gradient_checkpointing = True
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                def _init_weights(self, module):
         | 
| 650 | 
            +
                    """Initialize the weights"""
         | 
| 651 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 652 | 
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         | 
| 653 | 
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         | 
| 654 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 655 | 
            +
                        if module.bias is not None:
         | 
| 656 | 
            +
                            module.bias.data.zero_()
         | 
| 657 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 658 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 659 | 
            +
                        if module.padding_idx is not None:
         | 
| 660 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 661 | 
            +
                    elif isinstance(module, nn.LayerNorm):
         | 
| 662 | 
            +
                        module.bias.data.zero_()
         | 
| 663 | 
            +
                        module.weight.data.fill_(1.0)
         | 
| 664 | 
            +
             | 
| 665 | 
            +
             | 
| 666 | 
            +
            YOSO_START_DOCSTRING = r"""
         | 
| 667 | 
            +
                This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
         | 
| 668 | 
            +
                it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
         | 
| 669 | 
            +
                behavior.
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                Parameters:
         | 
| 672 | 
            +
                    config ([`YosoConfig`]): Model configuration class with all the parameters of the model.
         | 
| 673 | 
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         | 
| 674 | 
            +
                        configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 675 | 
            +
            """
         | 
| 676 | 
            +
             | 
| 677 | 
            +
            YOSO_INPUTS_DOCSTRING = r"""
         | 
| 678 | 
            +
                Args:
         | 
| 679 | 
            +
                    input_ids (`torch.LongTensor` of shape `({0})`):
         | 
| 680 | 
            +
                        Indices of input sequence tokens in the vocabulary.
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 683 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 686 | 
            +
                    attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
         | 
| 687 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 690 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 691 | 
            +
             | 
| 692 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 693 | 
            +
                    token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
         | 
| 694 | 
            +
                        Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
         | 
| 695 | 
            +
                        1]`:
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                        - 0 corresponds to a *sentence A* token,
         | 
| 698 | 
            +
                        - 1 corresponds to a *sentence B* token.
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                        [What are token type IDs?](../glossary#token-type-ids)
         | 
| 701 | 
            +
                    position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
         | 
| 702 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 703 | 
            +
                        config.max_position_embeddings - 1]`.
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 706 | 
            +
                    head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
         | 
| 707 | 
            +
                        Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 710 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
         | 
| 713 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 714 | 
            +
                        is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
         | 
| 715 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 716 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 717 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 718 | 
            +
                        tensors for more detail.
         | 
| 719 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 720 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 721 | 
            +
                        more detail.
         | 
| 722 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 723 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 724 | 
            +
            """
         | 
| 725 | 
            +
             | 
| 726 | 
            +
             | 
| 727 | 
            +
            @add_start_docstrings(
         | 
| 728 | 
            +
                "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.",
         | 
| 729 | 
            +
                YOSO_START_DOCSTRING,
         | 
| 730 | 
            +
            )
         | 
| 731 | 
            +
            class YosoModel(YosoPreTrainedModel):
         | 
| 732 | 
            +
                def __init__(self, config):
         | 
| 733 | 
            +
                    super().__init__(config)
         | 
| 734 | 
            +
                    self.config = config
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                    self.embeddings = YosoEmbeddings(config)
         | 
| 737 | 
            +
                    self.encoder = YosoEncoder(config)
         | 
| 738 | 
            +
             | 
| 739 | 
            +
                    # Initialize weights and apply final processing
         | 
| 740 | 
            +
                    self.post_init()
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                def get_input_embeddings(self):
         | 
| 743 | 
            +
                    return self.embeddings.word_embeddings
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                def set_input_embeddings(self, value):
         | 
| 746 | 
            +
                    self.embeddings.word_embeddings = value
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                def _prune_heads(self, heads_to_prune):
         | 
| 749 | 
            +
                    """
         | 
| 750 | 
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         | 
| 751 | 
            +
                    class PreTrainedModel
         | 
| 752 | 
            +
                    """
         | 
| 753 | 
            +
                    for layer, heads in heads_to_prune.items():
         | 
| 754 | 
            +
                        self.encoder.layer[layer].attention.prune_heads(heads)
         | 
| 755 | 
            +
             | 
| 756 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         | 
| 757 | 
            +
                @add_code_sample_docstrings(
         | 
| 758 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 759 | 
            +
                    output_type=BaseModelOutputWithCrossAttentions,
         | 
| 760 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 761 | 
            +
                )
         | 
| 762 | 
            +
                def forward(
         | 
| 763 | 
            +
                    self,
         | 
| 764 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 765 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 766 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 767 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 768 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 769 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 770 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 771 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 772 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 773 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
         | 
| 774 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 775 | 
            +
                    output_hidden_states = (
         | 
| 776 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 777 | 
            +
                    )
         | 
| 778 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 779 | 
            +
             | 
| 780 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 781 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 782 | 
            +
                    elif input_ids is not None:
         | 
| 783 | 
            +
                        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
         | 
| 784 | 
            +
                        input_shape = input_ids.size()
         | 
| 785 | 
            +
                    elif inputs_embeds is not None:
         | 
| 786 | 
            +
                        input_shape = inputs_embeds.size()[:-1]
         | 
| 787 | 
            +
                    else:
         | 
| 788 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                    batch_size, seq_length = input_shape
         | 
| 791 | 
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                    if attention_mask is None:
         | 
| 794 | 
            +
                        attention_mask = torch.ones(((batch_size, seq_length)), device=device)
         | 
| 795 | 
            +
             | 
| 796 | 
            +
                    if token_type_ids is None:
         | 
| 797 | 
            +
                        if hasattr(self.embeddings, "token_type_ids"):
         | 
| 798 | 
            +
                            buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
         | 
| 799 | 
            +
                            buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
         | 
| 800 | 
            +
                            token_type_ids = buffered_token_type_ids_expanded
         | 
| 801 | 
            +
                        else:
         | 
| 802 | 
            +
                            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 805 | 
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 806 | 
            +
                    extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                    # Prepare head mask if needed
         | 
| 809 | 
            +
                    # 1.0 in head_mask indicate we keep the head
         | 
| 810 | 
            +
                    # attention_probs has shape bsz x n_heads x N x N
         | 
| 811 | 
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         | 
| 812 | 
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         | 
| 813 | 
            +
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    embedding_output = self.embeddings(
         | 
| 816 | 
            +
                        input_ids=input_ids,
         | 
| 817 | 
            +
                        position_ids=position_ids,
         | 
| 818 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 819 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 820 | 
            +
                    )
         | 
| 821 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 822 | 
            +
                        embedding_output,
         | 
| 823 | 
            +
                        attention_mask=extended_attention_mask,
         | 
| 824 | 
            +
                        head_mask=head_mask,
         | 
| 825 | 
            +
                        output_attentions=output_attentions,
         | 
| 826 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 827 | 
            +
                        return_dict=return_dict,
         | 
| 828 | 
            +
                    )
         | 
| 829 | 
            +
                    sequence_output = encoder_outputs[0]
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                    if not return_dict:
         | 
| 832 | 
            +
                        return (sequence_output,) + encoder_outputs[1:]
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                    return BaseModelOutputWithCrossAttentions(
         | 
| 835 | 
            +
                        last_hidden_state=sequence_output,
         | 
| 836 | 
            +
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 837 | 
            +
                        attentions=encoder_outputs.attentions,
         | 
| 838 | 
            +
                        cross_attentions=encoder_outputs.cross_attentions,
         | 
| 839 | 
            +
                    )
         | 
| 840 | 
            +
             | 
| 841 | 
            +
             | 
| 842 | 
            +
            @add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING)
         | 
| 843 | 
            +
            class YosoForMaskedLM(YosoPreTrainedModel):
         | 
| 844 | 
            +
                _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                def __init__(self, config):
         | 
| 847 | 
            +
                    super().__init__(config)
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                    self.yoso = YosoModel(config)
         | 
| 850 | 
            +
                    self.cls = YosoOnlyMLMHead(config)
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                    # Initialize weights and apply final processing
         | 
| 853 | 
            +
                    self.post_init()
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                def get_output_embeddings(self):
         | 
| 856 | 
            +
                    return self.cls.predictions.decoder
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 859 | 
            +
                    self.cls.predictions.decoder = new_embeddings
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         | 
| 862 | 
            +
                @add_code_sample_docstrings(
         | 
| 863 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 864 | 
            +
                    output_type=MaskedLMOutput,
         | 
| 865 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 866 | 
            +
                )
         | 
| 867 | 
            +
                def forward(
         | 
| 868 | 
            +
                    self,
         | 
| 869 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 870 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 871 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 872 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 873 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 874 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 875 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 876 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 877 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 878 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 879 | 
            +
                ) -> Union[Tuple, MaskedLMOutput]:
         | 
| 880 | 
            +
                    r"""
         | 
| 881 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 882 | 
            +
                        Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
         | 
| 883 | 
            +
                        config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
         | 
| 884 | 
            +
                        loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 885 | 
            +
                    """
         | 
| 886 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    outputs = self.yoso(
         | 
| 889 | 
            +
                        input_ids,
         | 
| 890 | 
            +
                        attention_mask=attention_mask,
         | 
| 891 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 892 | 
            +
                        position_ids=position_ids,
         | 
| 893 | 
            +
                        head_mask=head_mask,
         | 
| 894 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 895 | 
            +
                        output_attentions=output_attentions,
         | 
| 896 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 897 | 
            +
                        return_dict=return_dict,
         | 
| 898 | 
            +
                    )
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                    sequence_output = outputs[0]
         | 
| 901 | 
            +
                    prediction_scores = self.cls(sequence_output)
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    masked_lm_loss = None
         | 
| 904 | 
            +
                    if labels is not None:
         | 
| 905 | 
            +
                        loss_fct = CrossEntropyLoss()  # -100 index = padding token
         | 
| 906 | 
            +
                        masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                    if not return_dict:
         | 
| 909 | 
            +
                        output = (prediction_scores,) + outputs[1:]
         | 
| 910 | 
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    return MaskedLMOutput(
         | 
| 913 | 
            +
                        loss=masked_lm_loss,
         | 
| 914 | 
            +
                        logits=prediction_scores,
         | 
| 915 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 916 | 
            +
                        attentions=outputs.attentions,
         | 
| 917 | 
            +
                    )
         | 
| 918 | 
            +
             | 
| 919 | 
            +
             | 
| 920 | 
            +
            class YosoClassificationHead(nn.Module):
         | 
| 921 | 
            +
                """Head for sentence-level classification tasks."""
         | 
| 922 | 
            +
             | 
| 923 | 
            +
                def __init__(self, config):
         | 
| 924 | 
            +
                    super().__init__()
         | 
| 925 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 926 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 927 | 
            +
                    self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    self.config = config
         | 
| 930 | 
            +
             | 
| 931 | 
            +
                def forward(self, features, **kwargs):
         | 
| 932 | 
            +
                    x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
         | 
| 933 | 
            +
                    x = self.dropout(x)
         | 
| 934 | 
            +
                    x = self.dense(x)
         | 
| 935 | 
            +
                    x = ACT2FN[self.config.hidden_act](x)
         | 
| 936 | 
            +
                    x = self.dropout(x)
         | 
| 937 | 
            +
                    x = self.out_proj(x)
         | 
| 938 | 
            +
                    return x
         | 
| 939 | 
            +
             | 
| 940 | 
            +
             | 
| 941 | 
            +
            @add_start_docstrings(
         | 
| 942 | 
            +
                """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of
         | 
| 943 | 
            +
                the pooled output) e.g. for GLUE tasks.""",
         | 
| 944 | 
            +
                YOSO_START_DOCSTRING,
         | 
| 945 | 
            +
            )
         | 
| 946 | 
            +
            class YosoForSequenceClassification(YosoPreTrainedModel):
         | 
| 947 | 
            +
                def __init__(self, config):
         | 
| 948 | 
            +
                    super().__init__(config)
         | 
| 949 | 
            +
                    self.num_labels = config.num_labels
         | 
| 950 | 
            +
                    self.yoso = YosoModel(config)
         | 
| 951 | 
            +
                    self.classifier = YosoClassificationHead(config)
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    # Initialize weights and apply final processing
         | 
| 954 | 
            +
                    self.post_init()
         | 
| 955 | 
            +
             | 
| 956 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         | 
| 957 | 
            +
                @add_code_sample_docstrings(
         | 
| 958 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 959 | 
            +
                    output_type=SequenceClassifierOutput,
         | 
| 960 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 961 | 
            +
                )
         | 
| 962 | 
            +
                def forward(
         | 
| 963 | 
            +
                    self,
         | 
| 964 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 965 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 966 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 967 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 968 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 969 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 970 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 971 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 972 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 973 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 974 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutput]:
         | 
| 975 | 
            +
                    r"""
         | 
| 976 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 977 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 978 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 979 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 980 | 
            +
                    """
         | 
| 981 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    outputs = self.yoso(
         | 
| 984 | 
            +
                        input_ids,
         | 
| 985 | 
            +
                        attention_mask=attention_mask,
         | 
| 986 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 987 | 
            +
                        position_ids=position_ids,
         | 
| 988 | 
            +
                        head_mask=head_mask,
         | 
| 989 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 990 | 
            +
                        output_attentions=output_attentions,
         | 
| 991 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 992 | 
            +
                        return_dict=return_dict,
         | 
| 993 | 
            +
                    )
         | 
| 994 | 
            +
             | 
| 995 | 
            +
                    sequence_output = outputs[0]
         | 
| 996 | 
            +
                    logits = self.classifier(sequence_output)
         | 
| 997 | 
            +
             | 
| 998 | 
            +
                    loss = None
         | 
| 999 | 
            +
                    if labels is not None:
         | 
| 1000 | 
            +
                        if self.config.problem_type is None:
         | 
| 1001 | 
            +
                            if self.num_labels == 1:
         | 
| 1002 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1003 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1004 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1005 | 
            +
                            else:
         | 
| 1006 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1007 | 
            +
             | 
| 1008 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1009 | 
            +
                            loss_fct = MSELoss()
         | 
| 1010 | 
            +
                            if self.num_labels == 1:
         | 
| 1011 | 
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         | 
| 1012 | 
            +
                            else:
         | 
| 1013 | 
            +
                                loss = loss_fct(logits, labels)
         | 
| 1014 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1015 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1016 | 
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1017 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1018 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1019 | 
            +
                            loss = loss_fct(logits, labels)
         | 
| 1020 | 
            +
                    if not return_dict:
         | 
| 1021 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1022 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1023 | 
            +
             | 
| 1024 | 
            +
                    return SequenceClassifierOutput(
         | 
| 1025 | 
            +
                        loss=loss,
         | 
| 1026 | 
            +
                        logits=logits,
         | 
| 1027 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1028 | 
            +
                        attentions=outputs.attentions,
         | 
| 1029 | 
            +
                    )
         | 
| 1030 | 
            +
             | 
| 1031 | 
            +
             | 
| 1032 | 
            +
            @add_start_docstrings(
         | 
| 1033 | 
            +
                """YOSO Model with a multiple choice classification head on top (a linear layer on top of
         | 
| 1034 | 
            +
                the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
         | 
| 1035 | 
            +
                YOSO_START_DOCSTRING,
         | 
| 1036 | 
            +
            )
         | 
| 1037 | 
            +
            class YosoForMultipleChoice(YosoPreTrainedModel):
         | 
| 1038 | 
            +
                def __init__(self, config):
         | 
| 1039 | 
            +
                    super().__init__(config)
         | 
| 1040 | 
            +
             | 
| 1041 | 
            +
                    self.yoso = YosoModel(config)
         | 
| 1042 | 
            +
                    self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 1043 | 
            +
                    self.classifier = nn.Linear(config.hidden_size, 1)
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1046 | 
            +
                    self.post_init()
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
         | 
| 1049 | 
            +
                @add_code_sample_docstrings(
         | 
| 1050 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1051 | 
            +
                    output_type=MultipleChoiceModelOutput,
         | 
| 1052 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1053 | 
            +
                )
         | 
| 1054 | 
            +
                def forward(
         | 
| 1055 | 
            +
                    self,
         | 
| 1056 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 1057 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1058 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 1059 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 1060 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 1061 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1062 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 1063 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1064 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1065 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1066 | 
            +
                ) -> Union[Tuple, MultipleChoiceModelOutput]:
         | 
| 1067 | 
            +
                    r"""
         | 
| 1068 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1069 | 
            +
                        Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
         | 
| 1070 | 
            +
                        num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
         | 
| 1071 | 
            +
                        `input_ids` above)
         | 
| 1072 | 
            +
                    """
         | 
| 1073 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1074 | 
            +
                    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                    input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         | 
| 1077 | 
            +
                    attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         | 
| 1078 | 
            +
                    token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         | 
| 1079 | 
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         | 
| 1080 | 
            +
                    inputs_embeds = (
         | 
| 1081 | 
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         | 
| 1082 | 
            +
                        if inputs_embeds is not None
         | 
| 1083 | 
            +
                        else None
         | 
| 1084 | 
            +
                    )
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
                    outputs = self.yoso(
         | 
| 1087 | 
            +
                        input_ids,
         | 
| 1088 | 
            +
                        attention_mask=attention_mask,
         | 
| 1089 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 1090 | 
            +
                        position_ids=position_ids,
         | 
| 1091 | 
            +
                        head_mask=head_mask,
         | 
| 1092 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1093 | 
            +
                        output_attentions=output_attentions,
         | 
| 1094 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1095 | 
            +
                        return_dict=return_dict,
         | 
| 1096 | 
            +
                    )
         | 
| 1097 | 
            +
             | 
| 1098 | 
            +
                    hidden_state = outputs[0]  # (bs * num_choices, seq_len, dim)
         | 
| 1099 | 
            +
                    pooled_output = hidden_state[:, 0]  # (bs * num_choices, dim)
         | 
| 1100 | 
            +
                    pooled_output = self.pre_classifier(pooled_output)  # (bs * num_choices, dim)
         | 
| 1101 | 
            +
                    pooled_output = nn.ReLU()(pooled_output)  # (bs * num_choices, dim)
         | 
| 1102 | 
            +
                    logits = self.classifier(pooled_output)
         | 
| 1103 | 
            +
             | 
| 1104 | 
            +
                    reshaped_logits = logits.view(-1, num_choices)
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                    loss = None
         | 
| 1107 | 
            +
                    if labels is not None:
         | 
| 1108 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1109 | 
            +
                        loss = loss_fct(reshaped_logits, labels)
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                    if not return_dict:
         | 
| 1112 | 
            +
                        output = (reshaped_logits,) + outputs[1:]
         | 
| 1113 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                    return MultipleChoiceModelOutput(
         | 
| 1116 | 
            +
                        loss=loss,
         | 
| 1117 | 
            +
                        logits=reshaped_logits,
         | 
| 1118 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1119 | 
            +
                        attentions=outputs.attentions,
         | 
| 1120 | 
            +
                    )
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
             | 
| 1123 | 
            +
            @add_start_docstrings(
         | 
| 1124 | 
            +
                """YOSO Model with a token classification head on top (a linear layer on top of
         | 
| 1125 | 
            +
                the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
         | 
| 1126 | 
            +
                YOSO_START_DOCSTRING,
         | 
| 1127 | 
            +
            )
         | 
| 1128 | 
            +
            class YosoForTokenClassification(YosoPreTrainedModel):
         | 
| 1129 | 
            +
                def __init__(self, config):
         | 
| 1130 | 
            +
                    super().__init__(config)
         | 
| 1131 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                    self.yoso = YosoModel(config)
         | 
| 1134 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 1135 | 
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1138 | 
            +
                    self.post_init()
         | 
| 1139 | 
            +
             | 
| 1140 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         | 
| 1141 | 
            +
                @add_code_sample_docstrings(
         | 
| 1142 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1143 | 
            +
                    output_type=TokenClassifierOutput,
         | 
| 1144 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1145 | 
            +
                )
         | 
| 1146 | 
            +
                def forward(
         | 
| 1147 | 
            +
                    self,
         | 
| 1148 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 1149 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1150 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 1151 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 1152 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 1153 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1154 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 1155 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1156 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1157 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1158 | 
            +
                ) -> Union[Tuple, TokenClassifierOutput]:
         | 
| 1159 | 
            +
                    r"""
         | 
| 1160 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1161 | 
            +
                        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
         | 
| 1162 | 
            +
                    """
         | 
| 1163 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
                    outputs = self.yoso(
         | 
| 1166 | 
            +
                        input_ids,
         | 
| 1167 | 
            +
                        attention_mask=attention_mask,
         | 
| 1168 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 1169 | 
            +
                        position_ids=position_ids,
         | 
| 1170 | 
            +
                        head_mask=head_mask,
         | 
| 1171 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1172 | 
            +
                        output_attentions=output_attentions,
         | 
| 1173 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1174 | 
            +
                        return_dict=return_dict,
         | 
| 1175 | 
            +
                    )
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                    sequence_output = outputs[0]
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                    sequence_output = self.dropout(sequence_output)
         | 
| 1180 | 
            +
                    logits = self.classifier(sequence_output)
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    loss = None
         | 
| 1183 | 
            +
                    if labels is not None:
         | 
| 1184 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1185 | 
            +
                        # Only keep active parts of the loss
         | 
| 1186 | 
            +
                        if attention_mask is not None:
         | 
| 1187 | 
            +
                            active_loss = attention_mask.view(-1) == 1
         | 
| 1188 | 
            +
                            active_logits = logits.view(-1, self.num_labels)
         | 
| 1189 | 
            +
                            active_labels = torch.where(
         | 
| 1190 | 
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         | 
| 1191 | 
            +
                            )
         | 
| 1192 | 
            +
                            loss = loss_fct(active_logits, active_labels)
         | 
| 1193 | 
            +
                        else:
         | 
| 1194 | 
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1195 | 
            +
             | 
| 1196 | 
            +
                    if not return_dict:
         | 
| 1197 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1198 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1199 | 
            +
             | 
| 1200 | 
            +
                    return TokenClassifierOutput(
         | 
| 1201 | 
            +
                        loss=loss,
         | 
| 1202 | 
            +
                        logits=logits,
         | 
| 1203 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1204 | 
            +
                        attentions=outputs.attentions,
         | 
| 1205 | 
            +
                    )
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
             | 
| 1208 | 
            +
            @add_start_docstrings(
         | 
| 1209 | 
            +
                """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
         | 
| 1210 | 
            +
                layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
         | 
| 1211 | 
            +
                YOSO_START_DOCSTRING,
         | 
| 1212 | 
            +
            )
         | 
| 1213 | 
            +
            class YosoForQuestionAnswering(YosoPreTrainedModel):
         | 
| 1214 | 
            +
                def __init__(self, config):
         | 
| 1215 | 
            +
                    super().__init__(config)
         | 
| 1216 | 
            +
             | 
| 1217 | 
            +
                    config.num_labels = 2
         | 
| 1218 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1219 | 
            +
             | 
| 1220 | 
            +
                    self.yoso = YosoModel(config)
         | 
| 1221 | 
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1224 | 
            +
                    self.post_init()
         | 
| 1225 | 
            +
             | 
| 1226 | 
            +
                @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         | 
| 1227 | 
            +
                @add_code_sample_docstrings(
         | 
| 1228 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1229 | 
            +
                    output_type=QuestionAnsweringModelOutput,
         | 
| 1230 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1231 | 
            +
                )
         | 
| 1232 | 
            +
                def forward(
         | 
| 1233 | 
            +
                    self,
         | 
| 1234 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 1235 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1236 | 
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         | 
| 1237 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 1238 | 
            +
                    head_mask: Optional[torch.Tensor] = None,
         | 
| 1239 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1240 | 
            +
                    start_positions: Optional[torch.Tensor] = None,
         | 
| 1241 | 
            +
                    end_positions: Optional[torch.Tensor] = None,
         | 
| 1242 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1243 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1244 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1245 | 
            +
                ) -> Union[Tuple, QuestionAnsweringModelOutput]:
         | 
| 1246 | 
            +
                    r"""
         | 
| 1247 | 
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1248 | 
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         | 
| 1249 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1250 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1251 | 
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1252 | 
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         | 
| 1253 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1254 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1255 | 
            +
                    """
         | 
| 1256 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
                    outputs = self.yoso(
         | 
| 1259 | 
            +
                        input_ids,
         | 
| 1260 | 
            +
                        attention_mask=attention_mask,
         | 
| 1261 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 1262 | 
            +
                        position_ids=position_ids,
         | 
| 1263 | 
            +
                        head_mask=head_mask,
         | 
| 1264 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1265 | 
            +
                        output_attentions=output_attentions,
         | 
| 1266 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1267 | 
            +
                        return_dict=return_dict,
         | 
| 1268 | 
            +
                    )
         | 
| 1269 | 
            +
             | 
| 1270 | 
            +
                    sequence_output = outputs[0]
         | 
| 1271 | 
            +
             | 
| 1272 | 
            +
                    logits = self.qa_outputs(sequence_output)
         | 
| 1273 | 
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         | 
| 1274 | 
            +
                    start_logits = start_logits.squeeze(-1)
         | 
| 1275 | 
            +
                    end_logits = end_logits.squeeze(-1)
         | 
| 1276 | 
            +
             | 
| 1277 | 
            +
                    total_loss = None
         | 
| 1278 | 
            +
                    if start_positions is not None and end_positions is not None:
         | 
| 1279 | 
            +
                        # If we are on multi-GPU, split add a dimension
         | 
| 1280 | 
            +
                        if len(start_positions.size()) > 1:
         | 
| 1281 | 
            +
                            start_positions = start_positions.squeeze(-1)
         | 
| 1282 | 
            +
                        if len(end_positions.size()) > 1:
         | 
| 1283 | 
            +
                            end_positions = end_positions.squeeze(-1)
         | 
| 1284 | 
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1285 | 
            +
                        ignored_index = start_logits.size(1)
         | 
| 1286 | 
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1287 | 
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1288 | 
            +
             | 
| 1289 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         | 
| 1290 | 
            +
                        start_loss = loss_fct(start_logits, start_positions)
         | 
| 1291 | 
            +
                        end_loss = loss_fct(end_logits, end_positions)
         | 
| 1292 | 
            +
                        total_loss = (start_loss + end_loss) / 2
         | 
| 1293 | 
            +
             | 
| 1294 | 
            +
                    if not return_dict:
         | 
| 1295 | 
            +
                        output = (start_logits, end_logits) + outputs[1:]
         | 
| 1296 | 
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         | 
| 1297 | 
            +
             | 
| 1298 | 
            +
                    return QuestionAnsweringModelOutput(
         | 
| 1299 | 
            +
                        loss=total_loss,
         | 
| 1300 | 
            +
                        start_logits=start_logits,
         | 
| 1301 | 
            +
                        end_logits=end_logits,
         | 
| 1302 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1303 | 
            +
                        attentions=outputs.attentions,
         | 
| 1304 | 
            +
                    )
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__init__.py
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__main__.py
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from fontTools.ttLib import TTFont
         | 
| 2 | 
            +
            from fontTools.feaLib.builder import addOpenTypeFeatures, Builder
         | 
| 3 | 
            +
            from fontTools.feaLib.error import FeatureLibError
         | 
| 4 | 
            +
            from fontTools import configLogger
         | 
| 5 | 
            +
            from fontTools.misc.cliTools import makeOutputFileName
         | 
| 6 | 
            +
            import sys
         | 
| 7 | 
            +
            import argparse
         | 
| 8 | 
            +
            import logging
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            log = logging.getLogger("fontTools.feaLib")
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def main(args=None):
         | 
| 15 | 
            +
                """Add features from a feature file (.fea) into an OTF font"""
         | 
| 16 | 
            +
                parser = argparse.ArgumentParser(
         | 
| 17 | 
            +
                    description="Use fontTools to compile OpenType feature files (*.fea)."
         | 
| 18 | 
            +
                )
         | 
| 19 | 
            +
                parser.add_argument(
         | 
| 20 | 
            +
                    "input_fea", metavar="FEATURES", help="Path to the feature file"
         | 
| 21 | 
            +
                )
         | 
| 22 | 
            +
                parser.add_argument(
         | 
| 23 | 
            +
                    "input_font", metavar="INPUT_FONT", help="Path to the input font"
         | 
| 24 | 
            +
                )
         | 
| 25 | 
            +
                parser.add_argument(
         | 
| 26 | 
            +
                    "-o",
         | 
| 27 | 
            +
                    "--output",
         | 
| 28 | 
            +
                    dest="output_font",
         | 
| 29 | 
            +
                    metavar="OUTPUT_FONT",
         | 
| 30 | 
            +
                    help="Path to the output font.",
         | 
| 31 | 
            +
                )
         | 
| 32 | 
            +
                parser.add_argument(
         | 
| 33 | 
            +
                    "-t",
         | 
| 34 | 
            +
                    "--tables",
         | 
| 35 | 
            +
                    metavar="TABLE_TAG",
         | 
| 36 | 
            +
                    choices=Builder.supportedTables,
         | 
| 37 | 
            +
                    nargs="+",
         | 
| 38 | 
            +
                    help="Specify the table(s) to be built.",
         | 
| 39 | 
            +
                )
         | 
| 40 | 
            +
                parser.add_argument(
         | 
| 41 | 
            +
                    "-d",
         | 
| 42 | 
            +
                    "--debug",
         | 
| 43 | 
            +
                    action="store_true",
         | 
| 44 | 
            +
                    help="Add source-level debugging information to font.",
         | 
| 45 | 
            +
                )
         | 
| 46 | 
            +
                parser.add_argument(
         | 
| 47 | 
            +
                    "-v",
         | 
| 48 | 
            +
                    "--verbose",
         | 
| 49 | 
            +
                    help="Increase the logger verbosity. Multiple -v " "options are allowed.",
         | 
| 50 | 
            +
                    action="count",
         | 
| 51 | 
            +
                    default=0,
         | 
| 52 | 
            +
                )
         | 
| 53 | 
            +
                parser.add_argument(
         | 
| 54 | 
            +
                    "--traceback", help="show traceback for exceptions.", action="store_true"
         | 
| 55 | 
            +
                )
         | 
| 56 | 
            +
                options = parser.parse_args(args)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                levels = ["WARNING", "INFO", "DEBUG"]
         | 
| 59 | 
            +
                configLogger(level=levels[min(len(levels) - 1, options.verbose)])
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                output_font = options.output_font or makeOutputFileName(options.input_font)
         | 
| 62 | 
            +
                log.info("Compiling features to '%s'" % (output_font))
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                font = TTFont(options.input_font)
         | 
| 65 | 
            +
                try:
         | 
| 66 | 
            +
                    addOpenTypeFeatures(
         | 
| 67 | 
            +
                        font, options.input_fea, tables=options.tables, debug=options.debug
         | 
| 68 | 
            +
                    )
         | 
| 69 | 
            +
                except FeatureLibError as e:
         | 
| 70 | 
            +
                    if options.traceback:
         | 
| 71 | 
            +
                        raise
         | 
| 72 | 
            +
                    log.error(e)
         | 
| 73 | 
            +
                    sys.exit(1)
         | 
| 74 | 
            +
                font.save(output_font)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            if __name__ == "__main__":
         | 
| 78 | 
            +
                sys.exit(main())
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (256 Bytes). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/__main__.cpython-310.pyc
    ADDED
    
    | Binary file (2.17 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/ast.cpython-310.pyc
    ADDED
    
    | Binary file (75.9 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/error.cpython-310.pyc
    ADDED
    
    | Binary file (1.11 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/lexer.cpython-310.pyc
    ADDED
    
    | Binary file (8.33 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/location.cpython-310.pyc
    ADDED
    
    | Binary file (671 Bytes). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/lookupDebugInfo.cpython-310.pyc
    ADDED
    
    | Binary file (670 Bytes). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/parser.cpython-310.pyc
    ADDED
    
    | Binary file (54.7 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/variableScalar.cpython-310.pyc
    ADDED
    
    | Binary file (5.36 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/error.py
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            class FeatureLibError(Exception):
         | 
| 2 | 
            +
                def __init__(self, message, location):
         | 
| 3 | 
            +
                    Exception.__init__(self, message)
         | 
| 4 | 
            +
                    self.location = location
         | 
| 5 | 
            +
             | 
| 6 | 
            +
                def __str__(self):
         | 
| 7 | 
            +
                    message = Exception.__str__(self)
         | 
| 8 | 
            +
                    if self.location:
         | 
| 9 | 
            +
                        return f"{self.location}: {message}"
         | 
| 10 | 
            +
                    else:
         | 
| 11 | 
            +
                        return message
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            class IncludedFeaNotFound(FeatureLibError):
         | 
| 15 | 
            +
                def __str__(self):
         | 
| 16 | 
            +
                    assert self.location is not None
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    message = (
         | 
| 19 | 
            +
                        "The following feature file should be included but cannot be found: "
         | 
| 20 | 
            +
                        f"{Exception.__str__(self)}"
         | 
| 21 | 
            +
                    )
         | 
| 22 | 
            +
                    return f"{self.location}: {message}"
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lookupDebugInfo.py
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import NamedTuple
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            LOOKUP_DEBUG_INFO_KEY = "com.github.fonttools.feaLib"
         | 
| 4 | 
            +
            LOOKUP_DEBUG_ENV_VAR = "FONTTOOLS_LOOKUP_DEBUGGING"
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class LookupDebugInfo(NamedTuple):
         | 
| 8 | 
            +
                """Information about where a lookup came from, to be embedded in a font"""
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                location: str
         | 
| 11 | 
            +
                name: str
         | 
| 12 | 
            +
                feature: list
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/parser.py
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/variableScalar.py
    ADDED
    
    | @@ -0,0 +1,113 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from fontTools.varLib.models import VariationModel, normalizeValue, piecewiseLinearMap
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def Location(loc):
         | 
| 5 | 
            +
                return tuple(sorted(loc.items()))
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class VariableScalar:
         | 
| 9 | 
            +
                """A scalar with different values at different points in the designspace."""
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                def __init__(self, location_value={}):
         | 
| 12 | 
            +
                    self.values = {}
         | 
| 13 | 
            +
                    self.axes = {}
         | 
| 14 | 
            +
                    for location, value in location_value.items():
         | 
| 15 | 
            +
                        self.add_value(location, value)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def __repr__(self):
         | 
| 18 | 
            +
                    items = []
         | 
| 19 | 
            +
                    for location, value in self.values.items():
         | 
| 20 | 
            +
                        loc = ",".join(["%s=%i" % (ax, loc) for ax, loc in location])
         | 
| 21 | 
            +
                        items.append("%s:%i" % (loc, value))
         | 
| 22 | 
            +
                    return "(" + (" ".join(items)) + ")"
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                @property
         | 
| 25 | 
            +
                def does_vary(self):
         | 
| 26 | 
            +
                    values = list(self.values.values())
         | 
| 27 | 
            +
                    return any(v != values[0] for v in values[1:])
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                @property
         | 
| 30 | 
            +
                def axes_dict(self):
         | 
| 31 | 
            +
                    if not self.axes:
         | 
| 32 | 
            +
                        raise ValueError(
         | 
| 33 | 
            +
                            ".axes must be defined on variable scalar before interpolating"
         | 
| 34 | 
            +
                        )
         | 
| 35 | 
            +
                    return {ax.axisTag: ax for ax in self.axes}
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def _normalized_location(self, location):
         | 
| 38 | 
            +
                    location = self.fix_location(location)
         | 
| 39 | 
            +
                    normalized_location = {}
         | 
| 40 | 
            +
                    for axtag in location.keys():
         | 
| 41 | 
            +
                        if axtag not in self.axes_dict:
         | 
| 42 | 
            +
                            raise ValueError("Unknown axis %s in %s" % (axtag, location))
         | 
| 43 | 
            +
                        axis = self.axes_dict[axtag]
         | 
| 44 | 
            +
                        normalized_location[axtag] = normalizeValue(
         | 
| 45 | 
            +
                            location[axtag], (axis.minValue, axis.defaultValue, axis.maxValue)
         | 
| 46 | 
            +
                        )
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    return Location(normalized_location)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def fix_location(self, location):
         | 
| 51 | 
            +
                    location = dict(location)
         | 
| 52 | 
            +
                    for tag, axis in self.axes_dict.items():
         | 
| 53 | 
            +
                        if tag not in location:
         | 
| 54 | 
            +
                            location[tag] = axis.defaultValue
         | 
| 55 | 
            +
                    return location
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def add_value(self, location, value):
         | 
| 58 | 
            +
                    if self.axes:
         | 
| 59 | 
            +
                        location = self.fix_location(location)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    self.values[Location(location)] = value
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def fix_all_locations(self):
         | 
| 64 | 
            +
                    self.values = {
         | 
| 65 | 
            +
                        Location(self.fix_location(l)): v for l, v in self.values.items()
         | 
| 66 | 
            +
                    }
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                @property
         | 
| 69 | 
            +
                def default(self):
         | 
| 70 | 
            +
                    self.fix_all_locations()
         | 
| 71 | 
            +
                    key = Location({ax.axisTag: ax.defaultValue for ax in self.axes})
         | 
| 72 | 
            +
                    if key not in self.values:
         | 
| 73 | 
            +
                        raise ValueError("Default value could not be found")
         | 
| 74 | 
            +
                        # I *guess* we could interpolate one, but I don't know how.
         | 
| 75 | 
            +
                    return self.values[key]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def value_at_location(self, location, model_cache=None, avar=None):
         | 
| 78 | 
            +
                    loc = Location(location)
         | 
| 79 | 
            +
                    if loc in self.values.keys():
         | 
| 80 | 
            +
                        return self.values[loc]
         | 
| 81 | 
            +
                    values = list(self.values.values())
         | 
| 82 | 
            +
                    loc = dict(self._normalized_location(loc))
         | 
| 83 | 
            +
                    return self.model(model_cache, avar).interpolateFromMasters(loc, values)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def model(self, model_cache=None, avar=None):
         | 
| 86 | 
            +
                    if model_cache is not None:
         | 
| 87 | 
            +
                        key = tuple(self.values.keys())
         | 
| 88 | 
            +
                        if key in model_cache:
         | 
| 89 | 
            +
                            return model_cache[key]
         | 
| 90 | 
            +
                    locations = [dict(self._normalized_location(k)) for k in self.values.keys()]
         | 
| 91 | 
            +
                    if avar is not None:
         | 
| 92 | 
            +
                        mapping = avar.segments
         | 
| 93 | 
            +
                        locations = [
         | 
| 94 | 
            +
                            {
         | 
| 95 | 
            +
                                k: piecewiseLinearMap(v, mapping[k]) if k in mapping else v
         | 
| 96 | 
            +
                                for k, v in location.items()
         | 
| 97 | 
            +
                            }
         | 
| 98 | 
            +
                            for location in locations
         | 
| 99 | 
            +
                        ]
         | 
| 100 | 
            +
                    m = VariationModel(locations)
         | 
| 101 | 
            +
                    if model_cache is not None:
         | 
| 102 | 
            +
                        model_cache[key] = m
         | 
| 103 | 
            +
                    return m
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                def get_deltas_and_supports(self, model_cache=None, avar=None):
         | 
| 106 | 
            +
                    values = list(self.values.values())
         | 
| 107 | 
            +
                    return self.model(model_cache, avar).getDeltasAndSupports(values)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def add_to_variation_store(self, store_builder, model_cache=None, avar=None):
         | 
| 110 | 
            +
                    deltas, supports = self.get_deltas_and_supports(model_cache, avar)
         | 
| 111 | 
            +
                    store_builder.setSupports(supports)
         | 
| 112 | 
            +
                    index = store_builder.storeDeltas(deltas)
         | 
| 113 | 
            +
                    return int(self.default), index
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__init__.py
    ADDED
    
    | @@ -0,0 +1,248 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from fontTools import ttLib
         | 
| 6 | 
            +
            import fontTools.merge.base
         | 
| 7 | 
            +
            from fontTools.merge.cmap import (
         | 
| 8 | 
            +
                computeMegaGlyphOrder,
         | 
| 9 | 
            +
                computeMegaCmap,
         | 
| 10 | 
            +
                renameCFFCharStrings,
         | 
| 11 | 
            +
            )
         | 
| 12 | 
            +
            from fontTools.merge.layout import layoutPreMerge, layoutPostMerge
         | 
| 13 | 
            +
            from fontTools.merge.options import Options
         | 
| 14 | 
            +
            import fontTools.merge.tables
         | 
| 15 | 
            +
            from fontTools.misc.loggingTools import Timer
         | 
| 16 | 
            +
            from functools import reduce
         | 
| 17 | 
            +
            import sys
         | 
| 18 | 
            +
            import logging
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            log = logging.getLogger("fontTools.merge")
         | 
| 22 | 
            +
            timer = Timer(logger=logging.getLogger(__name__ + ".timer"), level=logging.INFO)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            class Merger(object):
         | 
| 26 | 
            +
                """Font merger.
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                This class merges multiple files into a single OpenType font, taking into
         | 
| 29 | 
            +
                account complexities such as OpenType layout (``GSUB``/``GPOS``) tables and
         | 
| 30 | 
            +
                cross-font metrics (for example ``hhea.ascent`` is set to the maximum value
         | 
| 31 | 
            +
                across all the fonts).
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                If multiple glyphs map to the same Unicode value, and the glyphs are considered
         | 
| 34 | 
            +
                sufficiently different (that is, they differ in any of paths, widths, or
         | 
| 35 | 
            +
                height), then subsequent glyphs are renamed and a lookup in the ``locl``
         | 
| 36 | 
            +
                feature will be created to disambiguate them. For example, if the arguments
         | 
| 37 | 
            +
                are an Arabic font and a Latin font and both contain a set of parentheses,
         | 
| 38 | 
            +
                the Latin glyphs will be renamed to ``parenleft.1`` and ``parenright.1``,
         | 
| 39 | 
            +
                and a lookup will be inserted into the to ``locl`` feature (creating it if
         | 
| 40 | 
            +
                necessary) under the ``latn`` script to substitute ``parenleft`` with
         | 
| 41 | 
            +
                ``parenleft.1`` etc.
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                Restrictions:
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                - All fonts must have the same units per em.
         | 
| 46 | 
            +
                - If duplicate glyph disambiguation takes place as described above then the
         | 
| 47 | 
            +
                  fonts must have a ``GSUB`` table.
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                Attributes:
         | 
| 50 | 
            +
                        options: Currently unused.
         | 
| 51 | 
            +
                """
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def __init__(self, options=None):
         | 
| 54 | 
            +
                    if not options:
         | 
| 55 | 
            +
                        options = Options()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    self.options = options
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                def _openFonts(self, fontfiles):
         | 
| 60 | 
            +
                    fonts = [ttLib.TTFont(fontfile) for fontfile in fontfiles]
         | 
| 61 | 
            +
                    for font, fontfile in zip(fonts, fontfiles):
         | 
| 62 | 
            +
                        font._merger__fontfile = fontfile
         | 
| 63 | 
            +
                        font._merger__name = font["name"].getDebugName(4)
         | 
| 64 | 
            +
                    return fonts
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def merge(self, fontfiles):
         | 
| 67 | 
            +
                    """Merges fonts together.
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    Args:
         | 
| 70 | 
            +
                            fontfiles: A list of file names to be merged
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    Returns:
         | 
| 73 | 
            +
                            A :class:`fontTools.ttLib.TTFont` object. Call the ``save`` method on
         | 
| 74 | 
            +
                            this to write it out to an OTF file.
         | 
| 75 | 
            +
                    """
         | 
| 76 | 
            +
                    #
         | 
| 77 | 
            +
                    # Settle on a mega glyph order.
         | 
| 78 | 
            +
                    #
         | 
| 79 | 
            +
                    fonts = self._openFonts(fontfiles)
         | 
| 80 | 
            +
                    glyphOrders = [list(font.getGlyphOrder()) for font in fonts]
         | 
| 81 | 
            +
                    computeMegaGlyphOrder(self, glyphOrders)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    # Take first input file sfntVersion
         | 
| 84 | 
            +
                    sfntVersion = fonts[0].sfntVersion
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    # Reload fonts and set new glyph names on them.
         | 
| 87 | 
            +
                    fonts = self._openFonts(fontfiles)
         | 
| 88 | 
            +
                    for font, glyphOrder in zip(fonts, glyphOrders):
         | 
| 89 | 
            +
                        font.setGlyphOrder(glyphOrder)
         | 
| 90 | 
            +
                        if "CFF " in font:
         | 
| 91 | 
            +
                            renameCFFCharStrings(self, glyphOrder, font["CFF "])
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    cmaps = [font["cmap"] for font in fonts]
         | 
| 94 | 
            +
                    self.duplicateGlyphsPerFont = [{} for _ in fonts]
         | 
| 95 | 
            +
                    computeMegaCmap(self, cmaps)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    mega = ttLib.TTFont(sfntVersion=sfntVersion)
         | 
| 98 | 
            +
                    mega.setGlyphOrder(self.glyphOrder)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    for font in fonts:
         | 
| 101 | 
            +
                        self._preMerge(font)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    self.fonts = fonts
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    allTags = reduce(set.union, (list(font.keys()) for font in fonts), set())
         | 
| 106 | 
            +
                    allTags.remove("GlyphOrder")
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    for tag in sorted(allTags):
         | 
| 109 | 
            +
                        if tag in self.options.drop_tables:
         | 
| 110 | 
            +
                            continue
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                        with timer("merge '%s'" % tag):
         | 
| 113 | 
            +
                            tables = [font.get(tag, NotImplemented) for font in fonts]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                            log.info("Merging '%s'.", tag)
         | 
| 116 | 
            +
                            clazz = ttLib.getTableClass(tag)
         | 
| 117 | 
            +
                            table = clazz(tag).merge(self, tables)
         | 
| 118 | 
            +
                            # XXX Clean this up and use:  table = mergeObjects(tables)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                            if table is not NotImplemented and table is not False:
         | 
| 121 | 
            +
                                mega[tag] = table
         | 
| 122 | 
            +
                                log.info("Merged '%s'.", tag)
         | 
| 123 | 
            +
                            else:
         | 
| 124 | 
            +
                                log.info("Dropped '%s'.", tag)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    del self.duplicateGlyphsPerFont
         | 
| 127 | 
            +
                    del self.fonts
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    self._postMerge(mega)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    return mega
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                def mergeObjects(self, returnTable, logic, tables):
         | 
| 134 | 
            +
                    # Right now we don't use self at all.  Will use in the future
         | 
| 135 | 
            +
                    # for options and logging.
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    allKeys = set.union(
         | 
| 138 | 
            +
                        set(),
         | 
| 139 | 
            +
                        *(vars(table).keys() for table in tables if table is not NotImplemented),
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
                    for key in allKeys:
         | 
| 142 | 
            +
                        log.info(" %s", key)
         | 
| 143 | 
            +
                        try:
         | 
| 144 | 
            +
                            mergeLogic = logic[key]
         | 
| 145 | 
            +
                        except KeyError:
         | 
| 146 | 
            +
                            try:
         | 
| 147 | 
            +
                                mergeLogic = logic["*"]
         | 
| 148 | 
            +
                            except KeyError:
         | 
| 149 | 
            +
                                raise Exception(
         | 
| 150 | 
            +
                                    "Don't know how to merge key %s of class %s"
         | 
| 151 | 
            +
                                    % (key, returnTable.__class__.__name__)
         | 
| 152 | 
            +
                                )
         | 
| 153 | 
            +
                        if mergeLogic is NotImplemented:
         | 
| 154 | 
            +
                            continue
         | 
| 155 | 
            +
                        value = mergeLogic(getattr(table, key, NotImplemented) for table in tables)
         | 
| 156 | 
            +
                        if value is not NotImplemented:
         | 
| 157 | 
            +
                            setattr(returnTable, key, value)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    return returnTable
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def _preMerge(self, font):
         | 
| 162 | 
            +
                    layoutPreMerge(font)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                def _postMerge(self, font):
         | 
| 165 | 
            +
                    layoutPostMerge(font)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    if "OS/2" in font:
         | 
| 168 | 
            +
                        # https://github.com/fonttools/fonttools/issues/2538
         | 
| 169 | 
            +
                        # TODO: Add an option to disable this?
         | 
| 170 | 
            +
                        font["OS/2"].recalcAvgCharWidth(font)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            __all__ = ["Options", "Merger", "main"]
         | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
| 176 | 
            +
            @timer("make one with everything (TOTAL TIME)")
         | 
| 177 | 
            +
            def main(args=None):
         | 
| 178 | 
            +
                """Merge multiple fonts into one"""
         | 
| 179 | 
            +
                from fontTools import configLogger
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                if args is None:
         | 
| 182 | 
            +
                    args = sys.argv[1:]
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                options = Options()
         | 
| 185 | 
            +
                args = options.parse_opts(args)
         | 
| 186 | 
            +
                fontfiles = []
         | 
| 187 | 
            +
                if options.input_file:
         | 
| 188 | 
            +
                    with open(options.input_file) as inputfile:
         | 
| 189 | 
            +
                        fontfiles = [
         | 
| 190 | 
            +
                            line.strip()
         | 
| 191 | 
            +
                            for line in inputfile.readlines()
         | 
| 192 | 
            +
                            if not line.lstrip().startswith("#")
         | 
| 193 | 
            +
                        ]
         | 
| 194 | 
            +
                for g in args:
         | 
| 195 | 
            +
                    fontfiles.append(g)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                if len(fontfiles) < 1:
         | 
| 198 | 
            +
                    print(
         | 
| 199 | 
            +
                        "usage: pyftmerge [font1 ... fontN] [--input-file=filelist.txt] [--output-file=merged.ttf] [--import-file=tables.ttx]",
         | 
| 200 | 
            +
                        file=sys.stderr,
         | 
| 201 | 
            +
                    )
         | 
| 202 | 
            +
                    print(
         | 
| 203 | 
            +
                        "                                   [--drop-tables=tags] [--verbose] [--timing]",
         | 
| 204 | 
            +
                        file=sys.stderr,
         | 
| 205 | 
            +
                    )
         | 
| 206 | 
            +
                    print("", file=sys.stderr)
         | 
| 207 | 
            +
                    print(" font1 ... fontN              Files to merge.", file=sys.stderr)
         | 
| 208 | 
            +
                    print(
         | 
| 209 | 
            +
                        " --input-file=<filename>      Read files to merge from a text file, each path new line. # Comment lines allowed.",
         | 
| 210 | 
            +
                        file=sys.stderr,
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
                    print(
         | 
| 213 | 
            +
                        " --output-file=<filename>     Specify output file name (default: merged.ttf).",
         | 
| 214 | 
            +
                        file=sys.stderr,
         | 
| 215 | 
            +
                    )
         | 
| 216 | 
            +
                    print(
         | 
| 217 | 
            +
                        " --import-file=<filename>     TTX file to import after merging. This can be used to set metadata.",
         | 
| 218 | 
            +
                        file=sys.stderr,
         | 
| 219 | 
            +
                    )
         | 
| 220 | 
            +
                    print(
         | 
| 221 | 
            +
                        " --drop-tables=<table tags>   Comma separated list of table tags to skip, case sensitive.",
         | 
| 222 | 
            +
                        file=sys.stderr,
         | 
| 223 | 
            +
                    )
         | 
| 224 | 
            +
                    print(
         | 
| 225 | 
            +
                        " --verbose                    Output progress information.",
         | 
| 226 | 
            +
                        file=sys.stderr,
         | 
| 227 | 
            +
                    )
         | 
| 228 | 
            +
                    print(" --timing                     Output progress timing.", file=sys.stderr)
         | 
| 229 | 
            +
                    return 1
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                configLogger(level=logging.INFO if options.verbose else logging.WARNING)
         | 
| 232 | 
            +
                if options.timing:
         | 
| 233 | 
            +
                    timer.logger.setLevel(logging.DEBUG)
         | 
| 234 | 
            +
                else:
         | 
| 235 | 
            +
                    timer.logger.disabled = True
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                merger = Merger(options=options)
         | 
| 238 | 
            +
                font = merger.merge(fontfiles)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                if options.import_file:
         | 
| 241 | 
            +
                    font.importXML(options.import_file)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                with timer("compile and save font"):
         | 
| 244 | 
            +
                    font.save(options.output_file)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            if __name__ == "__main__":
         | 
| 248 | 
            +
                sys.exit(main())
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__main__.py
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import sys
         | 
| 2 | 
            +
            from fontTools.merge import main
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            if __name__ == "__main__":
         | 
| 6 | 
            +
                sys.exit(main())
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (7.87 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/__main__.cpython-310.pyc
    ADDED
    
    | Binary file (288 Bytes). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/base.cpython-310.pyc
    ADDED
    
    | Binary file (2.52 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/cmap.cpython-310.pyc
    ADDED
    
    | Binary file (3.34 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/layout.cpython-310.pyc
    ADDED
    
    | Binary file (11.7 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/options.cpython-310.pyc
    ADDED
    
    | Binary file (2.16 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/tables.cpython-310.pyc
    ADDED
    
    | Binary file (7.54 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/unicode.cpython-310.pyc
    ADDED
    
    | Binary file (1.12 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/__pycache__/util.cpython-310.pyc
    ADDED
    
    | Binary file (5.88 kB). View file | 
|  | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/base.py
    ADDED
    
    | @@ -0,0 +1,81 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from fontTools.ttLib.tables.DefaultTable import DefaultTable
         | 
| 6 | 
            +
            import logging
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            log = logging.getLogger("fontTools.merge")
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def add_method(*clazzes, **kwargs):
         | 
| 13 | 
            +
                """Returns a decorator function that adds a new method to one or
         | 
| 14 | 
            +
                more classes."""
         | 
| 15 | 
            +
                allowDefault = kwargs.get("allowDefaultTable", False)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def wrapper(method):
         | 
| 18 | 
            +
                    done = []
         | 
| 19 | 
            +
                    for clazz in clazzes:
         | 
| 20 | 
            +
                        if clazz in done:
         | 
| 21 | 
            +
                            continue  # Support multiple names of a clazz
         | 
| 22 | 
            +
                        done.append(clazz)
         | 
| 23 | 
            +
                        assert allowDefault or clazz != DefaultTable, "Oops, table class not found."
         | 
| 24 | 
            +
                        assert (
         | 
| 25 | 
            +
                            method.__name__ not in clazz.__dict__
         | 
| 26 | 
            +
                        ), "Oops, class '%s' has method '%s'." % (clazz.__name__, method.__name__)
         | 
| 27 | 
            +
                        setattr(clazz, method.__name__, method)
         | 
| 28 | 
            +
                    return None
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                return wrapper
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def mergeObjects(lst):
         | 
| 34 | 
            +
                lst = [item for item in lst if item is not NotImplemented]
         | 
| 35 | 
            +
                if not lst:
         | 
| 36 | 
            +
                    return NotImplemented
         | 
| 37 | 
            +
                lst = [item for item in lst if item is not None]
         | 
| 38 | 
            +
                if not lst:
         | 
| 39 | 
            +
                    return None
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                clazz = lst[0].__class__
         | 
| 42 | 
            +
                assert all(type(item) == clazz for item in lst), lst
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                logic = clazz.mergeMap
         | 
| 45 | 
            +
                returnTable = clazz()
         | 
| 46 | 
            +
                returnDict = {}
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                allKeys = set.union(set(), *(vars(table).keys() for table in lst))
         | 
| 49 | 
            +
                for key in allKeys:
         | 
| 50 | 
            +
                    try:
         | 
| 51 | 
            +
                        mergeLogic = logic[key]
         | 
| 52 | 
            +
                    except KeyError:
         | 
| 53 | 
            +
                        try:
         | 
| 54 | 
            +
                            mergeLogic = logic["*"]
         | 
| 55 | 
            +
                        except KeyError:
         | 
| 56 | 
            +
                            raise Exception(
         | 
| 57 | 
            +
                                "Don't know how to merge key %s of class %s" % (key, clazz.__name__)
         | 
| 58 | 
            +
                            )
         | 
| 59 | 
            +
                    if mergeLogic is NotImplemented:
         | 
| 60 | 
            +
                        continue
         | 
| 61 | 
            +
                    value = mergeLogic(getattr(table, key, NotImplemented) for table in lst)
         | 
| 62 | 
            +
                    if value is not NotImplemented:
         | 
| 63 | 
            +
                        returnDict[key] = value
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                returnTable.__dict__ = returnDict
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                return returnTable
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            @add_method(DefaultTable, allowDefaultTable=True)
         | 
| 71 | 
            +
            def merge(self, m, tables):
         | 
| 72 | 
            +
                if not hasattr(self, "mergeMap"):
         | 
| 73 | 
            +
                    log.info("Don't know how to merge '%s'.", self.tableTag)
         | 
| 74 | 
            +
                    return NotImplemented
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                logic = self.mergeMap
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                if isinstance(logic, dict):
         | 
| 79 | 
            +
                    return m.mergeObjects(self, self.mergeMap, tables)
         | 
| 80 | 
            +
                else:
         | 
| 81 | 
            +
                    return logic(tables)
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/cmap.py
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from fontTools.merge.unicode import is_Default_Ignorable
         | 
| 6 | 
            +
            from fontTools.pens.recordingPen import DecomposingRecordingPen
         | 
| 7 | 
            +
            import logging
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            log = logging.getLogger("fontTools.merge")
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def computeMegaGlyphOrder(merger, glyphOrders):
         | 
| 14 | 
            +
                """Modifies passed-in glyphOrders to reflect new glyph names.
         | 
| 15 | 
            +
                Stores merger.glyphOrder."""
         | 
| 16 | 
            +
                megaOrder = {}
         | 
| 17 | 
            +
                for glyphOrder in glyphOrders:
         | 
| 18 | 
            +
                    for i, glyphName in enumerate(glyphOrder):
         | 
| 19 | 
            +
                        if glyphName in megaOrder:
         | 
| 20 | 
            +
                            n = megaOrder[glyphName]
         | 
| 21 | 
            +
                            while (glyphName + "." + repr(n)) in megaOrder:
         | 
| 22 | 
            +
                                n += 1
         | 
| 23 | 
            +
                            megaOrder[glyphName] = n
         | 
| 24 | 
            +
                            glyphName += "." + repr(n)
         | 
| 25 | 
            +
                            glyphOrder[i] = glyphName
         | 
| 26 | 
            +
                        megaOrder[glyphName] = 1
         | 
| 27 | 
            +
                merger.glyphOrder = megaOrder = list(megaOrder.keys())
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def _glyphsAreSame(
         | 
| 31 | 
            +
                glyphSet1,
         | 
| 32 | 
            +
                glyphSet2,
         | 
| 33 | 
            +
                glyph1,
         | 
| 34 | 
            +
                glyph2,
         | 
| 35 | 
            +
                advanceTolerance=0.05,
         | 
| 36 | 
            +
                advanceToleranceEmpty=0.20,
         | 
| 37 | 
            +
            ):
         | 
| 38 | 
            +
                pen1 = DecomposingRecordingPen(glyphSet1)
         | 
| 39 | 
            +
                pen2 = DecomposingRecordingPen(glyphSet2)
         | 
| 40 | 
            +
                g1 = glyphSet1[glyph1]
         | 
| 41 | 
            +
                g2 = glyphSet2[glyph2]
         | 
| 42 | 
            +
                g1.draw(pen1)
         | 
| 43 | 
            +
                g2.draw(pen2)
         | 
| 44 | 
            +
                if pen1.value != pen2.value:
         | 
| 45 | 
            +
                    return False
         | 
| 46 | 
            +
                # Allow more width tolerance for glyphs with no ink
         | 
| 47 | 
            +
                tolerance = advanceTolerance if pen1.value else advanceToleranceEmpty
         | 
| 48 | 
            +
                # TODO Warn if advances not the same but within tolerance.
         | 
| 49 | 
            +
                if abs(g1.width - g2.width) > g1.width * tolerance:
         | 
| 50 | 
            +
                    return False
         | 
| 51 | 
            +
                if hasattr(g1, "height") and g1.height is not None:
         | 
| 52 | 
            +
                    if abs(g1.height - g2.height) > g1.height * tolerance:
         | 
| 53 | 
            +
                        return False
         | 
| 54 | 
            +
                return True
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            # Valid (format, platformID, platEncID) triplets for cmap subtables containing
         | 
| 58 | 
            +
            # Unicode BMP-only and Unicode Full Repertoire semantics.
         | 
| 59 | 
            +
            # Cf. OpenType spec for "Platform specific encodings":
         | 
| 60 | 
            +
            # https://docs.microsoft.com/en-us/typography/opentype/spec/name
         | 
| 61 | 
            +
            class _CmapUnicodePlatEncodings:
         | 
| 62 | 
            +
                BMP = {(4, 3, 1), (4, 0, 3), (4, 0, 4), (4, 0, 6)}
         | 
| 63 | 
            +
                FullRepertoire = {(12, 3, 10), (12, 0, 4), (12, 0, 6)}
         | 
| 64 | 
            +
             | 
| 65 | 
            +
             | 
| 66 | 
            +
            def computeMegaCmap(merger, cmapTables):
         | 
| 67 | 
            +
                """Sets merger.cmap and merger.glyphOrder."""
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # TODO Handle format=14.
         | 
| 70 | 
            +
                # Only merge format 4 and 12 Unicode subtables, ignores all other subtables
         | 
| 71 | 
            +
                # If there is a format 12 table for a font, ignore the format 4 table of it
         | 
| 72 | 
            +
                chosenCmapTables = []
         | 
| 73 | 
            +
                for fontIdx, table in enumerate(cmapTables):
         | 
| 74 | 
            +
                    format4 = None
         | 
| 75 | 
            +
                    format12 = None
         | 
| 76 | 
            +
                    for subtable in table.tables:
         | 
| 77 | 
            +
                        properties = (subtable.format, subtable.platformID, subtable.platEncID)
         | 
| 78 | 
            +
                        if properties in _CmapUnicodePlatEncodings.BMP:
         | 
| 79 | 
            +
                            format4 = subtable
         | 
| 80 | 
            +
                        elif properties in _CmapUnicodePlatEncodings.FullRepertoire:
         | 
| 81 | 
            +
                            format12 = subtable
         | 
| 82 | 
            +
                        else:
         | 
| 83 | 
            +
                            log.warning(
         | 
| 84 | 
            +
                                "Dropped cmap subtable from font '%s':\t"
         | 
| 85 | 
            +
                                "format %2s, platformID %2s, platEncID %2s",
         | 
| 86 | 
            +
                                fontIdx,
         | 
| 87 | 
            +
                                subtable.format,
         | 
| 88 | 
            +
                                subtable.platformID,
         | 
| 89 | 
            +
                                subtable.platEncID,
         | 
| 90 | 
            +
                            )
         | 
| 91 | 
            +
                    if format12 is not None:
         | 
| 92 | 
            +
                        chosenCmapTables.append((format12, fontIdx))
         | 
| 93 | 
            +
                    elif format4 is not None:
         | 
| 94 | 
            +
                        chosenCmapTables.append((format4, fontIdx))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                # Build the unicode mapping
         | 
| 97 | 
            +
                merger.cmap = cmap = {}
         | 
| 98 | 
            +
                fontIndexForGlyph = {}
         | 
| 99 | 
            +
                glyphSets = [None for f in merger.fonts] if hasattr(merger, "fonts") else None
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                for table, fontIdx in chosenCmapTables:
         | 
| 102 | 
            +
                    # handle duplicates
         | 
| 103 | 
            +
                    for uni, gid in table.cmap.items():
         | 
| 104 | 
            +
                        oldgid = cmap.get(uni, None)
         | 
| 105 | 
            +
                        if oldgid is None:
         | 
| 106 | 
            +
                            cmap[uni] = gid
         | 
| 107 | 
            +
                            fontIndexForGlyph[gid] = fontIdx
         | 
| 108 | 
            +
                        elif is_Default_Ignorable(uni) or uni in (0x25CC,):  # U+25CC DOTTED CIRCLE
         | 
| 109 | 
            +
                            continue
         | 
| 110 | 
            +
                        elif oldgid != gid:
         | 
| 111 | 
            +
                            # Char previously mapped to oldgid, now to gid.
         | 
| 112 | 
            +
                            # Record, to fix up in GSUB 'locl' later.
         | 
| 113 | 
            +
                            if merger.duplicateGlyphsPerFont[fontIdx].get(oldgid) is None:
         | 
| 114 | 
            +
                                if glyphSets is not None:
         | 
| 115 | 
            +
                                    oldFontIdx = fontIndexForGlyph[oldgid]
         | 
| 116 | 
            +
                                    for idx in (fontIdx, oldFontIdx):
         | 
| 117 | 
            +
                                        if glyphSets[idx] is None:
         | 
| 118 | 
            +
                                            glyphSets[idx] = merger.fonts[idx].getGlyphSet()
         | 
| 119 | 
            +
                                    # if _glyphsAreSame(glyphSets[oldFontIdx], glyphSets[fontIdx], oldgid, gid):
         | 
| 120 | 
            +
                                    # 	continue
         | 
| 121 | 
            +
                                merger.duplicateGlyphsPerFont[fontIdx][oldgid] = gid
         | 
| 122 | 
            +
                            elif merger.duplicateGlyphsPerFont[fontIdx][oldgid] != gid:
         | 
| 123 | 
            +
                                # Char previously mapped to oldgid but oldgid is already remapped to a different
         | 
| 124 | 
            +
                                # gid, because of another Unicode character.
         | 
| 125 | 
            +
                                # TODO: Try harder to do something about these.
         | 
| 126 | 
            +
                                log.warning(
         | 
| 127 | 
            +
                                    "Dropped mapping from codepoint %#06X to glyphId '%s'", uni, gid
         | 
| 128 | 
            +
                                )
         | 
| 129 | 
            +
             | 
| 130 | 
            +
             | 
| 131 | 
            +
            def renameCFFCharStrings(merger, glyphOrder, cffTable):
         | 
| 132 | 
            +
                """Rename topDictIndex charStrings based on glyphOrder."""
         | 
| 133 | 
            +
                td = cffTable.cff.topDictIndex[0]
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                charStrings = {}
         | 
| 136 | 
            +
                for i, v in enumerate(td.CharStrings.charStrings.values()):
         | 
| 137 | 
            +
                    glyphName = glyphOrder[i]
         | 
| 138 | 
            +
                    charStrings[glyphName] = v
         | 
| 139 | 
            +
                td.CharStrings.charStrings = charStrings
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                td.charset = list(glyphOrder)
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/layout.py
    ADDED
    
    | @@ -0,0 +1,526 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from fontTools import ttLib
         | 
| 6 | 
            +
            from fontTools.ttLib.tables.DefaultTable import DefaultTable
         | 
| 7 | 
            +
            from fontTools.ttLib.tables import otTables
         | 
| 8 | 
            +
            from fontTools.merge.base import add_method, mergeObjects
         | 
| 9 | 
            +
            from fontTools.merge.util import *
         | 
| 10 | 
            +
            import logging
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            log = logging.getLogger("fontTools.merge")
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            def mergeLookupLists(lst):
         | 
| 17 | 
            +
                # TODO Do smarter merge.
         | 
| 18 | 
            +
                return sumLists(lst)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            def mergeFeatures(lst):
         | 
| 22 | 
            +
                assert lst
         | 
| 23 | 
            +
                self = otTables.Feature()
         | 
| 24 | 
            +
                self.FeatureParams = None
         | 
| 25 | 
            +
                self.LookupListIndex = mergeLookupLists(
         | 
| 26 | 
            +
                    [l.LookupListIndex for l in lst if l.LookupListIndex]
         | 
| 27 | 
            +
                )
         | 
| 28 | 
            +
                self.LookupCount = len(self.LookupListIndex)
         | 
| 29 | 
            +
                return self
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            def mergeFeatureLists(lst):
         | 
| 33 | 
            +
                d = {}
         | 
| 34 | 
            +
                for l in lst:
         | 
| 35 | 
            +
                    for f in l:
         | 
| 36 | 
            +
                        tag = f.FeatureTag
         | 
| 37 | 
            +
                        if tag not in d:
         | 
| 38 | 
            +
                            d[tag] = []
         | 
| 39 | 
            +
                        d[tag].append(f.Feature)
         | 
| 40 | 
            +
                ret = []
         | 
| 41 | 
            +
                for tag in sorted(d.keys()):
         | 
| 42 | 
            +
                    rec = otTables.FeatureRecord()
         | 
| 43 | 
            +
                    rec.FeatureTag = tag
         | 
| 44 | 
            +
                    rec.Feature = mergeFeatures(d[tag])
         | 
| 45 | 
            +
                    ret.append(rec)
         | 
| 46 | 
            +
                return ret
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            def mergeLangSyses(lst):
         | 
| 50 | 
            +
                assert lst
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                # TODO Support merging ReqFeatureIndex
         | 
| 53 | 
            +
                assert all(l.ReqFeatureIndex == 0xFFFF for l in lst)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                self = otTables.LangSys()
         | 
| 56 | 
            +
                self.LookupOrder = None
         | 
| 57 | 
            +
                self.ReqFeatureIndex = 0xFFFF
         | 
| 58 | 
            +
                self.FeatureIndex = mergeFeatureLists(
         | 
| 59 | 
            +
                    [l.FeatureIndex for l in lst if l.FeatureIndex]
         | 
| 60 | 
            +
                )
         | 
| 61 | 
            +
                self.FeatureCount = len(self.FeatureIndex)
         | 
| 62 | 
            +
                return self
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def mergeScripts(lst):
         | 
| 66 | 
            +
                assert lst
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                if len(lst) == 1:
         | 
| 69 | 
            +
                    return lst[0]
         | 
| 70 | 
            +
                langSyses = {}
         | 
| 71 | 
            +
                for sr in lst:
         | 
| 72 | 
            +
                    for lsr in sr.LangSysRecord:
         | 
| 73 | 
            +
                        if lsr.LangSysTag not in langSyses:
         | 
| 74 | 
            +
                            langSyses[lsr.LangSysTag] = []
         | 
| 75 | 
            +
                        langSyses[lsr.LangSysTag].append(lsr.LangSys)
         | 
| 76 | 
            +
                lsrecords = []
         | 
| 77 | 
            +
                for tag, langSys_list in sorted(langSyses.items()):
         | 
| 78 | 
            +
                    lsr = otTables.LangSysRecord()
         | 
| 79 | 
            +
                    lsr.LangSys = mergeLangSyses(langSys_list)
         | 
| 80 | 
            +
                    lsr.LangSysTag = tag
         | 
| 81 | 
            +
                    lsrecords.append(lsr)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                self = otTables.Script()
         | 
| 84 | 
            +
                self.LangSysRecord = lsrecords
         | 
| 85 | 
            +
                self.LangSysCount = len(lsrecords)
         | 
| 86 | 
            +
                dfltLangSyses = [s.DefaultLangSys for s in lst if s.DefaultLangSys]
         | 
| 87 | 
            +
                if dfltLangSyses:
         | 
| 88 | 
            +
                    self.DefaultLangSys = mergeLangSyses(dfltLangSyses)
         | 
| 89 | 
            +
                else:
         | 
| 90 | 
            +
                    self.DefaultLangSys = None
         | 
| 91 | 
            +
                return self
         | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            def mergeScriptRecords(lst):
         | 
| 95 | 
            +
                d = {}
         | 
| 96 | 
            +
                for l in lst:
         | 
| 97 | 
            +
                    for s in l:
         | 
| 98 | 
            +
                        tag = s.ScriptTag
         | 
| 99 | 
            +
                        if tag not in d:
         | 
| 100 | 
            +
                            d[tag] = []
         | 
| 101 | 
            +
                        d[tag].append(s.Script)
         | 
| 102 | 
            +
                ret = []
         | 
| 103 | 
            +
                for tag in sorted(d.keys()):
         | 
| 104 | 
            +
                    rec = otTables.ScriptRecord()
         | 
| 105 | 
            +
                    rec.ScriptTag = tag
         | 
| 106 | 
            +
                    rec.Script = mergeScripts(d[tag])
         | 
| 107 | 
            +
                    ret.append(rec)
         | 
| 108 | 
            +
                return ret
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            otTables.ScriptList.mergeMap = {
         | 
| 112 | 
            +
                "ScriptCount": lambda lst: None,  # TODO
         | 
| 113 | 
            +
                "ScriptRecord": mergeScriptRecords,
         | 
| 114 | 
            +
            }
         | 
| 115 | 
            +
            otTables.BaseScriptList.mergeMap = {
         | 
| 116 | 
            +
                "BaseScriptCount": lambda lst: None,  # TODO
         | 
| 117 | 
            +
                # TODO: Merge duplicate entries
         | 
| 118 | 
            +
                "BaseScriptRecord": lambda lst: sorted(
         | 
| 119 | 
            +
                    sumLists(lst), key=lambda s: s.BaseScriptTag
         | 
| 120 | 
            +
                ),
         | 
| 121 | 
            +
            }
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            otTables.FeatureList.mergeMap = {
         | 
| 124 | 
            +
                "FeatureCount": sum,
         | 
| 125 | 
            +
                "FeatureRecord": lambda lst: sorted(sumLists(lst), key=lambda s: s.FeatureTag),
         | 
| 126 | 
            +
            }
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            otTables.LookupList.mergeMap = {
         | 
| 129 | 
            +
                "LookupCount": sum,
         | 
| 130 | 
            +
                "Lookup": sumLists,
         | 
| 131 | 
            +
            }
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            otTables.Coverage.mergeMap = {
         | 
| 134 | 
            +
                "Format": min,
         | 
| 135 | 
            +
                "glyphs": sumLists,
         | 
| 136 | 
            +
            }
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            otTables.ClassDef.mergeMap = {
         | 
| 139 | 
            +
                "Format": min,
         | 
| 140 | 
            +
                "classDefs": sumDicts,
         | 
| 141 | 
            +
            }
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            otTables.LigCaretList.mergeMap = {
         | 
| 144 | 
            +
                "Coverage": mergeObjects,
         | 
| 145 | 
            +
                "LigGlyphCount": sum,
         | 
| 146 | 
            +
                "LigGlyph": sumLists,
         | 
| 147 | 
            +
            }
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            otTables.AttachList.mergeMap = {
         | 
| 150 | 
            +
                "Coverage": mergeObjects,
         | 
| 151 | 
            +
                "GlyphCount": sum,
         | 
| 152 | 
            +
                "AttachPoint": sumLists,
         | 
| 153 | 
            +
            }
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            # XXX Renumber MarkFilterSets of lookups
         | 
| 156 | 
            +
            otTables.MarkGlyphSetsDef.mergeMap = {
         | 
| 157 | 
            +
                "MarkSetTableFormat": equal,
         | 
| 158 | 
            +
                "MarkSetCount": sum,
         | 
| 159 | 
            +
                "Coverage": sumLists,
         | 
| 160 | 
            +
            }
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            otTables.Axis.mergeMap = {
         | 
| 163 | 
            +
                "*": mergeObjects,
         | 
| 164 | 
            +
            }
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            # XXX Fix BASE table merging
         | 
| 167 | 
            +
            otTables.BaseTagList.mergeMap = {
         | 
| 168 | 
            +
                "BaseTagCount": sum,
         | 
| 169 | 
            +
                "BaselineTag": sumLists,
         | 
| 170 | 
            +
            }
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            otTables.GDEF.mergeMap = otTables.GSUB.mergeMap = otTables.GPOS.mergeMap = (
         | 
| 173 | 
            +
                otTables.BASE.mergeMap
         | 
| 174 | 
            +
            ) = otTables.JSTF.mergeMap = otTables.MATH.mergeMap = {
         | 
| 175 | 
            +
                "*": mergeObjects,
         | 
| 176 | 
            +
                "Version": max,
         | 
| 177 | 
            +
            }
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            ttLib.getTableClass("GDEF").mergeMap = ttLib.getTableClass("GSUB").mergeMap = (
         | 
| 180 | 
            +
                ttLib.getTableClass("GPOS").mergeMap
         | 
| 181 | 
            +
            ) = ttLib.getTableClass("BASE").mergeMap = ttLib.getTableClass(
         | 
| 182 | 
            +
                "JSTF"
         | 
| 183 | 
            +
            ).mergeMap = ttLib.getTableClass(
         | 
| 184 | 
            +
                "MATH"
         | 
| 185 | 
            +
            ).mergeMap = {
         | 
| 186 | 
            +
                "tableTag": onlyExisting(equal),  # XXX clean me up
         | 
| 187 | 
            +
                "table": mergeObjects,
         | 
| 188 | 
            +
            }
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            @add_method(ttLib.getTableClass("GSUB"))
         | 
| 192 | 
            +
            def merge(self, m, tables):
         | 
| 193 | 
            +
                assert len(tables) == len(m.duplicateGlyphsPerFont)
         | 
| 194 | 
            +
                for i, (table, dups) in enumerate(zip(tables, m.duplicateGlyphsPerFont)):
         | 
| 195 | 
            +
                    if not dups:
         | 
| 196 | 
            +
                        continue
         | 
| 197 | 
            +
                    if table is None or table is NotImplemented:
         | 
| 198 | 
            +
                        log.warning(
         | 
| 199 | 
            +
                            "Have non-identical duplicates to resolve for '%s' but no GSUB. Are duplicates intended?: %s",
         | 
| 200 | 
            +
                            m.fonts[i]._merger__name,
         | 
| 201 | 
            +
                            dups,
         | 
| 202 | 
            +
                        )
         | 
| 203 | 
            +
                        continue
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    synthFeature = None
         | 
| 206 | 
            +
                    synthLookup = None
         | 
| 207 | 
            +
                    for script in table.table.ScriptList.ScriptRecord:
         | 
| 208 | 
            +
                        if script.ScriptTag == "DFLT":
         | 
| 209 | 
            +
                            continue  # XXX
         | 
| 210 | 
            +
                        for langsys in [script.Script.DefaultLangSys] + [
         | 
| 211 | 
            +
                            l.LangSys for l in script.Script.LangSysRecord
         | 
| 212 | 
            +
                        ]:
         | 
| 213 | 
            +
                            if langsys is None:
         | 
| 214 | 
            +
                                continue  # XXX Create!
         | 
| 215 | 
            +
                            feature = [v for v in langsys.FeatureIndex if v.FeatureTag == "locl"]
         | 
| 216 | 
            +
                            assert len(feature) <= 1
         | 
| 217 | 
            +
                            if feature:
         | 
| 218 | 
            +
                                feature = feature[0]
         | 
| 219 | 
            +
                            else:
         | 
| 220 | 
            +
                                if not synthFeature:
         | 
| 221 | 
            +
                                    synthFeature = otTables.FeatureRecord()
         | 
| 222 | 
            +
                                    synthFeature.FeatureTag = "locl"
         | 
| 223 | 
            +
                                    f = synthFeature.Feature = otTables.Feature()
         | 
| 224 | 
            +
                                    f.FeatureParams = None
         | 
| 225 | 
            +
                                    f.LookupCount = 0
         | 
| 226 | 
            +
                                    f.LookupListIndex = []
         | 
| 227 | 
            +
                                    table.table.FeatureList.FeatureRecord.append(synthFeature)
         | 
| 228 | 
            +
                                    table.table.FeatureList.FeatureCount += 1
         | 
| 229 | 
            +
                                feature = synthFeature
         | 
| 230 | 
            +
                                langsys.FeatureIndex.append(feature)
         | 
| 231 | 
            +
                                langsys.FeatureIndex.sort(key=lambda v: v.FeatureTag)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                            if not synthLookup:
         | 
| 234 | 
            +
                                subtable = otTables.SingleSubst()
         | 
| 235 | 
            +
                                subtable.mapping = dups
         | 
| 236 | 
            +
                                synthLookup = otTables.Lookup()
         | 
| 237 | 
            +
                                synthLookup.LookupFlag = 0
         | 
| 238 | 
            +
                                synthLookup.LookupType = 1
         | 
| 239 | 
            +
                                synthLookup.SubTableCount = 1
         | 
| 240 | 
            +
                                synthLookup.SubTable = [subtable]
         | 
| 241 | 
            +
                                if table.table.LookupList is None:
         | 
| 242 | 
            +
                                    # mtiLib uses None as default value for LookupList,
         | 
| 243 | 
            +
                                    # while feaLib points to an empty array with count 0
         | 
| 244 | 
            +
                                    # TODO: make them do the same
         | 
| 245 | 
            +
                                    table.table.LookupList = otTables.LookupList()
         | 
| 246 | 
            +
                                    table.table.LookupList.Lookup = []
         | 
| 247 | 
            +
                                    table.table.LookupList.LookupCount = 0
         | 
| 248 | 
            +
                                table.table.LookupList.Lookup.append(synthLookup)
         | 
| 249 | 
            +
                                table.table.LookupList.LookupCount += 1
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                            if feature.Feature.LookupListIndex[:1] != [synthLookup]:
         | 
| 252 | 
            +
                                feature.Feature.LookupListIndex[:0] = [synthLookup]
         | 
| 253 | 
            +
                                feature.Feature.LookupCount += 1
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                DefaultTable.merge(self, m, tables)
         | 
| 256 | 
            +
                return self
         | 
| 257 | 
            +
             | 
| 258 | 
            +
             | 
| 259 | 
            +
            @add_method(
         | 
| 260 | 
            +
                otTables.SingleSubst,
         | 
| 261 | 
            +
                otTables.MultipleSubst,
         | 
| 262 | 
            +
                otTables.AlternateSubst,
         | 
| 263 | 
            +
                otTables.LigatureSubst,
         | 
| 264 | 
            +
                otTables.ReverseChainSingleSubst,
         | 
| 265 | 
            +
                otTables.SinglePos,
         | 
| 266 | 
            +
                otTables.PairPos,
         | 
| 267 | 
            +
                otTables.CursivePos,
         | 
| 268 | 
            +
                otTables.MarkBasePos,
         | 
| 269 | 
            +
                otTables.MarkLigPos,
         | 
| 270 | 
            +
                otTables.MarkMarkPos,
         | 
| 271 | 
            +
            )
         | 
| 272 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 273 | 
            +
                pass
         | 
| 274 | 
            +
             | 
| 275 | 
            +
             | 
| 276 | 
            +
            # Copied and trimmed down from subset.py
         | 
| 277 | 
            +
            @add_method(
         | 
| 278 | 
            +
                otTables.ContextSubst,
         | 
| 279 | 
            +
                otTables.ChainContextSubst,
         | 
| 280 | 
            +
                otTables.ContextPos,
         | 
| 281 | 
            +
                otTables.ChainContextPos,
         | 
| 282 | 
            +
            )
         | 
| 283 | 
            +
            def __merge_classify_context(self):
         | 
| 284 | 
            +
                class ContextHelper(object):
         | 
| 285 | 
            +
                    def __init__(self, klass, Format):
         | 
| 286 | 
            +
                        if klass.__name__.endswith("Subst"):
         | 
| 287 | 
            +
                            Typ = "Sub"
         | 
| 288 | 
            +
                            Type = "Subst"
         | 
| 289 | 
            +
                        else:
         | 
| 290 | 
            +
                            Typ = "Pos"
         | 
| 291 | 
            +
                            Type = "Pos"
         | 
| 292 | 
            +
                        if klass.__name__.startswith("Chain"):
         | 
| 293 | 
            +
                            Chain = "Chain"
         | 
| 294 | 
            +
                        else:
         | 
| 295 | 
            +
                            Chain = ""
         | 
| 296 | 
            +
                        ChainTyp = Chain + Typ
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                        self.Typ = Typ
         | 
| 299 | 
            +
                        self.Type = Type
         | 
| 300 | 
            +
                        self.Chain = Chain
         | 
| 301 | 
            +
                        self.ChainTyp = ChainTyp
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                        self.LookupRecord = Type + "LookupRecord"
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                        if Format == 1:
         | 
| 306 | 
            +
                            self.Rule = ChainTyp + "Rule"
         | 
| 307 | 
            +
                            self.RuleSet = ChainTyp + "RuleSet"
         | 
| 308 | 
            +
                        elif Format == 2:
         | 
| 309 | 
            +
                            self.Rule = ChainTyp + "ClassRule"
         | 
| 310 | 
            +
                            self.RuleSet = ChainTyp + "ClassSet"
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                if self.Format not in [1, 2, 3]:
         | 
| 313 | 
            +
                    return None  # Don't shoot the messenger; let it go
         | 
| 314 | 
            +
                if not hasattr(self.__class__, "_merge__ContextHelpers"):
         | 
| 315 | 
            +
                    self.__class__._merge__ContextHelpers = {}
         | 
| 316 | 
            +
                if self.Format not in self.__class__._merge__ContextHelpers:
         | 
| 317 | 
            +
                    helper = ContextHelper(self.__class__, self.Format)
         | 
| 318 | 
            +
                    self.__class__._merge__ContextHelpers[self.Format] = helper
         | 
| 319 | 
            +
                return self.__class__._merge__ContextHelpers[self.Format]
         | 
| 320 | 
            +
             | 
| 321 | 
            +
             | 
| 322 | 
            +
            @add_method(
         | 
| 323 | 
            +
                otTables.ContextSubst,
         | 
| 324 | 
            +
                otTables.ChainContextSubst,
         | 
| 325 | 
            +
                otTables.ContextPos,
         | 
| 326 | 
            +
                otTables.ChainContextPos,
         | 
| 327 | 
            +
            )
         | 
| 328 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 329 | 
            +
                c = self.__merge_classify_context()
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                if self.Format in [1, 2]:
         | 
| 332 | 
            +
                    for rs in getattr(self, c.RuleSet):
         | 
| 333 | 
            +
                        if not rs:
         | 
| 334 | 
            +
                            continue
         | 
| 335 | 
            +
                        for r in getattr(rs, c.Rule):
         | 
| 336 | 
            +
                            if not r:
         | 
| 337 | 
            +
                                continue
         | 
| 338 | 
            +
                            for ll in getattr(r, c.LookupRecord):
         | 
| 339 | 
            +
                                if not ll:
         | 
| 340 | 
            +
                                    continue
         | 
| 341 | 
            +
                                ll.LookupListIndex = lookupMap[ll.LookupListIndex]
         | 
| 342 | 
            +
                elif self.Format == 3:
         | 
| 343 | 
            +
                    for ll in getattr(self, c.LookupRecord):
         | 
| 344 | 
            +
                        if not ll:
         | 
| 345 | 
            +
                            continue
         | 
| 346 | 
            +
                        ll.LookupListIndex = lookupMap[ll.LookupListIndex]
         | 
| 347 | 
            +
                else:
         | 
| 348 | 
            +
                    assert 0, "unknown format: %s" % self.Format
         | 
| 349 | 
            +
             | 
| 350 | 
            +
             | 
| 351 | 
            +
            @add_method(otTables.ExtensionSubst, otTables.ExtensionPos)
         | 
| 352 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 353 | 
            +
                if self.Format == 1:
         | 
| 354 | 
            +
                    self.ExtSubTable.mapLookups(lookupMap)
         | 
| 355 | 
            +
                else:
         | 
| 356 | 
            +
                    assert 0, "unknown format: %s" % self.Format
         | 
| 357 | 
            +
             | 
| 358 | 
            +
             | 
| 359 | 
            +
            @add_method(otTables.Lookup)
         | 
| 360 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 361 | 
            +
                for st in self.SubTable:
         | 
| 362 | 
            +
                    if not st:
         | 
| 363 | 
            +
                        continue
         | 
| 364 | 
            +
                    st.mapLookups(lookupMap)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
             | 
| 367 | 
            +
            @add_method(otTables.LookupList)
         | 
| 368 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 369 | 
            +
                for l in self.Lookup:
         | 
| 370 | 
            +
                    if not l:
         | 
| 371 | 
            +
                        continue
         | 
| 372 | 
            +
                    l.mapLookups(lookupMap)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
             | 
| 375 | 
            +
            @add_method(otTables.Lookup)
         | 
| 376 | 
            +
            def mapMarkFilteringSets(self, markFilteringSetMap):
         | 
| 377 | 
            +
                if self.LookupFlag & 0x0010:
         | 
| 378 | 
            +
                    self.MarkFilteringSet = markFilteringSetMap[self.MarkFilteringSet]
         | 
| 379 | 
            +
             | 
| 380 | 
            +
             | 
| 381 | 
            +
            @add_method(otTables.LookupList)
         | 
| 382 | 
            +
            def mapMarkFilteringSets(self, markFilteringSetMap):
         | 
| 383 | 
            +
                for l in self.Lookup:
         | 
| 384 | 
            +
                    if not l:
         | 
| 385 | 
            +
                        continue
         | 
| 386 | 
            +
                    l.mapMarkFilteringSets(markFilteringSetMap)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
             | 
| 389 | 
            +
            @add_method(otTables.Feature)
         | 
| 390 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 391 | 
            +
                self.LookupListIndex = [lookupMap[i] for i in self.LookupListIndex]
         | 
| 392 | 
            +
             | 
| 393 | 
            +
             | 
| 394 | 
            +
            @add_method(otTables.FeatureList)
         | 
| 395 | 
            +
            def mapLookups(self, lookupMap):
         | 
| 396 | 
            +
                for f in self.FeatureRecord:
         | 
| 397 | 
            +
                    if not f or not f.Feature:
         | 
| 398 | 
            +
                        continue
         | 
| 399 | 
            +
                    f.Feature.mapLookups(lookupMap)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
             | 
| 402 | 
            +
            @add_method(otTables.DefaultLangSys, otTables.LangSys)
         | 
| 403 | 
            +
            def mapFeatures(self, featureMap):
         | 
| 404 | 
            +
                self.FeatureIndex = [featureMap[i] for i in self.FeatureIndex]
         | 
| 405 | 
            +
                if self.ReqFeatureIndex != 65535:
         | 
| 406 | 
            +
                    self.ReqFeatureIndex = featureMap[self.ReqFeatureIndex]
         | 
| 407 | 
            +
             | 
| 408 | 
            +
             | 
| 409 | 
            +
            @add_method(otTables.Script)
         | 
| 410 | 
            +
            def mapFeatures(self, featureMap):
         | 
| 411 | 
            +
                if self.DefaultLangSys:
         | 
| 412 | 
            +
                    self.DefaultLangSys.mapFeatures(featureMap)
         | 
| 413 | 
            +
                for l in self.LangSysRecord:
         | 
| 414 | 
            +
                    if not l or not l.LangSys:
         | 
| 415 | 
            +
                        continue
         | 
| 416 | 
            +
                    l.LangSys.mapFeatures(featureMap)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
             | 
| 419 | 
            +
            @add_method(otTables.ScriptList)
         | 
| 420 | 
            +
            def mapFeatures(self, featureMap):
         | 
| 421 | 
            +
                for s in self.ScriptRecord:
         | 
| 422 | 
            +
                    if not s or not s.Script:
         | 
| 423 | 
            +
                        continue
         | 
| 424 | 
            +
                    s.Script.mapFeatures(featureMap)
         | 
| 425 | 
            +
             | 
| 426 | 
            +
             | 
| 427 | 
            +
            def layoutPreMerge(font):
         | 
| 428 | 
            +
                # Map indices to references
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                GDEF = font.get("GDEF")
         | 
| 431 | 
            +
                GSUB = font.get("GSUB")
         | 
| 432 | 
            +
                GPOS = font.get("GPOS")
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                for t in [GSUB, GPOS]:
         | 
| 435 | 
            +
                    if not t:
         | 
| 436 | 
            +
                        continue
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    if t.table.LookupList:
         | 
| 439 | 
            +
                        lookupMap = {i: v for i, v in enumerate(t.table.LookupList.Lookup)}
         | 
| 440 | 
            +
                        t.table.LookupList.mapLookups(lookupMap)
         | 
| 441 | 
            +
                        t.table.FeatureList.mapLookups(lookupMap)
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                        if (
         | 
| 444 | 
            +
                            GDEF
         | 
| 445 | 
            +
                            and GDEF.table.Version >= 0x00010002
         | 
| 446 | 
            +
                            and GDEF.table.MarkGlyphSetsDef
         | 
| 447 | 
            +
                        ):
         | 
| 448 | 
            +
                            markFilteringSetMap = {
         | 
| 449 | 
            +
                                i: v for i, v in enumerate(GDEF.table.MarkGlyphSetsDef.Coverage)
         | 
| 450 | 
            +
                            }
         | 
| 451 | 
            +
                            t.table.LookupList.mapMarkFilteringSets(markFilteringSetMap)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    if t.table.FeatureList and t.table.ScriptList:
         | 
| 454 | 
            +
                        featureMap = {i: v for i, v in enumerate(t.table.FeatureList.FeatureRecord)}
         | 
| 455 | 
            +
                        t.table.ScriptList.mapFeatures(featureMap)
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                # TODO FeatureParams nameIDs
         | 
| 458 | 
            +
             | 
| 459 | 
            +
             | 
| 460 | 
            +
            def layoutPostMerge(font):
         | 
| 461 | 
            +
                # Map references back to indices
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                GDEF = font.get("GDEF")
         | 
| 464 | 
            +
                GSUB = font.get("GSUB")
         | 
| 465 | 
            +
                GPOS = font.get("GPOS")
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                for t in [GSUB, GPOS]:
         | 
| 468 | 
            +
                    if not t:
         | 
| 469 | 
            +
                        continue
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    if t.table.FeatureList and t.table.ScriptList:
         | 
| 472 | 
            +
                        # Collect unregistered (new) features.
         | 
| 473 | 
            +
                        featureMap = GregariousIdentityDict(t.table.FeatureList.FeatureRecord)
         | 
| 474 | 
            +
                        t.table.ScriptList.mapFeatures(featureMap)
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                        # Record used features.
         | 
| 477 | 
            +
                        featureMap = AttendanceRecordingIdentityDict(
         | 
| 478 | 
            +
                            t.table.FeatureList.FeatureRecord
         | 
| 479 | 
            +
                        )
         | 
| 480 | 
            +
                        t.table.ScriptList.mapFeatures(featureMap)
         | 
| 481 | 
            +
                        usedIndices = featureMap.s
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                        # Remove unused features
         | 
| 484 | 
            +
                        t.table.FeatureList.FeatureRecord = [
         | 
| 485 | 
            +
                            f
         | 
| 486 | 
            +
                            for i, f in enumerate(t.table.FeatureList.FeatureRecord)
         | 
| 487 | 
            +
                            if i in usedIndices
         | 
| 488 | 
            +
                        ]
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                        # Map back to indices.
         | 
| 491 | 
            +
                        featureMap = NonhashableDict(t.table.FeatureList.FeatureRecord)
         | 
| 492 | 
            +
                        t.table.ScriptList.mapFeatures(featureMap)
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                        t.table.FeatureList.FeatureCount = len(t.table.FeatureList.FeatureRecord)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    if t.table.LookupList:
         | 
| 497 | 
            +
                        # Collect unregistered (new) lookups.
         | 
| 498 | 
            +
                        lookupMap = GregariousIdentityDict(t.table.LookupList.Lookup)
         | 
| 499 | 
            +
                        t.table.FeatureList.mapLookups(lookupMap)
         | 
| 500 | 
            +
                        t.table.LookupList.mapLookups(lookupMap)
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                        # Record used lookups.
         | 
| 503 | 
            +
                        lookupMap = AttendanceRecordingIdentityDict(t.table.LookupList.Lookup)
         | 
| 504 | 
            +
                        t.table.FeatureList.mapLookups(lookupMap)
         | 
| 505 | 
            +
                        t.table.LookupList.mapLookups(lookupMap)
         | 
| 506 | 
            +
                        usedIndices = lookupMap.s
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                        # Remove unused lookups
         | 
| 509 | 
            +
                        t.table.LookupList.Lookup = [
         | 
| 510 | 
            +
                            l for i, l in enumerate(t.table.LookupList.Lookup) if i in usedIndices
         | 
| 511 | 
            +
                        ]
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                        # Map back to indices.
         | 
| 514 | 
            +
                        lookupMap = NonhashableDict(t.table.LookupList.Lookup)
         | 
| 515 | 
            +
                        t.table.FeatureList.mapLookups(lookupMap)
         | 
| 516 | 
            +
                        t.table.LookupList.mapLookups(lookupMap)
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                        t.table.LookupList.LookupCount = len(t.table.LookupList.Lookup)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                        if GDEF and GDEF.table.Version >= 0x00010002:
         | 
| 521 | 
            +
                            markFilteringSetMap = NonhashableDict(
         | 
| 522 | 
            +
                                GDEF.table.MarkGlyphSetsDef.Coverage
         | 
| 523 | 
            +
                            )
         | 
| 524 | 
            +
                            t.table.LookupList.mapMarkFilteringSets(markFilteringSetMap)
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                # TODO FeatureParams nameIDs
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/options.py
    ADDED
    
    | @@ -0,0 +1,85 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class Options(object):
         | 
| 7 | 
            +
                class UnknownOptionError(Exception):
         | 
| 8 | 
            +
                    pass
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                def __init__(self, **kwargs):
         | 
| 11 | 
            +
                    self.verbose = False
         | 
| 12 | 
            +
                    self.timing = False
         | 
| 13 | 
            +
                    self.drop_tables = []
         | 
| 14 | 
            +
                    self.input_file = None
         | 
| 15 | 
            +
                    self.output_file = "merged.ttf"
         | 
| 16 | 
            +
                    self.import_file = None
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    self.set(**kwargs)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                def set(self, **kwargs):
         | 
| 21 | 
            +
                    for k, v in kwargs.items():
         | 
| 22 | 
            +
                        if not hasattr(self, k):
         | 
| 23 | 
            +
                            raise self.UnknownOptionError("Unknown option '%s'" % k)
         | 
| 24 | 
            +
                        setattr(self, k, v)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                def parse_opts(self, argv, ignore_unknown=[]):
         | 
| 27 | 
            +
                    ret = []
         | 
| 28 | 
            +
                    opts = {}
         | 
| 29 | 
            +
                    for a in argv:
         | 
| 30 | 
            +
                        orig_a = a
         | 
| 31 | 
            +
                        if not a.startswith("--"):
         | 
| 32 | 
            +
                            ret.append(a)
         | 
| 33 | 
            +
                            continue
         | 
| 34 | 
            +
                        a = a[2:]
         | 
| 35 | 
            +
                        i = a.find("=")
         | 
| 36 | 
            +
                        op = "="
         | 
| 37 | 
            +
                        if i == -1:
         | 
| 38 | 
            +
                            if a.startswith("no-"):
         | 
| 39 | 
            +
                                k = a[3:]
         | 
| 40 | 
            +
                                v = False
         | 
| 41 | 
            +
                            else:
         | 
| 42 | 
            +
                                k = a
         | 
| 43 | 
            +
                                v = True
         | 
| 44 | 
            +
                        else:
         | 
| 45 | 
            +
                            k = a[:i]
         | 
| 46 | 
            +
                            if k[-1] in "-+":
         | 
| 47 | 
            +
                                op = k[-1] + "="  # Ops is '-=' or '+=' now.
         | 
| 48 | 
            +
                                k = k[:-1]
         | 
| 49 | 
            +
                            v = a[i + 1 :]
         | 
| 50 | 
            +
                        ok = k
         | 
| 51 | 
            +
                        k = k.replace("-", "_")
         | 
| 52 | 
            +
                        if not hasattr(self, k):
         | 
| 53 | 
            +
                            if ignore_unknown is True or ok in ignore_unknown:
         | 
| 54 | 
            +
                                ret.append(orig_a)
         | 
| 55 | 
            +
                                continue
         | 
| 56 | 
            +
                            else:
         | 
| 57 | 
            +
                                raise self.UnknownOptionError("Unknown option '%s'" % a)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                        ov = getattr(self, k)
         | 
| 60 | 
            +
                        if isinstance(ov, bool):
         | 
| 61 | 
            +
                            v = bool(v)
         | 
| 62 | 
            +
                        elif isinstance(ov, int):
         | 
| 63 | 
            +
                            v = int(v)
         | 
| 64 | 
            +
                        elif isinstance(ov, list):
         | 
| 65 | 
            +
                            vv = v.split(",")
         | 
| 66 | 
            +
                            if vv == [""]:
         | 
| 67 | 
            +
                                vv = []
         | 
| 68 | 
            +
                            vv = [int(x, 0) if len(x) and x[0] in "0123456789" else x for x in vv]
         | 
| 69 | 
            +
                            if op == "=":
         | 
| 70 | 
            +
                                v = vv
         | 
| 71 | 
            +
                            elif op == "+=":
         | 
| 72 | 
            +
                                v = ov
         | 
| 73 | 
            +
                                v.extend(vv)
         | 
| 74 | 
            +
                            elif op == "-=":
         | 
| 75 | 
            +
                                v = ov
         | 
| 76 | 
            +
                                for x in vv:
         | 
| 77 | 
            +
                                    if x in v:
         | 
| 78 | 
            +
                                        v.remove(x)
         | 
| 79 | 
            +
                            else:
         | 
| 80 | 
            +
                                assert 0
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                        opts[k] = v
         | 
| 83 | 
            +
                    self.set(**opts)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    return ret
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/tables.py
    ADDED
    
    | @@ -0,0 +1,341 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2013 Google, Inc. All Rights Reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Google Author(s): Behdad Esfahbod, Roozbeh Pournader
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from fontTools import ttLib, cffLib
         | 
| 6 | 
            +
            from fontTools.misc.psCharStrings import T2WidthExtractor
         | 
| 7 | 
            +
            from fontTools.ttLib.tables.DefaultTable import DefaultTable
         | 
| 8 | 
            +
            from fontTools.merge.base import add_method, mergeObjects
         | 
| 9 | 
            +
            from fontTools.merge.cmap import computeMegaCmap
         | 
| 10 | 
            +
            from fontTools.merge.util import *
         | 
| 11 | 
            +
            import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            log = logging.getLogger("fontTools.merge")
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            ttLib.getTableClass("maxp").mergeMap = {
         | 
| 18 | 
            +
                "*": max,
         | 
| 19 | 
            +
                "tableTag": equal,
         | 
| 20 | 
            +
                "tableVersion": equal,
         | 
| 21 | 
            +
                "numGlyphs": sum,
         | 
| 22 | 
            +
                "maxStorage": first,
         | 
| 23 | 
            +
                "maxFunctionDefs": first,
         | 
| 24 | 
            +
                "maxInstructionDefs": first,
         | 
| 25 | 
            +
                # TODO When we correctly merge hinting data, update these values:
         | 
| 26 | 
            +
                # maxFunctionDefs, maxInstructionDefs, maxSizeOfInstructions
         | 
| 27 | 
            +
            }
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            headFlagsMergeBitMap = {
         | 
| 30 | 
            +
                "size": 16,
         | 
| 31 | 
            +
                "*": bitwise_or,
         | 
| 32 | 
            +
                1: bitwise_and,  # Baseline at y = 0
         | 
| 33 | 
            +
                2: bitwise_and,  # lsb at x = 0
         | 
| 34 | 
            +
                3: bitwise_and,  # Force ppem to integer values. FIXME?
         | 
| 35 | 
            +
                5: bitwise_and,  # Font is vertical
         | 
| 36 | 
            +
                6: lambda bit: 0,  # Always set to zero
         | 
| 37 | 
            +
                11: bitwise_and,  # Font data is 'lossless'
         | 
| 38 | 
            +
                13: bitwise_and,  # Optimized for ClearType
         | 
| 39 | 
            +
                14: bitwise_and,  # Last resort font. FIXME? equal or first may be better
         | 
| 40 | 
            +
                15: lambda bit: 0,  # Always set to zero
         | 
| 41 | 
            +
            }
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ttLib.getTableClass("head").mergeMap = {
         | 
| 44 | 
            +
                "tableTag": equal,
         | 
| 45 | 
            +
                "tableVersion": max,
         | 
| 46 | 
            +
                "fontRevision": max,
         | 
| 47 | 
            +
                "checkSumAdjustment": lambda lst: 0,  # We need *something* here
         | 
| 48 | 
            +
                "magicNumber": equal,
         | 
| 49 | 
            +
                "flags": mergeBits(headFlagsMergeBitMap),
         | 
| 50 | 
            +
                "unitsPerEm": equal,
         | 
| 51 | 
            +
                "created": current_time,
         | 
| 52 | 
            +
                "modified": current_time,
         | 
| 53 | 
            +
                "xMin": min,
         | 
| 54 | 
            +
                "yMin": min,
         | 
| 55 | 
            +
                "xMax": max,
         | 
| 56 | 
            +
                "yMax": max,
         | 
| 57 | 
            +
                "macStyle": first,
         | 
| 58 | 
            +
                "lowestRecPPEM": max,
         | 
| 59 | 
            +
                "fontDirectionHint": lambda lst: 2,
         | 
| 60 | 
            +
                "indexToLocFormat": first,
         | 
| 61 | 
            +
                "glyphDataFormat": equal,
         | 
| 62 | 
            +
            }
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ttLib.getTableClass("hhea").mergeMap = {
         | 
| 65 | 
            +
                "*": equal,
         | 
| 66 | 
            +
                "tableTag": equal,
         | 
| 67 | 
            +
                "tableVersion": max,
         | 
| 68 | 
            +
                "ascent": max,
         | 
| 69 | 
            +
                "descent": min,
         | 
| 70 | 
            +
                "lineGap": max,
         | 
| 71 | 
            +
                "advanceWidthMax": max,
         | 
| 72 | 
            +
                "minLeftSideBearing": min,
         | 
| 73 | 
            +
                "minRightSideBearing": min,
         | 
| 74 | 
            +
                "xMaxExtent": max,
         | 
| 75 | 
            +
                "caretSlopeRise": first,
         | 
| 76 | 
            +
                "caretSlopeRun": first,
         | 
| 77 | 
            +
                "caretOffset": first,
         | 
| 78 | 
            +
                "numberOfHMetrics": recalculate,
         | 
| 79 | 
            +
            }
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            ttLib.getTableClass("vhea").mergeMap = {
         | 
| 82 | 
            +
                "*": equal,
         | 
| 83 | 
            +
                "tableTag": equal,
         | 
| 84 | 
            +
                "tableVersion": max,
         | 
| 85 | 
            +
                "ascent": max,
         | 
| 86 | 
            +
                "descent": min,
         | 
| 87 | 
            +
                "lineGap": max,
         | 
| 88 | 
            +
                "advanceHeightMax": max,
         | 
| 89 | 
            +
                "minTopSideBearing": min,
         | 
| 90 | 
            +
                "minBottomSideBearing": min,
         | 
| 91 | 
            +
                "yMaxExtent": max,
         | 
| 92 | 
            +
                "caretSlopeRise": first,
         | 
| 93 | 
            +
                "caretSlopeRun": first,
         | 
| 94 | 
            +
                "caretOffset": first,
         | 
| 95 | 
            +
                "numberOfVMetrics": recalculate,
         | 
| 96 | 
            +
            }
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            os2FsTypeMergeBitMap = {
         | 
| 99 | 
            +
                "size": 16,
         | 
| 100 | 
            +
                "*": lambda bit: 0,
         | 
| 101 | 
            +
                1: bitwise_or,  # no embedding permitted
         | 
| 102 | 
            +
                2: bitwise_and,  # allow previewing and printing documents
         | 
| 103 | 
            +
                3: bitwise_and,  # allow editing documents
         | 
| 104 | 
            +
                8: bitwise_or,  # no subsetting permitted
         | 
| 105 | 
            +
                9: bitwise_or,  # no embedding of outlines permitted
         | 
| 106 | 
            +
            }
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
            +
            def mergeOs2FsType(lst):
         | 
| 110 | 
            +
                lst = list(lst)
         | 
| 111 | 
            +
                if all(item == 0 for item in lst):
         | 
| 112 | 
            +
                    return 0
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                # Compute least restrictive logic for each fsType value
         | 
| 115 | 
            +
                for i in range(len(lst)):
         | 
| 116 | 
            +
                    # unset bit 1 (no embedding permitted) if either bit 2 or 3 is set
         | 
| 117 | 
            +
                    if lst[i] & 0x000C:
         | 
| 118 | 
            +
                        lst[i] &= ~0x0002
         | 
| 119 | 
            +
                    # set bit 2 (allow previewing) if bit 3 is set (allow editing)
         | 
| 120 | 
            +
                    elif lst[i] & 0x0008:
         | 
| 121 | 
            +
                        lst[i] |= 0x0004
         | 
| 122 | 
            +
                    # set bits 2 and 3 if everything is allowed
         | 
| 123 | 
            +
                    elif lst[i] == 0:
         | 
| 124 | 
            +
                        lst[i] = 0x000C
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                fsType = mergeBits(os2FsTypeMergeBitMap)(lst)
         | 
| 127 | 
            +
                # unset bits 2 and 3 if bit 1 is set (some font is "no embedding")
         | 
| 128 | 
            +
                if fsType & 0x0002:
         | 
| 129 | 
            +
                    fsType &= ~0x000C
         | 
| 130 | 
            +
                return fsType
         | 
| 131 | 
            +
             | 
| 132 | 
            +
             | 
| 133 | 
            +
            ttLib.getTableClass("OS/2").mergeMap = {
         | 
| 134 | 
            +
                "*": first,
         | 
| 135 | 
            +
                "tableTag": equal,
         | 
| 136 | 
            +
                "version": max,
         | 
| 137 | 
            +
                "xAvgCharWidth": first,  # Will be recalculated at the end on the merged font
         | 
| 138 | 
            +
                "fsType": mergeOs2FsType,  # Will be overwritten
         | 
| 139 | 
            +
                "panose": first,  # FIXME: should really be the first Latin font
         | 
| 140 | 
            +
                "ulUnicodeRange1": bitwise_or,
         | 
| 141 | 
            +
                "ulUnicodeRange2": bitwise_or,
         | 
| 142 | 
            +
                "ulUnicodeRange3": bitwise_or,
         | 
| 143 | 
            +
                "ulUnicodeRange4": bitwise_or,
         | 
| 144 | 
            +
                "fsFirstCharIndex": min,
         | 
| 145 | 
            +
                "fsLastCharIndex": max,
         | 
| 146 | 
            +
                "sTypoAscender": max,
         | 
| 147 | 
            +
                "sTypoDescender": min,
         | 
| 148 | 
            +
                "sTypoLineGap": max,
         | 
| 149 | 
            +
                "usWinAscent": max,
         | 
| 150 | 
            +
                "usWinDescent": max,
         | 
| 151 | 
            +
                # Version 1
         | 
| 152 | 
            +
                "ulCodePageRange1": onlyExisting(bitwise_or),
         | 
| 153 | 
            +
                "ulCodePageRange2": onlyExisting(bitwise_or),
         | 
| 154 | 
            +
                # Version 2, 3, 4
         | 
| 155 | 
            +
                "sxHeight": onlyExisting(max),
         | 
| 156 | 
            +
                "sCapHeight": onlyExisting(max),
         | 
| 157 | 
            +
                "usDefaultChar": onlyExisting(first),
         | 
| 158 | 
            +
                "usBreakChar": onlyExisting(first),
         | 
| 159 | 
            +
                "usMaxContext": onlyExisting(max),
         | 
| 160 | 
            +
                # version 5
         | 
| 161 | 
            +
                "usLowerOpticalPointSize": onlyExisting(min),
         | 
| 162 | 
            +
                "usUpperOpticalPointSize": onlyExisting(max),
         | 
| 163 | 
            +
            }
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            @add_method(ttLib.getTableClass("OS/2"))
         | 
| 167 | 
            +
            def merge(self, m, tables):
         | 
| 168 | 
            +
                DefaultTable.merge(self, m, tables)
         | 
| 169 | 
            +
                if self.version < 2:
         | 
| 170 | 
            +
                    # bits 8 and 9 are reserved and should be set to zero
         | 
| 171 | 
            +
                    self.fsType &= ~0x0300
         | 
| 172 | 
            +
                if self.version >= 3:
         | 
| 173 | 
            +
                    # Only one of bits 1, 2, and 3 may be set. We already take
         | 
| 174 | 
            +
                    # care of bit 1 implications in mergeOs2FsType. So unset
         | 
| 175 | 
            +
                    # bit 2 if bit 3 is already set.
         | 
| 176 | 
            +
                    if self.fsType & 0x0008:
         | 
| 177 | 
            +
                        self.fsType &= ~0x0004
         | 
| 178 | 
            +
                return self
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            ttLib.getTableClass("post").mergeMap = {
         | 
| 182 | 
            +
                "*": first,
         | 
| 183 | 
            +
                "tableTag": equal,
         | 
| 184 | 
            +
                "formatType": max,
         | 
| 185 | 
            +
                "isFixedPitch": min,
         | 
| 186 | 
            +
                "minMemType42": max,
         | 
| 187 | 
            +
                "maxMemType42": lambda lst: 0,
         | 
| 188 | 
            +
                "minMemType1": max,
         | 
| 189 | 
            +
                "maxMemType1": lambda lst: 0,
         | 
| 190 | 
            +
                "mapping": onlyExisting(sumDicts),
         | 
| 191 | 
            +
                "extraNames": lambda lst: [],
         | 
| 192 | 
            +
            }
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            ttLib.getTableClass("vmtx").mergeMap = ttLib.getTableClass("hmtx").mergeMap = {
         | 
| 195 | 
            +
                "tableTag": equal,
         | 
| 196 | 
            +
                "metrics": sumDicts,
         | 
| 197 | 
            +
            }
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            ttLib.getTableClass("name").mergeMap = {
         | 
| 200 | 
            +
                "tableTag": equal,
         | 
| 201 | 
            +
                "names": first,  # FIXME? Does mixing name records make sense?
         | 
| 202 | 
            +
            }
         | 
| 203 | 
            +
             | 
| 204 | 
            +
            ttLib.getTableClass("loca").mergeMap = {
         | 
| 205 | 
            +
                "*": recalculate,
         | 
| 206 | 
            +
                "tableTag": equal,
         | 
| 207 | 
            +
            }
         | 
| 208 | 
            +
             | 
| 209 | 
            +
            ttLib.getTableClass("glyf").mergeMap = {
         | 
| 210 | 
            +
                "tableTag": equal,
         | 
| 211 | 
            +
                "glyphs": sumDicts,
         | 
| 212 | 
            +
                "glyphOrder": sumLists,
         | 
| 213 | 
            +
                "_reverseGlyphOrder": recalculate,
         | 
| 214 | 
            +
                "axisTags": equal,
         | 
| 215 | 
            +
            }
         | 
| 216 | 
            +
             | 
| 217 | 
            +
             | 
| 218 | 
            +
            @add_method(ttLib.getTableClass("glyf"))
         | 
| 219 | 
            +
            def merge(self, m, tables):
         | 
| 220 | 
            +
                for i, table in enumerate(tables):
         | 
| 221 | 
            +
                    for g in table.glyphs.values():
         | 
| 222 | 
            +
                        if i:
         | 
| 223 | 
            +
                            # Drop hints for all but first font, since
         | 
| 224 | 
            +
                            # we don't map functions / CVT values.
         | 
| 225 | 
            +
                            g.removeHinting()
         | 
| 226 | 
            +
                        # Expand composite glyphs to load their
         | 
| 227 | 
            +
                        # composite glyph names.
         | 
| 228 | 
            +
                        if g.isComposite():
         | 
| 229 | 
            +
                            g.expand(table)
         | 
| 230 | 
            +
                return DefaultTable.merge(self, m, tables)
         | 
| 231 | 
            +
             | 
| 232 | 
            +
             | 
| 233 | 
            +
            ttLib.getTableClass("prep").mergeMap = lambda self, lst: first(lst)
         | 
| 234 | 
            +
            ttLib.getTableClass("fpgm").mergeMap = lambda self, lst: first(lst)
         | 
| 235 | 
            +
            ttLib.getTableClass("cvt ").mergeMap = lambda self, lst: first(lst)
         | 
| 236 | 
            +
            ttLib.getTableClass("gasp").mergeMap = lambda self, lst: first(
         | 
| 237 | 
            +
                lst
         | 
| 238 | 
            +
            )  # FIXME? Appears irreconcilable
         | 
| 239 | 
            +
             | 
| 240 | 
            +
             | 
| 241 | 
            +
            @add_method(ttLib.getTableClass("CFF "))
         | 
| 242 | 
            +
            def merge(self, m, tables):
         | 
| 243 | 
            +
                if any(hasattr(table.cff[0], "FDSelect") for table in tables):
         | 
| 244 | 
            +
                    raise NotImplementedError("Merging CID-keyed CFF tables is not supported yet")
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                for table in tables:
         | 
| 247 | 
            +
                    table.cff.desubroutinize()
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                newcff = tables[0]
         | 
| 250 | 
            +
                newfont = newcff.cff[0]
         | 
| 251 | 
            +
                private = newfont.Private
         | 
| 252 | 
            +
                newDefaultWidthX, newNominalWidthX = private.defaultWidthX, private.nominalWidthX
         | 
| 253 | 
            +
                storedNamesStrings = []
         | 
| 254 | 
            +
                glyphOrderStrings = []
         | 
| 255 | 
            +
                glyphOrder = set(newfont.getGlyphOrder())
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                for name in newfont.strings.strings:
         | 
| 258 | 
            +
                    if name not in glyphOrder:
         | 
| 259 | 
            +
                        storedNamesStrings.append(name)
         | 
| 260 | 
            +
                    else:
         | 
| 261 | 
            +
                        glyphOrderStrings.append(name)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                chrset = list(newfont.charset)
         | 
| 264 | 
            +
                newcs = newfont.CharStrings
         | 
| 265 | 
            +
                log.debug("FONT 0 CharStrings: %d.", len(newcs))
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                for i, table in enumerate(tables[1:], start=1):
         | 
| 268 | 
            +
                    font = table.cff[0]
         | 
| 269 | 
            +
                    defaultWidthX, nominalWidthX = (
         | 
| 270 | 
            +
                        font.Private.defaultWidthX,
         | 
| 271 | 
            +
                        font.Private.nominalWidthX,
         | 
| 272 | 
            +
                    )
         | 
| 273 | 
            +
                    widthsDiffer = (
         | 
| 274 | 
            +
                        defaultWidthX != newDefaultWidthX or nominalWidthX != newNominalWidthX
         | 
| 275 | 
            +
                    )
         | 
| 276 | 
            +
                    font.Private = private
         | 
| 277 | 
            +
                    fontGlyphOrder = set(font.getGlyphOrder())
         | 
| 278 | 
            +
                    for name in font.strings.strings:
         | 
| 279 | 
            +
                        if name in fontGlyphOrder:
         | 
| 280 | 
            +
                            glyphOrderStrings.append(name)
         | 
| 281 | 
            +
                    cs = font.CharStrings
         | 
| 282 | 
            +
                    gs = table.cff.GlobalSubrs
         | 
| 283 | 
            +
                    log.debug("Font %d CharStrings: %d.", i, len(cs))
         | 
| 284 | 
            +
                    chrset.extend(font.charset)
         | 
| 285 | 
            +
                    if newcs.charStringsAreIndexed:
         | 
| 286 | 
            +
                        for i, name in enumerate(cs.charStrings, start=len(newcs)):
         | 
| 287 | 
            +
                            newcs.charStrings[name] = i
         | 
| 288 | 
            +
                            newcs.charStringsIndex.items.append(None)
         | 
| 289 | 
            +
                    for name in cs.charStrings:
         | 
| 290 | 
            +
                        if widthsDiffer:
         | 
| 291 | 
            +
                            c = cs[name]
         | 
| 292 | 
            +
                            defaultWidthXToken = object()
         | 
| 293 | 
            +
                            extractor = T2WidthExtractor([], [], nominalWidthX, defaultWidthXToken)
         | 
| 294 | 
            +
                            extractor.execute(c)
         | 
| 295 | 
            +
                            width = extractor.width
         | 
| 296 | 
            +
                            if width is not defaultWidthXToken:
         | 
| 297 | 
            +
                                # The following will be wrong if the width is added
         | 
| 298 | 
            +
                                # by a subroutine. Ouch!
         | 
| 299 | 
            +
                                c.program.pop(0)
         | 
| 300 | 
            +
                            else:
         | 
| 301 | 
            +
                                width = defaultWidthX
         | 
| 302 | 
            +
                            if width != newDefaultWidthX:
         | 
| 303 | 
            +
                                c.program.insert(0, width - newNominalWidthX)
         | 
| 304 | 
            +
                        newcs[name] = cs[name]
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                newfont.charset = chrset
         | 
| 307 | 
            +
                newfont.numGlyphs = len(chrset)
         | 
| 308 | 
            +
                newfont.strings.strings = glyphOrderStrings + storedNamesStrings
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                return newcff
         | 
| 311 | 
            +
             | 
| 312 | 
            +
             | 
| 313 | 
            +
            @add_method(ttLib.getTableClass("cmap"))
         | 
| 314 | 
            +
            def merge(self, m, tables):
         | 
| 315 | 
            +
                # TODO Handle format=14.
         | 
| 316 | 
            +
                if not hasattr(m, "cmap"):
         | 
| 317 | 
            +
                    computeMegaCmap(m, tables)
         | 
| 318 | 
            +
                cmap = m.cmap
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                cmapBmpOnly = {uni: gid for uni, gid in cmap.items() if uni <= 0xFFFF}
         | 
| 321 | 
            +
                self.tables = []
         | 
| 322 | 
            +
                module = ttLib.getTableModule("cmap")
         | 
| 323 | 
            +
                if len(cmapBmpOnly) != len(cmap):
         | 
| 324 | 
            +
                    # format-12 required.
         | 
| 325 | 
            +
                    cmapTable = module.cmap_classes[12](12)
         | 
| 326 | 
            +
                    cmapTable.platformID = 3
         | 
| 327 | 
            +
                    cmapTable.platEncID = 10
         | 
| 328 | 
            +
                    cmapTable.language = 0
         | 
| 329 | 
            +
                    cmapTable.cmap = cmap
         | 
| 330 | 
            +
                    self.tables.append(cmapTable)
         | 
| 331 | 
            +
                # always create format-4
         | 
| 332 | 
            +
                cmapTable = module.cmap_classes[4](4)
         | 
| 333 | 
            +
                cmapTable.platformID = 3
         | 
| 334 | 
            +
                cmapTable.platEncID = 1
         | 
| 335 | 
            +
                cmapTable.language = 0
         | 
| 336 | 
            +
                cmapTable.cmap = cmapBmpOnly
         | 
| 337 | 
            +
                # ordered by platform then encoding
         | 
| 338 | 
            +
                self.tables.insert(0, cmapTable)
         | 
| 339 | 
            +
                self.tableVersion = 0
         | 
| 340 | 
            +
                self.numSubTables = len(self.tables)
         | 
| 341 | 
            +
                return self
         | 
    	
        infer_4_47_1/lib/python3.10/site-packages/fontTools/merge/unicode.py
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2021 Behdad Esfahbod. All Rights Reserved.
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def is_Default_Ignorable(u):
         | 
| 5 | 
            +
                # http://www.unicode.org/reports/tr44/#Default_Ignorable_Code_Point
         | 
| 6 | 
            +
                #
         | 
| 7 | 
            +
                # TODO Move me to unicodedata module and autogenerate.
         | 
| 8 | 
            +
                #
         | 
| 9 | 
            +
                # Unicode 14.0:
         | 
| 10 | 
            +
                # $ grep '; Default_Ignorable_Code_Point ' DerivedCoreProperties.txt | sed 's/;.*#/#/'
         | 
| 11 | 
            +
                # 00AD          # Cf       SOFT HYPHEN
         | 
| 12 | 
            +
                # 034F          # Mn       COMBINING GRAPHEME JOINER
         | 
| 13 | 
            +
                # 061C          # Cf       ARABIC LETTER MARK
         | 
| 14 | 
            +
                # 115F..1160    # Lo   [2] HANGUL CHOSEONG FILLER..HANGUL JUNGSEONG FILLER
         | 
| 15 | 
            +
                # 17B4..17B5    # Mn   [2] KHMER VOWEL INHERENT AQ..KHMER VOWEL INHERENT AA
         | 
| 16 | 
            +
                # 180B..180D    # Mn   [3] MONGOLIAN FREE VARIATION SELECTOR ONE..MONGOLIAN FREE VARIATION SELECTOR THREE
         | 
| 17 | 
            +
                # 180E          # Cf       MONGOLIAN VOWEL SEPARATOR
         | 
| 18 | 
            +
                # 180F          # Mn       MONGOLIAN FREE VARIATION SELECTOR FOUR
         | 
| 19 | 
            +
                # 200B..200F    # Cf   [5] ZERO WIDTH SPACE..RIGHT-TO-LEFT MARK
         | 
| 20 | 
            +
                # 202A..202E    # Cf   [5] LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE
         | 
| 21 | 
            +
                # 2060..2064    # Cf   [5] WORD JOINER..INVISIBLE PLUS
         | 
| 22 | 
            +
                # 2065          # Cn       <reserved-2065>
         | 
| 23 | 
            +
                # 2066..206F    # Cf  [10] LEFT-TO-RIGHT ISOLATE..NOMINAL DIGIT SHAPES
         | 
| 24 | 
            +
                # 3164          # Lo       HANGUL FILLER
         | 
| 25 | 
            +
                # FE00..FE0F    # Mn  [16] VARIATION SELECTOR-1..VARIATION SELECTOR-16
         | 
| 26 | 
            +
                # FEFF          # Cf       ZERO WIDTH NO-BREAK SPACE
         | 
| 27 | 
            +
                # FFA0          # Lo       HALFWIDTH HANGUL FILLER
         | 
| 28 | 
            +
                # FFF0..FFF8    # Cn   [9] <reserved-FFF0>..<reserved-FFF8>
         | 
| 29 | 
            +
                # 1BCA0..1BCA3  # Cf   [4] SHORTHAND FORMAT LETTER OVERLAP..SHORTHAND FORMAT UP STEP
         | 
| 30 | 
            +
                # 1D173..1D17A  # Cf   [8] MUSICAL SYMBOL BEGIN BEAM..MUSICAL SYMBOL END PHRASE
         | 
| 31 | 
            +
                # E0000         # Cn       <reserved-E0000>
         | 
| 32 | 
            +
                # E0001         # Cf       LANGUAGE TAG
         | 
| 33 | 
            +
                # E0002..E001F  # Cn  [30] <reserved-E0002>..<reserved-E001F>
         | 
| 34 | 
            +
                # E0020..E007F  # Cf  [96] TAG SPACE..CANCEL TAG
         | 
| 35 | 
            +
                # E0080..E00FF  # Cn [128] <reserved-E0080>..<reserved-E00FF>
         | 
| 36 | 
            +
                # E0100..E01EF  # Mn [240] VARIATION SELECTOR-17..VARIATION SELECTOR-256
         | 
| 37 | 
            +
                # E01F0..E0FFF  # Cn [3600] <reserved-E01F0>..<reserved-E0FFF>
         | 
| 38 | 
            +
                return (
         | 
| 39 | 
            +
                    u == 0x00AD
         | 
| 40 | 
            +
                    or u == 0x034F  # Cf       SOFT HYPHEN
         | 
| 41 | 
            +
                    or u == 0x061C  # Mn       COMBINING GRAPHEME JOINER
         | 
| 42 | 
            +
                    or 0x115F <= u <= 0x1160  # Cf       ARABIC LETTER MARK
         | 
| 43 | 
            +
                    or 0x17B4  # Lo   [2] HANGUL CHOSEONG FILLER..HANGUL JUNGSEONG FILLER
         | 
| 44 | 
            +
                    <= u
         | 
| 45 | 
            +
                    <= 0x17B5
         | 
| 46 | 
            +
                    or 0x180B  # Mn   [2] KHMER VOWEL INHERENT AQ..KHMER VOWEL INHERENT AA
         | 
| 47 | 
            +
                    <= u
         | 
| 48 | 
            +
                    <= 0x180D
         | 
| 49 | 
            +
                    or u  # Mn   [3] MONGOLIAN FREE VARIATION SELECTOR ONE..MONGOLIAN FREE VARIATION SELECTOR THREE
         | 
| 50 | 
            +
                    == 0x180E
         | 
| 51 | 
            +
                    or u == 0x180F  # Cf       MONGOLIAN VOWEL SEPARATOR
         | 
| 52 | 
            +
                    or 0x200B <= u <= 0x200F  # Mn       MONGOLIAN FREE VARIATION SELECTOR FOUR
         | 
| 53 | 
            +
                    or 0x202A <= u <= 0x202E  # Cf   [5] ZERO WIDTH SPACE..RIGHT-TO-LEFT MARK
         | 
| 54 | 
            +
                    or 0x2060  # Cf   [5] LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE
         | 
| 55 | 
            +
                    <= u
         | 
| 56 | 
            +
                    <= 0x2064
         | 
| 57 | 
            +
                    or u == 0x2065  # Cf   [5] WORD JOINER..INVISIBLE PLUS
         | 
| 58 | 
            +
                    or 0x2066 <= u <= 0x206F  # Cn       <reserved-2065>
         | 
| 59 | 
            +
                    or u == 0x3164  # Cf  [10] LEFT-TO-RIGHT ISOLATE..NOMINAL DIGIT SHAPES
         | 
| 60 | 
            +
                    or 0xFE00 <= u <= 0xFE0F  # Lo       HANGUL FILLER
         | 
| 61 | 
            +
                    or u == 0xFEFF  # Mn  [16] VARIATION SELECTOR-1..VARIATION SELECTOR-16
         | 
| 62 | 
            +
                    or u == 0xFFA0  # Cf       ZERO WIDTH NO-BREAK SPACE
         | 
| 63 | 
            +
                    or 0xFFF0 <= u <= 0xFFF8  # Lo       HALFWIDTH HANGUL FILLER
         | 
| 64 | 
            +
                    or 0x1BCA0 <= u <= 0x1BCA3  # Cn   [9] <reserved-FFF0>..<reserved-FFF8>
         | 
| 65 | 
            +
                    or 0x1D173  # Cf   [4] SHORTHAND FORMAT LETTER OVERLAP..SHORTHAND FORMAT UP STEP
         | 
| 66 | 
            +
                    <= u
         | 
| 67 | 
            +
                    <= 0x1D17A
         | 
| 68 | 
            +
                    or u == 0xE0000  # Cf   [8] MUSICAL SYMBOL BEGIN BEAM..MUSICAL SYMBOL END PHRASE
         | 
| 69 | 
            +
                    or u == 0xE0001  # Cn       <reserved-E0000>
         | 
| 70 | 
            +
                    or 0xE0002 <= u <= 0xE001F  # Cf       LANGUAGE TAG
         | 
| 71 | 
            +
                    or 0xE0020 <= u <= 0xE007F  # Cn  [30] <reserved-E0002>..<reserved-E001F>
         | 
| 72 | 
            +
                    or 0xE0080 <= u <= 0xE00FF  # Cf  [96] TAG SPACE..CANCEL TAG
         | 
| 73 | 
            +
                    or 0xE0100 <= u <= 0xE01EF  # Cn [128] <reserved-E0080>..<reserved-E00FF>
         | 
| 74 | 
            +
                    or 0xE01F0  # Mn [240] VARIATION SELECTOR-17..VARIATION SELECTOR-256
         | 
| 75 | 
            +
                    <= u
         | 
| 76 | 
            +
                    <= 0xE0FFF
         | 
| 77 | 
            +
                    or False  # Cn [3600] <reserved-E01F0>..<reserved-E0FFF>
         | 
| 78 | 
            +
                )
         |