diff --git "a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/distributed/rpc/rpc_test.py" "b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/distributed/rpc/rpc_test.py" new file mode 100644--- /dev/null +++ "b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/distributed/rpc/rpc_test.py" @@ -0,0 +1,6495 @@ +# mypy: allow-untyped-defs + +import concurrent.futures +import contextlib +import json +import os +import sys +import threading +import time + +from collections import namedtuple +from functools import partial +from threading import Event +from threading import Lock +from unittest import mock + +import torch +import torch.nn as nn +import torch.distributed as dist +import torch.distributed.rpc as rpc +import torch.distributed.autograd as dist_autograd +from torch.distributed.rpc import RRef, _get_debug_info, _rref_context_get_debug_info, WorkerInfo +from torch.distributed.rpc.api import _use_rpc_pickler, _thread_local_var, _wait_all +from torch.distributed.rpc.internal import ( + PythonUDF, + RPCExecMode, + _internal_rpc_pickler, + _build_rpc_profiling_key, +) +from torch.futures import Future +from torch.testing._internal.common_distributed import ( + skip_if_lt_x_gpu, + captured_output, + tp_transports, +) +from torch.testing._internal.common_utils import ( + IS_MACOS, + load_tests, + skip_but_pass_in_sandcastle_if, + get_cycles_per_ms, +) + +from torch.testing._internal.dist_utils import ( + dist_init, + get_function_event, + initialize_pg, + wait_until_node_failure, + wait_until_pending_futures_and_users_flushed, + wait_until_owners_and_forks_on_rank, + worker_name, +) +from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import ( + RpcAgentTestFixture, +) +from torch.testing._internal.common_utils import TemporaryFileName + +from torch.autograd.profiler_legacy import profile as _profile +import operator + + +def foo_add(): + return torch.add(torch.ones(1), torch.ones(1)) + +def udf_with_torch_ops(device=-1, use_record_function=False): + device_ctx = contextlib.nullcontext() if device == -1 else torch.cuda.device(device) + record_function_ctx = ( + torch.autograd.profiler.record_function("##forward##") + if use_record_function + else contextlib.nullcontext() + ) + with device_ctx, record_function_ctx: + t1, t2 = torch.ones(1), torch.ones(1) + t = torch.add(t1, t2) + t = torch.mul(t, t) + t = t.relu() + t = t.sigmoid() + +# Events (operator invocations) that are expected to be ran as part of the above +# function. +EXPECTED_REMOTE_EVENTS = [ + "aten::ones", + "aten::ones", + "aten::add", + "aten::mul", + "aten::relu", + "aten::clamp_min", + "aten::sigmoid", +] + +# Remote operations are prefixed with the following string for RPC profiling. +REMOTE_OP_STR = "#remote_op: " + + +VALUE_FUTURE = concurrent.futures.Future() +DONE_FUTURE = concurrent.futures.Future() + +FIFTY_MIL_CYCLES = 50000000 + +_rpc_barrier_count = 0 + +def _increment_count(): + global _rpc_barrier_count + _rpc_barrier_count += 1 + +def _reset_count(): + global _rpc_barrier_count + _rpc_barrier_count = 0 + +class StubRpcAgent: + def __init__(self, world_size): + self.world_size = world_size + + def get_worker_infos(self): + return { + WorkerInfo(name=worker_name(rank), id=rank) + for rank in range(self.world_size) + } + + +def _stub_construct_rpc_backend_options_handler(**kwargs): + return mock.Mock() # RpcBackendOptions. + + +def _stub_init_rpc_backend_handler(store, name, rank, world_size, rpc_backend_options): + return StubRpcAgent(world_size=world_size) + + +def set_value(value): + VALUE_FUTURE.set_result(value) + + +def wait_for_value_future(): + return VALUE_FUTURE.result() + + +def set_and_check_done(value): + VALUE_FUTURE.set_result(value) + return DONE_FUTURE.result() + + +# it is used to test python user defined function over rpc +# classes and functions are used to test python user defined class and +# methods over rpc +TensorClass = namedtuple("TensorClass", ["tensors"]) + +class MyPickleClass: + def __init__(self) -> None: + self.t = None + + def __getstate__(self): + (pickled_python_udf, tensors) = _internal_rpc_pickler.serialize( + PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None) + ) + return (pickled_python_udf, tensors) + + def __setstate__(self, obj): + python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1]) + result = python_udf.func(python_udf.args[0], python_udf.args[1]) + self.t = result + + def set(self, val): + self.t = val + + +class SlowPickleClass: + def __init__(self, t): + self.t = t + + def __getstate__(self): + time.sleep(self.t) + return (self.t, ) + + def __setstate__(self, obj): + self.t = obj[0] + time.sleep(self.t) + + +class MyClass: + def __init__(self, a, delay=False): + self.a = a + # delay initialization to simulate errors if specified + if delay: + time.sleep(2) + + def my_instance_method(self, b): + return self.a + b + + @classmethod + def my_class_method(cls, d, e): + return d + e + + @staticmethod + def my_static_method(f): + return f > 10 + + def increment_value(self, increment): + self.a += increment + + def get_value(self): + return self.a + + def my_slow_method(self, my_tensor_arg): + time.sleep(5) + return torch.add(self.a, my_tensor_arg) + + +def _call_method_on_rref(method, rref, *args, **kwargs): + return method(rref.local_value(), *args, **kwargs) + + +def get_rref_list(values): + return [RRef(MyClass(a)) for a in values] + + +def add_rref_to_value(rref, value): + return rref.to_here() + value + + +def run_nested_pickle(pickle_cls_instance, tensor): + return pickle_cls_instance.t + tensor + +def build_sparse_tensor(coalesce=False): + i = [[0, 1, 1], [2, 0, 2]] + v = [3, 4, 5] + tensor = torch.sparse_coo_tensor(i, v, (2, 3)) + if coalesce: + tensor = tensor.coalesce() + return tensor + +def build_complex_tensors(): + a = torch.ones(3, 3) + b = [a, a] + c = [b, b] + d = [a, b] + e = {a: d} + return [a, b, c, d, e] + +def non_cont_test(t_view, t_cont): + if t_view.is_contiguous(): + raise Exception('t_view is contiguous!') # noqa: TRY002 + if not t_cont.is_contiguous(): + raise Exception('t_cont is not contiguous!') # noqa: TRY002 + if not torch.equal(t_view, t_cont): + raise Exception('t_view is not equal to t_cont!') # noqa: TRY002 + return t_view + +def my_function(a, b, c): + return a + b + c + + +def my_tensor_function(a, b): + return a + b + +def my_container_sum(a): + result = a[0] + for tensor in a[1:]: + result += tensor + return result + + +def my_sleep_func(seconds=1): + time.sleep(seconds) + return torch.mul(torch.tensor(1), torch.tensor(1)) + + +def my_complex_tensor_function(list_input, tensor_class_input, dict_input): + res = list_input[0] + for t in list_input: + res += t + for v in dict_input.values(): + res += v + complex_tensors = tensor_class_input.tensors + return (res, complex_tensors[0], complex_tensors[1], complex_tensors[2]) + + +def my_rref_function(rref_a, rref_b): + return rref_a.to_here() + rref_b.to_here() + + +def delayed_add(a, b, seconds=0.05): + time.sleep(seconds) + return a + b + + +def identity(a): + return a + +def no_result(): + print("do nothing") + +def raise_or_inc(value): + if value.numel() == 2: + raise ValueError("Expected error") + return value + 1 + +def nested_rpc(dst): + return rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) + + +def nested_rpc_sparse(dst): + return rpc.rpc_sync( + dst, + torch.add, + args=(build_sparse_tensor(), build_sparse_tensor()) + ) + + +def multi_layer_nested_async_rpc(dst, world_size, ttl): + # this method returns immediately without blocking the callee, but will + # generate additional requests. + if ttl > 0: + current_dst = worker_name(dst) + next_dst = (dst + 1) % world_size + rpc.rpc_async( + current_dst, + multi_layer_nested_async_rpc, + args=(next_dst, world_size, ttl - 1), + ) + return 0 + + +def nested_rref(dst): + return ( + rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)), + rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 2)), + ) + + +def nested_rref_sparse(dst): + return ( + rpc.remote( + dst, + torch.add, + args=(build_sparse_tensor(), build_sparse_tensor()) + ), + rpc.remote( + dst, + torch.add, + args=(build_sparse_tensor(), build_sparse_tensor()) + ), + ) + + +def nested_remote(dst): + rref = rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 3)) + return rref.to_here() + +def nested_remote_sparse(dst): + rref = rpc.remote(dst, torch.add, args=(build_sparse_tensor(), build_sparse_tensor())) + return rref.to_here() + + +def rref_forward_chain(dst, world_size, rref, ttl): + if ttl > 0: + current_dst = worker_name(dst) + next_dst = (dst + 1) % world_size + ret_rref = rpc.remote( + current_dst, rref_forward_chain, args=(next_dst, world_size, rref, ttl - 1) + ) + return [ret_rref] + else: + return rref.to_here() + + +def rpc_return_rref(dst): + return rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)) + + +def light_rpc(): + return 0 + + +def heavy_rpc(tensor): + for i in range(1, 100): + tensor *= i + tensor /= i + 1 + return 0 + + +def heavy_rpc_sparse(tensor): + for i in range(1, 100): + tensor *= i + tensor = tensor / (i + 1) + return 0 + +@torch.jit.script +def heavy_rpc_torchscript(tensor): + for i in range(1, 100): + tensor *= i + tensor /= i + 1 + return 0 + + +@torch.jit.script +def my_script_func(tensor): + return torch.add(tensor, tensor) + + +expected_err = "Expected error" + +# Note that it needs to inherit from Exception, not BaseException. See comment +# in rpc/internal.py +class CustomException(Exception): + def __init__(self, bool, msg): + self.bool = bool + super().__init__(msg) + +def raise_func(): + raise ValueError(expected_err) + +def custom_raise_func(): + raise CustomException(True, "foo") + +@torch.jit.script +def raise_func_script(expected_err: str) -> torch.Tensor: + raise ValueError(expected_err) + +expected_err_escape = "\nFirst line of error \n next line of error \n last line of error" +def raise_func_escape(): + raise ValueError(expected_err_escape) + + +global_rref = None + + +def set_global_rref(rref): + global global_rref + global_rref = rref + + +def clear_global_rref(): + global global_rref + global_rref = None + + +def check_rref_confirmed(rref): + return rref.confirmed_by_owner() + + +def get_rref_debug_info(): + return _rref_context_get_debug_info() + + +def add_use_future_cb(to, x, y, z): + out = concurrent.futures.Future() + + def callback(fut): + out.set_result(fut.wait() + z) + + fut = rpc.rpc_async(to, torch.add, args=(x, y)) + fut.then(callback) + return out.result() + + +def get_events_from_profile(profile_rref): + return profile_rref.local_value().process_global_function_events + + +def add_use_future_set_result(to, x, y, z): + out = torch.futures.Future() + fut = rpc.rpc_async(to, torch.add, args=(x, y)) + fut.then(lambda fut : out.set_result(fut.wait() + z)) + return out.wait() + + +def add_use_future_nested_cb(to, x, y, z): + out = torch.futures.Future() + + def callback(fut1): + fut2 = rpc.rpc_async(to, torch.add, args=(fut1.wait(), z)) + fut2.then(lambda fut2 : out.set_result(fut2.wait())) + + fut1 = rpc.rpc_async(to, torch.add, args=(x, y)) + fut1.then(callback) + return out.wait() + + +def fail_on_fut(fut): + pass + + +@rpc.functions.async_execution +def async_raise_func(): + raise RuntimeError("Expected error") + + +@rpc.functions.async_execution +def async_wrong_type(): + return torch.zeros(2, 2) + + +@rpc.functions.async_execution +def async_add(to, x, y): + return rpc.rpc_async(to, torch.add, args=(x, y)) + + +def slow_add(x, y, device="cpu"): + time.sleep(1) + x = x.to(device) + y = y.to(device) + return torch.add(x, y).cpu() + + +@rpc.functions.async_execution +def slow_async_add(to, x, y, device="cpu"): + return rpc.rpc_async(to, slow_add, args=(x, y, device)) + + +@rpc.functions.async_execution +def async_add_with_future_ctor(to, x, y, z): + fut = torch.futures.Future() + rpc.rpc_async(to, torch.add, args=(x, y)).then( + lambda fut1: fut.set_result(fut1.wait() + z) + ) + return fut + + +@rpc.functions.async_execution +def async_add_chained(to, x, y, z): + return rpc.rpc_async(to, torch.add, args=(x, y)).then( + lambda fut: fut.wait() + z + ) + + +@rpc.functions.async_execution +def async_add_chained_multi(to, x, num, step): + fut = rpc.rpc_async(to, torch.add, args=(x, 0)) + for _ in range(num): + fut = fut.then(lambda fut: fut.wait() + step) + return fut + + +@rpc.functions.async_execution +def async_add_nested(to, x, y, z): + return rpc.rpc_async(to, async_add, args=(to, x, y)).then( + lambda fut: fut.wait() + z + ) + + +@rpc.functions.async_execution +def async_add_multi_fanout(to, x, num, step): + futs = [] + for i in range(num): + if i == 0: + futs.append(rpc.rpc_async(to, torch.add, args=(x, step))) + else: + futs.append(rpc.rpc_async(to, torch.add, args=(0, step))) + + # TODO: use torch.futures.collect_all + lock = Lock() + state = {"cnt": 0, "ret": torch.zeros_like(x)} + ret_future = torch.futures.Future() + + def inc_and_set(fut): + with lock: + state["cnt"] += 1 + state["ret"] += fut.wait() + if state["cnt"] >= len(futs): + ret_future.set_result(state["ret"]) + + for fut in futs: + fut.then(inc_and_set) + + return ret_future + + +@rpc.functions.async_execution +def async_cuda_sleep_and_set_to_one(t): + device = t.device + original_stream = torch.cuda.current_stream(device) + new_stream = torch.cuda.Stream(device) + new_stream.wait_stream(original_stream) + with torch.cuda.stream(new_stream): + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + t.fill_(1) + fut = Future(devices=[device]) + fut.set_result(t) + return fut + + +@rpc.functions.async_execution +def async_cuda_nested_add(to, x, y, z): + def cb(fut): + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + return fut.value() + z + + return rpc.rpc_async(to, torch.add, args=(x, y)).then(cb) + + +# A custom Python class that contains a tensor, needed to see if we correctly +# use the Python pickler to extract tensors from non-IValue-convertible types. +class TensorWrapper: + __slots__ = ("tensor", "lock", "event", "thread") + + def __init__(self, t): + self.tensor = t + # Add one non-picklable field, to ensure it's ignored/skipped. + self.lock = Lock() + self.event = torch.cuda.Event(enable_timing=True) + self.thread = threading.Thread() + self.thread.start() + + def increase(self, v): + with self.lock: + self.tensor += v + + def sum(self): + with self.lock: + self.event.record() + return self.tensor.sum() + + +class AsyncExecutionClass: + + @staticmethod + @rpc.functions.async_execution + def static_async_add(to, x, y, z): + return rpc.rpc_async(to, torch.add, args=(x, y)).then( + lambda fut: fut.wait() + z + ) + + @classmethod + @rpc.functions.async_execution + def class_async_add(cls, to, x, y, z): + ret_fut = torch.futures.Future() + rpc.rpc_async(to, torch.add, args=(x, y)).then( + lambda fut: ret_fut.set_result(fut.wait() + z) + ) + return ret_fut + + @rpc.functions.async_execution + def bound_async_add(self, to, x, y, z): + return rpc.rpc_async(to, torch.add, args=(x, y)).then( + lambda fut: fut.wait() + z + ) + + +def return_future(): + return torch.futures.Future() + + +class FooBackendOptions(rpc.RpcBackendOptions): + def __init__(self, init_method): + # Must call the __init__ of the superclass (and do so directly, + # without using super()) because... pybind. + rpc.RpcBackendOptions.__init__(self) + self.init_method = init_method + + +# load_tests from common_utils is used to automatically filter tests for +# sharding on sandcastle. This line silences flake warnings +load_tests = load_tests + + +class MyEmbeddingBagModel(torch.nn.Module): + def __init__(self, sparse): + super().__init__() + self.eb = torch.nn.EmbeddingBag( + 10, + 10, + sparse=sparse + ) + + def forward(self, x): + return self.eb(x) + + +class MyParameterServer: + def __init__(self, trainers): + self.lock = Lock() + self.trainers = trainers + self.iteration = 0 + self.updates = 0 + self.futures = [] + self.total = None + self.gradient = None + + @staticmethod + def get_gradient(rref): + return rref.local_value().gradient + + @staticmethod + @rpc.functions.async_execution + def average(rref, riteration, tensor): + self = rref.local_value() + fut = torch.futures.Future() + with self.lock: + if riteration > self.iteration: + self.iteration = riteration + self.updates = 0 + self.futures.clear() + self.futures.append(fut) + if self.total is None: + self.total = tensor + else: + self.total += tensor + self.updates += 1 + if self.trainers == self.updates: + self.gradient = self.total / float(self.trainers) + for fut in self.futures: + result = self.total / float(self.trainers) + fut.set_result(result) + return fut + + +class MyConvNetForMNIST(nn.Module): + def __init__(self, device): + super().__init__() + self.net = nn.Sequential( + nn.Conv2d(1, 16, 3, 1), + nn.ReLU(), + nn.Conv2d(16, 32, 3, 1), + nn.ReLU(), + nn.MaxPool2d(2), + nn.Flatten(1), + nn.Linear(4608, 128), + nn.ReLU(), + nn.Linear(128, 10), + ).to(device) + self.device = device + + def forward(self, x, is_rref=False): + x = x.to_here() if is_rref else x + with torch.cuda.stream(torch.cuda.current_stream(self.device)): + # intentionally adding delay to current CUDA stream + torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) + return self.net(x) + + def __getstate__(self): + # return an empty dict to avoid inspecting the model contents on the + # owner + return {} + + +class RpcTestCommon: + def _run_func_in_mode(self, to, fn, mode, args=None, kwargs=None): + if mode == RPCExecMode.SYNC: + return rpc.rpc_sync(to, fn, args=args, kwargs=kwargs) + elif mode == RPCExecMode.ASYNC: + return rpc.rpc_async(to, fn, args=args, kwargs=kwargs).wait() + elif mode == RPCExecMode.REMOTE: + return rpc.remote(to, fn, args=args, kwargs=kwargs).to_here() + + def _self_py_udf_remote(self, worker_info, x, y, z): + rref = rpc.remote(worker_info, my_function, args=(x, y, z)) + self.assertEqual(rref.to_here(), x + y + z) + + def _self_remote_rref_as_rpc_arg(self, dst, x, y, z): + self_worker_info = rpc.get_worker_info() + rref = rpc.remote(self_worker_info, my_function, args=(x, y, z)) + fut = rpc.rpc_async(dst, add_rref_to_value, args=(rref, x)) + ret = rpc.rpc_sync(dst, add_rref_to_value, args=(rref, x + y)) + self.assertEqual(ret, x + y + z + x + y) + self.assertEqual(fut.wait(), x + y + z + x) + + def _self_remote_rref_as_remote_arg(self, dst, x, y, z): + self_worker_info = rpc.get_worker_info() + rref = rpc.remote(self_worker_info, my_function, args=(x, y, z)) + ret_rref = rpc.remote(dst, add_rref_to_value, args=(rref, x)) + self.assertEqual( + ret_rref.to_here(), x + y + z + x + ) + + def _world_size_one(self, a, b): + if self.rank == 0: + rpc.init_rpc( + name="me", + backend=self.rpc_backend, + rank=0, + world_size=1, + rpc_backend_options=self.rpc_backend_options, + ) + + def _rpc_sync(x, y): + expect = x * 2 + result = rpc.rpc_sync( + "me", + my_tensor_function, + args=(x, y) + ) + self.assertEqual(expect, result) + + def _rpc_async(x, y): + expect = x * 2 + result = rpc.rpc_async( + "me", + my_tensor_function, + args=(x, y) + ).wait() + self.assertEqual(expect, result) + + def _remote(x, y): + expect = x * 2 + result = rpc.remote( + "me", + my_tensor_function, + args=(x, y) + ).to_here() + self.assertEqual(expect, result) + + _rpc_sync(a, b) + _rpc_async(a, b) + _remote(a, b) + + rpc.shutdown() + + def _multi_rpc(self, sparse): + dst_rank = (self.rank + 1) % self.world_size + for i in range(20): + n = i + self.rank + 1 + if sparse: + x = build_sparse_tensor() * n + y = build_sparse_tensor() * n + else: + x = torch.ones(2, 2) + y = torch.ones(2, 2) + ret = rpc.rpc_sync( + worker_name(dst_rank), + torch.add, + args=(x, y), + ) + self.assertEqual(ret, x * 2) + + def _run_uneven_workload(self, f, x, num_repeat=30): + # worker0 drives and waits for worker1 and worker2 + # throughout the test. + if self.rank == 0: + self.assertTrue(self.world_size >= 3) + + # Phase 1: Only worker1 has workload. + dst = "worker1" + futs = [] + for _ in range(num_repeat): + fut = rpc.rpc_async(dst, f, args=(x,)) + futs.append(fut) + + for fut in torch.futures.collect_all(futs).wait(): + self.assertEqual(fut.wait(), 0) + + # Phase 2: Only worker2 has workload. + # If join is not correctly implemented, + # worker2 should be closed by now. + dst = "worker2" + futs = [] + for _ in range(num_repeat): + fut = rpc.rpc_async(dst, f, args=(x,)) + futs.append(fut) + + for val in torch.futures.wait_all(futs): + self.assertEqual(val, 0) + + def _wait_all_workers(self, f, x): + initialize_pg(self.file_init_method, self.rank, self.world_size) + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + self._run_uneven_workload(f, x) + + # worker0 calls this at the end after waiting for RPC responses. + # worker1/2 calls this immediately and has some works after it. + # worker3 calls this immediately and has no more work. + rpc.api._wait_all_workers() + + # Wait before proceeding to shutdown to ensure worker0 RPCs make + # it through to other workers. + dist.barrier() + rpc.shutdown(graceful=False) + + def _wait_all_workers_twice(self, f, x): + initialize_pg(self.file_init_method, self.rank, self.world_size) + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + self._run_uneven_workload(f, x) + + # worker0 calls this at the end after waiting for RPC responses. + # worker1/2 calls this immediately and has some works after it. + # worker3 calls this immediately and has no more work. + rpc.api._wait_all_workers() + rpc.api._wait_all_workers() + + # Wait before proceeding to shutdown to ensure worker0 RPCs make + # it through to other workers. + dist.barrier() + rpc.shutdown(graceful=False) + + def _nested_rpc(self, f, expected): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), + f, + args=(worker_name(self.rank),), + ) + self.assertEqual(ret, expected) + + def _stress_test_rpc(self, f, repeat=1000, args=()): + n = self.rank + 1 + dst_rank = n % self.world_size + futs = [] + tik = time.time() + for _ in range(repeat): + fut = rpc.rpc_async(worker_name(dst_rank), f, args=args) + futs.append(fut) + + for val in torch.futures.wait_all(futs): + self.assertEqual(val, 0) + tok = time.time() + print( + f"Rank {self.rank} finished testing {repeat} times in {tok - tik} seconds." + ) + + def _builtin_remote_ret(self, x, y, expected): + n = self.rank + 1 + dst_rank = n % self.world_size + rref = rpc.remote( + worker_name(dst_rank), + torch.add, + args=(x, y), + ) + self.assertEqual(rref.to_here(), expected) + + def _builtin_remote_self(self, x, y, expected): + rref = rpc.remote( + worker_name(self.rank), + torch.add, + args=(x, y), + ) + self.assertEqual(rref.local_value(), expected) + + def _test_multi_remote_call(self, fn, sparse, args_fn=lambda x, y: (), kwargs_fn=lambda x, y: {}): + m = 10 + n = self.rank + 1 + dst_rank = n % self.world_size + rrefs = [] + expected = [] + for i in range(m): + n = n + i + rrefs.append( + rpc.remote( + worker_name(dst_rank), + fn, + args=args_fn(n, sparse), + kwargs=kwargs_fn(n, sparse), + ) + ) + expected.append(fn(*args_fn(n, sparse), **kwargs_fn(n, sparse))) + + for i in range(m): + self.assertEqual(rrefs[i].to_here(), expected[i]) + + def _py_rref_args(self, a, b, x, y, expected): + n = self.rank + 1 + dst_rank = n % self.world_size + rref_a = rpc.remote( + worker_name(dst_rank), torch.add, args=(a, b) + ) + rref_b = rpc.remote( + worker_name(dst_rank), torch.add, args=(x, y) + ) + rref_c = rpc.remote( + worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) + ) + self.assertEqual(rref_c.to_here(), expected) + + def _py_rref_args_user_share(self, a, b, c, x, y, z, expected): + n = self.rank + 1 + owner_rank = n % self.world_size + user_rank = (n + 1) % self.world_size + rref_a = rpc.remote( + worker_name(owner_rank), my_function, args=(a, b, c) + ) + rref_b = rpc.remote( + worker_name(owner_rank), my_function, args=(x, y, z) + ) + rref_c = rpc.remote( + worker_name(user_rank), my_rref_function, args=(rref_a, rref_b) + ) + self.assertEqual(rref_c.to_here(), expected) + + def _py_rpc_rref_args(self, a, b, c, x, y, z, expected): + n = self.rank + 1 + dst_rank = n % self.world_size + rref_a = rpc.remote( + worker_name(dst_rank), my_function, args=(a, b, c) + ) + rref_b = rpc.remote( + worker_name(dst_rank), my_function, args=(x, y, z) + ) + + c = rpc.rpc_sync( + worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) + ) + self.assertEqual(c, expected) + + def _nested_remote(self, f, expected): + n = self.rank + 1 + dst_rank1 = n % self.world_size + dst_rank2 = (n + 1) % self.world_size + + rref = rpc.remote( + worker_name(dst_rank1), + f, + args=(worker_name(dst_rank2),), + ) + self.assertEqual(rref.to_here(), expected) + + def _nested_rref(self, f, expected1, expected2): + n = self.rank + 1 + dst_rank1 = n % self.world_size + dst_rank2 = (n + 1) % self.world_size + rref_of_rrefs = rpc.remote( + worker_name(dst_rank1), + f, + args=(worker_name(dst_rank2),), + ) + + # Say C has 2 OwnerRRefs. + # B has 2 UserRRefs to those 2 OwnerRRefs, respectively. + # This call is effectively A asking B to share its 2 UserRRefs. + rrefs = rref_of_rrefs.to_here() + + self.assertEqual(len(rrefs), 2) + self.assertEqual(rrefs[0].to_here(), expected1) + self.assertEqual(rrefs[1].to_here(), expected2) + + def _nested_rref_stress(self, f, expected1, expected2): + n = self.rank + 1 + dst_rank1 = n % self.world_size + dst_rank2 = (n + 1) % self.world_size + all_rrefs = [] + for _ in range(20): + all_rrefs.append( + rpc.remote( + worker_name(dst_rank1), + f, + args=(worker_name(dst_rank2),), + ) + ) + + for i in range(20): + rref_of_rrefs = all_rrefs[i] + rrefs = rref_of_rrefs.to_here() + self.assertEqual(len(rrefs), 2) + self.assertEqual(rrefs[0].to_here(), expected1) + self.assertEqual(rrefs[1].to_here(), expected2) + + def _trainer_func(self, rref, sparse): + m = MyEmbeddingBagModel(sparse=sparse) + loss_fn = nn.MSELoss() + for i in range(10): + outputs = m(torch.rand(10, 10).long()) + loss_fn(outputs, torch.rand(10, 10)).backward() + gradient = next(iter(m.parameters())).grad + fut = rref.rpc_async().average(rref, i, gradient) + gradient = fut.wait() + if gradient.is_sparse: + gradient = gradient.to_dense().double() + ps_gradient = rref.rpc_sync().get_gradient(rref) + if ps_gradient.is_sparse: + ps_gradient = ps_gradient.to_dense().double() + self.assertTrue(torch.equal(gradient, ps_gradient)) + + def _my_parameter_server(self, sparse): + ps_rref = RRef(MyParameterServer(self.world_size - 1)) + futures = [] + for index in range(1, self.world_size): + futures.append( + rpc.rpc_async( + worker_name((self.rank + index) % self.world_size), + self._trainer_func, + args=( + ps_rref, + sparse + ), + ) + ) + torch.futures.wait_all(futures) + + def _test_cuda_future_extraction(self, wrapper, unwrapper, sparse_tensor): + # We check proper CUDA stream synchronization by adding to the tensor + # in one stream to get the expected value, and reading it from another stream. + future = Future(devices=["cuda:0"]) + with torch.cuda.device("cuda:0"): + stream = torch.cuda.Stream() + another_stream = torch.cuda.Stream() + with torch.cuda.stream(stream): + if sparse_tensor: + tensor = build_sparse_tensor().to("cuda:0") + add_tensor = build_sparse_tensor().to("cuda:0") + expected_tensor = (tensor + add_tensor).coalesce() + else: + tensor = torch.zeros((100,), device="cuda:0") + add_tensor = torch.ones((100,), device="cuda:0") + expected_tensor = tensor + add_tensor + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + tensor += add_tensor + if sparse_tensor: + tensor = tensor.coalesce() + future.set_result(wrapper(tensor)) + with torch.cuda.stream(another_stream): + tensor = unwrapper(future.wait()) + if sparse_tensor: + self.assertTrue(torch.eq(tensor.indices(), expected_tensor.indices()).all().item()) + self.assertTrue(torch.eq(tensor.values(), expected_tensor.values()).all().item()) + self.assertEqual(tensor.size(), expected_tensor.size()) + else: + self.assertTrue(torch.eq(tensor, expected_tensor).all().item()) + + +class RpcTest(RpcAgentTestFixture, RpcTestCommon): + @dist_init + def test_worker_id(self): + n = self.rank + 1 + peer_rank = n % self.world_size + self_worker_info = rpc.get_worker_info() + peer_worker_info = rpc.get_worker_info(worker_name(peer_rank)) + + self.assertEqual(self_worker_info.name, worker_name(self.rank)) + self.assertEqual(peer_worker_info.name, worker_name(peer_rank)) + + with self.assertRaisesRegex(RuntimeError, "could not find destination"): + unknown_worker_id = rpc.get_worker_info("WorkerUnknown") + + @dist_init + def test_get_worker_infos(self): + worker_infos = rpc.api._get_current_rpc_agent().get_worker_infos() + + worker_names = {worker_info.name for worker_info in worker_infos} + expected_worker_names = { + worker_name(rank) for rank in range(self.world_size) + } + self.assertEqual(worker_names, expected_worker_names) + + worker_ids = {worker_info.id for worker_info in worker_infos} + expected_worker_ids = set(range(self.world_size)) + self.assertEqual(worker_ids, expected_worker_ids) + + @dist_init + def test_self_add(self): + self_worker_info = rpc.get_worker_info() + self_worker_name = worker_name(self.rank) + fut = rpc.rpc_async(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) + ret = rpc.rpc_sync(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) + self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) + self.assertEqual(ret, torch.ones(2, 2) + 1) + + @dist_init + def test_send_to_rank(self): + dst_rank = (self.rank + 1) % self.world_size + + # Test dense tensor + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) + self.assertEqual(ret, torch.ones(2, 2) + 1) + + # Test invalid ranks + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + with self.assertRaises(RuntimeError): + self._run_func_in_mode(self.world_size + 1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) + + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + with self.assertRaises(RuntimeError): + self._run_func_in_mode(-1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) + + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + with self.assertRaises(ValueError): + self._run_func_in_mode(dst_rank + 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) + + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + with self.assertRaises(ValueError): + self._run_func_in_mode(dst_rank - 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) + + @dist_init + def test_self_py_udf_remote(self): + self._self_py_udf_remote( + rpc.get_worker_info(), + torch.ones(2, 2), + 1, + 3 + ) + + @dist_init + def test_self_remote_rref_as_rpc_arg(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._self_remote_rref_as_rpc_arg( + dst, + torch.ones(2, 2), + 1, + 3 + ) + + @dist_init + def test_self_remote_rref_as_self_rpc_arg(self): + self._self_remote_rref_as_rpc_arg( + rpc.get_worker_info(), + torch.ones(2, 2), + 1, + 3 + ) + + @dist_init + def test_self_remote_rref_as_remote_arg(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._self_remote_rref_as_remote_arg( + dst, + torch.ones(2, 2), + 1, + 3 + ) + + @dist_init + def test_self_remote_rref_as_self_remote_arg(self): + self._self_remote_rref_as_remote_arg( + rpc.get_worker_info(), + torch.ones(2, 2), + 1, + 3 + ) + + @dist_init + def test_rref_proxy_non_exist(self): + dst = worker_name((self.rank + 1) % self.world_size) + rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) + msg = "has no attribute 'non_exist'" + with self.assertRaisesRegex(AttributeError, msg): + rref.rpc_sync().non_exist() + + with self.assertRaisesRegex(AttributeError, msg): + rref.rpc_async().non_exist().wait() + + with self.assertRaisesRegex(AttributeError, msg): + rref.remote().non_exist() + + def _test_rref_proxy_tensor(self, dst): + rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) + + expected = torch.ones(2, 2) + 1 + 3 + self.assertEqual(expected.size(), rref.rpc_sync().size()) + self.assertEqual(expected + 1, rref.rpc_async().add(1).wait()) + self.assertEqual(expected.view(1, 4), rref.remote().view(1, 4).to_here()) + + @dist_init + def test_rref_proxy_tensor(self): + self._test_rref_proxy_tensor(worker_name((self.rank + 1) % self.world_size)) + + @dist_init + def test_rref_proxy_tensor_self(self): + self._test_rref_proxy_tensor(rpc.get_worker_info()) + + @dist_init + def test_rref_proxy_reuse(self): + rref = rpc.remote( + worker_name((self.rank + 1) % self.world_size), + my_function, + args=(torch.ones(2, 2), 1, 3) + ) + expected = torch.ones(2, 2) + 1 + 3 + + proxy_rpc_sync = rref.rpc_sync() + proxy_rpc_async = rref.rpc_async() + proxy_remote = rref.remote() + + self.assertEqual(expected.size(), proxy_rpc_sync.size()) + self.assertEqual(expected + 1, proxy_rpc_sync.add(1)) + self.assertEqual(expected.view(1, 4), proxy_rpc_sync.view(1, 4)) + + self.assertEqual(expected.size(), proxy_rpc_async.size().wait()) + self.assertEqual(expected + 3, proxy_rpc_async.add(3).wait()) + self.assertEqual(expected.view(4, 1), proxy_rpc_async.view(4, 1).wait()) + + self.assertEqual(expected.size(), proxy_remote.size().to_here()) + self.assertEqual(expected + 5, proxy_remote.add(5).to_here()) + self.assertEqual(expected.view(-1), proxy_remote.view(-1).to_here()) + + def _test_rref_proxy_class(self, dst): + rref = rpc.remote(dst, MyClass, args=(7,)) + expected = MyClass(7) + self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) + self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) + self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) + + expected.increment_value(3) + self.assertEqual(None, rref.rpc_sync().increment_value(1)) + self.assertEqual(None, rref.rpc_async().increment_value(1).wait()) + self.assertEqual(None, rref.remote().increment_value(1).to_here()) + + self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) + self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) + self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) + + self.assertEqual( + expected.my_instance_method(2), + rref.rpc_sync().my_instance_method(2) + ) + self.assertEqual( + expected.my_instance_method(3), + rref.rpc_async().my_instance_method(3).wait() + ) + self.assertEqual( + expected.my_instance_method(4), + rref.remote().my_instance_method(4).to_here() + ) + + self.assertEqual( + expected.my_static_method(9), + rref.rpc_sync().my_static_method(9) + ) + self.assertEqual( + expected.my_static_method(10), + rref.rpc_async().my_static_method(10).wait() + ) + self.assertEqual( + expected.my_static_method(11), + rref.remote().my_static_method(11).to_here() + ) + + self.assertEqual( + expected.my_class_method(2, torch.zeros(2, 2)), + rref.rpc_sync().my_class_method(2, torch.zeros(2, 2)) + ) + self.assertEqual( + expected.my_class_method(2, torch.ones(3, 3)), + rref.rpc_async().my_class_method(2, torch.ones(3, 3)).wait() + ) + self.assertEqual( + expected.my_class_method(2, torch.ones(4, 4)), + rref.remote().my_class_method(2, torch.ones(4, 4)).to_here() + ) + + @dist_init + def test_rref_proxy_class(self): + self._test_rref_proxy_class(worker_name((self.rank + 1) % self.world_size)) + + @dist_init + def test_rref_proxy_class_self(self): + self._test_rref_proxy_class(rpc.get_worker_info()) + + @mock.patch.object(torch.distributed.autograd, "_init") + @mock.patch.object(torch.distributed.rpc.api, "_set_and_start_rpc_agent") + @dist_init(setup_rpc=False) + def test_register_rpc_backend_and_set_and_start_rpc_backend( + self, mock_rpc_agent, mock_dist_autograd_init + ): + backend_name = "stub_backend" + + backend = rpc.backend_registry.register_backend( + backend_name, + _stub_construct_rpc_backend_options_handler, + _stub_init_rpc_backend_handler, + ) + + with self.assertRaisesRegex( + RuntimeError, "^RPC backend .+: already registered$" + ): + backend = rpc.backend_registry.register_backend( + backend_name, + _stub_construct_rpc_backend_options_handler, + _stub_init_rpc_backend_handler, + ) + + rpc.init_rpc( + name="worker1", + backend=backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + @dist_init(setup_rpc=False) + def test_duplicate_name(self): + with self.assertRaisesRegex(RuntimeError, "is not unique"): + store, _, _ = next( + torch.distributed.rendezvous( + self.init_method, rank=self.rank, world_size=self.world_size + ) + ) + rpc._init_rpc_backend( + backend=self.rpc_backend, + store=store, + name="duplicate_name", + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + @dist_init(setup_rpc=False) + def test_duplicate_name_2(self): + with self.assertRaisesRegex(RuntimeError, "is not unique"): + rpc.init_rpc( + name=worker_name(self.rank % (self.world_size - 1)), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + @dist_init(setup_rpc=False) + def test_reinit(self): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + initialize_pg(self.file_init_method, self.rank, self.world_size) + # Wait for all init to complete. + dist.barrier() + + # TODO: with TCP init, rank 0 raises Address already in use because + # rank 0 is the start daemon and the store is created before checking if + # RPC is already initialized in init_rpc. + if os.environ.get("RPC_INIT_WITH_TCP", None) == "1" and self.rank == 0: + expected_reinit_err = "Address already in use" + else: + expected_reinit_err = "is already initialized" + + with self.assertRaisesRegex(RuntimeError, expected_reinit_err): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + rpc.shutdown() + + @dist_init(setup_rpc=False) + def test_pg_init_no_rpc_init(self): + dist.init_process_group( + backend='gloo', + init_method=self.file_init_method, + rank=self.rank, + world_size=self.world_size) + + class MyModel(torch.nn.Module): + def __init__(self) -> None: + super().__init__() + self.lin = torch.nn.Linear(3, 4) + + def forward(self, x): + return self.lin(x) + + model = MyModel() + model.train() + model = torch.nn.parallel.DistributedDataParallel(model) + + with self.assertRaisesRegex(RuntimeError, 'Current RPC agent is not set! Did you initialize the RPC framework'): + params = [] + for param in model.parameters(): + params.append(RRef(param)) + + def test_world_size_one(self): + self._world_size_one( + torch.ones(2, 2), + torch.ones(2, 2) + ) + + @dist_init(setup_rpc=False) + def test_invalid_names(self): + + worker_id = 0 + with self.assertRaisesRegex(RuntimeError, "Worker name must match"): + info = WorkerInfo("abc*", worker_id) + + with self.assertRaisesRegex(RuntimeError, "Worker name must match"): + info = WorkerInfo(" ", worker_id) + + with self.assertRaisesRegex(RuntimeError, "must be non-empty"): + info = WorkerInfo("", worker_id) + + # If the number in the message does not match, it is likely that the + # value of MAX_NAME_LEN in RPC WorkerInfo has changed. + with self.assertRaisesRegex(RuntimeError, "shorter than 128"): + info = WorkerInfo("".join(["a" for i in range(500)]), worker_id) + + # Test that WorkerInfo can be pickled and sent in RPC call + @dist_init + def test_worker_info_pickle(self): + dst_rank = (self.rank + 1) % self.world_size + worker_info = rpc.api.get_worker_info() + ret = rpc.rpc_sync(worker_name(dst_rank), identity, args=(worker_info,)) + self.assertEqual(ret, worker_info) + + @dist_init + def test_add(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + self.assertEqual(ret, torch.ones(n, n) * 2) + + @staticmethod + def return_callee_id(): + return rpc.get_worker_info().id + + @dist_init + def test_int_callee(self): + dst_rank = (self.rank + 1) % self.world_size + ret = rpc.rpc_sync(dst_rank, RpcTest.return_callee_id) + self.assertEqual(ret, dst_rank) + + @dist_init + def test_add_with_id(self): + n = self.rank + 1 + dst_rank = n % self.world_size + workder_info = rpc.get_worker_info(worker_name(dst_rank)) + + ret = rpc.rpc_sync( + workder_info, torch.add, args=(torch.ones(n, n), torch.ones(n, n)) + ) + self.assertEqual(ret, torch.ones(n, n) * 2) + + @dist_init + def test_scalar_add(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), torch.add, args=(torch.ones(n, n), n) + ) + self.assertEqual(ret, (torch.ones(n, n) + n)) + + @dist_init + def test_async_add(self): + n = self.rank + 1 + dst_rank = n % self.world_size + fut = rpc.rpc_async( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + @dist_init + def test_nonzero(self): + n = self.rank + 1 + dst_rank = n % self.world_size + x = torch.ones(self.world_size, self.world_size) + x[self.rank][self.rank] = 0 + ret = rpc.rpc_sync(worker_name(dst_rank), torch.nonzero, args=(x,)) + self.assertEqual(ret, x.nonzero()) + + @dist_init + def test_multi_rpc(self): + self._multi_rpc(False) + + @dist_init + def test_future_wait_twice(self): + dst = worker_name((self.rank + 1) % self.world_size) + futs = [] + for i in range(20): + futs.append(rpc.rpc_async(dst, raise_func)) + + with self.assertRaisesRegex(ValueError, "Expected error"): + torch.futures.wait_all(futs) + + for fut in futs: + with self.assertRaisesRegex(ValueError, "Expected error"): + fut.wait() + + @dist_init(setup_rpc=False) + def test_wait_all_workers_timeout(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + og_func = rpc.api._wait_all_workers + + def wait_all_workers_sleep(timeout): + rpc.api._all_gather(SlowPickleClass(0.5), timeout=timeout) + + rpc.api._wait_all_workers = wait_all_workers_sleep + + try: + with self.assertRaisesRegex(RuntimeError, ''): + rpc.shutdown(graceful=True, timeout=0.01) + finally: + rpc.api._wait_all_workers = og_func + dist.barrier() + + def test_wait_all_workers_dense(self): + self._wait_all_workers(heavy_rpc, torch.ones(100, 100)) + + def test_wait_all_workers_twice_dense(self): + self._wait_all_workers_twice(heavy_rpc, torch.ones(100, 100)) + + @dist_init + def test_all_gather(self): + info = rpc.get_worker_info() + results = rpc.api._all_gather(info.id) + expected = {} + for info in rpc._get_current_rpc_agent().get_worker_infos(): + expected[info.name] = info.id + + self.assertEqual(expected, results) + + @dist_init + def test_all_gather_timeout(self): + rpc._set_rpc_timeout(0.1) + + if self.rank == 0: + with self.assertRaisesRegex( + RuntimeError, + "timed out in _all_gather after 0\\.10 seconds" + ): + rpc.api._all_gather(SlowPickleClass(0.5)) + else: + expected_error = self.get_timeout_error_regex() + with self.assertRaisesRegex(RuntimeError, expected_error): + rpc.api._all_gather(SlowPickleClass(0.5)) + + def _test_barrier_helper(self, info, names, multi_threaded=False): + names = sorted(names) + leader = names[0] + rpc.rpc_sync(leader, _reset_count) + if not multi_threaded and info.name == leader: + self.assertEqual(_rpc_barrier_count, 0) + rpc.api._barrier(names) + rpc.rpc_sync(leader, _increment_count) + rpc.api._barrier(names) + if not multi_threaded and info.name == leader: + self.assertEqual(_rpc_barrier_count, len(names)) + + @dist_init + def test_rpc_barrier_all(self): + # Test rpc barrier when called with full list of workers + info = rpc.get_worker_info() + all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() + names = [worker.name for worker in all_worker_info] + self._test_barrier_helper(info, names) + + @dist_init + def test_rpc_barrier_subset(self): + # Test rpc barrier when processes are called with different subsets of the full list + info = rpc.get_worker_info() + all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() + if info.id % 2: + names = [worker.name for worker in all_worker_info if worker.id % 2] + else: + names = [worker.name for worker in all_worker_info if not worker.id % 2] + self._test_barrier_helper(info, names) + + @dist_init + def test_rpc_barrier_partial_subset(self): + # Test rpc barrier when some processes are not involved in the barrier + info = rpc.get_worker_info() + all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() + if info.id % 2: + names = [worker.name for worker in all_worker_info if worker.id % 2] + else: + names = [f"worker{info.id}"] + self._test_barrier_helper(info, names) + + @dist_init + def test_rpc_barrier_multithreaded(self): + # This tests validates the implementation of barrier when multiple threads call into it + # We only need to check that it does not hang in this case + info = rpc.get_worker_info() + all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() + names = [worker.name for worker in all_worker_info] + threads = [] + for _ in range(3): + th = threading.Thread(target=self._test_barrier_helper, args=(info, names, True)) + threads.append(th) + th.start() + for th in threads: + th.join() + + @dist_init + def test_graceful_shutdown_with_uneven_workload(self): + """Test graceful termination.""" + self._run_uneven_workload(heavy_rpc, torch.ones(100, 100)) + + @dist_init(setup_rpc=False) + def test_shutdown_followed_by_rpc(self): + # Initialize RPC. + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + self.assertEqual(ret, torch.ones(n, n) * 2) + rpc.shutdown() + + with self.assertRaisesRegex(RuntimeError, "^RPC has not been initialized"): + rpc.rpc_sync( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + + @dist_init + def test_expected_src(self): + dst_rank = (self.rank + 1) % self.world_size + expected_src_rank = (self.rank - 1) % self.world_size + ret = rpc.rpc_sync(worker_name(dst_rank), set_value, args=(self.rank,)) + value = VALUE_FUTURE.result() + self.assertEqual(value, expected_src_rank) + + @dist_init + def test_py_built_in(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync(worker_name(dst_rank), min, args=(n, n + 1, n + 2)) + self.assertEqual(ret, min(n, n + 1, n + 2)) + + @dist_init + def test_py_user_defined(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), + my_function, + kwargs={"a": n, "b": n + 1, "c": n + 2}, + ) + self.assertEqual(ret, my_function(n, n + 1, n + 2)) + + def test_build_rpc_profiling_key(self): + # Tests that the name that shows up as an Event in profiling RPCs has all + # the necessary information. + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + rpc_profiling_key = _build_rpc_profiling_key( + exec_mode, "foo", "worker0", "worker1" + ) + self.assertIn(exec_mode.value, rpc_profiling_key) + self.assertIn("foo", rpc_profiling_key) + self.assertIn("worker0", rpc_profiling_key) + self.assertIn("worker1", rpc_profiling_key) + + def check_profiling_info(self, self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode): + self.assertTrue(self_worker_name in rpc_event.name) + self.assertTrue(dst_worker_name in rpc_event.name) + if isinstance(func, torch.jit.ScriptFunction): + self.assertTrue(torch._jit_internal._qualified_name(func) in rpc_event.name) + else: + self.assertTrue(func.__name__ in rpc_event.name) + self.assertTrue(rpc_exec_mode.value in rpc_event.name) + self.assertEqual(rpc_event.count, 1) + + @dist_init + def test_profiler_rpc_record_shapes(self): + if self.rank != 1: + return + dst = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst) + t1, t2 = torch.ones(100), torch.ones(100) + with _profile(record_shapes=True) as prof: + rpc.rpc_sync(dst_worker, torch.add, args=(t1, t2)) + + function_events = prof.function_events + remote_events = [event for event in function_events if event.is_remote] + remote_add_event = next( + event for event in remote_events if "aten::add" in event.name + ) + remote_add_input_shapes = remote_add_event.input_shapes + # Run profiler on equivalent local op and validate shapes are the same. + with _profile(record_shapes=True) as prof: + torch.add(t1, t2) + + local_function_events = prof.function_events + local_add_event = next( + event for event in local_function_events if "aten::add" in event.name + ) + local_add_input_shapes = local_add_event.input_shapes + self.assertEqual(remote_add_input_shapes, local_add_input_shapes) + + @dist_init + def test_profiler_rpc_memory(self): + if self.rank != 1: + return + dst = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst) + with _profile(profile_memory=True) as p: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) + res = fut.wait() + + function_events = p.function_events + event_cpu_mem_usages = {event.cpu_memory_usage for event in function_events} + # if cpu_memory_usage was not propagated over the wire, this set would + # only contain 0 (indicates no memory being profiled) + self.assertNotEqual({0}, event_cpu_mem_usages) + # No memory profiled if profile_memory=False + with _profile(profile_memory=False) as p: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) + res = fut.wait() + + function_events = p.function_events + event_cpu_mem_usages = {event.cpu_memory_usage for event in function_events} + self.assertEqual({0}, event_cpu_mem_usages) + + @dist_init + def test_profiler_export_trace(self): + if self.rank != 1: + return + dst = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst) + with _profile() as p: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) + res = fut.wait() + + events = p.function_events + with TemporaryFileName() as fname: + path = fname + p.export_chrome_trace(path) + with open(path) as f: + trace = json.load(f) + event_names = [event['name'] for event in trace] + for expected_event_name in EXPECTED_REMOTE_EVENTS + [RPCExecMode.ASYNC.value]: + event_exists = any(expected_event_name in event_name for event_name in event_names) + self.assertTrue(event_exists) + + @dist_init + def test_profiler_rpc_key_names(self): + # tests that remote events are properly prefixed with the RPC profiling key. + if self.rank != 1: + return + + # Spawn multiple threads that send RPCs to ensure keys are correctly + # prefixed when there are multiple RPCs being created/in flight at the + # same time. + dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] + + def rpc_with_profiling(dst_worker): + with _profile() as prof: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) + fut.wait() + + events = prof.function_events + remote_event_names = { + event.name: event for event in events if event.is_remote + } + rpc_profiling_key = _build_rpc_profiling_key( + RPCExecMode.ASYNC, + udf_with_torch_ops.__qualname__, + worker_name(self.rank), + dst_worker, + ) + + remote_event_name_set = set(EXPECTED_REMOTE_EVENTS) + for name, event in remote_event_names.items(): + # Ensure that we have the expected key as part of the remote + # event. + self.assertTrue(name.startswith(rpc_profiling_key)) + self.assertTrue(event.is_remote) + self.assertTrue(event.node_id == rpc.get_worker_info(dst_worker).id) + # Ensure that the remote event name also contains the operator. + operator_name_substr = name[len(rpc_profiling_key) :] + # Note: we don't assert that every remote event needs to be + # in the above set, the set is just a representative set of + # what we expect to see. The profiler can change and add more + # events, but we should always expect to see this representative + # set. + matching_event = { + remote_event_name + for remote_event_name in remote_event_name_set + if remote_event_name in operator_name_substr + } + remote_event_name_set -= matching_event + + # The set should be empty, otherwise its contained elements did + # not show up in the remote profiler output. + self.assertTrue( + remote_event_name_set == set(), + f"Expected {remote_event_name_set} to be included in remote profiler output.", + ) + + for dst in dst_ranks: + dst_worker = worker_name(dst) + num_parallel_rpcs = 2 + with concurrent.futures.ThreadPoolExecutor( + max_workers=num_parallel_rpcs + ) as executor: + futs = [ + executor.submit(rpc_with_profiling, dst_worker) + for _ in range(num_parallel_rpcs) + ] + # Wait for workers to finish test + for fut in futs: + fut.result() + + def _run_test_profiler_remote_events_profiled(self): + # Tests that we can successfully invoke the profiler on a remote node, + # and collect the remote events back in the local profiler. + if self.rank != 1: + return + + dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] + for dst in dst_ranks: + dst_worker = worker_name(dst) + with _profile() as prof: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) + ret = fut.wait() + + events = prof.function_events + + rpc_event = get_function_event(events, RPCExecMode.ASYNC.value) + self.check_profiling_info( + worker_name(self.rank), + dst_worker, + udf_with_torch_ops, + rpc_event, + RPCExecMode.ASYNC, + ) + + remote_events = {event.name: event for event in events if event.is_remote} + rpc_profiling_key = _build_rpc_profiling_key( + RPCExecMode.ASYNC, + udf_with_torch_ops.__qualname__, + worker_name(self.rank), + worker_name(dst), + ) + + for expected_remote_event_name in EXPECTED_REMOTE_EVENTS: + expected_key = rpc_profiling_key + REMOTE_OP_STR + expected_remote_event_name + self.assertTrue(expected_key in remote_events) + remote_event = remote_events[expected_key] + # Remote event should have a node ID corresponding to the worker + # it ran on. + self.assertEqual(remote_event.node_id, dst) + + # Validate order remote events show up in profiling output. + def convert_remote_to_local(event_name): + remote_op_key = rpc_profiling_key + REMOTE_OP_STR + return event_name[ + event_name.find(remote_op_key) + + len(remote_op_key) : + ] + + remote_events_list = [ + convert_remote_to_local(event.name) + for event in events + if convert_remote_to_local(event.name) in EXPECTED_REMOTE_EVENTS + ] + self.assertEqual( + set(remote_events_list), + set(EXPECTED_REMOTE_EVENTS), + f"Mismatch between profiled events: {set(remote_events_list)} and expected events: {set(EXPECTED_REMOTE_EVENTS)}", + ) + + @dist_init + def test_profiler_remote_events_profiled(self): + self._run_test_profiler_remote_events_profiled() + + @dist_init + def test_profiler_remote_events_profiled_single_threaded(self): + self._run_test_profiler_remote_events_profiled() + + def run_profiling_workload(self, dst): + fut = rpc.rpc_async( + worker_name(dst), + torch.mul, + args=( + torch.tensor(1.0, requires_grad=True), + torch.tensor(1.0, requires_grad=True), + ), + ) + fut.wait() + + def _run_rpc_profiling_async_function(self, device="cpu"): + if self.rank != 1: + return + + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + x = torch.ones(2) + y = torch.ones(2) + with _profile() as prof: + ret = rpc.rpc_async( + dst1, slow_async_add, args=(dst2, x, y, device), timeout=20 + ) + out = ret.wait() + + function_events = prof.function_events + # slow_async_add resulted in an RPC from dst1 -> dst2, so this should be + # recorded. + key_prefix = _build_rpc_profiling_key( + RPCExecMode.ASYNC, slow_async_add.__qualname__, worker_name(self.rank), dst1 + ) + + nested_rpc_key_prefix = _build_rpc_profiling_key( + RPCExecMode.ASYNC, slow_add.__qualname__, dst1, dst2 + ) + expected_key = key_prefix + REMOTE_OP_STR + nested_rpc_key_prefix + remote_events = [event for event in function_events if event.is_remote] + rpc_remote_event = [ + event for event in remote_events if event.name == expected_key + ] + self.assertEqual(1, len(rpc_remote_event)) + rpc_remote_event = rpc_remote_event[0] + self.assertEqual(rpc_remote_event.node_id, (self.rank + 1) % self.world_size) + # slow_async_add's RPC does an add on dst2, which should be reflected as well. + remote_add_key = ( + expected_key + REMOTE_OP_STR + torch.jit._builtins._find_builtin(torch.add) + ) + remote_add_event = [ + event for event in remote_events if event.name == remote_add_key + ] + self.assertEqual(1, len(remote_add_event)) + remote_add_event = remote_add_event[0] + # Validate that node_id is dst2. + self.assertEqual(remote_add_event.node_id, (self.rank + 2) % self.world_size) + + @dist_init + def test_rpc_profiling_async_function(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + self._run_rpc_profiling_async_function() + if torch.cuda.is_available(): + dist.barrier() + self._run_rpc_profiling_async_function(device="cuda:0") + + @dist_init + def test_rpc_profiling_async_function_single_threaded(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + self._run_rpc_profiling_async_function() + if torch.cuda.is_available(): + dist.barrier() + self._run_rpc_profiling_async_function(device="cuda:0") + + @dist_init + def test_rpc_profiling_remote_record_function(self): + # test that functions run over RPC with record_function show the expected + # profiled block. + if self.rank != 1: + return + dst_ranks = [i for i in range(self.world_size) if i != self.rank] + for dst_rank in dst_ranks: + dst_worker = worker_name(dst_rank) + with _profile() as prof: + fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=(-1, True)) + fut.wait() + + function_events = prof.function_events + record_function_remote_event = [ + evt for evt in function_events if "##forward##" in evt.name + ] + self.assertEqual(1, len(record_function_remote_event)) + record_function_remote_event = record_function_remote_event[0] + self.assertEqual(record_function_remote_event.node_id, dst_rank) + # cpu_children only returns direct children, so here we get all + # children recursively. + + def get_cpu_children(event): + if not event.cpu_children: + return [] + cpu_children = event.cpu_children + for e in event.cpu_children: + cpu_children.extend(get_cpu_children(e)) + return cpu_children + + remote_children = get_cpu_children(record_function_remote_event) + # Get local children and verify parity. + with _profile() as prof: + udf_with_torch_ops(-1, True) + + local_function_events = prof.function_events + local_record_function_event = next( + evt for evt in local_function_events if "##forward##" in evt.name + ) + local_children = get_cpu_children(local_record_function_event) + local_children_names = [ + evt.name for evt in local_children + ] + + REMOTE_OP_STR = "#remote_op: " + + def convert_remote_to_local(event_name): + remote_op_key = REMOTE_OP_STR + return event_name[ + event_name.find(remote_op_key) + len(remote_op_key) : + ] + + for evt in remote_children: + local_name = convert_remote_to_local(evt.name) + self.assertTrue(local_name in local_children_names) + + def validate_profiling_workload(self, dst, prof): + + def convert_remote_to_local(event_name): + return event_name[event_name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR) :] + + events = prof.function_events + remote_events = { + convert_remote_to_local(event.name): event + for event in events + if event.is_remote + } + self.assertTrue("aten::mul" in remote_events) + remote_mul_event = remote_events["aten::mul"] + self.assertEqual(remote_mul_event.node_id, dst) + self.check_profiling_info( + worker_name(self.rank), + worker_name(dst), + torch.mul, + remote_mul_event, + RPCExecMode.ASYNC, + ) + + def _run_test_profiler_with_autograd_context(self): + dst = (self.rank + 1) % self.world_size + if self.rank == 1: + # Cases where we can double wrap messages with profiling information and autograd info. + with dist_autograd.context() as context_id: + with _profile() as prof: + self.run_profiling_workload(dst) + + self.validate_profiling_workload(dst, prof) + + # Ensure that flipped order of ctx managers results in events being + # recorded as expected. + with _profile() as prof: + with dist_autograd.context() as context_id: + self.run_profiling_workload(dst) + + self.validate_profiling_workload(dst, prof) + + @dist_init + def test_profiler_with_autograd_context_single_threaded(self): + self._run_test_profiler_with_autograd_context() + + @dist_init + def test_profiler_with_autograd_context(self): + self._run_test_profiler_with_autograd_context() + + def _profiler_test_with_rpc( + self, rpc_exec_mode, func, args, use_record_function=False, dst=None, kineto_profile=False + ): + dst = dst if dst is not None else (self.rank + 1) % self.world_size + + # only run profiler on rank 1. + p = _profile if not kineto_profile else torch.profiler.profile # kineto + if self.rank == 1: + with p() as prof: + record_function_ctx_mgr = ( + contextlib.nullcontext() + if not use_record_function + else torch.autograd.profiler.record_function( + "foo" + ) + ) + with record_function_ctx_mgr as rf: + if rpc_exec_mode == RPCExecMode.SYNC: + rpc.rpc_sync(worker_name(dst), func, args=args) + elif rpc_exec_mode == RPCExecMode.ASYNC: + fut = rpc.rpc_async(worker_name(dst), func, args=args) + if kineto_profile: + # Ensure multiple async RPCs don't cause issues. + # Would have raised + # "RuntimeError: Cannot call + # RemoteProfilerManager::setCurrentKey when current + # key is already set." error if RPC profiling was + # not disabled properly for kineto. + fut2 = rpc.rpc_async(worker_name(dst), func, args=args) + fut2.wait() + fut.wait() + else: + self.assertTrue(rpc_exec_mode == RPCExecMode.REMOTE) + rref = rpc.remote(worker_name(dst), func, args=args) + rref.to_here() + # To avoid flakiness, wait for the RRef to be profiled. This + # means that we received the acknowledgement of successful + # creation on the owner and ran the callbacks responsible + # for recording the profiling event. + rref._get_profiling_future().wait() + + events = prof.function_events if not kineto_profile else prof.events() + if kineto_profile: + # RPC profiling is disabled so there should be no rpc related + # events. + with self.assertRaises(IndexError): + get_function_event(events, rpc_exec_mode.value) + + return + + rpc_event = get_function_event(events, rpc_exec_mode.value) + # verify Node ID for this rpc event. + self.assertEqual(rpc_event.node_id, self.rank) + # Ensure recording of remote events. + remote_events = {event for event in events if event.node_id == dst} - {rpc_event} + self.assertGreaterEqual(len(remote_events), 1) + for remote_event in remote_events: + self.assertEqual(remote_event.node_id, dst) + + if use_record_function: + scope_event = get_function_event(events, "foo") + # Since RPC call is within the scope, its CPU interval should be + # contained within foo's interval. + self.assertLessEqual(scope_event.time_range.start, rpc_event.time_range.start) + self.assertGreaterEqual(scope_event.time_range.end, rpc_event.time_range.end) + # the sender, dest worker, function run, and type of RPC should all + # be recorded. + self_worker_name = worker_name(self.rank) + dst_worker_name = worker_name(dst) + self.check_profiling_info(self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode) + if use_record_function: + # verify order by ensuring that the outer context comes + # before the rpc event. + foo_event_ix = next(i for i, event in enumerate(events) if "foo" in event.name) + rpc_event_idx = next(i for i, event in enumerate(events) if rpc_exec_mode.value in event.name) + self.assertLess(foo_event_ix, rpc_event_idx) + + def _run_test_profiler_with_sync_rpc_udf(self): + self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,)) + self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,), + use_record_function=True) + + @dist_init + def test_profiler_with_sync_rpc_udf(self): + self._run_test_profiler_with_sync_rpc_udf() + + @dist_init + def test_profiler_with_sync_rpc_udf_single_threaded(self): + self._run_test_profiler_with_sync_rpc_udf() + + def _run_test_profiler_with_sync_rpc_builtin(self): + self._profiler_test_with_rpc( + RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) + ) + self._profiler_test_with_rpc( + RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), + use_record_function=True + ) + + @dist_init + def test_profiler_with_sync_rpc_builtin(self): + self._run_test_profiler_with_sync_rpc_builtin() + + @dist_init + def test_profiler_with_sync_rpc_builtin_single_threaded(self): + self._run_test_profiler_with_sync_rpc_builtin() + + def _run_test_profiler_with_async_rpc_udf(self): + self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,)) + self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,), + use_record_function=True) + # Test to ensure that kineto profiler enabled in RPC does not enable + # RPC profiling (it is unsupported) and does not result in issues. + self._profiler_test_with_rpc( + RPCExecMode.ASYNC, my_sleep_func, args=(1,), kineto_profile=True + ) + + @dist_init + def test_profiler_with_async_rpc_udf(self): + self._run_test_profiler_with_async_rpc_udf() + + @dist_init + def test_profiler_with_async_rpc_udf_single_threaded(self): + self._run_test_profiler_with_async_rpc_udf() + + def _run_test_profiler_with_async_rpc_builtin(self): + self._profiler_test_with_rpc( + RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) + ) + self._profiler_test_with_rpc( + RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), + use_record_function=True + ) + + @dist_init + def test_profiler_with_async_rpc_builtin(self): + self._run_test_profiler_with_async_rpc_builtin() + + @dist_init + def test_profiler_with_async_rpc_builtin_single_threaded(self): + self._run_test_profiler_with_async_rpc_builtin() + + def _run_test_profiler_with_remote_udf(self): + self._profiler_test_with_rpc(RPCExecMode.REMOTE, my_sleep_func, args=(1,)) + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, my_sleep_func, args=(1,), use_record_function=True + ) + # test remote to self + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, my_sleep_func, args=(1,), dst=self.rank + ) + + @dist_init + def test_profiler_with_remote_udf(self): + self._run_test_profiler_with_remote_udf() + + @dist_init + def test_profiler_with_remote_udf_single_threaded(self): + self._run_test_profiler_with_remote_udf() + + def _run_test_profiler_with_remote_builtin(self): + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)) + ) + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)), + use_record_function=True + ) + # test remote to self + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, + torch.mul, + args=(torch.ones(1), torch.ones(1)), + dst=self.rank, + ) + + @dist_init + def test_profiler_with_remote_builtin(self): + self._run_test_profiler_with_remote_builtin() + + @dist_init + def test_profiler_with_remote_builtin_single_threaded(self): + self._run_test_profiler_with_remote_builtin() + + def _run_test_profiler_with_script_async_rpc(self): + self._profiler_test_with_rpc( + RPCExecMode.ASYNC, my_script_func, args=(torch.tensor(1),) + ) + self._profiler_test_with_rpc( + RPCExecMode.ASYNC, + my_script_func, + args=(torch.tensor(1),), + use_record_function=True, + ) + + @dist_init + def test_profiler_with_script_async_rpc(self): + self._run_test_profiler_with_script_async_rpc() + + @dist_init + def test_profiler_with_script_async_rpc_single_threaded(self): + self._run_test_profiler_with_script_async_rpc() + + def _run_test_profiler_with_script_sync_rpc(self): + self._profiler_test_with_rpc( + RPCExecMode.SYNC, my_script_func, args=(torch.tensor(1),) + ) + self._profiler_test_with_rpc( + RPCExecMode.SYNC, + my_script_func, + args=(torch.tensor(1),), + use_record_function=True, + ) + + @dist_init + def test_profiler_with_script_sync_rpc(self): + self._run_test_profiler_with_script_sync_rpc() + + @dist_init + def test_profiler_with_script_sync_rpc_single_threaded(self): + self._run_test_profiler_with_script_sync_rpc() + + def _run_test_profiler_with_script_remote_rpc(self): + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),) + ) + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, + my_script_func, + args=(torch.tensor(1),), + use_record_function=True, + ) + # test remote to self + self._profiler_test_with_rpc( + RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),), dst=self.rank + ) + + @dist_init + def test_profiler_with_script_remote_rpc(self): + self._run_test_profiler_with_script_remote_rpc() + + @dist_init + def test_profiler_with_script_remote_rpc_single_threaded(self): + self._run_test_profiler_with_script_remote_rpc() + + def _assert_top_level_events(self, process_global_events, expected_top_level_event_names): + top_level_event_names = [] + for thread_local_events in process_global_events: + # Get top-level events from all events happened on a thread. + last_end_time = 0 + for event in thread_local_events: + event_name = event.name + time_range = event.time_range + if time_range.start > last_end_time: + top_level_event_names.append(event_name) + last_end_time = time_range.end + top_level_event_names = sorted(top_level_event_names) + expected_top_level_event_names = sorted(expected_top_level_event_names) + self.assertEqual( + top_level_event_names, + expected_top_level_event_names, + f"Expected events {expected_top_level_event_names}, but got {top_level_event_names}", + ) + + @dist_init + def test_server_process_global_profiler(self): + if self.rank != 0: + return + + dst_rank = (self.rank + 1) % self.world_size + dst_worker_name = worker_name(dst_rank) + + x = torch.tensor(1) + y = torch.tensor(2) + + outer_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) + outer_profile_rref.rpc_sync().__enter__() + rpc.rpc_sync(dst_worker_name, torch.add, (x, y)) + inner_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) + inner_profile_rref.rpc_sync().__enter__() + rpc.rpc_sync(dst_worker_name, torch.sub, (x, y)) + inner_profile_rref.rpc_sync().__exit__(None, None, None) + outer_profile_rref.rpc_sync().__exit__(None, None, None) + + inner_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (inner_profile_rref,)) + expected_inner_events = ['aten::sub'] + expected_outer_events = expected_inner_events + ['aten::add'] + + self._assert_top_level_events(inner_events, expected_inner_events) + outer_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (outer_profile_rref,)) + self._assert_top_level_events(outer_events, expected_outer_events) + + inner_profile_rref.rpc_sync().key_averages() + outer_profile_rref.rpc_sync().key_averages() + + @dist_init + def test_async_record_function_double_end_callbacks(self): + num_sleep_seconds = 1 + if self.rank == 1: + # Validate that calling the function twice results in an error. + with _profile() as pf: + with torch.autograd.profiler.record_function("foo") as rf: + fut = rpc.rpc_async( + worker_name(0), my_sleep_func, args=(num_sleep_seconds,) + ) + rf._call_end_callbacks_on_future(fut) + with self.assertRaisesRegex( + RuntimeError, "can only be called once." + ): + rf._call_end_callbacks_on_future(fut) + fut.wait() + + @dist_init + def test_async_record_function_legacy(self): + # Test the legacy _record_function ops work + # Note: These exist for backward compatibility with TorchScript + num_sleep_seconds = 1 + if self.rank == 1: + with _profile() as pf: + try: + handle = torch.ops.profiler._record_function_enter("foo", None) + fut = rpc.rpc_async( + worker_name(0), my_sleep_func, args=(num_sleep_seconds,) + ) + torch.ops.profiler._call_end_callbacks_on_jit_fut(handle, fut) + finally: + torch.ops.profiler._record_function_exit(handle) + + fut.wait() + + @dist_init + def test_async_record_function_cbs_jit_call(self): + if self.rank == 1: + with _profile() as pf: + key = _build_rpc_profiling_key( + RPCExecMode.ASYNC, + torch._jit_internal._qualified_name(my_script_func), + "worker1", + "worker0", + ) + with torch.autograd.profiler.record_function(key) as rf: + fut = rpc.rpc_async( + worker_name(0), my_script_func, args=(torch.tensor(1),) + ) + # Intentionally calling record_function internals + fut = torch.ops.profiler._call_end_callbacks_on_jit_fut(rf.record, fut) + result = fut.wait() + # Validate that the profiling future returns the same value as the RPC + # future. + expected = torch.add(torch.tensor(1), torch.tensor(1)) + self.assertEqual(result, expected) + events = pf.function_events + rpc_event = get_function_event( + events, torch._jit_internal._qualified_name(my_script_func) + ) + self.assertTrue(torch._jit_internal._qualified_name(my_script_func) in rpc_event.name) + + @dist_init + def test_py_class_constructor(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync(worker_name(dst_rank), MyClass, args=(n,)) + self.assertEqual(ret.a, n) + + @dist_init + def test_py_class_instance_method(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), MyClass(2).my_instance_method, args=(n,) + ) + self.assertEqual(ret, MyClass(2).my_instance_method(n)) + + @dist_init + def test_py_class_method(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), MyClass.my_class_method, args=(n, n + 1) + ) + self.assertEqual(ret, MyClass.my_class_method(n, n + 1)) + + @dist_init + def test_py_class_static_method(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), MyClass.my_static_method, args=(n + 10,) + ) + self.assertEqual(ret, MyClass.my_static_method(n + 10)) + + @dist_init + def test_py_multi_async_call(self): + n = self.rank + 1 + dst_rank = n % self.world_size + dst_worker_info = rpc.get_worker_info(worker_name(dst_rank)) + fut1 = rpc.rpc_async(dst_worker_info, MyClass.my_static_method, args=(n + 10,)) + fut2 = rpc.rpc_async(dst_worker_info, min, args=(n, n + 1, n + 2)) + self.assertEqual(fut1.wait(), MyClass.my_static_method(n + 10)) + self.assertEqual(fut2.wait(), min(n, n + 1, n + 2)) + + @dist_init + def test_py_no_return_result(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync(worker_name(dst_rank), no_result) + self.assertEqual(ret, no_result()) + + @dist_init + def test_py_tensors(self): + n = self.rank + 1 + dst_rank = n % self.world_size + ret = rpc.rpc_sync( + worker_name(dst_rank), + my_tensor_function, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + self.assertEqual(ret, my_tensor_function(torch.ones(n, n), torch.ones(n, n))) + + @dist_init + def test_py_tensors_multi_async_call(self): + futs = [] + n = self.rank + 1 + dst_rank = n % self.world_size + for i in range(100): + fut = rpc.rpc_async( + worker_name(dst_rank), + my_tensor_function, + args=(torch.ones(i, i), torch.ones(i, i)), + ) + futs.append(fut) + + j = 0 + for val in torch.futures.wait_all(futs): + self.assertEqual( + val, my_tensor_function(torch.ones(j, j), torch.ones(j, j)) + ) + j += 1 + + @dist_init + def test_py_tensors_in_container(self): + n = self.rank + 1 + dst_rank = n % self.world_size + a = [torch.ones(n, n), torch.ones(n, n)] + b = TensorClass(build_complex_tensors()) + c = {"foo": torch.ones(n, n), "bar": torch.ones(n, n)} + ret = rpc.rpc_sync( + worker_name(dst_rank), my_complex_tensor_function, args=(a, b, c) + ) + self.assertEqual(ret, my_complex_tensor_function(a, b, c)) + + @dist_init + def test_py_nested_pickle(self): + n = self.rank + 1 + dst_rank = n % self.world_size + + ret = rpc.rpc_sync( + worker_name(dst_rank), + run_nested_pickle, + args=(MyPickleClass(), torch.ones(2, 2)), + ) + + m = MyPickleClass() + m.set(my_tensor_function(torch.ones(2, 2), torch.ones(2, 2))) + self.assertEqual(ret, run_nested_pickle(m, torch.ones(2, 2))) + + @dist_init + def test_py_function_exception(self): + n = self.rank + 1 + dst_rank = n % self.world_size + with self.assertRaises(TypeError): + ret = rpc.rpc_sync(worker_name(dst_rank), no_result, args=(10,)) + + @dist_init + def test_py_raise_in_user_func(self): + with captured_output() as (_, err): + # This barrier prevents a race condition where the main thread has + # not entered the context manager when the remote function runs. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + n = self.rank + 1 + dst_rank = n % self.world_size + fut = rpc.rpc_async(worker_name(dst_rank), raise_func) + with self.assertRaisesRegex(ValueError, expected_err): + fut.wait() + # This barrier prevents a race condition where the main thread exits + # context manager before the remote function has ran. + dist.barrier() + + # Validate that trainers log errors when running functions. + stderr_lines = err.getvalue() + self.assertTrue(expected_err in stderr_lines) + + @dist_init + def test_py_raise_in_user_func_escaped_str(self): + n = self.rank + 1 + dst_rank = n % self.world_size + fut = rpc.rpc_async(worker_name(dst_rank), raise_func_escape) + try: + fut.wait() + except ValueError as e: + msg = str(e) + # Ensure newlines are unescaped to provide a better repr of error. + self.assertEqual(msg, msg.encode("utf-8").decode("unicode_escape")) + else: + self.assertTrue(False, "expected raise_func_escape to raise ValueError.") + + @dist_init + def test_nested_rpc(self): + self._nested_rpc(nested_rpc, torch.ones(2, 2) + 1) + + @dist_init + def test_stress_light_rpc(self): + self._stress_test_rpc(light_rpc) + + @dist_init + def test_stress_heavy_rpc(self): + self._stress_test_rpc(heavy_rpc, repeat=20, args=(torch.ones(100, 100),)) + + @dist_init + def test_stress_heavy_rpc_torchscript(self): + self._stress_test_rpc(heavy_rpc_torchscript, repeat=20, args=(torch.ones(100, 100),)) + + @dist_init + def test_builtin_remote_ret(self): + self._builtin_remote_ret( + torch.ones(2, 2), + torch.ones(2, 2), + torch.ones(2, 2) * 2 + ) + + @dist_init + def test_builtin_remote_self(self): + self._builtin_remote_self( + torch.ones(2, 2), + torch.ones(2, 2), + torch.ones(2, 2) * 2 + ) + + @staticmethod + def _multi_args_fn(n, sparse=False): + if sparse: + return (build_sparse_tensor(), build_sparse_tensor()) + else: + return (torch.ones(n, n), torch.ones(n, n)) + + @dist_init + def test_multi_builtin_remote_ret(self): + self._test_multi_remote_call( + torch.add, False, + args_fn=RpcTest._multi_args_fn + ) + + @dist_init + def test_py_udf_remote(self): + n = self.rank + 1 + dst_rank = n % self.world_size + rref = rpc.remote( + worker_name(dst_rank), + my_function, + kwargs={"a": n, "b": n + 1, "c": n + 2}, + ) + self.assertEqual(rref.to_here(), my_function(n, n + 1, n + 2)) + + @staticmethod + def _multi_kwargs_fn(n, sparse=False): + if sparse: + return { + "a": build_sparse_tensor(), + "b": build_sparse_tensor(), + "c": build_sparse_tensor() + } + else: + return {"a": torch.ones(n, n), "b": torch.ones(n, n), "c": torch.ones(n, n)} + + @dist_init + def test_multi_py_udf_remote(self): + self._test_multi_remote_call( + my_function, + False, + kwargs_fn=RpcTest._multi_kwargs_fn + ) + + @dist_init + def test_py_rref_args(self): + self._py_rref_args( + torch.ones(2, 2), + 1, + torch.ones(2, 2), + 2, + torch.ones(2, 2) * 2 + 3) + + @dist_init + def test_py_rref_args_user_share(self): + self._py_rref_args_user_share( + torch.ones(2, 2), + 1, + 2, + torch.ones(2, 2), + 3, + 4, + torch.ones(2, 2) * 2 + 10 + ) + + @dist_init + def test_py_rpc_rref_args(self): + self._py_rpc_rref_args( + torch.ones(2, 2), + 1, + 2, + torch.ones(2, 2), + 3, + 4, + torch.ones(2, 2) * 2 + 10 + ) + + @dist_init + def test_nested_remote(self): + self._nested_remote( + nested_remote, + torch.ones(2, 2) + 3 + ) + + @dist_init + def test_nested_rref(self): + self._nested_rref( + nested_rref, + torch.ones(2, 2) + 1, + torch.ones(2, 2) + 2 + ) + + @dist_init + def test_nested_rref_stress(self): + self._nested_rref_stress( + nested_rref, + torch.ones(2, 2) + 1, + torch.ones(2, 2) + 2 + ) + + @dist_init + def test_multi_layer_nested_async_rpc(self): + # This test will exit right away, but there will be a chain of async + # RPCs. The termination algorithm should detect those messages properly. + # Otherwise, some peer could exit early, leaving others to timeout + # errors or connection closed errors. + ttl = 20 + n = self.rank + 1 + dst_rank = n % self.world_size + + multi_layer_nested_async_rpc(dst_rank, self.world_size, ttl) + + @dist_init + def test_remote_with_exception(self): + n = self.rank + 1 + dst_rank = n % self.world_size + # check ref to other workers + rref = rpc.remote(worker_name(dst_rank), raise_func) + with self.assertRaises(ValueError): + rref.to_here() + # check ref to itself + rref = rpc.remote(worker_name(self.rank), no_result, args=(10,)) + with self.assertRaises(TypeError): + rref.to_here() + + @dist_init + def test_rpc_return_rref(self): + n = self.rank + 1 + dst_rank1 = n % self.world_size + dst_rank2 = (n + 1) % self.world_size + rref = rpc.rpc_sync( + worker_name(dst_rank1), + rpc_return_rref, + args=(worker_name(dst_rank2),), + ) + self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1) + + @dist_init + def test_rref_forward_chain(self): + ttl = 8 + n = self.rank + 1 + dst_rank = n % self.world_size + + rref = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) + ) + + ret_rref = rref_forward_chain(dst_rank, self.world_size, rref, ttl) + + for i in range(ttl): + self.assertEqual(len(ret_rref), 1) + ret_rref = ret_rref[0].to_here() + + ret = ret_rref + self.assertEqual(ret, torch.add(torch.ones(n, n), 1)) + + @dist_init + def test_local_rref_no_fork(self): + local_rref = RRef(35) + self.assertEqual(local_rref.local_value(), 35) + + @dist_init + def test_local_value_not_on_owner(self): + # ensure that an error message is thrown if a user tries to call + # local_value() on a non-owning node. + next_rank = (self.rank + 1) % self.world_size + rref = rpc.remote( + worker_name(next_rank), torch.add, args=(torch.ones(1), torch.ones(1)) + ) + with self.assertRaisesRegex( + RuntimeError, ( + fr"For UserRRef\(rref_id=GloballyUniqueId\(created_on={self.rank}, local_id=0\), " + fr"fork_id=GloballyUniqueId\(created_on={self.rank}, local_id=1\)\), " + r"can't call localValue\(\) on user " + fr"WorkerInfo\(id={self.rank}, name={worker_name(self.rank)}\). " + fr"Call it on owner WorkerInfo\(id={next_rank}, name={worker_name(next_rank)}\)" + ) + ): + rref.local_value() + + @dist_init + def test_return_local_rrefs(self): + n = self.rank + 1 + dst_rank = n % self.world_size + + rref_list = rpc.rpc_sync( + worker_name(dst_rank), get_rref_list, args=([1, 2, 3],) + ) + + for rref in rref_list: + rpc.rpc_sync( + rref.owner(), + _call_method_on_rref, + args=(MyClass.increment_value, rref, 10), + ) + + rets = [ + rpc.rpc_sync( + rref.owner(), _call_method_on_rref, args=(MyClass.get_value, rref) + ) + for rref in rref_list + ] + + self.assertEqual(rets, [11, 12, 13]) + + @dist_init + def _test_rref_type(self, blocking): + + def launched_rpc(events): + expected_name = f"rpc_{RPCExecMode.ASYNC.value}#_rref_typeof_on_owner" + return any(e.name.startswith(expected_name) for e in events) + + dst = worker_name((self.rank + 1) % self.world_size) + rref = rpc.remote(dst, torch.add, args=(torch.ones(2), 1)) + + with _profile() as p: + t = rref._get_type(blocking=blocking) + if not blocking: + t = t.wait() + + self.assertTrue(launched_rpc(p.function_events)) + expected_type = type(torch.ones(2)) + self.assertEqual(t, expected_type) + + futs = [] + + def verify(fut): + self.assertEqual(fut.value(), expected_type) + + with _profile() as p: + for _ in range(10): + t = rref._get_type(blocking=blocking) + if not blocking: + futs.append(t) + t.add_done_callback(verify) + t = t.wait() + self.assertEqual(t, expected_type) + + if not blocking: + # Note that cached calls with blocking=False all return the same + # cached original future. + first_fut = futs[0] + for f in futs[1:]: + self.assertTrue(f is first_fut) + # Ensure we never launch another RPC, other than for the very + # first call. + self.assertFalse(launched_rpc(p.function_events)) + self.assertEqual(t, type(torch.ones(2))) + + rref = rpc.remote(dst, MyClass, args=(0,)) + rref_type = rref._get_type(blocking=blocking) + if not blocking: + rref_type = rref_type.wait() + self.assertEqual(rref_type, MyClass) + + def test_rref_type_blocking(self): + self._test_rref_type(blocking=True) + + def test_rref_type_non_blocking(self): + self._test_rref_type(blocking=False) + + @dist_init + def _test_rref_type_with_error(self, blocking): + dst = worker_name((self.rank + 1) % self.world_size) + # 10 ms timeout + rref = rpc.remote(dst, raise_func) + # Blocking: error raised inline + if blocking: + with self.assertRaisesRegex(ValueError, "Expected error"): + rref._get_type(blocking=blocking) + else: + # Non-blocking: Immediately return future, block on wait + fut = rref._get_type(blocking=blocking) + with self.assertRaisesRegex(ValueError, "Expected error"): + fut.wait() + + + def test_rref_type_with_error_blocking(self): + self._test_rref_type_with_error(blocking=True) + + def test_rref_type_with_error_non_blocking(self): + self._test_rref_type_with_error(blocking=False) + + @dist_init + def _test_rref_type_owner(self, blocking): + rref = RRef(torch.ones(2) + 1) + rref_type = rref._get_type(blocking=blocking) + if not blocking: + rref_type = rref_type.wait() + self.assertEqual(rref_type, type(torch.ones(2))) + + rref = RRef(MyClass(0)) + rref_type = rref._get_type(blocking=blocking) + if not blocking: + rref_type = rref_type.wait() + self.assertEqual(rref_type, MyClass) + + def test_rref_type_owner_blocking(self): + self._test_rref_type_owner(blocking=True) + + def test_rref_type_owner_non_blocking(self): + self._test_rref_type_owner(blocking=False) + + @staticmethod + def _slow_add(x, y): + time.sleep(1) + return x + y + + @dist_init + def test_rref_type_slow_init(self): + dst = worker_name((self.rank + 1) % self.world_size) + rref = rpc.remote(dst, RpcTest._slow_add, args=(torch.ones(2), 1)) + self.assertEqual(rref._get_type(), type(torch.ones(2))) + + @dist_init + def test_owner_equality(self): + a = RRef(40) + b = RRef(50) + + other_rank = (self.rank + 1) % self.world_size + other_a = rpc.remote( + worker_name(other_rank), torch.add, args=(torch.ones(1), 1) + ) + other_b = rpc.remote( + worker_name(other_rank), torch.add, args=(torch.ones(1), 1) + ) + other_a.to_here() # to ensure clean termination + other_b.to_here() + + self.assertNotEqual(a.owner(), 23) + self.assertEqual(other_a.owner(), other_b.owner()) + self.assertNotEqual(a.owner(), other_a.owner()) + self.assertEqual(other_a.owner(), other_a.owner()) + self.assertEqual(other_a.owner(), other_b.owner()) + self.assertEqual(a.owner(), a.owner()) + self.assertEqual(a.owner(), b.owner()) + self.assertEqual(a.owner(), rpc.get_worker_info()) + x = {} + x[a.owner()] = a + x[other_a.owner()] = other_a + self.assertEqual(x[a.owner()], a) + self.assertEqual(x[b.owner()], a) + self.assertEqual(x[other_a.owner()], other_a) + self.assertEqual(x[other_b.owner()], other_a) + self.assertEqual(len(x), 2) + + @dist_init + def test_pass_local_rrefs(self): + n = self.rank + 1 + dst_rank = n % self.world_size + dst_worker = worker_name(dst_rank) + + rref = RRef(40) + self.assertEqual( + rpc.rpc_sync(dst_worker, add_rref_to_value, args=(rref, 50)), 90 + ) + self.assertEqual( + rpc.rpc_async(dst_worker, add_rref_to_value, args=(rref, 50)).wait(), 90 + ) + self.assertEqual( + rpc.remote(dst_worker, add_rref_to_value, args=(rref, 50)).to_here(), 90 + ) + + @dist_init + def test_remote_same_worker(self): + n = self.rank + 1 + dst_rank = n % self.world_size + rref_a = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 2) + ) + rref_b = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) + ) + rref_c = rpc.remote( + worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) + ) + self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4) + + @dist_init(setup_rpc=True) + def test_call_method_on_rref(self): + """ + Tests that it is possible to call an instance method on a remote object + by using rref.owner() as destination of the call. + """ + vals = [10, 2, 5, 7] + dst_rank = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst_rank) + + # creates a remote object + rref = rpc.remote(dst_worker, MyClass, args=(vals[0],)) + + # modifies state of the remote object + rpc.rpc_sync( + rref.owner(), + _call_method_on_rref, + args=(MyClass.increment_value, rref, vals[1]), + ) + rpc.rpc_async( + rref.owner(), + _call_method_on_rref, + args=(MyClass.increment_value, rref, vals[2]), + ).wait() + rpc.remote( + rref.owner(), + _call_method_on_rref, + args=(MyClass.increment_value, rref, vals[3]), + ).to_here() + + # queries state of the remote object + result = rpc.rpc_sync( + dst_worker, _call_method_on_rref, args=(MyClass.get_value, rref) + ) + + self.assertEqual(result, sum(vals)) + + # Notice `rpc.api.shutdown()` accesses + # `_delete_all_user_and_unforked_owner_rrefs` through + # `torch.distributed.rpc.api`, so patching + # `torch.distributed.rpc._delete_all_user_and_unforked_owner_rrefs` will + # not help. + @mock.patch.object(torch.distributed.rpc.api, "_delete_all_user_and_unforked_owner_rrefs") + def _test_rref_leak(self, _mock_delete_all_user_and_unforked_owner_rrefs, ignore_leak): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + initialize_pg(self.file_init_method, self.rank, self.world_size) + # Wait for all init to complete. + dist.barrier() + + rref = rpc.remote( + worker_name((self.rank + 1) % self.world_size), + torch.add, + args=(torch.ones(2, 2), 1), + ) + + import torch.distributed.rpc.api as api + + if ignore_leak: + api._ignore_rref_leak = True + rpc.shutdown(graceful=True) + else: + api._ignore_rref_leak = False + with self.assertRaisesRegex(RuntimeError, "Leaking RRef"): + rpc.shutdown(graceful=True) + + @dist_init(setup_rpc=False) + def test_rref_leak(self): + self._test_rref_leak(ignore_leak=False) + + @dist_init(setup_rpc=False) + def test_ignore_rref_leak(self): + self._test_rref_leak(ignore_leak=True) + + @dist_init + def test_rref_str(self): + rref1 = RRef(self.rank) + id_class = "GloballyUniqueId" + self.assertEqual( + f"OwnerRRef({id_class}(created_on={self.rank}, local_id=0))", rref1.__str__() + ) + + dst_rank = (self.rank + 1) % self.world_size + rref2 = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) + ) + self.assertEqual( + rref2.__str__(), + f"UserRRef(RRefId = {id_class}(created_on={self.rank}, local_id=1), " + f"ForkId = {id_class}(created_on={self.rank}, local_id=2))", + ) + + @dist_init + def test_rref_get_future(self): + # Tests that we can obtain the future corresponding to the creation of + # the RRef on remote end + if self.rank == 0: + # Builtin + rref = rpc.remote(worker_name(1), torch.add, args=(1, 1)) + rref.to_here() + fut = rref._get_future() + self.assertIsInstance(fut, torch._C.Future) + + # UDF + rref = rpc.remote(worker_name(1), foo_add, args=()) + rref.to_here() + fut = rref._get_future() + self.assertIsInstance(fut, torch._C.Future) + + # Script + rref = rpc.remote(worker_name(1), my_script_func, args=(torch.tensor(1), )) + rref.to_here() + fut = rref._get_future() + self.assertIsInstance(fut, torch._C.Future) + + + @dist_init + def test_rref_context_debug_info(self): + # This test checks local states that are modified by remote workers. + # This means that we would need barrier before and after every check. + # The barrier before the check makes sure that all previous states are + # cleared globally, the barrier after ensures that no following states + # change gets into the current check. + initialize_pg(self.file_init_method, self.rank, self.world_size) + + # Check 1: local RRef does not update owners_ map or add a pending user. + ################################################# + + rref1 = RRef(self.rank) + + # don't need a barrier here as local RRef is handled by this thread + info = _rref_context_get_debug_info() + self.assertIn("num_owner_rrefs", info) + self.assertIn("num_pending_users", info) + # RRef on local value is not added to context until shared across RPC + self.assertEqual(0, int(info["num_owner_rrefs"])) + self.assertEqual(0, int(info["num_pending_users"])) + # barrier after the check 1 + dist.barrier() + + # Check 2: Sharing RRef as an arg should update owners_ map + ########################################################### + + dst_rank = (self.rank + 1) % self.world_size + rpc.rpc_sync(worker_name(dst_rank), set_global_rref, args=(rref1,)) + + # barrier before check 2 + wait_until_pending_futures_and_users_flushed() + dist.barrier() + + info = _rref_context_get_debug_info() + self.assertIn("num_owner_rrefs", info) + self.assertEqual(1, int(info["num_owner_rrefs"])) + # no pending users since the fork is finished + self.assertEqual(0, int(info["num_pending_users"])) + # barrier after check 2 + dist.barrier() + + # clear states for check 2 + rpc.rpc_sync(worker_name(dst_rank), clear_global_rref) + + # Wait for owner rref to be cleared. + while int(info["num_owner_rrefs"]) != 0: + info = _rref_context_get_debug_info() + time.sleep(0.1) + dist.barrier() + + # Check 3: rpc.remote call should update owners_ map + #################################################### + rref2 = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) + ) + rref3 = rpc.remote( + worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) + ) + rref2.to_here() + rref3.to_here() + + # barrier before check 3 + wait_until_pending_futures_and_users_flushed() + dist.barrier() + + info = _rref_context_get_debug_info() + self.assertIn("num_owner_rrefs", info) + self.assertEqual(2, int(info["num_owner_rrefs"])) + # no pending users since the fork is finished + self.assertEqual(0, int(info["num_pending_users"])) + + # barrier after check 3 + dist.barrier() + + @dist_init + def test_disable_gil_profiling(self): + # test that rpc.enable_gil_profiling(false) will result in + # GIL wait time not being recorded. + + # GIL profiling should be disabled by default. + dst_rank = (self.rank + 1) % self.world_size + rpc.rpc_sync( + worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) + ) + info = rpc.api._get_current_rpc_agent().get_debug_info() + self.assertRaises(KeyError, lambda: info["agent.gil_average_wait_time_us"]) + rpc.enable_gil_profiling(True) + rpc.rpc_sync( + worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) + ) + info = rpc.api._get_current_rpc_agent().get_debug_info() + self.assertIn("agent.gil_average_wait_time_us", info) + + @dist_init(setup_rpc=False) + def test_local_shutdown(self): + # test that we can start RPC and then immediately locally shutdown + # without sending any messages. + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + # pass in graceful=False to ensure that we don't wait for other workers. + rpc.shutdown(graceful=False) + + @dist_init + def test_debug_info(self): + # only test keys in this test case. Values should be covered by + # individual module debug info tests + import torch.distributed.autograd as dist_autograd + + info = _get_debug_info() + rref_info = _rref_context_get_debug_info() + agent_info = rpc.api._get_current_rpc_agent().get_debug_info() + autograd_info = dist_autograd._get_debug_info() + common_keys = rref_info.keys() & agent_info.keys() & autograd_info.keys() + self.assertEqual(0, len(common_keys)) + expected = {} + expected.update(rref_info) + expected.update(agent_info) + expected.update(autograd_info) + # NB: Key ordering is only preserved in python 3.6+. So here, we + # manually check keys are equal. + for key in expected.keys(): + self.assertIn(key, info.keys()) + + for key in info.keys(): + self.assertIn(key, expected.keys()) + + @dist_init(setup_rpc=False) + @skip_but_pass_in_sandcastle_if( + IS_MACOS, + "Test is flaky on MacOS since libuv error handling is not as robust as TCP", + ) + def test_handle_send_exceptions(self): + # test that if a callee node has gone down, we raise an appropriate + # exception instead of just crashing. + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + rpc._set_rpc_timeout(10) + # This barrier is needed to ensure that some workers do not exit before + # others have been brought up. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + if self.rank == 1: + dst_rank = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst_rank) + # allow destination worker to exit without joining + error_str = self.get_shutdown_error_regex() + wait_until_node_failure(dst_rank, error_str) + fut = rpc.rpc_async(dst_worker, torch.add, args=(torch.ones(1), 3)) + # Shutdown sequence is not very well defined and as a result + # we can see any of the error messages defined in get_shutdown_error_regex. + with self.assertRaisesRegex(RuntimeError, error_str): + fut.wait() + # exit all workers non-gracefully. + rpc.shutdown(graceful=False) + + @dist_init + def test_deadlock(self): + # this test is copied from https://github.com/pytorch/pytorch/issues/45089 + if self.rank == 1: + dst1 = worker_name((self.rank + 1) % self.world_size) + x = torch.ones(2) + y = torch.ones(2) + rpc.rpc_async(dst1, RpcTest._slow_add, args=(x, y), timeout=15).wait() + + dist_initialized = dist.is_initialized() + if not dist_initialized: + dist.init_process_group( + backend="gloo", + init_method=self.file_init_method, + rank=self.rank, + world_size=self.world_size, + ) + + @dist_init(setup_rpc=False) + def test_local_shutdown_with_rpc(self): + # test that we can start RPC, send RPCs, and then run local shutdown. + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + n = self.rank + 1 + dst_rank = n % self.world_size + rpc.rpc_sync( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + # A barrier is needed to ensure that all RPCs are processed. + # Otherwise, some RPCs can timeout since the receiving end + # has terminated. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + # pass in graceful=False to ensure that we don't wait for other workers. + rpc.shutdown(graceful=False) + + @dist_init(setup_rpc=False) + def test_set_and_get_default_rpc_timeout(self): + timeout = 0.5 + + # A new `RpcBackendOptions` is constructed + # when accessing `self.rpc_backend_options`. + rpc_backend_options = self.rpc_backend_options + rpc_backend_options.rpc_timeout = timeout + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=rpc_backend_options, + ) + set_timeout = rpc.get_rpc_timeout() + self.assertEqual(timeout, set_timeout) + rpc.shutdown() + + @dist_init + def test_default_timeout_used(self): + """ + Tests that if no timeout is passed into rpc_async and rpc_sync, then the + default timeout is used. + """ + dst_rank = (self.rank + 1) % self.world_size + rpc._set_rpc_timeout(0.001) # 1 ms + # futures should time out and be marked with an exception indicating it as such. + futs = [ + rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()) + for _ in range(10) + ] + expected_error = self.get_timeout_error_regex() + for fut in futs: + with self.assertRaisesRegex(RuntimeError, expected_error): + fut.wait() + + # ensure that if a new timeout is set old futures don't time out but new ones do. + rpc._set_rpc_timeout(200) # 200 seconds + # create a longstanding RPC. + fut1 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) + # now, set a short timeout. + rpc._set_rpc_timeout(0.001) + # fut2 should time out, fut1 should not. + fut2 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) + with self.assertRaisesRegex(RuntimeError, expected_error): + fut2.wait() + fut1.wait() + + # Zero timeout means infinity, so future should run to completion. + rpc._set_rpc_timeout(0) + rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()).wait() + + # reset to default timeout so shutdown messages can process cleanly. + rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) + + @dist_init + def test_rpc_timeouts(self): + # TODO: enable timeouts for rpc.remote/RRef (https://github.com/pytorch/pytorch/issues/33803) + dst_rank = (self.rank + 1) % self.world_size + dst_worker = worker_name(dst_rank) + timeout = 0.1 # 100 ms + expected_error = self.get_timeout_error_regex() + # Test async UDF + fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=timeout) + with self.assertRaisesRegex(RuntimeError, expected_error): + fut.wait() + + # Ensure run to completion if there is no timeout and we use the default + # RPC timeout. + rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)).wait() + + # Test sync UDF + with self.assertRaisesRegex(RuntimeError, expected_error): + rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=timeout) + + # Ensure run to completion if there is no timeout and we use the default + # RPC timeout. + rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) + + # If we set a default timeout for RPCs, it should be respected, though + # still overridden if we pass in a different timeout to the APIs. + rpc._set_rpc_timeout(0.001) + fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)) + with self.assertRaisesRegex(RuntimeError, expected_error): + fut.wait() + with self.assertRaisesRegex(RuntimeError, expected_error): + rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) + + # The RPCs should run to completion since we override the timeout. + rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=5).wait() + rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=5) + # Passing in a zero timeout should ensure that the RPC won't time out. + rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=0).wait() + rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=0) + # Reset for clean shutdown + rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) + + def test_dist_init_decorator(self): + @dist_init(setup_rpc=False) + def test_func(self): + return "expected result" + + self.assertEqual(test_func(self), "expected result") + + @dist_init + def test_func(self): + return "expected result" + + self.assertEqual(test_func(self), "expected result") + + def test_use_rpc_pickler(self): + class TestPickler: + pass + + test_pickler = TestPickler() + with _use_rpc_pickler(test_pickler): + self.assertTrue(torch.distributed.rpc.api._default_pickler is test_pickler) + self.assertTrue( + torch.distributed.rpc.api._default_pickler is _internal_rpc_pickler + ) + + @dist_init + def test_wait_all(self): + with _wait_all(): + self.assertTrue(_thread_local_var.future_list == []) + dst = worker_name((self.rank + 1) % self.world_size) + fut = rpc.rpc_async(dst, torch.add, (torch.ones(2, 2), 1)) + self.assertTrue(len(_thread_local_var.future_list) == 1) + self.assertTrue(isinstance(_thread_local_var.future_list[0], torch._C.Future)) + self.assertTrue(fut.done()) + self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) + self.assertFalse(hasattr(_thread_local_var, "future_list")) + + @dist_init + def test_wait_all_multiple_call(self): + with _wait_all(): + self.assertTrue(_thread_local_var.future_list == []) + dst = worker_name((self.rank + 1) % self.world_size) + for i in range(20): + fut = rpc.rpc_async(dst, torch.add, (torch.ones(i, i), 1)) + res = rpc.rpc_sync(dst, torch.add, (torch.ones(i, i), 1)) + self.assertEqual(res, torch.ones(i, i) + 1) + self.assertEqual(fut.wait(), torch.ones(i, i) + 1) + self.assertTrue(len(_thread_local_var.future_list) == 20) + self.assertFalse(hasattr(_thread_local_var, "future_list")) + + @dist_init + def test_wait_all_timeout(self): + expected_error = self.get_timeout_error_regex() + with self.assertRaisesRegex(RuntimeError, expected_error): + with _wait_all(): + self.assertTrue(_thread_local_var.future_list == []) + dst = worker_name((self.rank + 1) % self.world_size) + timeout = 0.1 # 100 ms + fut = rpc.rpc_async(dst, my_sleep_func, args=(1,), timeout=timeout) + self.assertFalse(hasattr(_thread_local_var, "future_list")) + + @dist_init + def test_wait_all_raise_in_user_func(self): + with self.assertRaises(ValueError): + with _wait_all(): + self.assertTrue(_thread_local_var.future_list == []) + dst = worker_name((self.rank + 1) % self.world_size) + fut = rpc.rpc_async(dst, raise_func) + self.assertFalse(hasattr(_thread_local_var, "future_list")) + + @dist_init + def test_wait_all_raise_in_body(self): + with self.assertRaises(ValueError): + with _wait_all(): + raise_func() + self.assertFalse(hasattr(_thread_local_var, "future_list")) + + @dist_init + def test_custom_exception_throw_during_reconstruction(self): + """ + Test that we still throw info about the remote side exception even when + we cannot recreate it on client side. + """ + initialize_pg(self.file_init_method, self.rank, self.world_size) + if self.rank != 0: + exc_caught = False + dst = worker_name(0) + try: + rpc.rpc_sync(dst, custom_raise_func, args=()) + except RuntimeError as e: + exc_caught = True + msg = str(e) + print(f"Got msg {msg}") + self.assertTrue("Original exception on remote side was" in msg) + self.assertTrue("CustomException" in msg) + except BaseException as e: + raise RuntimeError( + f"Failure - expected RuntimeError, got {e}" + ) from e + finally: + self.assertTrue(exc_caught) + + dist.barrier() + + + timed_out_rpc_event = None + + @staticmethod + def timed_out_rpc(): + RpcTest.timed_out_rpc_event.wait() + + @dist_init + def test_wait_all_exit_early_python(self): + # Initialize the event in the subprocess. + RpcTest.timed_out_rpc_event = Event() + + # Wait for all processes to initialize event. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + + dst = worker_name((self.rank + 1) % self.world_size) + fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) + fut2 = rpc.rpc_async(dst, raise_func) + fut3 = rpc.rpc_async(dst, raise_func) + + # We should receive the error from fut2 + with self.assertRaisesRegex(ValueError, expected_err): + torch.futures.wait_all([fut1, fut2, fut3]) + + # Unblock RPC thread for fut1 + RpcTest.timed_out_rpc_event.set() + + @dist_init + def test_wait_all_exit_early_builtin(self): + # Initialize the event in the subprocess. + RpcTest.timed_out_rpc_event = Event() + + # Wait for all processes to initialize event. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + + dst = worker_name((self.rank + 1) % self.world_size) + fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) + fut2 = rpc.rpc_async(dst, torch.add, args=(torch.rand(10), torch.rand(5))) + fut3 = rpc.rpc_async(dst, torch.add, args=(torch.rand(10), torch.rand(5))) + + # We should receive the error from fut2 + with self.assertRaisesRegex(RuntimeError, "size of tensor"): + torch.futures.wait_all([fut1, fut2, fut3]) + + # Unblock RPC thread for fut1 + RpcTest.timed_out_rpc_event.set() + + @dist_init + def test_wait_all_exit_early_script_function(self): + # Initialize the event in the subprocess. + RpcTest.timed_out_rpc_event = Event() + + # Wait for all processes to initialize event. + initialize_pg(self.file_init_method, self.rank, self.world_size) + dist.barrier() + + dst = worker_name((self.rank + 1) % self.world_size) + fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) + fut2 = rpc.rpc_async(dst, raise_func_script, args=(expected_err,)) + fut3 = rpc.rpc_async(dst, raise_func_script, args=(expected_err,)) + + # We should receive the error from fut2 + with self.assertRaisesRegex(RuntimeError, expected_err): + torch.futures.wait_all([fut1, fut2, fut3]) + + # Unblock RPC thread for fut1 + RpcTest.timed_out_rpc_event.set() + + + @dist_init + def test_function_not_on_callee(self): + # test that if a function does not exist on a callee, we don't crash, + # instead we get an AttributeError indicating that the func does not exist. + this_module = sys.modules[__name__] + caller_worker = "worker0" + callee_worker = "worker1" + + if self.rank == 1: + # Use delattr to remove the binding of a func on this nodes + delattr(this_module, "foo_add") + # notify remote end that we have removed it. + rpc.rpc_sync(caller_worker, set_value, args=(self.rank,)) + + if self.rank == 0: + # func exists on caller, but not callee. + # wait for remote end to remove the binding of foo_add func. + wait_for_value_future() + # Ensure that we have the attribute on this module. Otherwise, the test could fail due to a caller-side pickling error. + self.assertTrue(hasattr(this_module, "foo_add")) + with self.assertRaisesRegex( + RuntimeError, "RPC pickler does not serialize" + ): + rpc.rpc_sync(callee_worker, foo_add, args=()) + + @dist_init + def test_non_garbage_collected_user_rref_due_to_local_circular_dependency(self): + dst_worker_name = worker_name((self.rank + 1) % self.world_size) + + a = MyClass(1) + b = MyClass(2) + + # This is to make Python not garbage collect a and b. + a.other = b + b.other = a + + n = self.rank + a.rref = rpc.remote( + dst_worker_name, + torch.add, + args=(torch.ones(n, n), 2) + ) + + @dist_init(setup_rpc=False) + def test_use_rref_after_shutdown(self): + rpc.init_rpc( + name="worker%d" % self.rank, + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + n = self.rank + 1 + dst_rank = n % self.world_size + rref = rpc.remote( + worker_name(dst_rank), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)), + ) + # pass in graceful=True to ensure that local UserRRefs are deleted. + rpc.shutdown(graceful=True) + + with self.assertRaisesRegex( + RuntimeError, "Cannot call to_here\\(\\) on it after deletion." + ): + rref.to_here() + + with self.assertRaisesRegex( + RuntimeError, "Cannot call fork an UserRRef after deletion." + ): + import torch.distributed.rpc.internal as internal + internal.serialize(rref) + + @staticmethod + def _return_gpu_tensor(): + return torch.rand(3, 3).cuda(0) + + @staticmethod + def _return_gpu_tensor_list(): + return [torch.rand(3, 3).cuda(0), torch.rand(3, 3).cuda(1)] + + @staticmethod + def _gpu_tensor_list_arg(tensor_list): + return torch.rand(3, 3) + + def _create_rref(self): + owner_rank = (self.rank + 2) % self.world_size + return rpc.remote( + worker_name(owner_rank), + torch.add, + args=(torch.zeros(2, 2), 1) + ) + + @dist_init + def test_user_rrefs_confirmed(self): + dst_rank = (self.rank + 1) % self.world_size + rref = self._create_rref() + ret = rpc.rpc_sync( + worker_name(dst_rank), + check_rref_confirmed, + args=(rref,) + ) + self.assertEqual(ret, True) + + @dist_init + def test_user_rrefs_confirmed_remote(self): + dst_rank = (self.rank + 1) % self.world_size + rref = self._create_rref() + ret_rref = rpc.remote( + worker_name(dst_rank), + check_rref_confirmed, + args=(rref,) + ) + self.assertEqual(ret_rref.to_here(), True) + + @dist_init + def test_rref_py_pickle_not_supported(self): + local_rref = RRef(35) + with TemporaryFileName() as fname: + with self.assertRaisesRegex(RuntimeError, "Can not pickle rref in python pickler"): + torch.save(local_rref, fname) + + @dist_init + def test_remote_throw(self): + rref = rpc.remote(worker_name((self.rank + 1) % self.world_size), + raise_or_inc, + args=(torch.ones(2),)) + with self.assertRaisesRegex(Exception, ".*Expected error.*"): + rref.to_here() + + @dist_init + def test_non_cont_tensors(self): + if self.rank == 0: + # Create a non-contiguous tensor. + t = torch.rand(5, 5) + t_view = t.narrow(1, 2, 2) + self.assertFalse(t_view.is_contiguous()) + t_cont = t_view.contiguous() + self.assertTrue(t_cont.is_contiguous()) + self.assertEqual(t_view, t_cont) + + # Send non-cont tensor over RPC. + next_rank = (self.rank + 1) % self.world_size + t_ret = rpc.rpc_sync(worker_name(next_rank), non_cont_test, args=(t_view, t_cont)) + + # Verify the returned tensor. + self.assertEqual(t_view, t_ret) + self.assertFalse(t_ret.is_contiguous()) + + @dist_init + def test_callback_simple(self): + set_by_cb = concurrent.futures.Future() + n = self.rank + 1 + + def callback(fut): + ret = fut.wait() + self.assertEqual(ret, torch.ones(n, n) * 2) + set_by_cb.set_result(ret.clone() + 1) + + fut = rpc.rpc_async( + worker_name(n % self.world_size), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)) + ) + + fut.then(callback) + + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + self.assertEqual(set_by_cb.result(), torch.ones(n, n) * 2 + 1) + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + @dist_init + def test_callback_wrong_arg_num(self): + set_by_cb = concurrent.futures.Future() + n = self.rank + 1 + + fut = rpc.rpc_async( + worker_name(n % self.world_size), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)) + ) + + cb_fut = fut.then(my_function) + + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + with self.assertRaisesRegex( + RuntimeError, + "my\\_function\\(\\) missing 2 required positional arguments" + ): + cb_fut.wait() + + @dist_init + def test_callback_wrong_arg_type(self): + dst = worker_name((self.rank + 1) % self.world_size) + + fut0 = rpc.rpc_async(dst, torch.add, args=(torch.ones(2, 2), 1)) + fut1 = fut0.then(lambda x: x + 1) + + with self.assertRaisesRegex( + RuntimeError, + "unsupported operand type\\(s\\) for \\+" + ): + fut1.wait() + + @dist_init + def test_callback_multi(self): + num_cbs = 10 + n = self.rank + 1 + + def callback(idx, fut): + ret = fut.wait() + self.assertEqual(ret, torch.ones(n, n) * 2) + return ret + idx + + fut = rpc.rpc_async( + worker_name(n % self.world_size), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)) + ) + + cb_futs = [] + for idx in range(num_cbs): + cb_futs.append(fut.then(partial(callback, idx))) + + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + for idx in range(num_cbs): + self.assertEqual( + cb_futs[idx].wait(), + torch.ones(n, n) * 2 + idx + ) + + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + @dist_init + def test_callback_chain(self): + n = self.rank + 1 + dst = worker_name(n % self.world_size) + + def callback(fut): + return fut.wait() + 1 + + fut = rpc.rpc_async( + worker_name(n % self.world_size), + torch.add, + args=(torch.ones(n, n), 1) + ) + + num_cbs = 20 + for _ in range(num_cbs): + fut = fut.then(callback) + + self.assertEqual(fut.wait(), torch.ones(n, n) + 1 + num_cbs) + + @dist_init + def test_callback_in_rpc(self): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + + ret = rpc.rpc_sync( + dst1, + add_use_future_cb, + args=(dst2, torch.ones(2, 2), 1, 2) + ) + self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) + + @dist_init + def test_callback_with_ret(self): + dst = worker_name((self.rank + 1) % self.world_size) + + def callback(fut0): + fut2 = rpc.rpc_async( + dst, + torch.add, + args=(fut0.wait(), 1) + ).then(lambda fut1: fut1.wait() + 1) + + return fut2.wait() + + fut3 = rpc.rpc_async( + dst, + torch.add, + args=(torch.ones(2, 2), 1) + ).then(callback) + + self.assertEqual(fut3.wait(), torch.ones(2, 2) + 3) + + @dist_init + def test_callback_with_error(self): + dst = worker_name((self.rank + 1) % self.world_size) + + def callback(fut0): + with self.assertRaisesRegex(ValueError, "Expected error"): + fut0.wait() + raise RuntimeError("Another expected error") + + fut1 = rpc.rpc_async(dst, raise_func).then(callback) + with self.assertRaisesRegex(RuntimeError, "Another expected error"): + fut1.wait() + + @dist_init + def test_callback_none(self): + dst = worker_name((self.rank + 1) % self.world_size) + with self.assertRaisesRegex( + TypeError, + "incompatible function arguments." + ): + rpc.rpc_async(dst, raise_func).then(None) + + @dist_init + def test_add_done_callback(self): + set_by_cb = False + n = self.rank + 1 + + def callback(fut): + nonlocal set_by_cb + fut.wait() + set_by_cb = True + + fut = rpc.rpc_async( + worker_name(n % self.world_size), + torch.add, + args=(torch.ones(n, n), torch.ones(n, n)) + ) + + fut.add_done_callback(callback) + fut_then = fut.then(lambda _: True) + + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + # We have no guarantee that the add_done_callback fn will execute before the test finishes. + # Adding a 'then' callback that runs afterwards to guarantee we wait for the first callback + fut_then.wait() + self.assertTrue(set_by_cb) + self.assertEqual(fut.wait(), torch.ones(n, n) * 2) + + @dist_init + def test_mark_future_twice(self): + fut = rpc.rpc_async( + worker_name((self.rank + 1) % self.world_size), + torch.add, + args=(torch.zeros(2, 2), 1) + ) + self.assertEqual(fut.wait(), torch.zeros(2, 2) + 1) + with self.assertRaisesRegex( + RuntimeError, + "Future can only be marked completed once" + ): + fut.set_result(1) + + @dist_init + def test_pickle_future(self): + fut = torch.futures.Future() + errMsg = "Can not pickle torch.futures.Future" + + dst = worker_name((self.rank + 1) % self.world_size) + with TemporaryFileName() as fname: + with self.assertRaisesRegex(RuntimeError, errMsg): + rpc.rpc_sync(dst, fail_on_fut, args=(fut,)) + + with TemporaryFileName() as fname: + with self.assertRaisesRegex(RuntimeError, errMsg): + rpc.rpc_async(dst, fail_on_fut, args=(fut,)) + + with TemporaryFileName() as fname: + with self.assertRaisesRegex(RuntimeError, errMsg): + rpc.remote(dst, fail_on_fut, args=(fut,)) + + @dist_init + def test_future_done(self): + dst = worker_name((self.rank + 1) % self.world_size) + fut = rpc.rpc_async(dst, torch.add, args=(torch.zeros(2), 1)) + fut.wait() + self.assertTrue(fut.done()) + + @dist_init + def test_future_done_exception(self): + dst = worker_name((self.rank + 1) % self.world_size) + fut = rpc.rpc_async(dst, raise_func) + with self.assertRaisesRegex(ValueError, "Expected error"): + fut.wait() + self.assertTrue(fut.done()) + + def _test_future_cb(self, func): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + + ret = rpc.rpc_sync( + dst1, + func, + args=(dst2, torch.ones(2, 2), 1, 2) + ) + self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) + + @dist_init + def test_future_in_rpc(self): + self._test_future_cb(add_use_future_set_result) + + @dist_init + def test_future_nested_callback(self): + self._test_future_cb(add_use_future_nested_cb) + + def _test_async_function_raise(self, mode): + with self.assertRaisesRegex(RuntimeError, "Expected error"): + self._run_func_in_mode( + worker_name((self.rank + 1) % self.world_size), + async_raise_func, + mode + ) + + @dist_init + def test_async_function_raise(self): + self._test_async_function_raise(RPCExecMode.SYNC) + + @dist_init + def test_async_function_raise_async(self): + self._test_async_function_raise(RPCExecMode.ASYNC) + + @dist_init + def test_async_function_raise_remote(self): + self._test_async_function_raise(RPCExecMode.REMOTE) + + def _test_async_function_wrong_return_type(self, mode): + errMsg = ( + "Functions decorated with @rpc\\.async_function must return a " + "torch\\.futures\\.Future object," + ) + with self.assertRaisesRegex(RuntimeError, errMsg): + self._run_func_in_mode( + worker_name((self.rank + 1) % self.world_size), + async_wrong_type, + mode + ) + + @dist_init + def test_async_function_wrong_return_type(self): + self._test_async_function_wrong_return_type(RPCExecMode.SYNC) + + @dist_init + def test_async_function_wrong_return_type_async(self): + self._test_async_function_wrong_return_type(RPCExecMode.ASYNC) + + @dist_init + def test_async_function_wrong_return_type_remote(self): + self._test_async_function_wrong_return_type(RPCExecMode.REMOTE) + + @dist_init + def test_async_function_simple(self): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + + ret = rpc.rpc_sync(dst1, async_add, args=(dst2, torch.ones(2, 2), 1)) + self.assertEqual(ret, torch.ones(2, 2) + 1) + + def _test_async_function(self, fn, mode=RPCExecMode.SYNC): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + + args = (dst2, torch.ones(2, 2), 1, 2) + ret = self._run_func_in_mode(dst1, fn, mode, args=args) + self.assertEqual(ret, torch.ones(2, 2) + 3) + + @dist_init + def test_async_function_with_future_ctor(self): + self._test_async_function(async_add_with_future_ctor) + + @dist_init + def test_async_function_with_future_ctor_remote(self): + self._test_async_function( + async_add_with_future_ctor, + RPCExecMode.REMOTE + ) + + @dist_init + def test_async_function_chained(self): + self._test_async_function(async_add_chained) + + @dist_init + def test_async_function_chained_remote(self): + self._test_async_function(async_add_chained, RPCExecMode.REMOTE) + + @dist_init + def test_async_function_nested(self): + self._test_async_function(async_add_nested) + + @dist_init + def test_async_function_nested_remote(self): + self._test_async_function(async_add_nested, RPCExecMode.REMOTE) + + @dist_init + def test_async_static_method(self): + self._test_async_function(AsyncExecutionClass.static_async_add) + + @dist_init + def test_async_static_method_remote(self): + self._test_async_function( + AsyncExecutionClass.static_async_add, + RPCExecMode.REMOTE + ) + + @dist_init + def test_async_class_method(self): + self._test_async_function(AsyncExecutionClass.class_async_add) + + @dist_init + def test_async_class_method_remote(self): + self._test_async_function( + AsyncExecutionClass.class_async_add, + RPCExecMode.REMOTE + ) + + def _test_test_async_class_rref_proxy(self, mode=RPCExecMode.SYNC): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + rref = rpc.remote(dst1, AsyncExecutionClass) + + x = torch.ones(2, 2) + y = torch.ones(2, 2) + 1 + if mode == RPCExecMode.SYNC: + ret = rref.rpc_sync().static_async_add(dst2, x, x, y) + ret += rref.rpc_sync().class_async_add(dst2, x, x, y) + ret += rref.rpc_sync().bound_async_add(dst2, x, x, y) + elif mode == RPCExecMode.ASYNC: + ret = rref.rpc_async().static_async_add(dst2, x, x, y).wait() + ret += rref.rpc_async().class_async_add(dst2, x, x, y).wait() + ret += rref.rpc_async().bound_async_add(dst2, x, x, y).wait() + elif mode == RPCExecMode.REMOTE: + ret = rref.remote().static_async_add(dst2, x, x, y).to_here() + ret += rref.remote().class_async_add(dst2, x, x, y).to_here() + ret += rref.remote().bound_async_add(dst2, x, x, y).to_here() + + self.assertEqual(ret, 3 * 4 * x) + + @dist_init + def test_async_class_rref_proxy(self): + self._test_test_async_class_rref_proxy() + + @dist_init + def test_async_class_rref_proxy_async(self): + self._test_test_async_class_rref_proxy(mode=RPCExecMode.ASYNC) + + @dist_init + def test_async_class_rref_proxy_remote(self): + self._test_test_async_class_rref_proxy(mode=RPCExecMode.REMOTE) + + def _test_async_function_multi(self, fn, mode=RPCExecMode.SYNC): + dst1 = worker_name((self.rank + 1) % self.world_size) + dst2 = worker_name((self.rank + 2) % self.world_size) + + num = 20 + step = 3 + args = (dst2, torch.ones(2, 2), num, step) + ret = self._run_func_in_mode(dst1, fn, mode, args=args) + self.assertEqual(ret, torch.ones(2, 2) + num * step) + + @dist_init + def test_async_function_multi_chained(self): + self._test_async_function_multi(async_add_chained_multi) + + @dist_init + def test_async_function_multi_chained_async(self): + self._test_async_function_multi( + async_add_chained_multi, + RPCExecMode.ASYNC + ) + + @dist_init + def test_async_function_multi_chained_remote(self): + self._test_async_function_multi( + async_add_chained_multi, + RPCExecMode.REMOTE + ) + + @dist_init + def test_async_function_multi_fanout(self): + self._test_async_function_multi(async_add_multi_fanout) + + @dist_init + def test_async_function_multi_fanout_async(self): + self._test_async_function_multi( + async_add_multi_fanout, + RPCExecMode.ASYNC + ) + + @dist_init + def test_async_function_multi_fanout_remote(self): + self._test_async_function_multi( + async_add_multi_fanout, + RPCExecMode.REMOTE + ) + + def _test_return_future(self, mode): + with self.assertRaisesRegex( + RuntimeError, + "Can not pickle torch.futures.Future" + ): + self._run_func_in_mode( + worker_name((self.rank + 1) % self.world_size), + return_future, + mode + ) + + @dist_init + def test_return_future(self): + self._test_return_future(RPCExecMode.SYNC) + + @dist_init + def test_return_future_async(self): + self._test_return_future(RPCExecMode.ASYNC) + + @dist_init + def test_return_future_remote(self): + self._test_return_future(RPCExecMode.REMOTE) + + @dist_init + def test_rref_timeout(self): + # This test is similar to ones in FaultyProcessGroupTest, but is meant to be + # run with other backends besides ProcessGroup. + if self.rank != 0: + return + + dst_rank = (self.rank + 1) % self.world_size + dst_worker = f"worker{dst_rank}" + # 10 ms timeout + rref = rpc.remote(dst_worker, my_sleep_func, args=(2, ), timeout=0.01) + # Future corresponding to the remote creation should time out. + expected_error = self.get_timeout_error_regex() + with self.assertRaisesRegex(RuntimeError, expected_error): + rref._get_future().wait() + # Call to ensure pending callbacks are run. + wait_until_pending_futures_and_users_flushed() + with self.assertRaisesRegex(RuntimeError, "RRef creation"): + rref.to_here() + + wait_until_owners_and_forks_on_rank(1, 1, rank=1) + + @dist_init(setup_rpc=False) + @skip_but_pass_in_sandcastle_if( + os.environ.get("RPC_INIT_WITH_TCP", None) == "1", + "init_pg_then_rpc does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." + ) + def test_init_pg_then_rpc(self): + dist.init_process_group( + backend="gloo", + init_method=self.init_method, + rank=self.rank, + world_size=self.world_size, + ) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + # Test RPC. + next_rank = (self.rank + 1) % self.world_size + ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) + self.assertEqual(ret, torch.ones(2, 2) + 1) + + # Test PG + dist.barrier() + + rpc.shutdown() + + @dist_init(setup_rpc=False) + @skip_but_pass_in_sandcastle_if( + os.environ.get("RPC_INIT_WITH_TCP", None) == "1", + "init_rpc_then_pg does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." + ) + def test_init_rpc_then_pg(self): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + dist.init_process_group( + backend="gloo", + init_method=self.init_method, + rank=self.rank, + world_size=self.world_size, + ) + + # Test RPC. + next_rank = (self.rank + 1) % self.world_size + ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) + self.assertEqual(ret, torch.ones(2, 2) + 1) + + # Test PG + dist.barrier() + + rpc.shutdown() + + @dist_init + def test_wait_all_with_exception(self): + futs = [] + dst = worker_name((self.rank + 1) % self.world_size) + for _ in range(10): + futs.append(rpc.rpc_async(dst, raise_func)) + + with self.assertRaisesRegex(ValueError, "Expected error"): + ret = torch.futures.wait_all(futs) + + @dist_init + def test_wait_all_with_partial_exception(self): + futs = [] + dst = worker_name((self.rank + 1) % self.world_size) + for _ in range(10): + futs.append(rpc.rpc_async(dst, torch.add, args=(torch.ones(2), 1))) + + futs.append(rpc.rpc_async(dst, raise_func)) + + with self.assertRaisesRegex(ValueError, "Expected error"): + ret = torch.futures.wait_all(futs) + + @dist_init(setup_rpc=False) + @skip_but_pass_in_sandcastle_if( + os.environ.get("RPC_INIT_WITH_TCP", None) == "1", + "Test does not work with TCP init, see https://github.com/pytorch/pytorch/issues/46491", + ) + def test_init_rpc_twice(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + rpc.shutdown() + + # Wait for all init to complete. + dist.barrier() + + # Use a different file name for the next initialization + new_backend_options = self.rpc_backend_options + new_backend_options.init_method += "init_2" + + # Ensure rpc initialization works again. + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=new_backend_options, + ) + + # Verify RPCs work after re-init. + dst = worker_name((self.rank + 1) % self.world_size) + rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) + rpc.rpc_sync(dst, foo_add, args=()) + + rpc.shutdown() + + def test_wrong_types(self): + with self.assertRaisesRegex( + TypeError, + "Argument backend must be a member of BackendType", + ): + rpc.init_rpc( + name=worker_name(self.rank), + rank=self.rank, + world_size=self.world_size, + backend="TENSORPIPE", + ) + + with self.assertRaisesRegex( + TypeError, + "Argument rpc_backend_options must be an instance of RpcBackendOptions", + ): + rpc.init_rpc( + name=worker_name(self.rank), + rank=self.rank, + world_size=self.world_size, + backend=self.rpc_backend, + rpc_backend_options={"init_method": self.init_method} + ) + + def test_cannot_infer_backend_from_options(self): + # An exception should be raised if the backend isn't specified but + # options are given which are not an instance of any of the known + # agents' option classes. + rpc_backend_options = FooBackendOptions(self.init_method) + + with self.assertRaisesRegex(TypeError, "Could not infer backend for options"): + rpc.init_rpc( + name=worker_name(self.rank), + rank=self.rank, + world_size=self.world_size, + # Do _not_ pass backend. + rpc_backend_options=rpc_backend_options, + ) + + @dist_init + def test_owner_rref_backward(self): + dst = worker_name((self.rank + 1) % self.world_size) + t1 = torch.rand(10, 10, requires_grad=True) + rref = rpc.RRef(t1.sum() + t1.sum()) + rref.backward() + expected_grad = torch.ones_like(t1) * 2 + self.assertEqual(expected_grad, t1.grad) + + with dist_autograd.context() as context_id: + t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) + rref = rpc.RRef(t2.sum()) + rref.backward(context_id) + self.assertEqual(expected_grad, dist_autograd.get_gradients(context_id)[t1]) + + # Double backward. + with dist_autograd.context() as context_id: + t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) + rref = rpc.RRef(t2.sum()) + rref.backward(context_id, retain_graph=True) + rref.backward(context_id) + self.assertEqual(expected_grad * 2, dist_autograd.get_gradients(context_id)[t1]) + + # Test errors. + with self.assertRaisesRegex(RuntimeError, "tensors does not require grad and does not have a grad_fn"): + rpc.RRef(torch.rand(10)).backward() + + with self.assertRaisesRegex(RuntimeError, "grad can be implicitly created only for scalar outputs"): + rpc.RRef(torch.rand(10, requires_grad=True)).backward() + + with self.assertRaisesRegex(RuntimeError, "Could not find autograd context with id: 100"): + rpc.RRef(torch.rand(10, requires_grad=True).sum()).backward(100) + + with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): + rpc.RRef("foo").backward() + + @staticmethod + def _sum(x): + return x.sum() + + @staticmethod + def _identity(x): + return x + + @dist_init + def test_user_rref_backward(self): + dst = worker_name((self.rank + 1) % self.world_size) + t = torch.rand(10, requires_grad=True) + with dist_autograd.context() as context_id: + rref = rpc.remote(dst, RpcTest._sum, args=(t,)) + rref.backward(context_id, retain_graph=True) + rref.backward(context_id) + self.assertEqual(torch.ones_like(t) * 2, dist_autograd.get_gradients(context_id)[t]) + + with dist_autograd.context() as context_id: + rref = rpc.remote(dst, RpcTest._identity, args=("foo",)) + with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): + rref.backward(context_id) + + with self.assertRaisesRegex(RuntimeError, "User RRefs require 'dist_autograd_ctx_id' to be specified"): + rref.backward() + + @dist_init(setup_rpc=False) + def test_shutdown_errors(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options, + ) + + if self.rank != 0: + og_func = rpc.api._broadcast_to_followers + og_rref_func = rpc.api._delete_all_user_and_unforked_owner_rrefs + + # Monkey-patch _broadcast_to_followers to fail, which would ensure + # _all_gather on leader raises an exception. + def raise_error(sequence_id, objects_map): + og_func(sequence_id, objects_map) + raise RuntimeError('simulation') + + # Monkey-patch _delete_all_user_and_unforked_owner_rrefs to fail, + # which would ensure barrier is not called on followers. + def rref_error(): + raise RuntimeError('simulation rref') + + try: + rpc.api._broadcast_to_followers = raise_error + rpc.api._delete_all_user_and_unforked_owner_rrefs = rref_error + with self.assertRaisesRegex(RuntimeError, 'simulation rref'): + rpc.shutdown() + finally: + rpc.api._broadcast_to_followers = og_func + rpc.api._delete_all_user_and_unforked_owner_rrefs = og_rref_func + else: + with self.assertRaisesRegex(RuntimeError, 'timed out in _all_gather'): + rpc.shutdown() + + dist.barrier() + + @dist_init + def test_my_parameter_server(self): + self._my_parameter_server(False) + + +class CudaRpcTest(RpcAgentTestFixture): + + @skip_if_lt_x_gpu(2) + @dist_init + def test_profiler_remote_cuda(self): + if self.rank != 1: + return + + dst_cuda_0 = (self.rank + 1) % self.world_size + dst_cuda_1 = (self.rank + 2) % self.world_size + dst_worker_cuda_0 = worker_name(dst_cuda_0) + dst_worker_cuda_1 = worker_name(dst_cuda_1) + + with _profile(use_cuda=True) as p: + fut1 = rpc.rpc_async(dst_worker_cuda_0, udf_with_torch_ops, args=(0, )) + fut2 = rpc.rpc_async(dst_worker_cuda_1, udf_with_torch_ops, args=(1, )) + fut1.wait() + fut2.wait() + + def get_name(event): + return event.name[event.name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR):] + + function_events = p.function_events + for event in function_events: + if event.is_async: + self.assertEqual(0, event.device_time_total) + self.assertEqual([], event.kernels) + self.assertEqual(0, event.device_time) + else: + if event.node_id == 1: + continue + self.assertTrue(event.node_id in [dst_cuda_0, dst_cuda_1]) + if get_name(event) in EXPECTED_REMOTE_EVENTS: + self.assertGreater(event.device_time_total, 0) + self.assertEqual(1, len(event.kernels)) + kernel = event.kernels[0] + if event.node_id == dst_cuda_0: + self.assertEqual(kernel.device, 0) + if event.node_id == dst_cuda_1: + self.assertEqual(kernel.device, 1) + self.assertGreater(event.device_time, 0) + + # Validate that EXPECTED_REMOTE_EVENTS is a subset of remotely profiled + # events. + remote_events = [event for event in function_events if event.is_remote] + remote_event_names = [get_name(event) for event in remote_events if get_name(event) in EXPECTED_REMOTE_EVENTS] + self.assertEqual(set(remote_event_names), set(EXPECTED_REMOTE_EVENTS)) + + +class TensorPipeAgentRpcTest(RpcAgentTestFixture, RpcTestCommon): + + def test_mismatched_type_for_options(self): + # An exception should be raised if the options are not an instance of + # TensorPipeRpcBackendOptions. + rpc_backend_options = FooBackendOptions(self.init_method) + + with self.assertRaisesRegex( + TypeError, "`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`" + ): + rpc.init_rpc( + name=worker_name(self.rank), + rank=self.rank, + world_size=self.world_size, + backend=rpc.BackendType.TENSORPIPE, + rpc_backend_options=rpc_backend_options, + ) + + def test_infer_backend_from_options(self): + rpc_backend_options = rpc.TensorPipeRpcBackendOptions( + init_method=self.init_method, + _transports=tp_transports() + ) + + rpc.init_rpc( + name=worker_name(self.rank), + rank=self.rank, + world_size=self.world_size, + # Do _not_ pass backend. + rpc_backend_options=rpc_backend_options, + ) + + self.assertIsInstance(rpc.api._get_current_rpc_agent(), rpc.TensorPipeAgent) + + # FIXME Merge this test with the corresponding one in RpcTest. + @dist_init(setup_rpc=False) + def test_set_and_get_num_worker_threads(self): + NUM_THREADS = 27 + rpc_backend_options = rpc.TensorPipeRpcBackendOptions( + init_method=self.rpc_backend_options.init_method, + num_worker_threads=NUM_THREADS, + _transports=tp_transports(), + ) + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=rpc_backend_options, + ) + + info = rpc.api._get_current_rpc_agent().get_debug_info() + self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREADS) + rpc.shutdown() + + # FIXME Merge this test with the corresponding one in RpcTest. + @dist_init(setup_rpc=False) + def test_tensorpipe_set_default_timeout(self): + # Set a high timeout since it doesn't affect test runtime and ensures + # the test doesn't erroneously timeout due to slow machines. + timeout = 100 + rpc_backend_options = rpc.TensorPipeRpcBackendOptions( + init_method=self.rpc_backend_options.init_method, + num_worker_threads=self.rpc_backend_options.num_worker_threads, + rpc_timeout=timeout, + _transports=tp_transports(), + ) + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=rpc_backend_options, + ) + + default_timeout = rpc.get_rpc_timeout() + self.assertEqual(default_timeout, timeout) + rpc.shutdown() + + # FIXME Merge this test with the corresponding one in RpcTest. + @dist_init(setup_rpc=False) + def test_tensorpipe_options_throw_on_timedelta_timeout(self): + from datetime import timedelta + + timeout = timedelta() + # Ensure that constructing TensorPipeRpcBackendOptions with timedelta fails + with self.assertRaisesRegex(TypeError, "incompatible constructor arguments"): + rpc_backend_options = rpc.TensorPipeRpcBackendOptions( + init_method=self.rpc_backend_options.init_method, + num_worker_threads=self.rpc_backend_options.num_worker_threads, + rpc_timeout=timeout, + ) + + @dist_init + def _test_rref_get_type_timeout(self, blocking): + # Test where we try to get the type of a RRef from an owner, but RRef + # creation is slower than timeout passed into _get_type. + dst_rank = (self.rank + 1) % self.world_size + dst = worker_name(dst_rank) + slow_rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), True)) + timeout = 0.5 + expected_err = self.get_timeout_error_regex() + # Blocking: blocks on inline call + if blocking: + with self.assertRaisesRegex(RuntimeError, expected_err): + slow_rref._get_type(timeout=timeout, blocking=blocking) + # Non-blocking: blocks on wait + else: + fut = slow_rref._get_type(timeout=timeout, blocking=blocking) + with self.assertRaisesRegex(RuntimeError, expected_err): + fut.wait() + + # FIXME We wait until the remote completed creating the OwnerRRef + # because there's currently a race if we shut down RPC before that. + slow_rref.to_here() + + def test_rref_get_type_timeout_blocking(self): + self._test_rref_get_type_timeout(blocking=True) + + def test_rref_get_type_timeout_non_blocking(self): + self._test_rref_get_type_timeout(blocking=False) + + @dist_init + def test_op_with_invalid_args(self): + dst = worker_name((self.rank + 1) % self.world_size) + with self.assertRaisesRegex( + RuntimeError, "Overloaded torch operator invoked from Python failed to match any schema" + ): + rpc.rpc_sync(dst, torch.add, args=()) + + def _test_rref_proxy_timeout(self, rref_proxy_api): + dst_rank = (self.rank + 1) % self.world_size + dst = worker_name(dst_rank) + rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), )) + # Ensure RRef is created on remote node. + rref.to_here() + rref_api = getattr(rref, rref_proxy_api) + self.assertTrue(rref_api is not None, f"Failed to get RRef proxy api: {rref_proxy_api}") + expected_error = self.get_timeout_error_regex() + timeout = 2 + with self.assertRaisesRegex(RuntimeError, expected_error): + result = rref_api(timeout=timeout).my_slow_method(torch.ones(2, 2)) + if rref_api == rref.rpc_async: + result.wait() + elif rref_api == rref.remote: + result._get_future().wait() + + # Case where rpc.remote() is stuck and exceeds timeout + slow_rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), True)) + timeout = 0.01 + rref_api = getattr(slow_rref, rref_proxy_api) + # Note that even when we call rref.rpc_async() in this case, we + # time out in future creation, not waiting for future. This is because + # rref proxy function calls rref._get_type before returning future, + # which blocks on the RRef being created on owner node, until the + # specified timeout. + with self.assertRaisesRegex(RuntimeError, expected_error): + result = rref_api(timeout=timeout).my_instance_method(torch.ones(2, 2)) + # rpc_async returns immediately and surface a timeout through wait() + if rref_api == slow_rref.rpc_async: + result.wait() + + # FIXME We wait until the remote completed creating the OwnerRRef + # because there's currently a race if we shut down RPC before that. + slow_rref.to_here() + + @dist_init + def test_rref_proxy_timeout(self): + for rpc_api in ["rpc_sync", "rpc_async", "remote"]: + self._test_rref_proxy_timeout(rpc_api) + + @dist_init + def test_send_to_rank_sparse(self): + dst_rank = (self.rank + 1) % self.world_size + + # Test sparse tensor + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + x = build_sparse_tensor() + y = build_sparse_tensor() + expected_tensor = (x + y) + ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(x, y)) + self.assertEqual(expected_tensor, ret) + + for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: + x = build_sparse_tensor(coalesce=True) + y = build_sparse_tensor(coalesce=True) + expected_tensor = (x + y) + ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(x, y)) + self.assertEqual(expected_tensor, ret) + + @dist_init + def test_self_py_udf_remote_sparse(self): + self._self_py_udf_remote( + rpc.get_worker_info(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() + ) + + @dist_init + def test_self_remote_rref_as_rpc_arg_sparse(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._self_remote_rref_as_rpc_arg( + dst, + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() + ) + + @dist_init + def test_self_remote_rref_as_self_rpc_arg_sparse(self): + self._self_remote_rref_as_rpc_arg( + rpc.get_worker_info(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() + ) + + @dist_init + def test_self_remote_rref_as_remote_arg_sparse(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._self_remote_rref_as_remote_arg( + dst, + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() + ) + + @dist_init + def test_self_remote_rref_as_self_remote_arg_sparse(self): + self._self_remote_rref_as_remote_arg( + rpc.get_worker_info(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() + ) + + def test_world_size_one_sparse(self): + self._world_size_one( + build_sparse_tensor(), + build_sparse_tensor() + ) + + @dist_init + def test_multi_rpc_sparse(self): + self._multi_rpc(True) + + def test_wait_all_workers_sparse(self): + self._wait_all_workers(heavy_rpc_sparse, build_sparse_tensor()) + + def test_wait_all_workers_twice_sparse(self): + self._wait_all_workers_twice(heavy_rpc_sparse, build_sparse_tensor()) + + @dist_init + def test_py_sparse_tensors_in_container(self): + n = self.rank + 1 + dst_rank = n % self.world_size + a = [build_sparse_tensor(), build_sparse_tensor()] + ret = rpc.rpc_sync( + worker_name(dst_rank), my_container_sum, args=(a,) + ) + self.assertEqual(ret, my_container_sum(a)) + + @dist_init + def test_nested_rpc_sparse(self): + self._nested_rpc(nested_rpc_sparse, build_sparse_tensor() * 2) + + @dist_init + def test_stress_heavy_rpc_sparse(self): + self._stress_test_rpc(heavy_rpc_sparse, repeat=20, args=(build_sparse_tensor(),)) + + @dist_init + def test_builtin_remote_ret_sparse(self): + self._builtin_remote_ret( + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() * 2 + ) + + @dist_init + def test_builtin_remote_self_sparse(self): + self._builtin_remote_self( + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() * 2 + ) + + @dist_init + def test_multi_builtin_remote_ret_sparse(self): + self._test_multi_remote_call( + torch.add, True, + args_fn=RpcTest._multi_args_fn + ) + + @dist_init + def test_multi_py_udf_remote_sparse(self): + self._test_multi_remote_call( + my_function, + True, + kwargs_fn=RpcTest._multi_kwargs_fn + ) + + @dist_init + def test_py_rref_args_sparse(self): + self._py_rref_args( + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() * 4 + ) + + @dist_init + def test_py_rref_args_user_share_sparse(self): + self._py_rref_args_user_share( + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() * 6 + ) + + @dist_init + def test_py_rpc_rref_args_sparse(self): + self._py_rpc_rref_args( + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor(), + build_sparse_tensor() * 6 + ) + + @dist_init + def test_nested_remote_sparse(self): + self._nested_remote( + nested_remote_sparse, + build_sparse_tensor() + build_sparse_tensor() + ) + + @dist_init + def test_nested_rref_sparse(self): + self._nested_rref( + nested_rref_sparse, + build_sparse_tensor() * 2, + build_sparse_tensor() * 2 + ) + + @dist_init + def test_nested_rref_stress_sparse(self): + self._nested_rref_stress( + nested_rref_sparse, + build_sparse_tensor() * 2, + build_sparse_tensor() * 2 + ) + + @dist_init + def test_my_parameter_server_sparse(self): + self._my_parameter_server(True) + + # Test init_rpc without world_size argument + @dist_init(setup_rpc=False) + def test_dynamic_rpc_init_rpc(self): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + rpc.shutdown() + + # Dynamic RPC new ranks communicate with existing ranks + @dist_init(setup_rpc=False) + def test_dynamic_rpc_new_rank_can_communicated_with_existing_rank(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + if self.rank == 0: + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + + # Rank 0 will be initialized with RPC after this barrier + dist.barrier() + + if self.rank != 0: + # Newly joined ranks will be able to communicate with rank 0, since that was created first + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + result = rpc.rpc_sync(worker_name(0), torch.add, args=(torch.tensor(1), torch.tensor(1))) + self.assertEqual(torch.add(torch.tensor(1), torch.tensor(1)), result) + + # Barrier to ensure that all rpc_sync calls are finished + dist.barrier() + rpc.shutdown() + + # Dynamic RPC existing ranks can communicate with new ranks + @dist_init(setup_rpc=False) + def test_dynamic_rpc_existing_rank_can_communicate_with_new_rank(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + if self.rank == 0: + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + + # Rank 0 will be initialized with RPC after this barrier + dist.barrier() + + # Rest of ranks join after barrier + if self.rank != 0: + # Newly joined ranks will be able to communicate with rank 0, since that was created first + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + + dist.barrier() + if self.rank == 0: + for i in range(1, self.world_size): + result = rpc.rpc_sync(worker_name(i), torch.add, args=(torch.tensor(1), torch.tensor(1))) + self.assertEqual(torch.add(torch.tensor(1), torch.tensor(1)), result) + + # Barrier to ensure that all rpc_sync calls are finished + dist.barrier() + rpc.shutdown() + + # Dynamic RPC existing ranks can communicate with new ranks using CUDA rpc + @skip_if_lt_x_gpu(2) + @dist_init(setup_rpc=False) + def test_dynamic_rpc_existing_rank_can_communicate_with_new_rank_cuda(self): + initialize_pg(self.file_init_method, self.rank, self.world_size) + + if self.rank == 0: + options = self.rpc_backend_options + for i in range(1, self.world_size): + dst = worker_name(i) + options.set_device_map(dst, {1: 0}) + options.set_device_map(dst, {0: 1}) + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=options, + ) + + # Rank 0 will be initialized with RPC after this barrier + dist.barrier() + + # Rest of ranks join after barrier + if self.rank != 0: + # Newly joined ranks will be able to communicate with rank 0, since that was created first + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + + # TODO: Cuda RPC is failing due to: + # terminate called after throwing an instance of 'c10::Error' + # what(): 0 <= device && static_cast(device) < device_allocator.size() + # INTERNAL ASSERT FAILED at "../c10/cuda/CUDACachingAllocator.cpp":1937, + # please report a bug to PyTorch. Allocator not initialized for device 1: did you call init? + # dist.barrier() + # if self.rank == 0: + # for i in range(1, self.world_size): + # x = torch.ones(2) + # result_on_device_0 = rpc.rpc_sync(worker_name(i), torch.add, args=(x.to(0), 1)) + # result_on_device_1 = rpc.rpc_sync(worker_name(i), torch.add, args=(x.to(1), 1)) + # self.assertEqual(torch.add(torch.ones(2), 1), result_on_device_0) + # self.assertEqual(torch.device('cuda:0'), result_on_device_0.device) + # self.assertEqual(torch.add(torch.ones(2), 1), result_on_device_1) + # self.assertEqual(torch.device('cuda:1'), result_on_device_1.device) + + # Barrier to ensure that all rpc_sync calls are finished + dist.barrier() + rpc.shutdown() + + @dist_init(setup_rpc=False) + def test_dynamic_rpc_init_rpc_without_rank(self): + # default initialization uses file init + with self.assertRaisesRegex(ValueError, "rank parameter missing"): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rpc_backend_options=self.rpc_backend_options, + ) + + # env init + with self.assertRaisesRegex(ValueError, "environment variable RANK expected"): + rpc_backend_options = rpc.TensorPipeRpcBackendOptions(init_method="env://") + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rpc_backend_options=rpc_backend_options, + ) + + # tcp init + with self.assertRaisesRegex(ValueError, "rank parameter missing"): + rpc_backend_options = rpc.TensorPipeRpcBackendOptions(init_method="tcp://127.0.0.1:23456") + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rpc_backend_options=rpc_backend_options, + ) + + @dist_init(setup_rpc=False) + def test_dynamic_and_static_init_rpc_together(self): + # Initialize a static rpc group with size = self.world_size - 1 + dist.init_process_group( + backend='gloo', + init_method=self.file_init_method, + rank=self.rank, + world_size=self.world_size) + + world_size_minus_one = self.world_size - 1 + if self.rank < world_size_minus_one: + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=world_size_minus_one, + rpc_backend_options=self.rpc_backend_options, + ) + + dist.barrier() + + # Attempt to add an additional dynamic group member + if self.rank == world_size_minus_one: + # Expect error message to be thrown + with self.assertRaisesRegex(RuntimeError, "RPC group mixes statically and dynamically\ + initialized members which is not supported."): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + rpc_backend_options=self.rpc_backend_options, + ) + +class TensorPipeAgentCudaRpcTest(RpcAgentTestFixture, RpcTestCommon): + + def _test_device_maps(self, options, errMsg): + with self.assertRaisesRegex(ValueError, errMsg): + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + self.assertFalse(rpc.api._is_current_rpc_agent_set()) + + @skip_if_lt_x_gpu(2) + def test_device_maps_wrong_worker_name(self): + options = self.rpc_backend_options + options.set_device_map("none_exist", {0: 1}) + + self._test_device_maps( + options, + errMsg="Node worker0 has invalid target node names in its device maps" + ) + + @skip_if_lt_x_gpu(1) + def test_device_maps_invalid_max_local_device(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {torch.cuda.device_count(): 0}) + + self._test_device_maps( + options, + errMsg="Node worker0 has source devices with invalid indices in its device map for worker1" + ) + + @skip_if_lt_x_gpu(1) + def test_device_maps_invalid_max_remote_device(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {0: torch.cuda.device_count()}) + + self._test_device_maps( + options, + errMsg="Node worker0 has target devices with invalid indices in its device map for worker1" + ) + + @skip_if_lt_x_gpu(2) + def test_device_maps_many_to_one(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {1: 0}) + options.set_device_map(dst, {0: 0}) + + self._test_device_maps( + options, + errMsg="Node worker0 has duplicated target devices in its device map for worker1" + ) + + @skip_if_lt_x_gpu(2) + def test_device_maps_one_to_many(self): + if self.rank == 0: + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {0: 1}) + with self.assertRaisesRegex( + ValueError, "`set_device_map` only supports 1-to-1 mapping" + ): + options.set_device_map(dst, {0: 0}) + + @skip_if_lt_x_gpu(1) + def test_device_maps_invalid_min_device(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + with self.assertRaisesRegex( + RuntimeError, "Device index must not be negative" + ): + options.set_device_map(dst, {-1: 0}) + + with self.assertRaisesRegex( + RuntimeError, "Device index must not be negative" + ): + options.set_device_map(dst, {0: -1}) + + @staticmethod + def _gpu_add(x, y): + if all([x.is_cuda, x.device.index == 1, y.is_cuda, y.device.index == 1]): + return (x + y).to(0) + else: + raise ValueError("Wrong device affinity") + + @skip_if_lt_x_gpu(2) + def test_device_maps_gpu(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {0: 1, 1: 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + ret = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._gpu_add, + args=(torch.zeros(2).to(0), torch.ones(2).to(0)) + ) + self.assertEqual(ret.device, torch.device(1)) + self.assertEqual(ret, (torch.zeros(2) + torch.ones(2)).to(1)) + rpc.shutdown() + + @staticmethod + def _gpu_add_given_devices(x, y, x_to, y_to, z_to): + x_device = "cpu" if x.device.type == "cpu" else x.device.index + y_device = "cpu" if y.device.type == "cpu" else y.device.index + if x_device == x_to and y_device == y_to: + return x.to(z_to) + y.to(z_to) + else: + raise ValueError("Wrong device affinity") + + def _test_device_maps_gpu(self, x_from, y_from, z_to, device_map, dst=None, fn=None): + fn = TensorPipeAgentCudaRpcTest._gpu_add_given_devices if fn is None else fn + x_to = device_map[x_from] + y_to = device_map[y_from] + + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) if dst is None else dst + options.set_device_map(dst, device_map) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + x = torch.zeros(2).to(x_from) + y = torch.ones(2).to(y_from) + + ret = rpc.rpc_sync(dst, fn, args=(x, y, x_to, y_to, z_to)) + + reverse_device_map = {device_map[k] : k for k in device_map} + z_from = reverse_device_map[z_to] + + ret_device = "cpu" if ret.device.type == "cpu" else ret.device.index + self.assertEqual(ret_device, z_from) + self.assertEqual(ret, torch.ones(2).to(z_from)) + + rpc.shutdown() + + def test_device_map_cpu(self): + self._test_device_maps_gpu( + x_from="cpu", + y_from="cpu", + z_to="cpu", + device_map={"cpu" : "cpu"}, + fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, + ) + + @skip_if_lt_x_gpu(1) + def test_device_map_cpu_to_gpu_default(self): + self._test_device_maps_gpu( + x_from="cpu", + y_from="cpu", + z_to=0, + device_map={"cpu" : 0}, + fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_cpu_to_gpu_non_default(self): + self._test_device_maps_gpu( + x_from="cpu", + y_from="cpu", + z_to=1, + device_map={"cpu" : 1}, + fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, + ) + + @skip_if_lt_x_gpu(1) + def test_device_map_gpu_to_cpu_default(self): + self._test_device_maps_gpu( + x_from=0, + y_from=0, + z_to="cpu", + device_map={0 : "cpu"}, + fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_to_cpu_non_default(self): + self._test_device_maps_gpu( + x_from=1, + y_from=1, + z_to="cpu", + device_map={1 : "cpu"}, + fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_default(self): + self._test_device_maps_gpu( + x_from=0, + y_from=0, + z_to=0, + device_map={0 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_non_default(self): + self._test_device_maps_gpu( + x_from=1, + y_from=1, + z_to=1, + device_map={1 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_default_to_non_default(self): + self._test_device_maps_gpu( + x_from=0, + y_from=0, + z_to=1, + device_map={0 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_non_default_to_default(self): + self._test_device_maps_gpu( + x_from=1, + y_from=1, + z_to=0, + device_map={1 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_1(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=0, + device_map={0 : 0, 1 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_2(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=1, + device_map={0 : 0, 1 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_3(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=0, + device_map={0 : 0, 1 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_4(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=1, + device_map={0 : 0, 1 : 1} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_5(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=0, + device_map={0 : 1, 1 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_6(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=1, + device_map={0 : 1, 1 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_7(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=0, + device_map={0 : 1, 1 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_8(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=1, + device_map={0 : 1, 1 : 0} + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_1(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=0, + device_map={0 : 0, 1 : 1}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_2(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=1, + device_map={0 : 0, 1 : 1}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_3(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=0, + device_map={0 : 0, 1 : 1}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_4(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=1, + device_map={0 : 0, 1 : 1}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_5(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=0, + device_map={0 : 1, 1 : 0}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_6(self): + self._test_device_maps_gpu( + x_from=0, + y_from=1, + z_to=1, + device_map={0 : 1, 1 : 0}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_7(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=0, + device_map={0 : 1, 1 : 0}, + dst=worker_name(self.rank) + ) + + @skip_if_lt_x_gpu(2) + def test_device_map_gpu_mixed_self_8(self): + self._test_device_maps_gpu( + x_from=1, + y_from=0, + z_to=1, + device_map={0 : 1, 1 : 0}, + dst=worker_name(self.rank) + ) + + @staticmethod + def _gpu_add_multi_gpu(x, y): + if all([x.is_cuda, x.device.index == 1, y.is_cuda, y.device.index == 0]): + return x.to(0) + y, x - y.to(1) + else: + raise ValueError("Wrong device affinity") + + def _test_device_maps_multi_gpu(self, dst): + options = self.rpc_backend_options + options.set_device_map(dst, {0: 1}) + options.set_device_map(dst, {1: 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + x = torch.zeros(2).to(0) + y = torch.ones(2).to(1) + rets = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._gpu_add_multi_gpu, + args=(x, y) + ) + + self.assertEqual(rets[0].device, torch.device(1)) + self.assertEqual(rets[1].device, torch.device(0)) + self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) + self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) + rpc.shutdown() + + @skip_if_lt_x_gpu(2) + def test_device_maps_multi_gpu(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._test_device_maps_multi_gpu(dst) + + @skip_if_lt_x_gpu(2) + def test_device_maps_multi_gpu_self(self): + dst = worker_name(self.rank) + self._test_device_maps_multi_gpu(dst) + + @staticmethod + def _gpu_add_return_to_gpu(x, y): + if x.device.type == 'cpu' and y.device.type == 'cpu': + return (x + y).to(0), (x - y).to(1), (x * y).to(2), (x / y).to(3) + else: + raise ValueError("Wrong device affinity") + + @skip_if_lt_x_gpu(2) + def test_device_maps_in_options(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=rpc.TensorPipeRpcBackendOptions( + init_method=options.init_method, + num_worker_threads=options.num_worker_threads, + device_maps={dst: {0: 1, 1: 0}}, + _transports=tp_transports() + ) + ) + + rets = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._gpu_add_multi_gpu, + args=(torch.zeros(2).to(0), torch.ones(2).to(1)) + ) + self.assertEqual(rets[0].device, torch.device(1)) + self.assertEqual(rets[1].device, torch.device(0)) + self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) + self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) + rpc.shutdown() + + def _test_device_maps_return_to_gpu(self, dst): + options = self.rpc_backend_options + + options.set_device_map(dst, {0: 1}) + options.set_device_map(dst, {1: 2}) + options.set_device_map(dst, {2: 3}) + options.set_device_map(dst, {3: 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + rets = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._gpu_add_return_to_gpu, + args=(torch.zeros(2), torch.ones(2)) + ) + for i in range(len(rets)): + self.assertEqual(rets[i].device, torch.device((3 + i) % 4)) + self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(3)) + self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) + self.assertEqual(rets[2], (torch.zeros(2) * torch.ones(2)).to(1)) + self.assertEqual(rets[3], (torch.zeros(2) / torch.ones(2)).to(2)) + rpc.shutdown() + + @skip_if_lt_x_gpu(4) + def test_device_maps_return_to_gpu(self): + dst = worker_name((self.rank + 1) % self.world_size) + self._test_device_maps_return_to_gpu(dst) + + @skip_if_lt_x_gpu(4) + def test_device_maps_return_to_gpu_self(self): + dst = worker_name(self.rank) + self._test_device_maps_return_to_gpu(dst) + + @staticmethod + def _add_to_gpu(x, y): + return (x + y).to(0) + + def _test_device_maps_missing_config(self, mode): + dst = worker_name((self.rank + 1) % self.world_size) + errMsg = ( + "TensorPipe RPC backend only supports CPU tensors by default.*" + "`set_device_map` on `TensorPipeRpcBackendOptions`" + ) + + with self.assertRaisesRegex(RuntimeError, errMsg): + if mode == RPCExecMode.SYNC: + rpc.rpc_sync(dst, torch.add, args=(torch.zeros(2).to(0), 1)) + elif mode == RPCExecMode.REMOTE: + rpc.remote(dst, torch.add, args=(torch.zeros(2).to(0), 1)).to_here() + else: + raise ValueError(f"unexpected mode {mode}") + + # make sure RPC is still functioning + ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) + self.assertEqual(ret, torch.ones(2) + 1) + + def _test_device_maps_missing_config_response(self, mode): + dst = worker_name((self.rank + 1) % self.world_size) + errMsg = "Response device mapping is not available" + + with self.assertRaisesRegex(RuntimeError, errMsg): + if mode == RPCExecMode.SYNC: + rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._add_to_gpu, + args=(torch.zeros(2), 1) + ) + elif mode == RPCExecMode.REMOTE: + rpc.remote( + dst, + TensorPipeAgentCudaRpcTest._add_to_gpu, + args=(torch.zeros(2), 1) + ).to_here() + else: + raise ValueError(f"unexpected mode {mode}") + + # make sure RPC is still functioning + ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) + self.assertEqual(ret, torch.ones(2) + 1) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config(self): + self._test_device_maps_missing_config(RPCExecMode.SYNC) + + @skip_if_lt_x_gpu(1) + def test_device_maps_missing_config_not_timeout(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=self.rpc_backend_options + ) + + timeout = rpc.get_rpc_timeout() + + tik = time.time() + self._test_device_maps_missing_config(RPCExecMode.SYNC) + rpc.shutdown() + tok = time.time() + + self.assertTrue(tok - tik < timeout) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config_loop(self): + for _ in range(self.rpc_backend_options.num_worker_threads + 5): + self._test_device_maps_missing_config(RPCExecMode.SYNC) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config_response(self): + self._test_device_maps_missing_config_response(RPCExecMode.SYNC) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config_response_loop(self): + for _ in range(self.rpc_backend_options.num_worker_threads + 5): + self._test_device_maps_missing_config_response(RPCExecMode.SYNC) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config_remote(self): + self._test_device_maps_missing_config(RPCExecMode.REMOTE) + + @skip_if_lt_x_gpu(1) + @dist_init + def test_device_maps_missing_config_remote_response(self): + self._test_device_maps_missing_config_response(RPCExecMode.REMOTE) + + @skip_if_lt_x_gpu(2) + def test_device_maps_remote(self): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, {1: 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + rref = rpc.remote( + dst, + TensorPipeAgentCudaRpcTest._add_to_gpu, + args=(torch.zeros(2), 1) + ) + + self.assertEqual(rref.to_here().device.index, 1) + self.assertEqual(rref.to_here(), torch.ones(2).to(1)) + + rpc.shutdown() + + @staticmethod + def _slow_add_on_user_stream(x, y): + s0 = torch.cuda.current_stream(x.device) + s1 = torch.cuda.Stream(device=x.device) + s1.wait_stream(s0) + x.record_stream(s1) + y.record_stream(s1) + with torch.cuda.stream(s1): + torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) + z = x + y + s0.wait_stream(s1) + z.record_stream(s0) + return z + + def _test_custom_stream(self, fn, device_map): + options = self.rpc_backend_options + dst = worker_name((self.rank + 1) % self.world_size) + options.set_device_map(dst, device_map) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + fn(dst) + + rpc.shutdown() + + def _test_stream_sync(self, dst): + x = torch.ones(2, 2).to(0) + ret = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, + args=(x, x) + ) + self.assertEqual(ret, 2 * x) + + @skip_if_lt_x_gpu(2) + def test_custom_stream(self): + self._test_custom_stream(self._test_stream_sync, {"cuda:0": "cuda:1"}) + + def _test_stream_multi_async(self, dst): + futs = [] + for i in range(20): + x = torch.ones(2, 2).to(0) * i + futs.append( + rpc.rpc_async( + dst, + TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, + args=(x, x) + ) + ) + + for i in range(20): + self.assertEqual(futs[i].wait(), 2 * torch.ones(2, 2).to(0) * i) + + @skip_if_lt_x_gpu(2) + def test_custom_stream_multi(self): + self._test_custom_stream( + self._test_stream_multi_async, + {"cuda:0": "cuda:1"} + ) + + @staticmethod + def _nested_slow_add_on_user_stream(dst, x, y, z): + ret = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, + args=(x, y) + ) + + return TensorPipeAgentCudaRpcTest._slow_add_on_user_stream(ret, z) + + def _test_stream_nested_sync(self, dst): + x = torch.ones(2, 2).to(0) + y = torch.ones(2, 2).to(0) * 2 + z = torch.ones(2, 2).to(0) * 3 + nested_dst = worker_name((self.rank + 2) % self.world_size) + ret = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._nested_slow_add_on_user_stream, + args=(nested_dst, x, y, z) + ) + self.assertEqual(ret, 6 * x) + + @skip_if_lt_x_gpu(2) + def test_custom_stream_nested(self): + self._test_custom_stream( + self._test_stream_nested_sync, + {"cuda:0": "cuda:1", "cuda:1": "cuda:0"} + ) + + def _test_stream_nested_multi_async(self, dst): + if self.rank == 0: + futs = [] + n = 5 + xs, ys, zs = [], [], [] + for i in range(n): + x = torch.ones(2, 2).to(0) * (i - 1) + y = torch.ones(2, 2).to(0) * i + z = torch.ones(2, 2).to(0) * (i + 1) + xs.append(x) + ys.append(y) + zs.append(z) + nested_dst = worker_name((self.rank + 2) % self.world_size) + futs.append( + rpc.rpc_async( + dst, + TensorPipeAgentCudaRpcTest._nested_slow_add_on_user_stream, + args=(nested_dst, x, y, z) + ) + ) + + for i in range(n): + self.assertEqual(futs[i].wait(), xs[i] + ys[i] + zs[i]) + + @skip_if_lt_x_gpu(2) + def test_custom_stream_nested_multi(self): + self._test_custom_stream( + self._test_stream_nested_multi_async, + {"cuda:0": "cuda:1", "cuda:1": "cuda:0"} + ) + + @staticmethod + def _gpu_add_wrong_gpus(x, y): + if x.is_cuda and y.is_cuda: + return x.cpu() + y.cuda() + else: + raise ValueError("Wrong device affinity") + + @skip_if_lt_x_gpu(1) + def test_device_mismatch(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {0: 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + x = torch.zeros(2).to(0) + y = torch.ones(2).to(0) + + with self.assertRaisesRegex( + RuntimeError, + "Expected all tensors to be on the same device, but found at least two devices" + ): + rets = rpc.rpc_sync( + dst, + TensorPipeAgentCudaRpcTest._gpu_add_wrong_gpus, + args=(x, y) + ) + + rpc.shutdown() + + def _test_rref_synchronization(self, local_device, remote_device): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {local_device : remote_device}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + if self.rank == 1: + # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() + # If to_here() is properly synchronized with forward(x) the results must be identical + # This test needs multiple iterations and significant batch size to simulate real + # training of a CNN of MNIST-like data. + # see https://github.com/pytorch/pytorch/issues/54771 + rref = rpc.remote(dst, MyConvNetForMNIST, args=(remote_device,)) + for _ in range(10): + x = torch.randn(200, 1, 28, 28).to(local_device) + actual = rref.remote().forward(x).to_here() + expected = rref.rpc_sync().forward(x) + self.assertEqual(actual, expected) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_rref_to_here_synchronization1(self): + self._test_rref_synchronization("cuda:0", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_to_here_synchronization2(self): + self._test_rref_synchronization("cuda:1", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_to_here_synchronization3(self): + self._test_rref_synchronization("cuda:1", "cuda:1") + + @skip_if_lt_x_gpu(2) + def test_rref_to_here_synchronization4(self): + self._test_rref_synchronization("cuda:0", "cuda:1") + + def _test_rref_as_arg_synchronization( + self, + local_device, + remote_device, + devicesOptions=None + ): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {local_device: remote_device}) + + input_src = worker_name((self.rank - 1 + self.world_size) % self.world_size) + options.set_device_map(input_src, {remote_device: local_device}) + + if devicesOptions is not None: + options.set_devices(devicesOptions[self.rank]) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + if self.rank == 1: + # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() + # If to_here() is properly synchronized with forward(x) the results must be identical + # This test needs multiple iterations and significant batch size to simulate real + # training of a CNN of MNIST-like data. + # see https://github.com/pytorch/pytorch/issues/54771 + rref = rpc.remote(dst, MyConvNetForMNIST, args=(remote_device,)) + for _ in range(10): + rref_x = RRef(torch.randn(200, 1, 28, 28).to(local_device)) + actual = rref.remote().forward(rref_x, True).to_here() + expected = rref.rpc_sync().forward(rref_x, True) + self.assertEqual(actual, expected) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_rref_as_arg_synchronization1(self): + self._test_rref_as_arg_synchronization("cuda:0", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_as_arg_synchronization2(self): + self._test_rref_as_arg_synchronization("cuda:1", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_as_arg_synchronization3(self): + self._test_rref_as_arg_synchronization("cuda:1", "cuda:1") + + @skip_if_lt_x_gpu(2) + def test_rref_as_arg_synchronization4(self): + self._test_rref_as_arg_synchronization("cuda:0", "cuda:1") + + @skip_if_lt_x_gpu(1) + def test_rref_as_arg_synchronization5(self): + self._test_rref_as_arg_synchronization( + "cuda:0", + "cuda:0", + [["cuda:0"] for _ in range(4)], # devicesOptions + ) + + @staticmethod + def _rref_relay(rref): + return rref.to_here() + + def _test_rref_forward_synchronization(self, local_device, remote_device): + options = self.rpc_backend_options + + input_src = worker_name(0) + model_dst = worker_name(1) + out_relay = worker_name(2) + + if self.rank == 0: + # for 1) model construction 2) forward execution + options.set_device_map(model_dst, {local_device: remote_device}) + + # Forward output will be first copied to the relay node before + # returning to the worker. This is intentional, to test RRef + # forward CUDA stream synchronizations. + options.set_device_map(out_relay, {local_device: local_device}) + elif self.rank == 1: + # worker1 hosts the model and runs forward. The forward functions + # calls RRef.to_here(), hence needs to configure the device map + options.set_device_map(input_src, {remote_device: local_device}) + elif self.rank == 2: + # worker2 will get the out RRef and call to_here() and hence, needs + # to configure device map. + options.set_device_map(model_dst, {local_device: remote_device}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + if self.rank == 0: + # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() + # If to_here() is properly synchronized with forward(x) the results must be identical + # This test needs multiple iterations and significant batch size to simulate real + # training of a CNN of MNIST-like data. + # see https://github.com/pytorch/pytorch/issues/54771 + rref = rpc.remote(model_dst, MyConvNetForMNIST, args=(remote_device,)) + for _ in range(10): + rref_input = RRef(torch.randn(200, 1, 28, 28).to(local_device)) + rref_out = rref.remote().forward(rref_input, True) + out = rpc.remote( + out_relay, + TensorPipeAgentCudaRpcTest._rref_relay, + args=(rref_out,) + ).to_here() + expected = rref.rpc_sync().forward(rref_input, True) + self.assertEqual(out, expected) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_rref_forward_synchronization1(self): + self._test_rref_forward_synchronization("cuda:0", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_forward_synchronization2(self): + self._test_rref_forward_synchronization("cuda:0", "cuda:1") + + @skip_if_lt_x_gpu(2) + def test_rref_forward_synchronization3(self): + self._test_rref_forward_synchronization("cuda:1", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_rref_forward_synchronization4(self): + self._test_rref_forward_synchronization("cuda:1", "cuda:1") + + def _test_owner_rref_forward_synchronization(self, local_device, remote_device): + if self.rank == 0: + options = self.rpc_backend_options + options.set_device_map("w0", {local_device: remote_device}) + rpc.init_rpc( + "w0", + rank=0, + world_size=1, + rpc_backend_options=options + ) + + model = rpc.remote( + "w0", torch.nn.Linear, (2048, 20000) + ).remote().to(remote_device) + for _ in range(30): + data = torch.rand(2048, 2048).to(local_device) + output = model.rpc_sync().forward(data) + # to_here() internally calls localValue as the caller is + # the owner of the RRef. + v0 = rpc.RRef(output).remote().sum().to_here().item() + v1 = output.sum().item() + self.assertEqual(v0, v1) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_owner_rref_forward_synchronization1(self): + self._test_owner_rref_forward_synchronization("cuda:0", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_owner_rref_forward_synchronization2(self): + self._test_owner_rref_forward_synchronization("cuda:0", "cuda:1") + + @skip_if_lt_x_gpu(2) + def test_owner_rref_forward_synchronization3(self): + self._test_owner_rref_forward_synchronization("cuda:1", "cuda:0") + + @skip_if_lt_x_gpu(2) + def test_owner_rref_forward_synchronization4(self): + self._test_owner_rref_forward_synchronization("cuda:1", "cuda:1") + + @staticmethod + def _return_tensor_view(i): + x = torch.ones(1000, 200).cuda(0) * i + torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) + # serialization of the return value will create a new tensor from the + # view, which is done outside of the user function. + return x.split(100)[0] + + @skip_if_lt_x_gpu(1) + def test_tensor_view_as_return_value(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {0 : 0}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + futs = [] + for i in range(5): + futs.append(rpc.rpc_async( + dst, + TensorPipeAgentCudaRpcTest._return_tensor_view, + args=(i,) + )) + + for i in range(5): + self.assertEqual(torch.ones(100, 200) * i, futs[i].wait()) + + rpc.shutdown() + + @skip_if_lt_x_gpu(2) + def test_devices_option_mismatch(self): + with self.assertRaisesRegex( + ValueError, + "Node worker0 has unexpected source devices in its device map for worker1" + ): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {0 : 0}) + options.set_devices([1]) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + rpc.shutdown() + + @skip_if_lt_x_gpu(2) + def test_devices_option_mismatch_reverse(self): + with self.assertRaisesRegex( + ValueError, + "Node worker0 has unexpected target devices in its device map for worker1" + ): + dst = worker_name((self.rank + 1) % self.world_size) + + options = rpc.TensorPipeRpcBackendOptions( + init_method=self.rpc_backend_options.init_method, + num_worker_threads=self.rpc_backend_options.num_worker_threads, + device_maps={dst: {0 : 1}}, + devices=[0] + ) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_cuda_future_device_as_int(self): + fut = Future(devices=[0]) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_device_as_str(self): + fut = Future(devices=["cuda:0"]) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_device_as_device(self): + fut = Future(devices=[torch.device("cuda", 0)]) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_device_not_cuda(self): + with self.assertRaisesRegex( + ValueError, "Expected devices to have indices, got cpu" + ): + fut = Future(devices=["cpu"]) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_cuda_tensor(self): + self._test_cuda_future_extraction( + wrapper=lambda t: t, unwrapper=lambda v: v, sparse_tensor=False + ) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_list_with_cuda_tensor(self): + self._test_cuda_future_extraction( + wrapper=lambda t: [t], unwrapper=operator.itemgetter(0), sparse_tensor=False + ) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_custom_class_with_cuda_tensor(self): + self._test_cuda_future_extraction( + wrapper=TensorWrapper, unwrapper=lambda v: v.tensor, sparse_tensor=False + ) + + @skip_if_lt_x_gpu(2) + def test_cuda_future_callback_changes_devices(self): + # We check proper CUDA stream synchronization by filling the tensor with + # the expected value in one stream, and reading it from another stream. + tensor0 = torch.zeros((100,), device="cuda:0") + tensor1 = torch.zeros((100,), device="cuda:1") + parent_future = Future(devices=["cuda:0", "cuda:1"]) + + def cb(fut): + t0 = fut.value() + tensor1.copy_(t0, non_blocking=True) + return tensor1 + + child_future = parent_future.then(cb) + with torch.cuda.device("cuda:0"): + stream = torch.cuda.Stream() + with torch.cuda.stream(stream): + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + tensor0.fill_(1) + parent_future.set_result(tensor0) + with torch.cuda.device("cuda:1"): + another_stream = torch.cuda.Stream() + with torch.cuda.stream(another_stream): + self.assertTrue(torch.eq(child_future.wait(), 1).all().item()) + + @skip_if_lt_x_gpu(2) + def test_cuda_future_value_on_bad_device(self): + tensor0 = torch.zeros((100,), device="cuda:0") + tensor1 = torch.zeros((100,), device="cuda:1") + parent_future = Future(devices=["cuda:1"]) + + # As a plus, we test that futures still invoke callbacks even in case of + # error, and that the child futures are successful if those callbacks + # don't access the parent future. + def cb(fut): + with torch.cuda.device("cuda:1"): + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + tensor1.fill_(1) + return tensor1 + + child_future = parent_future.then(cb) + with torch.cuda.device("cuda:0"): + stream = torch.cuda.Stream() + with torch.cuda.stream(stream): + torch.cuda._sleep(int(1000 * get_cycles_per_ms())) + tensor0.fill_(1) + parent_future.set_result(tensor0) + with self.assertRaisesRegex( + ValueError, + r"The result contained tensors residing on device\(s\) cuda:0 " + r"which are not among the expected device\(s\) cuda:1", + ): + parent_future.wait() + with torch.cuda.device("cuda:1"): + another_stream = torch.cuda.Stream() + with torch.cuda.stream(another_stream): + self.assertTrue(torch.eq(child_future.wait(), 1).all().item()) + + @skip_if_lt_x_gpu(1) + def test_async_execution_with_cuda_future(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {"cuda:0": "cuda:0"}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + t = torch.zeros((100,), device="cuda:0") + fut = rpc.rpc_async(dst, async_cuda_sleep_and_set_to_one, args=(t,)) + another_stream = torch.cuda.Stream("cuda:0") + with torch.cuda.stream(another_stream): + self.assertTrue(torch.eq(fut.wait(), 1).all().item()) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_async_execution_nested_with_cuda_future(self): + dst = worker_name((self.rank + 1) % self.world_size) + nested_dst = worker_name((self.rank + 2) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {"cuda:0": "cuda:0"}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + a = torch.ones((100,), device="cuda:0") + b = torch.ones((100,), device="cuda:0") + c = torch.ones((100,), device="cuda:0") + fut = rpc.rpc_async(dst, async_cuda_nested_add, args=(nested_dst, a, b, c)) + another_stream = torch.cuda.Stream("cuda:0") + with torch.cuda.stream(another_stream): + self.assertTrue(torch.eq(fut.wait(), 3).all().item()) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_cuda_future_modify_tensor_inplace(self): + tensor = torch.zeros((100,), device="cuda:0") + future = Future(devices=["cuda:0"]) + future.set_result(tensor) + # It's weird to modify the value of a future once it's complete, but + # technically possible. Currently this is considered undefined behavior + # (in practice the future will ignore the modification and still + # synchronize with the original value). We could one day add logic to + # detect and warn or throw in such cases, but for now we just check that + # this doesn't crash. + tensor.fill_(1) + future.wait() + + @skip_if_lt_x_gpu(1) + def test_cuda_future_replace_tensor(self): + tensor_list = [torch.zeros((100,), device="cuda:0")] + future = Future(devices=["cuda:0"]) + future.set_result(tensor_list) + # It's weird to modify the value of a future once it's complete, but + # technically possible. Currently this is considered undefined behavior + # (in practice the future will ignore the modification and still + # synchronize with the original value). We could one day add logic to + # detect and warn or throw in such cases, but for now we just check that + # this doesn't crash. + # We set things up so that the original tensor contained in the list + # gets deleted once we replace it with the other one. This will + # invalidate any cached information held by the future. + tensor_list[0] = torch.ones((100,), device="cuda:0") + future.wait() + + @skip_if_lt_x_gpu(1) + def test_rref_with_unpickleable_attributes(self): + dst = worker_name((self.rank + 1) % self.world_size) + options = self.rpc_backend_options + options.set_device_map(dst, {"cuda:0": "cuda:0"}) + + rpc.init_rpc( + name=worker_name(self.rank), + backend=self.rpc_backend, + rank=self.rank, + world_size=self.world_size, + rpc_backend_options=options, + ) + + rref = rpc.remote(dst, TensorWrapper, args=(torch.zeros(42, device="cuda:0"),)) + rref.rpc_sync().increase(1) + ret = rref.rpc_sync().sum() + self.assertEqual(ret, 42) + + rpc.shutdown() + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_cuda_sparse_tensor(self): + self._test_cuda_future_extraction( + wrapper=lambda t: t, unwrapper=lambda v: v, sparse_tensor=True + ) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_list_with_cuda_sparse_tensor(self): + self._test_cuda_future_extraction( + wrapper=lambda t: [t], unwrapper=operator.itemgetter(0), sparse_tensor=True + ) + + @skip_if_lt_x_gpu(1) + def test_cuda_future_can_extract_custom_class_with_cuda_sparse_tensor(self): + self._test_cuda_future_extraction( + wrapper=TensorWrapper, unwrapper=lambda v: v.tensor, sparse_tensor=True + )