Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/__pycache__/appo_torch_policy.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/__pycache__/utils.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/torch/appo_torch_learner.py +260 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__init__.py +8 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__pycache__/cql.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__pycache__/cql_torch_policy.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/cql.py +389 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/cql_tf_policy.py +426 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/torch/__pycache__/cql_torch_learner.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/torch/__pycache__/cql_torch_rl_module.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__init__.py +10 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_rainbow_catalog.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_rainbow_learner.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_torch_policy.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/learner_thread.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn.py +862 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_rainbow_learner.py +109 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_rainbow_noisy_net_configs.py +60 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_tf_policy.py +500 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_torch_model.py +173 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__init__.py +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/__init__.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/dqn_rainbow_torch_learner.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/dqn_rainbow_torch_rl_module.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_learner.py +264 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_noisy_net.py +276 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_rl_module.py +337 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/torch_noisy_linear.py +147 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__init__.py +15 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/__init__.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_catalog.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_learner.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_rl_module.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/dreamerv3_catalog.py +80 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/dreamerv3_learner.py +31 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/__init__.py +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/__pycache__/dreamerv3_tf_learner.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/__pycache__/critic_network.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/actor_network.py +203 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__init__.py +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/dynamics_predictor.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/representation_layer.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/sequence_model.cpython-310.pyc +0 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/cnn_atari.py +112 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/reward_predictor.py +112 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/reward_predictor_layer.py +110 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/sequence_model.py +144 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/disagree_networks.py +94 -0
- deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/dreamer_model.py +606 -0
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/__pycache__/appo_torch_policy.cpython-310.pyc
ADDED
|
Binary file (9.95 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (3.27 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/appo/torch/appo_torch_learner.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Asynchronous Proximal Policy Optimization (APPO)
|
| 2 |
+
|
| 3 |
+
The algorithm is described in [1] (under the name of "IMPACT"):
|
| 4 |
+
|
| 5 |
+
Detailed documentation:
|
| 6 |
+
https://docs.ray.io/en/master/rllib-algorithms.html#appo
|
| 7 |
+
|
| 8 |
+
[1] IMPACT: Importance Weighted Asynchronous Architectures with Clipped Target Networks.
|
| 9 |
+
Luo et al. 2020
|
| 10 |
+
https://arxiv.org/pdf/1912.00167
|
| 11 |
+
"""
|
| 12 |
+
from typing import Dict
|
| 13 |
+
|
| 14 |
+
from ray.rllib.algorithms.appo.appo import (
|
| 15 |
+
APPOConfig,
|
| 16 |
+
LEARNER_RESULTS_CURR_KL_COEFF_KEY,
|
| 17 |
+
LEARNER_RESULTS_KL_KEY,
|
| 18 |
+
TARGET_ACTION_DIST_LOGITS_KEY,
|
| 19 |
+
)
|
| 20 |
+
from ray.rllib.algorithms.appo.appo_learner import APPOLearner
|
| 21 |
+
from ray.rllib.algorithms.impala.torch.impala_torch_learner import IMPALATorchLearner
|
| 22 |
+
from ray.rllib.algorithms.impala.torch.vtrace_torch_v2 import (
|
| 23 |
+
make_time_major,
|
| 24 |
+
vtrace_torch,
|
| 25 |
+
)
|
| 26 |
+
from ray.rllib.core.columns import Columns
|
| 27 |
+
from ray.rllib.core.learner.learner import POLICY_LOSS_KEY, VF_LOSS_KEY, ENTROPY_KEY
|
| 28 |
+
from ray.rllib.core.rl_module.apis import TargetNetworkAPI, ValueFunctionAPI
|
| 29 |
+
from ray.rllib.utils.annotations import override
|
| 30 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 31 |
+
from ray.rllib.utils.numpy import convert_to_numpy
|
| 32 |
+
from ray.rllib.utils.typing import ModuleID, TensorType
|
| 33 |
+
|
| 34 |
+
torch, nn = try_import_torch()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class APPOTorchLearner(APPOLearner, IMPALATorchLearner):
|
| 38 |
+
"""Implements APPO loss / update logic on top of IMPALATorchLearner."""
|
| 39 |
+
|
| 40 |
+
@override(IMPALATorchLearner)
|
| 41 |
+
def compute_loss_for_module(
|
| 42 |
+
self,
|
| 43 |
+
*,
|
| 44 |
+
module_id: ModuleID,
|
| 45 |
+
config: APPOConfig,
|
| 46 |
+
batch: Dict,
|
| 47 |
+
fwd_out: Dict[str, TensorType],
|
| 48 |
+
) -> TensorType:
|
| 49 |
+
module = self.module[module_id].unwrapped()
|
| 50 |
+
assert isinstance(module, TargetNetworkAPI)
|
| 51 |
+
assert isinstance(module, ValueFunctionAPI)
|
| 52 |
+
|
| 53 |
+
# TODO (sven): Now that we do the +1ts trick to be less vulnerable about
|
| 54 |
+
# bootstrap values at the end of rollouts in the new stack, we might make
|
| 55 |
+
# this a more flexible, configurable parameter for users, e.g.
|
| 56 |
+
# `v_trace_seq_len` (independent of `rollout_fragment_length`). Separation
|
| 57 |
+
# of concerns (sampling vs learning).
|
| 58 |
+
rollout_frag_or_episode_len = config.get_rollout_fragment_length()
|
| 59 |
+
recurrent_seq_len = batch.get("seq_lens")
|
| 60 |
+
|
| 61 |
+
loss_mask = batch[Columns.LOSS_MASK].float()
|
| 62 |
+
loss_mask_time_major = make_time_major(
|
| 63 |
+
loss_mask,
|
| 64 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 65 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 66 |
+
)
|
| 67 |
+
size_loss_mask = torch.sum(loss_mask)
|
| 68 |
+
|
| 69 |
+
values = module.compute_values(
|
| 70 |
+
batch, embeddings=fwd_out.get(Columns.EMBEDDINGS)
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
action_dist_cls_train = module.get_train_action_dist_cls()
|
| 74 |
+
|
| 75 |
+
# Policy being trained (current).
|
| 76 |
+
current_action_dist = action_dist_cls_train.from_logits(
|
| 77 |
+
fwd_out[Columns.ACTION_DIST_INPUTS]
|
| 78 |
+
)
|
| 79 |
+
current_actions_logp = current_action_dist.logp(batch[Columns.ACTIONS])
|
| 80 |
+
current_actions_logp_time_major = make_time_major(
|
| 81 |
+
current_actions_logp,
|
| 82 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 83 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Target policy.
|
| 87 |
+
target_action_dist = action_dist_cls_train.from_logits(
|
| 88 |
+
module.forward_target(batch)[TARGET_ACTION_DIST_LOGITS_KEY]
|
| 89 |
+
)
|
| 90 |
+
target_actions_logp = target_action_dist.logp(batch[Columns.ACTIONS])
|
| 91 |
+
target_actions_logp_time_major = make_time_major(
|
| 92 |
+
target_actions_logp,
|
| 93 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 94 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# EnvRunner's policy (behavior).
|
| 98 |
+
behavior_actions_logp = batch[Columns.ACTION_LOGP]
|
| 99 |
+
behavior_actions_logp_time_major = make_time_major(
|
| 100 |
+
behavior_actions_logp,
|
| 101 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 102 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
rewards_time_major = make_time_major(
|
| 106 |
+
batch[Columns.REWARDS],
|
| 107 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 108 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
assert Columns.VALUES_BOOTSTRAPPED not in batch
|
| 112 |
+
values_time_major = make_time_major(
|
| 113 |
+
values,
|
| 114 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 115 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 116 |
+
)
|
| 117 |
+
# Use as bootstrap values the vf-preds in the next "batch row", except
|
| 118 |
+
# for the very last row (which doesn't have a next row), for which the
|
| 119 |
+
# bootstrap value does not matter b/c it has a +1ts value at its end
|
| 120 |
+
# anyways. So we chose an arbitrary item (for simplicity of not having to
|
| 121 |
+
# move new data to the device).
|
| 122 |
+
bootstrap_values = torch.cat(
|
| 123 |
+
[
|
| 124 |
+
values_time_major[0][1:], # 0th ts values from "next row"
|
| 125 |
+
values_time_major[0][0:1], # <- can use any arbitrary value here
|
| 126 |
+
],
|
| 127 |
+
dim=0,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# The discount factor that is used should be `gamma * lambda_`, except for
|
| 131 |
+
# termination timesteps, in which case the discount factor should be 0.
|
| 132 |
+
discounts_time_major = (
|
| 133 |
+
(
|
| 134 |
+
1.0
|
| 135 |
+
- make_time_major(
|
| 136 |
+
batch[Columns.TERMINATEDS],
|
| 137 |
+
trajectory_len=rollout_frag_or_episode_len,
|
| 138 |
+
recurrent_seq_len=recurrent_seq_len,
|
| 139 |
+
).float()
|
| 140 |
+
# See [1] 3.1: Discounts must contain the GAE lambda_ parameter as well.
|
| 141 |
+
)
|
| 142 |
+
* config.gamma
|
| 143 |
+
* config.lambda_
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Note that vtrace will compute the main loop on the CPU for better performance.
|
| 147 |
+
vtrace_adjusted_target_values, pg_advantages = vtrace_torch(
|
| 148 |
+
# See [1] 3.1: For AˆV-GAE, the ratios used are: min(c¯, π(target)/π(i))
|
| 149 |
+
# π(target)
|
| 150 |
+
target_action_log_probs=target_actions_logp_time_major,
|
| 151 |
+
# π(i)
|
| 152 |
+
behaviour_action_log_probs=behavior_actions_logp_time_major,
|
| 153 |
+
# See [1] 3.1: Discounts must contain the GAE lambda_ parameter as well.
|
| 154 |
+
discounts=discounts_time_major,
|
| 155 |
+
rewards=rewards_time_major,
|
| 156 |
+
values=values_time_major,
|
| 157 |
+
bootstrap_values=bootstrap_values,
|
| 158 |
+
# c¯
|
| 159 |
+
clip_rho_threshold=config.vtrace_clip_rho_threshold,
|
| 160 |
+
# c¯ (but we allow users to distinguish between c¯ used for
|
| 161 |
+
# value estimates and c¯ used for the advantages.
|
| 162 |
+
clip_pg_rho_threshold=config.vtrace_clip_pg_rho_threshold,
|
| 163 |
+
)
|
| 164 |
+
pg_advantages = pg_advantages * loss_mask_time_major
|
| 165 |
+
|
| 166 |
+
# The policy gradient loss.
|
| 167 |
+
# As described in [1], use a logp-ratio of:
|
| 168 |
+
# min(π(i) / π(target), ρ) * (π / π(i)), where ..
|
| 169 |
+
# - π are the action probs from the current (learner) policy
|
| 170 |
+
# - π(i) are the action probs from the ith EnvRunner
|
| 171 |
+
# - π(target) are the action probs from the target network
|
| 172 |
+
# - ρ is the "target-worker clipping" (2.0 in the paper)
|
| 173 |
+
target_worker_is_ratio = torch.clip(
|
| 174 |
+
torch.exp(
|
| 175 |
+
behavior_actions_logp_time_major - target_actions_logp_time_major
|
| 176 |
+
),
|
| 177 |
+
0.0,
|
| 178 |
+
config.target_worker_clipping,
|
| 179 |
+
)
|
| 180 |
+
target_worker_logp_ratio = target_worker_is_ratio * torch.exp(
|
| 181 |
+
current_actions_logp_time_major - behavior_actions_logp_time_major
|
| 182 |
+
)
|
| 183 |
+
surrogate_loss = torch.minimum(
|
| 184 |
+
pg_advantages * target_worker_logp_ratio,
|
| 185 |
+
pg_advantages
|
| 186 |
+
* torch.clip(
|
| 187 |
+
target_worker_logp_ratio,
|
| 188 |
+
1 - config.clip_param,
|
| 189 |
+
1 + config.clip_param,
|
| 190 |
+
),
|
| 191 |
+
)
|
| 192 |
+
mean_pi_loss = -(torch.sum(surrogate_loss) / size_loss_mask)
|
| 193 |
+
|
| 194 |
+
# Compute KL-loss (if required): KL divergence between current action dist.
|
| 195 |
+
# and target action dict.
|
| 196 |
+
if config.use_kl_loss:
|
| 197 |
+
action_kl = target_action_dist.kl(current_action_dist) * loss_mask
|
| 198 |
+
mean_kl_loss = torch.sum(action_kl) / size_loss_mask
|
| 199 |
+
else:
|
| 200 |
+
mean_kl_loss = 0.0
|
| 201 |
+
|
| 202 |
+
# Compute value function loss.
|
| 203 |
+
delta = values_time_major - vtrace_adjusted_target_values
|
| 204 |
+
vf_loss = 0.5 * torch.sum(torch.pow(delta, 2.0) * loss_mask_time_major)
|
| 205 |
+
mean_vf_loss = vf_loss / size_loss_mask
|
| 206 |
+
|
| 207 |
+
# Compute entropy loss.
|
| 208 |
+
mean_entropy_loss = (
|
| 209 |
+
-torch.sum(current_action_dist.entropy() * loss_mask) / size_loss_mask
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# The summed weighted loss.
|
| 213 |
+
total_loss = (
|
| 214 |
+
mean_pi_loss
|
| 215 |
+
+ (mean_vf_loss * config.vf_loss_coeff)
|
| 216 |
+
+ (
|
| 217 |
+
mean_entropy_loss
|
| 218 |
+
* self.entropy_coeff_schedulers_per_module[
|
| 219 |
+
module_id
|
| 220 |
+
].get_current_value()
|
| 221 |
+
)
|
| 222 |
+
+ (mean_kl_loss * self.curr_kl_coeffs_per_module[module_id])
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# Log important loss stats.
|
| 226 |
+
self.metrics.log_dict(
|
| 227 |
+
{
|
| 228 |
+
POLICY_LOSS_KEY: mean_pi_loss,
|
| 229 |
+
VF_LOSS_KEY: mean_vf_loss,
|
| 230 |
+
ENTROPY_KEY: -mean_entropy_loss,
|
| 231 |
+
LEARNER_RESULTS_KL_KEY: mean_kl_loss,
|
| 232 |
+
LEARNER_RESULTS_CURR_KL_COEFF_KEY: (
|
| 233 |
+
self.curr_kl_coeffs_per_module[module_id]
|
| 234 |
+
),
|
| 235 |
+
},
|
| 236 |
+
key=module_id,
|
| 237 |
+
window=1, # <- single items (should not be mean/ema-reduced over time).
|
| 238 |
+
)
|
| 239 |
+
# Return the total loss.
|
| 240 |
+
return total_loss
|
| 241 |
+
|
| 242 |
+
@override(APPOLearner)
|
| 243 |
+
def _update_module_kl_coeff(self, module_id: ModuleID, config: APPOConfig) -> None:
|
| 244 |
+
# Update the current KL value based on the recently measured value.
|
| 245 |
+
# Increase.
|
| 246 |
+
kl = convert_to_numpy(self.metrics.peek((module_id, LEARNER_RESULTS_KL_KEY)))
|
| 247 |
+
kl_coeff_var = self.curr_kl_coeffs_per_module[module_id]
|
| 248 |
+
|
| 249 |
+
if kl > 2.0 * config.kl_target:
|
| 250 |
+
# TODO (Kourosh) why not *2.0?
|
| 251 |
+
kl_coeff_var.data *= 1.5
|
| 252 |
+
# Decrease.
|
| 253 |
+
elif kl < 0.5 * config.kl_target:
|
| 254 |
+
kl_coeff_var.data *= 0.5
|
| 255 |
+
|
| 256 |
+
self.metrics.log_value(
|
| 257 |
+
(module_id, LEARNER_RESULTS_CURR_KL_COEFF_KEY),
|
| 258 |
+
kl_coeff_var.item(),
|
| 259 |
+
window=1,
|
| 260 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ray.rllib.algorithms.cql.cql import CQL, CQLConfig
|
| 2 |
+
from ray.rllib.algorithms.cql.cql_torch_policy import CQLTorchPolicy
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"CQL",
|
| 6 |
+
"CQLTorchPolicy",
|
| 7 |
+
"CQLConfig",
|
| 8 |
+
]
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__pycache__/cql.cpython-310.pyc
ADDED
|
Binary file (10.8 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/__pycache__/cql_torch_policy.cpython-310.pyc
ADDED
|
Binary file (9.4 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/cql.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Optional, Type, Union
|
| 3 |
+
|
| 4 |
+
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig, NotProvided
|
| 5 |
+
from ray.rllib.algorithms.cql.cql_tf_policy import CQLTFPolicy
|
| 6 |
+
from ray.rllib.algorithms.cql.cql_torch_policy import CQLTorchPolicy
|
| 7 |
+
from ray.rllib.algorithms.sac.sac import (
|
| 8 |
+
SAC,
|
| 9 |
+
SACConfig,
|
| 10 |
+
)
|
| 11 |
+
from ray.rllib.connectors.common.add_observations_from_episodes_to_batch import (
|
| 12 |
+
AddObservationsFromEpisodesToBatch,
|
| 13 |
+
)
|
| 14 |
+
from ray.rllib.connectors.learner.add_next_observations_from_episodes_to_train_batch import ( # noqa
|
| 15 |
+
AddNextObservationsFromEpisodesToTrainBatch,
|
| 16 |
+
)
|
| 17 |
+
from ray.rllib.core.learner.learner import Learner
|
| 18 |
+
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
|
| 19 |
+
from ray.rllib.execution.rollout_ops import (
|
| 20 |
+
synchronous_parallel_sample,
|
| 21 |
+
)
|
| 22 |
+
from ray.rllib.execution.train_ops import (
|
| 23 |
+
multi_gpu_train_one_step,
|
| 24 |
+
train_one_step,
|
| 25 |
+
)
|
| 26 |
+
from ray.rllib.policy.policy import Policy
|
| 27 |
+
from ray.rllib.utils.annotations import OldAPIStack, override
|
| 28 |
+
from ray.rllib.utils.deprecation import (
|
| 29 |
+
DEPRECATED_VALUE,
|
| 30 |
+
deprecation_warning,
|
| 31 |
+
)
|
| 32 |
+
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
|
| 33 |
+
from ray.rllib.utils.metrics import (
|
| 34 |
+
ALL_MODULES,
|
| 35 |
+
LEARNER_RESULTS,
|
| 36 |
+
LEARNER_UPDATE_TIMER,
|
| 37 |
+
LAST_TARGET_UPDATE_TS,
|
| 38 |
+
NUM_AGENT_STEPS_SAMPLED,
|
| 39 |
+
NUM_AGENT_STEPS_TRAINED,
|
| 40 |
+
NUM_ENV_STEPS_SAMPLED,
|
| 41 |
+
NUM_ENV_STEPS_TRAINED,
|
| 42 |
+
NUM_TARGET_UPDATES,
|
| 43 |
+
OFFLINE_SAMPLING_TIMER,
|
| 44 |
+
TARGET_NET_UPDATE_TIMER,
|
| 45 |
+
SYNCH_WORKER_WEIGHTS_TIMER,
|
| 46 |
+
SAMPLE_TIMER,
|
| 47 |
+
TIMERS,
|
| 48 |
+
)
|
| 49 |
+
from ray.rllib.utils.typing import ResultDict, RLModuleSpecType
|
| 50 |
+
|
| 51 |
+
tf1, tf, tfv = try_import_tf()
|
| 52 |
+
tfp = try_import_tfp()
|
| 53 |
+
logger = logging.getLogger(__name__)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class CQLConfig(SACConfig):
|
| 57 |
+
"""Defines a configuration class from which a CQL can be built.
|
| 58 |
+
|
| 59 |
+
.. testcode::
|
| 60 |
+
:skipif: True
|
| 61 |
+
|
| 62 |
+
from ray.rllib.algorithms.cql import CQLConfig
|
| 63 |
+
config = CQLConfig().training(gamma=0.9, lr=0.01)
|
| 64 |
+
config = config.resources(num_gpus=0)
|
| 65 |
+
config = config.env_runners(num_env_runners=4)
|
| 66 |
+
print(config.to_dict())
|
| 67 |
+
# Build a Algorithm object from the config and run 1 training iteration.
|
| 68 |
+
algo = config.build(env="CartPole-v1")
|
| 69 |
+
algo.train()
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
def __init__(self, algo_class=None):
|
| 73 |
+
super().__init__(algo_class=algo_class or CQL)
|
| 74 |
+
|
| 75 |
+
# fmt: off
|
| 76 |
+
# __sphinx_doc_begin__
|
| 77 |
+
# CQL-specific config settings:
|
| 78 |
+
self.bc_iters = 20000
|
| 79 |
+
self.temperature = 1.0
|
| 80 |
+
self.num_actions = 10
|
| 81 |
+
self.lagrangian = False
|
| 82 |
+
self.lagrangian_thresh = 5.0
|
| 83 |
+
self.min_q_weight = 5.0
|
| 84 |
+
self.deterministic_backup = True
|
| 85 |
+
self.lr = 3e-4
|
| 86 |
+
# Note, the new stack defines learning rates for each component.
|
| 87 |
+
# The base learning rate `lr` has to be set to `None`, if using
|
| 88 |
+
# the new stack.
|
| 89 |
+
self.actor_lr = 1e-4
|
| 90 |
+
self.critic_lr = 1e-3
|
| 91 |
+
self.alpha_lr = 1e-3
|
| 92 |
+
|
| 93 |
+
self.replay_buffer_config = {
|
| 94 |
+
"_enable_replay_buffer_api": True,
|
| 95 |
+
"type": "MultiAgentPrioritizedReplayBuffer",
|
| 96 |
+
"capacity": int(1e6),
|
| 97 |
+
# If True prioritized replay buffer will be used.
|
| 98 |
+
"prioritized_replay": False,
|
| 99 |
+
"prioritized_replay_alpha": 0.6,
|
| 100 |
+
"prioritized_replay_beta": 0.4,
|
| 101 |
+
"prioritized_replay_eps": 1e-6,
|
| 102 |
+
# Whether to compute priorities already on the remote worker side.
|
| 103 |
+
"worker_side_prioritization": False,
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
# Changes to Algorithm's/SACConfig's default:
|
| 107 |
+
|
| 108 |
+
# .reporting()
|
| 109 |
+
self.min_sample_timesteps_per_iteration = 0
|
| 110 |
+
self.min_train_timesteps_per_iteration = 100
|
| 111 |
+
# fmt: on
|
| 112 |
+
# __sphinx_doc_end__
|
| 113 |
+
|
| 114 |
+
self.timesteps_per_iteration = DEPRECATED_VALUE
|
| 115 |
+
|
| 116 |
+
@override(SACConfig)
|
| 117 |
+
def training(
|
| 118 |
+
self,
|
| 119 |
+
*,
|
| 120 |
+
bc_iters: Optional[int] = NotProvided,
|
| 121 |
+
temperature: Optional[float] = NotProvided,
|
| 122 |
+
num_actions: Optional[int] = NotProvided,
|
| 123 |
+
lagrangian: Optional[bool] = NotProvided,
|
| 124 |
+
lagrangian_thresh: Optional[float] = NotProvided,
|
| 125 |
+
min_q_weight: Optional[float] = NotProvided,
|
| 126 |
+
deterministic_backup: Optional[bool] = NotProvided,
|
| 127 |
+
**kwargs,
|
| 128 |
+
) -> "CQLConfig":
|
| 129 |
+
"""Sets the training-related configuration.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
bc_iters: Number of iterations with Behavior Cloning pretraining.
|
| 133 |
+
temperature: CQL loss temperature.
|
| 134 |
+
num_actions: Number of actions to sample for CQL loss
|
| 135 |
+
lagrangian: Whether to use the Lagrangian for Alpha Prime (in CQL loss).
|
| 136 |
+
lagrangian_thresh: Lagrangian threshold.
|
| 137 |
+
min_q_weight: in Q weight multiplier.
|
| 138 |
+
deterministic_backup: If the target in the Bellman update should have an
|
| 139 |
+
entropy backup. Defaults to `True`.
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
This updated AlgorithmConfig object.
|
| 143 |
+
"""
|
| 144 |
+
# Pass kwargs onto super's `training()` method.
|
| 145 |
+
super().training(**kwargs)
|
| 146 |
+
|
| 147 |
+
if bc_iters is not NotProvided:
|
| 148 |
+
self.bc_iters = bc_iters
|
| 149 |
+
if temperature is not NotProvided:
|
| 150 |
+
self.temperature = temperature
|
| 151 |
+
if num_actions is not NotProvided:
|
| 152 |
+
self.num_actions = num_actions
|
| 153 |
+
if lagrangian is not NotProvided:
|
| 154 |
+
self.lagrangian = lagrangian
|
| 155 |
+
if lagrangian_thresh is not NotProvided:
|
| 156 |
+
self.lagrangian_thresh = lagrangian_thresh
|
| 157 |
+
if min_q_weight is not NotProvided:
|
| 158 |
+
self.min_q_weight = min_q_weight
|
| 159 |
+
if deterministic_backup is not NotProvided:
|
| 160 |
+
self.deterministic_backup = deterministic_backup
|
| 161 |
+
|
| 162 |
+
return self
|
| 163 |
+
|
| 164 |
+
@override(AlgorithmConfig)
|
| 165 |
+
def offline_data(self, **kwargs) -> "CQLConfig":
|
| 166 |
+
|
| 167 |
+
super().offline_data(**kwargs)
|
| 168 |
+
|
| 169 |
+
# Check, if the passed in class incorporates the `OfflinePreLearner`
|
| 170 |
+
# interface.
|
| 171 |
+
if "prelearner_class" in kwargs:
|
| 172 |
+
from ray.rllib.offline.offline_data import OfflinePreLearner
|
| 173 |
+
|
| 174 |
+
if not issubclass(kwargs.get("prelearner_class"), OfflinePreLearner):
|
| 175 |
+
raise ValueError(
|
| 176 |
+
f"`prelearner_class` {kwargs.get('prelearner_class')} is not a "
|
| 177 |
+
"subclass of `OfflinePreLearner`. Any class passed to "
|
| 178 |
+
"`prelearner_class` needs to implement the interface given by "
|
| 179 |
+
"`OfflinePreLearner`."
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
return self
|
| 183 |
+
|
| 184 |
+
@override(SACConfig)
|
| 185 |
+
def get_default_learner_class(self) -> Union[Type["Learner"], str]:
|
| 186 |
+
if self.framework_str == "torch":
|
| 187 |
+
from ray.rllib.algorithms.cql.torch.cql_torch_learner import CQLTorchLearner
|
| 188 |
+
|
| 189 |
+
return CQLTorchLearner
|
| 190 |
+
else:
|
| 191 |
+
raise ValueError(
|
| 192 |
+
f"The framework {self.framework_str} is not supported. "
|
| 193 |
+
"Use `'torch'` instead."
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
@override(AlgorithmConfig)
|
| 197 |
+
def build_learner_connector(
|
| 198 |
+
self,
|
| 199 |
+
input_observation_space,
|
| 200 |
+
input_action_space,
|
| 201 |
+
device=None,
|
| 202 |
+
):
|
| 203 |
+
pipeline = super().build_learner_connector(
|
| 204 |
+
input_observation_space=input_observation_space,
|
| 205 |
+
input_action_space=input_action_space,
|
| 206 |
+
device=device,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Prepend the "add-NEXT_OBS-from-episodes-to-train-batch" connector piece (right
|
| 210 |
+
# after the corresponding "add-OBS-..." default piece).
|
| 211 |
+
pipeline.insert_after(
|
| 212 |
+
AddObservationsFromEpisodesToBatch,
|
| 213 |
+
AddNextObservationsFromEpisodesToTrainBatch(),
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
return pipeline
|
| 217 |
+
|
| 218 |
+
@override(SACConfig)
|
| 219 |
+
def validate(self) -> None:
|
| 220 |
+
# First check, whether old `timesteps_per_iteration` is used.
|
| 221 |
+
if self.timesteps_per_iteration != DEPRECATED_VALUE:
|
| 222 |
+
deprecation_warning(
|
| 223 |
+
old="timesteps_per_iteration",
|
| 224 |
+
new="min_train_timesteps_per_iteration",
|
| 225 |
+
error=True,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Call super's validation method.
|
| 229 |
+
super().validate()
|
| 230 |
+
|
| 231 |
+
# CQL-torch performs the optimizer steps inside the loss function.
|
| 232 |
+
# Using the multi-GPU optimizer will therefore not work (see multi-GPU
|
| 233 |
+
# check above) and we must use the simple optimizer for now.
|
| 234 |
+
if self.simple_optimizer is not True and self.framework_str == "torch":
|
| 235 |
+
self.simple_optimizer = True
|
| 236 |
+
|
| 237 |
+
if self.framework_str in ["tf", "tf2"] and tfp is None:
|
| 238 |
+
logger.warning(
|
| 239 |
+
"You need `tensorflow_probability` in order to run CQL! "
|
| 240 |
+
"Install it via `pip install tensorflow_probability`. Your "
|
| 241 |
+
f"tf.__version__={tf.__version__ if tf else None}."
|
| 242 |
+
"Trying to import tfp results in the following error:"
|
| 243 |
+
)
|
| 244 |
+
try_import_tfp(error=True)
|
| 245 |
+
|
| 246 |
+
# Assert that for a local learner the number of iterations is 1. Note,
|
| 247 |
+
# this is needed because we have no iterators, but instead a single
|
| 248 |
+
# batch returned directly from the `OfflineData.sample` method.
|
| 249 |
+
if (
|
| 250 |
+
self.num_learners == 0
|
| 251 |
+
and not self.dataset_num_iters_per_learner
|
| 252 |
+
and self.enable_rl_module_and_learner
|
| 253 |
+
):
|
| 254 |
+
raise ValueError(
|
| 255 |
+
"When using a single local learner the number of iterations "
|
| 256 |
+
"per learner, `dataset_num_iters_per_learner` has to be defined. "
|
| 257 |
+
"Set this hyperparameter in the `AlgorithmConfig.offline_data`."
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
@override(SACConfig)
|
| 261 |
+
def get_default_rl_module_spec(self) -> RLModuleSpecType:
|
| 262 |
+
from ray.rllib.algorithms.sac.sac_catalog import SACCatalog
|
| 263 |
+
|
| 264 |
+
if self.framework_str == "torch":
|
| 265 |
+
from ray.rllib.algorithms.cql.torch.cql_torch_rl_module import (
|
| 266 |
+
CQLTorchRLModule,
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
return RLModuleSpec(module_class=CQLTorchRLModule, catalog_class=SACCatalog)
|
| 270 |
+
else:
|
| 271 |
+
raise ValueError(
|
| 272 |
+
f"The framework {self.framework_str} is not supported. " "Use `torch`."
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
@property
|
| 276 |
+
def _model_config_auto_includes(self):
|
| 277 |
+
return super()._model_config_auto_includes | {
|
| 278 |
+
"num_actions": self.num_actions,
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class CQL(SAC):
|
| 283 |
+
"""CQL (derived from SAC)."""
|
| 284 |
+
|
| 285 |
+
@classmethod
|
| 286 |
+
@override(SAC)
|
| 287 |
+
def get_default_config(cls) -> AlgorithmConfig:
|
| 288 |
+
return CQLConfig()
|
| 289 |
+
|
| 290 |
+
@classmethod
|
| 291 |
+
@override(SAC)
|
| 292 |
+
def get_default_policy_class(
|
| 293 |
+
cls, config: AlgorithmConfig
|
| 294 |
+
) -> Optional[Type[Policy]]:
|
| 295 |
+
if config["framework"] == "torch":
|
| 296 |
+
return CQLTorchPolicy
|
| 297 |
+
else:
|
| 298 |
+
return CQLTFPolicy
|
| 299 |
+
|
| 300 |
+
@override(SAC)
|
| 301 |
+
def training_step(self) -> None:
|
| 302 |
+
# Old API stack (Policy, RolloutWorker, Connector).
|
| 303 |
+
if not self.config.enable_env_runner_and_connector_v2:
|
| 304 |
+
return self._training_step_old_api_stack()
|
| 305 |
+
|
| 306 |
+
# Sampling from offline data.
|
| 307 |
+
with self.metrics.log_time((TIMERS, OFFLINE_SAMPLING_TIMER)):
|
| 308 |
+
# Return an iterator in case we are using remote learners.
|
| 309 |
+
batch_or_iterator = self.offline_data.sample(
|
| 310 |
+
num_samples=self.config.train_batch_size_per_learner,
|
| 311 |
+
num_shards=self.config.num_learners,
|
| 312 |
+
return_iterator=self.config.num_learners > 1,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Updating the policy.
|
| 316 |
+
with self.metrics.log_time((TIMERS, LEARNER_UPDATE_TIMER)):
|
| 317 |
+
# TODO (simon, sven): Check, if we should execute directly s.th. like
|
| 318 |
+
# `LearnerGroup.update_from_iterator()`.
|
| 319 |
+
learner_results = self.learner_group._update(
|
| 320 |
+
batch=batch_or_iterator,
|
| 321 |
+
minibatch_size=self.config.train_batch_size_per_learner,
|
| 322 |
+
num_iters=self.config.dataset_num_iters_per_learner,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Log training results.
|
| 326 |
+
self.metrics.merge_and_log_n_dicts(learner_results, key=LEARNER_RESULTS)
|
| 327 |
+
|
| 328 |
+
# Synchronize weights.
|
| 329 |
+
# As the results contain for each policy the loss and in addition the
|
| 330 |
+
# total loss over all policies is returned, this total loss has to be
|
| 331 |
+
# removed.
|
| 332 |
+
modules_to_update = set(learner_results[0].keys()) - {ALL_MODULES}
|
| 333 |
+
|
| 334 |
+
# Update weights - after learning on the local worker -
|
| 335 |
+
# on all remote workers. Note, we only have the local `EnvRunner`,
|
| 336 |
+
# but from this `EnvRunner` the evaulation `EnvRunner`s get updated.
|
| 337 |
+
with self.metrics.log_time((TIMERS, SYNCH_WORKER_WEIGHTS_TIMER)):
|
| 338 |
+
self.env_runner_group.sync_weights(
|
| 339 |
+
# Sync weights from learner_group to all EnvRunners.
|
| 340 |
+
from_worker_or_learner_group=self.learner_group,
|
| 341 |
+
policies=modules_to_update,
|
| 342 |
+
inference_only=True,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
@OldAPIStack
|
| 346 |
+
def _training_step_old_api_stack(self) -> ResultDict:
|
| 347 |
+
# Collect SampleBatches from sample workers.
|
| 348 |
+
with self._timers[SAMPLE_TIMER]:
|
| 349 |
+
train_batch = synchronous_parallel_sample(worker_set=self.env_runner_group)
|
| 350 |
+
train_batch = train_batch.as_multi_agent()
|
| 351 |
+
self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps()
|
| 352 |
+
self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps()
|
| 353 |
+
|
| 354 |
+
# Postprocess batch before we learn on it.
|
| 355 |
+
post_fn = self.config.get("before_learn_on_batch") or (lambda b, *a: b)
|
| 356 |
+
train_batch = post_fn(train_batch, self.env_runner_group, self.config)
|
| 357 |
+
|
| 358 |
+
# Learn on training batch.
|
| 359 |
+
# Use simple optimizer (only for multi-agent or tf-eager; all other
|
| 360 |
+
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
|
| 361 |
+
if self.config.get("simple_optimizer") is True:
|
| 362 |
+
train_results = train_one_step(self, train_batch)
|
| 363 |
+
else:
|
| 364 |
+
train_results = multi_gpu_train_one_step(self, train_batch)
|
| 365 |
+
|
| 366 |
+
# Update target network every `target_network_update_freq` training steps.
|
| 367 |
+
cur_ts = self._counters[
|
| 368 |
+
NUM_AGENT_STEPS_TRAINED
|
| 369 |
+
if self.config.count_steps_by == "agent_steps"
|
| 370 |
+
else NUM_ENV_STEPS_TRAINED
|
| 371 |
+
]
|
| 372 |
+
last_update = self._counters[LAST_TARGET_UPDATE_TS]
|
| 373 |
+
if cur_ts - last_update >= self.config.target_network_update_freq:
|
| 374 |
+
with self._timers[TARGET_NET_UPDATE_TIMER]:
|
| 375 |
+
to_update = self.env_runner.get_policies_to_train()
|
| 376 |
+
self.env_runner.foreach_policy_to_train(
|
| 377 |
+
lambda p, pid: pid in to_update and p.update_target()
|
| 378 |
+
)
|
| 379 |
+
self._counters[NUM_TARGET_UPDATES] += 1
|
| 380 |
+
self._counters[LAST_TARGET_UPDATE_TS] = cur_ts
|
| 381 |
+
|
| 382 |
+
# Update remote workers's weights after learning on local worker
|
| 383 |
+
# (only those policies that were actually trained).
|
| 384 |
+
if self.env_runner_group.num_remote_workers() > 0:
|
| 385 |
+
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
|
| 386 |
+
self.env_runner_group.sync_weights(policies=list(train_results.keys()))
|
| 387 |
+
|
| 388 |
+
# Return all collected metrics for the iteration.
|
| 389 |
+
return train_results
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/cql_tf_policy.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
TensorFlow policy class used for CQL.
|
| 3 |
+
"""
|
| 4 |
+
from functools import partial
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gymnasium as gym
|
| 7 |
+
import logging
|
| 8 |
+
import tree
|
| 9 |
+
from typing import Dict, List, Type, Union
|
| 10 |
+
|
| 11 |
+
import ray
|
| 12 |
+
import ray.experimental.tf_utils
|
| 13 |
+
from ray.rllib.algorithms.sac.sac_tf_policy import (
|
| 14 |
+
apply_gradients as sac_apply_gradients,
|
| 15 |
+
compute_and_clip_gradients as sac_compute_and_clip_gradients,
|
| 16 |
+
get_distribution_inputs_and_class,
|
| 17 |
+
_get_dist_class,
|
| 18 |
+
build_sac_model,
|
| 19 |
+
postprocess_trajectory,
|
| 20 |
+
setup_late_mixins,
|
| 21 |
+
stats,
|
| 22 |
+
validate_spaces,
|
| 23 |
+
ActorCriticOptimizerMixin as SACActorCriticOptimizerMixin,
|
| 24 |
+
ComputeTDErrorMixin,
|
| 25 |
+
)
|
| 26 |
+
from ray.rllib.models.modelv2 import ModelV2
|
| 27 |
+
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
|
| 28 |
+
from ray.rllib.policy.tf_mixins import TargetNetworkMixin
|
| 29 |
+
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
| 30 |
+
from ray.rllib.policy.policy import Policy
|
| 31 |
+
from ray.rllib.policy.sample_batch import SampleBatch
|
| 32 |
+
from ray.rllib.utils.exploration.random import Random
|
| 33 |
+
from ray.rllib.utils.framework import get_variable, try_import_tf, try_import_tfp
|
| 34 |
+
from ray.rllib.utils.typing import (
|
| 35 |
+
LocalOptimizer,
|
| 36 |
+
ModelGradients,
|
| 37 |
+
TensorType,
|
| 38 |
+
AlgorithmConfigDict,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
tf1, tf, tfv = try_import_tf()
|
| 42 |
+
tfp = try_import_tfp()
|
| 43 |
+
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
|
| 46 |
+
MEAN_MIN = -9.0
|
| 47 |
+
MEAN_MAX = 9.0
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def _repeat_tensor(t: TensorType, n: int):
|
| 51 |
+
# Insert new axis at position 1 into tensor t
|
| 52 |
+
t_rep = tf.expand_dims(t, 1)
|
| 53 |
+
# Repeat tensor t_rep along new axis n times
|
| 54 |
+
multiples = tf.concat([[1, n], tf.tile([1], tf.expand_dims(tf.rank(t) - 1, 0))], 0)
|
| 55 |
+
t_rep = tf.tile(t_rep, multiples)
|
| 56 |
+
# Merge new axis into batch axis
|
| 57 |
+
t_rep = tf.reshape(t_rep, tf.concat([[-1], tf.shape(t)[1:]], 0))
|
| 58 |
+
return t_rep
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Returns policy tiled actions and log probabilities for CQL Loss
|
| 62 |
+
def policy_actions_repeat(model, action_dist, obs, num_repeat=1):
|
| 63 |
+
batch_size = tf.shape(tree.flatten(obs)[0])[0]
|
| 64 |
+
obs_temp = tree.map_structure(lambda t: _repeat_tensor(t, num_repeat), obs)
|
| 65 |
+
logits, _ = model.get_action_model_outputs(obs_temp)
|
| 66 |
+
policy_dist = action_dist(logits, model)
|
| 67 |
+
actions, logp_ = policy_dist.sample_logp()
|
| 68 |
+
logp = tf.expand_dims(logp_, -1)
|
| 69 |
+
return actions, tf.reshape(logp, [batch_size, num_repeat, 1])
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def q_values_repeat(model, obs, actions, twin=False):
|
| 73 |
+
action_shape = tf.shape(actions)[0]
|
| 74 |
+
obs_shape = tf.shape(tree.flatten(obs)[0])[0]
|
| 75 |
+
num_repeat = action_shape // obs_shape
|
| 76 |
+
obs_temp = tree.map_structure(lambda t: _repeat_tensor(t, num_repeat), obs)
|
| 77 |
+
if not twin:
|
| 78 |
+
preds_, _ = model.get_q_values(obs_temp, actions)
|
| 79 |
+
else:
|
| 80 |
+
preds_, _ = model.get_twin_q_values(obs_temp, actions)
|
| 81 |
+
preds = tf.reshape(preds_, [obs_shape, num_repeat, 1])
|
| 82 |
+
return preds
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def cql_loss(
|
| 86 |
+
policy: Policy,
|
| 87 |
+
model: ModelV2,
|
| 88 |
+
dist_class: Type[TFActionDistribution],
|
| 89 |
+
train_batch: SampleBatch,
|
| 90 |
+
) -> Union[TensorType, List[TensorType]]:
|
| 91 |
+
logger.info(f"Current iteration = {policy.cur_iter}")
|
| 92 |
+
policy.cur_iter += 1
|
| 93 |
+
|
| 94 |
+
# For best performance, turn deterministic off
|
| 95 |
+
deterministic = policy.config["_deterministic_loss"]
|
| 96 |
+
assert not deterministic
|
| 97 |
+
twin_q = policy.config["twin_q"]
|
| 98 |
+
discount = policy.config["gamma"]
|
| 99 |
+
|
| 100 |
+
# CQL Parameters
|
| 101 |
+
bc_iters = policy.config["bc_iters"]
|
| 102 |
+
cql_temp = policy.config["temperature"]
|
| 103 |
+
num_actions = policy.config["num_actions"]
|
| 104 |
+
min_q_weight = policy.config["min_q_weight"]
|
| 105 |
+
use_lagrange = policy.config["lagrangian"]
|
| 106 |
+
target_action_gap = policy.config["lagrangian_thresh"]
|
| 107 |
+
|
| 108 |
+
obs = train_batch[SampleBatch.CUR_OBS]
|
| 109 |
+
actions = tf.cast(train_batch[SampleBatch.ACTIONS], tf.float32)
|
| 110 |
+
rewards = tf.cast(train_batch[SampleBatch.REWARDS], tf.float32)
|
| 111 |
+
next_obs = train_batch[SampleBatch.NEXT_OBS]
|
| 112 |
+
terminals = train_batch[SampleBatch.TERMINATEDS]
|
| 113 |
+
|
| 114 |
+
model_out_t, _ = model(SampleBatch(obs=obs, _is_training=True), [], None)
|
| 115 |
+
|
| 116 |
+
model_out_tp1, _ = model(SampleBatch(obs=next_obs, _is_training=True), [], None)
|
| 117 |
+
|
| 118 |
+
target_model_out_tp1, _ = policy.target_model(
|
| 119 |
+
SampleBatch(obs=next_obs, _is_training=True), [], None
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
action_dist_class = _get_dist_class(policy, policy.config, policy.action_space)
|
| 123 |
+
action_dist_inputs_t, _ = model.get_action_model_outputs(model_out_t)
|
| 124 |
+
action_dist_t = action_dist_class(action_dist_inputs_t, model)
|
| 125 |
+
policy_t, log_pis_t = action_dist_t.sample_logp()
|
| 126 |
+
log_pis_t = tf.expand_dims(log_pis_t, -1)
|
| 127 |
+
|
| 128 |
+
# Unlike original SAC, Alpha and Actor Loss are computed first.
|
| 129 |
+
# Alpha Loss
|
| 130 |
+
alpha_loss = -tf.reduce_mean(
|
| 131 |
+
model.log_alpha * tf.stop_gradient(log_pis_t + model.target_entropy)
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Policy Loss (Either Behavior Clone Loss or SAC Loss)
|
| 135 |
+
alpha = tf.math.exp(model.log_alpha)
|
| 136 |
+
if policy.cur_iter >= bc_iters:
|
| 137 |
+
min_q, _ = model.get_q_values(model_out_t, policy_t)
|
| 138 |
+
if twin_q:
|
| 139 |
+
twin_q_, _ = model.get_twin_q_values(model_out_t, policy_t)
|
| 140 |
+
min_q = tf.math.minimum(min_q, twin_q_)
|
| 141 |
+
actor_loss = tf.reduce_mean(tf.stop_gradient(alpha) * log_pis_t - min_q)
|
| 142 |
+
else:
|
| 143 |
+
bc_logp = action_dist_t.logp(actions)
|
| 144 |
+
actor_loss = tf.reduce_mean(tf.stop_gradient(alpha) * log_pis_t - bc_logp)
|
| 145 |
+
# actor_loss = -tf.reduce_mean(bc_logp)
|
| 146 |
+
|
| 147 |
+
# Critic Loss (Standard SAC Critic L2 Loss + CQL Entropy Loss)
|
| 148 |
+
# SAC Loss:
|
| 149 |
+
# Q-values for the batched actions.
|
| 150 |
+
action_dist_inputs_tp1, _ = model.get_action_model_outputs(model_out_tp1)
|
| 151 |
+
action_dist_tp1 = action_dist_class(action_dist_inputs_tp1, model)
|
| 152 |
+
policy_tp1, _ = action_dist_tp1.sample_logp()
|
| 153 |
+
|
| 154 |
+
q_t, _ = model.get_q_values(model_out_t, actions)
|
| 155 |
+
q_t_selected = tf.squeeze(q_t, axis=-1)
|
| 156 |
+
if twin_q:
|
| 157 |
+
twin_q_t, _ = model.get_twin_q_values(model_out_t, actions)
|
| 158 |
+
twin_q_t_selected = tf.squeeze(twin_q_t, axis=-1)
|
| 159 |
+
|
| 160 |
+
# Target q network evaluation.
|
| 161 |
+
q_tp1, _ = policy.target_model.get_q_values(target_model_out_tp1, policy_tp1)
|
| 162 |
+
if twin_q:
|
| 163 |
+
twin_q_tp1, _ = policy.target_model.get_twin_q_values(
|
| 164 |
+
target_model_out_tp1, policy_tp1
|
| 165 |
+
)
|
| 166 |
+
# Take min over both twin-NNs.
|
| 167 |
+
q_tp1 = tf.math.minimum(q_tp1, twin_q_tp1)
|
| 168 |
+
|
| 169 |
+
q_tp1_best = tf.squeeze(input=q_tp1, axis=-1)
|
| 170 |
+
q_tp1_best_masked = (1.0 - tf.cast(terminals, tf.float32)) * q_tp1_best
|
| 171 |
+
|
| 172 |
+
# compute RHS of bellman equation
|
| 173 |
+
q_t_target = tf.stop_gradient(
|
| 174 |
+
rewards + (discount ** policy.config["n_step"]) * q_tp1_best_masked
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Compute the TD-error (potentially clipped), for priority replay buffer
|
| 178 |
+
base_td_error = tf.math.abs(q_t_selected - q_t_target)
|
| 179 |
+
if twin_q:
|
| 180 |
+
twin_td_error = tf.math.abs(twin_q_t_selected - q_t_target)
|
| 181 |
+
td_error = 0.5 * (base_td_error + twin_td_error)
|
| 182 |
+
else:
|
| 183 |
+
td_error = base_td_error
|
| 184 |
+
|
| 185 |
+
critic_loss_1 = tf.keras.losses.MSE(q_t_selected, q_t_target)
|
| 186 |
+
if twin_q:
|
| 187 |
+
critic_loss_2 = tf.keras.losses.MSE(twin_q_t_selected, q_t_target)
|
| 188 |
+
|
| 189 |
+
# CQL Loss (We are using Entropy version of CQL (the best version))
|
| 190 |
+
rand_actions, _ = policy._random_action_generator.get_exploration_action(
|
| 191 |
+
action_distribution=action_dist_class(
|
| 192 |
+
tf.tile(action_dist_tp1.inputs, (num_actions, 1)), model
|
| 193 |
+
),
|
| 194 |
+
timestep=0,
|
| 195 |
+
explore=True,
|
| 196 |
+
)
|
| 197 |
+
curr_actions, curr_logp = policy_actions_repeat(
|
| 198 |
+
model, action_dist_class, model_out_t, num_actions
|
| 199 |
+
)
|
| 200 |
+
next_actions, next_logp = policy_actions_repeat(
|
| 201 |
+
model, action_dist_class, model_out_tp1, num_actions
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
q1_rand = q_values_repeat(model, model_out_t, rand_actions)
|
| 205 |
+
q1_curr_actions = q_values_repeat(model, model_out_t, curr_actions)
|
| 206 |
+
q1_next_actions = q_values_repeat(model, model_out_t, next_actions)
|
| 207 |
+
|
| 208 |
+
if twin_q:
|
| 209 |
+
q2_rand = q_values_repeat(model, model_out_t, rand_actions, twin=True)
|
| 210 |
+
q2_curr_actions = q_values_repeat(model, model_out_t, curr_actions, twin=True)
|
| 211 |
+
q2_next_actions = q_values_repeat(model, model_out_t, next_actions, twin=True)
|
| 212 |
+
|
| 213 |
+
random_density = np.log(0.5 ** int(curr_actions.shape[-1]))
|
| 214 |
+
cat_q1 = tf.concat(
|
| 215 |
+
[
|
| 216 |
+
q1_rand - random_density,
|
| 217 |
+
q1_next_actions - tf.stop_gradient(next_logp),
|
| 218 |
+
q1_curr_actions - tf.stop_gradient(curr_logp),
|
| 219 |
+
],
|
| 220 |
+
1,
|
| 221 |
+
)
|
| 222 |
+
if twin_q:
|
| 223 |
+
cat_q2 = tf.concat(
|
| 224 |
+
[
|
| 225 |
+
q2_rand - random_density,
|
| 226 |
+
q2_next_actions - tf.stop_gradient(next_logp),
|
| 227 |
+
q2_curr_actions - tf.stop_gradient(curr_logp),
|
| 228 |
+
],
|
| 229 |
+
1,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
min_qf1_loss_ = (
|
| 233 |
+
tf.reduce_mean(tf.reduce_logsumexp(cat_q1 / cql_temp, axis=1))
|
| 234 |
+
* min_q_weight
|
| 235 |
+
* cql_temp
|
| 236 |
+
)
|
| 237 |
+
min_qf1_loss = min_qf1_loss_ - (tf.reduce_mean(q_t) * min_q_weight)
|
| 238 |
+
if twin_q:
|
| 239 |
+
min_qf2_loss_ = (
|
| 240 |
+
tf.reduce_mean(tf.reduce_logsumexp(cat_q2 / cql_temp, axis=1))
|
| 241 |
+
* min_q_weight
|
| 242 |
+
* cql_temp
|
| 243 |
+
)
|
| 244 |
+
min_qf2_loss = min_qf2_loss_ - (tf.reduce_mean(twin_q_t) * min_q_weight)
|
| 245 |
+
|
| 246 |
+
if use_lagrange:
|
| 247 |
+
alpha_prime = tf.clip_by_value(model.log_alpha_prime.exp(), 0.0, 1000000.0)[0]
|
| 248 |
+
min_qf1_loss = alpha_prime * (min_qf1_loss - target_action_gap)
|
| 249 |
+
if twin_q:
|
| 250 |
+
min_qf2_loss = alpha_prime * (min_qf2_loss - target_action_gap)
|
| 251 |
+
alpha_prime_loss = 0.5 * (-min_qf1_loss - min_qf2_loss)
|
| 252 |
+
else:
|
| 253 |
+
alpha_prime_loss = -min_qf1_loss
|
| 254 |
+
|
| 255 |
+
cql_loss = [min_qf1_loss]
|
| 256 |
+
if twin_q:
|
| 257 |
+
cql_loss.append(min_qf2_loss)
|
| 258 |
+
|
| 259 |
+
critic_loss = [critic_loss_1 + min_qf1_loss]
|
| 260 |
+
if twin_q:
|
| 261 |
+
critic_loss.append(critic_loss_2 + min_qf2_loss)
|
| 262 |
+
|
| 263 |
+
# Save for stats function.
|
| 264 |
+
policy.q_t = q_t_selected
|
| 265 |
+
policy.policy_t = policy_t
|
| 266 |
+
policy.log_pis_t = log_pis_t
|
| 267 |
+
policy.td_error = td_error
|
| 268 |
+
policy.actor_loss = actor_loss
|
| 269 |
+
policy.critic_loss = critic_loss
|
| 270 |
+
policy.alpha_loss = alpha_loss
|
| 271 |
+
policy.log_alpha_value = model.log_alpha
|
| 272 |
+
policy.alpha_value = alpha
|
| 273 |
+
policy.target_entropy = model.target_entropy
|
| 274 |
+
# CQL Stats
|
| 275 |
+
policy.cql_loss = cql_loss
|
| 276 |
+
if use_lagrange:
|
| 277 |
+
policy.log_alpha_prime_value = model.log_alpha_prime[0]
|
| 278 |
+
policy.alpha_prime_value = alpha_prime
|
| 279 |
+
policy.alpha_prime_loss = alpha_prime_loss
|
| 280 |
+
|
| 281 |
+
# Return all loss terms corresponding to our optimizers.
|
| 282 |
+
if use_lagrange:
|
| 283 |
+
return actor_loss + tf.math.add_n(critic_loss) + alpha_loss + alpha_prime_loss
|
| 284 |
+
return actor_loss + tf.math.add_n(critic_loss) + alpha_loss
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def cql_stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
|
| 288 |
+
sac_dict = stats(policy, train_batch)
|
| 289 |
+
sac_dict["cql_loss"] = tf.reduce_mean(tf.stack(policy.cql_loss))
|
| 290 |
+
if policy.config["lagrangian"]:
|
| 291 |
+
sac_dict["log_alpha_prime_value"] = policy.log_alpha_prime_value
|
| 292 |
+
sac_dict["alpha_prime_value"] = policy.alpha_prime_value
|
| 293 |
+
sac_dict["alpha_prime_loss"] = policy.alpha_prime_loss
|
| 294 |
+
return sac_dict
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class ActorCriticOptimizerMixin(SACActorCriticOptimizerMixin):
|
| 298 |
+
def __init__(self, config):
|
| 299 |
+
super().__init__(config)
|
| 300 |
+
if config["lagrangian"]:
|
| 301 |
+
# Eager mode.
|
| 302 |
+
if config["framework"] == "tf2":
|
| 303 |
+
self._alpha_prime_optimizer = tf.keras.optimizers.Adam(
|
| 304 |
+
learning_rate=config["optimization"]["critic_learning_rate"]
|
| 305 |
+
)
|
| 306 |
+
# Static graph mode.
|
| 307 |
+
else:
|
| 308 |
+
self._alpha_prime_optimizer = tf1.train.AdamOptimizer(
|
| 309 |
+
learning_rate=config["optimization"]["critic_learning_rate"]
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def setup_early_mixins(
|
| 314 |
+
policy: Policy,
|
| 315 |
+
obs_space: gym.spaces.Space,
|
| 316 |
+
action_space: gym.spaces.Space,
|
| 317 |
+
config: AlgorithmConfigDict,
|
| 318 |
+
) -> None:
|
| 319 |
+
"""Call mixin classes' constructors before Policy's initialization.
|
| 320 |
+
|
| 321 |
+
Adds the necessary optimizers to the given Policy.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
policy: The Policy object.
|
| 325 |
+
obs_space (gym.spaces.Space): The Policy's observation space.
|
| 326 |
+
action_space (gym.spaces.Space): The Policy's action space.
|
| 327 |
+
config: The Policy's config.
|
| 328 |
+
"""
|
| 329 |
+
policy.cur_iter = 0
|
| 330 |
+
ActorCriticOptimizerMixin.__init__(policy, config)
|
| 331 |
+
if config["lagrangian"]:
|
| 332 |
+
policy.model.log_alpha_prime = get_variable(
|
| 333 |
+
0.0, framework="tf", trainable=True, tf_name="log_alpha_prime"
|
| 334 |
+
)
|
| 335 |
+
policy.alpha_prime_optim = tf.keras.optimizers.Adam(
|
| 336 |
+
learning_rate=config["optimization"]["critic_learning_rate"],
|
| 337 |
+
)
|
| 338 |
+
# Generic random action generator for calculating CQL-loss.
|
| 339 |
+
policy._random_action_generator = Random(
|
| 340 |
+
action_space,
|
| 341 |
+
model=None,
|
| 342 |
+
framework="tf2",
|
| 343 |
+
policy_config=config,
|
| 344 |
+
num_workers=0,
|
| 345 |
+
worker_index=0,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def compute_gradients_fn(
|
| 350 |
+
policy: Policy, optimizer: LocalOptimizer, loss: TensorType
|
| 351 |
+
) -> ModelGradients:
|
| 352 |
+
grads_and_vars = sac_compute_and_clip_gradients(policy, optimizer, loss)
|
| 353 |
+
|
| 354 |
+
if policy.config["lagrangian"]:
|
| 355 |
+
# Eager: Use GradientTape (which is a property of the `optimizer`
|
| 356 |
+
# object (an OptimizerWrapper): see rllib/policy/eager_tf_policy.py).
|
| 357 |
+
if policy.config["framework"] == "tf2":
|
| 358 |
+
tape = optimizer.tape
|
| 359 |
+
log_alpha_prime = [policy.model.log_alpha_prime]
|
| 360 |
+
alpha_prime_grads_and_vars = list(
|
| 361 |
+
zip(
|
| 362 |
+
tape.gradient(policy.alpha_prime_loss, log_alpha_prime),
|
| 363 |
+
log_alpha_prime,
|
| 364 |
+
)
|
| 365 |
+
)
|
| 366 |
+
# Tf1.x: Use optimizer.compute_gradients()
|
| 367 |
+
else:
|
| 368 |
+
alpha_prime_grads_and_vars = (
|
| 369 |
+
policy._alpha_prime_optimizer.compute_gradients(
|
| 370 |
+
policy.alpha_prime_loss, var_list=[policy.model.log_alpha_prime]
|
| 371 |
+
)
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# Clip if necessary.
|
| 375 |
+
if policy.config["grad_clip"]:
|
| 376 |
+
clip_func = partial(tf.clip_by_norm, clip_norm=policy.config["grad_clip"])
|
| 377 |
+
else:
|
| 378 |
+
clip_func = tf.identity
|
| 379 |
+
|
| 380 |
+
# Save grads and vars for later use in `build_apply_op`.
|
| 381 |
+
policy._alpha_prime_grads_and_vars = [
|
| 382 |
+
(clip_func(g), v) for (g, v) in alpha_prime_grads_and_vars if g is not None
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
grads_and_vars += policy._alpha_prime_grads_and_vars
|
| 386 |
+
return grads_and_vars
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def apply_gradients_fn(policy, optimizer, grads_and_vars):
|
| 390 |
+
sac_results = sac_apply_gradients(policy, optimizer, grads_and_vars)
|
| 391 |
+
|
| 392 |
+
if policy.config["lagrangian"]:
|
| 393 |
+
# Eager mode -> Just apply and return None.
|
| 394 |
+
if policy.config["framework"] == "tf2":
|
| 395 |
+
policy._alpha_prime_optimizer.apply_gradients(
|
| 396 |
+
policy._alpha_prime_grads_and_vars
|
| 397 |
+
)
|
| 398 |
+
return
|
| 399 |
+
# Tf static graph -> Return grouped op.
|
| 400 |
+
else:
|
| 401 |
+
alpha_prime_apply_op = policy._alpha_prime_optimizer.apply_gradients(
|
| 402 |
+
policy._alpha_prime_grads_and_vars,
|
| 403 |
+
global_step=tf1.train.get_or_create_global_step(),
|
| 404 |
+
)
|
| 405 |
+
return tf.group([sac_results, alpha_prime_apply_op])
|
| 406 |
+
return sac_results
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
# Build a child class of `TFPolicy`, given the custom functions defined
|
| 410 |
+
# above.
|
| 411 |
+
CQLTFPolicy = build_tf_policy(
|
| 412 |
+
name="CQLTFPolicy",
|
| 413 |
+
loss_fn=cql_loss,
|
| 414 |
+
get_default_config=lambda: ray.rllib.algorithms.cql.cql.CQLConfig(),
|
| 415 |
+
validate_spaces=validate_spaces,
|
| 416 |
+
stats_fn=cql_stats,
|
| 417 |
+
postprocess_fn=postprocess_trajectory,
|
| 418 |
+
before_init=setup_early_mixins,
|
| 419 |
+
after_init=setup_late_mixins,
|
| 420 |
+
make_model=build_sac_model,
|
| 421 |
+
extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error},
|
| 422 |
+
mixins=[ActorCriticOptimizerMixin, TargetNetworkMixin, ComputeTDErrorMixin],
|
| 423 |
+
action_distribution_fn=get_distribution_inputs_and_class,
|
| 424 |
+
compute_gradients_fn=compute_gradients_fn,
|
| 425 |
+
apply_gradients_fn=apply_gradients_fn,
|
| 426 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/torch/__pycache__/cql_torch_learner.cpython-310.pyc
ADDED
|
Binary file (4.68 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/cql/torch/__pycache__/cql_torch_rl_module.cpython-310.pyc
ADDED
|
Binary file (4.58 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ray.rllib.algorithms.dqn.dqn import DQN, DQNConfig
|
| 2 |
+
from ray.rllib.algorithms.dqn.dqn_tf_policy import DQNTFPolicy
|
| 3 |
+
from ray.rllib.algorithms.dqn.dqn_torch_policy import DQNTorchPolicy
|
| 4 |
+
|
| 5 |
+
__all__ = [
|
| 6 |
+
"DQN",
|
| 7 |
+
"DQNConfig",
|
| 8 |
+
"DQNTFPolicy",
|
| 9 |
+
"DQNTorchPolicy",
|
| 10 |
+
]
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_rainbow_catalog.cpython-310.pyc
ADDED
|
Binary file (8.21 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_rainbow_learner.cpython-310.pyc
ADDED
|
Binary file (3.66 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/dqn_torch_policy.cpython-310.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/__pycache__/learner_thread.cpython-310.pyc
ADDED
|
Binary file (2.69 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn.py
ADDED
|
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Deep Q-Networks (DQN, Rainbow, Parametric DQN)
|
| 3 |
+
==============================================
|
| 4 |
+
|
| 5 |
+
This file defines the distributed Algorithm class for the Deep Q-Networks
|
| 6 |
+
algorithm. See `dqn_[tf|torch]_policy.py` for the definition of the policies.
|
| 7 |
+
|
| 8 |
+
Detailed documentation:
|
| 9 |
+
https://docs.ray.io/en/master/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
|
| 10 |
+
""" # noqa: E501
|
| 11 |
+
|
| 12 |
+
from collections import defaultdict
|
| 13 |
+
import logging
|
| 14 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from ray.rllib.algorithms.algorithm import Algorithm
|
| 18 |
+
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig, NotProvided
|
| 19 |
+
from ray.rllib.algorithms.dqn.dqn_tf_policy import DQNTFPolicy
|
| 20 |
+
from ray.rllib.algorithms.dqn.dqn_torch_policy import DQNTorchPolicy
|
| 21 |
+
from ray.rllib.connectors.common.add_observations_from_episodes_to_batch import (
|
| 22 |
+
AddObservationsFromEpisodesToBatch,
|
| 23 |
+
)
|
| 24 |
+
from ray.rllib.connectors.learner.add_next_observations_from_episodes_to_train_batch import ( # noqa
|
| 25 |
+
AddNextObservationsFromEpisodesToTrainBatch,
|
| 26 |
+
)
|
| 27 |
+
from ray.rllib.core.learner import Learner
|
| 28 |
+
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
|
| 29 |
+
from ray.rllib.execution.rollout_ops import (
|
| 30 |
+
synchronous_parallel_sample,
|
| 31 |
+
)
|
| 32 |
+
from ray.rllib.policy.sample_batch import MultiAgentBatch
|
| 33 |
+
from ray.rllib.execution.train_ops import (
|
| 34 |
+
train_one_step,
|
| 35 |
+
multi_gpu_train_one_step,
|
| 36 |
+
)
|
| 37 |
+
from ray.rllib.policy.policy import Policy
|
| 38 |
+
from ray.rllib.utils import deep_update
|
| 39 |
+
from ray.rllib.utils.annotations import override
|
| 40 |
+
from ray.rllib.utils.numpy import convert_to_numpy
|
| 41 |
+
from ray.rllib.utils.replay_buffers.utils import (
|
| 42 |
+
update_priorities_in_episode_replay_buffer,
|
| 43 |
+
update_priorities_in_replay_buffer,
|
| 44 |
+
validate_buffer_config,
|
| 45 |
+
)
|
| 46 |
+
from ray.rllib.utils.typing import ResultDict
|
| 47 |
+
from ray.rllib.utils.metrics import (
|
| 48 |
+
ALL_MODULES,
|
| 49 |
+
ENV_RUNNER_RESULTS,
|
| 50 |
+
ENV_RUNNER_SAMPLING_TIMER,
|
| 51 |
+
LAST_TARGET_UPDATE_TS,
|
| 52 |
+
LEARNER_RESULTS,
|
| 53 |
+
LEARNER_UPDATE_TIMER,
|
| 54 |
+
NUM_AGENT_STEPS_SAMPLED,
|
| 55 |
+
NUM_AGENT_STEPS_SAMPLED_LIFETIME,
|
| 56 |
+
NUM_ENV_STEPS_SAMPLED,
|
| 57 |
+
NUM_ENV_STEPS_SAMPLED_LIFETIME,
|
| 58 |
+
NUM_TARGET_UPDATES,
|
| 59 |
+
REPLAY_BUFFER_ADD_DATA_TIMER,
|
| 60 |
+
REPLAY_BUFFER_SAMPLE_TIMER,
|
| 61 |
+
REPLAY_BUFFER_UPDATE_PRIOS_TIMER,
|
| 62 |
+
SAMPLE_TIMER,
|
| 63 |
+
SYNCH_WORKER_WEIGHTS_TIMER,
|
| 64 |
+
TD_ERROR_KEY,
|
| 65 |
+
TIMERS,
|
| 66 |
+
)
|
| 67 |
+
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
|
| 68 |
+
from ray.rllib.utils.replay_buffers.utils import sample_min_n_steps_from_buffer
|
| 69 |
+
from ray.rllib.utils.typing import (
|
| 70 |
+
LearningRateOrSchedule,
|
| 71 |
+
RLModuleSpecType,
|
| 72 |
+
SampleBatchType,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
logger = logging.getLogger(__name__)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DQNConfig(AlgorithmConfig):
|
| 79 |
+
r"""Defines a configuration class from which a DQN Algorithm can be built.
|
| 80 |
+
|
| 81 |
+
.. testcode::
|
| 82 |
+
|
| 83 |
+
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
| 84 |
+
|
| 85 |
+
config = (
|
| 86 |
+
DQNConfig()
|
| 87 |
+
.environment("CartPole-v1")
|
| 88 |
+
.training(replay_buffer_config={
|
| 89 |
+
"type": "PrioritizedEpisodeReplayBuffer",
|
| 90 |
+
"capacity": 60000,
|
| 91 |
+
"alpha": 0.5,
|
| 92 |
+
"beta": 0.5,
|
| 93 |
+
})
|
| 94 |
+
.env_runners(num_env_runners=1)
|
| 95 |
+
)
|
| 96 |
+
algo = config.build()
|
| 97 |
+
algo.train()
|
| 98 |
+
algo.stop()
|
| 99 |
+
|
| 100 |
+
.. testcode::
|
| 101 |
+
|
| 102 |
+
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
| 103 |
+
from ray import air
|
| 104 |
+
from ray import tune
|
| 105 |
+
|
| 106 |
+
config = (
|
| 107 |
+
DQNConfig()
|
| 108 |
+
.environment("CartPole-v1")
|
| 109 |
+
.training(
|
| 110 |
+
num_atoms=tune.grid_search([1,])
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
tune.Tuner(
|
| 114 |
+
"DQN",
|
| 115 |
+
run_config=air.RunConfig(stop={"training_iteration":1}),
|
| 116 |
+
param_space=config,
|
| 117 |
+
).fit()
|
| 118 |
+
|
| 119 |
+
.. testoutput::
|
| 120 |
+
:hide:
|
| 121 |
+
|
| 122 |
+
...
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
def __init__(self, algo_class=None):
|
| 128 |
+
"""Initializes a DQNConfig instance."""
|
| 129 |
+
self.exploration_config = {
|
| 130 |
+
"type": "EpsilonGreedy",
|
| 131 |
+
"initial_epsilon": 1.0,
|
| 132 |
+
"final_epsilon": 0.02,
|
| 133 |
+
"epsilon_timesteps": 10000,
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
super().__init__(algo_class=algo_class or DQN)
|
| 137 |
+
|
| 138 |
+
# Overrides of AlgorithmConfig defaults
|
| 139 |
+
# `env_runners()`
|
| 140 |
+
# Set to `self.n_step`, if 'auto'.
|
| 141 |
+
self.rollout_fragment_length: Union[int, str] = "auto"
|
| 142 |
+
# New stack uses `epsilon` as either a constant value or a scheduler
|
| 143 |
+
# defined like this.
|
| 144 |
+
# TODO (simon): Ensure that users can understand how to provide epsilon.
|
| 145 |
+
# (sven): Should we add this to `self.env_runners(epsilon=..)`?
|
| 146 |
+
self.epsilon = [(0, 1.0), (10000, 0.05)]
|
| 147 |
+
|
| 148 |
+
# `training()`
|
| 149 |
+
self.grad_clip = 40.0
|
| 150 |
+
# Note: Only when using enable_rl_module_and_learner=True can the clipping mode
|
| 151 |
+
# be configured by the user. On the old API stack, RLlib will always clip by
|
| 152 |
+
# global_norm, no matter the value of `grad_clip_by`.
|
| 153 |
+
self.grad_clip_by = "global_norm"
|
| 154 |
+
self.lr = 5e-4
|
| 155 |
+
self.train_batch_size = 32
|
| 156 |
+
|
| 157 |
+
# `evaluation()`
|
| 158 |
+
self.evaluation(evaluation_config=AlgorithmConfig.overrides(explore=False))
|
| 159 |
+
|
| 160 |
+
# `reporting()`
|
| 161 |
+
self.min_time_s_per_iteration = None
|
| 162 |
+
self.min_sample_timesteps_per_iteration = 1000
|
| 163 |
+
|
| 164 |
+
# DQN specific config settings.
|
| 165 |
+
# fmt: off
|
| 166 |
+
# __sphinx_doc_begin__
|
| 167 |
+
self.target_network_update_freq = 500
|
| 168 |
+
self.num_steps_sampled_before_learning_starts = 1000
|
| 169 |
+
self.store_buffer_in_checkpoints = False
|
| 170 |
+
self.adam_epsilon = 1e-8
|
| 171 |
+
|
| 172 |
+
self.tau = 1.0
|
| 173 |
+
|
| 174 |
+
self.num_atoms = 1
|
| 175 |
+
self.v_min = -10.0
|
| 176 |
+
self.v_max = 10.0
|
| 177 |
+
self.noisy = False
|
| 178 |
+
self.sigma0 = 0.5
|
| 179 |
+
self.dueling = True
|
| 180 |
+
self.hiddens = [256]
|
| 181 |
+
self.double_q = True
|
| 182 |
+
self.n_step = 1
|
| 183 |
+
self.before_learn_on_batch = None
|
| 184 |
+
self.training_intensity = None
|
| 185 |
+
self.td_error_loss_fn = "huber"
|
| 186 |
+
self.categorical_distribution_temperature = 1.0
|
| 187 |
+
|
| 188 |
+
# Replay buffer configuration.
|
| 189 |
+
self.replay_buffer_config = {
|
| 190 |
+
"type": "PrioritizedEpisodeReplayBuffer",
|
| 191 |
+
# Size of the replay buffer. Note that if async_updates is set,
|
| 192 |
+
# then each worker will have a replay buffer of this size.
|
| 193 |
+
"capacity": 50000,
|
| 194 |
+
"alpha": 0.6,
|
| 195 |
+
# Beta parameter for sampling from prioritized replay buffer.
|
| 196 |
+
"beta": 0.4,
|
| 197 |
+
}
|
| 198 |
+
# fmt: on
|
| 199 |
+
# __sphinx_doc_end__
|
| 200 |
+
|
| 201 |
+
self.lr_schedule = None # @OldAPIStack
|
| 202 |
+
|
| 203 |
+
# Deprecated
|
| 204 |
+
self.buffer_size = DEPRECATED_VALUE
|
| 205 |
+
self.prioritized_replay = DEPRECATED_VALUE
|
| 206 |
+
self.learning_starts = DEPRECATED_VALUE
|
| 207 |
+
self.replay_batch_size = DEPRECATED_VALUE
|
| 208 |
+
# Can not use DEPRECATED_VALUE here because -1 is a common config value
|
| 209 |
+
self.replay_sequence_length = None
|
| 210 |
+
self.prioritized_replay_alpha = DEPRECATED_VALUE
|
| 211 |
+
self.prioritized_replay_beta = DEPRECATED_VALUE
|
| 212 |
+
self.prioritized_replay_eps = DEPRECATED_VALUE
|
| 213 |
+
|
| 214 |
+
@override(AlgorithmConfig)
|
| 215 |
+
def training(
|
| 216 |
+
self,
|
| 217 |
+
*,
|
| 218 |
+
target_network_update_freq: Optional[int] = NotProvided,
|
| 219 |
+
replay_buffer_config: Optional[dict] = NotProvided,
|
| 220 |
+
store_buffer_in_checkpoints: Optional[bool] = NotProvided,
|
| 221 |
+
lr_schedule: Optional[List[List[Union[int, float]]]] = NotProvided,
|
| 222 |
+
epsilon: Optional[LearningRateOrSchedule] = NotProvided,
|
| 223 |
+
adam_epsilon: Optional[float] = NotProvided,
|
| 224 |
+
grad_clip: Optional[int] = NotProvided,
|
| 225 |
+
num_steps_sampled_before_learning_starts: Optional[int] = NotProvided,
|
| 226 |
+
tau: Optional[float] = NotProvided,
|
| 227 |
+
num_atoms: Optional[int] = NotProvided,
|
| 228 |
+
v_min: Optional[float] = NotProvided,
|
| 229 |
+
v_max: Optional[float] = NotProvided,
|
| 230 |
+
noisy: Optional[bool] = NotProvided,
|
| 231 |
+
sigma0: Optional[float] = NotProvided,
|
| 232 |
+
dueling: Optional[bool] = NotProvided,
|
| 233 |
+
hiddens: Optional[int] = NotProvided,
|
| 234 |
+
double_q: Optional[bool] = NotProvided,
|
| 235 |
+
n_step: Optional[Union[int, Tuple[int, int]]] = NotProvided,
|
| 236 |
+
before_learn_on_batch: Callable[
|
| 237 |
+
[Type[MultiAgentBatch], List[Type[Policy]], Type[int]],
|
| 238 |
+
Type[MultiAgentBatch],
|
| 239 |
+
] = NotProvided,
|
| 240 |
+
training_intensity: Optional[float] = NotProvided,
|
| 241 |
+
td_error_loss_fn: Optional[str] = NotProvided,
|
| 242 |
+
categorical_distribution_temperature: Optional[float] = NotProvided,
|
| 243 |
+
**kwargs,
|
| 244 |
+
) -> "DQNConfig":
|
| 245 |
+
"""Sets the training related configuration.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
target_network_update_freq: Update the target network every
|
| 249 |
+
`target_network_update_freq` sample steps.
|
| 250 |
+
replay_buffer_config: Replay buffer config.
|
| 251 |
+
Examples:
|
| 252 |
+
{
|
| 253 |
+
"_enable_replay_buffer_api": True,
|
| 254 |
+
"type": "MultiAgentReplayBuffer",
|
| 255 |
+
"capacity": 50000,
|
| 256 |
+
"replay_sequence_length": 1,
|
| 257 |
+
}
|
| 258 |
+
- OR -
|
| 259 |
+
{
|
| 260 |
+
"_enable_replay_buffer_api": True,
|
| 261 |
+
"type": "MultiAgentPrioritizedReplayBuffer",
|
| 262 |
+
"capacity": 50000,
|
| 263 |
+
"prioritized_replay_alpha": 0.6,
|
| 264 |
+
"prioritized_replay_beta": 0.4,
|
| 265 |
+
"prioritized_replay_eps": 1e-6,
|
| 266 |
+
"replay_sequence_length": 1,
|
| 267 |
+
}
|
| 268 |
+
- Where -
|
| 269 |
+
prioritized_replay_alpha: Alpha parameter controls the degree of
|
| 270 |
+
prioritization in the buffer. In other words, when a buffer sample has
|
| 271 |
+
a higher temporal-difference error, with how much more probability
|
| 272 |
+
should it drawn to use to update the parametrized Q-network. 0.0
|
| 273 |
+
corresponds to uniform probability. Setting much above 1.0 may quickly
|
| 274 |
+
result as the sampling distribution could become heavily “pointy” with
|
| 275 |
+
low entropy.
|
| 276 |
+
prioritized_replay_beta: Beta parameter controls the degree of
|
| 277 |
+
importance sampling which suppresses the influence of gradient updates
|
| 278 |
+
from samples that have higher probability of being sampled via alpha
|
| 279 |
+
parameter and the temporal-difference error.
|
| 280 |
+
prioritized_replay_eps: Epsilon parameter sets the baseline probability
|
| 281 |
+
for sampling so that when the temporal-difference error of a sample is
|
| 282 |
+
zero, there is still a chance of drawing the sample.
|
| 283 |
+
store_buffer_in_checkpoints: Set this to True, if you want the contents of
|
| 284 |
+
your buffer(s) to be stored in any saved checkpoints as well.
|
| 285 |
+
Warnings will be created if:
|
| 286 |
+
- This is True AND restoring from a checkpoint that contains no buffer
|
| 287 |
+
data.
|
| 288 |
+
- This is False AND restoring from a checkpoint that does contain
|
| 289 |
+
buffer data.
|
| 290 |
+
epsilon: Epsilon exploration schedule. In the format of [[timestep, value],
|
| 291 |
+
[timestep, value], ...]. A schedule must start from
|
| 292 |
+
timestep 0.
|
| 293 |
+
adam_epsilon: Adam optimizer's epsilon hyper parameter.
|
| 294 |
+
grad_clip: If not None, clip gradients during optimization at this value.
|
| 295 |
+
num_steps_sampled_before_learning_starts: Number of timesteps to collect
|
| 296 |
+
from rollout workers before we start sampling from replay buffers for
|
| 297 |
+
learning. Whether we count this in agent steps or environment steps
|
| 298 |
+
depends on config.multi_agent(count_steps_by=..).
|
| 299 |
+
tau: Update the target by \tau * policy + (1-\tau) * target_policy.
|
| 300 |
+
num_atoms: Number of atoms for representing the distribution of return.
|
| 301 |
+
When this is greater than 1, distributional Q-learning is used.
|
| 302 |
+
v_min: Minimum value estimation
|
| 303 |
+
v_max: Maximum value estimation
|
| 304 |
+
noisy: Whether to use noisy network to aid exploration. This adds parametric
|
| 305 |
+
noise to the model weights.
|
| 306 |
+
sigma0: Control the initial parameter noise for noisy nets.
|
| 307 |
+
dueling: Whether to use dueling DQN.
|
| 308 |
+
hiddens: Dense-layer setup for each the advantage branch and the value
|
| 309 |
+
branch
|
| 310 |
+
double_q: Whether to use double DQN.
|
| 311 |
+
n_step: N-step target updates. If >1, sars' tuples in trajectories will be
|
| 312 |
+
postprocessed to become sa[discounted sum of R][s t+n] tuples. An
|
| 313 |
+
integer will be interpreted as a fixed n-step value. If a tuple of 2
|
| 314 |
+
ints is provided here, the n-step value will be drawn for each sample(!)
|
| 315 |
+
in the train batch from a uniform distribution over the closed interval
|
| 316 |
+
defined by `[n_step[0], n_step[1]]`.
|
| 317 |
+
before_learn_on_batch: Callback to run before learning on a multi-agent
|
| 318 |
+
batch of experiences.
|
| 319 |
+
training_intensity: The intensity with which to update the model (vs
|
| 320 |
+
collecting samples from the env).
|
| 321 |
+
If None, uses "natural" values of:
|
| 322 |
+
`train_batch_size` / (`rollout_fragment_length` x `num_env_runners` x
|
| 323 |
+
`num_envs_per_env_runner`).
|
| 324 |
+
If not None, will make sure that the ratio between timesteps inserted
|
| 325 |
+
into and sampled from the buffer matches the given values.
|
| 326 |
+
Example:
|
| 327 |
+
training_intensity=1000.0
|
| 328 |
+
train_batch_size=250
|
| 329 |
+
rollout_fragment_length=1
|
| 330 |
+
num_env_runners=1 (or 0)
|
| 331 |
+
num_envs_per_env_runner=1
|
| 332 |
+
-> natural value = 250 / 1 = 250.0
|
| 333 |
+
-> will make sure that replay+train op will be executed 4x asoften as
|
| 334 |
+
rollout+insert op (4 * 250 = 1000).
|
| 335 |
+
See: rllib/algorithms/dqn/dqn.py::calculate_rr_weights for further
|
| 336 |
+
details.
|
| 337 |
+
td_error_loss_fn: "huber" or "mse". loss function for calculating TD error
|
| 338 |
+
when num_atoms is 1. Note that if num_atoms is > 1, this parameter
|
| 339 |
+
is simply ignored, and softmax cross entropy loss will be used.
|
| 340 |
+
categorical_distribution_temperature: Set the temperature parameter used
|
| 341 |
+
by Categorical action distribution. A valid temperature is in the range
|
| 342 |
+
of [0, 1]. Note that this mostly affects evaluation since TD error uses
|
| 343 |
+
argmax for return calculation.
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
This updated AlgorithmConfig object.
|
| 347 |
+
"""
|
| 348 |
+
# Pass kwargs onto super's `training()` method.
|
| 349 |
+
super().training(**kwargs)
|
| 350 |
+
|
| 351 |
+
if target_network_update_freq is not NotProvided:
|
| 352 |
+
self.target_network_update_freq = target_network_update_freq
|
| 353 |
+
if replay_buffer_config is not NotProvided:
|
| 354 |
+
# Override entire `replay_buffer_config` if `type` key changes.
|
| 355 |
+
# Update, if `type` key remains the same or is not specified.
|
| 356 |
+
new_replay_buffer_config = deep_update(
|
| 357 |
+
{"replay_buffer_config": self.replay_buffer_config},
|
| 358 |
+
{"replay_buffer_config": replay_buffer_config},
|
| 359 |
+
False,
|
| 360 |
+
["replay_buffer_config"],
|
| 361 |
+
["replay_buffer_config"],
|
| 362 |
+
)
|
| 363 |
+
self.replay_buffer_config = new_replay_buffer_config["replay_buffer_config"]
|
| 364 |
+
if store_buffer_in_checkpoints is not NotProvided:
|
| 365 |
+
self.store_buffer_in_checkpoints = store_buffer_in_checkpoints
|
| 366 |
+
if lr_schedule is not NotProvided:
|
| 367 |
+
self.lr_schedule = lr_schedule
|
| 368 |
+
if epsilon is not NotProvided:
|
| 369 |
+
self.epsilon = epsilon
|
| 370 |
+
if adam_epsilon is not NotProvided:
|
| 371 |
+
self.adam_epsilon = adam_epsilon
|
| 372 |
+
if grad_clip is not NotProvided:
|
| 373 |
+
self.grad_clip = grad_clip
|
| 374 |
+
if num_steps_sampled_before_learning_starts is not NotProvided:
|
| 375 |
+
self.num_steps_sampled_before_learning_starts = (
|
| 376 |
+
num_steps_sampled_before_learning_starts
|
| 377 |
+
)
|
| 378 |
+
if tau is not NotProvided:
|
| 379 |
+
self.tau = tau
|
| 380 |
+
if num_atoms is not NotProvided:
|
| 381 |
+
self.num_atoms = num_atoms
|
| 382 |
+
if v_min is not NotProvided:
|
| 383 |
+
self.v_min = v_min
|
| 384 |
+
if v_max is not NotProvided:
|
| 385 |
+
self.v_max = v_max
|
| 386 |
+
if noisy is not NotProvided:
|
| 387 |
+
self.noisy = noisy
|
| 388 |
+
if sigma0 is not NotProvided:
|
| 389 |
+
self.sigma0 = sigma0
|
| 390 |
+
if dueling is not NotProvided:
|
| 391 |
+
self.dueling = dueling
|
| 392 |
+
if hiddens is not NotProvided:
|
| 393 |
+
self.hiddens = hiddens
|
| 394 |
+
if double_q is not NotProvided:
|
| 395 |
+
self.double_q = double_q
|
| 396 |
+
if n_step is not NotProvided:
|
| 397 |
+
self.n_step = n_step
|
| 398 |
+
if before_learn_on_batch is not NotProvided:
|
| 399 |
+
self.before_learn_on_batch = before_learn_on_batch
|
| 400 |
+
if training_intensity is not NotProvided:
|
| 401 |
+
self.training_intensity = training_intensity
|
| 402 |
+
if td_error_loss_fn is not NotProvided:
|
| 403 |
+
self.td_error_loss_fn = td_error_loss_fn
|
| 404 |
+
if categorical_distribution_temperature is not NotProvided:
|
| 405 |
+
self.categorical_distribution_temperature = (
|
| 406 |
+
categorical_distribution_temperature
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
return self
|
| 410 |
+
|
| 411 |
+
@override(AlgorithmConfig)
|
| 412 |
+
def validate(self) -> None:
|
| 413 |
+
# Call super's validation method.
|
| 414 |
+
super().validate()
|
| 415 |
+
|
| 416 |
+
# Warn about new API stack on by default.
|
| 417 |
+
if self.enable_rl_module_and_learner:
|
| 418 |
+
logger.warning(
|
| 419 |
+
f"You are running {self.algo_class.__name__} on the new API stack! "
|
| 420 |
+
"This is the new default behavior for this algorithm. If you don't "
|
| 421 |
+
"want to use the new API stack, set `config.api_stack("
|
| 422 |
+
"enable_rl_module_and_learner=False,"
|
| 423 |
+
"enable_env_runner_and_connector_v2=False)`. For a detailed migration "
|
| 424 |
+
"guide, see here: https://docs.ray.io/en/master/rllib/new-api-stack-migration-guide.html" # noqa
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if (
|
| 428 |
+
not self.enable_rl_module_and_learner
|
| 429 |
+
and self.exploration_config["type"] == "ParameterNoise"
|
| 430 |
+
):
|
| 431 |
+
if self.batch_mode != "complete_episodes":
|
| 432 |
+
raise ValueError(
|
| 433 |
+
"ParameterNoise Exploration requires `batch_mode` to be "
|
| 434 |
+
"'complete_episodes'. Try setting `config.env_runners("
|
| 435 |
+
"batch_mode='complete_episodes')`."
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
if not self.enable_env_runner_and_connector_v2 and not self.in_evaluation:
|
| 439 |
+
validate_buffer_config(self)
|
| 440 |
+
|
| 441 |
+
if self.td_error_loss_fn not in ["huber", "mse"]:
|
| 442 |
+
raise ValueError("`td_error_loss_fn` must be 'huber' or 'mse'!")
|
| 443 |
+
|
| 444 |
+
# Check rollout_fragment_length to be compatible with n_step.
|
| 445 |
+
if (
|
| 446 |
+
not self.in_evaluation
|
| 447 |
+
and self.rollout_fragment_length != "auto"
|
| 448 |
+
and self.rollout_fragment_length < self.n_step
|
| 449 |
+
):
|
| 450 |
+
raise ValueError(
|
| 451 |
+
f"Your `rollout_fragment_length` ({self.rollout_fragment_length}) is "
|
| 452 |
+
f"smaller than `n_step` ({self.n_step})! "
|
| 453 |
+
"Try setting config.env_runners(rollout_fragment_length="
|
| 454 |
+
f"{self.n_step})."
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# TODO (simon): Find a clean solution to deal with
|
| 458 |
+
# configuration configs when using the new API stack.
|
| 459 |
+
if (
|
| 460 |
+
not self.enable_rl_module_and_learner
|
| 461 |
+
and self.exploration_config["type"] == "ParameterNoise"
|
| 462 |
+
):
|
| 463 |
+
if self.batch_mode != "complete_episodes":
|
| 464 |
+
raise ValueError(
|
| 465 |
+
"ParameterNoise Exploration requires `batch_mode` to be "
|
| 466 |
+
"'complete_episodes'. Try setting `config.env_runners("
|
| 467 |
+
"batch_mode='complete_episodes')`."
|
| 468 |
+
)
|
| 469 |
+
if self.noisy:
|
| 470 |
+
raise ValueError(
|
| 471 |
+
"ParameterNoise Exploration and `noisy` network cannot be"
|
| 472 |
+
" used at the same time!"
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
# Validate that we use the corresponding `EpisodeReplayBuffer` when using
|
| 476 |
+
# episodes.
|
| 477 |
+
# TODO (sven, simon): Implement the multi-agent case for replay buffers.
|
| 478 |
+
from ray.rllib.utils.replay_buffers.episode_replay_buffer import (
|
| 479 |
+
EpisodeReplayBuffer,
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
if (
|
| 483 |
+
self.enable_env_runner_and_connector_v2
|
| 484 |
+
and not isinstance(self.replay_buffer_config["type"], str)
|
| 485 |
+
and not issubclass(self.replay_buffer_config["type"], EpisodeReplayBuffer)
|
| 486 |
+
):
|
| 487 |
+
raise ValueError(
|
| 488 |
+
"When using the new `EnvRunner API` the replay buffer must be of type "
|
| 489 |
+
"`EpisodeReplayBuffer`."
|
| 490 |
+
)
|
| 491 |
+
elif not self.enable_env_runner_and_connector_v2 and (
|
| 492 |
+
(
|
| 493 |
+
isinstance(self.replay_buffer_config["type"], str)
|
| 494 |
+
and "Episode" in self.replay_buffer_config["type"]
|
| 495 |
+
)
|
| 496 |
+
or issubclass(self.replay_buffer_config["type"], EpisodeReplayBuffer)
|
| 497 |
+
):
|
| 498 |
+
raise ValueError(
|
| 499 |
+
"When using the old API stack the replay buffer must not be of type "
|
| 500 |
+
"`EpisodeReplayBuffer`! We suggest you use the following config to run "
|
| 501 |
+
"DQN on the old API stack: `config.training(replay_buffer_config={"
|
| 502 |
+
"'type': 'MultiAgentPrioritizedReplayBuffer', "
|
| 503 |
+
"'prioritized_replay_alpha': [alpha], "
|
| 504 |
+
"'prioritized_replay_beta': [beta], "
|
| 505 |
+
"'prioritized_replay_eps': [eps], "
|
| 506 |
+
"})`."
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
@override(AlgorithmConfig)
|
| 510 |
+
def get_rollout_fragment_length(self, worker_index: int = 0) -> int:
|
| 511 |
+
if self.rollout_fragment_length == "auto":
|
| 512 |
+
return (
|
| 513 |
+
self.n_step[1]
|
| 514 |
+
if isinstance(self.n_step, (tuple, list))
|
| 515 |
+
else self.n_step
|
| 516 |
+
)
|
| 517 |
+
else:
|
| 518 |
+
return self.rollout_fragment_length
|
| 519 |
+
|
| 520 |
+
@override(AlgorithmConfig)
|
| 521 |
+
def get_default_rl_module_spec(self) -> RLModuleSpecType:
|
| 522 |
+
from ray.rllib.algorithms.dqn.dqn_rainbow_catalog import DQNRainbowCatalog
|
| 523 |
+
|
| 524 |
+
if self.framework_str == "torch":
|
| 525 |
+
from ray.rllib.algorithms.dqn.torch.dqn_rainbow_torch_rl_module import (
|
| 526 |
+
DQNRainbowTorchRLModule,
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
return RLModuleSpec(
|
| 530 |
+
module_class=DQNRainbowTorchRLModule,
|
| 531 |
+
catalog_class=DQNRainbowCatalog,
|
| 532 |
+
model_config=self.model_config,
|
| 533 |
+
)
|
| 534 |
+
else:
|
| 535 |
+
raise ValueError(
|
| 536 |
+
f"The framework {self.framework_str} is not supported! "
|
| 537 |
+
"Use `config.framework('torch')` instead."
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
@property
|
| 541 |
+
@override(AlgorithmConfig)
|
| 542 |
+
def _model_config_auto_includes(self) -> Dict[str, Any]:
|
| 543 |
+
return super()._model_config_auto_includes | {
|
| 544 |
+
"double_q": self.double_q,
|
| 545 |
+
"dueling": self.dueling,
|
| 546 |
+
"epsilon": self.epsilon,
|
| 547 |
+
"noisy": self.noisy,
|
| 548 |
+
"num_atoms": self.num_atoms,
|
| 549 |
+
"std_init": self.sigma0,
|
| 550 |
+
"v_max": self.v_max,
|
| 551 |
+
"v_min": self.v_min,
|
| 552 |
+
}
|
| 553 |
+
|
| 554 |
+
@override(AlgorithmConfig)
|
| 555 |
+
def get_default_learner_class(self) -> Union[Type["Learner"], str]:
|
| 556 |
+
if self.framework_str == "torch":
|
| 557 |
+
from ray.rllib.algorithms.dqn.torch.dqn_rainbow_torch_learner import (
|
| 558 |
+
DQNRainbowTorchLearner,
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
return DQNRainbowTorchLearner
|
| 562 |
+
else:
|
| 563 |
+
raise ValueError(
|
| 564 |
+
f"The framework {self.framework_str} is not supported! "
|
| 565 |
+
"Use `config.framework('torch')` instead."
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
@override(AlgorithmConfig)
|
| 569 |
+
def build_learner_connector(
|
| 570 |
+
self,
|
| 571 |
+
input_observation_space,
|
| 572 |
+
input_action_space,
|
| 573 |
+
device=None,
|
| 574 |
+
):
|
| 575 |
+
pipeline = super().build_learner_connector(
|
| 576 |
+
input_observation_space=input_observation_space,
|
| 577 |
+
input_action_space=input_action_space,
|
| 578 |
+
device=device,
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
# Prepend the "add-NEXT_OBS-from-episodes-to-train-batch" connector piece (right
|
| 582 |
+
# after the corresponding "add-OBS-..." default piece).
|
| 583 |
+
pipeline.insert_after(
|
| 584 |
+
AddObservationsFromEpisodesToBatch,
|
| 585 |
+
AddNextObservationsFromEpisodesToTrainBatch(),
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
return pipeline
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
def calculate_rr_weights(config: AlgorithmConfig) -> List[float]:
|
| 592 |
+
"""Calculate the round robin weights for the rollout and train steps"""
|
| 593 |
+
if not config.training_intensity:
|
| 594 |
+
return [1, 1]
|
| 595 |
+
|
| 596 |
+
# Calculate the "native ratio" as:
|
| 597 |
+
# [train-batch-size] / [size of env-rolled-out sampled data]
|
| 598 |
+
# This is to set freshly rollout-collected data in relation to
|
| 599 |
+
# the data we pull from the replay buffer (which also contains old
|
| 600 |
+
# samples).
|
| 601 |
+
native_ratio = config.total_train_batch_size / (
|
| 602 |
+
config.get_rollout_fragment_length()
|
| 603 |
+
* config.num_envs_per_env_runner
|
| 604 |
+
# Add one to workers because the local
|
| 605 |
+
# worker usually collects experiences as well, and we avoid division by zero.
|
| 606 |
+
* max(config.num_env_runners + 1, 1)
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
# Training intensity is specified in terms of
|
| 610 |
+
# (steps_replayed / steps_sampled), so adjust for the native ratio.
|
| 611 |
+
sample_and_train_weight = config.training_intensity / native_ratio
|
| 612 |
+
if sample_and_train_weight < 1:
|
| 613 |
+
return [int(np.round(1 / sample_and_train_weight)), 1]
|
| 614 |
+
else:
|
| 615 |
+
return [1, int(np.round(sample_and_train_weight))]
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
class DQN(Algorithm):
|
| 619 |
+
@classmethod
|
| 620 |
+
@override(Algorithm)
|
| 621 |
+
def get_default_config(cls) -> AlgorithmConfig:
|
| 622 |
+
return DQNConfig()
|
| 623 |
+
|
| 624 |
+
@classmethod
|
| 625 |
+
@override(Algorithm)
|
| 626 |
+
def get_default_policy_class(
|
| 627 |
+
cls, config: AlgorithmConfig
|
| 628 |
+
) -> Optional[Type[Policy]]:
|
| 629 |
+
if config["framework"] == "torch":
|
| 630 |
+
return DQNTorchPolicy
|
| 631 |
+
else:
|
| 632 |
+
return DQNTFPolicy
|
| 633 |
+
|
| 634 |
+
@override(Algorithm)
|
| 635 |
+
def training_step(self) -> None:
|
| 636 |
+
"""DQN training iteration function.
|
| 637 |
+
|
| 638 |
+
Each training iteration, we:
|
| 639 |
+
- Sample (MultiAgentBatch) from workers.
|
| 640 |
+
- Store new samples in replay buffer.
|
| 641 |
+
- Sample training batch (MultiAgentBatch) from replay buffer.
|
| 642 |
+
- Learn on training batch.
|
| 643 |
+
- Update remote workers' new policy weights.
|
| 644 |
+
- Update target network every `target_network_update_freq` sample steps.
|
| 645 |
+
- Return all collected metrics for the iteration.
|
| 646 |
+
|
| 647 |
+
Returns:
|
| 648 |
+
The results dict from executing the training iteration.
|
| 649 |
+
"""
|
| 650 |
+
# Old API stack (Policy, RolloutWorker, Connector).
|
| 651 |
+
if not self.config.enable_env_runner_and_connector_v2:
|
| 652 |
+
return self._training_step_old_api_stack()
|
| 653 |
+
|
| 654 |
+
# New API stack (RLModule, Learner, EnvRunner, ConnectorV2).
|
| 655 |
+
return self._training_step_new_api_stack(with_noise_reset=True)
|
| 656 |
+
|
| 657 |
+
def _training_step_new_api_stack(self, *, with_noise_reset):
|
| 658 |
+
# Alternate between storing and sampling and training.
|
| 659 |
+
store_weight, sample_and_train_weight = calculate_rr_weights(self.config)
|
| 660 |
+
|
| 661 |
+
# Run multiple sampling + storing to buffer iterations.
|
| 662 |
+
for _ in range(store_weight):
|
| 663 |
+
with self.metrics.log_time((TIMERS, ENV_RUNNER_SAMPLING_TIMER)):
|
| 664 |
+
# Sample in parallel from workers.
|
| 665 |
+
episodes, env_runner_results = synchronous_parallel_sample(
|
| 666 |
+
worker_set=self.env_runner_group,
|
| 667 |
+
concat=True,
|
| 668 |
+
sample_timeout_s=self.config.sample_timeout_s,
|
| 669 |
+
_uses_new_env_runners=True,
|
| 670 |
+
_return_metrics=True,
|
| 671 |
+
)
|
| 672 |
+
# Reduce EnvRunner metrics over the n EnvRunners.
|
| 673 |
+
self.metrics.merge_and_log_n_dicts(
|
| 674 |
+
env_runner_results, key=ENV_RUNNER_RESULTS
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
# Add the sampled experiences to the replay buffer.
|
| 678 |
+
with self.metrics.log_time((TIMERS, REPLAY_BUFFER_ADD_DATA_TIMER)):
|
| 679 |
+
self.local_replay_buffer.add(episodes)
|
| 680 |
+
|
| 681 |
+
if self.config.count_steps_by == "agent_steps":
|
| 682 |
+
current_ts = sum(
|
| 683 |
+
self.metrics.peek(
|
| 684 |
+
(ENV_RUNNER_RESULTS, NUM_AGENT_STEPS_SAMPLED_LIFETIME), default={}
|
| 685 |
+
).values()
|
| 686 |
+
)
|
| 687 |
+
else:
|
| 688 |
+
current_ts = self.metrics.peek(
|
| 689 |
+
(ENV_RUNNER_RESULTS, NUM_ENV_STEPS_SAMPLED_LIFETIME), default=0
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
# If enough experiences have been sampled start training.
|
| 693 |
+
if current_ts >= self.config.num_steps_sampled_before_learning_starts:
|
| 694 |
+
# Resample noise for noisy networks, if necessary. Note, this
|
| 695 |
+
# is proposed in the "Noisy Networks for Exploration" paper
|
| 696 |
+
# (https://arxiv.org/abs/1706.10295) in Algorithm 1. The noise
|
| 697 |
+
# gets sampled once for each training loop.
|
| 698 |
+
if with_noise_reset:
|
| 699 |
+
self.learner_group.foreach_learner(
|
| 700 |
+
func=lambda lrnr: lrnr._reset_noise(),
|
| 701 |
+
timeout_seconds=0.0, # fire-and-forget
|
| 702 |
+
)
|
| 703 |
+
# Run multiple sample-from-buffer and update iterations.
|
| 704 |
+
for _ in range(sample_and_train_weight):
|
| 705 |
+
# Sample a list of episodes used for learning from the replay buffer.
|
| 706 |
+
with self.metrics.log_time((TIMERS, REPLAY_BUFFER_SAMPLE_TIMER)):
|
| 707 |
+
episodes = self.local_replay_buffer.sample(
|
| 708 |
+
num_items=self.config.total_train_batch_size,
|
| 709 |
+
n_step=self.config.n_step,
|
| 710 |
+
gamma=self.config.gamma,
|
| 711 |
+
beta=self.config.replay_buffer_config.get("beta"),
|
| 712 |
+
sample_episodes=True,
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
# Perform an update on the buffer-sampled train batch.
|
| 716 |
+
with self.metrics.log_time((TIMERS, LEARNER_UPDATE_TIMER)):
|
| 717 |
+
learner_results = self.learner_group.update_from_episodes(
|
| 718 |
+
episodes=episodes,
|
| 719 |
+
timesteps={
|
| 720 |
+
NUM_ENV_STEPS_SAMPLED_LIFETIME: (
|
| 721 |
+
self.metrics.peek(
|
| 722 |
+
(ENV_RUNNER_RESULTS, NUM_ENV_STEPS_SAMPLED_LIFETIME)
|
| 723 |
+
)
|
| 724 |
+
),
|
| 725 |
+
NUM_AGENT_STEPS_SAMPLED_LIFETIME: (
|
| 726 |
+
self.metrics.peek(
|
| 727 |
+
(
|
| 728 |
+
ENV_RUNNER_RESULTS,
|
| 729 |
+
NUM_AGENT_STEPS_SAMPLED_LIFETIME,
|
| 730 |
+
)
|
| 731 |
+
)
|
| 732 |
+
),
|
| 733 |
+
},
|
| 734 |
+
)
|
| 735 |
+
# Isolate TD-errors from result dicts (we should not log these to
|
| 736 |
+
# disk or WandB, they might be very large).
|
| 737 |
+
td_errors = defaultdict(list)
|
| 738 |
+
for res in learner_results:
|
| 739 |
+
for module_id, module_results in res.items():
|
| 740 |
+
if TD_ERROR_KEY in module_results:
|
| 741 |
+
td_errors[module_id].extend(
|
| 742 |
+
convert_to_numpy(
|
| 743 |
+
module_results.pop(TD_ERROR_KEY).peek()
|
| 744 |
+
)
|
| 745 |
+
)
|
| 746 |
+
td_errors = {
|
| 747 |
+
module_id: {TD_ERROR_KEY: np.concatenate(s, axis=0)}
|
| 748 |
+
for module_id, s in td_errors.items()
|
| 749 |
+
}
|
| 750 |
+
self.metrics.merge_and_log_n_dicts(
|
| 751 |
+
learner_results, key=LEARNER_RESULTS
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
# Update replay buffer priorities.
|
| 755 |
+
with self.metrics.log_time((TIMERS, REPLAY_BUFFER_UPDATE_PRIOS_TIMER)):
|
| 756 |
+
update_priorities_in_episode_replay_buffer(
|
| 757 |
+
replay_buffer=self.local_replay_buffer,
|
| 758 |
+
td_errors=td_errors,
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
# Update weights and global_vars - after learning on the local worker -
|
| 762 |
+
# on all remote workers.
|
| 763 |
+
with self.metrics.log_time((TIMERS, SYNCH_WORKER_WEIGHTS_TIMER)):
|
| 764 |
+
modules_to_update = set(learner_results[0].keys()) - {ALL_MODULES}
|
| 765 |
+
# NOTE: the new API stack does not use global vars.
|
| 766 |
+
self.env_runner_group.sync_weights(
|
| 767 |
+
from_worker_or_learner_group=self.learner_group,
|
| 768 |
+
policies=modules_to_update,
|
| 769 |
+
global_vars=None,
|
| 770 |
+
inference_only=True,
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
def _training_step_old_api_stack(self) -> ResultDict:
|
| 774 |
+
"""Training step for the old API stack.
|
| 775 |
+
|
| 776 |
+
More specifically this training step relies on `RolloutWorker`.
|
| 777 |
+
"""
|
| 778 |
+
train_results = {}
|
| 779 |
+
|
| 780 |
+
# We alternate between storing new samples and sampling and training
|
| 781 |
+
store_weight, sample_and_train_weight = calculate_rr_weights(self.config)
|
| 782 |
+
|
| 783 |
+
for _ in range(store_weight):
|
| 784 |
+
# Sample (MultiAgentBatch) from workers.
|
| 785 |
+
with self._timers[SAMPLE_TIMER]:
|
| 786 |
+
new_sample_batch: SampleBatchType = synchronous_parallel_sample(
|
| 787 |
+
worker_set=self.env_runner_group,
|
| 788 |
+
concat=True,
|
| 789 |
+
sample_timeout_s=self.config.sample_timeout_s,
|
| 790 |
+
)
|
| 791 |
+
|
| 792 |
+
# Return early if all our workers failed.
|
| 793 |
+
if not new_sample_batch:
|
| 794 |
+
return {}
|
| 795 |
+
|
| 796 |
+
# Update counters
|
| 797 |
+
self._counters[NUM_AGENT_STEPS_SAMPLED] += new_sample_batch.agent_steps()
|
| 798 |
+
self._counters[NUM_ENV_STEPS_SAMPLED] += new_sample_batch.env_steps()
|
| 799 |
+
|
| 800 |
+
# Store new samples in replay buffer.
|
| 801 |
+
self.local_replay_buffer.add(new_sample_batch)
|
| 802 |
+
|
| 803 |
+
global_vars = {
|
| 804 |
+
"timestep": self._counters[NUM_ENV_STEPS_SAMPLED],
|
| 805 |
+
}
|
| 806 |
+
|
| 807 |
+
# Update target network every `target_network_update_freq` sample steps.
|
| 808 |
+
cur_ts = self._counters[
|
| 809 |
+
(
|
| 810 |
+
NUM_AGENT_STEPS_SAMPLED
|
| 811 |
+
if self.config.count_steps_by == "agent_steps"
|
| 812 |
+
else NUM_ENV_STEPS_SAMPLED
|
| 813 |
+
)
|
| 814 |
+
]
|
| 815 |
+
|
| 816 |
+
if cur_ts > self.config.num_steps_sampled_before_learning_starts:
|
| 817 |
+
for _ in range(sample_and_train_weight):
|
| 818 |
+
# Sample training batch (MultiAgentBatch) from replay buffer.
|
| 819 |
+
train_batch = sample_min_n_steps_from_buffer(
|
| 820 |
+
self.local_replay_buffer,
|
| 821 |
+
self.config.total_train_batch_size,
|
| 822 |
+
count_by_agent_steps=self.config.count_steps_by == "agent_steps",
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
# Postprocess batch before we learn on it
|
| 826 |
+
post_fn = self.config.get("before_learn_on_batch") or (lambda b, *a: b)
|
| 827 |
+
train_batch = post_fn(train_batch, self.env_runner_group, self.config)
|
| 828 |
+
|
| 829 |
+
# Learn on training batch.
|
| 830 |
+
# Use simple optimizer (only for multi-agent or tf-eager; all other
|
| 831 |
+
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
|
| 832 |
+
if self.config.get("simple_optimizer") is True:
|
| 833 |
+
train_results = train_one_step(self, train_batch)
|
| 834 |
+
else:
|
| 835 |
+
train_results = multi_gpu_train_one_step(self, train_batch)
|
| 836 |
+
|
| 837 |
+
# Update replay buffer priorities.
|
| 838 |
+
update_priorities_in_replay_buffer(
|
| 839 |
+
self.local_replay_buffer,
|
| 840 |
+
self.config,
|
| 841 |
+
train_batch,
|
| 842 |
+
train_results,
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
last_update = self._counters[LAST_TARGET_UPDATE_TS]
|
| 846 |
+
if cur_ts - last_update >= self.config.target_network_update_freq:
|
| 847 |
+
to_update = self.env_runner.get_policies_to_train()
|
| 848 |
+
self.env_runner.foreach_policy_to_train(
|
| 849 |
+
lambda p, pid, to_update=to_update: (
|
| 850 |
+
pid in to_update and p.update_target()
|
| 851 |
+
)
|
| 852 |
+
)
|
| 853 |
+
self._counters[NUM_TARGET_UPDATES] += 1
|
| 854 |
+
self._counters[LAST_TARGET_UPDATE_TS] = cur_ts
|
| 855 |
+
|
| 856 |
+
# Update weights and global_vars - after learning on the local worker -
|
| 857 |
+
# on all remote workers.
|
| 858 |
+
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
|
| 859 |
+
self.env_runner_group.sync_weights(global_vars=global_vars)
|
| 860 |
+
|
| 861 |
+
# Return all collected metrics for the iteration.
|
| 862 |
+
return train_results
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_rainbow_learner.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import abc
|
| 2 |
+
from typing import Any, Dict, Optional
|
| 3 |
+
|
| 4 |
+
from ray.rllib.core.learner.learner import Learner
|
| 5 |
+
from ray.rllib.core.learner.utils import update_target_network
|
| 6 |
+
from ray.rllib.core.rl_module.apis.target_network_api import TargetNetworkAPI
|
| 7 |
+
from ray.rllib.core.rl_module.multi_rl_module import MultiRLModuleSpec
|
| 8 |
+
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
|
| 9 |
+
from ray.rllib.utils.annotations import (
|
| 10 |
+
override,
|
| 11 |
+
OverrideToImplementCustomLogic_CallToSuperRecommended,
|
| 12 |
+
)
|
| 13 |
+
from ray.rllib.utils.metrics import (
|
| 14 |
+
LAST_TARGET_UPDATE_TS,
|
| 15 |
+
NUM_ENV_STEPS_SAMPLED_LIFETIME,
|
| 16 |
+
NUM_TARGET_UPDATES,
|
| 17 |
+
)
|
| 18 |
+
from ray.rllib.utils.typing import ModuleID, ShouldModuleBeUpdatedFn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Now, this is double defined: In `SACRLModule` and here. I would keep it here
|
| 22 |
+
# or push it into the `Learner` as these are recurring keys in RL.
|
| 23 |
+
ATOMS = "atoms"
|
| 24 |
+
QF_LOSS_KEY = "qf_loss"
|
| 25 |
+
QF_LOGITS = "qf_logits"
|
| 26 |
+
QF_MEAN_KEY = "qf_mean"
|
| 27 |
+
QF_MAX_KEY = "qf_max"
|
| 28 |
+
QF_MIN_KEY = "qf_min"
|
| 29 |
+
QF_NEXT_PREDS = "qf_next_preds"
|
| 30 |
+
QF_TARGET_NEXT_PREDS = "qf_target_next_preds"
|
| 31 |
+
QF_TARGET_NEXT_PROBS = "qf_target_next_probs"
|
| 32 |
+
QF_PREDS = "qf_preds"
|
| 33 |
+
QF_PROBS = "qf_probs"
|
| 34 |
+
TD_ERROR_MEAN_KEY = "td_error_mean"
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DQNRainbowLearner(Learner):
|
| 38 |
+
@OverrideToImplementCustomLogic_CallToSuperRecommended
|
| 39 |
+
@override(Learner)
|
| 40 |
+
def build(self) -> None:
|
| 41 |
+
super().build()
|
| 42 |
+
|
| 43 |
+
# Make target networks.
|
| 44 |
+
self.module.foreach_module(
|
| 45 |
+
lambda mid, mod: (
|
| 46 |
+
mod.make_target_networks()
|
| 47 |
+
if isinstance(mod, TargetNetworkAPI)
|
| 48 |
+
else None
|
| 49 |
+
)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
@override(Learner)
|
| 53 |
+
def add_module(
|
| 54 |
+
self,
|
| 55 |
+
*,
|
| 56 |
+
module_id: ModuleID,
|
| 57 |
+
module_spec: RLModuleSpec,
|
| 58 |
+
config_overrides: Optional[Dict] = None,
|
| 59 |
+
new_should_module_be_updated: Optional[ShouldModuleBeUpdatedFn] = None,
|
| 60 |
+
) -> MultiRLModuleSpec:
|
| 61 |
+
marl_spec = super().add_module(
|
| 62 |
+
module_id=module_id,
|
| 63 |
+
module_spec=module_spec,
|
| 64 |
+
config_overrides=config_overrides,
|
| 65 |
+
new_should_module_be_updated=new_should_module_be_updated,
|
| 66 |
+
)
|
| 67 |
+
# Create target networks for added Module, if applicable.
|
| 68 |
+
if isinstance(self.module[module_id].unwrapped(), TargetNetworkAPI):
|
| 69 |
+
self.module[module_id].unwrapped().make_target_networks()
|
| 70 |
+
return marl_spec
|
| 71 |
+
|
| 72 |
+
@override(Learner)
|
| 73 |
+
def after_gradient_based_update(self, *, timesteps: Dict[str, Any]) -> None:
|
| 74 |
+
"""Updates the target Q Networks."""
|
| 75 |
+
super().after_gradient_based_update(timesteps=timesteps)
|
| 76 |
+
|
| 77 |
+
timestep = timesteps.get(NUM_ENV_STEPS_SAMPLED_LIFETIME, 0)
|
| 78 |
+
|
| 79 |
+
# TODO (sven): Maybe we should have a `after_gradient_based_update`
|
| 80 |
+
# method per module?
|
| 81 |
+
for module_id, module in self.module._rl_modules.items():
|
| 82 |
+
config = self.config.get_config_for_module(module_id)
|
| 83 |
+
last_update_ts_key = (module_id, LAST_TARGET_UPDATE_TS)
|
| 84 |
+
if timestep - self.metrics.peek(
|
| 85 |
+
last_update_ts_key, default=0
|
| 86 |
+
) >= config.target_network_update_freq and isinstance(
|
| 87 |
+
module.unwrapped(), TargetNetworkAPI
|
| 88 |
+
):
|
| 89 |
+
for (
|
| 90 |
+
main_net,
|
| 91 |
+
target_net,
|
| 92 |
+
) in module.unwrapped().get_target_network_pairs():
|
| 93 |
+
update_target_network(
|
| 94 |
+
main_net=main_net,
|
| 95 |
+
target_net=target_net,
|
| 96 |
+
tau=config.tau,
|
| 97 |
+
)
|
| 98 |
+
# Increase lifetime target network update counter by one.
|
| 99 |
+
self.metrics.log_value((module_id, NUM_TARGET_UPDATES), 1, reduce="sum")
|
| 100 |
+
# Update the (single-value -> window=1) last updated timestep metric.
|
| 101 |
+
self.metrics.log_value(last_update_ts_key, timestep, window=1)
|
| 102 |
+
|
| 103 |
+
@abc.abstractmethod
|
| 104 |
+
def _reset_noise(self) -> None:
|
| 105 |
+
"""Resets the noise in the `Algorithm.training_step()`
|
| 106 |
+
|
| 107 |
+
Note, this can be overridden by the user to reset the noise at different
|
| 108 |
+
points in the training loop.
|
| 109 |
+
"""
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_rainbow_noisy_net_configs.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
from ray.rllib.core.models.base import Encoder
|
| 4 |
+
from ray.rllib.core.models.configs import _framework_implemented, _MLPConfig
|
| 5 |
+
from ray.rllib.utils.annotations import ExperimentalAPI, override
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@ExperimentalAPI
|
| 9 |
+
@dataclass
|
| 10 |
+
class NoisyMLPConfig(_MLPConfig):
|
| 11 |
+
std_init: float = 0.1
|
| 12 |
+
|
| 13 |
+
@override(_MLPConfig)
|
| 14 |
+
def _validate(self, framework: str = "torch"):
|
| 15 |
+
"""Makes sure that standard deviation is positive."""
|
| 16 |
+
super()._validate(framework=framework)
|
| 17 |
+
|
| 18 |
+
if self.std_init < 0.0:
|
| 19 |
+
raise ValueError(
|
| 20 |
+
f"`std_init` ({self.std_init}) of `NoisyMLPConfig must be "
|
| 21 |
+
"non-negative."
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@ExperimentalAPI
|
| 26 |
+
@dataclass
|
| 27 |
+
class NoisyMLPEncoderConfig(NoisyMLPConfig):
|
| 28 |
+
@_framework_implemented()
|
| 29 |
+
def build(self, framework: str = "torch") -> "Encoder":
|
| 30 |
+
self._validate(framework)
|
| 31 |
+
|
| 32 |
+
if framework == "torch":
|
| 33 |
+
from ray.rllib.algorithms.dqn.torch.dqn_rainbow_torch_noisy_net import (
|
| 34 |
+
TorchNoisyMLPEncoder,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
return TorchNoisyMLPEncoder(self)
|
| 38 |
+
else:
|
| 39 |
+
raise ValueError(
|
| 40 |
+
"`NoisyMLPEncoder` is not implemented for framework " f"{framework}. "
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@ExperimentalAPI
|
| 45 |
+
@dataclass
|
| 46 |
+
class NoisyMLPHeadConfig(NoisyMLPConfig):
|
| 47 |
+
@_framework_implemented()
|
| 48 |
+
def build(self, framework: str = "torch") -> "Encoder":
|
| 49 |
+
self._validate(framework)
|
| 50 |
+
|
| 51 |
+
if framework == "torch":
|
| 52 |
+
from ray.rllib.algorithms.dqn.torch.dqn_rainbow_torch_noisy_net import (
|
| 53 |
+
TorchNoisyMLPHead,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return TorchNoisyMLPHead(self)
|
| 57 |
+
else:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
"`NoisyMLPHead` is not implemented for framework " f"{framework}. "
|
| 60 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_tf_policy.py
ADDED
|
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""TensorFlow policy class used for DQN"""
|
| 2 |
+
|
| 3 |
+
from typing import Dict
|
| 4 |
+
|
| 5 |
+
import gymnasium as gym
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
import ray
|
| 9 |
+
from ray.rllib.algorithms.dqn.distributional_q_tf_model import DistributionalQTFModel
|
| 10 |
+
from ray.rllib.evaluation.postprocessing import adjust_nstep
|
| 11 |
+
from ray.rllib.models import ModelCatalog
|
| 12 |
+
from ray.rllib.models.modelv2 import ModelV2
|
| 13 |
+
from ray.rllib.models.tf.tf_action_dist import get_categorical_class_with_temperature
|
| 14 |
+
from ray.rllib.policy.policy import Policy
|
| 15 |
+
from ray.rllib.policy.sample_batch import SampleBatch
|
| 16 |
+
from ray.rllib.policy.tf_mixins import LearningRateSchedule, TargetNetworkMixin
|
| 17 |
+
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
| 18 |
+
from ray.rllib.utils.error import UnsupportedSpaceException
|
| 19 |
+
from ray.rllib.utils.exploration import ParameterNoise
|
| 20 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 21 |
+
from ray.rllib.utils.numpy import convert_to_numpy
|
| 22 |
+
from ray.rllib.utils.tf_utils import (
|
| 23 |
+
huber_loss,
|
| 24 |
+
l2_loss,
|
| 25 |
+
make_tf_callable,
|
| 26 |
+
minimize_and_clip,
|
| 27 |
+
reduce_mean_ignore_inf,
|
| 28 |
+
)
|
| 29 |
+
from ray.rllib.utils.typing import AlgorithmConfigDict, ModelGradients, TensorType
|
| 30 |
+
|
| 31 |
+
tf1, tf, tfv = try_import_tf()
|
| 32 |
+
|
| 33 |
+
# Importance sampling weights for prioritized replay
|
| 34 |
+
PRIO_WEIGHTS = "weights"
|
| 35 |
+
Q_SCOPE = "q_func"
|
| 36 |
+
Q_TARGET_SCOPE = "target_q_func"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class QLoss:
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
q_t_selected: TensorType,
|
| 43 |
+
q_logits_t_selected: TensorType,
|
| 44 |
+
q_tp1_best: TensorType,
|
| 45 |
+
q_dist_tp1_best: TensorType,
|
| 46 |
+
importance_weights: TensorType,
|
| 47 |
+
rewards: TensorType,
|
| 48 |
+
done_mask: TensorType,
|
| 49 |
+
gamma: float = 0.99,
|
| 50 |
+
n_step: int = 1,
|
| 51 |
+
num_atoms: int = 1,
|
| 52 |
+
v_min: float = -10.0,
|
| 53 |
+
v_max: float = 10.0,
|
| 54 |
+
loss_fn=huber_loss,
|
| 55 |
+
):
|
| 56 |
+
|
| 57 |
+
if num_atoms > 1:
|
| 58 |
+
# Distributional Q-learning which corresponds to an entropy loss
|
| 59 |
+
|
| 60 |
+
z = tf.range(num_atoms, dtype=tf.float32)
|
| 61 |
+
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
|
| 62 |
+
|
| 63 |
+
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
|
| 64 |
+
r_tau = tf.expand_dims(rewards, -1) + gamma**n_step * tf.expand_dims(
|
| 65 |
+
1.0 - done_mask, -1
|
| 66 |
+
) * tf.expand_dims(z, 0)
|
| 67 |
+
r_tau = tf.clip_by_value(r_tau, v_min, v_max)
|
| 68 |
+
b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
|
| 69 |
+
lb = tf.floor(b)
|
| 70 |
+
ub = tf.math.ceil(b)
|
| 71 |
+
# indispensable judgement which is missed in most implementations
|
| 72 |
+
# when b happens to be an integer, lb == ub, so pr_j(s', a*) will
|
| 73 |
+
# be discarded because (ub-b) == (b-lb) == 0
|
| 74 |
+
floor_equal_ceil = tf.cast(tf.less(ub - lb, 0.5), tf.float32)
|
| 75 |
+
|
| 76 |
+
l_project = tf.one_hot(
|
| 77 |
+
tf.cast(lb, dtype=tf.int32), num_atoms
|
| 78 |
+
) # (batch_size, num_atoms, num_atoms)
|
| 79 |
+
u_project = tf.one_hot(
|
| 80 |
+
tf.cast(ub, dtype=tf.int32), num_atoms
|
| 81 |
+
) # (batch_size, num_atoms, num_atoms)
|
| 82 |
+
ml_delta = q_dist_tp1_best * (ub - b + floor_equal_ceil)
|
| 83 |
+
mu_delta = q_dist_tp1_best * (b - lb)
|
| 84 |
+
ml_delta = tf.reduce_sum(l_project * tf.expand_dims(ml_delta, -1), axis=1)
|
| 85 |
+
mu_delta = tf.reduce_sum(u_project * tf.expand_dims(mu_delta, -1), axis=1)
|
| 86 |
+
m = ml_delta + mu_delta
|
| 87 |
+
|
| 88 |
+
# Rainbow paper claims that using this cross entropy loss for
|
| 89 |
+
# priority is robust and insensitive to `prioritized_replay_alpha`
|
| 90 |
+
self.td_error = tf.nn.softmax_cross_entropy_with_logits(
|
| 91 |
+
labels=m, logits=q_logits_t_selected
|
| 92 |
+
)
|
| 93 |
+
self.loss = tf.reduce_mean(
|
| 94 |
+
self.td_error * tf.cast(importance_weights, tf.float32)
|
| 95 |
+
)
|
| 96 |
+
self.stats = {
|
| 97 |
+
# TODO: better Q stats for dist dqn
|
| 98 |
+
"mean_td_error": tf.reduce_mean(self.td_error),
|
| 99 |
+
}
|
| 100 |
+
else:
|
| 101 |
+
q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best
|
| 102 |
+
|
| 103 |
+
# compute RHS of bellman equation
|
| 104 |
+
q_t_selected_target = rewards + gamma**n_step * q_tp1_best_masked
|
| 105 |
+
|
| 106 |
+
# compute the error (potentially clipped)
|
| 107 |
+
self.td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
|
| 108 |
+
self.loss = tf.reduce_mean(
|
| 109 |
+
tf.cast(importance_weights, tf.float32) * loss_fn(self.td_error)
|
| 110 |
+
)
|
| 111 |
+
self.stats = {
|
| 112 |
+
"mean_q": tf.reduce_mean(q_t_selected),
|
| 113 |
+
"min_q": tf.reduce_min(q_t_selected),
|
| 114 |
+
"max_q": tf.reduce_max(q_t_selected),
|
| 115 |
+
"mean_td_error": tf.reduce_mean(self.td_error),
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class ComputeTDErrorMixin:
|
| 120 |
+
"""Assign the `compute_td_error` method to the DQNTFPolicy
|
| 121 |
+
|
| 122 |
+
This allows us to prioritize on the worker side.
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
def __init__(self):
|
| 126 |
+
@make_tf_callable(self.get_session(), dynamic_shape=True)
|
| 127 |
+
def compute_td_error(
|
| 128 |
+
obs_t, act_t, rew_t, obs_tp1, terminateds_mask, importance_weights
|
| 129 |
+
):
|
| 130 |
+
# Do forward pass on loss to update td error attribute
|
| 131 |
+
build_q_losses(
|
| 132 |
+
self,
|
| 133 |
+
self.model,
|
| 134 |
+
None,
|
| 135 |
+
{
|
| 136 |
+
SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
|
| 137 |
+
SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
|
| 138 |
+
SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
|
| 139 |
+
SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
|
| 140 |
+
SampleBatch.TERMINATEDS: tf.convert_to_tensor(terminateds_mask),
|
| 141 |
+
PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
|
| 142 |
+
},
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
return self.q_loss.td_error
|
| 146 |
+
|
| 147 |
+
self.compute_td_error = compute_td_error
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def build_q_model(
|
| 151 |
+
policy: Policy,
|
| 152 |
+
obs_space: gym.spaces.Space,
|
| 153 |
+
action_space: gym.spaces.Space,
|
| 154 |
+
config: AlgorithmConfigDict,
|
| 155 |
+
) -> ModelV2:
|
| 156 |
+
"""Build q_model and target_model for DQN
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
policy: The Policy, which will use the model for optimization.
|
| 160 |
+
obs_space (gym.spaces.Space): The policy's observation space.
|
| 161 |
+
action_space (gym.spaces.Space): The policy's action space.
|
| 162 |
+
config (AlgorithmConfigDict):
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
ModelV2: The Model for the Policy to use.
|
| 166 |
+
Note: The target q model will not be returned, just assigned to
|
| 167 |
+
`policy.target_model`.
|
| 168 |
+
"""
|
| 169 |
+
if not isinstance(action_space, gym.spaces.Discrete):
|
| 170 |
+
raise UnsupportedSpaceException(
|
| 171 |
+
"Action space {} is not supported for DQN.".format(action_space)
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if config["hiddens"]:
|
| 175 |
+
# try to infer the last layer size, otherwise fall back to 256
|
| 176 |
+
num_outputs = ([256] + list(config["model"]["fcnet_hiddens"]))[-1]
|
| 177 |
+
config["model"]["no_final_linear"] = True
|
| 178 |
+
else:
|
| 179 |
+
num_outputs = action_space.n
|
| 180 |
+
|
| 181 |
+
q_model = ModelCatalog.get_model_v2(
|
| 182 |
+
obs_space=obs_space,
|
| 183 |
+
action_space=action_space,
|
| 184 |
+
num_outputs=num_outputs,
|
| 185 |
+
model_config=config["model"],
|
| 186 |
+
framework="tf",
|
| 187 |
+
model_interface=DistributionalQTFModel,
|
| 188 |
+
name=Q_SCOPE,
|
| 189 |
+
num_atoms=config["num_atoms"],
|
| 190 |
+
dueling=config["dueling"],
|
| 191 |
+
q_hiddens=config["hiddens"],
|
| 192 |
+
use_noisy=config["noisy"],
|
| 193 |
+
v_min=config["v_min"],
|
| 194 |
+
v_max=config["v_max"],
|
| 195 |
+
sigma0=config["sigma0"],
|
| 196 |
+
# TODO(sven): Move option to add LayerNorm after each Dense
|
| 197 |
+
# generically into ModelCatalog.
|
| 198 |
+
add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
|
| 199 |
+
or config["exploration_config"]["type"] == "ParameterNoise",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
policy.target_model = ModelCatalog.get_model_v2(
|
| 203 |
+
obs_space=obs_space,
|
| 204 |
+
action_space=action_space,
|
| 205 |
+
num_outputs=num_outputs,
|
| 206 |
+
model_config=config["model"],
|
| 207 |
+
framework="tf",
|
| 208 |
+
model_interface=DistributionalQTFModel,
|
| 209 |
+
name=Q_TARGET_SCOPE,
|
| 210 |
+
num_atoms=config["num_atoms"],
|
| 211 |
+
dueling=config["dueling"],
|
| 212 |
+
q_hiddens=config["hiddens"],
|
| 213 |
+
use_noisy=config["noisy"],
|
| 214 |
+
v_min=config["v_min"],
|
| 215 |
+
v_max=config["v_max"],
|
| 216 |
+
sigma0=config["sigma0"],
|
| 217 |
+
# TODO(sven): Move option to add LayerNorm after each Dense
|
| 218 |
+
# generically into ModelCatalog.
|
| 219 |
+
add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
|
| 220 |
+
or config["exploration_config"]["type"] == "ParameterNoise",
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
return q_model
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def get_distribution_inputs_and_class(
|
| 227 |
+
policy: Policy, model: ModelV2, input_dict: SampleBatch, *, explore=True, **kwargs
|
| 228 |
+
):
|
| 229 |
+
q_vals = compute_q_values(
|
| 230 |
+
policy, model, input_dict, state_batches=None, explore=explore
|
| 231 |
+
)
|
| 232 |
+
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
|
| 233 |
+
|
| 234 |
+
policy.q_values = q_vals
|
| 235 |
+
|
| 236 |
+
# Return a Torch TorchCategorical distribution where the temperature
|
| 237 |
+
# parameter is partially binded to the configured value.
|
| 238 |
+
temperature = policy.config["categorical_distribution_temperature"]
|
| 239 |
+
|
| 240 |
+
return (
|
| 241 |
+
policy.q_values,
|
| 242 |
+
get_categorical_class_with_temperature(temperature),
|
| 243 |
+
[],
|
| 244 |
+
) # state-out
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def build_q_losses(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
|
| 248 |
+
"""Constructs the loss for DQNTFPolicy.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
policy: The Policy to calculate the loss for.
|
| 252 |
+
model (ModelV2): The Model to calculate the loss for.
|
| 253 |
+
train_batch: The training data.
|
| 254 |
+
|
| 255 |
+
Returns:
|
| 256 |
+
TensorType: A single loss tensor.
|
| 257 |
+
"""
|
| 258 |
+
config = policy.config
|
| 259 |
+
# q network evaluation
|
| 260 |
+
q_t, q_logits_t, q_dist_t, _ = compute_q_values(
|
| 261 |
+
policy,
|
| 262 |
+
model,
|
| 263 |
+
SampleBatch({"obs": train_batch[SampleBatch.CUR_OBS]}),
|
| 264 |
+
state_batches=None,
|
| 265 |
+
explore=False,
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
# target q network evalution
|
| 269 |
+
q_tp1, q_logits_tp1, q_dist_tp1, _ = compute_q_values(
|
| 270 |
+
policy,
|
| 271 |
+
policy.target_model,
|
| 272 |
+
SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
|
| 273 |
+
state_batches=None,
|
| 274 |
+
explore=False,
|
| 275 |
+
)
|
| 276 |
+
if not hasattr(policy, "target_q_func_vars"):
|
| 277 |
+
policy.target_q_func_vars = policy.target_model.variables()
|
| 278 |
+
|
| 279 |
+
# q scores for actions which we know were selected in the given state.
|
| 280 |
+
one_hot_selection = tf.one_hot(
|
| 281 |
+
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32), policy.action_space.n
|
| 282 |
+
)
|
| 283 |
+
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
|
| 284 |
+
q_logits_t_selected = tf.reduce_sum(
|
| 285 |
+
q_logits_t * tf.expand_dims(one_hot_selection, -1), 1
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
# compute estimate of best possible value starting from state at t + 1
|
| 289 |
+
if config["double_q"]:
|
| 290 |
+
(
|
| 291 |
+
q_tp1_using_online_net,
|
| 292 |
+
q_logits_tp1_using_online_net,
|
| 293 |
+
q_dist_tp1_using_online_net,
|
| 294 |
+
_,
|
| 295 |
+
) = compute_q_values(
|
| 296 |
+
policy,
|
| 297 |
+
model,
|
| 298 |
+
SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
|
| 299 |
+
state_batches=None,
|
| 300 |
+
explore=False,
|
| 301 |
+
)
|
| 302 |
+
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
|
| 303 |
+
q_tp1_best_one_hot_selection = tf.one_hot(
|
| 304 |
+
q_tp1_best_using_online_net, policy.action_space.n
|
| 305 |
+
)
|
| 306 |
+
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
|
| 307 |
+
q_dist_tp1_best = tf.reduce_sum(
|
| 308 |
+
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
|
| 309 |
+
)
|
| 310 |
+
else:
|
| 311 |
+
q_tp1_best_one_hot_selection = tf.one_hot(
|
| 312 |
+
tf.argmax(q_tp1, 1), policy.action_space.n
|
| 313 |
+
)
|
| 314 |
+
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
|
| 315 |
+
q_dist_tp1_best = tf.reduce_sum(
|
| 316 |
+
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
loss_fn = huber_loss if policy.config["td_error_loss_fn"] == "huber" else l2_loss
|
| 320 |
+
|
| 321 |
+
policy.q_loss = QLoss(
|
| 322 |
+
q_t_selected,
|
| 323 |
+
q_logits_t_selected,
|
| 324 |
+
q_tp1_best,
|
| 325 |
+
q_dist_tp1_best,
|
| 326 |
+
train_batch[PRIO_WEIGHTS],
|
| 327 |
+
tf.cast(train_batch[SampleBatch.REWARDS], tf.float32),
|
| 328 |
+
tf.cast(train_batch[SampleBatch.TERMINATEDS], tf.float32),
|
| 329 |
+
config["gamma"],
|
| 330 |
+
config["n_step"],
|
| 331 |
+
config["num_atoms"],
|
| 332 |
+
config["v_min"],
|
| 333 |
+
config["v_max"],
|
| 334 |
+
loss_fn,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
return policy.q_loss.loss
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def adam_optimizer(
|
| 341 |
+
policy: Policy, config: AlgorithmConfigDict
|
| 342 |
+
) -> "tf.keras.optimizers.Optimizer":
|
| 343 |
+
if policy.config["framework"] == "tf2":
|
| 344 |
+
return tf.keras.optimizers.Adam(
|
| 345 |
+
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
|
| 346 |
+
)
|
| 347 |
+
else:
|
| 348 |
+
return tf1.train.AdamOptimizer(
|
| 349 |
+
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def clip_gradients(
|
| 354 |
+
policy: Policy, optimizer: "tf.keras.optimizers.Optimizer", loss: TensorType
|
| 355 |
+
) -> ModelGradients:
|
| 356 |
+
if not hasattr(policy, "q_func_vars"):
|
| 357 |
+
policy.q_func_vars = policy.model.variables()
|
| 358 |
+
|
| 359 |
+
return minimize_and_clip(
|
| 360 |
+
optimizer,
|
| 361 |
+
loss,
|
| 362 |
+
var_list=policy.q_func_vars,
|
| 363 |
+
clip_val=policy.config["grad_clip"],
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]:
|
| 368 |
+
return dict(
|
| 369 |
+
{
|
| 370 |
+
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
|
| 371 |
+
},
|
| 372 |
+
**policy.q_loss.stats
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def setup_mid_mixins(policy: Policy, obs_space, action_space, config) -> None:
|
| 377 |
+
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
| 378 |
+
ComputeTDErrorMixin.__init__(policy)
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def setup_late_mixins(
|
| 382 |
+
policy: Policy,
|
| 383 |
+
obs_space: gym.spaces.Space,
|
| 384 |
+
action_space: gym.spaces.Space,
|
| 385 |
+
config: AlgorithmConfigDict,
|
| 386 |
+
) -> None:
|
| 387 |
+
TargetNetworkMixin.__init__(policy)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def compute_q_values(
|
| 391 |
+
policy: Policy,
|
| 392 |
+
model: ModelV2,
|
| 393 |
+
input_batch: SampleBatch,
|
| 394 |
+
state_batches=None,
|
| 395 |
+
seq_lens=None,
|
| 396 |
+
explore=None,
|
| 397 |
+
is_training: bool = False,
|
| 398 |
+
):
|
| 399 |
+
|
| 400 |
+
config = policy.config
|
| 401 |
+
|
| 402 |
+
model_out, state = model(input_batch, state_batches or [], seq_lens)
|
| 403 |
+
|
| 404 |
+
if config["num_atoms"] > 1:
|
| 405 |
+
(
|
| 406 |
+
action_scores,
|
| 407 |
+
z,
|
| 408 |
+
support_logits_per_action,
|
| 409 |
+
logits,
|
| 410 |
+
dist,
|
| 411 |
+
) = model.get_q_value_distributions(model_out)
|
| 412 |
+
else:
|
| 413 |
+
(action_scores, logits, dist) = model.get_q_value_distributions(model_out)
|
| 414 |
+
|
| 415 |
+
if config["dueling"]:
|
| 416 |
+
state_score = model.get_state_value(model_out)
|
| 417 |
+
if config["num_atoms"] > 1:
|
| 418 |
+
support_logits_per_action_mean = tf.reduce_mean(
|
| 419 |
+
support_logits_per_action, 1
|
| 420 |
+
)
|
| 421 |
+
support_logits_per_action_centered = (
|
| 422 |
+
support_logits_per_action
|
| 423 |
+
- tf.expand_dims(support_logits_per_action_mean, 1)
|
| 424 |
+
)
|
| 425 |
+
support_logits_per_action = (
|
| 426 |
+
tf.expand_dims(state_score, 1) + support_logits_per_action_centered
|
| 427 |
+
)
|
| 428 |
+
support_prob_per_action = tf.nn.softmax(logits=support_logits_per_action)
|
| 429 |
+
value = tf.reduce_sum(input_tensor=z * support_prob_per_action, axis=-1)
|
| 430 |
+
logits = support_logits_per_action
|
| 431 |
+
dist = support_prob_per_action
|
| 432 |
+
else:
|
| 433 |
+
action_scores_mean = reduce_mean_ignore_inf(action_scores, 1)
|
| 434 |
+
action_scores_centered = action_scores - tf.expand_dims(
|
| 435 |
+
action_scores_mean, 1
|
| 436 |
+
)
|
| 437 |
+
value = state_score + action_scores_centered
|
| 438 |
+
else:
|
| 439 |
+
value = action_scores
|
| 440 |
+
|
| 441 |
+
return value, logits, dist, state
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def postprocess_nstep_and_prio(
|
| 445 |
+
policy: Policy, batch: SampleBatch, other_agent=None, episode=None
|
| 446 |
+
) -> SampleBatch:
|
| 447 |
+
# N-step Q adjustments.
|
| 448 |
+
if policy.config["n_step"] > 1:
|
| 449 |
+
adjust_nstep(policy.config["n_step"], policy.config["gamma"], batch)
|
| 450 |
+
|
| 451 |
+
# Create dummy prio-weights (1.0) in case we don't have any in
|
| 452 |
+
# the batch.
|
| 453 |
+
if PRIO_WEIGHTS not in batch:
|
| 454 |
+
batch[PRIO_WEIGHTS] = np.ones_like(batch[SampleBatch.REWARDS])
|
| 455 |
+
|
| 456 |
+
# Prioritize on the worker side.
|
| 457 |
+
if batch.count > 0 and policy.config["replay_buffer_config"].get(
|
| 458 |
+
"worker_side_prioritization", False
|
| 459 |
+
):
|
| 460 |
+
td_errors = policy.compute_td_error(
|
| 461 |
+
batch[SampleBatch.OBS],
|
| 462 |
+
batch[SampleBatch.ACTIONS],
|
| 463 |
+
batch[SampleBatch.REWARDS],
|
| 464 |
+
batch[SampleBatch.NEXT_OBS],
|
| 465 |
+
batch[SampleBatch.TERMINATEDS],
|
| 466 |
+
batch[PRIO_WEIGHTS],
|
| 467 |
+
)
|
| 468 |
+
# Retain compatibility with old-style Replay args
|
| 469 |
+
epsilon = policy.config.get("replay_buffer_config", {}).get(
|
| 470 |
+
"prioritized_replay_eps"
|
| 471 |
+
) or policy.config.get("prioritized_replay_eps")
|
| 472 |
+
if epsilon is None:
|
| 473 |
+
raise ValueError("prioritized_replay_eps not defined in config.")
|
| 474 |
+
|
| 475 |
+
new_priorities = np.abs(convert_to_numpy(td_errors)) + epsilon
|
| 476 |
+
batch[PRIO_WEIGHTS] = new_priorities
|
| 477 |
+
|
| 478 |
+
return batch
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
DQNTFPolicy = build_tf_policy(
|
| 482 |
+
name="DQNTFPolicy",
|
| 483 |
+
get_default_config=lambda: ray.rllib.algorithms.dqn.dqn.DQNConfig(),
|
| 484 |
+
make_model=build_q_model,
|
| 485 |
+
action_distribution_fn=get_distribution_inputs_and_class,
|
| 486 |
+
loss_fn=build_q_losses,
|
| 487 |
+
stats_fn=build_q_stats,
|
| 488 |
+
postprocess_fn=postprocess_nstep_and_prio,
|
| 489 |
+
optimizer_fn=adam_optimizer,
|
| 490 |
+
compute_gradients_fn=clip_gradients,
|
| 491 |
+
extra_action_out_fn=lambda policy: {"q_values": policy.q_values},
|
| 492 |
+
extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
|
| 493 |
+
before_loss_init=setup_mid_mixins,
|
| 494 |
+
after_init=setup_late_mixins,
|
| 495 |
+
mixins=[
|
| 496 |
+
TargetNetworkMixin,
|
| 497 |
+
ComputeTDErrorMixin,
|
| 498 |
+
LearningRateSchedule,
|
| 499 |
+
],
|
| 500 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/dqn_torch_model.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch model for DQN"""
|
| 2 |
+
|
| 3 |
+
from typing import Sequence
|
| 4 |
+
import gymnasium as gym
|
| 5 |
+
from ray.rllib.models.torch.misc import SlimFC
|
| 6 |
+
from ray.rllib.models.torch.modules.noisy_layer import NoisyLayer
|
| 7 |
+
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
| 8 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 9 |
+
from ray.rllib.utils.typing import ModelConfigDict
|
| 10 |
+
|
| 11 |
+
torch, nn = try_import_torch()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class DQNTorchModel(TorchModelV2, nn.Module):
|
| 15 |
+
"""Extension of standard TorchModelV2 to provide dueling-Q functionality."""
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
obs_space: gym.spaces.Space,
|
| 20 |
+
action_space: gym.spaces.Space,
|
| 21 |
+
num_outputs: int,
|
| 22 |
+
model_config: ModelConfigDict,
|
| 23 |
+
name: str,
|
| 24 |
+
*,
|
| 25 |
+
q_hiddens: Sequence[int] = (256,),
|
| 26 |
+
dueling: bool = False,
|
| 27 |
+
dueling_activation: str = "relu",
|
| 28 |
+
num_atoms: int = 1,
|
| 29 |
+
use_noisy: bool = False,
|
| 30 |
+
v_min: float = -10.0,
|
| 31 |
+
v_max: float = 10.0,
|
| 32 |
+
sigma0: float = 0.5,
|
| 33 |
+
# TODO(sven): Move `add_layer_norm` into ModelCatalog as
|
| 34 |
+
# generic option, then error if we use ParameterNoise as
|
| 35 |
+
# Exploration type and do not have any LayerNorm layers in
|
| 36 |
+
# the net.
|
| 37 |
+
add_layer_norm: bool = False
|
| 38 |
+
):
|
| 39 |
+
"""Initialize variables of this model.
|
| 40 |
+
|
| 41 |
+
Extra model kwargs:
|
| 42 |
+
q_hiddens (Sequence[int]): List of layer-sizes after(!) the
|
| 43 |
+
Advantages(A)/Value(V)-split. Hence, each of the A- and V-
|
| 44 |
+
branches will have this structure of Dense layers. To define
|
| 45 |
+
the NN before this A/V-split, use - as always -
|
| 46 |
+
config["model"]["fcnet_hiddens"].
|
| 47 |
+
dueling: Whether to build the advantage(A)/value(V) heads
|
| 48 |
+
for DDQN. If True, Q-values are calculated as:
|
| 49 |
+
Q = (A - mean[A]) + V. If False, raw NN output is interpreted
|
| 50 |
+
as Q-values.
|
| 51 |
+
dueling_activation: The activation to use for all dueling
|
| 52 |
+
layers (A- and V-branch). One of "relu", "tanh", "linear".
|
| 53 |
+
num_atoms: If >1, enables distributional DQN.
|
| 54 |
+
use_noisy: Use noisy layers.
|
| 55 |
+
v_min: Min value support for distributional DQN.
|
| 56 |
+
v_max: Max value support for distributional DQN.
|
| 57 |
+
sigma0 (float): Initial value of noisy layers.
|
| 58 |
+
add_layer_norm: Enable layer norm (for param noise).
|
| 59 |
+
"""
|
| 60 |
+
nn.Module.__init__(self)
|
| 61 |
+
super(DQNTorchModel, self).__init__(
|
| 62 |
+
obs_space, action_space, num_outputs, model_config, name
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
self.dueling = dueling
|
| 66 |
+
self.num_atoms = num_atoms
|
| 67 |
+
self.v_min = v_min
|
| 68 |
+
self.v_max = v_max
|
| 69 |
+
self.sigma0 = sigma0
|
| 70 |
+
ins = num_outputs
|
| 71 |
+
|
| 72 |
+
advantage_module = nn.Sequential()
|
| 73 |
+
value_module = nn.Sequential()
|
| 74 |
+
|
| 75 |
+
# Dueling case: Build the shared (advantages and value) fc-network.
|
| 76 |
+
for i, n in enumerate(q_hiddens):
|
| 77 |
+
if use_noisy:
|
| 78 |
+
advantage_module.add_module(
|
| 79 |
+
"dueling_A_{}".format(i),
|
| 80 |
+
NoisyLayer(
|
| 81 |
+
ins, n, sigma0=self.sigma0, activation=dueling_activation
|
| 82 |
+
),
|
| 83 |
+
)
|
| 84 |
+
value_module.add_module(
|
| 85 |
+
"dueling_V_{}".format(i),
|
| 86 |
+
NoisyLayer(
|
| 87 |
+
ins, n, sigma0=self.sigma0, activation=dueling_activation
|
| 88 |
+
),
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
advantage_module.add_module(
|
| 92 |
+
"dueling_A_{}".format(i),
|
| 93 |
+
SlimFC(ins, n, activation_fn=dueling_activation),
|
| 94 |
+
)
|
| 95 |
+
value_module.add_module(
|
| 96 |
+
"dueling_V_{}".format(i),
|
| 97 |
+
SlimFC(ins, n, activation_fn=dueling_activation),
|
| 98 |
+
)
|
| 99 |
+
# Add LayerNorm after each Dense.
|
| 100 |
+
if add_layer_norm:
|
| 101 |
+
advantage_module.add_module(
|
| 102 |
+
"LayerNorm_A_{}".format(i), nn.LayerNorm(n)
|
| 103 |
+
)
|
| 104 |
+
value_module.add_module("LayerNorm_V_{}".format(i), nn.LayerNorm(n))
|
| 105 |
+
ins = n
|
| 106 |
+
|
| 107 |
+
# Actual Advantages layer (nodes=num-actions).
|
| 108 |
+
if use_noisy:
|
| 109 |
+
advantage_module.add_module(
|
| 110 |
+
"A",
|
| 111 |
+
NoisyLayer(
|
| 112 |
+
ins, self.action_space.n * self.num_atoms, sigma0, activation=None
|
| 113 |
+
),
|
| 114 |
+
)
|
| 115 |
+
elif q_hiddens:
|
| 116 |
+
advantage_module.add_module(
|
| 117 |
+
"A", SlimFC(ins, action_space.n * self.num_atoms, activation_fn=None)
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
self.advantage_module = advantage_module
|
| 121 |
+
|
| 122 |
+
# Value layer (nodes=1).
|
| 123 |
+
if self.dueling:
|
| 124 |
+
if use_noisy:
|
| 125 |
+
value_module.add_module(
|
| 126 |
+
"V", NoisyLayer(ins, self.num_atoms, sigma0, activation=None)
|
| 127 |
+
)
|
| 128 |
+
elif q_hiddens:
|
| 129 |
+
value_module.add_module(
|
| 130 |
+
"V", SlimFC(ins, self.num_atoms, activation_fn=None)
|
| 131 |
+
)
|
| 132 |
+
self.value_module = value_module
|
| 133 |
+
|
| 134 |
+
def get_q_value_distributions(self, model_out):
|
| 135 |
+
"""Returns distributional values for Q(s, a) given a state embedding.
|
| 136 |
+
|
| 137 |
+
Override this in your custom model to customize the Q output head.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
model_out: Embedding from the model layers.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
(action_scores, logits, dist) if num_atoms == 1, otherwise
|
| 144 |
+
(action_scores, z, support_logits_per_action, logits, dist)
|
| 145 |
+
"""
|
| 146 |
+
action_scores = self.advantage_module(model_out)
|
| 147 |
+
|
| 148 |
+
if self.num_atoms > 1:
|
| 149 |
+
# Distributional Q-learning uses a discrete support z
|
| 150 |
+
# to represent the action value distribution
|
| 151 |
+
z = torch.arange(0.0, self.num_atoms, dtype=torch.float32).to(
|
| 152 |
+
action_scores.device
|
| 153 |
+
)
|
| 154 |
+
z = self.v_min + z * (self.v_max - self.v_min) / float(self.num_atoms - 1)
|
| 155 |
+
|
| 156 |
+
support_logits_per_action = torch.reshape(
|
| 157 |
+
action_scores, shape=(-1, self.action_space.n, self.num_atoms)
|
| 158 |
+
)
|
| 159 |
+
support_prob_per_action = nn.functional.softmax(
|
| 160 |
+
support_logits_per_action, dim=-1
|
| 161 |
+
)
|
| 162 |
+
action_scores = torch.sum(z * support_prob_per_action, dim=-1)
|
| 163 |
+
logits = support_logits_per_action
|
| 164 |
+
probs = support_prob_per_action
|
| 165 |
+
return action_scores, z, support_logits_per_action, logits, probs
|
| 166 |
+
else:
|
| 167 |
+
logits = torch.unsqueeze(torch.ones_like(action_scores), -1)
|
| 168 |
+
return action_scores, logits, logits
|
| 169 |
+
|
| 170 |
+
def get_state_value(self, model_out):
|
| 171 |
+
"""Returns the state value prediction for the given state embedding."""
|
| 172 |
+
|
| 173 |
+
return self.value_module(model_out)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__init__.py
ADDED
|
File without changes
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (184 Bytes). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/dqn_rainbow_torch_learner.cpython-310.pyc
ADDED
|
Binary file (4.49 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/__pycache__/dqn_rainbow_torch_rl_module.cpython-310.pyc
ADDED
|
Binary file (7.51 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_learner.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
|
| 3 |
+
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
| 4 |
+
from ray.rllib.algorithms.dqn.dqn_rainbow_learner import (
|
| 5 |
+
ATOMS,
|
| 6 |
+
DQNRainbowLearner,
|
| 7 |
+
QF_LOSS_KEY,
|
| 8 |
+
QF_LOGITS,
|
| 9 |
+
QF_MEAN_KEY,
|
| 10 |
+
QF_MAX_KEY,
|
| 11 |
+
QF_MIN_KEY,
|
| 12 |
+
QF_NEXT_PREDS,
|
| 13 |
+
QF_TARGET_NEXT_PREDS,
|
| 14 |
+
QF_TARGET_NEXT_PROBS,
|
| 15 |
+
QF_PREDS,
|
| 16 |
+
QF_PROBS,
|
| 17 |
+
TD_ERROR_MEAN_KEY,
|
| 18 |
+
)
|
| 19 |
+
from ray.rllib.core.columns import Columns
|
| 20 |
+
from ray.rllib.core.learner.torch.torch_learner import TorchLearner
|
| 21 |
+
from ray.rllib.utils.annotations import override
|
| 22 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 23 |
+
from ray.rllib.utils.metrics import TD_ERROR_KEY
|
| 24 |
+
from ray.rllib.utils.typing import ModuleID, TensorType
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
torch, nn = try_import_torch()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class DQNRainbowTorchLearner(DQNRainbowLearner, TorchLearner):
|
| 31 |
+
"""Implements `torch`-specific DQN Rainbow loss logic on top of `DQNRainbowLearner`
|
| 32 |
+
|
| 33 |
+
This ' Learner' class implements the loss in its
|
| 34 |
+
`self.compute_loss_for_module()` method.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
@override(TorchLearner)
|
| 38 |
+
def compute_loss_for_module(
|
| 39 |
+
self,
|
| 40 |
+
*,
|
| 41 |
+
module_id: ModuleID,
|
| 42 |
+
config: DQNConfig,
|
| 43 |
+
batch: Dict,
|
| 44 |
+
fwd_out: Dict[str, TensorType]
|
| 45 |
+
) -> TensorType:
|
| 46 |
+
|
| 47 |
+
q_curr = fwd_out[QF_PREDS]
|
| 48 |
+
q_target_next = fwd_out[QF_TARGET_NEXT_PREDS]
|
| 49 |
+
|
| 50 |
+
# Get the Q-values for the selected actions in the rollout.
|
| 51 |
+
# TODO (simon, sven): Check, if we can use `gather` with a complex action
|
| 52 |
+
# space - we might need the one_hot_selection. Also test performance.
|
| 53 |
+
q_selected = torch.nan_to_num(
|
| 54 |
+
torch.gather(
|
| 55 |
+
q_curr,
|
| 56 |
+
dim=1,
|
| 57 |
+
index=batch[Columns.ACTIONS].view(-1, 1).expand(-1, 1).long(),
|
| 58 |
+
),
|
| 59 |
+
neginf=0.0,
|
| 60 |
+
).squeeze()
|
| 61 |
+
|
| 62 |
+
# Use double Q learning.
|
| 63 |
+
if config.double_q:
|
| 64 |
+
# Then we evaluate the target Q-function at the best action (greedy action)
|
| 65 |
+
# over the online Q-function.
|
| 66 |
+
# Mark the best online Q-value of the next state.
|
| 67 |
+
q_next_best_idx = (
|
| 68 |
+
torch.argmax(fwd_out[QF_NEXT_PREDS], dim=1).unsqueeze(dim=-1).long()
|
| 69 |
+
)
|
| 70 |
+
# Get the Q-value of the target network at maximum of the online network
|
| 71 |
+
# (bootstrap action).
|
| 72 |
+
q_next_best = torch.nan_to_num(
|
| 73 |
+
torch.gather(q_target_next, dim=1, index=q_next_best_idx),
|
| 74 |
+
neginf=0.0,
|
| 75 |
+
).squeeze()
|
| 76 |
+
else:
|
| 77 |
+
# Mark the maximum Q-value(s).
|
| 78 |
+
q_next_best_idx = (
|
| 79 |
+
torch.argmax(q_target_next, dim=1).unsqueeze(dim=-1).long()
|
| 80 |
+
)
|
| 81 |
+
# Get the maximum Q-value(s).
|
| 82 |
+
q_next_best = torch.nan_to_num(
|
| 83 |
+
torch.gather(q_target_next, dim=1, index=q_next_best_idx),
|
| 84 |
+
neginf=0.0,
|
| 85 |
+
).squeeze()
|
| 86 |
+
|
| 87 |
+
# If we learn a Q-distribution.
|
| 88 |
+
if config.num_atoms > 1:
|
| 89 |
+
# Extract the Q-logits evaluated at the selected actions.
|
| 90 |
+
# (Note, `torch.gather` should be faster than multiplication
|
| 91 |
+
# with a one-hot tensor.)
|
| 92 |
+
# (32, 2, 10) -> (32, 10)
|
| 93 |
+
q_logits_selected = torch.gather(
|
| 94 |
+
fwd_out[QF_LOGITS],
|
| 95 |
+
dim=1,
|
| 96 |
+
# Note, the Q-logits are of shape (B, action_space.n, num_atoms)
|
| 97 |
+
# while the actions have shape (B, 1). We reshape actions to
|
| 98 |
+
# (B, 1, num_atoms).
|
| 99 |
+
index=batch[Columns.ACTIONS]
|
| 100 |
+
.view(-1, 1, 1)
|
| 101 |
+
.expand(-1, 1, config.num_atoms)
|
| 102 |
+
.long(),
|
| 103 |
+
).squeeze(dim=1)
|
| 104 |
+
# Get the probabilies for the maximum Q-value(s).
|
| 105 |
+
q_probs_next_best = torch.gather(
|
| 106 |
+
fwd_out[QF_TARGET_NEXT_PROBS],
|
| 107 |
+
dim=1,
|
| 108 |
+
# Change the view and then expand to get to the dimensions
|
| 109 |
+
# of the probabilities (dims 0 and 2, 1 should be reduced
|
| 110 |
+
# from 2 -> 1).
|
| 111 |
+
index=q_next_best_idx.view(-1, 1, 1).expand(-1, 1, config.num_atoms),
|
| 112 |
+
).squeeze(dim=1)
|
| 113 |
+
|
| 114 |
+
# For distributional Q-learning we use an entropy loss.
|
| 115 |
+
|
| 116 |
+
# Extract the support grid for the Q distribution.
|
| 117 |
+
z = fwd_out[ATOMS]
|
| 118 |
+
# TODO (simon): Enable computing on GPU.
|
| 119 |
+
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)s
|
| 120 |
+
r_tau = torch.clamp(
|
| 121 |
+
batch[Columns.REWARDS].unsqueeze(dim=-1)
|
| 122 |
+
+ (
|
| 123 |
+
config.gamma ** batch["n_step"]
|
| 124 |
+
* (1.0 - batch[Columns.TERMINATEDS].float())
|
| 125 |
+
).unsqueeze(dim=-1)
|
| 126 |
+
* z,
|
| 127 |
+
config.v_min,
|
| 128 |
+
config.v_max,
|
| 129 |
+
).squeeze(dim=1)
|
| 130 |
+
# (32, 10)
|
| 131 |
+
b = (r_tau - config.v_min) / (
|
| 132 |
+
(config.v_max - config.v_min) / float(config.num_atoms - 1.0)
|
| 133 |
+
)
|
| 134 |
+
lower_bound = torch.floor(b)
|
| 135 |
+
upper_bound = torch.ceil(b)
|
| 136 |
+
|
| 137 |
+
floor_equal_ceil = ((upper_bound - lower_bound) < 0.5).float()
|
| 138 |
+
|
| 139 |
+
# (B, num_atoms, num_atoms).
|
| 140 |
+
lower_projection = nn.functional.one_hot(
|
| 141 |
+
lower_bound.long(), config.num_atoms
|
| 142 |
+
)
|
| 143 |
+
upper_projection = nn.functional.one_hot(
|
| 144 |
+
upper_bound.long(), config.num_atoms
|
| 145 |
+
)
|
| 146 |
+
# (32, 10)
|
| 147 |
+
ml_delta = q_probs_next_best * (upper_bound - b + floor_equal_ceil)
|
| 148 |
+
mu_delta = q_probs_next_best * (b - lower_bound)
|
| 149 |
+
# (32, 10)
|
| 150 |
+
ml_delta = torch.sum(lower_projection * ml_delta.unsqueeze(dim=-1), dim=1)
|
| 151 |
+
mu_delta = torch.sum(upper_projection * mu_delta.unsqueeze(dim=-1), dim=1)
|
| 152 |
+
# We do not want to propagate through the distributional targets.
|
| 153 |
+
# (32, 10)
|
| 154 |
+
m = (ml_delta + mu_delta).detach()
|
| 155 |
+
|
| 156 |
+
# The Rainbow paper claims to use the KL-divergence loss. This is identical
|
| 157 |
+
# to using the cross-entropy (differs only by entropy which is constant)
|
| 158 |
+
# when optimizing by the gradient (the gradient is identical).
|
| 159 |
+
td_error = nn.CrossEntropyLoss(reduction="none")(q_logits_selected, m)
|
| 160 |
+
# Compute the weighted loss (importance sampling weights).
|
| 161 |
+
total_loss = torch.mean(batch["weights"] * td_error)
|
| 162 |
+
else:
|
| 163 |
+
# Masked all Q-values with terminated next states in the targets.
|
| 164 |
+
q_next_best_masked = (
|
| 165 |
+
1.0 - batch[Columns.TERMINATEDS].float()
|
| 166 |
+
) * q_next_best
|
| 167 |
+
|
| 168 |
+
# Compute the RHS of the Bellman equation.
|
| 169 |
+
# Detach this node from the computation graph as we do not want to
|
| 170 |
+
# backpropagate through the target network when optimizing the Q loss.
|
| 171 |
+
q_selected_target = (
|
| 172 |
+
batch[Columns.REWARDS]
|
| 173 |
+
+ (config.gamma ** batch["n_step"]) * q_next_best_masked
|
| 174 |
+
).detach()
|
| 175 |
+
|
| 176 |
+
# Choose the requested loss function. Note, in case of the Huber loss
|
| 177 |
+
# we fall back to the default of `delta=1.0`.
|
| 178 |
+
loss_fn = nn.HuberLoss if config.td_error_loss_fn == "huber" else nn.MSELoss
|
| 179 |
+
# Compute the TD error.
|
| 180 |
+
td_error = torch.abs(q_selected - q_selected_target)
|
| 181 |
+
# Compute the weighted loss (importance sampling weights).
|
| 182 |
+
total_loss = torch.mean(
|
| 183 |
+
batch["weights"]
|
| 184 |
+
* loss_fn(reduction="none")(q_selected, q_selected_target)
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Log the TD-error with reduce=None, such that - in case we have n parallel
|
| 188 |
+
# Learners - we will re-concatenate the produced TD-error tensors to yield
|
| 189 |
+
# a 1:1 representation of the original batch.
|
| 190 |
+
self.metrics.log_value(
|
| 191 |
+
key=(module_id, TD_ERROR_KEY),
|
| 192 |
+
value=td_error,
|
| 193 |
+
reduce=None,
|
| 194 |
+
clear_on_reduce=True,
|
| 195 |
+
)
|
| 196 |
+
# Log other important loss stats (reduce=mean (default), but with window=1
|
| 197 |
+
# in order to keep them history free).
|
| 198 |
+
self.metrics.log_dict(
|
| 199 |
+
{
|
| 200 |
+
QF_LOSS_KEY: total_loss,
|
| 201 |
+
QF_MEAN_KEY: torch.mean(q_selected),
|
| 202 |
+
QF_MAX_KEY: torch.max(q_selected),
|
| 203 |
+
QF_MIN_KEY: torch.min(q_selected),
|
| 204 |
+
TD_ERROR_MEAN_KEY: torch.mean(td_error),
|
| 205 |
+
},
|
| 206 |
+
key=module_id,
|
| 207 |
+
window=1, # <- single items (should not be mean/ema-reduced over time).
|
| 208 |
+
)
|
| 209 |
+
# If we learn a Q-value distribution store the support and average
|
| 210 |
+
# probabilities.
|
| 211 |
+
if config.num_atoms > 1:
|
| 212 |
+
# Log important loss stats.
|
| 213 |
+
self.metrics.log_dict(
|
| 214 |
+
{
|
| 215 |
+
ATOMS: z,
|
| 216 |
+
# The absolute difference in expectation between the actions
|
| 217 |
+
# should (at least mildly) rise.
|
| 218 |
+
"expectations_abs_diff": torch.mean(
|
| 219 |
+
torch.abs(
|
| 220 |
+
torch.diff(
|
| 221 |
+
torch.sum(fwd_out[QF_PROBS].mean(dim=0) * z, dim=1)
|
| 222 |
+
).mean(dim=0)
|
| 223 |
+
)
|
| 224 |
+
),
|
| 225 |
+
# The total variation distance should measure the distance between
|
| 226 |
+
# return distributions of different actions. This should (at least
|
| 227 |
+
# mildly) increase during training when the agent differentiates
|
| 228 |
+
# more between actions.
|
| 229 |
+
"dist_total_variation_dist": torch.diff(
|
| 230 |
+
fwd_out[QF_PROBS].mean(dim=0), dim=0
|
| 231 |
+
)
|
| 232 |
+
.abs()
|
| 233 |
+
.sum()
|
| 234 |
+
* 0.5,
|
| 235 |
+
# The maximum distance between the action distributions. This metric
|
| 236 |
+
# should increase over the course of training.
|
| 237 |
+
"dist_max_abs_distance": torch.max(
|
| 238 |
+
torch.diff(fwd_out[QF_PROBS].mean(dim=0), dim=0).abs()
|
| 239 |
+
),
|
| 240 |
+
# Mean shannon entropy of action distributions. This should decrease
|
| 241 |
+
# over the course of training.
|
| 242 |
+
"action_dist_mean_entropy": torch.mean(
|
| 243 |
+
(
|
| 244 |
+
fwd_out[QF_PROBS].mean(dim=0)
|
| 245 |
+
* torch.log(fwd_out[QF_PROBS].mean(dim=0))
|
| 246 |
+
).sum(dim=1),
|
| 247 |
+
dim=0,
|
| 248 |
+
),
|
| 249 |
+
},
|
| 250 |
+
key=module_id,
|
| 251 |
+
window=1, # <- single items (should not be mean/ema-reduced over time).
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return total_loss
|
| 255 |
+
|
| 256 |
+
def _reset_noise(self) -> None:
|
| 257 |
+
# Reset the noise for all noisy modules, if necessary.
|
| 258 |
+
self.module.foreach_module(
|
| 259 |
+
lambda mid, module: (
|
| 260 |
+
module._reset_noise(target=True)
|
| 261 |
+
if hasattr(module, "_reset_noise")
|
| 262 |
+
else None
|
| 263 |
+
)
|
| 264 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_noisy_net.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 2 |
+
|
| 3 |
+
from ray.rllib.algorithms.dqn.dqn_rainbow_noisy_net_configs import (
|
| 4 |
+
NoisyMLPEncoderConfig,
|
| 5 |
+
NoisyMLPHeadConfig,
|
| 6 |
+
)
|
| 7 |
+
from ray.rllib.algorithms.dqn.torch.torch_noisy_linear import NoisyLinear
|
| 8 |
+
from ray.rllib.core.columns import Columns
|
| 9 |
+
from ray.rllib.core.models.base import Encoder, ENCODER_OUT, Model
|
| 10 |
+
from ray.rllib.core.models.torch.base import TorchModel
|
| 11 |
+
from ray.rllib.models.utils import get_activation_fn, get_initializer_fn
|
| 12 |
+
from ray.rllib.utils.annotations import override
|
| 13 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 14 |
+
|
| 15 |
+
torch, nn = try_import_torch()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class TorchNoisyMLPEncoder(TorchModel, Encoder):
|
| 19 |
+
def __init__(self, config: NoisyMLPEncoderConfig) -> None:
|
| 20 |
+
TorchModel.__init__(self, config)
|
| 21 |
+
Encoder.__init__(self, config)
|
| 22 |
+
|
| 23 |
+
# Create the noisy network.
|
| 24 |
+
self.net = TorchNoisyMLP(
|
| 25 |
+
input_dim=config.input_dims[0],
|
| 26 |
+
hidden_layer_dims=config.hidden_layer_dims,
|
| 27 |
+
hidden_layer_activation=config.hidden_layer_activation,
|
| 28 |
+
hidden_layer_use_layernorm=config.hidden_layer_use_layernorm,
|
| 29 |
+
hidden_layer_use_bias=config.hidden_layer_use_bias,
|
| 30 |
+
hidden_layer_weights_initializer=config.hidden_layer_weights_initializer,
|
| 31 |
+
hidden_layer_weights_initializer_config=(
|
| 32 |
+
config.hidden_layer_weights_initializer_config
|
| 33 |
+
),
|
| 34 |
+
hidden_layer_bias_initializer=config.hidden_layer_bias_initializer,
|
| 35 |
+
hidden_layer_bias_initializer_config=(
|
| 36 |
+
config.hidden_layer_bias_initializer_config
|
| 37 |
+
),
|
| 38 |
+
output_dim=config.output_layer_dim,
|
| 39 |
+
output_activation=config.output_layer_activation,
|
| 40 |
+
output_use_bias=config.output_layer_use_bias,
|
| 41 |
+
output_weights_initializer=config.output_layer_weights_initializer,
|
| 42 |
+
output_weights_initializer_config=(
|
| 43 |
+
config.output_layer_weights_initializer_config
|
| 44 |
+
),
|
| 45 |
+
output_bias_initializer=config.output_layer_bias_initializer,
|
| 46 |
+
output_bias_initializer_config=config.output_layer_bias_initializer_config,
|
| 47 |
+
# Note, this is the only additional parameter in regard to a regular MLP.
|
| 48 |
+
std_init=config.std_init,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
@override(Model)
|
| 52 |
+
def _forward(self, inputs: dict, **kwargs) -> dict:
|
| 53 |
+
return {ENCODER_OUT: self.net(inputs[Columns.OBS])}
|
| 54 |
+
|
| 55 |
+
def _reset_noise(self):
|
| 56 |
+
# Reset the noise in the complete network.
|
| 57 |
+
self.net._reset_noise()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class TorchNoisyMLPHead(TorchModel):
|
| 61 |
+
def __init__(self, config: NoisyMLPHeadConfig) -> None:
|
| 62 |
+
super().__init__(config)
|
| 63 |
+
|
| 64 |
+
self.net = TorchNoisyMLP(
|
| 65 |
+
input_dim=config.input_dims[0],
|
| 66 |
+
hidden_layer_dims=config.hidden_layer_dims,
|
| 67 |
+
hidden_layer_activation=config.hidden_layer_activation,
|
| 68 |
+
hidden_layer_use_layernorm=config.hidden_layer_use_layernorm,
|
| 69 |
+
hidden_layer_use_bias=config.hidden_layer_use_bias,
|
| 70 |
+
hidden_layer_weights_initializer=config.hidden_layer_weights_initializer,
|
| 71 |
+
hidden_layer_weights_initializer_config=(
|
| 72 |
+
config.hidden_layer_weights_initializer_config
|
| 73 |
+
),
|
| 74 |
+
hidden_layer_bias_initializer=config.hidden_layer_bias_initializer,
|
| 75 |
+
hidden_layer_bias_initializer_config=(
|
| 76 |
+
config.hidden_layer_bias_initializer_config
|
| 77 |
+
),
|
| 78 |
+
output_dim=config.output_layer_dim,
|
| 79 |
+
output_activation=config.output_layer_activation,
|
| 80 |
+
output_use_bias=config.output_layer_use_bias,
|
| 81 |
+
output_weights_initializer=config.output_layer_weights_initializer,
|
| 82 |
+
output_weights_initializer_config=(
|
| 83 |
+
config.output_layer_weights_initializer_config
|
| 84 |
+
),
|
| 85 |
+
output_bias_initializer=config.output_layer_bias_initializer,
|
| 86 |
+
output_bias_initializer_config=config.output_layer_bias_initializer_config,
|
| 87 |
+
# Note, this is the only additional parameter in regard to a regular MLP.
|
| 88 |
+
std_init=config.std_init,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
@override(Model)
|
| 92 |
+
def _forward(self, inputs: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 93 |
+
return self.net(inputs)
|
| 94 |
+
|
| 95 |
+
def _reset_noise(self) -> None:
|
| 96 |
+
# Reset the noise in the complete network.
|
| 97 |
+
self.net._reset_noise()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class TorchNoisyMLP(nn.Module):
|
| 101 |
+
"""A multi-layer perceptron with N dense layers.
|
| 102 |
+
|
| 103 |
+
All layers (except for an optional additional extra output layer) share the same
|
| 104 |
+
activation function, bias setup (use bias or not), and LayerNorm setup
|
| 105 |
+
(use layer normalization or not).
|
| 106 |
+
|
| 107 |
+
If `output_dim` (int) is not None, an additional, extra output dense layer is added,
|
| 108 |
+
which might have its own activation function (e.g. "linear"). However, the output
|
| 109 |
+
layer does NOT use layer normalization.
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
def __init__(
|
| 113 |
+
self,
|
| 114 |
+
*,
|
| 115 |
+
input_dim: int,
|
| 116 |
+
hidden_layer_dims: List[int],
|
| 117 |
+
hidden_layer_activation: Union[str, Callable] = "relu",
|
| 118 |
+
hidden_layer_use_bias: bool = True,
|
| 119 |
+
hidden_layer_use_layernorm: bool = False,
|
| 120 |
+
hidden_layer_weights_initializer: Optional[Union[str, Callable]] = None,
|
| 121 |
+
hidden_layer_weights_initializer_config: Optional[Union[str, Callable]] = None,
|
| 122 |
+
hidden_layer_bias_initializer: Optional[Union[str, Callable]] = None,
|
| 123 |
+
hidden_layer_bias_initializer_config: Optional[Dict] = None,
|
| 124 |
+
output_dim: Optional[int] = None,
|
| 125 |
+
output_use_bias: bool = True,
|
| 126 |
+
output_activation: Union[str, Callable] = "linear",
|
| 127 |
+
output_weights_initializer: Optional[Union[str, Callable]] = None,
|
| 128 |
+
output_weights_initializer_config: Optional[Dict] = None,
|
| 129 |
+
output_bias_initializer: Optional[Union[str, Callable]] = None,
|
| 130 |
+
output_bias_initializer_config: Optional[Dict] = None,
|
| 131 |
+
std_init: Optional[float] = 0.1,
|
| 132 |
+
):
|
| 133 |
+
"""Initialize a TorchMLP object.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
input_dim: The input dimension of the network. Must not be None.
|
| 137 |
+
hidden_layer_dims: The sizes of the hidden layers. If an empty list, only a
|
| 138 |
+
single layer will be built of size `output_dim`.
|
| 139 |
+
hidden_layer_use_layernorm: Whether to insert a LayerNormalization
|
| 140 |
+
functionality in between each hidden layer's output and its activation.
|
| 141 |
+
hidden_layer_use_bias: Whether to use bias on all dense layers (excluding
|
| 142 |
+
the possible separate output layer).
|
| 143 |
+
hidden_layer_activation: The activation function to use after each layer
|
| 144 |
+
(except for the output). Either a torch.nn.[activation fn] callable or
|
| 145 |
+
the name thereof, or an RLlib recognized activation name,
|
| 146 |
+
e.g. "ReLU", "relu", "tanh", "SiLU", or "linear".
|
| 147 |
+
hidden_layer_weights_initializer: The initializer function or class to use
|
| 148 |
+
forweights initialization in the hidden layers. If `None` the default
|
| 149 |
+
initializer of the respective dense layer is used. Note, only the
|
| 150 |
+
in-place initializers, i.e. ending with an underscore "_" are allowed.
|
| 151 |
+
hidden_layer_weights_initializer_config: Configuration to pass into the
|
| 152 |
+
initializer defined in `hidden_layer_weights_initializer`.
|
| 153 |
+
hidden_layer_bias_initializer: The initializer function or class to use for
|
| 154 |
+
bias initialization in the hidden layers. If `None` the default
|
| 155 |
+
initializer of the respective dense layer is used. Note, only the
|
| 156 |
+
in-place initializers, i.e. ending with an underscore "_" are allowed.
|
| 157 |
+
hidden_layer_bias_initializer_config: Configuration to pass into the
|
| 158 |
+
initializer defined in `hidden_layer_bias_initializer`.
|
| 159 |
+
output_dim: The output dimension of the network. If None, no specific output
|
| 160 |
+
layer will be added and the last layer in the stack will have
|
| 161 |
+
size=`hidden_layer_dims[-1]`.
|
| 162 |
+
output_use_bias: Whether to use bias on the separate output layer,
|
| 163 |
+
if any.
|
| 164 |
+
output_activation: The activation function to use for the output layer
|
| 165 |
+
(if any). Either a torch.nn.[activation fn] callable or
|
| 166 |
+
the name thereof, or an RLlib recognized activation name,
|
| 167 |
+
e.g. "ReLU", "relu", "tanh", "SiLU", or "linear".
|
| 168 |
+
output_layer_weights_initializer: The initializer function or class to use
|
| 169 |
+
for weights initialization in the output layers. If `None` the default
|
| 170 |
+
initializer of the respective dense layer is used. Note, only the
|
| 171 |
+
in-place initializers, i.e. ending with an underscore "_" are allowed.
|
| 172 |
+
output_layer_weights_initializer_config: Configuration to pass into the
|
| 173 |
+
initializer defined in `output_layer_weights_initializer`.
|
| 174 |
+
output_layer_bias_initializer: The initializer function or class to use for
|
| 175 |
+
bias initialization in the output layers. If `None` the default
|
| 176 |
+
initializer of the respective dense layer is used. Note, only the
|
| 177 |
+
in-place initializers, i.e. ending with an underscore "_" are allowed.
|
| 178 |
+
output_layer_bias_initializer_config: Configuration to pass into the
|
| 179 |
+
initializer defined in `output_layer_bias_initializer`.
|
| 180 |
+
std_init: Initial value of the Gaussian standard deviation before
|
| 181 |
+
optimization. Defaults to `0.1`.
|
| 182 |
+
"""
|
| 183 |
+
super().__init__()
|
| 184 |
+
assert input_dim > 0
|
| 185 |
+
|
| 186 |
+
self.input_dim = input_dim
|
| 187 |
+
|
| 188 |
+
hidden_activation = get_activation_fn(
|
| 189 |
+
hidden_layer_activation, framework="torch"
|
| 190 |
+
)
|
| 191 |
+
hidden_weights_initializer = get_initializer_fn(
|
| 192 |
+
hidden_layer_weights_initializer, framework="torch"
|
| 193 |
+
)
|
| 194 |
+
hidden_bias_initializer = get_initializer_fn(
|
| 195 |
+
hidden_layer_bias_initializer, framework="torch"
|
| 196 |
+
)
|
| 197 |
+
output_weights_initializer = get_initializer_fn(
|
| 198 |
+
output_weights_initializer, framework="torch"
|
| 199 |
+
)
|
| 200 |
+
output_bias_initializer = get_initializer_fn(
|
| 201 |
+
output_bias_initializer, framework="torch"
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
layers = []
|
| 205 |
+
|
| 206 |
+
dims = (
|
| 207 |
+
[self.input_dim]
|
| 208 |
+
+ list(hidden_layer_dims)
|
| 209 |
+
+ ([output_dim] if output_dim else [])
|
| 210 |
+
)
|
| 211 |
+
for i in range(0, len(dims) - 1):
|
| 212 |
+
# Whether we are already processing the last (special) output layer.
|
| 213 |
+
is_output_layer = output_dim is not None and i == len(dims) - 2
|
| 214 |
+
|
| 215 |
+
layer = NoisyLinear(
|
| 216 |
+
dims[i],
|
| 217 |
+
dims[i + 1],
|
| 218 |
+
bias=output_use_bias if is_output_layer else hidden_layer_use_bias,
|
| 219 |
+
std_init=std_init,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Initialize layers, if necessary.
|
| 223 |
+
if is_output_layer:
|
| 224 |
+
# Initialize output layer weigths if necessary.
|
| 225 |
+
if output_weights_initializer:
|
| 226 |
+
output_weights_initializer(
|
| 227 |
+
layer.weight, **output_weights_initializer_config or {}
|
| 228 |
+
)
|
| 229 |
+
# Initialize output layer bias if necessary.
|
| 230 |
+
if output_bias_initializer:
|
| 231 |
+
output_bias_initializer(
|
| 232 |
+
layer.bias, **output_bias_initializer_config or {}
|
| 233 |
+
)
|
| 234 |
+
# Must be hidden.
|
| 235 |
+
else:
|
| 236 |
+
# Initialize hidden layer weights if necessary.
|
| 237 |
+
if hidden_layer_weights_initializer:
|
| 238 |
+
hidden_weights_initializer(
|
| 239 |
+
layer.weight, **hidden_layer_weights_initializer_config or {}
|
| 240 |
+
)
|
| 241 |
+
# Initialize hidden layer bias if necessary.
|
| 242 |
+
if hidden_layer_bias_initializer:
|
| 243 |
+
hidden_bias_initializer(
|
| 244 |
+
layer.bias, **hidden_layer_bias_initializer_config or {}
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
layers.append(layer)
|
| 248 |
+
|
| 249 |
+
# We are still in the hidden layer section: Possibly add layernorm and
|
| 250 |
+
# hidden activation.
|
| 251 |
+
if not is_output_layer:
|
| 252 |
+
# Insert a layer normalization in between layer's output and
|
| 253 |
+
# the activation.
|
| 254 |
+
if hidden_layer_use_layernorm:
|
| 255 |
+
layers.append(nn.LayerNorm(dims[i + 1]))
|
| 256 |
+
# Add the activation function.
|
| 257 |
+
if hidden_activation is not None:
|
| 258 |
+
layers.append(hidden_activation())
|
| 259 |
+
|
| 260 |
+
# Add output layer's (if any) activation.
|
| 261 |
+
output_activation = get_activation_fn(output_activation, framework="torch")
|
| 262 |
+
if output_dim is not None and output_activation is not None:
|
| 263 |
+
layers.append(output_activation())
|
| 264 |
+
|
| 265 |
+
self.mlp = nn.Sequential(*layers)
|
| 266 |
+
|
| 267 |
+
self.expected_input_dtype = torch.float32
|
| 268 |
+
|
| 269 |
+
def forward(self, x):
|
| 270 |
+
return self.mlp(x.type(self.expected_input_dtype))
|
| 271 |
+
|
| 272 |
+
def _reset_noise(self):
|
| 273 |
+
# Reset the noise for all modules (layers).
|
| 274 |
+
for module in self.modules():
|
| 275 |
+
if hasattr(module, "reset_noise"):
|
| 276 |
+
module.reset_noise()
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/dqn_rainbow_torch_rl_module.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Union
|
| 2 |
+
|
| 3 |
+
from ray.rllib.algorithms.dqn.dqn_rainbow_rl_module import (
|
| 4 |
+
DQNRainbowRLModule,
|
| 5 |
+
ATOMS,
|
| 6 |
+
QF_LOGITS,
|
| 7 |
+
QF_NEXT_PREDS,
|
| 8 |
+
QF_PREDS,
|
| 9 |
+
QF_PROBS,
|
| 10 |
+
QF_TARGET_NEXT_PREDS,
|
| 11 |
+
QF_TARGET_NEXT_PROBS,
|
| 12 |
+
)
|
| 13 |
+
from ray.rllib.algorithms.dqn.torch.dqn_rainbow_torch_noisy_net import (
|
| 14 |
+
TorchNoisyMLPEncoder,
|
| 15 |
+
)
|
| 16 |
+
from ray.rllib.core.columns import Columns
|
| 17 |
+
from ray.rllib.core.models.base import Encoder, ENCODER_OUT, Model
|
| 18 |
+
from ray.rllib.core.rl_module.torch.torch_rl_module import TorchRLModule
|
| 19 |
+
from ray.rllib.core.rl_module.rl_module import RLModule
|
| 20 |
+
from ray.rllib.utils.annotations import override
|
| 21 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 22 |
+
from ray.rllib.utils.typing import TensorType, TensorStructType
|
| 23 |
+
|
| 24 |
+
torch, nn = try_import_torch()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class DQNRainbowTorchRLModule(TorchRLModule, DQNRainbowRLModule):
|
| 28 |
+
framework: str = "torch"
|
| 29 |
+
|
| 30 |
+
@override(DQNRainbowRLModule)
|
| 31 |
+
def setup(self):
|
| 32 |
+
super().setup()
|
| 33 |
+
|
| 34 |
+
# If we use a noisy encoder. Note, only if the observation
|
| 35 |
+
# space is a flat space we can use a noisy encoder.
|
| 36 |
+
self.uses_noisy_encoder = isinstance(self.encoder, TorchNoisyMLPEncoder)
|
| 37 |
+
|
| 38 |
+
@override(RLModule)
|
| 39 |
+
def _forward_inference(self, batch: Dict[str, TensorType]) -> Dict[str, TensorType]:
|
| 40 |
+
output = {}
|
| 41 |
+
|
| 42 |
+
# Set the module into evaluation mode, if needed.
|
| 43 |
+
if self.uses_noisy and self.training:
|
| 44 |
+
# This sets the weigths and bias to their constant version.
|
| 45 |
+
self.eval()
|
| 46 |
+
|
| 47 |
+
# Q-network forward pass.
|
| 48 |
+
qf_outs = self._qf(batch)
|
| 49 |
+
|
| 50 |
+
# Get action distribution.
|
| 51 |
+
action_dist_cls = self.get_exploration_action_dist_cls()
|
| 52 |
+
action_dist = action_dist_cls.from_logits(qf_outs[QF_PREDS])
|
| 53 |
+
# Note, the deterministic version of the categorical distribution
|
| 54 |
+
# outputs directly the `argmax` of the logits.
|
| 55 |
+
exploit_actions = action_dist.to_deterministic().sample()
|
| 56 |
+
|
| 57 |
+
# In inference, we only need the exploitation actions.
|
| 58 |
+
output[Columns.ACTIONS] = exploit_actions
|
| 59 |
+
|
| 60 |
+
return output
|
| 61 |
+
|
| 62 |
+
@override(RLModule)
|
| 63 |
+
def _forward_exploration(
|
| 64 |
+
self, batch: Dict[str, TensorType], t: int
|
| 65 |
+
) -> Dict[str, TensorType]:
|
| 66 |
+
output = {}
|
| 67 |
+
|
| 68 |
+
# Resample the noise for the noisy layers, if needed.
|
| 69 |
+
if self.uses_noisy:
|
| 70 |
+
# We want to resample the noise everytime we step.
|
| 71 |
+
self._reset_noise(target=False)
|
| 72 |
+
if not self.training:
|
| 73 |
+
# Set the module into training mode. This sets
|
| 74 |
+
# the weigths and bias to their noisy version.
|
| 75 |
+
self.train(True)
|
| 76 |
+
|
| 77 |
+
# Q-network forward pass.
|
| 78 |
+
qf_outs = self._qf(batch)
|
| 79 |
+
|
| 80 |
+
# Get action distribution.
|
| 81 |
+
action_dist_cls = self.get_exploration_action_dist_cls()
|
| 82 |
+
action_dist = action_dist_cls.from_logits(qf_outs[QF_PREDS])
|
| 83 |
+
# Note, the deterministic version of the categorical distribution
|
| 84 |
+
# outputs directly the `argmax` of the logits.
|
| 85 |
+
exploit_actions = action_dist.to_deterministic().sample()
|
| 86 |
+
|
| 87 |
+
# In case of noisy networks the parameter noise is sufficient for
|
| 88 |
+
# variation in exploration.
|
| 89 |
+
if self.uses_noisy:
|
| 90 |
+
# Use the exploitation action (coming from the noisy network).
|
| 91 |
+
output[Columns.ACTIONS] = exploit_actions
|
| 92 |
+
# Otherwise we need epsilon greedy to support exploration.
|
| 93 |
+
else:
|
| 94 |
+
# TODO (simon): Implement sampling for nested spaces.
|
| 95 |
+
# Update scheduler.
|
| 96 |
+
self.epsilon_schedule.update(t)
|
| 97 |
+
# Get the actual epsilon,
|
| 98 |
+
epsilon = self.epsilon_schedule.get_current_value()
|
| 99 |
+
# Apply epsilon-greedy exploration.
|
| 100 |
+
B = qf_outs[QF_PREDS].shape[0]
|
| 101 |
+
random_actions = torch.squeeze(
|
| 102 |
+
torch.multinomial(
|
| 103 |
+
(torch.nan_to_num(qf_outs[QF_PREDS], neginf=0.0) != 0.0).float(),
|
| 104 |
+
num_samples=1,
|
| 105 |
+
),
|
| 106 |
+
dim=1,
|
| 107 |
+
)
|
| 108 |
+
output[Columns.ACTIONS] = torch.where(
|
| 109 |
+
torch.rand((B,)) < epsilon,
|
| 110 |
+
random_actions,
|
| 111 |
+
exploit_actions,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
@override(RLModule)
|
| 117 |
+
def _forward_train(
|
| 118 |
+
self, batch: Dict[str, TensorType]
|
| 119 |
+
) -> Dict[str, TensorStructType]:
|
| 120 |
+
if self.inference_only:
|
| 121 |
+
raise RuntimeError(
|
| 122 |
+
"Trying to train a module that is not a learner module. Set the "
|
| 123 |
+
"flag `inference_only=False` when building the module."
|
| 124 |
+
)
|
| 125 |
+
output = {}
|
| 126 |
+
|
| 127 |
+
# Set module into training mode.
|
| 128 |
+
if self.uses_noisy and not self.training:
|
| 129 |
+
# This sets the weigths and bias to their noisy version.
|
| 130 |
+
self.train(True)
|
| 131 |
+
|
| 132 |
+
# If we use a double-Q setup.
|
| 133 |
+
if self.uses_double_q:
|
| 134 |
+
# Then we need to make a single forward pass with both,
|
| 135 |
+
# current and next observations.
|
| 136 |
+
batch_base = {
|
| 137 |
+
Columns.OBS: torch.concat(
|
| 138 |
+
[batch[Columns.OBS], batch[Columns.NEXT_OBS]], dim=0
|
| 139 |
+
),
|
| 140 |
+
}
|
| 141 |
+
# Otherwise we can just use the current observations.
|
| 142 |
+
else:
|
| 143 |
+
batch_base = {Columns.OBS: batch[Columns.OBS]}
|
| 144 |
+
batch_target = {Columns.OBS: batch[Columns.NEXT_OBS]}
|
| 145 |
+
|
| 146 |
+
# Q-network forward passes.
|
| 147 |
+
qf_outs = self._qf(batch_base)
|
| 148 |
+
if self.uses_double_q:
|
| 149 |
+
output[QF_PREDS], output[QF_NEXT_PREDS] = torch.chunk(
|
| 150 |
+
qf_outs[QF_PREDS], chunks=2, dim=0
|
| 151 |
+
)
|
| 152 |
+
else:
|
| 153 |
+
output[QF_PREDS] = qf_outs[QF_PREDS]
|
| 154 |
+
# The target Q-values for the next observations.
|
| 155 |
+
qf_target_next_outs = self.forward_target(batch_target)
|
| 156 |
+
output[QF_TARGET_NEXT_PREDS] = qf_target_next_outs[QF_PREDS]
|
| 157 |
+
# We are learning a Q-value distribution.
|
| 158 |
+
if self.num_atoms > 1:
|
| 159 |
+
# Add distribution artefacts to the output.
|
| 160 |
+
# Distribution support.
|
| 161 |
+
output[ATOMS] = qf_target_next_outs[ATOMS]
|
| 162 |
+
# Original logits from the Q-head.
|
| 163 |
+
output[QF_LOGITS] = qf_outs[QF_LOGITS]
|
| 164 |
+
# Probabilities of the Q-value distribution of the current state.
|
| 165 |
+
output[QF_PROBS] = qf_outs[QF_PROBS]
|
| 166 |
+
# Probabilities of the target Q-value distribution of the next state.
|
| 167 |
+
output[QF_TARGET_NEXT_PROBS] = qf_target_next_outs[QF_PROBS]
|
| 168 |
+
|
| 169 |
+
return output
|
| 170 |
+
|
| 171 |
+
@override(DQNRainbowRLModule)
|
| 172 |
+
def _af_dist(self, batch: Dict[str, TensorType]) -> Dict[str, TensorType]:
|
| 173 |
+
"""Compute the advantage distribution.
|
| 174 |
+
|
| 175 |
+
Note this distribution is identical to the Q-distribution in
|
| 176 |
+
case no dueling architecture is used.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
batch: A dictionary containing a tensor with the outputs of the
|
| 180 |
+
forward pass of the Q-head or advantage stream head.
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
A `dict` containing the support of the discrete distribution for
|
| 184 |
+
either Q-values or advantages (in case of a dueling architecture),
|
| 185 |
+
("atoms"), the logits per action and atom and the probabilities
|
| 186 |
+
of the discrete distribution (per action and atom of the support).
|
| 187 |
+
"""
|
| 188 |
+
output = {}
|
| 189 |
+
# Distributional Q-learning uses a discrete support `z`
|
| 190 |
+
# to represent the action value distribution.
|
| 191 |
+
# TODO (simon): Check, if we still need here the device for torch.
|
| 192 |
+
z = torch.arange(0.0, self.num_atoms, dtype=torch.float32).to(
|
| 193 |
+
batch.device,
|
| 194 |
+
)
|
| 195 |
+
# Rescale the support.
|
| 196 |
+
z = self.v_min + z * (self.v_max - self.v_min) / float(self.num_atoms - 1)
|
| 197 |
+
# Reshape the action values.
|
| 198 |
+
# NOTE: Handcrafted action shape.
|
| 199 |
+
logits_per_action_per_atom = torch.reshape(
|
| 200 |
+
batch, shape=(-1, self.action_space.n, self.num_atoms)
|
| 201 |
+
)
|
| 202 |
+
# Calculate the probability for each action value atom. Note,
|
| 203 |
+
# the sum along action value atoms of a single action value
|
| 204 |
+
# must sum to one.
|
| 205 |
+
prob_per_action_per_atom = nn.functional.softmax(
|
| 206 |
+
logits_per_action_per_atom,
|
| 207 |
+
dim=-1,
|
| 208 |
+
)
|
| 209 |
+
# Compute expected action value by weighted sum.
|
| 210 |
+
output[ATOMS] = z
|
| 211 |
+
output["logits"] = logits_per_action_per_atom
|
| 212 |
+
output["probs"] = prob_per_action_per_atom
|
| 213 |
+
|
| 214 |
+
return output
|
| 215 |
+
|
| 216 |
+
# TODO (simon): Test, if providing the function with a `return_probs`
|
| 217 |
+
# improves performance significantly.
|
| 218 |
+
@override(DQNRainbowRLModule)
|
| 219 |
+
def _qf_forward_helper(
|
| 220 |
+
self,
|
| 221 |
+
batch: Dict[str, TensorType],
|
| 222 |
+
encoder: Encoder,
|
| 223 |
+
head: Union[Model, Dict[str, Model]],
|
| 224 |
+
) -> Dict[str, TensorType]:
|
| 225 |
+
"""Computes Q-values.
|
| 226 |
+
|
| 227 |
+
This is a helper function that takes care of all different cases,
|
| 228 |
+
i.e. if we use a dueling architecture or not and if we use distributional
|
| 229 |
+
Q-learning or not.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
batch: The batch received in the forward pass.
|
| 233 |
+
encoder: The encoder network to use. Here we have a single encoder
|
| 234 |
+
for all heads (Q or advantages and value in case of a dueling
|
| 235 |
+
architecture).
|
| 236 |
+
head: Either a head model or a dictionary of head model (dueling
|
| 237 |
+
architecture) containing advantage and value stream heads.
|
| 238 |
+
|
| 239 |
+
Returns:
|
| 240 |
+
In case of expectation learning the Q-value predictions ("qf_preds")
|
| 241 |
+
and in case of distributional Q-learning in addition to the predictions
|
| 242 |
+
the atoms ("atoms"), the Q-value predictions ("qf_preds"), the Q-logits
|
| 243 |
+
("qf_logits") and the probabilities for the support atoms ("qf_probs").
|
| 244 |
+
"""
|
| 245 |
+
output = {}
|
| 246 |
+
|
| 247 |
+
# Encoder forward pass.
|
| 248 |
+
encoder_outs = encoder(batch)
|
| 249 |
+
|
| 250 |
+
# Do we have a dueling architecture.
|
| 251 |
+
if self.uses_dueling:
|
| 252 |
+
# Head forward passes for advantage and value stream.
|
| 253 |
+
qf_outs = head["af"](encoder_outs[ENCODER_OUT])
|
| 254 |
+
vf_outs = head["vf"](encoder_outs[ENCODER_OUT])
|
| 255 |
+
# We learn a Q-value distribution.
|
| 256 |
+
if self.num_atoms > 1:
|
| 257 |
+
# Compute the advantage stream distribution.
|
| 258 |
+
af_dist_output = self._af_dist(qf_outs)
|
| 259 |
+
# Center the advantage stream distribution.
|
| 260 |
+
centered_af_logits = af_dist_output["logits"] - af_dist_output[
|
| 261 |
+
"logits"
|
| 262 |
+
].mean(dim=1, keepdim=True)
|
| 263 |
+
# Calculate the Q-value distribution by adding advantage and
|
| 264 |
+
# value stream.
|
| 265 |
+
qf_logits = centered_af_logits + vf_outs.unsqueeze(dim=-1)
|
| 266 |
+
# Calculate probabilites for the Q-value distribution along
|
| 267 |
+
# the support given by the atoms.
|
| 268 |
+
qf_probs = nn.functional.softmax(qf_logits, dim=-1)
|
| 269 |
+
# Return also the support as we need it in the learner.
|
| 270 |
+
output[ATOMS] = af_dist_output[ATOMS]
|
| 271 |
+
# Calculate the Q-values by the weighted sum over the atoms.
|
| 272 |
+
output[QF_PREDS] = torch.sum(af_dist_output[ATOMS] * qf_probs, dim=-1)
|
| 273 |
+
output[QF_LOGITS] = qf_logits
|
| 274 |
+
output[QF_PROBS] = qf_probs
|
| 275 |
+
# Otherwise we learn an expectation.
|
| 276 |
+
else:
|
| 277 |
+
# Center advantages. Note, we cannot do an in-place operation here
|
| 278 |
+
# b/c we backpropagate through these values. See for a discussion
|
| 279 |
+
# https://discuss.pytorch.org/t/gradient-computation-issue-due-to-
|
| 280 |
+
# inplace-operation-unsure-how-to-debug-for-custom-model/170133
|
| 281 |
+
# Has to be a mean for each batch element.
|
| 282 |
+
af_outs_mean = torch.unsqueeze(
|
| 283 |
+
torch.nan_to_num(qf_outs, neginf=torch.nan).nanmean(dim=1), dim=1
|
| 284 |
+
)
|
| 285 |
+
qf_outs = qf_outs - af_outs_mean
|
| 286 |
+
# Add advantage and value stream. Note, we broadcast here.
|
| 287 |
+
output[QF_PREDS] = qf_outs + vf_outs
|
| 288 |
+
# No dueling architecture.
|
| 289 |
+
else:
|
| 290 |
+
# Note, in this case the advantage network is the Q-network.
|
| 291 |
+
# Forward pass through Q-head.
|
| 292 |
+
qf_outs = head(encoder_outs[ENCODER_OUT])
|
| 293 |
+
# We learn a Q-value distribution.
|
| 294 |
+
if self.num_atoms > 1:
|
| 295 |
+
# Note in a non-dueling architecture the advantage distribution is
|
| 296 |
+
# the Q-value distribution.
|
| 297 |
+
# Get the Q-value distribution.
|
| 298 |
+
qf_dist_outs = self._af_dist(qf_outs)
|
| 299 |
+
# Get the support of the Q-value distribution.
|
| 300 |
+
output[ATOMS] = qf_dist_outs[ATOMS]
|
| 301 |
+
# Calculate the Q-values by the weighted sum over the atoms.
|
| 302 |
+
output[QF_PREDS] = torch.sum(
|
| 303 |
+
qf_dist_outs[ATOMS] * qf_dist_outs["probs"], dim=-1
|
| 304 |
+
)
|
| 305 |
+
output[QF_LOGITS] = qf_dist_outs["logits"]
|
| 306 |
+
output[QF_PROBS] = qf_dist_outs["probs"]
|
| 307 |
+
# Otherwise we learn an expectation.
|
| 308 |
+
else:
|
| 309 |
+
# In this case we have a Q-head of dimension (1, action_space.n).
|
| 310 |
+
output[QF_PREDS] = qf_outs
|
| 311 |
+
|
| 312 |
+
return output
|
| 313 |
+
|
| 314 |
+
@override(DQNRainbowRLModule)
|
| 315 |
+
def _reset_noise(self, target: bool = False) -> None:
|
| 316 |
+
"""Reset the noise of all noisy layers.
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
target: Whether to reset the noise of the target networks.
|
| 320 |
+
"""
|
| 321 |
+
if self.uses_noisy:
|
| 322 |
+
if self.uses_noisy_encoder:
|
| 323 |
+
self.encoder._reset_noise()
|
| 324 |
+
self.af._reset_noise()
|
| 325 |
+
# If we have a dueling architecture we need to reset the noise
|
| 326 |
+
# of the value stream, too.
|
| 327 |
+
if self.uses_dueling:
|
| 328 |
+
self.vf._reset_noise()
|
| 329 |
+
# Reset the noise of the target networks, if requested.
|
| 330 |
+
if target:
|
| 331 |
+
if self.uses_noisy_encoder:
|
| 332 |
+
self._target_encoder._reset_noise()
|
| 333 |
+
self._target_af._reset_noise()
|
| 334 |
+
# If we have a dueling architecture we need to reset the noise
|
| 335 |
+
# of the value stream, too.
|
| 336 |
+
if self.uses_dueling:
|
| 337 |
+
self._target_vf._reset_noise()
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dqn/torch/torch_noisy_linear.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional, Sequence, Union
|
| 3 |
+
from ray.rllib.utils.framework import try_import_torch
|
| 4 |
+
|
| 5 |
+
torch, nn = try_import_torch()
|
| 6 |
+
|
| 7 |
+
DEVICE_TYPING = Union[torch.device, str, int]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class NoisyLinear(nn.Linear):
|
| 11 |
+
"""Noisy Linear Layer.
|
| 12 |
+
|
| 13 |
+
Presented in "Noisy Networks for Exploration",
|
| 14 |
+
https://arxiv.org/abs/1706.10295v3, implemented in relation to
|
| 15 |
+
`torchrl`'s `NoisyLinear` layer.
|
| 16 |
+
|
| 17 |
+
A Noisy Linear Layer is a linear layer with parametric noise added to
|
| 18 |
+
the weights. This induced stochasticity can be used in RL networks for
|
| 19 |
+
the agent's policy to aid efficient exploration. The parameters of the
|
| 20 |
+
noise are learned with gradient descent along with any other remaining
|
| 21 |
+
network weights. Factorized Gaussian noise is the type of noise usually
|
| 22 |
+
employed.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
in_features: Input features dimension.
|
| 27 |
+
out_features: Out features dimension.
|
| 28 |
+
bias: If `True`, a bias term will be added to the matrix
|
| 29 |
+
multiplication: `Ax + b`. Defaults to `True`.
|
| 30 |
+
device: Device of the layer. Defaults to `"cpu"`.
|
| 31 |
+
dtype: `dtype` of the parameters. Defaults to `None` (default `torch`
|
| 32 |
+
`dtype`).
|
| 33 |
+
std_init: Initial value of the Gaussian standard deviation before
|
| 34 |
+
optimization. Defaults to `0.1`.
|
| 35 |
+
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
in_features: int,
|
| 41 |
+
out_features: int,
|
| 42 |
+
bias: bool = True,
|
| 43 |
+
device: Optional[DEVICE_TYPING] = None,
|
| 44 |
+
dtype: Optional[torch.dtype] = None,
|
| 45 |
+
std_init: float = 0.1,
|
| 46 |
+
):
|
| 47 |
+
nn.Module.__init__(self)
|
| 48 |
+
self.in_features = int(in_features)
|
| 49 |
+
self.out_features = int(out_features)
|
| 50 |
+
self.std_init = std_init
|
| 51 |
+
|
| 52 |
+
self.weight_mu = nn.Parameter(
|
| 53 |
+
torch.empty(
|
| 54 |
+
out_features,
|
| 55 |
+
in_features,
|
| 56 |
+
device=device,
|
| 57 |
+
dtype=dtype,
|
| 58 |
+
requires_grad=True,
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
self.weight_sigma = nn.Parameter(
|
| 62 |
+
torch.empty(
|
| 63 |
+
out_features,
|
| 64 |
+
in_features,
|
| 65 |
+
device=device,
|
| 66 |
+
dtype=dtype,
|
| 67 |
+
requires_grad=True,
|
| 68 |
+
)
|
| 69 |
+
)
|
| 70 |
+
self.register_buffer(
|
| 71 |
+
"weight_epsilon",
|
| 72 |
+
torch.empty(out_features, in_features, device=device, dtype=dtype),
|
| 73 |
+
)
|
| 74 |
+
if bias:
|
| 75 |
+
self.bias_mu = nn.Parameter(
|
| 76 |
+
torch.empty(
|
| 77 |
+
out_features,
|
| 78 |
+
device=device,
|
| 79 |
+
dtype=dtype,
|
| 80 |
+
requires_grad=True,
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
self.bias_sigma = nn.Parameter(
|
| 84 |
+
torch.empty(
|
| 85 |
+
out_features,
|
| 86 |
+
device=device,
|
| 87 |
+
dtype=dtype,
|
| 88 |
+
requires_grad=True,
|
| 89 |
+
)
|
| 90 |
+
)
|
| 91 |
+
self.register_buffer(
|
| 92 |
+
"bias_epsilon",
|
| 93 |
+
torch.empty(out_features, device=device, dtype=dtype),
|
| 94 |
+
)
|
| 95 |
+
else:
|
| 96 |
+
self.bias_mu = None
|
| 97 |
+
self.reset_parameters()
|
| 98 |
+
self.reset_noise()
|
| 99 |
+
self.training = True
|
| 100 |
+
|
| 101 |
+
@torch.no_grad()
|
| 102 |
+
def reset_parameters(self) -> None:
|
| 103 |
+
# Use initialization for factorized noisy linear layers.
|
| 104 |
+
mu_range = 1 / math.sqrt(self.in_features)
|
| 105 |
+
# Initialize weight distribution parameters.
|
| 106 |
+
self.weight_mu.data.uniform_(-mu_range, mu_range)
|
| 107 |
+
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features))
|
| 108 |
+
# If bias is used initial these parameters, too.
|
| 109 |
+
if self.bias_mu is not None:
|
| 110 |
+
self.bias_mu.data.zero_() # (-mu_range, mu_range)
|
| 111 |
+
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features))
|
| 112 |
+
|
| 113 |
+
@torch.no_grad()
|
| 114 |
+
def reset_noise(self) -> None:
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
# Use factorized noise for better performance.
|
| 117 |
+
epsilon_in = self._scale_noise(self.in_features)
|
| 118 |
+
epsilon_out = self._scale_noise(self.out_features)
|
| 119 |
+
self.weight_epsilon.copy_(epsilon_out.outer(epsilon_in))
|
| 120 |
+
if self.bias_mu is not None:
|
| 121 |
+
self.bias_epsilon.copy_(epsilon_out)
|
| 122 |
+
|
| 123 |
+
@torch.no_grad()
|
| 124 |
+
def _scale_noise(self, size: Union[int, torch.Size, Sequence]) -> torch.Tensor:
|
| 125 |
+
if isinstance(size, int):
|
| 126 |
+
size = (size,)
|
| 127 |
+
x = torch.randn(*size, device=self.weight_mu.device)
|
| 128 |
+
return x.sign().mul_(x.abs().sqrt_())
|
| 129 |
+
|
| 130 |
+
@property
|
| 131 |
+
def weight(self) -> torch.Tensor:
|
| 132 |
+
if self.training:
|
| 133 |
+
# If in training mode, sample the noise.
|
| 134 |
+
return self.weight_mu + self.weight_sigma * self.weight_epsilon
|
| 135 |
+
else:
|
| 136 |
+
return self.weight_mu
|
| 137 |
+
|
| 138 |
+
@property
|
| 139 |
+
def bias(self) -> Optional[torch.Tensor]:
|
| 140 |
+
if self.bias_mu is not None:
|
| 141 |
+
if self.training:
|
| 142 |
+
# If in training mode, sample the noise.
|
| 143 |
+
return self.bias_mu + self.bias_sigma * self.bias_epsilon
|
| 144 |
+
else:
|
| 145 |
+
return self.bias_mu
|
| 146 |
+
else:
|
| 147 |
+
return None
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
|
| 6 |
+
[2] Mastering Atari with Discrete World Models - 2021
|
| 7 |
+
D. Hafner, T. Lillicrap, M. Norouzi, J. Ba
|
| 8 |
+
https://arxiv.org/pdf/2010.02193.pdf
|
| 9 |
+
"""
|
| 10 |
+
from ray.rllib.algorithms.dreamerv3.dreamerv3 import DreamerV3, DreamerV3Config
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"DreamerV3",
|
| 14 |
+
"DreamerV3Config",
|
| 15 |
+
]
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (615 Bytes). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3.cpython-310.pyc
ADDED
|
Binary file (21.3 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_catalog.cpython-310.pyc
ADDED
|
Binary file (2.53 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_learner.cpython-310.pyc
ADDED
|
Binary file (1.41 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/__pycache__/dreamerv3_rl_module.cpython-310.pyc
ADDED
|
Binary file (4.21 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/dreamerv3_catalog.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gymnasium as gym
|
| 2 |
+
|
| 3 |
+
from ray.rllib.core.models.catalog import Catalog
|
| 4 |
+
from ray.rllib.core.models.base import Encoder, Model
|
| 5 |
+
from ray.rllib.utils import override
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DreamerV3Catalog(Catalog):
|
| 9 |
+
"""The Catalog class used to build all the models needed for DreamerV3 training."""
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
observation_space: gym.Space,
|
| 14 |
+
action_space: gym.Space,
|
| 15 |
+
model_config_dict: dict,
|
| 16 |
+
):
|
| 17 |
+
"""Initializes a DreamerV3Catalog instance.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
observation_space: The observation space of the environment.
|
| 21 |
+
action_space: The action space of the environment.
|
| 22 |
+
model_config_dict: The model config to use.
|
| 23 |
+
"""
|
| 24 |
+
super().__init__(
|
| 25 |
+
observation_space=observation_space,
|
| 26 |
+
action_space=action_space,
|
| 27 |
+
model_config_dict=model_config_dict,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
self.model_size = self._model_config_dict["model_size"]
|
| 31 |
+
self.is_img_space = len(self.observation_space.shape) in [2, 3]
|
| 32 |
+
self.is_gray_scale = (
|
| 33 |
+
self.is_img_space and len(self.observation_space.shape) == 2
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# TODO (sven): We should work with sub-component configurations here,
|
| 37 |
+
# and even try replacing all current Dreamer model components with
|
| 38 |
+
# our default primitives. But for now, we'll construct the DreamerV3Model
|
| 39 |
+
# directly in our `build_...()` methods.
|
| 40 |
+
|
| 41 |
+
@override(Catalog)
|
| 42 |
+
def build_encoder(self, framework: str) -> Encoder:
|
| 43 |
+
"""Builds the World-Model's encoder network depending on the obs space."""
|
| 44 |
+
if framework != "tf2":
|
| 45 |
+
raise NotImplementedError
|
| 46 |
+
|
| 47 |
+
if self.is_img_space:
|
| 48 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.cnn_atari import (
|
| 49 |
+
CNNAtari,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
return CNNAtari(model_size=self.model_size)
|
| 53 |
+
else:
|
| 54 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.mlp import MLP
|
| 55 |
+
|
| 56 |
+
return MLP(model_size=self.model_size, name="vector_encoder")
|
| 57 |
+
|
| 58 |
+
def build_decoder(self, framework: str) -> Model:
|
| 59 |
+
"""Builds the World-Model's decoder network depending on the obs space."""
|
| 60 |
+
if framework != "tf2":
|
| 61 |
+
raise NotImplementedError
|
| 62 |
+
|
| 63 |
+
if self.is_img_space:
|
| 64 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components import (
|
| 65 |
+
conv_transpose_atari,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
return conv_transpose_atari.ConvTransposeAtari(
|
| 69 |
+
model_size=self.model_size,
|
| 70 |
+
gray_scaled=self.is_gray_scale,
|
| 71 |
+
)
|
| 72 |
+
else:
|
| 73 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components import (
|
| 74 |
+
vector_decoder,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
return vector_decoder.VectorDecoder(
|
| 78 |
+
model_size=self.model_size,
|
| 79 |
+
observation_space=self.observation_space,
|
| 80 |
+
)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/dreamerv3_learner.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
|
| 6 |
+
[2] Mastering Atari with Discrete World Models - 2021
|
| 7 |
+
D. Hafner, T. Lillicrap, M. Norouzi, J. Ba
|
| 8 |
+
https://arxiv.org/pdf/2010.02193.pdf
|
| 9 |
+
"""
|
| 10 |
+
from ray.rllib.core.learner.learner import Learner
|
| 11 |
+
from ray.rllib.utils.annotations import (
|
| 12 |
+
override,
|
| 13 |
+
OverrideToImplementCustomLogic_CallToSuperRecommended,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class DreamerV3Learner(Learner):
|
| 18 |
+
"""DreamerV3 specific Learner class.
|
| 19 |
+
|
| 20 |
+
Only implements the `after_gradient_based_update()` method to define the logic
|
| 21 |
+
for updating the critic EMA-copy after each training step.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
@OverrideToImplementCustomLogic_CallToSuperRecommended
|
| 25 |
+
@override(Learner)
|
| 26 |
+
def after_gradient_based_update(self, *, timesteps):
|
| 27 |
+
super().after_gradient_based_update(timesteps=timesteps)
|
| 28 |
+
|
| 29 |
+
# Update EMA weights of the critic.
|
| 30 |
+
for module_id, module in self.module._rl_modules.items():
|
| 31 |
+
module.critic.update_ema()
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/__init__.py
ADDED
|
File without changes
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/__pycache__/dreamerv3_tf_learner.cpython-310.pyc
ADDED
|
Binary file (19.8 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/__pycache__/critic_network.cpython-310.pyc
ADDED
|
Binary file (6.07 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/actor_network.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
import gymnasium as gym
|
| 7 |
+
from gymnasium.spaces import Box, Discrete
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.mlp import MLP
|
| 11 |
+
from ray.rllib.algorithms.dreamerv3.utils import (
|
| 12 |
+
get_gru_units,
|
| 13 |
+
get_num_z_categoricals,
|
| 14 |
+
get_num_z_classes,
|
| 15 |
+
)
|
| 16 |
+
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
|
| 17 |
+
|
| 18 |
+
_, tf, _ = try_import_tf()
|
| 19 |
+
tfp = try_import_tfp()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ActorNetwork(tf.keras.Model):
|
| 23 |
+
"""The `actor` (policy net) of DreamerV3.
|
| 24 |
+
|
| 25 |
+
Consists of a simple MLP for Discrete actions and two MLPs for cont. actions (mean
|
| 26 |
+
and stddev).
|
| 27 |
+
Also contains two scalar variables to keep track of the percentile-5 and
|
| 28 |
+
percentile-95 values of the computed value targets within a batch. This is used to
|
| 29 |
+
compute the "scaled value targets" for actor learning. These two variables decay
|
| 30 |
+
over time exponentially (see [1] for more details).
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
*,
|
| 36 |
+
model_size: str = "XS",
|
| 37 |
+
action_space: gym.Space,
|
| 38 |
+
):
|
| 39 |
+
"""Initializes an ActorNetwork instance.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
model_size: The "Model Size" used according to [1] Appendix B.
|
| 43 |
+
Use None for manually setting the different network sizes.
|
| 44 |
+
action_space: The action space of the environment used.
|
| 45 |
+
"""
|
| 46 |
+
super().__init__(name="actor")
|
| 47 |
+
|
| 48 |
+
self.model_size = model_size
|
| 49 |
+
self.action_space = action_space
|
| 50 |
+
|
| 51 |
+
# The EMA decay variables used for the [Percentile(R, 95%) - Percentile(R, 5%)]
|
| 52 |
+
# diff to scale value targets for the actor loss.
|
| 53 |
+
self.ema_value_target_pct5 = tf.Variable(
|
| 54 |
+
np.nan, trainable=False, name="value_target_pct5"
|
| 55 |
+
)
|
| 56 |
+
self.ema_value_target_pct95 = tf.Variable(
|
| 57 |
+
np.nan, trainable=False, name="value_target_pct95"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# For discrete actions, use a single MLP that computes logits.
|
| 61 |
+
if isinstance(self.action_space, Discrete):
|
| 62 |
+
self.mlp = MLP(
|
| 63 |
+
model_size=self.model_size,
|
| 64 |
+
output_layer_size=self.action_space.n,
|
| 65 |
+
name="actor_mlp",
|
| 66 |
+
)
|
| 67 |
+
# For cont. actions, use separate MLPs for Gaussian mean and stddev.
|
| 68 |
+
# TODO (sven): In the author's original code repo, this is NOT the case,
|
| 69 |
+
# inputs are pushed through a shared MLP, then only the two output linear
|
| 70 |
+
# layers are separate for std- and mean logits.
|
| 71 |
+
elif isinstance(action_space, Box):
|
| 72 |
+
output_layer_size = np.prod(action_space.shape)
|
| 73 |
+
self.mlp = MLP(
|
| 74 |
+
model_size=self.model_size,
|
| 75 |
+
output_layer_size=output_layer_size,
|
| 76 |
+
name="actor_mlp_mean",
|
| 77 |
+
)
|
| 78 |
+
self.std_mlp = MLP(
|
| 79 |
+
model_size=self.model_size,
|
| 80 |
+
output_layer_size=output_layer_size,
|
| 81 |
+
name="actor_mlp_std",
|
| 82 |
+
)
|
| 83 |
+
else:
|
| 84 |
+
raise ValueError(f"Invalid action space: {action_space}")
|
| 85 |
+
|
| 86 |
+
# Trace self.call.
|
| 87 |
+
dl_type = tf.keras.mixed_precision.global_policy().compute_dtype or tf.float32
|
| 88 |
+
self.call = tf.function(
|
| 89 |
+
input_signature=[
|
| 90 |
+
tf.TensorSpec(shape=[None, get_gru_units(model_size)], dtype=dl_type),
|
| 91 |
+
tf.TensorSpec(
|
| 92 |
+
shape=[
|
| 93 |
+
None,
|
| 94 |
+
get_num_z_categoricals(model_size),
|
| 95 |
+
get_num_z_classes(model_size),
|
| 96 |
+
],
|
| 97 |
+
dtype=dl_type,
|
| 98 |
+
),
|
| 99 |
+
]
|
| 100 |
+
)(self.call)
|
| 101 |
+
|
| 102 |
+
def call(self, h, z):
|
| 103 |
+
"""Performs a forward pass through this policy network.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
h: The deterministic hidden state of the sequence model. [B, dim(h)].
|
| 107 |
+
z: The stochastic discrete representations of the original
|
| 108 |
+
observation input. [B, num_categoricals, num_classes].
|
| 109 |
+
"""
|
| 110 |
+
# Flatten last two dims of z.
|
| 111 |
+
assert len(z.shape) == 3
|
| 112 |
+
z_shape = tf.shape(z)
|
| 113 |
+
z = tf.reshape(z, shape=(z_shape[0], -1))
|
| 114 |
+
assert len(z.shape) == 2
|
| 115 |
+
out = tf.concat([h, z], axis=-1)
|
| 116 |
+
out.set_shape(
|
| 117 |
+
[
|
| 118 |
+
None,
|
| 119 |
+
(
|
| 120 |
+
get_num_z_categoricals(self.model_size)
|
| 121 |
+
* get_num_z_classes(self.model_size)
|
| 122 |
+
+ get_gru_units(self.model_size)
|
| 123 |
+
),
|
| 124 |
+
]
|
| 125 |
+
)
|
| 126 |
+
# Send h-cat-z through MLP.
|
| 127 |
+
action_logits = tf.cast(self.mlp(out), tf.float32)
|
| 128 |
+
|
| 129 |
+
if isinstance(self.action_space, Discrete):
|
| 130 |
+
action_probs = tf.nn.softmax(action_logits)
|
| 131 |
+
|
| 132 |
+
# Add the unimix weighting (1% uniform) to the probs.
|
| 133 |
+
# See [1]: "Unimix categoricals: We parameterize the categorical
|
| 134 |
+
# distributions for the world model representations and dynamics, as well as
|
| 135 |
+
# for the actor network, as mixtures of 1% uniform and 99% neural network
|
| 136 |
+
# output to ensure a minimal amount of probability mass on every class and
|
| 137 |
+
# thus keep log probabilities and KL divergences well behaved."
|
| 138 |
+
action_probs = 0.99 * action_probs + 0.01 * (1.0 / self.action_space.n)
|
| 139 |
+
|
| 140 |
+
# Danijar's code does: distr = [Distr class](logits=tf.log(probs)).
|
| 141 |
+
# Not sure why we don't directly use the already available probs instead.
|
| 142 |
+
action_logits = tf.math.log(action_probs)
|
| 143 |
+
|
| 144 |
+
# Distribution parameters are the log(probs) directly.
|
| 145 |
+
distr_params = action_logits
|
| 146 |
+
distr = self.get_action_dist_object(distr_params)
|
| 147 |
+
|
| 148 |
+
action = tf.stop_gradient(distr.sample()) + (
|
| 149 |
+
action_probs - tf.stop_gradient(action_probs)
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
elif isinstance(self.action_space, Box):
|
| 153 |
+
# Send h-cat-z through MLP to compute stddev logits for Normal dist
|
| 154 |
+
std_logits = tf.cast(self.std_mlp(out), tf.float32)
|
| 155 |
+
# minstd, maxstd taken from [1] from configs.yaml
|
| 156 |
+
minstd = 0.1
|
| 157 |
+
maxstd = 1.0
|
| 158 |
+
|
| 159 |
+
# Distribution parameters are the squashed std_logits and the tanh'd
|
| 160 |
+
# mean logits.
|
| 161 |
+
# squash std_logits from (-inf, inf) to (minstd, maxstd)
|
| 162 |
+
std_logits = (maxstd - minstd) * tf.sigmoid(std_logits + 2.0) + minstd
|
| 163 |
+
mean_logits = tf.tanh(action_logits)
|
| 164 |
+
|
| 165 |
+
distr_params = tf.concat([mean_logits, std_logits], axis=-1)
|
| 166 |
+
distr = self.get_action_dist_object(distr_params)
|
| 167 |
+
|
| 168 |
+
action = distr.sample()
|
| 169 |
+
|
| 170 |
+
return action, distr_params
|
| 171 |
+
|
| 172 |
+
def get_action_dist_object(self, action_dist_params_T_B):
|
| 173 |
+
"""Helper method to create an action distribution object from (T, B, ..) params.
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
action_dist_params_T_B: The time-major action distribution parameters.
|
| 177 |
+
This could be simply the logits (discrete) or a to-be-split-in-2
|
| 178 |
+
tensor for mean and stddev (continuous).
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
The tfp action distribution object, from which one can sample, compute
|
| 182 |
+
log probs, entropy, etc..
|
| 183 |
+
"""
|
| 184 |
+
if isinstance(self.action_space, gym.spaces.Discrete):
|
| 185 |
+
# Create the distribution object using the unimix'd logits.
|
| 186 |
+
distr = tfp.distributions.OneHotCategorical(
|
| 187 |
+
logits=action_dist_params_T_B,
|
| 188 |
+
dtype=tf.float32,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
elif isinstance(self.action_space, gym.spaces.Box):
|
| 192 |
+
# Compute Normal distribution from action_logits and std_logits
|
| 193 |
+
loc, scale = tf.split(action_dist_params_T_B, 2, axis=-1)
|
| 194 |
+
distr = tfp.distributions.Normal(loc=loc, scale=scale)
|
| 195 |
+
|
| 196 |
+
# If action_space is a box with multiple dims, make individual dims
|
| 197 |
+
# independent.
|
| 198 |
+
distr = tfp.distributions.Independent(distr, len(self.action_space.shape))
|
| 199 |
+
|
| 200 |
+
else:
|
| 201 |
+
raise ValueError(f"Action space {self.action_space} not supported!")
|
| 202 |
+
|
| 203 |
+
return distr
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__init__.py
ADDED
|
File without changes
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/dynamics_predictor.cpython-310.pyc
ADDED
|
Binary file (3.22 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/representation_layer.cpython-310.pyc
ADDED
|
Binary file (4.17 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/__pycache__/sequence_model.cpython-310.pyc
ADDED
|
Binary file (4.4 kB). View file
|
|
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/cnn_atari.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
from ray.rllib.algorithms.dreamerv3.utils import get_cnn_multiplier
|
| 9 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 10 |
+
|
| 11 |
+
_, tf, _ = try_import_tf()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class CNNAtari(tf.keras.Model):
|
| 15 |
+
"""An image encoder mapping 64x64 RGB images via 4 CNN layers into a 1D space."""
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
*,
|
| 20 |
+
model_size: Optional[str] = "XS",
|
| 21 |
+
cnn_multiplier: Optional[int] = None,
|
| 22 |
+
):
|
| 23 |
+
"""Initializes a CNNAtari instance.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
model_size: The "Model Size" used according to [1] Appendix B.
|
| 27 |
+
Use None for manually setting the `cnn_multiplier`.
|
| 28 |
+
cnn_multiplier: Optional override for the additional factor used to multiply
|
| 29 |
+
the number of filters with each CNN layer. Starting with
|
| 30 |
+
1 * `cnn_multiplier` filters in the first CNN layer, the number of
|
| 31 |
+
filters then increases via `2*cnn_multiplier`, `4*cnn_multiplier`, till
|
| 32 |
+
`8*cnn_multiplier`.
|
| 33 |
+
"""
|
| 34 |
+
super().__init__(name="image_encoder")
|
| 35 |
+
|
| 36 |
+
cnn_multiplier = get_cnn_multiplier(model_size, override=cnn_multiplier)
|
| 37 |
+
|
| 38 |
+
# See appendix C in [1]:
|
| 39 |
+
# "We use a similar network architecture but employ layer normalization and
|
| 40 |
+
# SiLU as the activation function. For better framework support, we use
|
| 41 |
+
# same-padded convolutions with stride 2 and kernel size 3 instead of
|
| 42 |
+
# valid-padded convolutions with larger kernels ..."
|
| 43 |
+
# HOWEVER: In Danijar's DreamerV3 repo, kernel size=4 is used, so we use it
|
| 44 |
+
# here, too.
|
| 45 |
+
self.conv_layers = [
|
| 46 |
+
tf.keras.layers.Conv2D(
|
| 47 |
+
filters=1 * cnn_multiplier,
|
| 48 |
+
kernel_size=4,
|
| 49 |
+
strides=(2, 2),
|
| 50 |
+
padding="same",
|
| 51 |
+
# No bias or activation due to layernorm.
|
| 52 |
+
activation=None,
|
| 53 |
+
use_bias=False,
|
| 54 |
+
),
|
| 55 |
+
tf.keras.layers.Conv2D(
|
| 56 |
+
filters=2 * cnn_multiplier,
|
| 57 |
+
kernel_size=4,
|
| 58 |
+
strides=(2, 2),
|
| 59 |
+
padding="same",
|
| 60 |
+
# No bias or activation due to layernorm.
|
| 61 |
+
activation=None,
|
| 62 |
+
use_bias=False,
|
| 63 |
+
),
|
| 64 |
+
tf.keras.layers.Conv2D(
|
| 65 |
+
filters=4 * cnn_multiplier,
|
| 66 |
+
kernel_size=4,
|
| 67 |
+
strides=(2, 2),
|
| 68 |
+
padding="same",
|
| 69 |
+
# No bias or activation due to layernorm.
|
| 70 |
+
activation=None,
|
| 71 |
+
use_bias=False,
|
| 72 |
+
),
|
| 73 |
+
# .. until output is 4 x 4 x [num_filters].
|
| 74 |
+
tf.keras.layers.Conv2D(
|
| 75 |
+
filters=8 * cnn_multiplier,
|
| 76 |
+
kernel_size=4,
|
| 77 |
+
strides=(2, 2),
|
| 78 |
+
padding="same",
|
| 79 |
+
# No bias or activation due to layernorm.
|
| 80 |
+
activation=None,
|
| 81 |
+
use_bias=False,
|
| 82 |
+
),
|
| 83 |
+
]
|
| 84 |
+
self.layer_normalizations = []
|
| 85 |
+
for _ in range(len(self.conv_layers)):
|
| 86 |
+
self.layer_normalizations.append(tf.keras.layers.LayerNormalization())
|
| 87 |
+
# -> 4 x 4 x num_filters -> now flatten.
|
| 88 |
+
self.flatten_layer = tf.keras.layers.Flatten(data_format="channels_last")
|
| 89 |
+
|
| 90 |
+
@tf.function(
|
| 91 |
+
input_signature=[
|
| 92 |
+
tf.TensorSpec(
|
| 93 |
+
shape=[None, 64, 64, 3],
|
| 94 |
+
dtype=tf.keras.mixed_precision.global_policy().compute_dtype
|
| 95 |
+
or tf.float32,
|
| 96 |
+
)
|
| 97 |
+
]
|
| 98 |
+
)
|
| 99 |
+
def call(self, inputs):
|
| 100 |
+
"""Performs a forward pass through the CNN Atari encoder.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
inputs: The image inputs of shape (B, 64, 64, 3).
|
| 104 |
+
"""
|
| 105 |
+
# [B, h, w] -> grayscale.
|
| 106 |
+
if len(inputs.shape) == 3:
|
| 107 |
+
inputs = tf.expand_dims(inputs, -1)
|
| 108 |
+
out = inputs
|
| 109 |
+
for conv_2d, layer_norm in zip(self.conv_layers, self.layer_normalizations):
|
| 110 |
+
out = tf.nn.silu(layer_norm(inputs=conv_2d(out)))
|
| 111 |
+
assert out.shape[1] == 4 and out.shape[2] == 4
|
| 112 |
+
return self.flatten_layer(out)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/reward_predictor.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.mlp import MLP
|
| 7 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.reward_predictor_layer import (
|
| 8 |
+
RewardPredictorLayer,
|
| 9 |
+
)
|
| 10 |
+
from ray.rllib.algorithms.dreamerv3.utils import (
|
| 11 |
+
get_gru_units,
|
| 12 |
+
get_num_z_categoricals,
|
| 13 |
+
get_num_z_classes,
|
| 14 |
+
)
|
| 15 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 16 |
+
|
| 17 |
+
_, tf, _ = try_import_tf()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class RewardPredictor(tf.keras.Model):
|
| 21 |
+
"""Wrapper of MLP and RewardPredictorLayer to predict rewards for the world model.
|
| 22 |
+
|
| 23 |
+
Predicted rewards are used to produce "dream data" to learn the policy in.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
*,
|
| 29 |
+
model_size: str = "XS",
|
| 30 |
+
num_buckets: int = 255,
|
| 31 |
+
lower_bound: float = -20.0,
|
| 32 |
+
upper_bound: float = 20.0,
|
| 33 |
+
):
|
| 34 |
+
"""Initializes a RewardPredictor instance.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
model_size: The "Model Size" used according to [1] Appendinx B.
|
| 38 |
+
Determines the exact size of the underlying MLP.
|
| 39 |
+
num_buckets: The number of buckets to create. Note that the number of
|
| 40 |
+
possible symlog'd outcomes from the used distribution is
|
| 41 |
+
`num_buckets` + 1:
|
| 42 |
+
lower_bound --bucket-- o[1] --bucket-- o[2] ... --bucket-- upper_bound
|
| 43 |
+
o=outcomes
|
| 44 |
+
lower_bound=o[0]
|
| 45 |
+
upper_bound=o[num_buckets]
|
| 46 |
+
lower_bound: The symlog'd lower bound for a possible reward value.
|
| 47 |
+
Note that a value of -20.0 here already allows individual (actual env)
|
| 48 |
+
rewards to be as low as -400M. Buckets will be created between
|
| 49 |
+
`lower_bound` and `upper_bound`.
|
| 50 |
+
upper_bound: The symlog'd upper bound for a possible reward value.
|
| 51 |
+
Note that a value of +20.0 here already allows individual (actual env)
|
| 52 |
+
rewards to be as high as 400M. Buckets will be created between
|
| 53 |
+
`lower_bound` and `upper_bound`.
|
| 54 |
+
"""
|
| 55 |
+
super().__init__(name="reward_predictor")
|
| 56 |
+
self.model_size = model_size
|
| 57 |
+
|
| 58 |
+
self.mlp = MLP(
|
| 59 |
+
model_size=model_size,
|
| 60 |
+
output_layer_size=None,
|
| 61 |
+
)
|
| 62 |
+
self.reward_layer = RewardPredictorLayer(
|
| 63 |
+
num_buckets=num_buckets,
|
| 64 |
+
lower_bound=lower_bound,
|
| 65 |
+
upper_bound=upper_bound,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Trace self.call.
|
| 69 |
+
dl_type = tf.keras.mixed_precision.global_policy().compute_dtype or tf.float32
|
| 70 |
+
self.call = tf.function(
|
| 71 |
+
input_signature=[
|
| 72 |
+
tf.TensorSpec(shape=[None, get_gru_units(model_size)], dtype=dl_type),
|
| 73 |
+
tf.TensorSpec(
|
| 74 |
+
shape=[
|
| 75 |
+
None,
|
| 76 |
+
get_num_z_categoricals(model_size),
|
| 77 |
+
get_num_z_classes(model_size),
|
| 78 |
+
],
|
| 79 |
+
dtype=dl_type,
|
| 80 |
+
),
|
| 81 |
+
]
|
| 82 |
+
)(self.call)
|
| 83 |
+
|
| 84 |
+
def call(self, h, z):
|
| 85 |
+
"""Computes the expected reward using N equal sized buckets of possible values.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
h: The deterministic hidden state of the sequence model. [B, dim(h)].
|
| 89 |
+
z: The stochastic discrete representations of the original
|
| 90 |
+
observation input. [B, num_categoricals, num_classes].
|
| 91 |
+
"""
|
| 92 |
+
# Flatten last two dims of z.
|
| 93 |
+
assert len(z.shape) == 3
|
| 94 |
+
z_shape = tf.shape(z)
|
| 95 |
+
z = tf.reshape(z, shape=(z_shape[0], -1))
|
| 96 |
+
assert len(z.shape) == 2
|
| 97 |
+
out = tf.concat([h, z], axis=-1)
|
| 98 |
+
out.set_shape(
|
| 99 |
+
[
|
| 100 |
+
None,
|
| 101 |
+
(
|
| 102 |
+
get_num_z_categoricals(self.model_size)
|
| 103 |
+
* get_num_z_classes(self.model_size)
|
| 104 |
+
+ get_gru_units(self.model_size)
|
| 105 |
+
),
|
| 106 |
+
]
|
| 107 |
+
)
|
| 108 |
+
# Send h-cat-z through MLP.
|
| 109 |
+
out = self.mlp(out)
|
| 110 |
+
# Return a) mean reward OR b) a tuple: (mean reward, logits over the reward
|
| 111 |
+
# buckets).
|
| 112 |
+
return self.reward_layer(out)
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/reward_predictor_layer.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
|
| 6 |
+
[2] Mastering Atari with Discrete World Models - 2021
|
| 7 |
+
D. Hafner, T. Lillicrap, M. Norouzi, J. Ba
|
| 8 |
+
https://arxiv.org/pdf/2010.02193.pdf
|
| 9 |
+
"""
|
| 10 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 11 |
+
|
| 12 |
+
_, tf, _ = try_import_tf()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class RewardPredictorLayer(tf.keras.layers.Layer):
|
| 16 |
+
"""A layer outputting reward predictions using K bins and two-hot encoding.
|
| 17 |
+
|
| 18 |
+
This layer is used in two models in DreamerV3: The reward predictor of the world
|
| 19 |
+
model and the value function. K is 255 by default (see [1]) and doesn't change
|
| 20 |
+
with the model size.
|
| 21 |
+
|
| 22 |
+
Possible predicted reward/values range from symexp(-20.0) to symexp(20.0), which
|
| 23 |
+
should cover any possible environment. Outputs of this layer are generated by
|
| 24 |
+
generating logits/probs via a single linear layer, then interpreting the probs
|
| 25 |
+
as weights for a weighted average of the different possible reward (binned) values.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
*,
|
| 31 |
+
num_buckets: int = 255,
|
| 32 |
+
lower_bound: float = -20.0,
|
| 33 |
+
upper_bound: float = 20.0,
|
| 34 |
+
trainable: bool = True,
|
| 35 |
+
):
|
| 36 |
+
"""Initializes a RewardPredictorLayer instance.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
num_buckets: The number of buckets to create. Note that the number of
|
| 40 |
+
possible symlog'd outcomes from the used distribution is
|
| 41 |
+
`num_buckets` + 1:
|
| 42 |
+
lower_bound --bucket-- o[1] --bucket-- o[2] ... --bucket-- upper_bound
|
| 43 |
+
o=outcomes
|
| 44 |
+
lower_bound=o[0]
|
| 45 |
+
upper_bound=o[num_buckets]
|
| 46 |
+
lower_bound: The symlog'd lower bound for a possible reward value.
|
| 47 |
+
Note that a value of -20.0 here already allows individual (actual env)
|
| 48 |
+
rewards to be as low as -400M. Buckets will be created between
|
| 49 |
+
`lower_bound` and `upper_bound`.
|
| 50 |
+
upper_bound: The symlog'd upper bound for a possible reward value.
|
| 51 |
+
Note that a value of +20.0 here already allows individual (actual env)
|
| 52 |
+
rewards to be as high as 400M. Buckets will be created between
|
| 53 |
+
`lower_bound` and `upper_bound`.
|
| 54 |
+
"""
|
| 55 |
+
self.num_buckets = num_buckets
|
| 56 |
+
super().__init__(name=f"reward_layer_{self.num_buckets}buckets")
|
| 57 |
+
|
| 58 |
+
self.lower_bound = lower_bound
|
| 59 |
+
self.upper_bound = upper_bound
|
| 60 |
+
self.reward_buckets_layer = tf.keras.layers.Dense(
|
| 61 |
+
units=self.num_buckets,
|
| 62 |
+
activation=None,
|
| 63 |
+
# From [1]:
|
| 64 |
+
# "We further noticed that the randomly initialized reward predictor and
|
| 65 |
+
# critic networks at the start of training can result in large predicted
|
| 66 |
+
# rewards that can delay the onset of learning. We initialize the output
|
| 67 |
+
# weights of the reward predictor and critic to zeros, which effectively
|
| 68 |
+
# alleviates the problem and accelerates early learning."
|
| 69 |
+
kernel_initializer="zeros",
|
| 70 |
+
bias_initializer="zeros", # zero-bias is default anyways
|
| 71 |
+
trainable=trainable,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
def call(self, inputs):
|
| 75 |
+
"""Computes the expected reward using N equal sized buckets of possible values.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
inputs: The input tensor for the layer, which computes the reward bucket
|
| 79 |
+
weights (logits). [B, dim].
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
A tuple consisting of the expected rewards and the logits that parameterize
|
| 83 |
+
the tfp `FiniteDiscrete` distribution object. To get the individual bucket
|
| 84 |
+
probs, do `[FiniteDiscrete object].probs`.
|
| 85 |
+
"""
|
| 86 |
+
# Compute the `num_buckets` weights.
|
| 87 |
+
assert len(inputs.shape) == 2
|
| 88 |
+
logits = tf.cast(self.reward_buckets_layer(inputs), tf.float32)
|
| 89 |
+
# out=[B, `num_buckets`]
|
| 90 |
+
|
| 91 |
+
# Compute the expected(!) reward using the formula:
|
| 92 |
+
# `softmax(Linear(x))` [vectordot] `possible_outcomes`, where
|
| 93 |
+
# `possible_outcomes` is the even-spaced (binned) encoding of all possible
|
| 94 |
+
# symexp'd reward/values.
|
| 95 |
+
# [2]: "The mean of the reward predictor pφ(ˆrt | zˆt) is used as reward
|
| 96 |
+
# sequence rˆ1:H."
|
| 97 |
+
probs = tf.nn.softmax(logits)
|
| 98 |
+
possible_outcomes = tf.linspace(
|
| 99 |
+
self.lower_bound,
|
| 100 |
+
self.upper_bound,
|
| 101 |
+
self.num_buckets,
|
| 102 |
+
)
|
| 103 |
+
# probs=possible_outcomes=[B, `num_buckets`]
|
| 104 |
+
|
| 105 |
+
# Simple vector dot product (over last dim) to get the mean reward
|
| 106 |
+
# weighted sum, where all weights sum to 1.0.
|
| 107 |
+
expected_rewards = tf.reduce_sum(probs * possible_outcomes, axis=-1)
|
| 108 |
+
# expected_rewards=[B]
|
| 109 |
+
|
| 110 |
+
return expected_rewards, logits
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/components/sequence_model.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
import gymnasium as gym
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.mlp import MLP
|
| 12 |
+
from ray.rllib.algorithms.dreamerv3.utils import (
|
| 13 |
+
get_gru_units,
|
| 14 |
+
get_num_z_classes,
|
| 15 |
+
get_num_z_categoricals,
|
| 16 |
+
)
|
| 17 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 18 |
+
|
| 19 |
+
_, tf, _ = try_import_tf()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SequenceModel(tf.keras.Model):
|
| 23 |
+
"""The "sequence model" of the RSSM, computing ht+1 given (ht, zt, at).
|
| 24 |
+
|
| 25 |
+
Note: The "internal state" always consists of:
|
| 26 |
+
The actions `a` (initially, this is a zeroed-out action), `h`-states (deterministic,
|
| 27 |
+
continuous), and `z`-states (stochastic, discrete).
|
| 28 |
+
There are two versions of z-states: "posterior" for world model training and "prior"
|
| 29 |
+
for creating the dream data.
|
| 30 |
+
|
| 31 |
+
Initial internal state values (`a`, `h`, and `z`) are used where ever a new episode
|
| 32 |
+
starts within a batch row OR at the beginning of each train batch's B rows,
|
| 33 |
+
regardless of whether there was an actual episode boundary or not. Thus, internal
|
| 34 |
+
states are not required to be stored in or retrieved from the replay buffer AND
|
| 35 |
+
retrieved batches from the buffer must not be zero padded.
|
| 36 |
+
|
| 37 |
+
Initial `a` is the zero "one hot" action, e.g. [0.0, 0.0] for Discrete(2), initial
|
| 38 |
+
`h` is a separate learned variable, and initial `z` are computed by the "dynamics"
|
| 39 |
+
(or "prior") net, using only the initial-h state as input.
|
| 40 |
+
|
| 41 |
+
The GRU in this SequenceModel always produces the next h-state, then.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
*,
|
| 47 |
+
model_size: Optional[str] = "XS",
|
| 48 |
+
action_space: gym.Space,
|
| 49 |
+
num_gru_units: Optional[int] = None,
|
| 50 |
+
):
|
| 51 |
+
"""Initializes a SequenceModel instance.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
model_size: The "Model Size" used according to [1] Appendinx B.
|
| 55 |
+
Use None for manually setting the number of GRU units used.
|
| 56 |
+
action_space: The action space of the environment used.
|
| 57 |
+
num_gru_units: Overrides the number of GRU units (dimension of the h-state).
|
| 58 |
+
If None, use the value given through `model_size`
|
| 59 |
+
(see [1] Appendix B).
|
| 60 |
+
"""
|
| 61 |
+
super().__init__(name="sequence_model")
|
| 62 |
+
|
| 63 |
+
self.model_size = model_size
|
| 64 |
+
self.action_space = action_space
|
| 65 |
+
num_gru_units = get_gru_units(self.model_size, override=num_gru_units)
|
| 66 |
+
|
| 67 |
+
# In Danijar's code, there is an additional layer (units=[model_size])
|
| 68 |
+
# prior to the GRU (but always only with 1 layer), which is not mentioned in
|
| 69 |
+
# the paper.
|
| 70 |
+
self.pre_gru_layer = MLP(
|
| 71 |
+
num_dense_layers=1,
|
| 72 |
+
model_size=self.model_size,
|
| 73 |
+
output_layer_size=None,
|
| 74 |
+
)
|
| 75 |
+
self.gru_unit = tf.keras.layers.GRU(
|
| 76 |
+
num_gru_units,
|
| 77 |
+
return_sequences=False,
|
| 78 |
+
return_state=False,
|
| 79 |
+
# Note: Changing these activations is most likely a bad idea!
|
| 80 |
+
# In experiments, setting one of both of them to silu deteriorated
|
| 81 |
+
# performance significantly.
|
| 82 |
+
# activation=tf.nn.silu,
|
| 83 |
+
# recurrent_activation=tf.nn.silu,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Trace self.call.
|
| 87 |
+
dl_type = tf.keras.mixed_precision.global_policy().compute_dtype or tf.float32
|
| 88 |
+
self.call = tf.function(
|
| 89 |
+
input_signature=[
|
| 90 |
+
tf.TensorSpec(
|
| 91 |
+
shape=[None]
|
| 92 |
+
+ (
|
| 93 |
+
[action_space.n]
|
| 94 |
+
if isinstance(action_space, gym.spaces.Discrete)
|
| 95 |
+
else list(action_space.shape)
|
| 96 |
+
),
|
| 97 |
+
dtype=dl_type,
|
| 98 |
+
),
|
| 99 |
+
tf.TensorSpec(shape=[None, num_gru_units], dtype=dl_type),
|
| 100 |
+
tf.TensorSpec(
|
| 101 |
+
shape=[
|
| 102 |
+
None,
|
| 103 |
+
get_num_z_categoricals(self.model_size),
|
| 104 |
+
get_num_z_classes(self.model_size),
|
| 105 |
+
],
|
| 106 |
+
dtype=dl_type,
|
| 107 |
+
),
|
| 108 |
+
]
|
| 109 |
+
)(self.call)
|
| 110 |
+
|
| 111 |
+
def call(self, a, h, z):
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
a: The previous action (already one-hot'd if applicable). (B, ...).
|
| 116 |
+
h: The previous deterministic hidden state of the sequence model.
|
| 117 |
+
(B, num_gru_units)
|
| 118 |
+
z: The previous stochastic discrete representations of the original
|
| 119 |
+
observation input. (B, num_categoricals, num_classes_per_categorical).
|
| 120 |
+
"""
|
| 121 |
+
# Flatten last two dims of z.
|
| 122 |
+
z_shape = tf.shape(z)
|
| 123 |
+
z = tf.reshape(z, shape=(z_shape[0], -1))
|
| 124 |
+
out = tf.concat([z, a], axis=-1)
|
| 125 |
+
out.set_shape(
|
| 126 |
+
[
|
| 127 |
+
None,
|
| 128 |
+
(
|
| 129 |
+
get_num_z_categoricals(self.model_size)
|
| 130 |
+
* get_num_z_classes(self.model_size)
|
| 131 |
+
+ (
|
| 132 |
+
self.action_space.n
|
| 133 |
+
if isinstance(self.action_space, gym.spaces.Discrete)
|
| 134 |
+
else int(np.prod(self.action_space.shape))
|
| 135 |
+
)
|
| 136 |
+
),
|
| 137 |
+
]
|
| 138 |
+
)
|
| 139 |
+
# Pass through pre-GRU layer.
|
| 140 |
+
out = self.pre_gru_layer(out)
|
| 141 |
+
# Pass through (batch-major) GRU (expand axis=1 as the time axis).
|
| 142 |
+
h_next = self.gru_unit(tf.expand_dims(out, axis=1), initial_state=h)
|
| 143 |
+
# Return the GRU's output (the next h-state).
|
| 144 |
+
return h_next
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/disagree_networks.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.mlp import MLP
|
| 8 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.components.representation_layer import (
|
| 9 |
+
RepresentationLayer,
|
| 10 |
+
)
|
| 11 |
+
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
|
| 12 |
+
|
| 13 |
+
_, tf, _ = try_import_tf()
|
| 14 |
+
tfp = try_import_tfp()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class DisagreeNetworks(tf.keras.Model):
|
| 18 |
+
"""Predict the RSSM's z^(t+1), given h(t), z^(t), and a(t).
|
| 19 |
+
|
| 20 |
+
Disagreement (stddev) between the N networks in this model on what the next z^ would
|
| 21 |
+
be are used to produce intrinsic rewards for enhanced, curiosity-based exploration.
|
| 22 |
+
|
| 23 |
+
TODO
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(self, *, num_networks, model_size, intrinsic_rewards_scale):
|
| 27 |
+
super().__init__(name="disagree_networks")
|
| 28 |
+
|
| 29 |
+
self.model_size = model_size
|
| 30 |
+
self.num_networks = num_networks
|
| 31 |
+
self.intrinsic_rewards_scale = intrinsic_rewards_scale
|
| 32 |
+
|
| 33 |
+
self.mlps = []
|
| 34 |
+
self.representation_layers = []
|
| 35 |
+
|
| 36 |
+
for _ in range(self.num_networks):
|
| 37 |
+
self.mlps.append(
|
| 38 |
+
MLP(
|
| 39 |
+
model_size=self.model_size,
|
| 40 |
+
output_layer_size=None,
|
| 41 |
+
trainable=True,
|
| 42 |
+
)
|
| 43 |
+
)
|
| 44 |
+
self.representation_layers.append(
|
| 45 |
+
RepresentationLayer(model_size=self.model_size, name="disagree")
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def call(self, inputs, z, a, training=None):
|
| 49 |
+
return self.forward_train(a=a, h=inputs, z=z)
|
| 50 |
+
|
| 51 |
+
def compute_intrinsic_rewards(self, h, z, a):
|
| 52 |
+
forward_train_outs = self.forward_train(a=a, h=h, z=z)
|
| 53 |
+
B = tf.shape(h)[0]
|
| 54 |
+
|
| 55 |
+
# Intrinsic rewards are computed as:
|
| 56 |
+
# Stddev (between the different nets) of the 32x32 discrete, stochastic
|
| 57 |
+
# probabilities. Meaning that if the larger the disagreement
|
| 58 |
+
# (stddev) between the nets on what the probabilities for the different
|
| 59 |
+
# classes should be, the higher the intrinsic reward.
|
| 60 |
+
z_predicted_probs_N_B = forward_train_outs["z_predicted_probs_N_HxB"]
|
| 61 |
+
N = len(z_predicted_probs_N_B)
|
| 62 |
+
z_predicted_probs_N_B = tf.stack(z_predicted_probs_N_B, axis=0)
|
| 63 |
+
# Flatten z-dims (num_categoricals x num_classes).
|
| 64 |
+
z_predicted_probs_N_B = tf.reshape(z_predicted_probs_N_B, shape=(N, B, -1))
|
| 65 |
+
|
| 66 |
+
# Compute stddevs over all disagree nets (axis=0).
|
| 67 |
+
# Mean over last axis ([num categoricals] x [num classes] folded axis).
|
| 68 |
+
stddevs_B_mean = tf.reduce_mean(
|
| 69 |
+
tf.math.reduce_std(z_predicted_probs_N_B, axis=0),
|
| 70 |
+
axis=-1,
|
| 71 |
+
)
|
| 72 |
+
# TEST:
|
| 73 |
+
stddevs_B_mean -= tf.reduce_mean(stddevs_B_mean)
|
| 74 |
+
# END TEST
|
| 75 |
+
return {
|
| 76 |
+
"rewards_intrinsic": stddevs_B_mean * self.intrinsic_rewards_scale,
|
| 77 |
+
"forward_train_outs": forward_train_outs,
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
def forward_train(self, a, h, z):
|
| 81 |
+
HxB = tf.shape(h)[0]
|
| 82 |
+
# Fold z-dims.
|
| 83 |
+
z = tf.reshape(z, shape=(HxB, -1))
|
| 84 |
+
# Concat all input components (h, z, and a).
|
| 85 |
+
inputs_ = tf.stop_gradient(tf.concat([h, z, a], axis=-1))
|
| 86 |
+
|
| 87 |
+
z_predicted_probs_N_HxB = [
|
| 88 |
+
repr(mlp(inputs_))[1] # [0]=sample; [1]=returned probs
|
| 89 |
+
for mlp, repr in zip(self.mlps, self.representation_layers)
|
| 90 |
+
]
|
| 91 |
+
# shape=(N, HxB, [num categoricals], [num classes]); N=number of disagree nets.
|
| 92 |
+
# HxB -> folded horizon_H x batch_size_B (from dreamed data).
|
| 93 |
+
|
| 94 |
+
return {"z_predicted_probs_N_HxB": z_predicted_probs_N_HxB}
|
deepseek/lib/python3.10/site-packages/ray/rllib/algorithms/dreamerv3/tf/models/dreamer_model.py
ADDED
|
@@ -0,0 +1,606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
[1] Mastering Diverse Domains through World Models - 2023
|
| 3 |
+
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
|
| 4 |
+
https://arxiv.org/pdf/2301.04104v1.pdf
|
| 5 |
+
"""
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
import gymnasium as gym
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.disagree_networks import DisagreeNetworks
|
| 12 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.actor_network import ActorNetwork
|
| 13 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.critic_network import CriticNetwork
|
| 14 |
+
from ray.rllib.algorithms.dreamerv3.tf.models.world_model import WorldModel
|
| 15 |
+
from ray.rllib.algorithms.dreamerv3.utils import (
|
| 16 |
+
get_gru_units,
|
| 17 |
+
get_num_z_categoricals,
|
| 18 |
+
get_num_z_classes,
|
| 19 |
+
)
|
| 20 |
+
from ray.rllib.utils.framework import try_import_tf
|
| 21 |
+
from ray.rllib.utils.tf_utils import inverse_symlog
|
| 22 |
+
|
| 23 |
+
_, tf, _ = try_import_tf()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class DreamerModel(tf.keras.Model):
|
| 27 |
+
"""The main tf-keras model containing all necessary components for DreamerV3.
|
| 28 |
+
|
| 29 |
+
Includes:
|
| 30 |
+
- The world model with encoder, decoder, sequence-model (RSSM), dynamics
|
| 31 |
+
(generates prior z-state), and "posterior" model (generates posterior z-state).
|
| 32 |
+
Predicts env dynamics and produces dreamed trajectories for actor- and critic
|
| 33 |
+
learning.
|
| 34 |
+
- The actor network (policy).
|
| 35 |
+
- The critic network for value function prediction.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
*,
|
| 41 |
+
model_size: str = "XS",
|
| 42 |
+
action_space: gym.Space,
|
| 43 |
+
world_model: WorldModel,
|
| 44 |
+
actor: ActorNetwork,
|
| 45 |
+
critic: CriticNetwork,
|
| 46 |
+
horizon: int,
|
| 47 |
+
gamma: float,
|
| 48 |
+
use_curiosity: bool = False,
|
| 49 |
+
intrinsic_rewards_scale: float = 0.1,
|
| 50 |
+
):
|
| 51 |
+
"""Initializes a DreamerModel instance.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
model_size: The "Model Size" used according to [1] Appendinx B.
|
| 55 |
+
Use None for manually setting the different network sizes.
|
| 56 |
+
action_space: The action space of the environment used.
|
| 57 |
+
world_model: The WorldModel component.
|
| 58 |
+
actor: The ActorNetwork component.
|
| 59 |
+
critic: The CriticNetwork component.
|
| 60 |
+
horizon: The dream horizon to use when creating dreamed trajectories.
|
| 61 |
+
"""
|
| 62 |
+
super().__init__(name="dreamer_model")
|
| 63 |
+
|
| 64 |
+
self.model_size = model_size
|
| 65 |
+
self.action_space = action_space
|
| 66 |
+
self.use_curiosity = use_curiosity
|
| 67 |
+
|
| 68 |
+
self.world_model = world_model
|
| 69 |
+
self.actor = actor
|
| 70 |
+
self.critic = critic
|
| 71 |
+
|
| 72 |
+
self.horizon = horizon
|
| 73 |
+
self.gamma = gamma
|
| 74 |
+
self._comp_dtype = (
|
| 75 |
+
tf.keras.mixed_precision.global_policy().compute_dtype or tf.float32
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.disagree_nets = None
|
| 79 |
+
if self.use_curiosity:
|
| 80 |
+
self.disagree_nets = DisagreeNetworks(
|
| 81 |
+
num_networks=8,
|
| 82 |
+
model_size=self.model_size,
|
| 83 |
+
intrinsic_rewards_scale=intrinsic_rewards_scale,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.dream_trajectory = tf.function(
|
| 87 |
+
input_signature=[
|
| 88 |
+
{
|
| 89 |
+
"h": tf.TensorSpec(
|
| 90 |
+
shape=[
|
| 91 |
+
None,
|
| 92 |
+
get_gru_units(self.model_size),
|
| 93 |
+
],
|
| 94 |
+
dtype=self._comp_dtype,
|
| 95 |
+
),
|
| 96 |
+
"z": tf.TensorSpec(
|
| 97 |
+
shape=[
|
| 98 |
+
None,
|
| 99 |
+
get_num_z_categoricals(self.model_size),
|
| 100 |
+
get_num_z_classes(self.model_size),
|
| 101 |
+
],
|
| 102 |
+
dtype=self._comp_dtype,
|
| 103 |
+
),
|
| 104 |
+
},
|
| 105 |
+
tf.TensorSpec(shape=[None], dtype=tf.bool),
|
| 106 |
+
]
|
| 107 |
+
)(self.dream_trajectory)
|
| 108 |
+
|
| 109 |
+
def call(
|
| 110 |
+
self,
|
| 111 |
+
inputs,
|
| 112 |
+
observations,
|
| 113 |
+
actions,
|
| 114 |
+
is_first,
|
| 115 |
+
start_is_terminated_BxT,
|
| 116 |
+
gamma,
|
| 117 |
+
):
|
| 118 |
+
"""Main call method for building this model in order to generate its variables.
|
| 119 |
+
|
| 120 |
+
Note: This method should NOT be used by users directly. It's purpose is only to
|
| 121 |
+
perform all forward passes necessary to define all variables of the DreamerV3.
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
# Forward passes through all models are enough to build all trainable and
|
| 125 |
+
# non-trainable variables:
|
| 126 |
+
|
| 127 |
+
# World model.
|
| 128 |
+
results = self.world_model.forward_train(
|
| 129 |
+
observations,
|
| 130 |
+
actions,
|
| 131 |
+
is_first,
|
| 132 |
+
)
|
| 133 |
+
# Actor.
|
| 134 |
+
_, distr_params = self.actor(
|
| 135 |
+
h=results["h_states_BxT"],
|
| 136 |
+
z=results["z_posterior_states_BxT"],
|
| 137 |
+
)
|
| 138 |
+
# Critic.
|
| 139 |
+
values, _ = self.critic(
|
| 140 |
+
h=results["h_states_BxT"],
|
| 141 |
+
z=results["z_posterior_states_BxT"],
|
| 142 |
+
use_ema=tf.convert_to_tensor(False),
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Dream pipeline.
|
| 146 |
+
dream_data = self.dream_trajectory(
|
| 147 |
+
start_states={
|
| 148 |
+
"h": results["h_states_BxT"],
|
| 149 |
+
"z": results["z_posterior_states_BxT"],
|
| 150 |
+
},
|
| 151 |
+
start_is_terminated=start_is_terminated_BxT,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
return {
|
| 155 |
+
"world_model_fwd": results,
|
| 156 |
+
"dream_data": dream_data,
|
| 157 |
+
"actions": actions,
|
| 158 |
+
"values": values,
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
@tf.function
|
| 162 |
+
def forward_inference(self, observations, previous_states, is_first, training=None):
|
| 163 |
+
"""Performs a (non-exploring) action computation step given obs and states.
|
| 164 |
+
|
| 165 |
+
Note that all input data should not have a time rank (only a batch dimension).
|
| 166 |
+
|
| 167 |
+
Args:
|
| 168 |
+
observations: The current environment observation with shape (B, ...).
|
| 169 |
+
previous_states: Dict with keys `a`, `h`, and `z` used as input to the RSSM
|
| 170 |
+
to produce the next h-state, from which then to compute the action
|
| 171 |
+
using the actor network. All values in the dict should have shape
|
| 172 |
+
(B, ...) (no time rank).
|
| 173 |
+
is_first: Batch of is_first flags. These should be True if a new episode
|
| 174 |
+
has been started at the current timestep (meaning `observations` is the
|
| 175 |
+
reset observation from the environment).
|
| 176 |
+
"""
|
| 177 |
+
# Perform one step in the world model (starting from `previous_state` and
|
| 178 |
+
# using the observations to yield a current (posterior) state).
|
| 179 |
+
states = self.world_model.forward_inference(
|
| 180 |
+
observations=observations,
|
| 181 |
+
previous_states=previous_states,
|
| 182 |
+
is_first=is_first,
|
| 183 |
+
)
|
| 184 |
+
# Compute action using our actor network and the current states.
|
| 185 |
+
_, distr_params = self.actor(h=states["h"], z=states["z"])
|
| 186 |
+
# Use the mode of the distribution (Discrete=argmax, Normal=mean).
|
| 187 |
+
distr = self.actor.get_action_dist_object(distr_params)
|
| 188 |
+
actions = distr.mode()
|
| 189 |
+
return actions, {"h": states["h"], "z": states["z"], "a": actions}
|
| 190 |
+
|
| 191 |
+
@tf.function
|
| 192 |
+
def forward_exploration(
|
| 193 |
+
self, observations, previous_states, is_first, training=None
|
| 194 |
+
):
|
| 195 |
+
"""Performs an exploratory action computation step given obs and states.
|
| 196 |
+
|
| 197 |
+
Note that all input data should not have a time rank (only a batch dimension).
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
observations: The current environment observation with shape (B, ...).
|
| 201 |
+
previous_states: Dict with keys `a`, `h`, and `z` used as input to the RSSM
|
| 202 |
+
to produce the next h-state, from which then to compute the action
|
| 203 |
+
using the actor network. All values in the dict should have shape
|
| 204 |
+
(B, ...) (no time rank).
|
| 205 |
+
is_first: Batch of is_first flags. These should be True if a new episode
|
| 206 |
+
has been started at the current timestep (meaning `observations` is the
|
| 207 |
+
reset observation from the environment).
|
| 208 |
+
"""
|
| 209 |
+
# Perform one step in the world model (starting from `previous_state` and
|
| 210 |
+
# using the observations to yield a current (posterior) state).
|
| 211 |
+
states = self.world_model.forward_inference(
|
| 212 |
+
observations=observations,
|
| 213 |
+
previous_states=previous_states,
|
| 214 |
+
is_first=is_first,
|
| 215 |
+
)
|
| 216 |
+
# Compute action using our actor network and the current states.
|
| 217 |
+
actions, _ = self.actor(h=states["h"], z=states["z"])
|
| 218 |
+
return actions, {"h": states["h"], "z": states["z"], "a": actions}
|
| 219 |
+
|
| 220 |
+
def forward_train(self, observations, actions, is_first):
|
| 221 |
+
"""Performs a training forward pass given observations and actions.
|
| 222 |
+
|
| 223 |
+
Note that all input data must have a time rank (batch-major: [B, T, ...]).
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
observations: The environment observations with shape (B, T, ...). Thus,
|
| 227 |
+
the batch has B rows of T timesteps each. Note that it's ok to have
|
| 228 |
+
episode boundaries (is_first=True) within a batch row. DreamerV3 will
|
| 229 |
+
simply insert an initial state before these locations and continue the
|
| 230 |
+
sequence modelling (with the RSSM). Hence, there will be no zero
|
| 231 |
+
padding.
|
| 232 |
+
actions: The actions actually taken in the environment with shape
|
| 233 |
+
(B, T, ...). See `observations` docstring for details on how B and T are
|
| 234 |
+
handled.
|
| 235 |
+
is_first: Batch of is_first flags. These should be True:
|
| 236 |
+
- if a new episode has been started at the current timestep (meaning
|
| 237 |
+
`observations` is the reset observation from the environment).
|
| 238 |
+
- in each batch row at T=0 (first timestep of each of the B batch
|
| 239 |
+
rows), regardless of whether the actual env had an episode boundary
|
| 240 |
+
there or not.
|
| 241 |
+
"""
|
| 242 |
+
return self.world_model.forward_train(
|
| 243 |
+
observations=observations,
|
| 244 |
+
actions=actions,
|
| 245 |
+
is_first=is_first,
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
@tf.function
|
| 249 |
+
def get_initial_state(self):
|
| 250 |
+
"""Returns the (current) initial state of the dreamer model (a, h-, z-states).
|
| 251 |
+
|
| 252 |
+
An initial state is generated using the previous action, the tanh of the
|
| 253 |
+
(learned) h-state variable and the dynamics predictor (or "prior net") to
|
| 254 |
+
compute z^0 from h0. In this last step, it is important that we do NOT sample
|
| 255 |
+
the z^-state (as we would usually do during dreaming), but rather take the mode
|
| 256 |
+
(argmax, then one-hot again).
|
| 257 |
+
"""
|
| 258 |
+
states = self.world_model.get_initial_state()
|
| 259 |
+
|
| 260 |
+
action_dim = (
|
| 261 |
+
self.action_space.n
|
| 262 |
+
if isinstance(self.action_space, gym.spaces.Discrete)
|
| 263 |
+
else np.prod(self.action_space.shape)
|
| 264 |
+
)
|
| 265 |
+
states["a"] = tf.zeros(
|
| 266 |
+
(
|
| 267 |
+
1,
|
| 268 |
+
action_dim,
|
| 269 |
+
),
|
| 270 |
+
dtype=tf.keras.mixed_precision.global_policy().compute_dtype or tf.float32,
|
| 271 |
+
)
|
| 272 |
+
return states
|
| 273 |
+
|
| 274 |
+
def dream_trajectory(self, start_states, start_is_terminated):
|
| 275 |
+
"""Dreams trajectories of length H from batch of h- and z-states.
|
| 276 |
+
|
| 277 |
+
Note that incoming data will have the shapes (BxT, ...), where the original
|
| 278 |
+
batch- and time-dimensions are already folded together. Beginning from this
|
| 279 |
+
new batch dim (BxT), we will unroll `timesteps_H` timesteps in a time-major
|
| 280 |
+
fashion, such that the dreamed data will have shape (H, BxT, ...).
|
| 281 |
+
|
| 282 |
+
Args:
|
| 283 |
+
start_states: Dict of `h` and `z` states in the shape of (B, ...) and
|
| 284 |
+
(B, num_categoricals, num_classes), respectively, as
|
| 285 |
+
computed by a train forward pass. From each individual h-/z-state pair
|
| 286 |
+
in the given batch, we will branch off a dreamed trajectory of len
|
| 287 |
+
`timesteps_H`.
|
| 288 |
+
start_is_terminated: Float flags of shape (B,) indicating whether the
|
| 289 |
+
first timesteps of each batch row is already a terminated timestep
|
| 290 |
+
(given by the actual environment).
|
| 291 |
+
"""
|
| 292 |
+
# Dreamed actions (one-hot encoded for discrete actions).
|
| 293 |
+
a_dreamed_t0_to_H = []
|
| 294 |
+
a_dreamed_dist_params_t0_to_H = []
|
| 295 |
+
|
| 296 |
+
h = start_states["h"]
|
| 297 |
+
z = start_states["z"]
|
| 298 |
+
|
| 299 |
+
# GRU outputs.
|
| 300 |
+
h_states_t0_to_H = [h]
|
| 301 |
+
# Dynamics model outputs.
|
| 302 |
+
z_states_prior_t0_to_H = [z]
|
| 303 |
+
|
| 304 |
+
# Compute `a` using actor network (already the first step uses a dreamed action,
|
| 305 |
+
# not a sampled one).
|
| 306 |
+
a, a_dist_params = self.actor(
|
| 307 |
+
# We have to stop the gradients through the states. B/c we are using a
|
| 308 |
+
# differentiable Discrete action distribution (straight through gradients
|
| 309 |
+
# with `a = stop_gradient(sample(probs)) + probs - stop_gradient(probs)`,
|
| 310 |
+
# we otherwise would add dependencies of the `-log(pi(a|s))` REINFORCE loss
|
| 311 |
+
# term on actions further back in the trajectory.
|
| 312 |
+
h=tf.stop_gradient(h),
|
| 313 |
+
z=tf.stop_gradient(z),
|
| 314 |
+
)
|
| 315 |
+
a_dreamed_t0_to_H.append(a)
|
| 316 |
+
a_dreamed_dist_params_t0_to_H.append(a_dist_params)
|
| 317 |
+
|
| 318 |
+
for i in range(self.horizon):
|
| 319 |
+
# Move one step in the dream using the RSSM.
|
| 320 |
+
h = self.world_model.sequence_model(a=a, h=h, z=z)
|
| 321 |
+
h_states_t0_to_H.append(h)
|
| 322 |
+
|
| 323 |
+
# Compute prior z using dynamics model.
|
| 324 |
+
z, _ = self.world_model.dynamics_predictor(h=h)
|
| 325 |
+
z_states_prior_t0_to_H.append(z)
|
| 326 |
+
|
| 327 |
+
# Compute `a` using actor network.
|
| 328 |
+
a, a_dist_params = self.actor(
|
| 329 |
+
h=tf.stop_gradient(h),
|
| 330 |
+
z=tf.stop_gradient(z),
|
| 331 |
+
)
|
| 332 |
+
a_dreamed_t0_to_H.append(a)
|
| 333 |
+
a_dreamed_dist_params_t0_to_H.append(a_dist_params)
|
| 334 |
+
|
| 335 |
+
h_states_H_B = tf.stack(h_states_t0_to_H, axis=0) # (T, B, ...)
|
| 336 |
+
h_states_HxB = tf.reshape(h_states_H_B, [-1] + h_states_H_B.shape.as_list()[2:])
|
| 337 |
+
|
| 338 |
+
z_states_prior_H_B = tf.stack(z_states_prior_t0_to_H, axis=0) # (T, B, ...)
|
| 339 |
+
z_states_prior_HxB = tf.reshape(
|
| 340 |
+
z_states_prior_H_B, [-1] + z_states_prior_H_B.shape.as_list()[2:]
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
a_dreamed_H_B = tf.stack(a_dreamed_t0_to_H, axis=0) # (T, B, ...)
|
| 344 |
+
a_dreamed_dist_params_H_B = tf.stack(a_dreamed_dist_params_t0_to_H, axis=0)
|
| 345 |
+
|
| 346 |
+
# Compute r using reward predictor.
|
| 347 |
+
r_dreamed_HxB, _ = self.world_model.reward_predictor(
|
| 348 |
+
h=h_states_HxB, z=z_states_prior_HxB
|
| 349 |
+
)
|
| 350 |
+
r_dreamed_H_B = tf.reshape(
|
| 351 |
+
inverse_symlog(r_dreamed_HxB), shape=[self.horizon + 1, -1]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Compute intrinsic rewards.
|
| 355 |
+
if self.use_curiosity:
|
| 356 |
+
results_HxB = self.disagree_nets.compute_intrinsic_rewards(
|
| 357 |
+
h=h_states_HxB,
|
| 358 |
+
z=z_states_prior_HxB,
|
| 359 |
+
a=tf.reshape(a_dreamed_H_B, [-1] + a_dreamed_H_B.shape.as_list()[2:]),
|
| 360 |
+
)
|
| 361 |
+
# TODO (sven): Wrong? -> Cut out last timestep as we always predict z-states
|
| 362 |
+
# for the NEXT timestep and derive ri (for the NEXT timestep) from the
|
| 363 |
+
# disagreement between our N disagreee nets.
|
| 364 |
+
r_intrinsic_H_B = tf.reshape(
|
| 365 |
+
results_HxB["rewards_intrinsic"], shape=[self.horizon + 1, -1]
|
| 366 |
+
)[
|
| 367 |
+
1:
|
| 368 |
+
] # cut out first ts instead
|
| 369 |
+
curiosity_forward_train_outs = results_HxB["forward_train_outs"]
|
| 370 |
+
del results_HxB
|
| 371 |
+
|
| 372 |
+
# Compute continues using continue predictor.
|
| 373 |
+
c_dreamed_HxB, _ = self.world_model.continue_predictor(
|
| 374 |
+
h=h_states_HxB,
|
| 375 |
+
z=z_states_prior_HxB,
|
| 376 |
+
)
|
| 377 |
+
c_dreamed_H_B = tf.reshape(c_dreamed_HxB, [self.horizon + 1, -1])
|
| 378 |
+
# Force-set first `continue` flags to False iff `start_is_terminated`.
|
| 379 |
+
# Note: This will cause the loss-weights for this row in the batch to be
|
| 380 |
+
# completely zero'd out. In general, we don't use dreamed data past any
|
| 381 |
+
# predicted (or actual first) continue=False flags.
|
| 382 |
+
c_dreamed_H_B = tf.concat(
|
| 383 |
+
[
|
| 384 |
+
1.0
|
| 385 |
+
- tf.expand_dims(
|
| 386 |
+
tf.cast(start_is_terminated, tf.float32),
|
| 387 |
+
0,
|
| 388 |
+
),
|
| 389 |
+
c_dreamed_H_B[1:],
|
| 390 |
+
],
|
| 391 |
+
axis=0,
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# Loss weights for each individual dreamed timestep. Zero-out all timesteps
|
| 395 |
+
# that lie past continue=False flags. B/c our world model does NOT learn how
|
| 396 |
+
# to skip terminal/reset episode boundaries, dreamed data crossing such a
|
| 397 |
+
# boundary should not be used for critic/actor learning either.
|
| 398 |
+
dream_loss_weights_H_B = (
|
| 399 |
+
tf.math.cumprod(self.gamma * c_dreamed_H_B, axis=0) / self.gamma
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# Compute the value estimates.
|
| 403 |
+
v, v_symlog_dreamed_logits_HxB = self.critic(
|
| 404 |
+
h=h_states_HxB,
|
| 405 |
+
z=z_states_prior_HxB,
|
| 406 |
+
use_ema=False,
|
| 407 |
+
)
|
| 408 |
+
v_dreamed_HxB = inverse_symlog(v)
|
| 409 |
+
v_dreamed_H_B = tf.reshape(v_dreamed_HxB, shape=[self.horizon + 1, -1])
|
| 410 |
+
|
| 411 |
+
v_symlog_dreamed_ema_HxB, _ = self.critic(
|
| 412 |
+
h=h_states_HxB,
|
| 413 |
+
z=z_states_prior_HxB,
|
| 414 |
+
use_ema=True,
|
| 415 |
+
)
|
| 416 |
+
v_symlog_dreamed_ema_H_B = tf.reshape(
|
| 417 |
+
v_symlog_dreamed_ema_HxB, shape=[self.horizon + 1, -1]
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
ret = {
|
| 421 |
+
"h_states_t0_to_H_BxT": h_states_H_B,
|
| 422 |
+
"z_states_prior_t0_to_H_BxT": z_states_prior_H_B,
|
| 423 |
+
"rewards_dreamed_t0_to_H_BxT": r_dreamed_H_B,
|
| 424 |
+
"continues_dreamed_t0_to_H_BxT": c_dreamed_H_B,
|
| 425 |
+
"actions_dreamed_t0_to_H_BxT": a_dreamed_H_B,
|
| 426 |
+
"actions_dreamed_dist_params_t0_to_H_BxT": a_dreamed_dist_params_H_B,
|
| 427 |
+
"values_dreamed_t0_to_H_BxT": v_dreamed_H_B,
|
| 428 |
+
"values_symlog_dreamed_logits_t0_to_HxBxT": v_symlog_dreamed_logits_HxB,
|
| 429 |
+
"v_symlog_dreamed_ema_t0_to_H_BxT": v_symlog_dreamed_ema_H_B,
|
| 430 |
+
# Loss weights for critic- and actor losses.
|
| 431 |
+
"dream_loss_weights_t0_to_H_BxT": dream_loss_weights_H_B,
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
if self.use_curiosity:
|
| 435 |
+
ret["rewards_intrinsic_t1_to_H_B"] = r_intrinsic_H_B
|
| 436 |
+
ret.update(curiosity_forward_train_outs)
|
| 437 |
+
|
| 438 |
+
if isinstance(self.action_space, gym.spaces.Discrete):
|
| 439 |
+
ret["actions_ints_dreamed_t0_to_H_B"] = tf.argmax(a_dreamed_H_B, axis=-1)
|
| 440 |
+
|
| 441 |
+
return ret
|
| 442 |
+
|
| 443 |
+
def dream_trajectory_with_burn_in(
|
| 444 |
+
self,
|
| 445 |
+
*,
|
| 446 |
+
start_states,
|
| 447 |
+
timesteps_burn_in: int,
|
| 448 |
+
timesteps_H: int,
|
| 449 |
+
observations, # [B, >=timesteps_burn_in]
|
| 450 |
+
actions, # [B, timesteps_burn_in (+timesteps_H)?]
|
| 451 |
+
use_sampled_actions_in_dream: bool = False,
|
| 452 |
+
use_random_actions_in_dream: bool = False,
|
| 453 |
+
):
|
| 454 |
+
"""Dreams trajectory from N initial observations and initial states.
|
| 455 |
+
|
| 456 |
+
Note: This is only used for reporting and debugging, not for actual world-model
|
| 457 |
+
or policy training.
|
| 458 |
+
|
| 459 |
+
Args:
|
| 460 |
+
start_states: The batch of start states (dicts with `a`, `h`, and `z` keys)
|
| 461 |
+
to begin dreaming with. These are used to compute the first h-state
|
| 462 |
+
using the sequence model.
|
| 463 |
+
timesteps_burn_in: For how many timesteps should be use the posterior
|
| 464 |
+
z-states (computed by the posterior net and actual observations from
|
| 465 |
+
the env)?
|
| 466 |
+
timesteps_H: For how many timesteps should we dream using the prior
|
| 467 |
+
z-states (computed by the dynamics (prior) net and h-states only)?
|
| 468 |
+
Note that the total length of the returned trajectories will
|
| 469 |
+
be `timesteps_burn_in` + `timesteps_H`.
|
| 470 |
+
observations: The batch (B, T, ...) of observations (to be used only during
|
| 471 |
+
burn-in over `timesteps_burn_in` timesteps).
|
| 472 |
+
actions: The batch (B, T, ...) of actions to use during a) burn-in over the
|
| 473 |
+
first `timesteps_burn_in` timesteps and - possibly - b) during
|
| 474 |
+
actual dreaming, iff use_sampled_actions_in_dream=True.
|
| 475 |
+
If applicable, actions must already be one-hot'd.
|
| 476 |
+
use_sampled_actions_in_dream: If True, instead of using our actor network
|
| 477 |
+
to compute fresh actions, we will use the one provided via the `actions`
|
| 478 |
+
argument. Note that in the latter case, the `actions` time dimension
|
| 479 |
+
must be at least `timesteps_burn_in` + `timesteps_H` long.
|
| 480 |
+
use_random_actions_in_dream: Whether to use randomly sampled actions in the
|
| 481 |
+
dream. Note that this does not apply to the burn-in phase, during which
|
| 482 |
+
we will always use the actions given in the `actions` argument.
|
| 483 |
+
"""
|
| 484 |
+
assert not (use_sampled_actions_in_dream and use_random_actions_in_dream)
|
| 485 |
+
|
| 486 |
+
B = observations.shape[0]
|
| 487 |
+
|
| 488 |
+
# Produce initial N internal posterior states (burn-in) using the given
|
| 489 |
+
# observations:
|
| 490 |
+
states = start_states
|
| 491 |
+
for i in range(timesteps_burn_in):
|
| 492 |
+
states = self.world_model.forward_inference(
|
| 493 |
+
observations=observations[:, i],
|
| 494 |
+
previous_states=states,
|
| 495 |
+
is_first=tf.fill((B,), 1.0 if i == 0 else 0.0),
|
| 496 |
+
)
|
| 497 |
+
states["a"] = actions[:, i]
|
| 498 |
+
|
| 499 |
+
# Start producing the actual dream, using prior states and either the given
|
| 500 |
+
# actions, dreamed, or random ones.
|
| 501 |
+
h_states_t0_to_H = [states["h"]]
|
| 502 |
+
z_states_prior_t0_to_H = [states["z"]]
|
| 503 |
+
a_t0_to_H = [states["a"]]
|
| 504 |
+
|
| 505 |
+
for j in range(timesteps_H):
|
| 506 |
+
# Compute next h using sequence model.
|
| 507 |
+
h = self.world_model.sequence_model(
|
| 508 |
+
a=states["a"],
|
| 509 |
+
h=states["h"],
|
| 510 |
+
z=states["z"],
|
| 511 |
+
)
|
| 512 |
+
h_states_t0_to_H.append(h)
|
| 513 |
+
# Compute z from h, using the dynamics model (we don't have an actual
|
| 514 |
+
# observation at this timestep).
|
| 515 |
+
z, _ = self.world_model.dynamics_predictor(h=h)
|
| 516 |
+
z_states_prior_t0_to_H.append(z)
|
| 517 |
+
|
| 518 |
+
# Compute next dreamed action or use sampled one or random one.
|
| 519 |
+
if use_sampled_actions_in_dream:
|
| 520 |
+
a = actions[:, timesteps_burn_in + j]
|
| 521 |
+
elif use_random_actions_in_dream:
|
| 522 |
+
if isinstance(self.action_space, gym.spaces.Discrete):
|
| 523 |
+
a = tf.random.randint((B,), 0, self.action_space.n, tf.int64)
|
| 524 |
+
a = tf.one_hot(
|
| 525 |
+
a,
|
| 526 |
+
depth=self.action_space.n,
|
| 527 |
+
dtype=tf.keras.mixed_precision.global_policy().compute_dtype
|
| 528 |
+
or tf.float32,
|
| 529 |
+
)
|
| 530 |
+
# TODO: Support cont. action spaces with bound other than 0.0 and 1.0.
|
| 531 |
+
else:
|
| 532 |
+
a = tf.random.uniform(
|
| 533 |
+
shape=(B,) + self.action_space.shape,
|
| 534 |
+
dtype=self.action_space.dtype,
|
| 535 |
+
)
|
| 536 |
+
else:
|
| 537 |
+
a, _ = self.actor(h=h, z=z)
|
| 538 |
+
a_t0_to_H.append(a)
|
| 539 |
+
|
| 540 |
+
states = {"h": h, "z": z, "a": a}
|
| 541 |
+
|
| 542 |
+
# Fold time-rank for upcoming batch-predictions (no sequences needed anymore).
|
| 543 |
+
h_states_t0_to_H_B = tf.stack(h_states_t0_to_H, axis=0)
|
| 544 |
+
h_states_t0_to_HxB = tf.reshape(
|
| 545 |
+
h_states_t0_to_H_B, shape=[-1] + h_states_t0_to_H_B.shape.as_list()[2:]
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
z_states_prior_t0_to_H_B = tf.stack(z_states_prior_t0_to_H, axis=0)
|
| 549 |
+
z_states_prior_t0_to_HxB = tf.reshape(
|
| 550 |
+
z_states_prior_t0_to_H_B,
|
| 551 |
+
shape=[-1] + z_states_prior_t0_to_H_B.shape.as_list()[2:],
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
a_t0_to_H_B = tf.stack(a_t0_to_H, axis=0)
|
| 555 |
+
|
| 556 |
+
# Compute o using decoder.
|
| 557 |
+
o_dreamed_t0_to_HxB = self.world_model.decoder(
|
| 558 |
+
h=h_states_t0_to_HxB,
|
| 559 |
+
z=z_states_prior_t0_to_HxB,
|
| 560 |
+
)
|
| 561 |
+
if self.world_model.symlog_obs:
|
| 562 |
+
o_dreamed_t0_to_HxB = inverse_symlog(o_dreamed_t0_to_HxB)
|
| 563 |
+
|
| 564 |
+
# Compute r using reward predictor.
|
| 565 |
+
r_dreamed_t0_to_HxB, _ = self.world_model.reward_predictor(
|
| 566 |
+
h=h_states_t0_to_HxB,
|
| 567 |
+
z=z_states_prior_t0_to_HxB,
|
| 568 |
+
)
|
| 569 |
+
r_dreamed_t0_to_HxB = inverse_symlog(r_dreamed_t0_to_HxB)
|
| 570 |
+
# Compute continues using continue predictor.
|
| 571 |
+
c_dreamed_t0_to_HxB, _ = self.world_model.continue_predictor(
|
| 572 |
+
h=h_states_t0_to_HxB,
|
| 573 |
+
z=z_states_prior_t0_to_HxB,
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# Return everything as time-major (H, B, ...), where H is the timesteps dreamed
|
| 577 |
+
# (NOT burn-in'd) and B is a batch dimension (this might or might not include
|
| 578 |
+
# an original time dimension from the real env, from all of which we then branch
|
| 579 |
+
# out our dream trajectories).
|
| 580 |
+
ret = {
|
| 581 |
+
"h_states_t0_to_H_BxT": h_states_t0_to_H_B,
|
| 582 |
+
"z_states_prior_t0_to_H_BxT": z_states_prior_t0_to_H_B,
|
| 583 |
+
# Unfold time-ranks in predictions.
|
| 584 |
+
"observations_dreamed_t0_to_H_BxT": tf.reshape(
|
| 585 |
+
o_dreamed_t0_to_HxB, [-1, B] + list(observations.shape)[2:]
|
| 586 |
+
),
|
| 587 |
+
"rewards_dreamed_t0_to_H_BxT": tf.reshape(r_dreamed_t0_to_HxB, (-1, B)),
|
| 588 |
+
"continues_dreamed_t0_to_H_BxT": tf.reshape(c_dreamed_t0_to_HxB, (-1, B)),
|
| 589 |
+
}
|
| 590 |
+
|
| 591 |
+
# Figure out action key (random, sampled from env, dreamed?).
|
| 592 |
+
if use_sampled_actions_in_dream:
|
| 593 |
+
key = "actions_sampled_t0_to_H_BxT"
|
| 594 |
+
elif use_random_actions_in_dream:
|
| 595 |
+
key = "actions_random_t0_to_H_BxT"
|
| 596 |
+
else:
|
| 597 |
+
key = "actions_dreamed_t0_to_H_BxT"
|
| 598 |
+
ret[key] = a_t0_to_H_B
|
| 599 |
+
|
| 600 |
+
# Also provide int-actions, if discrete action space.
|
| 601 |
+
if isinstance(self.action_space, gym.spaces.Discrete):
|
| 602 |
+
ret[re.sub("^actions_", "actions_ints_", key)] = tf.argmax(
|
| 603 |
+
a_t0_to_H_B, axis=-1
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
return ret
|