diff --git a/.gitattributes b/.gitattributes index 6ae36704789fbcc40500301f193fd294c22bfce1..305489dfe1ae3c331c5ded0ad7d63009401ce8a5 100644 --- a/.gitattributes +++ b/.gitattributes @@ -442,3 +442,4 @@ janus/lib/libtinfow.so.6 filter=lfs diff=lfs merge=lfs -text janus/lib/python3.10/site-packages/transformers/generation/__pycache__/logits_process.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text janus/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text janus/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text +infer_4_33_0/bin/python filter=lfs diff=lfs merge=lfs -text diff --git a/infer_4_33_0/bin/python b/infer_4_33_0/bin/python new file mode 100644 index 0000000000000000000000000000000000000000..bafffc821470887959012db4e827b11d89a1aba6 --- /dev/null +++ b/infer_4_33_0/bin/python @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd12d9a162d0964191f823f51c251b1e50da59e8fd71c709a8a4e7ecdeee3d36 +size 17225608 diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..87419e69e5c7f0572076832237e10f236186ec33 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py @@ -0,0 +1,30 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_big_bird import * + from .modeling_big_bird import * + from .modeling_flax_big_bird import * + from .tokenization_big_bird import * + from .tokenization_big_bird_fast import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41dce415eae4b688f0cdccf38b8829d1d97941fd Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b40f507420e3a2e77b7697206acdb6502e057539 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41b46cd8d1691289fca487e74d9c62db42c3ec7b Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..42a409ede4845ebebfbddaa35e9e36745c1bbf02 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3cfaa442615d010305dadb4fac92a07f5323d778 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..341a6eb6c92fc9578d7fb1c37058007a6d682db8 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py new file mode 100644 index 0000000000000000000000000000000000000000..1019e008aa3b3820788ee2fd642b48feb35194cd --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py @@ -0,0 +1,176 @@ +# coding=utf-8 +# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""BigBird model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class BigBirdConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an + BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the BigBird + [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50358): + Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`BigBirdModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 4096): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 1024 or 2048 or 4096). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + attention_type (`str`, *optional*, defaults to `"block_sparse"`) + Whether to use block sparse attention (with n complexity) as introduced in paper or original attention + layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`. + use_bias (`bool`, *optional*, defaults to `True`) + Whether to use bias in query, key, value. + rescale_embeddings (`bool`, *optional*, defaults to `False`) + Whether to rescale embeddings with (hidden_size ** 0.5). + block_size (`int`, *optional*, defaults to 64) + Size of each block. Useful only when `attention_type == "block_sparse"`. + num_random_blocks (`int`, *optional*, defaults to 3) + Each query is going to attend these many number of random blocks. Useful only when `attention_type == + "block_sparse"`. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Example: + + ```python + >>> from transformers import BigBirdConfig, BigBirdModel + + >>> # Initializing a BigBird google/bigbird-roberta-base style configuration + >>> configuration = BigBirdConfig() + + >>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration + >>> model = BigBirdModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "big_bird" + + def __init__( + self, + vocab_size=50358, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu_new", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=4096, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + sep_token_id=66, + attention_type="block_sparse", + use_bias=True, + rescale_embeddings=False, + block_size=64, + num_random_blocks=3, + classifier_dropout=None, + **kwargs, + ): + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + sep_token_id=sep_token_id, + **kwargs, + ) + + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + self.use_cache = use_cache + + self.rescale_embeddings = rescale_embeddings + self.attention_type = attention_type + self.use_bias = use_bias + self.block_size = block_size + self.num_random_blocks = num_random_blocks + self.classifier_dropout = classifier_dropout + + +class BigBirdOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) + + +__all__ = ["BigBirdConfig", "BigBirdOnnxConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py new file mode 100644 index 0000000000000000000000000000000000000000..47c78284b7f29c03602018e78448f0d3ee899682 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py @@ -0,0 +1,3143 @@ +# coding=utf-8 +# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch BigBird model.""" + +import math +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...generation import GenerationMixin +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_big_bird import BigBirdConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" +_CONFIG_FOR_DOC = "BigBirdConfig" + + +_TRIVIA_QA_MAPPING = { + "big_bird_attention": "attention/self", + "output_layer_norm": "output/LayerNorm", + "attention_output": "attention/output/dense", + "output": "output/dense", + "self_attention_layer_norm": "attention/output/LayerNorm", + "intermediate": "intermediate/dense", + "word_embeddings": "bert/embeddings/word_embeddings", + "position_embedding": "bert/embeddings/position_embeddings", + "type_embeddings": "bert/embeddings/token_type_embeddings", + "embeddings": "bert/embeddings", + "layer_normalization": "output/LayerNorm", + "layer_norm": "LayerNorm", + "trivia_qa_head": "qa_classifier", + "dense": "intermediate/dense", + "dense_1": "qa_outputs", +} + + +def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False): + """Load tf checkpoints in a pytorch model.""" + + def load_tf_weights_bert(init_vars, tf_path): + names = [] + tf_weights = {} + + for name, shape in init_vars: + array = tf.train.load_variable(tf_path, name) + name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm") + logger.info(f"Loading TF weight {name} with shape {shape}") + names.append(name) + tf_weights[name] = array + + return names, tf_weights + + def load_tf_weights_trivia_qa(init_vars): + names = [] + tf_weights = {} + + for i, var in enumerate(init_vars): + name_items = var.name.split("/") + + if "transformer_scaffold" in name_items[0]: + layer_name_items = name_items[0].split("_") + if len(layer_name_items) < 3: + layer_name_items += [0] + + name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}" + + name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[ + :-2 + ] # remove last :0 in variable + + if "self/attention/output" in name: + name = name.replace("self/attention/output", "output") + + if i >= len(init_vars) - 2: + name = name.replace("intermediate", "output") + + logger.info(f"Loading TF weight {name} with shape {var.shape}") + array = var.value().numpy() + names.append(name) + tf_weights[name] = array + + return names, tf_weights + + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + + # Load weights from TF model + init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path) + + if len(init_vars) <= 0: + raise ValueError("Loaded trained variables cannot be empty.") + + pt_names = list(model.state_dict().keys()) + + if is_trivia_qa: + names, tf_weights = load_tf_weights_trivia_qa(init_vars) + else: + names, tf_weights = load_tf_weights_bert(init_vars, tf_path) + + for txt_name in names: + array = tf_weights[txt_name] + name = txt_name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + pt_name = [] + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + pt_name.append("weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + pt_name.append("bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + pt_name.append("weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + pt_name.append("classifier") + elif scope_names[0] == "transform": + pointer = getattr(pointer, "transform") + pt_name.append("transform") + if ("bias" in name) or ("kernel" in name): + pointer = getattr(pointer, "dense") + pt_name.append("dense") + elif ("beta" in name) or ("gamma" in name): + pointer = getattr(pointer, "LayerNorm") + pt_name.append("LayerNorm") + else: + try: + pointer = getattr(pointer, scope_names[0]) + pt_name.append(f"{scope_names[0]}") + except AttributeError: + logger.info(f"Skipping {m_name}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + pt_name.append(f"{num}") + if m_name[-11:] == "_embeddings" or m_name == "embeddings": + pointer = getattr(pointer, "weight") + pt_name.append("weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape): + # print(txt_name, array.shape) + if ( + txt_name.endswith("attention/self/key/kernel") + or txt_name.endswith("attention/self/query/kernel") + or txt_name.endswith("attention/self/value/kernel") + ): + array = array.transpose(1, 0, 2).reshape(pointer.shape) + elif txt_name.endswith("attention/output/dense/kernel"): + array = array.transpose(0, 2, 1).reshape(pointer.shape) + else: + array = array.reshape(pointer.shape) + + if pointer.shape != array.shape: + raise ValueError( + f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}." + ) + except ValueError as e: + e.args += (pointer.shape, array.shape) + raise + pt_weight_name = ".".join(pt_name) + logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.") + pointer.data = torch.from_numpy(array) + tf_weights.pop(txt_name, None) + pt_names.remove(pt_weight_name) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") + logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.") + return model + + +class BigBirdEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + # End copy + + self.rescale_embeddings = config.rescale_embeddings + self.hidden_size = config.hidden_size + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + if self.rescale_embeddings: + inputs_embeds = inputs_embeds * (self.hidden_size**0.5) + + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + + embeddings = self.dropout(embeddings) + embeddings = self.LayerNorm(embeddings) + return embeddings + + +class BigBirdSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +class BigBirdBlockSparseAttention(nn.Module): + def __init__(self, config, seed=None): + super().__init__() + + self.max_seqlen = config.max_position_embeddings + self.seed = seed + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size {config.hidden_size} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.num_random_blocks = config.num_random_blocks + self.block_size = config.block_size + + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + band_mask=None, + from_mask=None, + to_mask=None, + from_blocked_mask=None, + to_blocked_mask=None, + output_attentions=None, + ): + # Currently this `class` can't be used in decoder. + + batch_size, seqlen, _ = hidden_states.size() + to_seq_length = from_seq_length = seqlen + from_block_size = to_block_size = self.block_size + + if from_seq_length % from_block_size != 0: + raise ValueError("Query sided sequence length must be multiple of block size") + + if to_seq_length % to_block_size != 0: + raise ValueError("Key/Value sided sequence length must be multiple of block size") + + query_layer = self.transpose_for_scores(self.query(hidden_states)) + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + context_layer, attention_probs = self.bigbird_block_sparse_attention( + query_layer, + key_layer, + value_layer, + band_mask, + from_mask, + to_mask, + from_blocked_mask, + to_blocked_mask, + self.num_attention_heads, + self.num_random_blocks, + self.attention_head_size, + from_block_size, + to_block_size, + batch_size, + from_seq_length, + to_seq_length, + seed=self.seed, + plan_from_length=None, + plan_num_rand_blocks=None, + output_attentions=output_attentions, + ) + + context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + @staticmethod + def torch_bmm_nd(inp_1, inp_2, ndim=None): + """Fast nd matrix multiplication""" + # faster replacement of torch.einsum ("bhqk,bhkd->bhqd") + return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view( + inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1]) + ) + + @staticmethod + def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None): + """Fast nd matrix multiplication with transpose""" + # faster replacement of torch.einsum (bhqd,bhkd->bhqk) + return torch.bmm( + inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2) + ).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2])) + + def bigbird_block_sparse_attention( + self, + query_layer, + key_layer, + value_layer, + band_mask, + from_mask, + to_mask, + from_blocked_mask, + to_blocked_mask, + n_heads, + n_rand_blocks, + attention_head_size, + from_block_size, + to_block_size, + batch_size, + from_seq_len, + to_seq_len, + seed, + plan_from_length, + plan_num_rand_blocks, + output_attentions, + ): + # BigBird block-sparse attention as suggested in paper + + # ITC: + # global tokens: 2 x block_size + # window tokens: 3 x block_size + # random tokens: num_rand_tokens x block_size + + # ETC: + # global tokens: extra_globals_tokens + 2 x block_size + # window tokens: 3 x block_size + # random tokens: num_rand_tokens x block_size + + # Note: + # 1) Currently, ETC is not supported. + # 2) Window size is fixed to 3 blocks & it can be changed only by + # changing `block_size`. + # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be + # controlled only by `block_size`. + + # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention) + # hence following code can be divided into 5 parts. + + if from_seq_len // from_block_size != to_seq_len // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + + rsqrt_d = 1 / math.sqrt(attention_head_size) + bsz = batch_size + attn_mask_penalty = -10000.0 + + # generate random attention and corresponding masks + np.random.seed(seed) + if from_seq_len in [1024, 3072, 4096]: # old plans used in paper + rand_attn = [ + self._bigbird_block_rand_mask( + self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024 + )[: (from_seq_len // from_block_size - 2)] + for _ in range(n_heads) + ] + else: + if plan_from_length is None: + plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( + from_seq_len, from_block_size, n_rand_blocks + ) + + rand_attn = self._bigbird_block_rand_mask_with_head( + from_seq_length=from_seq_len, + to_seq_length=to_seq_len, + from_block_size=from_block_size, + to_block_size=to_block_size, + num_heads=n_heads, + plan_from_length=plan_from_length, + plan_num_rand_blocks=plan_num_rand_blocks, + ) + + rand_attn = np.stack(rand_attn, axis=0) + rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long) + rand_attn.unsqueeze_(0) + rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0) + + rand_mask = self._create_rand_mask_from_inputs( + from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size + ) + + blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) + blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) + blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) + + # preparing block for randn attn + gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn) + gathered_key = gathered_key.view( + bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 + ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] + gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn) + gathered_value = gathered_value.view( + bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 + ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] + + # 1st PART + # 1st block (global block) attention scores + # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] + first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4) + + first_product = first_product * rsqrt_d + first_product += (1.0 - to_mask) * attn_mask_penalty + first_attn_weights = nn.functional.softmax( + first_product, dim=-1 + ) # [bsz, n_heads, from_block_size, to_seq_len] + + # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] + first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4) + first_context_layer.unsqueeze_(2) + + # 2nd PART + # 2nd block attention scores + # q[1] x (sliding_keys, random_keys, global_keys) + # sliding key blocks -> 2nd, 3rd blocks + # global key blocks -> 1st block + + second_key_mat = torch.cat( + [ + blocked_key_matrix[:, :, 0], + blocked_key_matrix[:, :, 1], + blocked_key_matrix[:, :, 2], + blocked_key_matrix[:, :, -1], + gathered_key[:, :, 0], + ], + dim=2, + ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + second_value_mat = torch.cat( + [ + blocked_value_matrix[:, :, 0], + blocked_value_matrix[:, :, 1], + blocked_value_matrix[:, :, 2], + blocked_value_matrix[:, :, -1], + gathered_value[:, :, 0], + ], + dim=2, + ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4) + second_seq_pad = torch.cat( + [ + to_mask[:, :, :, : 3 * to_block_size], + to_mask[:, :, :, -to_block_size:], + to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), + ], + dim=3, + ) + second_rand_pad = torch.cat( + [ + rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), + rand_mask[:, :, 0], + ], + dim=3, + ) + second_product = second_product * rsqrt_d + second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty + second_attn_weights = nn.functional.softmax( + second_product, dim=-1 + ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + + # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] + second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4) + + second_context_layer.unsqueeze_(2) + + # 3rd PART + # Middle blocks attention scores + # q[-2:2] x (sliding_keys, random_keys, global_keys) + # sliding attn is calculated using special trick of shifting tokens as discussed in paper + # random keys are generated by taking random indices as per `rand_attn` + # global keys -> 1st & last block + + exp_blocked_key_matrix = torch.cat( + [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + exp_blocked_value_matrix = torch.cat( + [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], + dim=3, + ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + middle_query_matrix = blocked_query_matrix[:, :, 2:-2] + + # sliding attention scores for q[-2:2] + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] + inner_band_product = inner_band_product * rsqrt_d + + # randn attention scores for q[-2:2] + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] + rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] + rand_band_product = rand_band_product * rsqrt_d + + # Including 1st block (since it's global) + first_band_product = torch.einsum( + "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0] + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] + first_band_product = first_band_product * rsqrt_d + + # Including last block (since it's global) + last_band_product = torch.einsum( + "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1] + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] + last_band_product = last_band_product * rsqrt_d + + # masking padded tokens + inner_band_product += (1.0 - band_mask) * attn_mask_penalty + first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty + last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty + rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty + + # completing attention scores matrix for all q[-2:2] + band_product = torch.cat( + [first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] + + # safely doing softmax since attention matrix is completed + attn_weights = nn.functional.softmax( + band_product, dim=-1 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] + + # contribution of sliding keys + # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + context_layer = self.torch_bmm_nd( + attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5 + ) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + + # adding contribution of random keys + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] + context_layer += self.torch_bmm_nd( + attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5 + ) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + + # adding contribution of global keys + context_layer += torch.einsum( + "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + context_layer += torch.einsum( + "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + + # 4th PART + # last 2nd token attention scores + # q[-2] x (sliding_keys, random_keys, global_keys) + # sliding key blocks -> last 3 blocks + # global key block -> 1st block + # random key block -> based on indices stored in `randn_attn` + + second_last_key_mat = torch.cat( + [ + blocked_key_matrix[:, :, 0], + blocked_key_matrix[:, :, -3], + blocked_key_matrix[:, :, -2], + blocked_key_matrix[:, :, -1], + gathered_key[:, :, -1], + ], + dim=2, + ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] + second_last_value_mat = torch.cat( + [ + blocked_value_matrix[:, :, 0], + blocked_value_matrix[:, :, -3], + blocked_value_matrix[:, :, -2], + blocked_value_matrix[:, :, -1], + gathered_value[:, :, -1], + ], + dim=2, + ) # [bsz, n_heads, (4+r)*to_block_size, -1] + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4) + second_last_seq_pad = torch.cat( + [ + to_mask[:, :, :, :to_block_size], + to_mask[:, :, :, -3 * to_block_size :], + to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), + ], + dim=3, + ) + second_last_rand_pad = torch.cat( + [ + rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), + rand_mask[:, :, -1], + ], + dim=3, + ) + second_last_product = second_last_product * rsqrt_d + second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty + second_last_attn_weights = nn.functional.softmax( + second_last_product, dim=-1 + ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + + # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] + second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4) + second_last_context_layer.unsqueeze_(2) + + # 5th PART + # last block (global) attention scores + # q[-1] x (k[0], k[1], k[2], k[3], .... ) + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] + last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4) + last_product = last_product * rsqrt_d + last_product += (1.0 - to_mask) * attn_mask_penalty + last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n] + + # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] + last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4) + last_context_layer.unsqueeze_(2) + + # combining representations of all tokens + context_layer = torch.cat( + [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], + dim=2, + ) + context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask + context_layer = torch.transpose(context_layer, 1, 2) + + # this is just for visualizing; forward pass doesn't depend on following code + if output_attentions: + # TODO(PVP): need to verify if below code is correct + attention_probs = torch.zeros( + bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device + ) + + # 1st query block + # corresponding to `first_context_layer` + attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global + + # 2nd query block + # corresponding to `second_context_layer` + attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[ + :, :, :, : 3 * to_block_size + ] # 1st three key blocks (global + sliding) + attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[ + :, :, :, 3 * to_block_size : 4 * to_block_size + ] # last key block (global) + # random keys + for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights): + # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch + for p2, i2, w2 in zip(range(n_heads), i1, w1): + # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads + attn_probs_view = attention_probs.view( + bsz, + n_heads, + from_seq_len // from_block_size, + from_block_size, + to_seq_len // to_block_size, + to_block_size, + ) + right_slice = w2[:, 4 * to_block_size :] + attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view( + from_block_size, n_rand_blocks, to_block_size + ) + + # Middle query blocks + # corresponding to `context_layer` + # sliding keys + for q_idx in range(from_seq_len // from_block_size - 4): + attn_probs_view = attention_probs.view( + bsz, + n_heads, + from_seq_len // from_block_size, + from_block_size, + to_seq_len // to_block_size, + to_block_size, + )[:, :, 2:-2, :, 1:-1, :] + right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size] + attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view( + bsz, n_heads, from_block_size, 3, to_block_size + ) # inner_band_product + # global keys (corresponding to 1st key block) + attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[ + :, :, :, :, :to_block_size + ].view(bsz, n_heads, -1, to_block_size) # first_band_product + # global keys (corresponding to last key block) + attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[ + :, :, :, :, -to_block_size: + ].view(bsz, n_heads, -1, to_block_size) # last_band_product + # random keys + for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights): + # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch + for p2, i2, w2 in zip(range(n_heads), i1, w1): + # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads + for q_idx in range(1, len(i2) - 1): + attn_probs_view = attention_probs.view( + bsz, + n_heads, + from_seq_len // from_block_size, + from_block_size, + to_seq_len // to_block_size, + to_block_size, + ) + right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size] + attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view( + from_block_size, n_rand_blocks, to_block_size + ) + + # Second-last query block + # corresponding to `second_last_context_layer` + attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[ + :, :, :, :to_block_size + ] # 1st key block (global) + attention_probs[:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :] = ( + second_last_attn_weights[:, :, :, to_block_size : 4 * to_block_size] + ) # last three blocks (global + sliding) + # random keys + for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights): + # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch + for p2, i2, w2 in zip(range(n_heads), i1, w1): + # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads + attn_probs_view = attention_probs.view( + bsz, + n_heads, + from_seq_len // from_block_size, + from_block_size, + to_seq_len // to_block_size, + to_block_size, + ) + right_slice = w2[:, 4 * to_block_size :] + attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view( + from_block_size, n_rand_blocks, to_block_size + ) + + # last query block + # corresponding to `last_context_layer` + attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global + + else: + attention_probs = None + + return context_layer, attention_probs + + @staticmethod + def torch_gather_b2(params, indices): + # this operation is equivalent to tf.gather when batch_dims=2 + + if params.shape[:2] != indices.shape[:2]: + raise ValueError( + "Make sure that the first two dimensions of params and indices are identical, but" + f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}" + ) + num_indices_to_gather = indices.shape[-2] * indices.shape[-1] + num_indices_to_pick_from = params.shape[2] + + shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device) + indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from + + flattened_indices = indices.view(-1) + indices_shift + flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1]) + + out_flattened = flattened_params.index_select(0, flattened_indices) + + out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:]) + return out + + @staticmethod + def _create_rand_mask_from_inputs( + from_blocked_mask, + to_blocked_mask, + rand_attn, + num_attention_heads, + num_rand_blocks, + batch_size, + from_seq_length, + from_block_size, + ): + """ + Create 3D attention mask from a 2D tensor mask. + + Args: + from_blocked_mask: 2D Tensor of shape [batch_size, + from_seq_length//from_block_size, from_block_size]. + to_blocked_mask: int32 Tensor of shape [batch_size, + to_seq_length//to_block_size, to_block_size]. + rand_attn: [batch_size, num_attention_heads, + from_seq_length//from_block_size-2, num_rand_blocks] + num_attention_heads: int. Number of attention heads. + num_rand_blocks: int. Number of random chunks per row. + batch_size: int. Batch size for computation. + from_seq_length: int. length of from sequence. + from_block_size: int. size of block in from sequence. + + Returns: + float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, + from_block_size, num_rand_blocks*to_block_size]. + """ + num_windows = from_seq_length // from_block_size - 2 + rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]) + rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size) + rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) + return rand_mask + + @staticmethod + def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): + """ + Gives the plan of where to put random attention. + + Args: + from_seq_length: int. length of from sequence. + from_block_size: int. size of block in from sequence. + num_rand_blocks: int. Number of random chunks per row. + + Returns: + plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for + each block + """ + + plan_from_length = [] + plan_num_rand_blocks = [] + if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): + plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) + plan_num_rand_blocks.append(num_rand_blocks) + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(0) + elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): + plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) + plan_num_rand_blocks.append(num_rand_blocks // 2) + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) + else: + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(num_rand_blocks) + + return plan_from_length, plan_num_rand_blocks + + def _bigbird_block_rand_mask( + self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1 + ): + """ + Create adjacency list of random attention. + + Args: + from_seq_length: int. length of from sequence. + to_seq_length: int. length of to sequence. + from_block_size: int. size of block in from sequence. + to_block_size: int. size of block in to sequence. + num_rand_blocks: int. Number of random chunks per row. + last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, + if positive then num_rand_blocks blocks chosen only up to last_idx. + + Returns: + adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks + """ + # using this method when from_seq_length in [1024, 3072, 4096] + + if from_seq_length // from_block_size != to_seq_length // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + + rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32) + # During inference (eval) no randomness + if not self.training: + return rand_attn + middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32) + last = to_seq_length // to_block_size - 1 + if last_idx > (2 * to_block_size): + last = (last_idx // to_block_size) - 1 + + r = num_rand_blocks # shorthand + for i in range(1, from_seq_length // from_block_size - 1): + start = i - 2 + end = i + if i == 1: + rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r] + elif i == 2: + rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r] + elif i == from_seq_length // from_block_size - 3: + rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] + # Missing -3: should have been sliced till last-3 + elif i == from_seq_length // from_block_size - 2: + rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] + # Missing -4: should have been sliced till last-4 + else: + if start > last: + start = last + rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] + elif (end + 1) == last: + rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] + else: + rand_attn[i - 1, :] = np.random.permutation( + np.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) + )[:r] + return rand_attn + + def _bigbird_block_rand_mask_with_head( + self, + from_seq_length, + to_seq_length, + from_block_size, + to_block_size, + num_heads, + plan_from_length, + plan_num_rand_blocks, + window_block_left=1, + window_block_right=1, + global_block_top=1, + global_block_bottom=1, + global_block_left=1, + global_block_right=1, + ): + """ + Create adjacency list of random attention. + + Args: + from_seq_length: int. length of from sequence. + to_seq_length: int. length of to sequence. + from_block_size: int. size of block in from sequence. + to_block_size: int. size of block in to sequence. + num_heads: int. total number of heads. + plan_from_length: list. plan from length where num_random_blocks are chosen from. + plan_num_rand_blocks: list. number of rand blocks within the plan. + window_block_left: int. number of blocks of window to left of a block. + window_block_right: int. number of blocks of window to right of a block. + global_block_top: int. number of blocks at the top. + global_block_bottom: int. number of blocks at the bottom. + global_block_left: int. Number of blocks globally used to the left. + global_block_right: int. Number of blocks globally used to the right. + + Returns: + adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by + num_rand_blocks + """ + # using this method when from_seq_length not in [1024, 3072, 4096] + + if from_seq_length // from_block_size != to_seq_length // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + + if from_seq_length not in plan_from_length: + raise ValueError("Error from sequence length not in plan!") + + # Total number of blocks in the mmask + num_blocks = from_seq_length // from_block_size + # Number of blocks per plan + plan_block_length = np.array(plan_from_length) // from_block_size + # till when to follow plan + max_plan_idx = plan_from_length.index(from_seq_length) + + # Random Attention adjacency list + rand_attn = [ + np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32) + for i in range(num_heads) + ] + # During inference (eval) no randomness + if not self.training: + for nh in range(num_heads): + rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] + return rand_attn + + # We will go iteratively over the plan blocks and pick random number of + # Attention blocks from the legally allowed blocks + for plan_idx in range(max_plan_idx + 1): + rnd_r_cnt = 0 + if plan_idx > 0: + # set the row for all from_blocks starting from 0 to + # plan_block_length[plan_idx-1] + # column indx start fromm plan_block_length[plan_idx-1] and ends at + # plan_block_length[plan_idx] + if plan_num_rand_blocks[plan_idx] > 0: + rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) + curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) + for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): + for h in range(num_heads): + rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=plan_block_length[plan_idx - 1], + to_end_block_id=plan_block_length[plan_idx], + num_rand_blocks=plan_num_rand_blocks[plan_idx], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + ) + + for pl_id in range(plan_idx): + if plan_num_rand_blocks[pl_id] == 0: + continue + for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): + rnd_r_cnt = 0 + to_start_block_id = 0 + if pl_id > 0: + rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id])) + to_start_block_id = plan_block_length[pl_id - 1] + curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1])) + for h in range(num_heads): + rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=to_start_block_id, + to_end_block_id=plan_block_length[pl_id], + num_rand_blocks=plan_num_rand_blocks[pl_id], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + ) + + if plan_num_rand_blocks[plan_idx] == 0: + continue + curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) + from_start_block_id = global_block_top + to_start_block_id = 0 + if plan_idx > 0: + rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) + from_start_block_id = plan_block_length[plan_idx - 1] + to_start_block_id = plan_block_length[plan_idx - 1] + + for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): + for h in range(num_heads): + rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=to_start_block_id, + to_end_block_id=plan_block_length[plan_idx], + num_rand_blocks=plan_num_rand_blocks[plan_idx], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + ) + + for nh in range(num_heads): + rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] + + return rand_attn + + @staticmethod + def _get_single_block_row_attention( + block_id, + to_start_block_id, + to_end_block_id, + num_rand_blocks, + window_block_left=1, + window_block_right=1, + global_block_left=1, + global_block_right=1, + ): + """ + For a single row block get random row attention. + + Args: + block_id: int. block id of row. + to_start_block_id: int. random attention column start id. + to_end_block_id: int. random attention column end id. + num_rand_blocks: int. number of random blocks to be selected. + window_block_left: int. number of blocks of window to left of a block. + window_block_right: int. number of blocks of window to right of a block. + global_block_left: int. Number of blocks globally used to the left. + global_block_right: int. Number of blocks globally used to the right. + + Returns: + row containing the random attention vector of size num_rand_blocks. + """ + # list of to_blocks from which to choose random attention + to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32) + # permute the blocks + perm_block = np.random.permutation(to_block_list) + + # illegal blocks for the current block id, using window + illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) + + # Add blocks at the start and at the end + illegal_blocks.extend(list(range(global_block_left))) + illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) + + # The second from_block cannot choose random attention on second last to_block + if block_id == 1: + illegal_blocks.append(to_end_block_id - 2) + + # The second last from_block cannot choose random attention on second to_block + if block_id == to_end_block_id - 2: + illegal_blocks.append(1) + + selected_random_blokcs = [] + + for i in range(to_end_block_id - to_start_block_id): + if perm_block[i] not in illegal_blocks: + selected_random_blokcs.append(perm_block[i]) + if len(selected_random_blokcs) == num_rand_blocks: + break + return np.array(selected_random_blokcs, dtype=np.int32) + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird +class BigBirdSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BigBirdAttention(nn.Module): + def __init__(self, config, seed=None): + super().__init__() + self.attention_type = config.attention_type + self.config = config + self.seed = seed + + if self.config.attention_type == "original_full": + self.self = BigBirdSelfAttention(config) + elif self.config.attention_type == "block_sparse": + self.self = BigBirdBlockSparseAttention(config, seed) + else: + raise ValueError( + f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}" + ) + + self.output = BigBirdSelfOutput(config) + + def set_attention_type(self, value: str): + if value not in ["original_full", "block_sparse"]: + raise ValueError( + f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" + ) + # attention type is already correctly set + if value == self.attention_type: + return + + self.attention_type = value + if value == "original_full": + # copy all weights to new full attention class + attn_weights = BigBirdSelfAttention(self.config) + else: + # copy all weights to new sparse attention class + attn_weights = BigBirdBlockSparseAttention(self.config, self.seed) + + attn_weights.query = self.self.query + attn_weights.value = self.self.value + attn_weights.key = self.self.key + self.self = attn_weights + self.attention_type = value + if not self.training: + self.self.eval() + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + # block_sparse config + band_mask=None, + from_mask=None, + to_mask=None, + from_blocked_mask=None, + to_blocked_mask=None, + ): + # fp16 compatibility + if band_mask is not None: + band_mask = band_mask.to(hidden_states.dtype) + if from_mask is not None: + from_mask = from_mask.to(hidden_states.dtype) + if to_mask is not None: + to_mask = to_mask.to(hidden_states.dtype) + if self.attention_type == "original_full": + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + if encoder_hidden_states is not None: + raise ValueError("BigBird cannot be used as a decoder when config.attention_type != 'original_full'") + self_outputs = self.self( + hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions + ) + + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird +class BigBirdIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird +class BigBirdOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BigBirdLayer(nn.Module): + def __init__(self, config, seed=None): + super().__init__() + self.config = config + self.attention_type = config.attention_type + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BigBirdAttention(config, seed=seed) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise TypeError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = BigBirdAttention(config) + self.intermediate = BigBirdIntermediate(config) + self.output = BigBirdOutput(config) + + def set_attention_type(self, value: str): + if value not in ["original_full", "block_sparse"]: + raise ValueError( + f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" + ) + # attention type is already correctly set + if value == self.attention_type: + return + self.attention_type = value + self.attention.set_attention_type(value) + + if self.add_cross_attention: + self.crossattention.set_attention_type(value) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + band_mask=None, + from_mask=None, + to_mask=None, + blocked_encoder_mask=None, + past_key_value=None, + output_attentions=False, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + band_mask=band_mask, + from_mask=from_mask, + to_mask=to_mask, + from_blocked_mask=blocked_encoder_mask, + to_blocked_mask=blocked_encoder_mask, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " + " cross-attention layers by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class BigBirdEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.attention_type = config.attention_type + + self.layer = nn.ModuleList( + [BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.gradient_checkpointing = False + + def set_attention_type(self, value: str): + if value not in ["original_full", "block_sparse"]: + raise ValueError( + f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" + ) + # attention type is already correctly set + if value == self.attention_type: + return + self.attention_type = value + for layer in self.layer: + layer.set_attention_type(value) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + band_mask=None, + from_mask=None, + to_mask=None, + blocked_encoder_mask=None, + return_dict=True, + ) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + band_mask, + from_mask, + to_mask, + blocked_encoder_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + band_mask, + from_mask, + to_mask, + blocked_encoder_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird +class BigBirdPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird +class BigBirdLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = BigBirdPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def _tie_weights(self): + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird +class BigBirdOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = BigBirdLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird +class BigBirdOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird +class BigBirdPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = BigBirdLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class BigBirdPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BigBirdConfig + load_tf_weights = load_tf_weights_in_big_bird + base_model_prefix = "bert" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +BIG_BIRD_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BIG_BIRD_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@dataclass +class BigBirdForPreTrainingOutput(ModelOutput): + """ + Output type of [`BigBirdForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class BigBirdForQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`): + pooler output from BigBigModel + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + pooler_output: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@add_start_docstrings( + "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", + BIG_BIRD_START_DOCSTRING, +) +class BigBirdModel(BigBirdPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.attention_type = self.config.attention_type + self.config = config + + self.block_size = self.config.block_size + + self.embeddings = BigBirdEmbeddings(config) + self.encoder = BigBirdEncoder(config) + + if add_pooling_layer: + self.pooler = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + else: + self.pooler = None + self.activation = None + + if self.attention_type != "original_full" and config.add_cross_attention: + logger.warning( + "When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting" + " `attention_type=original_full`" + ) + self.set_attention_type("original_full") + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def set_attention_type(self, value: str): + if value not in ["original_full", "block_sparse"]: + raise ValueError( + f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" + ) + # attention type is already correctly set + if value == self.attention_type: + return + self.attention_type = value + self.encoder.set_attention_type(value) + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # in order to use block_sparse attention, sequence_length has to be at least + # bigger than all global attentions: 2 * block_size + # + sliding tokens: 3 * block_size + # + random tokens: 2 * num_random_blocks * block_size + max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size + if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend: + # change attention_type from block_sparse to original_full + sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) + logger.warning( + "Attention type 'block_sparse' is not possible if sequence_length: " + f"{sequence_length} <= num global tokens: 2 * config.block_size " + "+ min. num sliding tokens: 3 * config.block_size " + "+ config.num_random_blocks * config.block_size " + "+ additional buffer: config.num_random_blocks * config.block_size " + f"= {max_tokens_to_attend} with config.block_size " + f"= {self.config.block_size}, config.num_random_blocks " + f"= {self.config.num_random_blocks}. " + "Changing attention type to 'original_full'..." + ) + self.set_attention_type("original_full") + + if self.attention_type == "block_sparse": + ( + padding_len, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + ) = self._pad_to_block_size( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + pad_token_id=self.config.pad_token_id, + ) + else: + padding_len = 0 + + if self.attention_type == "block_sparse": + blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( + attention_mask, self.block_size + ) + extended_attention_mask = None + + elif self.attention_type == "original_full": + blocked_encoder_mask = None + band_mask = None + from_mask = None + to_mask = None + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + else: + raise ValueError( + f"attention_type can either be original_full or block_sparse, but is {self.attention_type}" + ) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + band_mask=band_mask, + from_mask=from_mask, + to_mask=to_mask, + blocked_encoder_mask=blocked_encoder_mask, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None + + # undo padding + if padding_len > 0: + # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) + sequence_output = sequence_output[:, :-padding_len] + + if not return_dict: + return (sequence_output, pooler_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooler_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + @staticmethod + def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int): + batch_size, seq_length = attention_mask.size() + if seq_length % block_size != 0: + raise ValueError( + f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" + f" size is {block_size}." + ) + + def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): + """ + Create 3D attention mask from a 2D tensor mask. + + Args: + from_blocked_mask: 2D Tensor of shape [batch_size, + from_seq_length//from_block_size, from_block_size]. + to_blocked_mask: int32 Tensor of shape [batch_size, + to_seq_length//to_block_size, to_block_size]. + + Returns: + float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, + 3*to_block_size]. + """ + exp_blocked_to_pad = torch.cat( + [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2 + ) + band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) + band_mask.unsqueeze_(1) + return band_mask + + blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size) + band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) + + from_mask = attention_mask.view(batch_size, 1, seq_length, 1) + to_mask = attention_mask.view(batch_size, 1, 1, seq_length) + + return blocked_encoder_mask, band_mask, from_mask, to_mask + + def _pad_to_block_size( + self, + input_ids: torch.Tensor, + attention_mask: torch.Tensor, + token_type_ids: torch.Tensor, + position_ids: torch.Tensor, + inputs_embeds: torch.Tensor, + pad_token_id: int, + ): + """A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention.""" + # padding + block_size = self.config.block_size + + input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape + batch_size, seq_len = input_shape[:2] + + padding_len = (block_size - seq_len % block_size) % block_size + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.block_size`: {block_size}" + ) + if input_ids is not None: + input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) + if position_ids is not None: + # pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings + position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) + if inputs_embeds is not None: + input_ids_padding = inputs_embeds.new_full( + (batch_size, padding_len), + self.config.pad_token_id, + dtype=torch.long, + ) + inputs_embeds_padding = self.embeddings(input_ids_padding) + inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) + + attention_mask = nn.functional.pad( + attention_mask, (0, padding_len), value=False + ) # no attention on the padding tokens + token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 + + return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds + + +class BigBirdForPreTraining(BigBirdPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.bert = BigBirdModel(config, add_pooling_layer=True) + self.cls = BigBirdPreTrainingHeads(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + self.cls.predictions.bias = new_embeddings.bias + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + next_sentence_label: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BigBirdForPreTrainingOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be + added to masked_lm loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in + `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): + Used to hide legacy arguments that have been deprecated. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, BigBirdForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") + >>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output, pooled_output = outputs[:2] + prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) + + total_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if next_sentence_label is not None and total_loss is not None: + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) + total_loss = total_loss + next_sentence_loss + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return BigBirdForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) +class BigBirdForMaskedLM(BigBirdPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.bert = BigBirdModel(config) + self.cls = BigBirdOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + self.cls.predictions.bias = new_embeddings.bias + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, BigBirdForMaskedLM + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") + >>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base") + >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT + + >>> # select random long article + >>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"] + >>> # select random sentence + >>> LONG_ARTICLE_TARGET[332:398] + 'the highest values are very close to the theoretical maximum value' + + >>> # add mask_token + >>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]") + >>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt") + >>> # long article input + >>> list(inputs["input_ids"].shape) + [1, 919] + + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + >>> # retrieve index of [MASK] + >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] + >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) + >>> tokenizer.decode(predicted_token_id) + 'maximum' + ``` + + ```python + >>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"] + >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) + >>> outputs = model(**inputs, labels=labels) + >>> round(outputs.loss.item(), 2) + 1.99 + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + effective_batch_size = input_shape[0] + + # add a dummy token + if self.config.pad_token_id is None: + raise ValueError("The PAD token should be defined for generation") + attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) + dummy_token = torch.full( + (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device + ) + input_ids = torch.cat([input_ids, dummy_token], dim=1) + + return {"input_ids": input_ids, "attention_mask": attention_mask} + + +@add_start_docstrings( + """BigBird Model with a `language modeling` head on top for CLM fine-tuning.""", BIG_BIRD_START_DOCSTRING +) +class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`") + + self.bert = BigBirdModel(config) + self.cls = BigBirdOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + self.cls.predictions.bias = new_embeddings.bias + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.FloatTensor]]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +class BigBirdClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + self.config = config + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = ACT2FN[self.config.hidden_act](x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +class BigBirdForSequenceClassification(BigBirdPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + self.bert = BigBirdModel(config) + self.classifier = BigBirdClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, BigBirdForSequenceClassification + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli") + >>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli") + >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT + + >>> LONG_ARTICLE = squad_ds[81514]["context"] + >>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt") + >>> # long input article + >>> list(inputs["input_ids"].shape) + [1, 919] + + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + >>> predicted_class_id = logits.argmax().item() + >>> model.config.id2label[predicted_class_id] + 'LABEL_0' + ``` + + ```python + >>> num_labels = len(model.config.id2label) + >>> model = BigBirdForSequenceClassification.from_pretrained( + ... "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels + ... ) + >>> labels = torch.tensor(1) + >>> loss = model(**inputs, labels=labels).loss + >>> round(loss.item(), 2) + 1.13 + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +class BigBirdForMultipleChoice(BigBirdPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.bert = BigBirdModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +class BigBirdForTokenClassification(BigBirdPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = BigBirdModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class BigBirdForQuestionAnsweringHead(nn.Module): + """Head for question answering tasks.""" + + def __init__(self, config): + super().__init__() + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.intermediate = BigBirdIntermediate(config) + self.output = BigBirdOutput(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, encoder_output): + hidden_states = self.dropout(encoder_output) + hidden_states = self.intermediate(hidden_states) + hidden_states = self.output(hidden_states, encoder_output) + hidden_states = self.qa_outputs(hidden_states) + return hidden_states + + +@add_start_docstrings( + """ + BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + BIG_BIRD_START_DOCSTRING, +) +class BigBirdForQuestionAnswering(BigBirdPreTrainedModel): + def __init__(self, config, add_pooling_layer=False): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + self.sep_token_id = config.sep_token_id + + self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer) + self.qa_classifier = BigBirdForQuestionAnsweringHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + question_lengths: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BigBirdForQuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") + >>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base") + >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT + + >>> # select random article and question + >>> LONG_ARTICLE = squad_ds[81514]["context"] + >>> QUESTION = squad_ds[81514]["question"] + >>> QUESTION + 'During daytime how high can the temperatures reach?' + + >>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt") + >>> # long article and question input + >>> list(inputs["input_ids"].shape) + [1, 929] + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> answer_start_index = outputs.start_logits.argmax() + >>> answer_end_index = outputs.end_logits.argmax() + >>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1] + >>> predict_answer_token = tokenizer.decode(predict_answer_token_ids) + ``` + + ```python + >>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132]) + >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) + >>> loss = outputs.loss + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) + + if question_lengths is None and input_ids is not None: + # assuming input_ids format: context + question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1 + question_lengths.unsqueeze_(1) + + logits_mask = None + if question_lengths is not None: + # setting lengths logits to `-inf` + logits_mask = self.prepare_question_mask(question_lengths, seqlen) + if token_type_ids is None: + token_type_ids = torch.ones(logits_mask.size(), dtype=int, device=logits_mask.device) - logits_mask + logits_mask = logits_mask + logits_mask[:, 0] = False + logits_mask.unsqueeze_(2) + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.qa_classifier(sequence_output) + + if logits_mask is not None: + # removing question tokens from the competition + logits = logits - logits_mask * 1e6 + + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return BigBirdForQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + pooler_output=outputs.pooler_output, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + @staticmethod + def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int): + # q_lengths -> (bz, 1) + mask = torch.arange(0, maxlen).to(q_lengths.device) + mask.unsqueeze_(0) # -> (1, maxlen) + mask = torch.where(mask < q_lengths, 1, 0) + return mask + + +__all__ = [ + "BigBirdForCausalLM", + "BigBirdForMaskedLM", + "BigBirdForMultipleChoice", + "BigBirdForPreTraining", + "BigBirdForQuestionAnswering", + "BigBirdForSequenceClassification", + "BigBirdForTokenClassification", + "BigBirdLayer", + "BigBirdModel", + "BigBirdPreTrainedModel", + "load_tf_weights_in_big_bird", +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py new file mode 100644 index 0000000000000000000000000000000000000000..8d23180a8348cd38c5bf46af5e70ea0615bb64b4 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py @@ -0,0 +1,2648 @@ +# coding=utf-8 +# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Callable, Optional, Tuple + +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxBaseModelOutputWithPooling, + FlaxBaseModelOutputWithPoolingAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_big_bird import BigBirdConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" +_CONFIG_FOR_DOC = "BigBirdConfig" + +remat = nn_partitioning.remat + + +@flax.struct.dataclass +class FlaxBigBirdForPreTrainingOutput(ModelOutput): + """ + Output type of [`BigBirdForPreTraining`]. + + Args: + prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + prediction_logits: jnp.ndarray = None + seq_relationship_logits: jnp.ndarray = None + hidden_states: Optional[Tuple[jnp.ndarray]] = None + attentions: Optional[Tuple[jnp.ndarray]] = None + + +@flax.struct.dataclass +class FlaxBigBirdForQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering models. + + Args: + start_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + pooled_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): + pooled_output returned by FlaxBigBirdModel. + hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + start_logits: jnp.ndarray = None + end_logits: jnp.ndarray = None + pooled_output: jnp.ndarray = None + hidden_states: Optional[Tuple[jnp.ndarray]] = None + attentions: Optional[Tuple[jnp.ndarray]] = None + + +BIG_BIRD_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +BIG_BIRD_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + +""" + + +class FlaxBigBirdEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.setup + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.token_type_embeddings = nn.Embed( + self.config.type_vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): + # Embed + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) + + if self.config.rescale_embeddings: + inputs_embeds *= self.config.hidden_size**0.5 + + # Sum all embeddings + hidden_states = inputs_embeds + token_type_embeddings + position_embeds + + # Layer Norm + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->BigBird +class FlaxBigBirdSelfAttention(nn.Module): + config: BigBirdConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.head_dim = self.config.hidden_size // self.config.num_attention_heads + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " + " : {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) + + @nn.compact + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic=True, + output_attentions: bool = False, + ): + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.query(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.key(key_value_states) + value_states = self.value(key_value_states) + else: + # self_attention + key_states = self.key(hidden_states) + value_states = self.value(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class FlaxBigBirdBlockSparseAttention(nn.Module): + config: BigBirdConfig + block_sparse_seed: int = None + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + use_bias=self.config.use_bias, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + use_bias=self.config.use_bias, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + use_bias=self.config.use_bias, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + @staticmethod + def transpose_for_scores(x, n_heads, head_size): + new_x_shape = x.shape[:-1] + (n_heads, head_size) + x = x.reshape(*new_x_shape) + return jnp.transpose(x, axes=(0, 2, 1, 3)) + + def __call__( + self, + hidden_states, + attention_mask, + deterministic=True, + output_attentions=False, + ): + n_heads = self.config.num_attention_heads + head_size = self.config.hidden_size // n_heads + + blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( + attention_mask, self.config.block_size + ) + + query_layer = self.transpose_for_scores(self.query(hidden_states), n_heads, head_size) + key_layer = self.transpose_for_scores(self.key(hidden_states), n_heads, head_size) + value_layer = self.transpose_for_scores(self.value(hidden_states), n_heads, head_size) + + indices_prng_key = None + if not deterministic: + indices_prng_key = self.make_rng("indices") + + attn_output, attn_weights = self.bigbird_block_sparse_attention( + query_layer, + key_layer, + value_layer, + band_mask, + from_mask, + to_mask, + blocked_encoder_mask, + blocked_encoder_mask, + n_heads, + head_size, + indices_prng_key=indices_prng_key, + deterministic=deterministic, + plan_from_length=None, + plan_num_rand_blocks=None, + output_attentions=output_attentions, + ) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + @staticmethod + def create_masks_for_block_sparse_attn(attention_mask, block_size: int): + batch_size, seq_length = attention_mask.shape + if seq_length % block_size != 0: + raise ValueError( + f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" + f" size is {block_size}." + ) + + def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): + """ + Create 3D attention mask from a 2D tensor mask. + + Args: + from_blocked_mask: 2D Tensor of shape [batch_size, + from_seq_length//from_block_size, from_block_size]. + to_blocked_mask: int32 Tensor of shape [batch_size, + to_seq_length//to_block_size, to_block_size]. + + Returns: + float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, + 3*to_block_size]. + """ + exp_blocked_to_pad = jnp.concatenate( + [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], axis=2 + ) + band_mask = jnp.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) + band_mask = jnp.expand_dims(band_mask, 1) + return band_mask + + blocked_encoder_mask = attention_mask.reshape(batch_size, seq_length // block_size, block_size) + band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) + + from_mask = attention_mask.reshape(batch_size, 1, seq_length, 1) + to_mask = attention_mask.reshape(batch_size, 1, 1, seq_length) + + return blocked_encoder_mask, band_mask, from_mask, to_mask + + def bigbird_block_sparse_attention( + self, + query_layer, + key_layer, + value_layer, + band_mask, + from_mask, + to_mask, + from_blocked_mask, + to_blocked_mask, + n_heads, + head_size, + indices_prng_key: Optional[jax.random.PRNGKey] = None, + deterministic: Optional[bool] = True, + plan_from_length=None, + plan_num_rand_blocks=None, + output_attentions=None, + ): + # BigBird block-sparse attention as suggested in paper + + # ITC: + # global tokens: 2 x block_size + # window tokens: 3 x block_size + # random tokens: num_rand_tokens x block_size + + # ETC: + # global tokens: extra_globals_tokens + 2 x block_size + # window tokens: 3 x block_size + # random tokens: num_rand_tokens x block_size + + # Note: + # 1) Currently, ETC is not supported. + # 2) Window size is fixed to 3 blocks & it can be changed only by + # changing `block_size`. + # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be + # controlled only by `block_size`. + + # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of + # shifting tokens (for calculating sliding attention). hence following code can be divided into 5 parts. + + bsz, _, from_seq_len, _ = query_layer.shape + to_seq_len = key_layer.shape[2] + from_block_size = to_block_size = self.config.block_size + + if from_seq_len % from_block_size != 0: + raise ValueError("Query sided sequence length must be multiple of block size") + + if to_seq_len % to_block_size != 0: + raise ValueError("Key/Value sided sequence length must be multiple of block size") + + if from_seq_len // from_block_size != to_seq_len // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + + n_rand_blocks = self.config.num_random_blocks + rsqrt_d = 1 / jnp.sqrt(head_size) + attn_mask_penalty = -10000.0 + + if from_seq_len in [1024, 3072, 4096]: # old plans used in paper + max_seqlen = self.config.max_position_embeddings + rand_attn = [ + self._bigbird_block_rand_mask( + max_seqlen, + max_seqlen, + from_block_size, + to_block_size, + n_rand_blocks, + indices_prng_key=indices_prng_key, + deterministic=deterministic, + last_idx=1024, + )[: (from_seq_len // from_block_size - 2)] + for _ in range(n_heads) + ] + else: + if plan_from_length is None: + plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( + from_seq_len, from_block_size, n_rand_blocks + ) + rand_attn = self._bigbird_block_rand_mask_with_head( + from_seq_length=from_seq_len, + to_seq_length=to_seq_len, + from_block_size=from_block_size, + to_block_size=to_block_size, + num_heads=n_heads, + plan_from_length=plan_from_length, + plan_num_rand_blocks=plan_num_rand_blocks, + indices_prng_key=indices_prng_key, + ) + + rand_attn = jnp.stack(rand_attn, axis=0) + rand_attn = jnp.broadcast_to(rand_attn, (bsz,) + rand_attn.shape) + + rand_mask = self._create_rand_mask_from_inputs( + from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size + ) + + blocked_query_matrix = query_layer.reshape(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) + blocked_key_matrix = key_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) + blocked_value_matrix = value_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) + + shape = (bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1) + gathered_key = self.jax_gather(blocked_key_matrix, rand_attn, batch_dims=2).reshape(*shape) + gathered_value = self.jax_gather(blocked_value_matrix, rand_attn, batch_dims=2).reshape(*shape) + + # 1st PART + # 1st block (global block) attention scores + # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] + first_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 0], key_layer) + + first_product = first_product * rsqrt_d + first_product += (1.0 - to_mask) * attn_mask_penalty + first_attn_weights = jax.nn.softmax(first_product, axis=-1) # [bsz, n_heads, from_block_size, to_seq_len] + + # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] + first_context_layer = jnp.einsum("bhqk,bhkd->bhqd", first_attn_weights, value_layer) + first_context_layer = jnp.expand_dims(first_context_layer, 2) + + # 2nd PART + # 2nd block attention scores + # q[1] x (sliding_keys, random_keys, global_keys) + # sliding key blocks -> 2nd, 3rd blocks + # global key blocks -> 1st block + + second_key_mat = jnp.concatenate( + [ + blocked_key_matrix[:, :, 0], + blocked_key_matrix[:, :, 1], + blocked_key_matrix[:, :, 2], + blocked_key_matrix[:, :, -1], + gathered_key[:, :, 0], + ], + axis=2, + ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + second_value_mat = jnp.concatenate( + [ + blocked_value_matrix[:, :, 0], + blocked_value_matrix[:, :, 1], + blocked_value_matrix[:, :, 2], + blocked_value_matrix[:, :, -1], + gathered_value[:, :, 0], + ], + axis=2, + ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + second_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 1], second_key_mat) + second_seq_pad = jnp.concatenate( + [ + to_mask[:, :, :, : 3 * to_block_size], + to_mask[:, :, :, -to_block_size:], + jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), + ], + axis=3, + ) + second_rand_pad = jnp.concatenate( + [ + jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), + rand_mask[:, :, 0], + ], + axis=3, + ) + second_product = second_product * rsqrt_d + second_product += (1.0 - jnp.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty + second_attn_weights = jax.nn.softmax( + second_product, axis=-1 + ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + + # [bsz, n_heads, from_block_size, (4+r)*to_block_size] x [bsz, n_heads, (4+r)*to_block_size, -1] + # ==> [bsz, n_heads, from_block_size, -1] + second_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_attn_weights, second_value_mat) + second_context_layer = jnp.expand_dims(second_context_layer, 2) + + # 3rd PART + # Middle blocks attention scores + # q[-2:2] x (sliding_keys, random_keys, global_keys) + # sliding attn is calculated using special trick of shifting tokens as discussed in paper + # random keys are generated by taking random indices as per `rand_attn` + # global keys -> 1st & last block + + exp_blocked_key_matrix = jnp.concatenate( + [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], axis=3 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + exp_blocked_value_matrix = jnp.concatenate( + [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], + axis=3, + ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + middle_query_matrix = blocked_query_matrix[:, :, 2:-2] + + # sliding attention scores for q[-2:2] + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + inner_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, exp_blocked_key_matrix) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] + inner_band_product = inner_band_product * rsqrt_d + + # randn attention scores for q[-2:2] + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] + rand_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, gathered_key[:, :, 1:-1]) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] + rand_band_product = rand_band_product * rsqrt_d + + # Including 1st block (since it's global) + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] + first_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]) + first_band_product = first_band_product * rsqrt_d + + # Including last block (since it's global) + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] + last_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]) + last_band_product = last_band_product * rsqrt_d + + # masking padded tokens + inner_band_product += (1.0 - band_mask) * attn_mask_penalty + first_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, :to_block_size], 3)) * attn_mask_penalty + last_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, -to_block_size:], 3)) * attn_mask_penalty + rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty + + # completing attention scores matrix for all q[-2:2] + band_product = jnp.concatenate( + [first_band_product, inner_band_product, rand_band_product, last_band_product], axis=-1 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] + + # safely doing softmax since attention matrix is completed + attn_weights = jax.nn.softmax( + band_product, axis=-1 + ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] + + # contribution of sliding keys + # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] + # x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] + context_layer = jnp.einsum( + "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix + ) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + + # adding contribution of random keys + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] + # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] + context_layer += jnp.einsum( + "bhlqk,bhlkd->bhlqd", + attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], + gathered_value[:, :, 1:-1], + ) + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + + # adding contribution of global keys + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + context_layer += jnp.einsum( + "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] + ) + # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] + # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] + context_layer += jnp.einsum( + "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] + ) + + # 4th PART + # last 2nd token attention scores + # q[-2] x (sliding_keys, random_keys, global_keys) + # sliding key blocks -> last 3 blocks + # global key block -> 1st block + # random key block -> based on indices stored in `randn_attn` + + second_last_key_mat = jnp.concatenate( + [ + blocked_key_matrix[:, :, 0], + blocked_key_matrix[:, :, -3], + blocked_key_matrix[:, :, -2], + blocked_key_matrix[:, :, -1], + gathered_key[:, :, -1], + ], + axis=2, + ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] + second_last_value_mat = jnp.concatenate( + [ + blocked_value_matrix[:, :, 0], + blocked_value_matrix[:, :, -3], + blocked_value_matrix[:, :, -2], + blocked_value_matrix[:, :, -1], + gathered_value[:, :, -1], + ], + axis=2, + ) # [bsz, n_heads, (4+r)*to_block_size, -1] + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + second_last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -2], second_last_key_mat) + second_last_seq_pad = jnp.concatenate( + [ + to_mask[:, :, :, :to_block_size], + to_mask[:, :, :, -3 * to_block_size :], + jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), + ], + axis=3, + ) + second_last_rand_pad = jnp.concatenate( + [ + jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), + rand_mask[:, :, -1], + ], + axis=3, + ) + second_last_product = second_last_product * rsqrt_d + second_last_product += (1.0 - jnp.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty + second_last_attn_weights = jax.nn.softmax( + second_last_product, axis=-1 + ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] + + # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] + # ==> [bsz, n_heads, from_block_size, -1] + second_last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_last_attn_weights, second_last_value_mat) + second_last_context_layer = jnp.expand_dims(second_last_context_layer, 2) + + # 5th PART + # last block (global) attention scores + # q[-1] x (k[0], k[1], k[2], k[3], .... ) + + # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] + last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -1], key_layer) + last_product = last_product * rsqrt_d + last_product += (1.0 - to_mask) * attn_mask_penalty + last_attn_weights = jax.nn.softmax(last_product, axis=-1) # [bsz, n_heads, from_block_size, n] + + # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] + last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", last_attn_weights, value_layer) + last_context_layer = jnp.expand_dims(last_context_layer, 2) + + # combining representations of all tokens + context_layer = jnp.concatenate( + [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], + axis=2, + ) + context_layer = context_layer.reshape(bsz, n_heads, from_seq_len, -1) * from_mask + context_layer = jnp.transpose(context_layer, axes=(0, 2, 1, 3)).reshape(bsz, from_seq_len, -1) + + attention_probs = None + + return context_layer, attention_probs + + @staticmethod + def jax_gather(params, indices, batch_dims=2): + """ + Gather the indices from params correctly (equivalent to tf.gather but with modifications) + + Args: + params: (bsz, n_heads, num_blocks, block_size, head_dim) + indices: (bhlqk", from_blocked_mask[:, 1:-1], rand_mask) + return rand_mask + + @staticmethod + def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): + """ + Gives the plan of where to put random attention. + + Args: + from_seq_length: int. length of from sequence. + from_block_size: int. size of block in from sequence. + num_rand_blocks: int. Number of random chunks per row. + + Returns: + plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for + each block + """ + + plan_from_length = [] + plan_num_rand_blocks = [] + if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): + plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) + plan_num_rand_blocks.append(num_rand_blocks) + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(0) + elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): + plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) + plan_num_rand_blocks.append(num_rand_blocks // 2) + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) + else: + plan_from_length.append(from_seq_length) + plan_num_rand_blocks.append(num_rand_blocks) + + return plan_from_length, plan_num_rand_blocks + + @staticmethod + def _bigbird_block_rand_mask( + from_seq_length, + to_seq_length, + from_block_size, + to_block_size, + num_rand_blocks, + indices_prng_key: Optional[jax.random.PRNGKey] = None, + deterministic: Optional[bool] = True, + last_idx: Optional[int] = -1, + ): + """ + Create adjacency list of random attention. + + Args: + from_seq_length: int. length of from sequence. + to_seq_length: int. length of to sequence. + from_block_size: int. size of block in from sequence. + to_block_size: int. size of block in to sequence. + num_rand_blocks: int. Number of random chunks per row. + indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. + deterministic: bool. When False random attention will be used. + last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, + if positive then num_rand_blocks blocks chosen only up to last_idx. + + Returns: + adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks + """ + # using this method when from_seq_length in [1024, 3072, 4096] + + if from_seq_length // from_block_size != to_seq_length // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + rand_attn = jnp.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=jnp.int32) + # deterministic nor randomness + if deterministic: + return rand_attn + + middle_seq = jnp.arange(1, to_seq_length // to_block_size - 1, dtype=jnp.int32) + last = to_seq_length // to_block_size - 1 + if last_idx > (2 * to_block_size): + last = (last_idx // to_block_size) - 1 + + r = num_rand_blocks # shorthand + for i in range(1, from_seq_length // from_block_size - 1): + start = i - 2 + end = i + if i == 1: + seq_values = jax.random.permutation(indices_prng_key, middle_seq[2:last])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + elif i == 2: + seq_values = jax.random.permutation(indices_prng_key, middle_seq[3:last])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + elif i == from_seq_length // from_block_size - 3: + seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + # Missing -3: should have been sliced till last-3 + elif i == from_seq_length // from_block_size - 2: + seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + # Missing -4: should have been sliced till last-4 + else: + if start > last: + start = last + seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + elif (end + 1) == last: + seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + else: + concat_values = jnp.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) + seq_values = jax.random.permutation(indices_prng_key, concat_values)[:r] + rand_attn = rand_attn.at[i - 1].set(seq_values) + return rand_attn + + def _bigbird_block_rand_mask_with_head( + self, + from_seq_length, + to_seq_length, + from_block_size, + to_block_size, + num_heads, + plan_from_length, + plan_num_rand_blocks, + indices_prng_key: Optional[jax.random.PRNGKey] = None, + deterministic: Optional[bool] = True, + window_block_left=1, + window_block_right=1, + global_block_top=1, + global_block_bottom=1, + global_block_left=1, + global_block_right=1, + ): + """ + Create adjacency list of random attention. + + Args: + from_seq_length: int. length of from sequence. + to_seq_length: int. length of to sequence. + from_block_size: int. size of block in from sequence. + to_block_size: int. size of block in to sequence. + num_heads: int. total number of heads. + plan_from_length: list. plan from length where num_random_blocks are choosen from. + plan_num_rand_blocks: list. number of rand blocks within the plan. + indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. + deterministic: bool. When False random attention will be used. + window_block_left: int. number of blocks of window to left of a block. + window_block_right: int. number of blocks of window to right of a block. + global_block_top: int. number of blocks at the top. + global_block_bottom: int. number of blocks at the bottom. + global_block_left: int. Number of blocks globally used to the left. + global_block_right: int. Number of blocks globally used to the right. + + Returns: + adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by + num_rand_blocks + """ + # using this method when from_seq_length not in [1024, 3072, 4096] + + if from_seq_length // from_block_size != to_seq_length // to_block_size: + raise ValueError("Error the number of blocks needs to be same!") + + if from_seq_length not in plan_from_length: + raise ValueError("Error from sequence length not in plan!") + + # Total number of blocks in the mmask + num_blocks = from_seq_length // from_block_size + # Number of blocks per plan + plan_block_length = jnp.array(plan_from_length) // from_block_size + # till when to follow plan + max_plan_idx = plan_from_length.index(from_seq_length) + + # Random Attention adjacency list + rand_attn = [ + jnp.zeros((num_blocks, sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=jnp.int32) + for i in range(num_heads) + ] + + # deterministic + if deterministic: + for nh in range(num_heads): + rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] + return rand_attn + + # We will go iteratively over the plan blocks and pick random number of + # Attention blocks from the legally allowed blocks + for plan_idx in range(max_plan_idx + 1): + rnd_r_cnt = 0 + if plan_idx > 0: + # set the row for all from_blocks starting from 0 to + # plan_block_length[plan_idx-1] + # column indx start fromm plan_block_length[plan_idx-1] and ends at + # plan_block_length[plan_idx] + if plan_num_rand_blocks[plan_idx] > 0: + rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) + curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) + for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): + for h in range(num_heads): + single_block_row_attention = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=plan_block_length[plan_idx - 1], + to_end_block_id=plan_block_length[plan_idx], + num_rand_blocks=plan_num_rand_blocks[plan_idx], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + indices_prng_key=indices_prng_key, + ) + rand_attn[h] = ( + rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) + ) + + for pl_id in range(plan_idx): + if plan_num_rand_blocks[pl_id] == 0: + continue + for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): + rnd_r_cnt = 0 + to_start_block_id = 0 + if pl_id > 0: + rnd_r_cnt = int(sum(plan_num_rand_blocks[:pl_id])) + to_start_block_id = plan_block_length[pl_id - 1] + curr_r_cnt = int(sum(plan_num_rand_blocks[: pl_id + 1])) + for h in range(num_heads): + single_block_row_attention = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=to_start_block_id, + to_end_block_id=plan_block_length[pl_id], + num_rand_blocks=plan_num_rand_blocks[pl_id], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + indices_prng_key=indices_prng_key, + ) + rand_attn[h] = ( + rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) + ) + + if plan_num_rand_blocks[plan_idx] == 0: + continue + curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) + from_start_block_id = global_block_top + to_start_block_id = 0 + if plan_idx > 0: + rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) + from_start_block_id = plan_block_length[plan_idx - 1] + to_start_block_id = plan_block_length[plan_idx - 1] + for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): + for h in range(num_heads): + single_block_row_attention = self._get_single_block_row_attention( + block_id=blk_rw_idx, + to_start_block_id=to_start_block_id, + to_end_block_id=plan_block_length[plan_idx], + num_rand_blocks=plan_num_rand_blocks[plan_idx], + window_block_left=window_block_left, + window_block_right=window_block_right, + global_block_left=global_block_left, + global_block_right=global_block_right, + indices_prng_key=indices_prng_key, + ) + rand_attn[h] = rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) + + for nh in range(num_heads): + rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] + return rand_attn + + @staticmethod + def _get_single_block_row_attention( + block_id, + to_start_block_id, + to_end_block_id, + num_rand_blocks, + indices_prng_key: Optional[jax.random.PRNGKey] = None, + window_block_left=1, + window_block_right=1, + global_block_left=1, + global_block_right=1, + ): + """ + For a single row block get random row attention. + + Args: + block_id: int. block id of row. + to_start_block_id: int. random attention column start id. + to_end_block_id: int. random attention column end id. + num_rand_blocks: int. number of random blocks to be selected. + indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations + window_block_left: int. number of blocks of window to left of a block. + window_block_right: int. number of blocks of window to right of a block. + global_block_left: int. Number of blocks globally used to the left. + global_block_right: int. Number of blocks globally used to the right. + + Returns: + row containing the random attention vector of size num_rand_blocks. + """ + # list of to_blocks from which to choose random attention + to_block_list = jnp.arange(to_start_block_id, to_end_block_id, dtype=jnp.int32) + # permute the blocks + perm_block = jax.random.permutation(indices_prng_key, to_block_list) + + # illegal blocks for the current block id, using window + illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) + + # Add blocks at the start and at the end + illegal_blocks.extend(list(range(global_block_left))) + illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) + + # The second from_block cannot choose random attention on second last to_block + if block_id == 1: + illegal_blocks.append(to_end_block_id - 2) + + # The second last from_block cannot choose random attention on second to_block + if block_id == to_end_block_id - 2: + illegal_blocks.append(1) + + selected_random_blocks = [] + + for i in range(to_end_block_id - to_start_block_id): + if perm_block[i] not in illegal_blocks: + selected_random_blocks.append(perm_block[i]) + if len(selected_random_blocks) == num_rand_blocks: + break + return jnp.array(selected_random_blocks, dtype=jnp.int32) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->BigBird +class FlaxBigBirdSelfOutput(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class FlaxBigBirdAttention(nn.Module): + config: BigBirdConfig + layer_id: int = None + causal: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + if self.config.attention_type == "original_full": + self.self = FlaxBigBirdSelfAttention(self.config, causal=self.causal, dtype=self.dtype) + elif self.config.attention_type == "block_sparse": + self.self = FlaxBigBirdBlockSparseAttention(self.config, block_sparse_seed=self.layer_id, dtype=self.dtype) + else: + raise ValueError( + f"Your `config.attention_type` is {self.config.attention_type} but it can either be `original_full` or" + " `block_sparse`" + ) + + self.output = FlaxBigBirdSelfOutput(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states=None, + init_cache=False, + deterministic=True, + output_attentions: bool = False, + ): + # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) + # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable + # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) + if self.config.attention_type == "original_full": + attn_outputs = self.self( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=key_value_states, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + else: + attn_outputs = self.self( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->BigBird +class FlaxBigBirdIntermediate(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->BigBird +class FlaxBigBirdOutput(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + attention_output) + return hidden_states + + +class FlaxBigBirdLayer(nn.Module): + config: BigBirdConfig + layer_id: int = None + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxBigBirdAttention( + self.config, layer_id=self.layer_id, causal=self.config.is_decoder, dtype=self.dtype + ) + self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) + self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) + if self.config.add_cross_attention: + self.crossattention = FlaxBigBirdAttention(self.config, causal=False, dtype=self.dtype) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer.__call__ with Bert->BigBird + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + ): + # Self Attention + attention_outputs = self.attention( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = attention_outputs[0] + + # Cross-Attention Block + if encoder_hidden_states is not None: + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask=encoder_attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=encoder_hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + + hidden_states = self.intermediate(attention_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + if encoder_hidden_states is not None: + outputs += (cross_attention_outputs[1],) + return outputs + + +class FlaxBigBirdLayerCollection(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + if self.gradient_checkpointing: + FlaxBigBirdCheckpointLayer = remat(FlaxBigBirdLayer, static_argnums=(5, 6, 7)) + self.layers = [ + FlaxBigBirdCheckpointLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + else: + self.layers = [ + FlaxBigBirdLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection.__call__ with Bert->BigBird + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + # Check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.shape[0] != (len(self.layers)): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for " + f" {head_mask.shape[0]}." + ) + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer( + hidden_states, + attention_mask, + head_mask[i] if head_mask is not None else None, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + deterministic, + output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->BigBird +class FlaxBigBirdEncoder(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.layer = FlaxBigBirdLayerCollection( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->BigBird +class FlaxBigBirdPredictionHeadTransform(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) + self.activation = ACT2FN[self.config.hidden_act] + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return self.LayerNorm(hidden_states) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->BigBird, np.ndarray->jnp.ndarray +class FlaxBigBirdLMPredictionHead(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.transform = FlaxBigBirdPredictionHeadTransform(self.config, dtype=self.dtype) + self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) + self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) + + def __call__(self, hidden_states, shared_embedding=None): + hidden_states = self.transform(hidden_states) + + if shared_embedding is not None: + hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + hidden_states = self.decoder(hidden_states) + + bias = jnp.asarray(self.bias, self.dtype) + hidden_states += bias + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->BigBird +class FlaxBigBirdOnlyMLMHead(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) + + def __call__(self, hidden_states, shared_embedding=None): + hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding) + return hidden_states + + +class FlaxBigBirdPreTrainingHeads(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) + self.seq_relationship = nn.Dense(2, dtype=self.dtype) + + def __call__(self, hidden_states, pooled_output, shared_embedding=None): + prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BigBirdConfig + base_model_prefix = "bert" + module_class: nn.Module = None + + def __init__( + self, + config: BigBirdConfig, + input_shape: Optional[tuple] = None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + gradient_checkpointing: bool = False, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) + if config.attention_type == "block_sparse" and input_shape is None: + input_shape = (1, 12 * config.block_size) + elif input_shape is None: + input_shape = (1, 1) + + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + token_type_ids = jnp.zeros_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) + attention_mask = jnp.ones_like(input_ids) + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + params_rng, dropout_rng, indices_rng = jax.random.split(rng, num=3) + rngs = {"params": params_rng, "dropout": dropout_rng, "indices": indices_rng} + + if self.config.add_cross_attention: + encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) + encoder_attention_mask = attention_mask + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + return_dict=False, + ) + else: + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + return_dict=False, + ) + + random_params = module_init_outputs["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + params: dict = None, + dropout_rng: Optional[jax.random.PRNGKey] = None, + indices_rng: Optional[jax.random.PRNGKey] = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + past_key_values: dict = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if head_mask is None: + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + # Handle any PRNG if needed + rngs = {} + if indices_rng is not None: + rngs["indices"] = indices_rng + + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + if self.config.add_cross_attention: + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxBigBirdAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + else: + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + ) + + return outputs + + +class FlaxBigBirdModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + gradient_checkpointing: bool = False + + def setup(self): + self.embeddings = FlaxBigBirdEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxBigBirdEncoder( + self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.pooler = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + hidden_states = self.embeddings( + input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic + ) + outputs = self.encoder( + hidden_states, + attention_mask, + head_mask=head_mask, + deterministic=deterministic, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + + pooled = nn.tanh(self.pooler(hidden_states[:, 0, :])) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", + BIG_BIRD_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModel with Bert->BigBird +class FlaxBigBirdModel(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdModule + + +append_call_sample_docstring(FlaxBigBirdModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingModule with Bert->BigBird +class FlaxBigBirdForPreTrainingModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.cls = FlaxBigBirdPreTrainingHeads(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.tie_word_embeddings: + shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + hidden_states = outputs[0] + pooled_output = outputs[1] + + prediction_scores, seq_relationship_score = self.cls( + hidden_states, pooled_output, shared_embedding=shared_embedding + ) + + if not return_dict: + return (prediction_scores, seq_relationship_score) + outputs[2:] + + return FlaxBigBirdForPreTrainingOutput( + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next + sentence prediction (classification)` head. + """, + BIG_BIRD_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTraining with Bert->BigBird +class FlaxBigBirdForPreTraining(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForPreTrainingModule + + +FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") + >>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ``` +""" + +overwrite_call_docstring( + FlaxBigBirdForPreTraining, + BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING, +) +append_replace_return_docstrings( + FlaxBigBirdForPreTraining, output_type=FlaxBigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLMModule with Bert->BigBird +class FlaxBigBirdForMaskedLMModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.cls(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLM with Bert->BigBird +class FlaxBigBirdForMaskedLM(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForMaskedLMModule + + +append_call_sample_docstring(FlaxBigBirdForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) + + +class FlaxBigBirdClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__(self, features, deterministic=True): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x, deterministic=deterministic) + x = self.dense(x) + x = ACT2FN[self.config.hidden_act](x) + x = self.dropout(x, deterministic=deterministic) + x = self.out_proj(x) + return x + + +class FlaxBigBirdForSequenceClassificationModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.classifier = FlaxBigBirdClassificationHead(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output, deterministic=deterministic) + + if not return_dict: + return (logits,) + outputs[2:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForSequenceClassification with Bert->BigBird +class FlaxBigBirdForSequenceClassification(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxBigBirdForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->BigBird +class FlaxBigBirdForMultipleChoiceModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.classifier = nn.Dense(1, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None + position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None + + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[2:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +class FlaxBigBirdForMultipleChoice(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForMultipleChoiceModule + + def __init__( + self, + config: BigBirdConfig, + input_shape: Optional[tuple] = None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + if config.attention_type == "block_sparse" and input_shape is None: + input_shape = (1, 1, 12 * config.block_size) + elif input_shape is None: + input_shape = (1, 1) + super().__init__(config, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + +overwrite_call_docstring( + FlaxBigBirdForMultipleChoice, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") +) +append_call_sample_docstring( + FlaxBigBirdForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->BigBird +class FlaxBigBirdForTokenClassificationModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassification with Bert->BigBird +class FlaxBigBirdForTokenClassification(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForTokenClassificationModule + + +append_call_sample_docstring( + FlaxBigBirdForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxBigBirdForQuestionAnsweringHead(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) + self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__(self, encoder_output, deterministic=True): + hidden_states = self.dropout(encoder_output, deterministic=deterministic) + hidden_states = self.intermediate(hidden_states) + hidden_states = self.output(hidden_states, encoder_output) + hidden_states = self.qa_outputs(hidden_states) + return hidden_states + + +class FlaxBigBirdForQuestionAnsweringModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + add_pooling_layer: bool = False + gradient_checkpointing: bool = False + + def setup(self): + self.config.num_labels = 2 + self.bert = FlaxBigBirdModule( + self.config, + dtype=self.dtype, + add_pooling_layer=self.add_pooling_layer, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.qa_classifier = FlaxBigBirdForQuestionAnsweringHead(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + logits_mask=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + pooled_output = outputs[1] if self.add_pooling_layer else None + logits = self.qa_classifier(hidden_states, deterministic=deterministic) + + if logits_mask is not None: + # removing question tokens from the competition + logits = logits - logits_mask * 1e6 + + start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + outputs[1:] + + return FlaxBigBirdForQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + pooled_output=pooled_output, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + BIG_BIRD_START_DOCSTRING, +) +class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForQuestionAnsweringModule + + @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + question_lengths=None, + params: dict = None, + dropout_rng: Optional[jax.random.PRNGKey] = None, + indices_rng: Optional[jax.random.PRNGKey] = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if head_mask is None: + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + if question_lengths is None and input_ids is not None: + # assuming input_ids format: context + question_lengths = jnp.argmax((input_ids == self.config.sep_token_id).astype("i4"), axis=-1) + 1 + question_lengths = jnp.expand_dims(question_lengths, axis=1) + + seqlen = input_ids.shape[1] + + logits_mask = None + if question_lengths is not None: + # setting lengths logits to `-inf` + logits_mask = self.prepare_question_mask(question_lengths, seqlen) + if token_type_ids is None: + token_type_ids = (~logits_mask).astype("i4") + logits_mask = jnp.expand_dims(logits_mask, axis=2) + logits_mask = logits_mask.at[:, 0].set(False) + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + if indices_rng is not None: + rngs["indices"] = indices_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids, + jnp.array(position_ids, dtype="i4"), + jnp.array(head_mask, dtype="i4"), + logits_mask, + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + @staticmethod + def prepare_question_mask(q_lengths, maxlen: int): + # q_lengths -> (bz, 1) + mask = jnp.arange(0, maxlen) + mask = jnp.expand_dims(mask, axis=0) < q_lengths + return mask + + +append_call_sample_docstring( + FlaxBigBirdForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxBigBirdForQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxBigBirdForCausalLMModule(nn.Module): + config: BigBirdConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.bert = FlaxBigBirdModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + token_type_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.bert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.cls(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxCausalLMOutputWithCrossAttentions( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + BigBird Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for + autoregressive tasks. + """, + BIG_BIRD_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->BigBird +class FlaxBigBirdForCausalLM(FlaxBigBirdPreTrainedModel): + module_class = FlaxBigBirdForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyway. + # Thus, we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxBigBirdForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, +) + + +__all__ = [ + "FlaxBigBirdForCausalLM", + "FlaxBigBirdForMaskedLM", + "FlaxBigBirdForMultipleChoice", + "FlaxBigBirdForPreTraining", + "FlaxBigBirdForQuestionAnswering", + "FlaxBigBirdForSequenceClassification", + "FlaxBigBirdForTokenClassification", + "FlaxBigBirdModel", + "FlaxBigBirdPreTrainedModel", +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py new file mode 100644 index 0000000000000000000000000000000000000000..194cbc68cb56ba9f39f50ea8ce35e6fdd61de82e --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py @@ -0,0 +1,324 @@ +# coding=utf-8 +# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for BigBird.""" + +import os +import re +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + + +class BigBirdTokenizer(PreTrainedTokenizer): + """ + Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `""`): + The begin of sequence token. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + prefix_tokens: List[int] = [] + + def __init__( + self, + vocab_file, + unk_token="", + bos_token="", + eos_token="", + pad_token="", + sep_token="[SEP]", + mask_token="[MASK]", + cls_token="[CLS]", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + sep_token=sep_token, + mask_token=mask_token, + cls_token=cls_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + @property + def vocab_size(self): + return self.sp_model.get_piece_size() + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def _tokenize(self, text: str) -> List[str]: + """Take as input a string and return a list of strings (tokens) for words/sub-words""" + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def _decode( + self, + token_ids: List[int], + skip_special_tokens: bool = False, + clean_up_tokenization_spaces: bool = None, + spaces_between_special_tokens: bool = True, + **kwargs, + ) -> str: + self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) + + filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) + + # To avoid mixing byte-level and unicode for byte-level BPT + # we need to build string separately for added tokens and byte-level tokens + # cf. https://github.com/huggingface/transformers/issues/1133 + sub_texts = [] + current_sub_text = [] + for token in filtered_tokens: + if skip_special_tokens and token in self.all_special_ids: + continue + if token in self.added_tokens_encoder: + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + current_sub_text = [] + sub_texts.append(token) + else: + current_sub_text.append(token) + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + + # Mimic the behavior of the Rust tokenizer: + # No space before [MASK] and [SEP] + if spaces_between_special_tokens: + text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts)) + else: + text = "".join(sub_texts) + + clean_up_tokenization_spaces = ( + clean_up_tokenization_spaces + if clean_up_tokenization_spaces is not None + else self.clean_up_tokenization_spaces + ) + if clean_up_tokenization_spaces: + clean_text = self.clean_up_tokenization(text) + return clean_text + else: + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Big Bird sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second + sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + +__all__ = ["BigBirdTokenizer"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..83f2fac07fae72b758f8671458ac0843538eba4b --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py @@ -0,0 +1,232 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Big Bird model.""" + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_big_bird import BigBirdTokenizer +else: + BigBirdTokenizer = None + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} + + +SPIECE_UNDERLINE = "▁" + + +class BigBirdTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" BigBird tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This + tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token + that is used for the end of sequence. The token used is the `sep_token`. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = BigBirdTokenizer + model_input_names = ["input_ids", "attention_mask"] + prefix_tokens: List[int] = [] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + unk_token="", + bos_token="", + eos_token="", + pad_token="", + sep_token="[SEP]", + mask_token="[MASK]", + cls_token="[CLS]", + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + **kwargs, + ) + + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An BigBird sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return cls + token_ids_0 + sep + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Set to True if the token list is already formatted with special tokens for the model + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + if token_ids_1 is not None: + raise ValueError( + "You should not supply a second sequence if the provided sequence of " + "ids is already formatted with special tokens for the model." + ) + return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + if token_ids_1 is None, only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) + + +__all__ = ["BigBirdTokenizerFast"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2178cfd03a40593bc9acb97111204aab0423860c --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py @@ -0,0 +1,28 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_bros import * + from .modeling_bros import * + from .processing_bros import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..377cafa32ec104ef29e225cc334d597c81d1e37b Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0fd1293963b233da99850c67212dc2998102b126 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py @@ -0,0 +1,28 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_convnextv2 import * + from .modeling_convnextv2 import * + from .modeling_tf_convnextv2 import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa1c5feb5aac265f7d703d9a9c349ca8fd036ef5 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2fcf9685dc41261cd54b33f8c7f0963d6e440727 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3991020e7cf63d04a36a33c50b0410a294264f8 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09ddc7d143aee494ab2b4d6afd84e7eafb9a14a8 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..60b631a340c05115e57a65af00475cb6bb63549d --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py @@ -0,0 +1,118 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""ConvNeXTV2 model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an + ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 + [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + patch_size (`int`, *optional*, defaults to 4): + Patch size to use in the patch embedding layer. + num_stages (`int`, *optional*, defaults to 4): + The number of stages in the model. + hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): + Dimensionality (hidden size) at each stage. + depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): + Depth (number of blocks) for each stage. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, + `"selu"` and `"gelu_new"` are supported. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + drop_path_rate (`float`, *optional*, defaults to 0.0): + The drop rate for stochastic depth. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + + Example: + ```python + >>> from transformers import ConvNeXTV2Config, ConvNextV2Model + + >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration + >>> configuration = ConvNeXTV2Config() + + >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration + >>> model = ConvNextV2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "convnextv2" + + def __init__( + self, + num_channels=3, + patch_size=4, + num_stages=4, + hidden_sizes=None, + depths=None, + hidden_act="gelu", + initializer_range=0.02, + layer_norm_eps=1e-12, + drop_path_rate=0.0, + image_size=224, + out_features=None, + out_indices=None, + **kwargs, + ): + super().__init__(**kwargs) + + self.num_channels = num_channels + self.patch_size = patch_size + self.num_stages = num_stages + self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes + self.depths = [3, 3, 9, 3] if depths is None else depths + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.drop_path_rate = drop_path_rate + self.image_size = image_size + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) + + +__all__ = ["ConvNextV2Config"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..c0490eead21c88c792676cd60d6302f22fa3ebc0 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py @@ -0,0 +1,574 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch ConvNextV2 model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutputWithNoAttention, + BaseModelOutputWithPoolingAndNoAttention, + ImageClassifierOutputWithNoAttention, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_convnextv2 import ConvNextV2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ConvNextV2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" +_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2 +class ConvNextV2DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class ConvNextV2GRN(nn.Module): + """GRN (Global Response Normalization) layer""" + + def __init__(self, dim: int): + super().__init__() + self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + # Compute and normalize global spatial feature maps + global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True) + norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6) + hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states + + return hidden_states + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2 +class ConvNextV2LayerNorm(nn.Module): + r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, + width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). + """ + + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.data_format = data_format + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError(f"Unsupported data format: {self.data_format}") + self.normalized_shape = (normalized_shape,) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.data_format == "channels_last": + x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + elif self.data_format == "channels_first": + input_dtype = x.dtype + x = x.float() + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = x.to(dtype=input_dtype) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2 +class ConvNextV2Embeddings(nn.Module): + """This class is comparable to (and inspired by) the SwinEmbeddings class + found in src/transformers/models/swin/modeling_swin.py. + """ + + def __init__(self, config): + super().__init__() + self.patch_embeddings = nn.Conv2d( + config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size + ) + self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") + self.num_channels = config.num_channels + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + embeddings = self.patch_embeddings(pixel_values) + embeddings = self.layernorm(embeddings) + return embeddings + + +class ConvNextV2Layer(nn.Module): + """This corresponds to the `Block` class in the original implementation. + + There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, + H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back + + The authors used (2) as they find it slightly faster in PyTorch. + + Args: + config ([`ConvNextV2Config`]): Model configuration class. + dim (`int`): Number of input channels. + drop_path (`float`): Stochastic depth rate. Default: 0.0. + """ + + def __init__(self, config, dim, drop_path=0): + super().__init__() + # depthwise conv + self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) + self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6) + # pointwise/1x1 convs, implemented with linear layers + self.pwconv1 = nn.Linear(dim, 4 * dim) + self.act = ACT2FN[config.hidden_act] + self.grn = ConvNextV2GRN(4 * dim) + self.pwconv2 = nn.Linear(4 * dim, dim) + self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: + input = hidden_states + x = self.dwconv(hidden_states) + # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) + x = x.permute(0, 2, 3, 1) + x = self.layernorm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) + x = x.permute(0, 3, 1, 2) + + x = input + self.drop_path(x) + return x + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2 +class ConvNextV2Stage(nn.Module): + """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks. + + Args: + config ([`ConvNextV2Config`]): Model configuration class. + in_channels (`int`): Number of input channels. + out_channels (`int`): Number of output channels. + depth (`int`): Number of residual blocks. + drop_path_rates(`List[float]`): Stochastic depth rates for each layer. + """ + + def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): + super().__init__() + + if in_channels != out_channels or stride > 1: + self.downsampling_layer = nn.Sequential( + ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"), + nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), + ) + else: + self.downsampling_layer = nn.Identity() + drop_path_rates = drop_path_rates or [0.0] * depth + self.layers = nn.Sequential( + *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] + ) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: + hidden_states = self.downsampling_layer(hidden_states) + hidden_states = self.layers(hidden_states) + return hidden_states + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2 +class ConvNextV2Encoder(nn.Module): + def __init__(self, config): + super().__init__() + self.stages = nn.ModuleList() + drop_path_rates = [ + x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) + ] + prev_chs = config.hidden_sizes[0] + for i in range(config.num_stages): + out_chs = config.hidden_sizes[i] + stage = ConvNextV2Stage( + config, + in_channels=prev_chs, + out_channels=out_chs, + stride=2 if i > 0 else 1, + depth=config.depths[i], + drop_path_rates=drop_path_rates[i], + ) + self.stages.append(stage) + prev_chs = out_chs + + def forward( + self, + hidden_states: torch.FloatTensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.stages): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + ) + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2 +class ConvNextV2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ConvNextV2Config + base_model_prefix = "convnextv2" + main_input_name = "pixel_values" + _no_split_modules = ["ConvNextV2Layer"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +CONVNEXTV2_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CONVNEXTV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See + [`ConvNextImageProcessor.__call__`] for details. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ConvNextV2 model outputting raw features without any specific head on top.", + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2 +class ConvNextV2Model(ConvNextV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = ConvNextV2Embeddings(config) + self.encoder = ConvNextV2Encoder(config) + + # final layernorm layer + self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: torch.FloatTensor = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + embedding_output, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + + # global average pooling, (N, C, H, W) -> (N, C) + pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2 +class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.convnextv2 = ConvNextV2Model(config) + + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: torch.FloatTensor = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer. + """, + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224 +class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.embeddings = ConvNextV2Embeddings(config) + self.encoder = ConvNextV2Encoder(config) + self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes + + # Add layer norms to hidden states of out_features + hidden_states_norms = {} + for stage, num_channels in zip(self._out_features, self.channels): + hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first") + self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) + + # initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") + >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224") + + >>> inputs = processor(image, return_tensors="pt") + >>> outputs = model(**inputs) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + embedding_output = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, + output_hidden_states=True, + return_dict=return_dict, + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + hidden_state = self.hidden_states_norms[stage](hidden_state) + feature_maps += (hidden_state,) + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output += (hidden_states,) + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=hidden_states if output_hidden_states else None, + attentions=None, + ) + + +__all__ = ["ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..c27ba2da453039c5afe9f9ebc78cbf6bbd73605a --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py @@ -0,0 +1,683 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""TF 2.0 ConvNextV2 model.""" + +from __future__ import annotations + +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithNoAttention, + TFBaseModelOutputWithPooling, + TFBaseModelOutputWithPoolingAndNoAttention, + TFImageClassifierOutputWithNoAttention, +) +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_convnextv2 import ConvNextV2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ConvNextV2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" +_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2 +class TFConvNextV2DropPath(keras.layers.Layer): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + References: + (1) github.com:rwightman/pytorch-image-models + """ + + def __init__(self, drop_path: float, **kwargs): + super().__init__(**kwargs) + self.drop_path = drop_path + + def call(self, x: tf.Tensor, training=None): + if training: + keep_prob = 1 - self.drop_path + shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) + random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) + random_tensor = tf.floor(random_tensor) + return (x / keep_prob) * random_tensor + return x + + +class TFConvNextV2GRN(keras.layers.Layer): + """GRN (Global Response Normalization) layer""" + + def __init__(self, config: ConvNextV2Config, dim: int, **kwargs): + super().__init__(**kwargs) + self.dim = dim + + def build(self, input_shape: tf.TensorShape = None): + # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa) + self.weight = self.add_weight( + name="weight", + shape=(1, 1, 1, self.dim), + initializer=keras.initializers.Zeros(), + ) + self.bias = self.add_weight( + name="bias", + shape=(1, 1, 1, self.dim), + initializer=keras.initializers.Zeros(), + ) + return super().build(input_shape) + + def call(self, hidden_states: tf.Tensor): + global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True) + norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6) + hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states + return hidden_states + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2 +class TFConvNextV2Embeddings(keras.layers.Layer): + """This class is comparable to (and inspired by) the SwinEmbeddings class + found in src/transformers/models/swin/modeling_swin.py. + """ + + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + self.patch_embeddings = keras.layers.Conv2D( + filters=config.hidden_sizes[0], + kernel_size=config.patch_size, + strides=config.patch_size, + name="patch_embeddings", + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + ) + self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm") + self.num_channels = config.num_channels + self.config = config + + def call(self, pixel_values): + if isinstance(pixel_values, dict): + pixel_values = pixel_values["pixel_values"] + + tf.debugging.assert_equal( + shape_list(pixel_values)[1], + self.num_channels, + message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", + ) + + # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. + # So change the input format from `NCHW` to `NHWC`. + # shape = (batch_size, in_height, in_width, in_channels) + pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) + + embeddings = self.patch_embeddings(pixel_values) + embeddings = self.layernorm(embeddings) + return embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build([None, None, None, self.config.num_channels]) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, None, self.config.hidden_sizes[0]]) + + +class TFConvNextV2Layer(keras.layers.Layer): + """This corresponds to the `Block` class in the original implementation. + + There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, + H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back + + The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow + NHWC ordering, we can just apply the operations straight-away without the permutation. + + Args: + config (`ConvNextV2Config`): + Model configuration class. + dim (`int`): + Number of input channels. + drop_path (`float`, *optional*, defaults to 0.0): + Stochastic depth rate. + """ + + def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs): + super().__init__(**kwargs) + self.dim = dim + self.config = config + self.dwconv = keras.layers.Conv2D( + filters=dim, + kernel_size=7, + padding="same", + groups=dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="dwconv", + ) # depthwise conv + self.layernorm = keras.layers.LayerNormalization( + epsilon=1e-6, + name="layernorm", + ) + self.pwconv1 = keras.layers.Dense( + units=4 * dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="pwconv1", + ) # pointwise/1x1 convs, implemented with linear layers + self.act = get_tf_activation(config.hidden_act) + self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn") + self.pwconv2 = keras.layers.Dense( + units=dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="pwconv2", + ) + # Using `layers.Activation` instead of `tf.identity` to better control `training` + # behaviour. + self.drop_path = ( + TFConvNextV2DropPath(drop_path, name="drop_path") + if drop_path > 0.0 + else keras.layers.Activation("linear", name="drop_path") + ) + + def call(self, hidden_states, training=False): + input = hidden_states + x = self.dwconv(hidden_states) + x = self.layernorm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + x = self.drop_path(x, training=training) + x = input + x + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dwconv", None) is not None: + with tf.name_scope(self.dwconv.name): + self.dwconv.build([None, None, None, self.dim]) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, None, self.dim]) + if getattr(self, "pwconv1", None) is not None: + with tf.name_scope(self.pwconv1.name): + self.pwconv1.build([None, None, self.dim]) + if getattr(self, "grn", None) is not None: + with tf.name_scope(self.grn.name): + self.grn.build(None) + if getattr(self, "pwconv2", None) is not None: + with tf.name_scope(self.pwconv2.name): + self.pwconv2.build([None, None, 4 * self.dim]) + if getattr(self, "drop_path", None) is not None: + with tf.name_scope(self.drop_path.name): + self.drop_path.build(None) + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2 +class TFConvNextV2Stage(keras.layers.Layer): + """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks. + + Args: + config (`ConvNextV2V2Config`): + Model configuration class. + in_channels (`int`): + Number of input channels. + out_channels (`int`): + Number of output channels. + depth (`int`): + Number of residual blocks. + drop_path_rates(`List[float]`): + Stochastic depth rates for each layer. + """ + + def __init__( + self, + config: ConvNextV2Config, + in_channels: int, + out_channels: int, + kernel_size: int = 2, + stride: int = 2, + depth: int = 2, + drop_path_rates: Optional[List[float]] = None, + **kwargs, + ): + super().__init__(**kwargs) + if in_channels != out_channels or stride > 1: + self.downsampling_layer = [ + keras.layers.LayerNormalization( + epsilon=1e-6, + name="downsampling_layer.0", + ), + # Inputs to this layer will follow NHWC format since we + # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings` + # layer. All the outputs throughout the model will be in NHWC + # from this point on until the output where we again change to + # NCHW. + keras.layers.Conv2D( + filters=out_channels, + kernel_size=kernel_size, + strides=stride, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="downsampling_layer.1", + ), + ] + else: + self.downsampling_layer = [tf.identity] + + drop_path_rates = drop_path_rates or [0.0] * depth + self.layers = [ + TFConvNextV2Layer( + config, + dim=out_channels, + drop_path=drop_path_rates[j], + name=f"layers.{j}", + ) + for j in range(depth) + ] + self.in_channels = in_channels + self.out_channels = out_channels + self.stride = stride + + def call(self, hidden_states): + for layer in self.downsampling_layer: + hidden_states = layer(hidden_states) + for layer in self.layers: + hidden_states = layer(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + if self.in_channels != self.out_channels or self.stride > 1: + with tf.name_scope(self.downsampling_layer[0].name): + self.downsampling_layer[0].build([None, None, None, self.in_channels]) + with tf.name_scope(self.downsampling_layer[1].name): + self.downsampling_layer[1].build([None, None, None, self.in_channels]) + + +class TFConvNextV2Encoder(keras.layers.Layer): + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + self.stages = [] + drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths)) + drop_path_rates = tf.split(drop_path_rates, config.depths) + drop_path_rates = [x.numpy().tolist() for x in drop_path_rates] + prev_chs = config.hidden_sizes[0] + for i in range(config.num_stages): + out_chs = config.hidden_sizes[i] + stage = TFConvNextV2Stage( + config, + in_channels=prev_chs, + out_channels=out_chs, + stride=2 if i > 0 else 1, + depth=config.depths[i], + drop_path_rates=drop_path_rates[i], + name=f"stages.{i}", + ) + self.stages.append(stage) + prev_chs = out_chs + + def call( + self, + hidden_states: tf.Tensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.stages): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) + + def build(self, input_shape=None): + for stage in self.stages: + with tf.name_scope(stage.name): + stage.build(None) + + +@keras_serializable +class TFConvNextV2MainLayer(keras.layers.Layer): + config_class = ConvNextV2Config + + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embeddings = TFConvNextV2Embeddings(config, name="embeddings") + self.encoder = TFConvNextV2Encoder(config, name="encoder") + self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + # We are setting the `data_format` like so because from here on we will revert to the + # NCHW output format + self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last") + + @unpack_inputs + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings(pixel_values, training=training) + + encoder_outputs = self.encoder( + embedding_output, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + last_hidden_state = encoder_outputs[0] + + # Change to NCHW output format have uniformity in the modules + pooled_output = self.pooler(last_hidden_state) + last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2)) + pooled_output = self.layernorm(pooled_output) + + # Change the other hidden state outputs to NCHW as well + if output_hidden_states: + hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) + + if not return_dict: + hidden_states = hidden_states if output_hidden_states else () + return (last_hidden_state, pooled_output) + hidden_states + + return TFBaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, self.config.hidden_sizes[-1]]) + + +class TFConvNextV2PreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ConvNextV2Config + base_model_prefix = "convnextv2" + main_input_name = "pixel_values" + + +CONVNEXTV2_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CONVNEXTV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`ConvNextImageProcessor.__call__`] for details. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to `True`. +""" + + +@add_start_docstrings( + "The bare ConvNextV2 model outputting raw features without any specific head on top.", + CONVNEXTV2_START_DOCSTRING, +) +class TFConvNextV2Model(TFConvNextV2PreTrainedModel): + def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") + + @unpack_inputs + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + outputs = self.convnextv2( + pixel_values=pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return outputs[:] + + return TFBaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=outputs.last_hidden_state, + pooler_output=outputs.pooler_output, + hidden_states=outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "convnextv2", None) is not None: + with tf.name_scope(self.convnextv2.name): + self.convnextv2.build(None) + + +@add_start_docstrings( + """ + ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + CONVNEXTV2_START_DOCSTRING, +) +class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") + + # Classifier head + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="classifier", + ) + + @unpack_inputs + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + outputs = self.convnextv2( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "convnextv2", None) is not None: + with tf.name_scope(self.convnextv2.name): + self.convnextv2.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_sizes[-1]]) + + +__all__ = ["TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d8555f58d1866451c38abb5559ef5bef9545f0b0 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py @@ -0,0 +1,29 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_emu3 import * + from .image_processing_emu3 import * + from .modeling_emu3 import * + from .processing_emu3 import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c25f452673c8b3a9035b08e3a67c56cba7d0b6d6 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..edeaaf6780859bb8897c08ee7de78708719a86d1 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1043205e54d33ec7416fec9f94bc362da1364a2c Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ff5821d229dc8d6c86f080965de854e67f5d549 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py new file mode 100644 index 0000000000000000000000000000000000000000..5b5abedf4016d5959c8eeea9a3d955470c8b1f13 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py @@ -0,0 +1,327 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Dict, List, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...modeling_rope_utils import rope_config_validation + + +class Emu3VQVAEConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a configuration to the VQ model presented in Emu3 paper. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + Args: + codebook_size (`int`, *optional*, defaults to 32768): + Codebook size of the VQ model. + embed_dim (`int`, *optional*, defaults to 4): + Dimension of the quantized vector in codebook. + latent_channels (`int`, *optional*, defaults to 4): + Dimension of the output channel of encoder and the input channel of decoder + double_latent (`bool`, *optional*, defaults to `False`): + Whether double the output dim of the encoder. + in_channels (`int`, *optional*, defaults to 3): + Input channel of encoder. + out_channels (`int`, *optional*, defaults to 3): + Output channel of decoder. + temporal_downsample_factor (`int`, *optional*, defaults to 4): + Temporal downsample factor. + base_channels (`int`, *optional*, defaults to 256): + Basic channel number of the intermediate blocks. + channel_multiplier (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`): + Channel scaling factor of the intermediate blocks. + num_res_blocks (`int`, *optional*, defaults to 2): + Residual block number in each stage. + attn_resolutions (`List[int]`, *optional*, defaults to `[3]`): + Stage indices to apply attention. + hidden_size (`int`, *optional*, defaults to 1024): + Dimension of the hidden representations in the attention layer. + num_attention_heads (`int`, *optional*, defaults to 1): + Number of attention heads for each attention layer. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import Emu3VQVAE, Emu3VQVAEConfig + + >>> # Initializing a video VQ model of Emu3 configuration + >>> configuration = Emu3VQVAEConfig() + + >>> # Initializing a model from the Emu3 VQ model style configuration + >>> model = Emu3VQVAE(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "emu3_vqgan" + base_config_key = "vq_config" + + def __init__( + self, + codebook_size: int = 32768, + embed_dim: int = 4, + latent_channels: int = 4, + double_latent: bool = False, + in_channels: int = 3, + out_channels: int = 3, + temporal_downsample_factor: int = 4, + base_channels: int = 256, + channel_multiplier: List[int] = [1, 2, 2, 4], + num_res_blocks: int = 2, + attn_resolutions: List[int] = [3], + hidden_size: int = 1024, + num_attention_heads: int = 1, + attention_dropout: float = 0.0, + **kwargs, + ): + super().__init__(**kwargs) + + self.codebook_size = codebook_size + self.embed_dim = embed_dim + self.latent_channels = latent_channels + self.double_latent = double_latent + self.in_channels = in_channels + self.out_channels = out_channels + self.temporal_downsample_factor = temporal_downsample_factor + self.base_channels = base_channels + self.channel_multiplier = channel_multiplier + self.num_res_blocks = num_res_blocks + self.attn_resolutions = attn_resolutions + self.hidden_size = hidden_size + self.num_attention_heads = num_attention_heads + self.attention_dropout = attention_dropout + + +class Emu3TextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a + emu3 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 184622): + Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Emu3Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 14336): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 9216): + The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens, + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 151643): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 151849): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 151850): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 1000000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type + and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value + accordingly. + Expected contents: + `rope_type` (`str`): + The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', + 'llama3'], with 'default' being the original RoPE implementation. + `factor` (`float`, *optional*): + Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In + most scaling types, a `factor` of x will enable the model to handle sequences of length x * + original maximum pre-trained length. + `original_max_position_embeddings` (`int`, *optional*): + Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during + pretraining. + `attention_factor` (`float`, *optional*): + Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention + computation. If unspecified, it defaults to value recommended by the implementation, using the + `factor` field to infer the suggested value. + `beta_fast` (`float`, *optional*): + Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear + ramp function. If unspecified, it defaults to 32. + `beta_slow` (`float`, *optional*): + Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear + ramp function. If unspecified, it defaults to 1. + `short_factor` (`List[float]`, *optional*): + Only used with 'longrope'. The scaling factor to be applied to short contexts (< + `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden + size divided by the number of attention heads divided by 2 + `long_factor` (`List[float]`, *optional*): + Only used with 'longrope'. The scaling factor to be applied to long contexts (< + `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden + size divided by the number of attention heads divided by 2 + `low_freq_factor` (`float`, *optional*): + Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE + `high_freq_factor` (`float`, *optional*): + Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE + mlp_bias (`bool`, *optional*, defaults to `False`): + Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. + attention_bias (`bool`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + + + ```python + >>> from transformers import Emu3Model, Emu3Config + + >>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration + >>> configuration = Emu3Config() + + >>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration + >>> model = Emu3Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "emu3_text_model" + base_config_key = "text_config" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size: int = 184622, + hidden_size: int = 4096, + intermediate_size: int = 14336, + num_hidden_layers: int = 32, + num_attention_heads: int = 32, + num_key_value_heads: Optional[int] = 8, + hidden_act: str = "silu", + max_position_embeddings: int = 9216, + rms_norm_eps: float = 1e-5, + use_cache: bool = True, + pad_token_id: int = 151643, + bos_token_id: int = 151849, + eos_token_id: int = 151850, + tie_word_embeddings: bool = False, + rope_theta: float = 1000000.0, + rope_scaling: Optional = None, + mlp_bias=False, + attention_bias=False, + attention_dropout: float = 0.1, + initializer_range: float = 0.02, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.mlp_bias = mlp_bias + self.attention_bias = attention_bias + self.initializer_range = initializer_range + rope_config_validation(self) + + self.attention_dropout = attention_dropout + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + +class Emu3Config(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a + emu3 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*): + Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model. + text_config (`Union[Dict, Emu3TextConfig]``, *optional*): + Emu3TextConfig instance containing the configuration for the language model. + vocabulary_map (`dict`, *optional*): + A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs. + """ + + model_type = "emu3" + keys_to_ignore_at_inference = ["past_key_values"] + sub_configs = {"text_config": Emu3TextConfig, "vq_config": Emu3VQVAEConfig} + + def __init__( + self, + vq_config: Union[Dict, Emu3VQVAEConfig] = None, + text_config: Union[Dict, Emu3TextConfig] = None, + vocabulary_map: Dict[int, int] = None, + **kwargs, + ): + if vq_config is None: + vq_config = Emu3VQVAEConfig() + elif isinstance(vq_config, dict): + vq_config = Emu3VQVAEConfig(**vq_config) + + if text_config is None: + text_config = Emu3TextConfig() + elif isinstance(text_config, dict): + text_config = Emu3TextConfig(**text_config) + + self.vq_config = vq_config + self.text_config = text_config + self.vocabulary_map = vocabulary_map + + super().__init__(**kwargs) + + +__all__ = ["Emu3Config", "Emu3TextConfig", "Emu3VQVAEConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py new file mode 100644 index 0000000000000000000000000000000000000000..f28bc501ba169c640251fc29991e2e523e98c574 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py @@ -0,0 +1,552 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import Dict, Iterable, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature +from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format +from ...image_utils import ( + OPENAI_CLIP_MEAN, + OPENAI_CLIP_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + VideoInput, + get_image_size, + infer_channel_dimension_format, + is_scaled_image, + is_valid_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +if is_vision_available(): + from PIL import Image + +logger = logging.get_logger(__name__) + + +def make_batched_images(images) -> List[List[ImageInput]]: + """ + Accepts images in list or nested list format, and makes a list of images for preprocessing. + + Args: + images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): + The input image. + + Returns: + list: A list of images. + """ + if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): + return [img for img_list in images for img in img_list] + + elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): + return images + + elif is_valid_image(images): + return [images] + + raise ValueError(f"Could not make batched images from {images}") + + +def smart_resize( + height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280 +): + """Rescales the image so that the following conditions are met: + + 1. Both dimensions (height and width) are divisible by 'factor'. + + 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. + + 3. The aspect ratio of the image is maintained as closely as possible. + + """ + if height < factor or width < factor: + raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}") + elif max(height, width) / min(height, width) > 200: + raise ValueError( + f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" + ) + h_bar = round(height / factor) * factor + w_bar = round(width / factor) * factor + if h_bar * w_bar > max_pixels: + beta = math.sqrt((height * width) / max_pixels) + h_bar = math.floor(height / beta / factor) * factor + w_bar = math.floor(width / beta / factor) * factor + elif h_bar * w_bar < min_pixels: + beta = math.sqrt(min_pixels / (height * width)) + h_bar = math.ceil(height * beta / factor) * factor + w_bar = math.ceil(width * beta / factor) * factor + return h_bar, w_bar + + +class Emu3ImageProcessor(BaseImageProcessor): + r""" + Constructs a Emu3 image processor that dynamically resizes images based on the original images. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): + Resampling filter to use when resizing the image. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): + Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. + image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): + Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. + do_convert_rgb (`bool`, *optional*, defaults to `True`): + Whether to convert the image to RGB. + do_pad (`bool`, *optional*, defaults to `True`): + Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest + number of patches in the batch. Padding will be applied to the bottom and right with zeros. + min_pixels (`int`, *optional*, defaults to `512 * 512`): + The min pixels of the image to resize the image. + max_pixels (`int`, *optional*, defaults to `1024 * 1024`): + The max pixels of the image to resize the image. + spatial_factor (`int`, *optional*, defaults to 8): + The spatial downsample factor the image will be downsampled in feature extracting phase + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + resample: PILImageResampling = PILImageResampling.BICUBIC, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_rgb: bool = True, + do_pad: bool = True, + min_pixels: int = 512 * 512, + max_pixels: int = 1024 * 1024, + spatial_factor: int = 8, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.do_resize = do_resize + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN + self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD + self.min_pixels = min_pixels + self.max_pixels = max_pixels + self.spatial_factor = spatial_factor + self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} + self.do_convert_rgb = do_convert_rgb + + def _preprocess( + self, + images: Union[ImageInput, VideoInput], + do_resize: bool = None, + resample: PILImageResampling = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_rgb: bool = None, + data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. + vision_info (`List[Dict]`, *optional*): + Optional list of dictionaries containing additional information about vision inputs. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + resample (`PILImageResampling`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Scale factor to use if rescaling the image. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. + do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): + Whether to convert the image to RGB. + data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + images = make_list_of_images(images) + + if do_convert_rgb: + images = [convert_to_rgb(image) for image in images] + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + height, width = get_image_size(images[0], channel_dim=input_data_format) + resized_height, resized_width = height, width + processed_images = [] + for image in images: + if do_resize: + resized_height, resized_width = smart_resize( + height, + width, + factor=self.spatial_factor, + min_pixels=self.min_pixels, + max_pixels=self.max_pixels, + ) + image = resize( + image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format + ) + + if do_rescale: + image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) + + if do_normalize: + image = self.normalize( + image=image, mean=image_mean, std=image_std, input_data_format=input_data_format + ) + + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + processed_images.append(image) + + images = np.array(processed_images) + return images + + def _pad_for_batching( + self, + pixel_values: List[np.ndarray], + image_sizes: List[List[int]], + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """ + Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. + + Args: + pixel_values (`List[np.ndarray]`): + An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) + image_sizes (`List[List[int]]`): + A list of sizes for each image in `pixel_values` in (height, width) format. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + If unset, will use same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + If unset, will use the inferred format of the input image. + + Returns: + List[`np.ndarray`]: The padded images. + """ + + max_shape = ( + max([size[0] for size in image_sizes]), + max([size[1] for size in image_sizes]), + ) + pixel_values = [ + pad( + image, + padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])), + data_format=data_format, + input_data_format=input_data_format, + ) + for image, size in zip(pixel_values, image_sizes) + ] + return pixel_values + + def preprocess( + self, + images: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_rgb: bool = None, + do_pad: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """ + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. + resample (`int`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only + has an effect if `do_resize` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to + `True`. + do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): + Whether to convert the image to RGB. + do_pad (`bool`, *optional*, defaults to `True`): + Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest + number of patches in the batch. Padding will be applied to the bottom and right with zeros. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + resample = resample if resample is not None else self.resample + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb + do_pad = do_pad if do_pad is not None else self.do_pad + + if images is not None: + images = make_batched_images(images) + + if images is not None and not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + validate_preprocess_arguments( + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_resize=do_resize, + size=size, + resample=resample, + ) + + pixel_values = [] + for image in images: + image = self._preprocess( + image, + do_resize=do_resize, + resample=resample, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + data_format=data_format, + do_convert_rgb=do_convert_rgb, + input_data_format=input_data_format, + ) + pixel_values.extend(image) + + image_sizes = [image.shape[-2:] for image in pixel_values] + if do_pad: + pixel_values = self._pad_for_batching(pixel_values, image_sizes) + pixel_values = np.array(pixel_values) + + return BatchFeature( + data={"pixel_values": pixel_values, "image_sizes": image_sizes}, tensor_type=return_tensors + ) + + def postprocess( + self, + images: ImageInput, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Union[str, TensorType] = "PIL.Image.Image", + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """ + Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess. + The parameters should be same as in preprocess. + Args: + images (`ImageInput`): + Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + images = make_list_of_images(images) + if isinstance(images[0], Image.Image): + return images if len(images) > 1 else images[0] + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + pixel_values = [] + for image in images: + image = to_numpy_array(image) + if do_normalize: + image = self.unnormalize( + image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format + ) + + if do_rescale: + image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) + image = image.clip(0, 255).astype(np.uint8) + + if do_normalize and do_rescale and return_tensors == "PIL.Image.Image": + image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format) + pixel_values.append(Image.fromarray(image)) + else: + pixel_values.extend(image) + + data = {"pixel_values": pixel_values} + return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None + + return BatchFeature(data=data, tensor_type=return_tensors) + + def unnormalize( + self, + image: np.array, + image_mean: Union[float, Iterable[float]], + image_std: Union[float, Iterable[float]], + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.array: + """ + Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`. + image = (image * image_std) + image_mean + Args: + image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`): + Batch of pixel values to postprocess. + image_mean (`float` or `Iterable[float]`): + The mean to use for unnormalization. + image_std (`float` or `Iterable[float]`): + The standard deviation to use for unnormalization. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + num_channels = 3 + + if isinstance(image_mean, Iterable): + if len(image_mean) != num_channels: + raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}") + else: + image_mean = [image_mean] * num_channels + + if isinstance(image_std, Iterable): + if len(image_std) != num_channels: + raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}") + else: + image_std = [image_std] * num_channels + + rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std)) + rev_image_std = tuple(1 / std for std in image_std) + image = self.normalize( + image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format + ) + return image + + +__all__ = ["Emu3ImageProcessor"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py new file mode 100644 index 0000000000000000000000000000000000000000..1ee883aa406d648369eb881da1889d03b2691bcd --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py @@ -0,0 +1,1949 @@ +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/emu3/modular_emu3.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_emu3.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from functools import cached_property +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache, StaticCache +from ...generation import GenerationMixin +from ...modeling_attn_mask_utils import AttentionMaskConverter +from ...modeling_flash_attention_utils import FlashAttentionKwargs +from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS +from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel +from ...processing_utils import Unpack +from ...utils import ( + LossKwargs, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig + + +logger = logging.get_logger(__name__) + + +_CONFIG_FOR_DOC = "Emu3Config" + + +class Emu3RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Emu3RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class Emu3MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + + attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +class Emu3Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: Emu3Config, layer_idx: int): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.is_causal = True + + self.q_proj = nn.Linear( + config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias + ) + self.k_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.v_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.o_proj = nn.Linear( + config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias + ) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs: Unpack[FlashAttentionKwargs], + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): + logger.warning_once( + "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " + 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + else: + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + +class Emu3DecoderLayer(nn.Module): + def __init__(self, config: Emu3Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = Emu3Attention(config=config, layer_idx=layer_idx) + + self.mlp = Emu3MLP(config) + self.input_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.dropout = nn.Dropout(config.attention_dropout) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = residual + self.dropout(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + self.dropout(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +class Emu3VQVAEVectorQuantizer(nn.Module): + """ + A module for vector quantization using learned embedding vectors. + + This module implements the quantization process similar to te one described in + the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous + input vectors into discrete codebook vectors, which are learned during training. + Current implementation improves over previous ones by avoiding costly matrix multiplications + and allowing for post-hoc remapping of indices. + """ + + def __init__(self, config: Emu3VQVAEConfig): + super().__init__() + self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) + self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) + + def forward(self, hidden_state: torch.Tensor): + batch_size, temporal, channels, height, width = hidden_state.shape + hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous() + hidden_state_flattened = hidden_state.view(-1, channels) + + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) + embedding_sum = torch.sum(self.embedding.weight**2, dim=1) + + # "bd,dn->bn", + distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1)) + distances = hidden_state_sum + embedding_sum - distances + + min_encoding_indices = torch.argmin(distances, dim=1) + min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width) + return min_encoding_indices + + +class Emu3VQVAEEncoderConvDownsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, hidden_states): + # no asymmetric padding in torch conv, must do it ourselves + hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0) + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAEEncoderConvUpsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, hidden_states): + hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAEConv3d(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + kernel_size: Tuple[int], + stride: Tuple[int], + ): + super().__init__() + + padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])] + self.padding = () + for pad_size in padding_sizes[::-1]: + self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2) + self.padding += (2, 0) + + self.conv = nn.Conv3d( + in_channel, + out_channel, + kernel_size, + stride=stride, + ) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = F.pad(hidden_states, self.padding) + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAESpatialNorm(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + ): + super().__init__() + self.norm_layer = nn.GroupNorm( + num_channels=out_channels, + num_groups=32, + eps=1e-6, + affine=True, + ) + + self.conv_y = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + self.conv_b = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): + quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest") + hidden_states = self.norm_layer(hidden_states) + hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states) + return hidden_states + + +class Emu3VQVAETemporalUpsample(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + ): + super().__init__() + self.conv = Emu3VQVAEConv3d( + in_channel, + out_channel, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + + def forward(self, hidden_states: torch.Tensor): + batch_size, channels, temporal, height, width = hidden_states.shape + hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal) + hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") + hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous() + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAETemporalDownsample(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + ): + super().__init__() + self.conv = Emu3VQVAEConv3d( + in_channel, + out_channel, + kernel_size=(4, 3, 3), + stride=(2, 1, 1), + ) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAETemporalResnetBlock(nn.Module): + def __init__( + self, + in_channels, + out_channels=None, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + + self.norm1 = nn.BatchNorm3d(in_channels) + self.conv1 = Emu3VQVAEConv3d( + in_channels, + out_channels, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + self.norm2 = nn.BatchNorm3d(out_channels) + self.conv2 = Emu3VQVAEConv3d( + out_channels, + out_channels, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + if self.in_channels != self.out_channels: + self.nin_shortcut = nn.Conv3d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states): + residual = hidden_states + hidden_states = self.norm1(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv1(hidden_states) + + hidden_states = self.norm2(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.in_channels != self.out_channels: + residual = self.nin_shortcut(residual) + + return residual + hidden_states + + +class Emu3VQVAEResnetBlock(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: Optional[int] = None, + quant_channels: Optional[int] = None, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.quant_channels = quant_channels + + if quant_channels is None: + self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) + self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True) + else: + self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels) + self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels) + + self.conv1 = nn.Conv2d( + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + self.conv2 = nn.Conv2d( + out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + if self.in_channels != self.out_channels: + self.nin_shortcut = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None): + norm_args = () if self.quant_channels is None else (quant_channels,) + + residual = hidden_states + hidden_states = self.norm1(hidden_states, *norm_args) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv1(hidden_states) + + hidden_states = self.norm2(hidden_states, *norm_args) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.in_channels != self.out_channels: + residual = self.nin_shortcut(residual) + + return residual + hidden_states + + +class Emu3VQVAEAttentionBlock(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """Input shape: Batch x Time x Channel""" + + batch_size, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + k_v_seq_len = key_states.shape[-2] + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale + + if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): + raise ValueError( + f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class Emu3VQVAEGroupNorm(nn.GroupNorm): + """ + Same as the torch GroupNorm with the only difference that this ones accepts + an optional kwarg `quant_states` which is not used. This class makes it easier to + use SpatialNorm or GroupNorm without conditionals + """ + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def forward(self, input, quant_states=None): + return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps) + + +class Emu3VQVAEMiddleBlock(nn.Module): + def __init__(self, config, in_channels, quant_channels=None): + super().__init__() + + self.block_1 = Emu3VQVAEResnetBlock( + in_channels=in_channels, + out_channels=in_channels, + quant_channels=quant_channels, + ) + self.attn_1 = Emu3VQVAEAttentionBlock(config) + if quant_channels is None: + self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) + else: + self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels) + + self.block_2 = Emu3VQVAEResnetBlock( + in_channels=in_channels, + out_channels=in_channels, + quant_channels=quant_channels, + ) + + def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor = None): + hidden_states = self.block_1(hidden_states, quant_states) + residual = hidden_states + hidden_states = self.attn_norm(hidden_states, quant_states) + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = self.attn_1(hidden_states)[0] + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + hidden_states = self.block_2(hidden_states, quant_states) + return hidden_states + + +class Emu3VQVAEDownBlock(nn.Module): + def __init__(self, config): + super().__init__() + + self.num_resolutions = len(config.channel_multiplier) + self.num_res_blocks = config.num_res_blocks + base_channels = config.base_channels + channel_multiplier = config.channel_multiplier + + in_channel_multiplier = (1,) + tuple(channel_multiplier) + self.in_channel_multiplier = in_channel_multiplier + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + attn_norms = nn.ModuleList() + block_in = base_channels * in_channel_multiplier[i_level] + block_out = base_channels * channel_multiplier[i_level] + for i_block in range(self.num_res_blocks): + block.append( + Emu3VQVAEResnetBlock( + in_channels=block_in, + out_channels=block_out, + ) + ) + block_in = block_out + if config.attn_resolutions is not None and i_level in config.attn_resolutions: + attn.append(Emu3VQVAEAttentionBlock(config)) + attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)) + + down = nn.Module() + down.block = block + down.attn = attn + down.attn_norms = attn_norms + if i_level != self.num_resolutions - 1: + down.downsample = Emu3VQVAEEncoderConvDownsample(block_in) + self.down.append(down) + + def forward(self, hidden_states: torch.FloatTensor): + for i_level, blocks in enumerate(self.down): + for i_block in range(self.num_res_blocks): + hidden_states = blocks.block[i_block](hidden_states) + if len(blocks.attn) > 0: + residual = hidden_states + hidden_states = blocks.attn_norms[i_block](hidden_states) + + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = blocks.attn[i_block](hidden_states)[0] + + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + + if i_level != self.num_resolutions - 1: + hidden_states = blocks.downsample(hidden_states) + + return hidden_states + + +class Emu3VQVAEUpBlock(nn.Module): + def __init__(self, config): + super().__init__() + + self.num_resolutions = len(config.channel_multiplier) + self.num_res_blocks = config.num_res_blocks + + quant_channels = config.embed_dim + block_in = config.base_channels * config.channel_multiplier[-1] + + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + attn_norms = nn.ModuleList() + block_out = config.base_channels * config.channel_multiplier[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + Emu3VQVAEResnetBlock( + in_channels=block_in, + out_channels=block_out, + quant_channels=quant_channels, + ) + ) + block_in = block_out + if i_level in config.attn_resolutions: + attn.append(Emu3VQVAEAttentionBlock(config)) + attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in)) + + up = nn.Module() + up.block = block + up.attn = attn + up.attn_norms = attn_norms + if i_level != 0: + up.upsample = Emu3VQVAEEncoderConvUpsample(block_in) + + self.up.insert(0, up) + + def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor): + for i_level, blocks in enumerate(self.up[::-1]): + for i_block in range(self.num_res_blocks + 1): + hidden_states = blocks.block[i_block](hidden_states, quant_states) + if len(blocks.attn) > 0: + residual = hidden_states + hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states) + + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = blocks.attn[i_block](hidden_states)[0] + + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + if i_level != len(self.up) - 1: + hidden_states = blocks.upsample(hidden_states) + + return hidden_states + + +class Emu3VQVAEEncoder(nn.Module): + def __init__(self, config): + super().__init__() + + base_channels = config.base_channels + in_channels = config.in_channels + double_latent = config.double_latent + latent_channels = config.latent_channels + channel_multiplier = config.channel_multiplier + out_channels = 2 * latent_channels if double_latent else latent_channels + block_in = base_channels * channel_multiplier[-1] + + self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) + self.down_block = Emu3VQVAEDownBlock(config) + self.middle_block = Emu3VQVAEMiddleBlock(config, block_in) + + self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) + self.conv_out = torch.nn.Conv2d( + block_in, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) + self.time_conv = nn.ModuleList() + self.time_res_stack = nn.ModuleList() + + for i in range(temporal_down_blocks): + conv = Emu3VQVAETemporalDownsample(out_channels, out_channels) + self.time_conv.append(conv) + + for _ in range(config.num_res_blocks): + time_res_conv = Emu3VQVAETemporalResnetBlock( + in_channels=out_channels, + out_channels=out_channels, + ) + self.time_res_stack.append(time_res_conv) + + def forward(self, pixel_values: torch.LongTensor): + temporal_dim = pixel_values.shape[1] + pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:]) + + # downsampling & middle + hidden_states = self.conv_in(pixel_values) + hidden_states = self.down_block(hidden_states) + hidden_states = self.middle_block(hidden_states) + + # end + hidden_states = self.norm_out(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv_out(hidden_states) + + hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:]) + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + + # temporal convs + for conv in self.time_conv: + hidden_states = conv(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + + for layer in self.time_res_stack: + hidden_states = layer(hidden_states) + + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + + return hidden_states + + +class Emu3VQVAEDecoder(nn.Module): + def __init__(self, config: Emu3VQVAEConfig): + super().__init__() + + quant_channels = config.embed_dim + block_in = config.base_channels * config.channel_multiplier[-1] + self.time_res_stack = nn.ModuleList() + for _ in range(config.num_res_blocks): + time_res_conv = Emu3VQVAETemporalResnetBlock( + in_channels=config.latent_channels, out_channels=config.latent_channels + ) + self.time_res_stack.append(time_res_conv) + + temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) + self.time_conv = nn.ModuleList() + for i in range(temp_upsample_block_num): + conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels) + self.time_conv.append(conv) + + self.conv_in = nn.Conv2d( + config.latent_channels, + block_in, + kernel_size=3, + stride=1, + padding=1, + ) + + self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels) + self.up_block = Emu3VQVAEUpBlock(config) + + block_in = config.base_channels * config.channel_multiplier[0] + self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in) + self.conv_out = nn.Conv2d( + block_in, + config.out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): + hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0) + hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) + + # temporal convs + for layer in self.time_res_stack: + hidden_quant_states = layer(hidden_quant_states) + + for layer in self.time_conv: + hidden_quant_states = layer(hidden_quant_states) + hidden_quant_states *= torch.sigmoid(hidden_quant_states) + + hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) + hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0) + hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:]) + quant_states = quant_states.reshape(-1, *quant_states.shape[2:]) + + hidden_states = self.conv_in(hidden_states) + + # middle & upsampling + hidden_states = self.middle_block(hidden_states, quant_states) + hidden_states = self.up_block(hidden_states, quant_states) + + hidden_states = self.norm_out(hidden_states, quant_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv_out(hidden_states) + + return hidden_states + + +EMU3_VQ_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Emu3VQVAEConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + """The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens. + This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from + [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131). + """, + EMU3_VQ_START_DOCSTRING, +) +class Emu3VQVAE(PreTrainedModel): + config_class = Emu3VQVAEConfig + base_model_prefix = "emuvideovq" + main_input_name = "pixel_values" + _no_split_modules = [ + "Emu3VQVAETemporalResnetBlock", + "Emu3VQVAEAttentionBlock", + "Emu3VQVAEResnetBlock", + "Emu3VQVAEVectorQuantizer", + ] + + def _init_weights(self, module): + if isinstance(module, (nn.Conv2d, nn.Conv3d)): + nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") + elif isinstance(module, nn.Linear): + nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) + if module.bias is not None: + fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) + bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 + nn.init.uniform_(module.bias, -bound, bound) + elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + + def __init__(self, config: Emu3VQVAEConfig): + super().__init__(config) + + self.config = config + + self.encoder = Emu3VQVAEEncoder(config) + self.decoder = Emu3VQVAEDecoder(config) + self.quantize = Emu3VQVAEVectorQuantizer(config) + self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1) + + self.quant_conv = Emu3VQVAEConv3d( + config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1) + ) + self.post_quant_conv = Emu3VQVAEConv3d( + config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1) + ) + self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1) + self.eval() # Emu3's VQ model is frozen + + self.post_init() + + def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor): + is_image = pixel_values.ndim == 4 + if is_image: + temporal = self.config.temporal_downsample_factor + batch_size, channels, height, width = pixel_values.shape + pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1) + else: + batch_size, temporal, channels, height, width = pixel_values.shape + + hidden_states = self.encoder(pixel_values) + + # b t c h w -> b c t h w + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + hidden_states = self.quant_conv(hidden_states) + + # b c t h w -> b t c h w + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + codes = self.quantize(hidden_states) + + image_tokens = codes.squeeze(1) if is_image else codes + + image_tokens = [ + single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)] + for single_image, size in zip(image_tokens, image_sizes) + ] + + return image_tokens + + def decode(self, hidden_states: torch.Tensor): + is_image = hidden_states.ndim == 3 + if is_image: + hidden_states = hidden_states.unsqueeze(1) + + batch_size, temporal, height, width = hidden_states.shape + quant = self.quantize.embedding(hidden_states.flatten()) + + channels = quant.shape[-1] + quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous() + post_quant = self.post_quant_conv(quant) + + quant = quant.permute(0, 2, 1, 3, 4) + post_quant = post_quant.permute(0, 2, 1, 3, 4) + + video = self.decoder(post_quant, quant) + video = video.reshape( + batch_size, + temporal * self.config.temporal_downsample_factor, + self.config.out_channels, + height * self.spatial_scale_factor, + width * self.spatial_scale_factor, + ) + return video[:, 0] if is_image else video + + +class Emu3ImageVocabularyMapping: + """ + A class for mapping discrete image tokens from VQGAN to BPE tokens. + """ + + def __init__(self, vocab_map): + self.vocab_map = vocab_map + self.eol_token_id = vocab_map.get("<|extra_200|>") + self.image_token_id = vocab_map.get("") + + @cached_property + def image_tokens(self): + return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) + + @cached_property + def image_tokens_str(self): + return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) + + @cached_property + def img2bpe(self): + return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str} + + @cached_property + def bpe2img(self): + return {v: k for k, v in self.img2bpe.items()} + + @cached_property + def bpe2img_mapping_tensor(self): + mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int) + for k, v in self.bpe2img.items(): + mapping[k] = v + return mapping + + @cached_property + def img2bpe_mapping_tensor(self): + mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) + for k, v in self.img2bpe.items(): + mapping[k] = v + return mapping + + def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor: + device = img_batch.device + eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id + img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] + img_tokens = torch.cat([img_tokens, eol_row], dim=-1) + return img_tokens.to(device) + + def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor: + device = img_batch.device + img_batch = img_batch[..., :-1] # remove last row of EOL tokens + img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")] + return img_tokens.to(device) + + +EMU3_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Emu3Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare emu3 Model outputting raw hidden-states without any specific head on top.", + EMU3_START_DOCSTRING, +) +class Emu3PreTrainedModel(PreTrainedModel): + config_class = Emu3Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = [ + "Emu3DecoderLayer", + ] + _skip_keys_device_placement = ["past_key_values", "causal_mask"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_quantized_cache = True + _supports_cache_class = True + _supports_static_cache = True + _supports_param_buffer_assignment = False + _supports_flex_attn = True + + def _init_weights(self, module): + std = self.config.get_text_config().initializer_range + if isinstance(module, Emu3VQVAE): + module.apply(module._init_weights) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +class Emu3RotaryEmbedding(nn.Module): + def __init__(self, config: Emu3Config, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + def _dynamic_frequency_update(self, position_ids, device): + """ + dynamic RoPE layers should recompute `inv_freq` in the following situations: + 1 - growing beyond the cached sequence length (allow scaling) + 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) + """ + seq_len = torch.max(position_ids) + 1 + if seq_len > self.max_seq_len_cached: # growth + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) + self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation + self.max_seq_len_cached = seq_len + + if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + self.max_seq_len_cached = self.original_max_seq_len + + @torch.no_grad() + def forward(self, x, position_ids): + if "dynamic" in self.rope_type: + self._dynamic_frequency_update(position_ids, device=x.device) + + # Core RoPE block + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 (see https://github.com/huggingface/transformers/pull/29285) + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + + # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention + cos = cos * self.attention_scaling + sin = sin * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +EMU3_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare Emu3Text Model outputting raw hidden-states without any specific head on top.", + EMU3_START_DOCSTRING, +) +class Emu3TextModel(Emu3PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Emu3TextDecoderLayer`] + + Args: + config: Emu3TextConfig + """ + + def __init__(self, config: Emu3Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.rotary_emb = Emu3RotaryEmbedding(config=config) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **flash_attn_kwargs: Unpack[FlashAttentionKwargs], + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + + for decoder_layer in self.layers[: self.config.num_hidden_layers]: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + position_embeddings, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **flash_attn_kwargs, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + output = BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values if use_cache else None, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + return output if return_dict else output.to_tuple() + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool, + ): + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and (attention_mask == 0.0).any(): + return attention_mask + return None + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_cache_shape() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + min_dtype = torch.finfo(dtype).min + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + @staticmethod + def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + cache_position: torch.Tensor, + batch_size: int, + **kwargs, + ): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape + `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, + to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + min_dtype = torch.finfo(dtype).min + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... + + +EMU3_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Has to be an instance of [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). + + The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +class Emu3ForCausalLM(Emu3PreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + config_class = Emu3TextConfig + + def __init__(self, config): + super().__init__(config) + self.model = Emu3TextModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig") + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + num_logits_to_keep: int = 0, + **kwargs: Unpack[KwargsForCausalLM], + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + num_logits_to_keep (`int`, *optional*): + Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + + Returns: + + Example: + + ```python + >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration + >>> import torch + >>> import requests + >>> from PIL import Image + + >>> model = Emu3ForCausalLM.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16) + >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf") + + >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device) + + >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) + >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs[0] + # Only compute necessary logits, and do not upcast them to float if we are not computing the loss + logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin): + def __init__(self, config): + super().__init__(config) + self.text_model = Emu3ForCausalLM._from_config(config.text_config) + self.vqmodel = Emu3VQVAE(config.vq_config) + self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.text_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.text_model.set_input_embeddings(value) + + def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor): + """ + Tokenizes images into discrete tokens with VQGAN module. Converts + obtained image tokens into BPE tokens and wraps with "boi" and "eoi" + special tokens. + + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): + The tensors corresponding to the input images. + image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): + The sizes of the images in the batch, being (height, width) for each image. + """ + image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes) + bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list] + bpe_tokens = torch.cat(bpe_tokens_list) + return bpe_tokens + + @torch.no_grad + def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int): + """ + Decodes generated image tokens from language model to continuous pixel values + with VQGAN module via upsampling. + + Args: + image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`): + The tensors corresponding to the input images. + height (`int`): + Height of the generated image before upsampling. + width (`int`): + Width of the generated image before upsampling. + """ + sequences = image_tokens[:, :-3].view(-1, height, width + 1) + image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences) + image = self.vqmodel.decode(image_tokens) + return image + + @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + pixel_values: torch.FloatTensor = None, + image_sizes: torch.Tensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + num_logits_to_keep: int = 0, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + num_logits_to_keep (`int`, *optional*): + Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + + Returns: + + Example: + + ```python + >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration + >>> import torch + >>> import requests + >>> from PIL import Image + + >>> model = Emu3ForConditionalGeneration.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16) + >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf") + + >>> conversation = [ + ... { + ... "role": "system", + ... "content": [ + ... {"type": "text", "text": "You are a helpful assistant."}, + ... ], + ... }, + ... { + ... "role": "user", + ... "content": [ + ... {"type": "image"}, + ... {"type": "text", "text": "Please describe the image."}, + ... ], + ... }, + ... ] + + >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) + >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw) + + >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16) + + >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) + >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if pixel_values is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" + ) + + if pixel_values is not None: + image_tokens = self.get_image_tokens(pixel_values, image_sizes) + special_image_mask = input_ids == self.vocabulary_mapping.image_token_id + image_tokens = image_tokens.to(input_ids.device, input_ids.dtype) + input_ids = input_ids.masked_scatter(special_image_mask, image_tokens) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + num_logits_to_keep=num_logits_to_keep, + ) + + return outputs + + +__all__ = ["Emu3ForConditionalGeneration", "Emu3ForCausalLM", "Emu3TextModel", "Emu3PreTrainedModel", "Emu3VQVAE"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py new file mode 100644 index 0000000000000000000000000000000000000000..e9b80d5cbb4deb4bb0d646951966a820fa676d4c --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py @@ -0,0 +1,1270 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from functools import cached_property +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint + +from ...cache_utils import Cache +from ...generation import GenerationMixin +from ...modeling_outputs import ( + CausalLMOutputWithPast, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + logging, + replace_return_docstrings, +) +from ..chameleon.modeling_chameleon import ( + ChameleonPreTrainedModel, + ChameleonVQVAEEncoderConvDownsample, +) +from ..llama.modeling_llama import ( + LlamaDecoderLayer, + LlamaForCausalLM, + LlamaModel, +) +from ..siglip.modeling_siglip import SiglipAttention +from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig + + +if is_flash_attn_2_available(): + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +_CONFIG_FOR_DOC = "Emu3Config" +_CHECKPOINT_FOR_DOC = "Emu3-community/Emu3-Chat-hf" + +logger = logging.get_logger(__name__) + + +# Has extra dropout which no other model in the library has +class Emu3DecoderLayer(LlamaDecoderLayer): + def __init__(self, config: Emu3Config, layer_idx: int): + super().__init__(config, layer_idx) + self.dropout = nn.Dropout(config.attention_dropout) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = residual + self.dropout(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + self.dropout(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +class Emu3VQVAEVectorQuantizer(nn.Module): + """ + A module for vector quantization using learned embedding vectors. + + This module implements the quantization process similar to te one described in + the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous + input vectors into discrete codebook vectors, which are learned during training. + Current implementation improves over previous ones by avoiding costly matrix multiplications + and allowing for post-hoc remapping of indices. + """ + + def __init__(self, config: Emu3VQVAEConfig): + super().__init__() + self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) + self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) + + def forward(self, hidden_state: torch.Tensor): + batch_size, temporal, channels, height, width = hidden_state.shape + hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous() + hidden_state_flattened = hidden_state.view(-1, channels) + + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) + embedding_sum = torch.sum(self.embedding.weight**2, dim=1) + + # "bd,dn->bn", + distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1)) + distances = hidden_state_sum + embedding_sum - distances + + min_encoding_indices = torch.argmin(distances, dim=1) + min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width) + return min_encoding_indices + + +class Emu3VQVAEEncoderConvDownsample(ChameleonVQVAEEncoderConvDownsample): + pass + + +class Emu3VQVAEEncoderConvUpsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, hidden_states): + hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAEConv3d(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + kernel_size: Tuple[int], + stride: Tuple[int], + ): + super().__init__() + + padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])] + self.padding = () + for pad_size in padding_sizes[::-1]: + self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2) + self.padding += (2, 0) + + self.conv = nn.Conv3d( + in_channel, + out_channel, + kernel_size, + stride=stride, + ) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = F.pad(hidden_states, self.padding) + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAESpatialNorm(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + ): + super().__init__() + self.norm_layer = nn.GroupNorm( + num_channels=out_channels, + num_groups=32, + eps=1e-6, + affine=True, + ) + + self.conv_y = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + self.conv_b = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): + quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest") + hidden_states = self.norm_layer(hidden_states) + hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states) + return hidden_states + + +class Emu3VQVAETemporalUpsample(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + ): + super().__init__() + self.conv = Emu3VQVAEConv3d( + in_channel, + out_channel, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + + def forward(self, hidden_states: torch.Tensor): + batch_size, channels, temporal, height, width = hidden_states.shape + hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal) + hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") + hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous() + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAETemporalDownsample(nn.Module): + def __init__( + self, + in_channel: int, + out_channel: int, + ): + super().__init__() + self.conv = Emu3VQVAEConv3d( + in_channel, + out_channel, + kernel_size=(4, 3, 3), + stride=(2, 1, 1), + ) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.conv(hidden_states) + return hidden_states + + +class Emu3VQVAETemporalResnetBlock(nn.Module): + def __init__( + self, + in_channels, + out_channels=None, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + + self.norm1 = nn.BatchNorm3d(in_channels) + self.conv1 = Emu3VQVAEConv3d( + in_channels, + out_channels, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + self.norm2 = nn.BatchNorm3d(out_channels) + self.conv2 = Emu3VQVAEConv3d( + out_channels, + out_channels, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + ) + if self.in_channels != self.out_channels: + self.nin_shortcut = nn.Conv3d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states): + residual = hidden_states + hidden_states = self.norm1(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv1(hidden_states) + + hidden_states = self.norm2(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.in_channels != self.out_channels: + residual = self.nin_shortcut(residual) + + return residual + hidden_states + + +class Emu3VQVAEResnetBlock(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: Optional[int] = None, + quant_channels: Optional[int] = None, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.quant_channels = quant_channels + + if quant_channels is None: + self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) + self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True) + else: + self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels) + self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels) + + self.conv1 = nn.Conv2d( + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + self.conv2 = nn.Conv2d( + out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + if self.in_channels != self.out_channels: + self.nin_shortcut = nn.Conv2d( + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None): + norm_args = () if self.quant_channels is None else (quant_channels,) + + residual = hidden_states + hidden_states = self.norm1(hidden_states, *norm_args) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv1(hidden_states) + + hidden_states = self.norm2(hidden_states, *norm_args) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.in_channels != self.out_channels: + residual = self.nin_shortcut(residual) + + return residual + hidden_states + + +class Emu3VQVAEAttentionBlock(SiglipAttention): + pass + + +class Emu3VQVAEGroupNorm(nn.GroupNorm): + """ + Same as the torch GroupNorm with the only difference that this ones accepts + an optional kwarg `quant_states` which is not used. This class makes it easier to + use SpatialNorm or GroupNorm without conditionals + """ + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def forward(self, input, quant_states=None): + return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps) + + +class Emu3VQVAEMiddleBlock(nn.Module): + def __init__(self, config, in_channels, quant_channels=None): + super().__init__() + + self.block_1 = Emu3VQVAEResnetBlock( + in_channels=in_channels, + out_channels=in_channels, + quant_channels=quant_channels, + ) + self.attn_1 = Emu3VQVAEAttentionBlock(config) + if quant_channels is None: + self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) + else: + self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels) + + self.block_2 = Emu3VQVAEResnetBlock( + in_channels=in_channels, + out_channels=in_channels, + quant_channels=quant_channels, + ) + + def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor = None): + hidden_states = self.block_1(hidden_states, quant_states) + residual = hidden_states + hidden_states = self.attn_norm(hidden_states, quant_states) + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = self.attn_1(hidden_states)[0] + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + hidden_states = self.block_2(hidden_states, quant_states) + return hidden_states + + +class Emu3VQVAEDownBlock(nn.Module): + def __init__(self, config): + super().__init__() + + self.num_resolutions = len(config.channel_multiplier) + self.num_res_blocks = config.num_res_blocks + base_channels = config.base_channels + channel_multiplier = config.channel_multiplier + + in_channel_multiplier = (1,) + tuple(channel_multiplier) + self.in_channel_multiplier = in_channel_multiplier + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + attn_norms = nn.ModuleList() + block_in = base_channels * in_channel_multiplier[i_level] + block_out = base_channels * channel_multiplier[i_level] + for i_block in range(self.num_res_blocks): + block.append( + Emu3VQVAEResnetBlock( + in_channels=block_in, + out_channels=block_out, + ) + ) + block_in = block_out + if config.attn_resolutions is not None and i_level in config.attn_resolutions: + attn.append(Emu3VQVAEAttentionBlock(config)) + attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)) + + down = nn.Module() + down.block = block + down.attn = attn + down.attn_norms = attn_norms + if i_level != self.num_resolutions - 1: + down.downsample = Emu3VQVAEEncoderConvDownsample(block_in) + self.down.append(down) + + def forward(self, hidden_states: torch.FloatTensor): + for i_level, blocks in enumerate(self.down): + for i_block in range(self.num_res_blocks): + hidden_states = blocks.block[i_block](hidden_states) + if len(blocks.attn) > 0: + residual = hidden_states + hidden_states = blocks.attn_norms[i_block](hidden_states) + + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = blocks.attn[i_block](hidden_states)[0] + + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + + if i_level != self.num_resolutions - 1: + hidden_states = blocks.downsample(hidden_states) + + return hidden_states + + +class Emu3VQVAEUpBlock(nn.Module): + def __init__(self, config): + super().__init__() + + self.num_resolutions = len(config.channel_multiplier) + self.num_res_blocks = config.num_res_blocks + + quant_channels = config.embed_dim + block_in = config.base_channels * config.channel_multiplier[-1] + + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + attn_norms = nn.ModuleList() + block_out = config.base_channels * config.channel_multiplier[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + Emu3VQVAEResnetBlock( + in_channels=block_in, + out_channels=block_out, + quant_channels=quant_channels, + ) + ) + block_in = block_out + if i_level in config.attn_resolutions: + attn.append(Emu3VQVAEAttentionBlock(config)) + attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in)) + + up = nn.Module() + up.block = block + up.attn = attn + up.attn_norms = attn_norms + if i_level != 0: + up.upsample = Emu3VQVAEEncoderConvUpsample(block_in) + + self.up.insert(0, up) + + def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor): + for i_level, blocks in enumerate(self.up[::-1]): + for i_block in range(self.num_res_blocks + 1): + hidden_states = blocks.block[i_block](hidden_states, quant_states) + if len(blocks.attn) > 0: + residual = hidden_states + hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states) + + batch_size, channels, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) + hidden_states = blocks.attn[i_block](hidden_states)[0] + + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = residual + hidden_states + if i_level != len(self.up) - 1: + hidden_states = blocks.upsample(hidden_states) + + return hidden_states + + +class Emu3VQVAEEncoder(nn.Module): + def __init__(self, config): + super().__init__() + + base_channels = config.base_channels + in_channels = config.in_channels + double_latent = config.double_latent + latent_channels = config.latent_channels + channel_multiplier = config.channel_multiplier + out_channels = 2 * latent_channels if double_latent else latent_channels + block_in = base_channels * channel_multiplier[-1] + + self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) + self.down_block = Emu3VQVAEDownBlock(config) + self.middle_block = Emu3VQVAEMiddleBlock(config, block_in) + + self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) + self.conv_out = torch.nn.Conv2d( + block_in, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) + self.time_conv = nn.ModuleList() + self.time_res_stack = nn.ModuleList() + + for i in range(temporal_down_blocks): + conv = Emu3VQVAETemporalDownsample(out_channels, out_channels) + self.time_conv.append(conv) + + for _ in range(config.num_res_blocks): + time_res_conv = Emu3VQVAETemporalResnetBlock( + in_channels=out_channels, + out_channels=out_channels, + ) + self.time_res_stack.append(time_res_conv) + + def forward(self, pixel_values: torch.LongTensor): + temporal_dim = pixel_values.shape[1] + pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:]) + + # downsampling & middle + hidden_states = self.conv_in(pixel_values) + hidden_states = self.down_block(hidden_states) + hidden_states = self.middle_block(hidden_states) + + # end + hidden_states = self.norm_out(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv_out(hidden_states) + + hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:]) + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + + # temporal convs + for conv in self.time_conv: + hidden_states = conv(hidden_states) + hidden_states *= torch.sigmoid(hidden_states) + + for layer in self.time_res_stack: + hidden_states = layer(hidden_states) + + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + + return hidden_states + + +class Emu3VQVAEDecoder(nn.Module): + def __init__(self, config: Emu3VQVAEConfig): + super().__init__() + + quant_channels = config.embed_dim + block_in = config.base_channels * config.channel_multiplier[-1] + self.time_res_stack = nn.ModuleList() + for _ in range(config.num_res_blocks): + time_res_conv = Emu3VQVAETemporalResnetBlock( + in_channels=config.latent_channels, out_channels=config.latent_channels + ) + self.time_res_stack.append(time_res_conv) + + temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) + self.time_conv = nn.ModuleList() + for i in range(temp_upsample_block_num): + conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels) + self.time_conv.append(conv) + + self.conv_in = nn.Conv2d( + config.latent_channels, + block_in, + kernel_size=3, + stride=1, + padding=1, + ) + + self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels) + self.up_block = Emu3VQVAEUpBlock(config) + + block_in = config.base_channels * config.channel_multiplier[0] + self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in) + self.conv_out = nn.Conv2d( + block_in, + config.out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): + hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0) + hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) + + # temporal convs + for layer in self.time_res_stack: + hidden_quant_states = layer(hidden_quant_states) + + for layer in self.time_conv: + hidden_quant_states = layer(hidden_quant_states) + hidden_quant_states *= torch.sigmoid(hidden_quant_states) + + hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) + hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0) + hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:]) + quant_states = quant_states.reshape(-1, *quant_states.shape[2:]) + + hidden_states = self.conv_in(hidden_states) + + # middle & upsampling + hidden_states = self.middle_block(hidden_states, quant_states) + hidden_states = self.up_block(hidden_states, quant_states) + + hidden_states = self.norm_out(hidden_states, quant_states) + hidden_states *= torch.sigmoid(hidden_states) + hidden_states = self.conv_out(hidden_states) + + return hidden_states + + +EMU3_VQ_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Emu3VQVAEConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + """The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens. + This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from + [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131). + """, + EMU3_VQ_START_DOCSTRING, +) +class Emu3VQVAE(PreTrainedModel): + config_class = Emu3VQVAEConfig + base_model_prefix = "emuvideovq" + main_input_name = "pixel_values" + _no_split_modules = [ + "Emu3VQVAETemporalResnetBlock", + "Emu3VQVAEAttentionBlock", + "Emu3VQVAEResnetBlock", + "Emu3VQVAEVectorQuantizer", + ] + + def _init_weights(self, module): + if isinstance(module, (nn.Conv2d, nn.Conv3d)): + nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") + elif isinstance(module, nn.Linear): + nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) + if module.bias is not None: + fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) + bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 + nn.init.uniform_(module.bias, -bound, bound) + elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + + def __init__(self, config: Emu3VQVAEConfig): + super().__init__(config) + + self.config = config + + self.encoder = Emu3VQVAEEncoder(config) + self.decoder = Emu3VQVAEDecoder(config) + self.quantize = Emu3VQVAEVectorQuantizer(config) + self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1) + + self.quant_conv = Emu3VQVAEConv3d( + config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1) + ) + self.post_quant_conv = Emu3VQVAEConv3d( + config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1) + ) + self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1) + self.eval() # Emu3's VQ model is frozen + + self.post_init() + + def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor): + is_image = pixel_values.ndim == 4 + if is_image: + temporal = self.config.temporal_downsample_factor + batch_size, channels, height, width = pixel_values.shape + pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1) + else: + batch_size, temporal, channels, height, width = pixel_values.shape + + hidden_states = self.encoder(pixel_values) + + # b t c h w -> b c t h w + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + hidden_states = self.quant_conv(hidden_states) + + # b c t h w -> b t c h w + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + codes = self.quantize(hidden_states) + + image_tokens = codes.squeeze(1) if is_image else codes + + image_tokens = [ + single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)] + for single_image, size in zip(image_tokens, image_sizes) + ] + + return image_tokens + + def decode(self, hidden_states: torch.Tensor): + is_image = hidden_states.ndim == 3 + if is_image: + hidden_states = hidden_states.unsqueeze(1) + + batch_size, temporal, height, width = hidden_states.shape + quant = self.quantize.embedding(hidden_states.flatten()) + + channels = quant.shape[-1] + quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous() + post_quant = self.post_quant_conv(quant) + + quant = quant.permute(0, 2, 1, 3, 4) + post_quant = post_quant.permute(0, 2, 1, 3, 4) + + video = self.decoder(post_quant, quant) + video = video.reshape( + batch_size, + temporal * self.config.temporal_downsample_factor, + self.config.out_channels, + height * self.spatial_scale_factor, + width * self.spatial_scale_factor, + ) + return video[:, 0] if is_image else video + + +class Emu3ImageVocabularyMapping: + """ + A class for mapping discrete image tokens from VQGAN to BPE tokens. + """ + + def __init__(self, vocab_map): + self.vocab_map = vocab_map + self.eol_token_id = vocab_map.get("<|extra_200|>") + self.image_token_id = vocab_map.get("") + + @cached_property + def image_tokens(self): + return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) + + @cached_property + def image_tokens_str(self): + return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) + + @cached_property + def img2bpe(self): + return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str} + + @cached_property + def bpe2img(self): + return {v: k for k, v in self.img2bpe.items()} + + @cached_property + def bpe2img_mapping_tensor(self): + mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int) + for k, v in self.bpe2img.items(): + mapping[k] = v + return mapping + + @cached_property + def img2bpe_mapping_tensor(self): + mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) + for k, v in self.img2bpe.items(): + mapping[k] = v + return mapping + + def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor: + device = img_batch.device + eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id + img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] + img_tokens = torch.cat([img_tokens, eol_row], dim=-1) + return img_tokens.to(device) + + def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor: + device = img_batch.device + img_batch = img_batch[..., :-1] # remove last row of EOL tokens + img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")] + return img_tokens.to(device) + + +class Emu3PreTrainedModel(ChameleonPreTrainedModel, Emu3VQVAE): + _no_split_modules = [ + "Emu3DecoderLayer", + ] + _supports_flex_attn = True + + def _init_weights(self, module): + std = self.config.get_text_config().initializer_range + if isinstance(module, Emu3VQVAE): + module.apply(module._init_weights) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +EMU3_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Has to be an instance of [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). + + The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +EMU3_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)): + The tensors corresponding to the input images. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses + [`Emu3ImageProcessor`] for processing images). + image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): + The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using + [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses + [`Emu3ImageProcessor`] for processing images). + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Has to be an instance of [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +class Emu3TextModel(LlamaModel, Emu3PreTrainedModel): + def __init__(self, config: Emu3Config): + super().__init__(config) + self.layers = nn.ModuleList( + [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + + +class Emu3ForCausalLM(LlamaForCausalLM, Emu3PreTrainedModel, GenerationMixin): + config_class = Emu3TextConfig + + def __init__(self, config): + super().__init__(config) + self.model = Emu3TextModel(config) + + @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig") + def forward(**super_kwargs): + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + num_logits_to_keep (`int`, *optional*): + Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + + Returns: + + Example: + + ```python + >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration + >>> import torch + >>> import requests + >>> from PIL import Image + + >>> model = Emu3ForCausalLM.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16) + >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf") + + >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device) + + >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) + >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + ```""" + super().forward() + + +class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin): + def __init__(self, config): + super().__init__(config) + self.text_model = Emu3ForCausalLM._from_config(config.text_config) + self.vqmodel = Emu3VQVAE(config.vq_config) + self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.text_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.text_model.set_input_embeddings(value) + + def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor): + """ + Tokenizes images into discrete tokens with VQGAN module. Converts + obtained image tokens into BPE tokens and wraps with "boi" and "eoi" + special tokens. + + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): + The tensors corresponding to the input images. + image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): + The sizes of the images in the batch, being (height, width) for each image. + """ + image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes) + bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list] + bpe_tokens = torch.cat(bpe_tokens_list) + return bpe_tokens + + @torch.no_grad + def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int): + """ + Decodes generated image tokens from language model to continuous pixel values + with VQGAN module via upsampling. + + Args: + image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`): + The tensors corresponding to the input images. + height (`int`): + Height of the generated image before upsampling. + width (`int`): + Width of the generated image before upsampling. + """ + sequences = image_tokens[:, :-3].view(-1, height, width + 1) + image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences) + image = self.vqmodel.decode(image_tokens) + return image + + @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + pixel_values: torch.FloatTensor = None, + image_sizes: torch.Tensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + num_logits_to_keep: int = 0, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + num_logits_to_keep (`int`, *optional*): + Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + + Returns: + + Example: + + ```python + >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration + >>> import torch + >>> import requests + >>> from PIL import Image + + >>> model = Emu3ForConditionalGeneration.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16) + >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf") + + >>> conversation = [ + ... { + ... "role": "system", + ... "content": [ + ... {"type": "text", "text": "You are a helpful assistant."}, + ... ], + ... }, + ... { + ... "role": "user", + ... "content": [ + ... {"type": "image"}, + ... {"type": "text", "text": "Please describe the image."}, + ... ], + ... }, + ... ] + + >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) + >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw) + + >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16) + + >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) + >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if pixel_values is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" + ) + + if pixel_values is not None: + image_tokens = self.get_image_tokens(pixel_values, image_sizes) + special_image_mask = input_ids == self.vocabulary_mapping.image_token_id + image_tokens = image_tokens.to(input_ids.device, input_ids.dtype) + input_ids = input_ids.masked_scatter(special_image_mask, image_tokens) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + num_logits_to_keep=num_logits_to_keep, + ) + + return outputs + + +__all__ = [ + "Emu3ForConditionalGeneration", + "Emu3ForCausalLM", + "Emu3TextModel", + "Emu3PreTrainedModel", + "Emu3VQVAE", +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py new file mode 100644 index 0000000000000000000000000000000000000000..2c536f5f24636f6fbb2447a5fb9b21d1d547f2af --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py @@ -0,0 +1,217 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List, Optional, Union + +from ...image_processing_utils import BatchFeature +from ...image_utils import ImageInput +from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack +from ...tokenization_utils_base import PreTokenizedInput, TextInput + + +class Emu3TextKwargs(TextKwargs, total=False): + return_for_image_generation: bool + + +class Emu3ImagesKwargs(ImagesKwargs, total=False): + ratio: str + image_area: int + + +class Emu3ProcessorKwargs(ProcessingKwargs, total=False): + text_kwargs: Emu3TextKwargs + images_kwargs: Emu3ImagesKwargs + _defaults = { + "text_kwargs": { + "return_for_image_generation": False, + }, + "images_kwargs": { + "ratio": "1:1", + "image_area": 518400, + }, + } + + +class Emu3Processor(ProcessorMixin): + r""" + Constructs a Emu3 processor which wraps a Emu3 image processor and a GPT2 tokenizer into a single + processor. + + [`Emu3Processor`] offers all the functionalities of [`Emu3ImageProcessor`] and [`GPT2TokenizerFast`]. + See the [`~Emu3Processor.__call__`] and [`~Emu3Processor.decode`] for more information. + + Args: + image_processor ([`Emu3ImageProcessor`]): + The image processor is a required input. + tokenizer ([`Emu3TokenizerFast`]): + The tokenizer is a required input. + chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages + in a chat into a tokenizable string. + """ + + attributes = ["image_processor", "tokenizer"] + tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast") + image_processor_class = "Emu3ImageProcessor" + + def __init__( + self, + image_processor, + tokenizer, + chat_template=None, + **kwargs, + ): + self.image_token = tokenizer.image_token # image_token as placeholder to be replaced by vq-vae tokens + self.image_start_token = tokenizer.boi_token # "<|image start|>" fixed tokens for start and end of image + self.image_end_token = tokenizer.eoi_token # "<|image end|>" + self.fake_token_around_image = tokenizer.image_wrapper_token # "<|image token|>" every image starts with it + self.eof_token = tokenizer.eof_token # "<|extra_201|>" + self.bos_token = tokenizer.bos_token + self.downsample_ratio = 8 + super().__init__(image_processor, tokenizer, chat_template=chat_template) + + def __call__( + self, + images: Optional[ImageInput] = None, + text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, + audio=None, + videos=None, + **kwargs: Unpack[Emu3ProcessorKwargs], + ) -> BatchFeature: + """ + Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` + and `kwargs` arguments to Emu3TokenizerFast's [`~Emu3TokenizerFast.__call__`] if `text` is not `None` to encode + the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to + CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring + of the above two methods for more information. + + Args: + images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): + The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch + tensor. Both channels-first and channels-last formats are supported. + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchFeature`]: A [`BatchFeature`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. + """ + # check if images and text inputs are reversed for BC + + if isinstance(text, str): + text = [text] + elif not isinstance(text, list) and not isinstance(text[0], str): + raise TypeError("Invalid input text. Please provide a string, or a list of strings") + + output_kwargs = self._merge_kwargs( + Emu3ProcessorKwargs, + tokenizer_init_kwargs=self.tokenizer.init_kwargs, + **kwargs, + ) + return_for_image_generation = output_kwargs["text_kwargs"].pop("return_for_image_generation", False) + ratio = output_kwargs["images_kwargs"].pop("ratio", None) + image_area = output_kwargs["images_kwargs"].pop("image_area", None) + + if return_for_image_generation and images is not None: + raise ValueError("You should not provide `images` when `return_for_image_generation=True`") + + if not return_for_image_generation and text is None and images is None: + raise ValueError("You must provide either text or images when `return_for_image_generation=False`") + + image_features = {} + image_start_tokens = f"{self.image_start_token}" + image_end_tokens = f"{self.eof_token}{self.image_end_token}" + + # generate text from image + text input, so we add placeholders for image tokens + if not return_for_image_generation and images is not None: + image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) + image_sizes = iter(image_features.image_sizes) + + prompt_strings = [] + for sample in text: + while self.image_token in sample: + image_size = next(image_sizes) + height, width = image_size + height = height // self.downsample_ratio + width = width // self.downsample_ratio + image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code + + image_placeholder = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}{'' * image_seq_length}{image_end_tokens}" + sample = sample.replace(self.image_token, image_placeholder, 1) + sample = f"{self.bos_token}{sample}" # add BOS because PT tokenizer doesn't add it + prompt_strings.append(sample) + text = [sample.replace("", self.image_token) for sample in prompt_strings] + + # generate image from text input, so we add begin-of-image tokens from where image generation starts + elif return_for_image_generation: + height, width = self.calculate_generate_size(ratio, image_area, self.downsample_ratio) + image_prompt = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}" + text = [f"{self.bos_token}{sample}{image_prompt}" for sample in text] + image_features["image_sizes"] = [[height, width]] * len(text) + + # else just generate from text-only input, and we do no special treatment for text + data = self.tokenizer(text, **output_kwargs["text_kwargs"]) + data.update(**image_features) + + return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]) + + def calculate_generate_size(self, ratio, image_area, spatial_factor): + width, height = map(int, ratio.split(":")) + current_area = width * height + target_ratio = (image_area / current_area) ** 0.5 + + token_height = int(round(height * target_ratio / spatial_factor)) + token_width = int(round(width * target_ratio / spatial_factor)) + return token_height, token_width + + def postprocess(self, images: ImageInput, **kwargs): + return self.image_processor.postprocess(images, **kwargs) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to + the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + image_processor_input_names = self.image_processor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) + + +__all__ = ["Emu3Processor"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93f097e9fe166be8e13553120abafb2988755a4f Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c7c99d926e9a22bc70db72ae8073005537ed7f3 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3ad507465039eed2cf0729b8587a540b03c8691e --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py @@ -0,0 +1,30 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_lxmert import * + from .modeling_lxmert import * + from .modeling_tf_lxmert import * + from .tokenization_lxmert import * + from .tokenization_lxmert_fast import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae1729cbe4087048906350d3b53d5a5208ed4901 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py new file mode 100644 index 0000000000000000000000000000000000000000..c092d01148a607629665b8742b25156730ad5024 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py @@ -0,0 +1,169 @@ +# coding=utf-8 +# Copyright 2018, Hao Tan, Mohit Bansal +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""LXMERT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class LxmertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used + to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating + a configuration with the defaults will yield a similar configuration to that of the Lxmert + [unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the LXMERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`LxmertModel`] or [`TFLxmertModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_qa_labels (`int`, *optional*, defaults to 9500): + This represents the total number of different question answering (QA) labels there are. If using more than + one dataset with QA, the user will need to account for the total number of labels that all of the datasets + have in total. + num_object_labels (`int`, *optional*, defaults to 1600): + This represents the total number of semantically unique objects that lxmert will be able to classify a + pooled-object feature as belonging too. + num_attr_labels (`int`, *optional*, defaults to 400): + This represents the total number of semantically unique attributes that lxmert will be able to classify a + pooled-object feature as possessing. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the *token_type_ids* passed into [`BertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + l_layers (`int`, *optional*, defaults to 9): + Number of hidden layers in the Transformer language encoder. + x_layers (`int`, *optional*, defaults to 5): + Number of hidden layers in the Transformer cross modality encoder. + r_layers (`int`, *optional*, defaults to 5): + Number of hidden layers in the Transformer visual encoder. + visual_feat_dim (`int`, *optional*, defaults to 2048): + This represents the last dimension of the pooled-object features used as input for the model, representing + the size of each object feature itself. + visual_pos_dim (`int`, *optional*, defaults to 4): + This represents the number of spacial features that are mixed into the visual features. The default is set + to 4 because most commonly this will represent the location of a bounding box. i.e., (x, y, width, height) + visual_loss_normalizer (`float`, *optional*, defaults to 6.67): + This represents the scaling factor in which each visual loss is multiplied by if during pretraining, one + decided to train with multiple vision-based loss objectives. + task_matched (`bool`, *optional*, defaults to `True`): + This task is used for sentence-image matching. If the sentence correctly describes the image the label will + be 1. If the sentence does not correctly describe the image, the label will be 0. + task_mask_lm (`bool`, *optional*, defaults to `True`): + Whether or not to add masked language modeling (as used in pretraining models such as BERT) to the loss + objective. + task_obj_predict (`bool`, *optional*, defaults to `True`): + Whether or not to add object prediction, attribute prediction and feature regression to the loss objective. + task_qa (`bool`, *optional*, defaults to `True`): + Whether or not to add the question-answering loss to the objective + visual_obj_loss (`bool`, *optional*, defaults to `True`): + Whether or not to calculate the object-prediction loss objective + visual_attr_loss (`bool`, *optional*, defaults to `True`): + Whether or not to calculate the attribute-prediction loss objective + visual_feat_loss (`bool`, *optional*, defaults to `True`): + Whether or not to calculate the feature-regression loss objective + """ + + model_type = "lxmert" + attribute_map = {} + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_attention_heads=12, + num_qa_labels=9500, + num_object_labels=1600, + num_attr_labels=400, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + l_layers=9, + x_layers=5, + r_layers=5, + visual_feat_dim=2048, + visual_pos_dim=4, + visual_loss_normalizer=6.67, + task_matched=True, + task_mask_lm=True, + task_obj_predict=True, + task_qa=True, + visual_obj_loss=True, + visual_attr_loss=True, + visual_feat_loss=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.num_qa_labels = num_qa_labels + self.num_object_labels = num_object_labels + self.num_attr_labels = num_attr_labels + self.l_layers = l_layers + self.x_layers = x_layers + self.r_layers = r_layers + self.visual_feat_dim = visual_feat_dim + self.visual_pos_dim = visual_pos_dim + self.visual_loss_normalizer = visual_loss_normalizer + self.task_matched = task_matched + self.task_mask_lm = task_mask_lm + self.task_obj_predict = task_obj_predict + self.task_qa = task_qa + self.visual_obj_loss = visual_obj_loss + self.visual_attr_loss = visual_attr_loss + self.visual_feat_loss = visual_feat_loss + self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} + super().__init__(**kwargs) + + +__all__ = ["LxmertConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py new file mode 100644 index 0000000000000000000000000000000000000000..b97d78d1505b5c56ee03dc0957c83f53a232eb1b --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py @@ -0,0 +1,1461 @@ +# coding=utf-8 +# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch LXMERT model.""" + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import CrossEntropyLoss, SmoothL1Loss + +from ...activations import ACT2FN, gelu +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_lxmert import LxmertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" +_CONFIG_FOR_DOC = "LxmertConfig" + + +class GeLU(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + return gelu(x) + + +@dataclass +class LxmertModelOutput(ModelOutput): + """ + Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, + visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" + encoder") + + + Args: + language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the language encoder. + vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the visual encoder. + pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed + by a Linear layer and a Tanh activation function. The Linear + language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + language_output: Optional[torch.FloatTensor] = None + vision_output: Optional[torch.FloatTensor] = None + pooled_output: Optional[torch.FloatTensor] = None + language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + language_attentions: Optional[Tuple[torch.FloatTensor]] = None + vision_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class LxmertForQuestionAnsweringOutput(ModelOutput): + """ + Output type of [`LxmertForQuestionAnswering`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss.k. + question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*): + Prediction scores of question answering objective (classification). + language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + question_answering_score: Optional[torch.FloatTensor] = None + language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + language_attentions: Optional[Tuple[torch.FloatTensor]] = None + vision_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class LxmertForPreTrainingOutput(ModelOutput): + """ + Output type of [`LxmertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the textual matching objective (classification) head (scores of True/False + continuation before SoftMax). + question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`): + Prediction scores of question answering objective (classification). + language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of + shape `(batch_size, sequence_length, hidden_size)`. + language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: Optional[torch.FloatTensor] = None + cross_relationship_score: Optional[torch.FloatTensor] = None + question_answering_score: Optional[torch.FloatTensor] = None + language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + language_attentions: Optional[Tuple[torch.FloatTensor]] = None + vision_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n + in [ + "adam_v", + "adam_m", + "AdamWeightDecayOptimizer", + "AdamWeightDecayOptimizer_1", + "global_step", + ] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + assert pointer.shape == array.shape + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +class LxmertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, input_ids, token_type_ids=None, inputs_embeds=None): + if input_ids is not None: + input_shape = input_ids.size() + device = input_ids.device + else: + input_shape = inputs_embeds.size()[:-1] + device = inputs_embeds.device + seq_length = input_shape[1] + + position_ids = torch.arange(seq_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).expand(input_shape) + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class LxmertAttention(nn.Module): + def __init__(self, config, ctx_dim=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.head_size = self.num_attention_heads * self.attention_head_size + + # visual_dim = 2048 + if ctx_dim is None: + ctx_dim = config.hidden_size + self.query = nn.Linear(config.hidden_size, self.head_size) + self.key = nn.Linear(ctx_dim, self.head_size) + self.value = nn.Linear(ctx_dim, self.head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + ( + self.num_attention_heads, + self.attention_head_size, + ) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): + mixed_query_layer = self.query(hidden_states) + mixed_key_layer = self.key(context) + mixed_value_layer = self.value(context) + + query_layer = self.transpose_for_scores(mixed_query_layer) + key_layer = self.transpose_for_scores(mixed_key_layer) + value_layer = self.transpose_for_scores(mixed_value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + if attention_mask is not None: + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + +class LxmertAttentionOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LxmertCrossAttentionLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.att = LxmertAttention(config) + self.output = LxmertAttentionOutput(config) + + def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): + output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) + if output_attentions: + attention_probs = output[1] + attention_output = self.output(output[0], input_tensor) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + return outputs + + +class LxmertSelfAttentionLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.self = LxmertAttention(config) + self.output = LxmertAttentionOutput(config) + + def forward(self, input_tensor, attention_mask, output_attentions=False): + # Self attention attends to itself, thus keys and queries are the same (input_tensor). + output = self.self( + input_tensor, + input_tensor, + attention_mask, + output_attentions=output_attentions, + ) + if output_attentions: + attention_probs = output[1] + attention_output = self.output(output[0], input_tensor) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + return outputs + + +class LxmertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + self.intermediate_act_fn = ACT2FN[config.hidden_act] + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class LxmertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LxmertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = LxmertSelfAttentionLayer(config) + self.intermediate = LxmertIntermediate(config) + self.output = LxmertOutput(config) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) + attention_output = outputs[0] + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + outputs = (layer_output,) + outputs[1:] # add attentions if we output them + return outputs + + +class LxmertXLayer(nn.Module): + def __init__(self, config): + super().__init__() + # The cross-attention Layer + self.visual_attention = LxmertCrossAttentionLayer(config) + + # Self-attention Layers + self.lang_self_att = LxmertSelfAttentionLayer(config) + self.visn_self_att = LxmertSelfAttentionLayer(config) + + # Intermediate and Output Layers (FFNs) + self.lang_inter = LxmertIntermediate(config) + self.lang_output = LxmertOutput(config) + self.visn_inter = LxmertIntermediate(config) + self.visn_output = LxmertOutput(config) + + def cross_att( + self, + lang_input, + lang_attention_mask, + visual_input, + visual_attention_mask, + output_x_attentions=False, + ): + # Cross Attention + lang_att_output = self.visual_attention( + lang_input, + visual_input, + ctx_att_mask=visual_attention_mask, + output_attentions=output_x_attentions, + ) + visual_att_output = self.visual_attention( + visual_input, + lang_input, + ctx_att_mask=lang_attention_mask, + output_attentions=False, + ) + return lang_att_output, visual_att_output + + def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask): + # Self Attention + lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False) + visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False) + return lang_att_output[0], visual_att_output[0] + + def output_fc(self, lang_input, visual_input): + # FC layers + lang_inter_output = self.lang_inter(lang_input) + visual_inter_output = self.visn_inter(visual_input) + + # Layer output + lang_output = self.lang_output(lang_inter_output, lang_input) + visual_output = self.visn_output(visual_inter_output, visual_input) + + return lang_output, visual_output + + def forward( + self, + lang_feats, + lang_attention_mask, + visual_feats, + visual_attention_mask, + output_attentions=False, + ): + lang_att_output, visual_att_output = self.cross_att( + lang_input=lang_feats, + lang_attention_mask=lang_attention_mask, + visual_input=visual_feats, + visual_attention_mask=visual_attention_mask, + output_x_attentions=output_attentions, + ) + attention_probs = lang_att_output[1:] + lang_att_output, visual_att_output = self.self_att( + lang_att_output[0], + lang_attention_mask, + visual_att_output[0], + visual_attention_mask, + ) + + lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output) + return ( + ( + lang_output, + visual_output, + attention_probs[0], + ) + if output_attentions + else (lang_output, visual_output) + ) + + +class LxmertVisualFeatureEncoder(nn.Module): + def __init__(self, config): + super().__init__() + feat_dim = config.visual_feat_dim + pos_dim = config.visual_pos_dim + + # Object feature encoding + self.visn_fc = nn.Linear(feat_dim, config.hidden_size) + self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) + + # Box position encoding + self.box_fc = nn.Linear(pos_dim, config.hidden_size) + self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) + + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, visual_feats, visual_pos): + x = self.visn_fc(visual_feats) + x = self.visn_layer_norm(x) + y = self.box_fc(visual_pos) + y = self.box_layer_norm(y) + output = (x + y) / 2 + + output = self.dropout(output) + return output + + +class LxmertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + + # Obj-level image embedding layer + self.visn_fc = LxmertVisualFeatureEncoder(config) + self.config = config + + # Number of layers + self.num_l_layers = config.l_layers + self.num_x_layers = config.x_layers + self.num_r_layers = config.r_layers + + # Layers + # Using self.layer instead of self.l_layer to support loading BERT weights. + self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) + self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) + self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) + + def forward( + self, + lang_feats, + lang_attention_mask, + visual_feats, + visual_pos, + visual_attention_mask=None, + output_attentions=None, + ): + vision_hidden_states = () + language_hidden_states = () + vision_attentions = () if output_attentions or self.config.output_attentions else None + language_attentions = () if output_attentions or self.config.output_attentions else None + cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None + + visual_feats = self.visn_fc(visual_feats, visual_pos) + + # Run language layers + for layer_module in self.layer: + l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) + lang_feats = l_outputs[0] + language_hidden_states = language_hidden_states + (lang_feats,) + if language_attentions is not None: + language_attentions = language_attentions + (l_outputs[1],) + + # Run relational layers + for layer_module in self.r_layers: + v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) + visual_feats = v_outputs[0] + vision_hidden_states = vision_hidden_states + (visual_feats,) + if vision_attentions is not None: + vision_attentions = vision_attentions + (v_outputs[1],) + + # Run cross-modality layers + for layer_module in self.x_layers: + x_outputs = layer_module( + lang_feats, + lang_attention_mask, + visual_feats, + visual_attention_mask, + output_attentions=output_attentions, + ) + lang_feats, visual_feats = x_outputs[:2] + vision_hidden_states = vision_hidden_states + (visual_feats,) + language_hidden_states = language_hidden_states + (lang_feats,) + if cross_encoder_attentions is not None: + cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) + visual_encoder_outputs = ( + vision_hidden_states, + vision_attentions if output_attentions else None, + ) + lang_encoder_outputs = ( + language_hidden_states, + language_attentions if output_attentions else None, + ) + return ( + visual_encoder_outputs, + lang_encoder_outputs, + cross_encoder_attentions if output_attentions else None, + ) + + +class LxmertPooler(nn.Module): + def __init__(self, config): + super(LxmertPooler, self).__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class LxmertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super(LxmertPredictionHeadTransform, self).__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.transform_act_fn = ACT2FN[config.hidden_act] + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class LxmertLMPredictionHead(nn.Module): + def __init__(self, config, lxmert_model_embedding_weights): + super(LxmertLMPredictionHead, self).__init__() + self.transform = LxmertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear( + lxmert_model_embedding_weights.size(1), + lxmert_model_embedding_weights.size(0), + bias=False, + ) + self.decoder.weight = lxmert_model_embedding_weights + self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0))) + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + self.bias + return hidden_states + + +class LxmertVisualAnswerHead(nn.Module): + def __init__(self, config, num_labels): + super().__init__() + hid_dim = config.hidden_size + self.logit_fc = nn.Sequential( + nn.Linear(hid_dim, hid_dim * 2), + GeLU(), + nn.LayerNorm(hid_dim * 2, eps=1e-12), + nn.Linear(hid_dim * 2, num_labels), + ) + + def forward(self, hidden_states): + return self.logit_fc(hidden_states) + + +class LxmertVisualObjHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = LxmertPredictionHeadTransform(config) + # Decide the use of visual losses + visual_losses = {} + if config.visual_obj_loss: + visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} + if config.visual_attr_loss: + visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} + if config.visual_feat_loss: + visual_losses["feat"] = { + "shape": (-1, config.visual_feat_dim), + "num": config.visual_feat_dim, + } + self.visual_losses = visual_losses + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder_dict = nn.ModuleDict( + {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses} + ) + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + output = {} + for key in self.visual_losses: + output[key] = self.decoder_dict[key](hidden_states) + return output + + +class LxmertPreTrainingHeads(nn.Module): + def __init__(self, config, lxmert_model_embedding_weights): + super(LxmertPreTrainingHeads, self).__init__() + self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class LxmertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LxmertConfig + load_tf_weights = load_tf_weights_in_lxmert + base_model_prefix = "lxmert" + _supports_param_buffer_assignment = False + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LXMERT_START_DOCSTRING = r""" + + The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from + Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer + model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual + genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss + for question answering attribute prediction, and object tag prediction. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LxmertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LXMERT_INPUTS_DOCSTRING = r""" + + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): + This input represents visual features. They ROI pooled object features from bounding boxes using a + faster-RCNN model) + + These are currently not provided by the transformers library. + visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`): + This input represents spacial features corresponding to their relative (via index) visual features. The + pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to + 1. + + These are currently not provided by the transformers library. + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", + LXMERT_START_DOCSTRING, +) +class LxmertModel(LxmertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.embeddings = LxmertEmbeddings(config) + self.encoder = LxmertEncoder(config) + self.pooler = LxmertPooler(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, new_embeddings): + self.embeddings.word_embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LxmertModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + visual_feats: Optional[torch.FloatTensor] = None, + visual_pos: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + visual_attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if visual_feats is None: + raise ValueError("`visual_feats` cannot be `None`") + if visual_pos is None: + raise ValueError("`visual_pos` cannot be `None`") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) + extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min + + # Process the visual attention mask + if visual_attention_mask is not None: + extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) + extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype) + extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min + else: + extended_visual_attention_mask = None + + # Positional Word Embeddings + embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds) + + # Run Lxmert encoder + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + visual_feats=visual_feats, + visual_pos=visual_pos, + visual_attention_mask=extended_visual_attention_mask, + output_attentions=output_attentions, + ) + + visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] + vision_hidden_states = visual_encoder_outputs[0] + language_hidden_states = lang_encoder_outputs[0] + + all_attentions = () + if output_attentions: + language_attentions = lang_encoder_outputs[1] + vision_attentions = visual_encoder_outputs[1] + cross_encoder_attentions = encoder_outputs[2] + all_attentions = ( + language_attentions, + vision_attentions, + cross_encoder_attentions, + ) + + hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () + + visual_output = vision_hidden_states[-1] + lang_output = language_hidden_states[-1] + pooled_output = self.pooler(lang_output) + + if not return_dict: + return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions + + return LxmertModelOutput( + pooled_output=pooled_output, + language_output=lang_output, + vision_output=visual_output, + language_hidden_states=language_hidden_states if output_hidden_states else None, + vision_hidden_states=vision_hidden_states if output_hidden_states else None, + language_attentions=language_attentions if output_attentions else None, + vision_attentions=vision_attentions if output_attentions else None, + cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, + ) + + +@add_start_docstrings( + """Lxmert Model with a specified pretraining head on top.""", + LXMERT_START_DOCSTRING, +) +class LxmertForPreTraining(LxmertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight"] + + def __init__(self, config): + super().__init__(config) + # Configuration + self.config = config + self.num_qa_labels = config.num_qa_labels + self.visual_loss_normalizer = config.visual_loss_normalizer + + # Use of pretraining tasks + self.task_mask_lm = config.task_mask_lm + self.task_obj_predict = config.task_obj_predict + self.task_matched = config.task_matched + self.task_qa = config.task_qa + + # Lxmert backbone + self.lxmert = LxmertModel(config) + + # Pre-training heads + self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight) + if self.task_obj_predict: + self.obj_predict_head = LxmertVisualObjHead(config) + if self.task_qa: + self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) + + # Weight initialization + # Initialize weights and apply final processing + self.post_init() + + # Loss functions + self.loss_fcts = { + "l2": SmoothL1Loss(reduction="none"), + "visual_ce": CrossEntropyLoss(reduction="none"), + "ce": CrossEntropyLoss(), + } + + visual_losses = {} + if config.visual_obj_loss: + visual_losses["obj"] = { + "shape": (-1,), + "num": config.num_object_labels, + "loss": "visual_ce", + } + if config.visual_attr_loss: + visual_losses["attr"] = { + "shape": (-1,), + "num": config.num_attr_labels, + "loss": "visual_ce", + } + if config.visual_feat_loss: + visual_losses["feat"] = { + "shape": (-1, config.visual_feat_dim), + "num": config.visual_feat_dim, + "loss": "l2", + } + self.visual_losses = visual_losses + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + # Adding the following steps to resize bias to match the shape of resized embeddings + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self.cls.predictions.bias = self._resize_bias(self.cls.predictions.bias, new_num_tokens) + return new_embeddings + + def _resize_bias(self, bias, new_num_tokens: int): + old_num_tokens = bias.shape[0] + if new_num_tokens <= old_num_tokens: + new_bias = bias[:new_num_tokens] + else: + extra_bias = torch.zeros(new_num_tokens - old_num_tokens, device=bias.device) + new_bias = torch.cat([bias, extra_bias]) + new_bias = nn.Parameter(new_bias) + return new_bias + + def resize_num_qa_labels(self, num_labels): + """ + Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size + will add newly initialized weights. Reducing the size will remove weights from the end + + Args: + num_labels (`int`, *optional*): + New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized + weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just + returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything. + + Return: + `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer + """ + + cur_qa_logit_layer = self.get_qa_logit_layer() + if num_labels is None or cur_qa_logit_layer is None: + return + new_qa_logit_layer = self._resize_qa_labels(num_labels) + self.config.num_qa_labels = num_labels + self.num_qa_labels = num_labels + + return new_qa_logit_layer + + def _resize_qa_labels(self, num_labels): + cur_qa_logit_layer = self.get_qa_logit_layer() + new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) + self._set_qa_logit_layer(new_qa_logit_layer) + return self.get_qa_logit_layer() + + def get_qa_logit_layer(self) -> nn.Module: + """ + Returns the linear layer that produces question answering logits. + + Returns: + `nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT + does not have a visual answering head. + """ + if hasattr(self, "answer_head"): + return self.answer_head.logit_fc[-1] + + def _set_qa_logit_layer(self, qa_logit_layer): + self.answer_head.logit_fc[-1] = qa_logit_layer + + def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): + if num_labels is None: + return cur_qa_logit_layer + + cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() + if cur_qa_labels == num_labels: + return cur_qa_logit_layer + + # Build new linear output + if getattr(cur_qa_logit_layer, "bias", None) is not None: + new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) + else: + new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) + + new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) + + # initialize all new labels + self._init_weights(new_qa_logit_layer) + + # Copy labels from the previous weights + num_labels_to_copy = min(cur_qa_labels, num_labels) + new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] + if getattr(cur_qa_logit_layer, "bias", None) is not None: + new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] + + return new_qa_logit_layer + + @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + visual_feats: Optional[torch.FloatTensor] = None, + visual_pos: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + visual_attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, + matched_label: Optional[torch.LongTensor] = None, + ans: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*): + each key is named after each one of the visual losses and each element of the tuple is of the shape + `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and + the label score respectively + matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the whether or not the text input matches the image (classification) loss. Input + should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates that the sentence does not match the image, + - 1 indicates that the sentence does match the image. + ans (`Torch.Tensor` of shape `(batch_size)`, *optional*): + a one hot representation hof the correct answer *optional* + + Returns: + """ + + if "masked_lm_labels" in kwargs: + warnings.warn( + "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`" + " instead.", + FutureWarning, + ) + labels = kwargs.pop("masked_lm_labels") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + device = input_ids.device if input_ids is not None else inputs_embeds.device + lxmert_output = self.lxmert( + input_ids=input_ids, + visual_feats=visual_feats, + visual_pos=visual_pos, + token_type_ids=token_type_ids, + attention_mask=attention_mask, + visual_attention_mask=visual_attention_mask, + inputs_embeds=inputs_embeds, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + lang_output, visual_output, pooled_output = ( + lxmert_output[0], + lxmert_output[1], + lxmert_output[2], + ) + lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) + if self.task_qa: + answer_score = self.answer_head(pooled_output) + else: + answer_score = pooled_output[0][0] + + total_loss = ( + None + if (labels is None and matched_label is None and obj_labels is None and ans is None) + else torch.tensor(0.0, device=device) + ) + if labels is not None and self.task_mask_lm: + masked_lm_loss = self.loss_fcts["ce"]( + lang_prediction_scores.view(-1, self.config.vocab_size), + labels.view(-1), + ) + total_loss += masked_lm_loss + if matched_label is not None and self.task_matched: + matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1)) + total_loss += matched_loss + if obj_labels is not None and self.task_obj_predict: + total_visual_loss = torch.tensor(0.0, device=input_ids.device) + visual_prediction_scores_dict = self.obj_predict_head(visual_output) + for key, key_info in self.visual_losses.items(): + label, mask_conf = obj_labels[key] + output_dim = key_info["num"] + loss_fct_name = key_info["loss"] + label_shape = key_info["shape"] + weight = self.visual_loss_normalizer + visual_loss_fct = self.loss_fcts[loss_fct_name] + visual_prediction_scores = visual_prediction_scores_dict[key] + visual_loss = visual_loss_fct( + visual_prediction_scores.view(-1, output_dim), + label.view(label_shape), + ) + if visual_loss.dim() > 1: # Regression Losses + visual_loss = visual_loss.mean(1) + visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight + total_visual_loss += visual_loss + total_loss += total_visual_loss + if ans is not None and self.task_qa: + answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1)) + total_loss += answer_loss + + if not return_dict: + output = ( + lang_prediction_scores, + cross_relationship_score, + answer_score, + ) + lxmert_output[3:] + return ((total_loss,) + output) if total_loss is not None else output + + return LxmertForPreTrainingOutput( + loss=total_loss, + prediction_logits=lang_prediction_scores, + cross_relationship_score=cross_relationship_score, + question_answering_score=answer_score, + language_hidden_states=lxmert_output.language_hidden_states, + vision_hidden_states=lxmert_output.vision_hidden_states, + language_attentions=lxmert_output.language_attentions, + vision_attentions=lxmert_output.vision_attentions, + cross_encoder_attentions=lxmert_output.cross_encoder_attentions, + ) + + +@add_start_docstrings( + """Lxmert Model with a visual-answering head on top for downstream QA tasks""", + LXMERT_START_DOCSTRING, +) +class LxmertForQuestionAnswering(LxmertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + # Configuration + self.config = config + self.num_qa_labels = config.num_qa_labels + self.visual_loss_normalizer = config.visual_loss_normalizer + + # Lxmert backbone + self.lxmert = LxmertModel(config) + + self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) + + # Weight initialization + # Initialize weights and apply final processing + self.post_init() + + # Loss function + self.loss = CrossEntropyLoss() + + def resize_num_qa_labels(self, num_labels): + """ + Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size + will add newly initialized weights. Reducing the size will remove weights from the end + + Args: + num_labels (`int`, *optional*): + New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized + weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just + returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything. + + Return: + `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer + """ + + cur_qa_logit_layer = self.get_qa_logit_layer() + if num_labels is None or cur_qa_logit_layer is None: + return + new_qa_logit_layer = self._resize_qa_labels(num_labels) + self.config.num_qa_labels = num_labels + self.num_qa_labels = num_labels + + return new_qa_logit_layer + + def _resize_qa_labels(self, num_labels): + cur_qa_logit_layer = self.get_qa_logit_layer() + new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) + self._set_qa_logit_layer(new_qa_logit_layer) + return self.get_qa_logit_layer() + + def get_qa_logit_layer(self) -> nn.Module: + """ + Returns the linear layer that produces question answering logits + + Returns: + `nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType + object if Lxmert does not have the visual answering head. + """ + + if hasattr(self, "answer_head"): + return self.answer_head.logit_fc[-1] + + def _set_qa_logit_layer(self, qa_logit_layer): + self.answer_head.logit_fc[-1] = qa_logit_layer + + def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): + if num_labels is None: + return cur_qa_logit_layer + + cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() + if cur_qa_labels == num_labels: + return cur_qa_logit_layer + + # Build new linear output + if getattr(cur_qa_logit_layer, "bias", None) is not None: + new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) + else: + new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) + + new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) + + # initialize all new labels + self._init_weights(new_qa_logit_layer) + + # Copy labels from the previous weights + num_labels_to_copy = min(cur_qa_labels, num_labels) + new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] + if getattr(cur_qa_logit_layer, "bias", None) is not None: + new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] + + return new_qa_logit_layer + + @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LxmertForQuestionAnsweringOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + visual_feats: Optional[torch.FloatTensor] = None, + visual_pos: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + visual_attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`Torch.Tensor` of shape `(batch_size)`, *optional*): + A one-hot representation of the correct answer + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + lxmert_output = self.lxmert( + input_ids=input_ids, + visual_feats=visual_feats, + visual_pos=visual_pos, + token_type_ids=token_type_ids, + attention_mask=attention_mask, + visual_attention_mask=visual_attention_mask, + inputs_embeds=inputs_embeds, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + pooled_output = lxmert_output[2] + answer_score = self.answer_head(pooled_output) + loss = None + if labels is not None: + loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1)) + + if not return_dict: + output = (answer_score,) + lxmert_output[3:] + return (loss,) + output if loss is not None else output + + return LxmertForQuestionAnsweringOutput( + loss=loss, + question_answering_score=answer_score, + language_hidden_states=lxmert_output.language_hidden_states, + vision_hidden_states=lxmert_output.vision_hidden_states, + language_attentions=lxmert_output.language_attentions, + vision_attentions=lxmert_output.vision_attentions, + cross_encoder_attentions=lxmert_output.cross_encoder_attentions, + ) + + +__all__ = [ + "LxmertEncoder", + "LxmertForPreTraining", + "LxmertForQuestionAnswering", + "LxmertModel", + "LxmertPreTrainedModel", + "LxmertVisualFeatureEncoder", + "LxmertXLayer", +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py new file mode 100644 index 0000000000000000000000000000000000000000..bd07c49f4918b593524050410b5fbf2c4eb21f04 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py @@ -0,0 +1,1661 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the +# Lxmert Authors. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""TF 2.0 LXMERT model.""" + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + get_initializer, + keras, + keras_serializable, + shape_list, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_lxmert import LxmertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" +_CONFIG_FOR_DOC = "LxmertConfig" + + +@dataclass +class TFLxmertModelOutput(ModelOutput): + """ + Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, + visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" + encoder") + + + Args: + language_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the language encoder. + vision_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the visual encoder. + pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed + by a Linear layer and a Tanh activation function. The Linear + language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape + `(batch_size, sequence_length, hidden_size)`. + vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape + `(batch_size, sequence_length, hidden_size)`. + language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + language_output: tf.Tensor | None = None + vision_output: tf.Tensor | None = None + pooled_output: tf.Tensor | None = None + language_hidden_states: Tuple[tf.Tensor] | None = None + vision_hidden_states: Tuple[tf.Tensor] | None = None + language_attentions: Tuple[tf.Tensor] | None = None + vision_attentions: Tuple[tf.Tensor] | None = None + cross_encoder_attentions: Tuple[tf.Tensor] | None = None + + +@dataclass +class TFLxmertForPreTrainingOutput(ModelOutput): + """ + Output type of [`LxmertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`): + Prediction scores of the textual matching objective (classification) head (scores of True/False + continuation before SoftMax). + question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`): + Prediction scores of question answering objective (classification). + language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape + `(batch_size, sequence_length, hidden_size)`. + vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape + `(batch_size, sequence_length, hidden_size)`. + language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + + """ + + loss: tf.Tensor | None = None + prediction_logits: tf.Tensor | None = None + cross_relationship_score: tf.Tensor | None = None + question_answering_score: tf.Tensor | None = None + language_hidden_states: Tuple[tf.Tensor] | None = None + vision_hidden_states: Tuple[tf.Tensor] | None = None + language_attentions: Tuple[tf.Tensor] | None = None + vision_attentions: Tuple[tf.Tensor] | None = None + cross_encoder_attentions: Tuple[tf.Tensor] | None = None + + +class TFLxmertVisualFeatureEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + # Object feature encoding + self.visn_fc = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="visn_fc", + ) + self.visn_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="visn_layer_norm") + + # Box position encoding + self.box_fc = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="box_fc", + ) + self.box_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm") + + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.feat_dim = config.visual_feat_dim + self.pos_dim = config.visual_pos_dim + self.config = config + + def call(self, visn_input, training=False): + feats, boxes = visn_input + + x = self.visn_fc(feats) + x = self.visn_layer_norm(x) + y = self.box_fc(boxes) + y = self.box_layer_norm(y) + output = (x + y) / 2 + + output = self.dropout(output, training=training) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "visn_fc", None) is not None: + with tf.name_scope(self.visn_fc.name): + self.visn_fc.build([None, None, self.feat_dim]) + if getattr(self, "visn_layer_norm", None) is not None: + with tf.name_scope(self.visn_layer_norm.name): + self.visn_layer_norm.build([None, None, self.config.hidden_size]) + if getattr(self, "box_fc", None) is not None: + with tf.name_scope(self.box_fc.name): + self.box_fc.build([None, None, self.pos_dim]) + if getattr(self, "box_layer_norm", None) is not None: + with tf.name_scope(self.box_layer_norm.name): + self.box_layer_norm.build([None, None, self.config.hidden_size]) + + +class TFLxmertEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def call(self, input_ids=None, token_type_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFLxmertAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + assert config.hidden_size % config.num_attention_heads == 0 + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = keras.layers.Dense( + self.all_head_size, + kernel_initializer=get_initializer(config.initializer_range), + name="query", + ) + self.key = keras.layers.Dense( + self.all_head_size, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + ) + self.value = keras.layers.Dense( + self.all_head_size, + kernel_initializer=get_initializer(config.initializer_range), + name="value", + ) + + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.ctx_dim = config.hidden_size + self.config = config + + def transpose_for_scores(self, x, batch_size): + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) + return tf.transpose(x, perm=[0, 2, 1, 3]) + + def call(self, hidden_states, context, attention_mask, output_attentions, training=False): + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(hidden_states) + mixed_key_layer = self.key(context) + mixed_value_layer = self.value(context) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = tf.matmul( + query_layer, key_layer, transpose_b=True + ) # (batch size, num_heads, seq_len_q, seq_len_k) + dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores + attention_scores = attention_scores / tf.math.sqrt(dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFLxmertModel call() function) + attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs, training=training) + context_layer = tf.matmul(attention_probs, value_layer) + + context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) + context_layer = tf.reshape( + context_layer, (batch_size, -1, self.all_head_size) + ) # (batch_size, seq_len_q, all_head_size) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.ctx_dim]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.ctx_dim]) + + +class TFLxmertIntermediate(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.intermediate_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFLxmertOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, input_tensor, training=False): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, training) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFLxmertAttentionOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, input_tensor, training=False): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFLxmertSelfAttentionLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.self = TFLxmertAttention(config, name="self") + self.attention_output = TFLxmertAttentionOutput(config, name="output") + + def call(self, input_tensor, attention_mask, output_attentions, training=False): + # Self attention attends to itself, thus keys and queries are the same (input_tensor). + self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions) + if output_attentions: + attention_probs = self_output[1] + attention_output = self.attention_output(self_output[0], input_tensor) + return (attention_output, attention_probs) if output_attentions else (attention_output,) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self", None) is not None: + with tf.name_scope(self.self.name): + self.self.build(None) + if getattr(self, "attention_output", None) is not None: + with tf.name_scope(self.attention_output.name): + self.attention_output.build(None) + + +class TFLxmertCrossAttentionLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.att = TFLxmertAttention(config, name="att") + self.attention_output = TFLxmertAttentionOutput(config, name="output") + + def call( + self, + input_tensor, + ctx_tensor, + ctx_att_mask, + output_attentions=False, + training=False, + ): + output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training) + if output_attentions: + attention_probs = output[1] + attention_output = self.attention_output(output[0], input_tensor, training=training) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "att", None) is not None: + with tf.name_scope(self.att.name): + self.att.build(None) + if getattr(self, "attention_output", None) is not None: + with tf.name_scope(self.attention_output.name): + self.attention_output.build(None) + + +class TFLxmertLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.attention = TFLxmertSelfAttentionLayer(config, name="attention") + self.intermediate = TFLxmertIntermediate(config, name="intermediate") + self.transformer_output = TFLxmertOutput(config, name="output") + + def call(self, hidden_states, attention_mask, output_attentions, training=False): + attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training) + attention_output = attention_outputs[0] + intermediate_output = self.intermediate(attention_output) + layer_output = self.transformer_output(intermediate_output, attention_output, training=training) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "transformer_output", None) is not None: + with tf.name_scope(self.transformer_output.name): + self.transformer_output.build(None) + + +class TFLxmertXLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention") + + # Self-attention Layers + self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att") + self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att") + + # Intermediate and Output Layers (FFNs) + self.lang_inter = TFLxmertIntermediate(config, name="lang_inter") + self.lang_output = TFLxmertOutput(config, name="lang_output") + self.visn_inter = TFLxmertIntermediate(config, name="visn_inter") + self.visn_output = TFLxmertOutput(config, name="visn_output") + + def cross_att( + self, + lang_input, + lang_attention_mask, + visn_input, + visn_attention_mask, + output_attentions, + training=False, + ): + # Cross Attention + + # Keras saving and loading model *does not work* with the same inputs for two layers. + lang_attention_lang_input = tf.identity(lang_input) + visn_attention_lang_input = tf.identity(lang_input) + lang_attention_visn_input = tf.identity(visn_input) + visn_attention_visn_input = tf.identity(visn_input) + + lang_att_output = self.visual_attention( + lang_attention_lang_input, + lang_attention_visn_input, + visn_attention_mask, + output_attentions=output_attentions, + training=training, + ) + visn_att_output = self.visual_attention( + visn_attention_visn_input, + visn_attention_lang_input, + lang_attention_mask, + output_attentions=output_attentions, + training=training, + ) + return lang_att_output, visn_att_output + + def self_att( + self, + lang_input, + lang_attention_mask, + visn_input, + visn_attention_mask, + training=False, + ): + # Self Attention + output_attentions = False + lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training) + visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training) + return lang_att_output[0], visn_att_output[0] + + def output_fc(self, lang_input, visn_input, training=False): + # FC layers + lang_inter_output = self.lang_inter(lang_input) + visn_inter_output = self.visn_inter(visn_input) + + # Layer output + lang_output = self.lang_output(lang_inter_output, lang_input, training) + visn_output = self.visn_output(visn_inter_output, visn_input, training) + return lang_output, visn_output + + def call( + self, + lang_feats, + lang_attention_mask, + visn_feats, + visn_attention_mask, + output_attentions, + training=False, + ): + lang_att_output = lang_feats + visn_att_output = visn_feats + + lang_att_output, visn_att_output = self.cross_att( + lang_att_output, + lang_attention_mask, + visn_att_output, + visn_attention_mask, + output_attentions, + training=training, + ) + attention_probs = lang_att_output[1:] + lang_att_output, visn_att_output = self.self_att( + lang_att_output[0], + lang_attention_mask, + visn_att_output[0], + visn_attention_mask, + training=training, + ) + lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training) + + return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "visual_attention", None) is not None: + with tf.name_scope(self.visual_attention.name): + self.visual_attention.build(None) + if getattr(self, "lang_self_att", None) is not None: + with tf.name_scope(self.lang_self_att.name): + self.lang_self_att.build(None) + if getattr(self, "visn_self_att", None) is not None: + with tf.name_scope(self.visn_self_att.name): + self.visn_self_att.build(None) + if getattr(self, "lang_inter", None) is not None: + with tf.name_scope(self.lang_inter.name): + self.lang_inter.build(None) + if getattr(self, "lang_output", None) is not None: + with tf.name_scope(self.lang_output.name): + self.lang_output.build(None) + if getattr(self, "visn_inter", None) is not None: + with tf.name_scope(self.visn_inter.name): + self.visn_inter.build(None) + if getattr(self, "visn_output", None) is not None: + with tf.name_scope(self.visn_output.name): + self.visn_output.build(None) + + +class TFLxmertEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc") + + # Number of layers + self.num_l_layers = config.l_layers + self.num_x_layers = config.x_layers + self.num_r_layers = config.r_layers + + # Layers + # Using self.layer instead of self.l_layer to support loading BERT weights. + self.layer = [TFLxmertLayer(config, name=f"layer_._{i}") for i in range(self.num_l_layers)] + self.x_layers = [TFLxmertXLayer(config, name=f"x_layers_._{i}") for i in range(self.num_x_layers)] + self.r_layers = [TFLxmertLayer(config, name=f"r_layers_._{i}") for i in range(self.num_r_layers)] + self.config = config + + def call( + self, + lang_feats=None, + lang_attention_mask=None, + visual_feats=None, + visual_pos=None, + visual_attention_mask=None, + output_attentions=None, + training=False, + ): + vision_hidden_states = () + language_hidden_states = () + vision_attentions = () if output_attentions or self.config.output_attentions else None + language_attentions = () if output_attentions or self.config.output_attentions else None + cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None + + visual_feats = self.visn_fc([visual_feats, visual_pos], training=training) + + # Run language layers + for layer_module in self.layer: + l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training) + lang_feats = l_outputs[0] + language_hidden_states = language_hidden_states + (lang_feats,) + if language_attentions is not None: + language_attentions = language_attentions + (l_outputs[1],) + + # Run relational layers + for layer_module in self.r_layers: + v_outputs = layer_module( + visual_feats, + visual_attention_mask, + output_attentions, + training=training, + ) + visual_feats = v_outputs[0] + vision_hidden_states = vision_hidden_states + (visual_feats,) + if vision_attentions is not None: + vision_attentions = vision_attentions + (v_outputs[1],) + + # Run cross-modality layers + for layer_module in self.x_layers: + x_outputs = layer_module( + lang_feats, + lang_attention_mask, + visual_feats, + visual_attention_mask, + output_attentions, + training=training, + ) + lang_feats, visual_feats = x_outputs[:2] + vision_hidden_states = vision_hidden_states + (visual_feats,) + language_hidden_states = language_hidden_states + (lang_feats,) + if cross_encoder_attentions is not None: + cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) + + visual_encoder_outputs = ( + vision_hidden_states, + vision_attentions if output_attentions else None, + ) + lang_encoder_outputs = ( + language_hidden_states, + language_attentions if output_attentions else None, + ) + + return ( + visual_encoder_outputs, + lang_encoder_outputs, + cross_encoder_attentions if output_attentions else None, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "visn_fc", None) is not None: + with tf.name_scope(self.visn_fc.name): + self.visn_fc.build(None) + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + if getattr(self, "x_layers", None) is not None: + for layer in self.x_layers: + with tf.name_scope(layer.name): + layer.build(None) + if getattr(self, "r_layers", None) is not None: + for layer in self.r_layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLxmertMainLayer(keras.layers.Layer): + config_class = LxmertConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.num_l_layers = config.l_layers + self.num_x_layers = config.x_layers + self.num_r_layers = config.r_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.embeddings = TFLxmertEmbeddings(config, name="embeddings") + self.encoder = TFLxmertEncoder(config, name="encoder") + self.pooler = TFLxmertPooler(config, name="pooler") + self.config = config + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + visual_feats=None, + visual_pos=None, + attention_mask=None, + visual_attention_mask=None, + token_type_ids=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + if visual_pos is None or visual_feats is None: + raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + if token_type_ids is None: + token_type_ids = tf.fill(input_shape, 0) + + # Positional Word Embeddings + embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds, training) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + if visual_attention_mask is not None: + extended_visual_attention_mask = tf.reshape(visual_attention_mask, (input_shape[0], 1, 1, input_shape[1])) + extended_visual_attention_mask = tf.expand_dims(tf.expand_dims(visual_attention_mask, axis=1), axis=1) + + extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, dtype=embedding_output.dtype) + extended_visual_attention_mask = tf.multiply( + tf.subtract(one_cst, extended_visual_attention_mask), ten_thousand_cst + ) + else: + extended_visual_attention_mask = None + + # Run Lxmert encoder + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + visual_feats, + visual_pos, + extended_visual_attention_mask, + output_attentions, + training, + ) + visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] + vision_hidden_states = visual_encoder_outputs[0] + language_hidden_states = lang_encoder_outputs[0] + + all_attentions = () + if output_attentions: + language_attentions = lang_encoder_outputs[1] + vision_attentions = visual_encoder_outputs[1] + cross_encoder_attentions = encoder_outputs[2] + all_attentions = ( + language_attentions, + vision_attentions, + cross_encoder_attentions, + ) + + hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () + + visual_output = vision_hidden_states[-1] + lang_output = language_hidden_states[-1] + pooled_output = self.pooler(lang_output) + + if not return_dict: + return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions + + return TFLxmertModelOutput( + pooled_output=pooled_output, + language_output=lang_output, + vision_output=visual_output, + language_hidden_states=language_hidden_states if output_hidden_states else None, + vision_hidden_states=vision_hidden_states if output_hidden_states else None, + language_attentions=language_attentions if output_attentions else None, + vision_attentions=vision_attentions if output_attentions else None, + cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFLxmertPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LxmertConfig + base_model_prefix = "lxmert" + + @property + def dummy_inputs(self): + """ + Dummy inputs to build the network. + + Returns: + tf.Tensor with dummy inputs + """ + batch_size = 2 + num_visual_features = 10 + input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32) + visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) + visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) + + return { + "input_ids": input_ids, + "visual_feats": visual_feats, + "visual_pos": visual_pos, + } + + @property + def input_signature(self): + return { + "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), + "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), + "visual_feats": tf.TensorSpec((None, None, self.config.visual_feat_dim), tf.float32, name="visual_feats"), + "visual_pos": tf.TensorSpec((None, None, 4), tf.float32, name="visual_pos"), + "visual_attention_mask": tf.TensorSpec((None, None), tf.int32, name="visual_attention_mask"), + "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), + } + + +LXMERT_START_DOCSTRING = r""" + + The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from + Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer + model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual + genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss + for question answering attribute prediction, and object tag prediction. + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`LxmertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LXMERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): + This input represents visual features. They ROI pooled object features from bounding boxes using a + faster-RCNN model) + + These are currently not provided by the transformers library. + visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): + This input represents spacial features corresponding to their relative (via index) visual features. The + pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to + 1. + + These are currently not provided by the transformers library. + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + visual_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + MMask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", + LXMERT_START_DOCSTRING, +) +class TFLxmertModel(TFLxmertPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.lxmert = TFLxmertMainLayer(config, name="lxmert") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLxmertModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + visual_feats: tf.Tensor | None = None, + visual_pos: tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + visual_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[Tuple, TFLxmertModelOutput]: + outputs = self.lxmert( + input_ids, + visual_feats, + visual_pos, + attention_mask, + visual_attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict, + training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "lxmert", None) is not None: + with tf.name_scope(self.lxmert.name): + self.lxmert.build(None) + + +class TFLxmertPooler(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Lxmert +class TFLxmertPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config: LxmertConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(inputs=hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Lxmert +class TFLxmertLMPredictionHead(keras.layers.Layer): + def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + + self.transform = TFLxmertPredictionHeadTransform(config, name="transform") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self) -> keras.layers.Layer: + return self.input_embeddings + + def set_output_embeddings(self, value: tf.Variable): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self) -> Dict[str, tf.Variable]: + return {"bias": self.bias} + + def set_bias(self, value: tf.Variable): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.transform(hidden_states=hidden_states) + seq_length = shape_list(hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Lxmert +class TFLxmertMLMHead(keras.layers.Layer): + def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") + + def call(self, sequence_output: tf.Tensor) -> tf.Tensor: + prediction_scores = self.predictions(hidden_states=sequence_output) + + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +class TFLxmertPreTrainingHeads(keras.layers.Layer): + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") + + self.seq_relationship = keras.layers.Dense( + 2, + kernel_initializer=get_initializer(config.initializer_range), + name="seq_relationship", + ) + self.config = config + + def call(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + if getattr(self, "seq_relationship", None) is not None: + with tf.name_scope(self.seq_relationship.name): + self.seq_relationship.build([None, None, self.config.hidden_size]) + + +class TFLxmertVisualAnswerHead(keras.layers.Layer): + def __init__(self, config, num_labels, **kwargs): + super().__init__(**kwargs) + hid_dim = config.hidden_size + self.dense = keras.layers.Dense( + hid_dim * 2, + kernel_initializer=get_initializer(config.initializer_range), + name="logit_fc_._0", + ) + self.activation = get_tf_activation("gelu") + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2") + self.dense_1 = keras.layers.Dense( + num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="logit_fc_._3", + ) + self.hid_dim = hid_dim + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dense_1(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.hid_dim]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, self.hid_dim * 2]) + if getattr(self, "dense_1", None) is not None: + with tf.name_scope(self.dense_1.name): + self.dense_1.build([None, None, self.hid_dim * 2]) + + +class TFLxmertVisualObjHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.transform = TFLxmertPredictionHeadTransform(config, name="transform") + + # Decide the use of visual losses + visual_losses = {} + if config.visual_obj_loss: + visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} + if config.visual_attr_loss: + visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} + if config.visual_feat_loss: + visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim} + self.visual_losses = visual_losses + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder_dict = { + key: keras.layers.Dense( + self.visual_losses[key]["num"], + kernel_initializer=get_initializer(config.initializer_range), + name=f"decoder_dict.{key}", + ) + for key in self.visual_losses + } + self.config = config + + def call(self, hidden_states): + hidden_states = self.transform(hidden_states) + output = {} + for key in self.visual_losses: + output[key] = self.decoder_dict[key](hidden_states) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + if getattr(self, "decoder_dict", None) is not None: + for layer in self.decoder_dict.values(): + with tf.name_scope(layer.name): + layer.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings("""Lxmert Model with a `language modeling` head on top.""", LXMERT_START_DOCSTRING) +class TFLxmertForPreTraining(TFLxmertPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.config = config + self.num_qa_labels = config.num_qa_labels + self.visual_loss_normalizer = config.visual_loss_normalizer + + # Use of pretraining tasks + self.task_mask_lm = config.task_mask_lm + self.task_obj_predict = config.task_obj_predict + self.task_matched = config.task_matched + self.task_qa = config.task_qa + + # Lxmert backbone + self.lxmert = TFLxmertMainLayer(config, name="lxmert") + + # Pre-training heads + self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls") + if self.task_obj_predict: + self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head") + if self.task_qa: + self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head") + + # Loss functions + self.loss_fcts = { + "l2": keras.losses.Huber(delta=1.0, name="huber_loss"), + "visn_ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True), + "ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True), + } + + visual_losses = {} + if config.visual_obj_loss: + visual_losses["obj"] = { + "shape": (-1,), + "num": config.num_object_labels, + "loss": "visn_ce", + } + if config.visual_attr_loss: + visual_losses["attr"] = { + "shape": (-1,), + "num": config.num_attr_labels, + "loss": "visn_ce", + } + if config.visual_feat_loss: + visual_losses["feat"] = { + "shape": (-1, config.visual_feat_dim), + "num": config.visual_feat_dim, + "loss": "l2", + } + self.visual_losses = visual_losses + + @property + def dummy_inputs(self): + """ + Dummy inputs to build the network. + + Returns: + tf.Tensor with dummy inputs + """ + batch_size = 2 + num_visual_features = 10 + input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32) + visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) + visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) + + if self.config.task_obj_predict: + obj_labels = {} + if self.config.visual_attr_loss and self.config.task_obj_predict: + obj_labels["attr"] = ( + tf.ones([batch_size, num_visual_features]), + tf.ones([batch_size, num_visual_features]), + ) + if self.config.visual_feat_loss and self.config.task_obj_predict: + obj_labels["feat"] = ( + tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]), + tf.ones([batch_size, num_visual_features]), + ) + if self.config.visual_obj_loss and self.config.task_obj_predict: + obj_labels["obj"] = ( + tf.ones([batch_size, num_visual_features]), + tf.ones([batch_size, num_visual_features]), + ) + + return { + **{ + "input_ids": input_ids, + "visual_feats": visual_feats, + "visual_pos": visual_pos, + }, + **({"obj_labels": obj_labels} if self.config.task_obj_predict else {}), + } + + def get_lm_head(self): + return self.cls.predictions + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + visual_feats: tf.Tensor | None = None, + visual_pos: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + visual_attention_mask: tf.Tensor | None = None, + token_type_ids: tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + masked_lm_labels: tf.Tensor | None = None, + obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None, + matched_label: tf.Tensor | None = None, + ans: tf.Tensor | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + ) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput: + r""" + masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`): + each key is named after each one of the visual losses and each element of the tuple is of the shape + `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and + the label score respectively + matched_label (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the whether or not the text input matches the image (classification) loss. Input + should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates that the sentence does not match the image, + - 1 indicates that the sentence does match the image. + ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`): + a one hot representation hof the correct answer *optional* + + Returns: + """ + + lxmert_output = self.lxmert( + input_ids, + visual_feats, + visual_pos, + attention_mask, + visual_attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict, + training, + ) + + lang_output, visual_output, pooled_output = ( + lxmert_output[0], + lxmert_output[1], + lxmert_output[2], + ) + lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) + if self.task_qa: + answer_score = self.answer_head(pooled_output) + else: + answer_score = pooled_output[0][0] + + total_loss = ( + None + if (masked_lm_labels is None and matched_label is None and obj_labels is None and ans is None) + else tf.constant(0.0) + ) + losses = () + if masked_lm_labels is not None and self.task_mask_lm: + masked_lm_loss = self.loss_fcts["ce"]( + tf.reshape(masked_lm_labels, [-1]), + tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]), + ) + total_loss += masked_lm_loss + losses += (masked_lm_loss,) + if matched_label is not None and self.task_matched: + matched_loss = self.loss_fcts["ce"]( + tf.reshape(matched_label, [-1]), + tf.reshape(cross_relationship_score, [-1, 2]), + ) + total_loss += matched_loss + losses += (matched_loss,) + if obj_labels is not None and self.task_obj_predict: + total_visn_loss = 0.0 + visn_prediction_scores_dict = self.obj_predict_head(visual_output) + for key, key_info in self.visual_losses.items(): + label, mask_conf = obj_labels[key] + output_dim = key_info["num"] + loss_fct_name = key_info["loss"] + label_shape = key_info["shape"] + weight = self.visual_loss_normalizer + visn_loss_fct = self.loss_fcts[loss_fct_name] + visn_prediction_scores = visn_prediction_scores_dict[key] + visn_loss = visn_loss_fct( + tf.reshape(label, label_shape), + tf.reshape(visn_prediction_scores, [-1, output_dim]), + ) + + if visn_loss.ndim > 1: # Regression Losses + visn_loss = tf.reduce_mean(visn_loss) + visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight + total_visn_loss += visn_loss + losses += (visn_loss,) + total_loss += total_visn_loss + if ans is not None and self.task_qa: + answer_loss = self.loss_fcts["ce"]( + tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels]) + ) + # exclude "*2" here to match the effect of QA losses. + # Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper) + # Now : (loss *1) for 12 epochs + # + # * 2 # Multiply by 2 because > half of the data will not have label + total_loss += answer_loss + losses += (answer_loss,) + # return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach() + + if not return_dict: + output = ( + lang_prediction_scores, + cross_relationship_score, + answer_score, + ) + lxmert_output[3:] + return ((total_loss,) + output) if total_loss is not None else output + + return TFLxmertForPreTrainingOutput( + loss=total_loss, + prediction_logits=lang_prediction_scores, + cross_relationship_score=cross_relationship_score, + question_answering_score=answer_score, + language_hidden_states=lxmert_output.language_hidden_states, + vision_hidden_states=lxmert_output.vision_hidden_states, + language_attentions=lxmert_output.language_attentions, + vision_attentions=lxmert_output.vision_attentions, + cross_encoder_attentions=lxmert_output.cross_encoder_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "lxmert", None) is not None: + with tf.name_scope(self.lxmert.name): + self.lxmert.build(None) + if getattr(self, "cls", None) is not None: + with tf.name_scope(self.cls.name): + self.cls.build(None) + if getattr(self, "obj_predict_head", None) is not None: + with tf.name_scope(self.obj_predict_head.name): + self.obj_predict_head.build(None) + if getattr(self, "answer_head", None) is not None: + with tf.name_scope(self.answer_head.name): + self.answer_head.build(None) + + +__all__ = [ + "TFLxmertForPreTraining", + "TFLxmertMainLayer", + "TFLxmertModel", + "TFLxmertPreTrainedModel", + "TFLxmertVisualFeatureEncoder", +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py new file mode 100644 index 0000000000000000000000000000000000000000..2dea92f7e0a16bcd86d3da3152a100473237762b --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py @@ -0,0 +1,511 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, BertTokenizer->LxmertTokenizer +class LxmertTokenizer(PreTrainedTokenizer): + r""" + Construct a Lxmert tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original Lxmert). + clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): + Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like + extra spaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + clean_up_tokenization_spaces=True, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = LxmertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Lxmert sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer: + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer: + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +__all__ = ["LxmertTokenizer"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..9a6a11bba2178ea79ee996185e7f876c697cce9e --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py @@ -0,0 +1,172 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from .tokenization_lxmert import LxmertTokenizer + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + + +# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, Bert->Lxmert +class LxmertTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" Lxmert tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original Lxmert). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = LxmertTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Lxmert sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + +__all__ = ["LxmertTokenizerFast"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1389215e8398512df0285a13766d532e7117d29c --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_mamba2 import * + from .modeling_mamba2 import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ac93bc6b6f7d42824d5c57dae4740d1d3e8dc34 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..beab37f65c1a8daa20e27a816db5e832c49f6fa0 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py @@ -0,0 +1,29 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_mvp import * + from .modeling_mvp import * + from .tokenization_mvp import * + from .tokenization_mvp_fast import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..591e750ef0fe65e663bc9ad8a7da6cab3f1d0efc Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..97d10c1a8d138efcf1660c944ca7c04f3882d778 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py new file mode 100644 index 0000000000000000000000000000000000000000..a270461db40d6064f0f2b738c6a01605345e94a5 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py @@ -0,0 +1,183 @@ +# coding=utf-8 +# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""MVP model configuration""" + +import warnings + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class MvpConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50267): + Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MvpModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + use_prompt (`bool`, *optional*, defaults to `False`): + Whether or not to use prompt. + prompt_length (`int`, *optional*, defaults to 100): + The length of prompt. + prompt_mid_dim (`int`, *optional*, defaults to 800): + Dimensionality of the "intermediate" layer in prompt. + Example: + + ```python + >>> from transformers import MvpConfig, MvpModel + + >>> # Initializing a MVP RUCAIBox/mvp style configuration + >>> configuration = MvpConfig() + + >>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration + >>> model = MvpModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mvp" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=50267, + max_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + classifier_dropout=0.0, + scale_embedding=False, + use_cache=True, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + is_encoder_decoder=True, + decoder_start_token_id=2, + forced_eos_token_id=2, + use_prompt=False, + prompt_length=100, + prompt_mid_dim=800, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + self.use_prompt = use_prompt + self.prompt_length = prompt_length + self.prompt_mid_dim = prompt_mid_dim + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): + self.forced_bos_token_id = self.bos_token_id + warnings.warn( + f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " + "The config can simply be saved and uploaded again to be fixed." + ) + + +__all__ = ["MvpConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py new file mode 100644 index 0000000000000000000000000000000000000000..e3a32082cce8b374c00fb87a83566199a332f295 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py @@ -0,0 +1,394 @@ +# coding=utf-8 +# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +from functools import lru_cache +from typing import List, Optional, Tuple + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + +# See all MVP models at https://huggingface.co/models?filter=mvp + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class MvpTokenizer(PreTrainedTokenizer): + """ + Constructs a MVP tokenizer, which is smilar to the RoBERTa tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import MvpTokenizer + + >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (MVP tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + vocab = self.encoder.copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A MVP sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) + + +__all__ = ["MvpTokenizer"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e2161a4948b5e32f600af135c33330c2e2c353c7 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_olmo2 import * + from .modeling_olmo2 import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4a8cbb351a8c4142ad2f7fb564f7698e8e2c23a Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6236ad84307ac52c04e6a830cb094569e42b0b02 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c91dbc597f52f41fee630fb9b1eb30822041a935 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ead0a81efafd795c6e18d4383211e31ca7d12b6 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py new file mode 100644 index 0000000000000000000000000000000000000000..83c3263de1f552042700609330429100aa2f2abc --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py @@ -0,0 +1,167 @@ +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_olmo2.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 + + +from ...configuration_utils import PretrainedConfig + + +class Olmo2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2 + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50304): + Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Olmo2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 50279): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + + ```python + >>> from transformers import Olmo2Model, Olmo2Config + + >>> # Initializing a Olmo2 7B style configuration + >>> configuration = Olmo2Config() + + >>> # Initializing a model from the Olmo2 7B style configuration + >>> model = Olmo2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "olmo2" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=50304, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + use_cache=True, + pad_token_id=1, + bos_token_id=None, + eos_token_id=50279, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + rms_norm_eps=1e-5, + **kwargs, + ): + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + + self.rms_norm_eps = rms_norm_eps + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") + + +__all__ = ["Olmo2Config"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py new file mode 100644 index 0000000000000000000000000000000000000000..7219284bd862ca0775daae1e884cd4f1b43aa735 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py @@ -0,0 +1,843 @@ +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_olmo2.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache, StaticCache +from ...generation import GenerationMixin +from ...modeling_attn_mask_utils import AttentionMaskConverter +from ...modeling_flash_attention_utils import FlashAttentionKwargs +from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS +from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel +from ...processing_utils import Unpack +from ...utils import ( + LossKwargs, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_olmo2 import Olmo2Config + + +logger = logging.get_logger(__name__) +_CONFIG_FOR_DOC = "Olmo2Config" + + +class Olmo2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Olmo2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + + attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +class Olmo2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.is_causal = True + + self.q_proj = nn.Linear( + config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias + ) + self.k_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.v_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.o_proj = nn.Linear( + config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias + ) + self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps) + self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_norm(self.q_proj(hidden_states)) + key_states = self.k_norm(self.k_proj(hidden_states)) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(hidden_shape).transpose(1, 2) + key_states = key_states.view(hidden_shape).transpose(1, 2) + value_states = value_states.view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): + logger.warning_once( + "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " + 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + else: + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + +class Olmo2MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class Olmo2DecoderLayer(nn.Module): + def __init__(self, config: Olmo2Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx) + + self.mlp = Olmo2MLP(config) + self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + residual = hidden_states + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.mlp(hidden_states) + hidden_states = self.post_feedforward_layernorm(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +class Olmo2RotaryEmbedding(nn.Module): + def __init__(self, config: Olmo2Config, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + def _dynamic_frequency_update(self, position_ids, device): + """ + dynamic RoPE layers should recompute `inv_freq` in the following situations: + 1 - growing beyond the cached sequence length (allow scaling) + 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) + """ + seq_len = torch.max(position_ids) + 1 + if seq_len > self.max_seq_len_cached: # growth + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) + self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation + self.max_seq_len_cached = seq_len + + if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + self.max_seq_len_cached = self.original_max_seq_len + + @torch.no_grad() + def forward(self, x, position_ids): + if "dynamic" in self.rope_type: + self._dynamic_frequency_update(position_ids, device=x.device) + + # Core RoPE block + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 (see https://github.com/huggingface/transformers/pull/29285) + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + + # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention + cos = cos * self.attention_scaling + sin = sin * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +OLMO2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Olmo2Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Olmo2 Model outputting raw hidden-states without any specific head on top.", + OLMO2_START_DOCSTRING, +) +class Olmo2PreTrainedModel(PreTrainedModel): + config_class = Olmo2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Olmo2DecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_flex_attn = True + _supports_cache_class = True + _supports_quantized_cache = True + _supports_static_cache = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +OLMO2_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare Olmo2 Model outputting raw hidden-states without any specific head on top.", + OLMO2_START_DOCSTRING, +) +class Olmo2Model(Olmo2PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`] + + Args: + config: Olmo2Config + """ + + def __init__(self, config: Olmo2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.rotary_emb = Olmo2RotaryEmbedding(config=config) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **flash_attn_kwargs: Unpack[FlashAttentionKwargs], + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + + for decoder_layer in self.layers[: self.config.num_hidden_layers]: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + position_embeddings, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **flash_attn_kwargs, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + output = BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values if use_cache else None, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + return output if return_dict else output.to_tuple() + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool, + ): + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and (attention_mask == 0.0).any(): + return attention_mask + return None + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_cache_shape() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + min_dtype = torch.finfo(dtype).min + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + @staticmethod + def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + cache_position: torch.Tensor, + batch_size: int, + **kwargs, + ): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape + `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, + to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + min_dtype = torch.finfo(dtype).min + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... + + +class Olmo2ForCausalLM(Olmo2PreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + + def __init__(self, config): + super().__init__(config) + self.model = Olmo2Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + num_logits_to_keep: int = 0, + **kwargs: Unpack[KwargsForCausalLM], + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + num_logits_to_keep (`int`, *optional*): + Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, Olmo2ForCausalLM + + >>> model = Olmo2ForCausalLM.from_pretrained("meta-olmo2/Olmo2-2-7b-hf") + >>> tokenizer = AutoTokenizer.from_pretrained("meta-olmo2/Olmo2-2-7b-hf") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs[0] + # Only compute necessary logits, and do not upcast them to float if we are not computing the loss + logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +__all__ = ["Olmo2ForCausalLM", "Olmo2Model", "Olmo2PreTrainedModel"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py new file mode 100644 index 0000000000000000000000000000000000000000..5f1191708044661819e3ed672a07f325d465d619 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py @@ -0,0 +1,297 @@ +from typing import Callable, Optional, Tuple + +import torch +from torch import nn + +from ...cache_utils import Cache +from ...modeling_utils import ALL_ATTENTION_FUNCTIONS +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import logging +from ..llama.modeling_llama import LlamaRMSNorm, eager_attention_forward +from ..olmo.configuration_olmo import OlmoConfig +from ..olmo.modeling_olmo import ( + OlmoAttention, + OlmoDecoderLayer, + OlmoForCausalLM, + OlmoModel, + apply_rotary_pos_emb, +) + + +logger = logging.get_logger(__name__) + + +class Olmo2Config(OlmoConfig): + r""" + This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2 + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50304): + Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Olmo2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 50279): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + + ```python + >>> from transformers import Olmo2Model, Olmo2Config + + >>> # Initializing a Olmo2 7B style configuration + >>> configuration = Olmo2Config() + + >>> # Initializing a model from the Olmo2 7B style configuration + >>> model = Olmo2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "olmo2" + + def __init__( + self, + vocab_size=50304, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + use_cache=True, + pad_token_id=1, + bos_token_id=None, + eos_token_id=50279, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + rms_norm_eps=1e-5, + **kwargs, + ): + super().__init__( + vocab_size=vocab_size, + hidden_size=hidden_size, + intermediate_size=intermediate_size, + num_hidden_layers=num_hidden_layers, + num_attention_heads=num_attention_heads, + num_key_value_heads=num_key_value_heads, + hidden_act=hidden_act, + max_position_embeddings=max_position_embeddings, + initializer_range=initializer_range, + use_cache=use_cache, + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + rope_theta=rope_theta, + rope_scaling=rope_scaling, + attention_bias=attention_bias, + attention_dropout=attention_dropout, + **kwargs, + ) + + self.rms_norm_eps = rms_norm_eps + del self.clip_qkv + + +class Olmo2RMSNorm(LlamaRMSNorm): + pass + + +ALL_LAYERNORM_LAYERS.append(Olmo2RMSNorm) + + +# Olmo2 attention is identical to OLMo attention except: +# - Norm is applied to attention queries and keys. +# - No qkv clipping. +class Olmo2Attention(OlmoAttention): + def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None): + super().__init__(config, layer_idx=layer_idx) + self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps) + self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_norm(self.q_proj(hidden_states)) + key_states = self.k_norm(self.k_proj(hidden_states)) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(hidden_shape).transpose(1, 2) + key_states = key_states.view(hidden_shape).transpose(1, 2) + value_states = value_states.view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): + logger.warning_once( + "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " + 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + else: + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + +# The OLMo2 layers are identical to those of the OLMo model except: +# - RMSNorm is used instead of standard layer norm. +# - Norm is applied after attention/feedforward rather than before. +class Olmo2DecoderLayer(OlmoDecoderLayer): + def __init__(self, config: Olmo2Config, layer_idx: int): + super().__init__(config, layer_idx=layer_idx) + self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx) + del self.input_layernorm + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + residual = hidden_states + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.mlp(hidden_states) + hidden_states = self.post_feedforward_layernorm(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +# The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of +# standard layer norm for the output norm. +class Olmo2Model(OlmoModel): + def __init__(self, config: Olmo2Config): + super().__init__(config) + self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.layers = nn.ModuleList( + [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + + +# The heads now only need to redefine the model inside to the correct `RobertaModel` +class Olmo2ForCausalLM(OlmoForCausalLM): + pass + + +__all__ = [ + "Olmo2Config", + "Olmo2ForCausalLM", + "Olmo2Model", + "Olmo2PreTrainedModel", # noqa: F822 +] diff --git a/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cb71eae2547c59a4f9ba7ecbafda56fb9c86b494 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_persimmon import * + from .modeling_persimmon import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94686b94610597ac3ddfddba8cd7bd9de5e963c4 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e449902c33e186231a064a095560f37bf73f5c99 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a036fe2999c00297d7780ba1e018188ce6ff18fa Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..62ed595229adc7a04647564a5f98b83d290686fb Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72ee19821e99c1bbcee92280f7b76b00ea44f327 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..107856920610df466e857a3838b44c5bc1973b3c Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..235069ea5a8f5bd4be8f730061ec78fe907f0e67 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py @@ -0,0 +1,213 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ..auto.configuration_auto import AutoConfig + + +if TYPE_CHECKING: + from ... import PreTrainedTokenizerBase, TensorType + +logger = logging.get_logger(__name__) + + +class VisionEncoderDecoderConfig(PretrainedConfig): + r""" + [`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a + [`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the + specified arguments, defining the encoder and decoder configs. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + kwargs (*optional*): + Dictionary of keyword arguments. Notably: + + - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the encoder config. + - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the decoder config. + + Examples: + + ```python + >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel + + >>> # Initializing a ViT & BERT style configuration + >>> config_encoder = ViTConfig() + >>> config_decoder = BertConfig() + + >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) + + >>> # Initializing a ViTBert model (with random weights) from a ViT & google-bert/bert-base-uncased style configurations + >>> model = VisionEncoderDecoderModel(config=config) + + >>> # Accessing the model configuration + >>> config_encoder = model.config.encoder + >>> config_decoder = model.config.decoder + >>> # set decoder config to causal lm + >>> config_decoder.is_decoder = True + >>> config_decoder.add_cross_attention = True + + >>> # Saving the model, including its configuration + >>> model.save_pretrained("my-model") + + >>> # loading model and config from pretrained folder + >>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model") + >>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) + ```""" + + model_type = "vision-encoder-decoder" + sub_configs = {"encoder": AutoConfig, "decoder": AutoConfig} + is_composition = True + + def __init__(self, **kwargs): + super().__init__(**kwargs) + if "encoder" not in kwargs or "decoder" not in kwargs: + raise ValueError( + f"A configuraton of type {self.model_type} cannot be instantiated because " + f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" + ) + + encoder_config = kwargs.pop("encoder") + encoder_model_type = encoder_config.pop("model_type") + decoder_config = kwargs.pop("decoder") + decoder_model_type = decoder_config.pop("model_type") + + self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) + self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) + self.is_encoder_decoder = True + + @classmethod + def from_encoder_decoder_configs( + cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs + ) -> PretrainedConfig: + r""" + Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model + configuration and decoder model configuration. + + Returns: + [`VisionEncoderDecoderConfig`]: An instance of a configuration object + """ + logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) + + +class VisionEncoderDecoderEncoderOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) + + +class VisionEncoderDecoderDecoderOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = OrderedDict() + common_inputs["input_ids"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + common_inputs["attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + common_inputs["encoder_hidden_states"] = {0: "batch", 1: "encoder_sequence"} + + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: "PreTrainedTokenizerBase", + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional["TensorType"] = None, + ) -> Mapping[str, Any]: + import torch + + common_inputs = OrderedDict() + + dummy_input = super().generate_dummy_inputs( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + batch, encoder_sequence = dummy_input["input_ids"].shape + encoder_hidden_states_shape = (batch, encoder_sequence, self._config.encoder_hidden_size) + common_inputs["input_ids"] = dummy_input.pop("input_ids") + common_inputs["attention_mask"] = dummy_input.pop("attention_mask") + common_inputs["encoder_hidden_states"] = torch.zeros(encoder_hidden_states_shape) + + return common_inputs + + +class VisionEncoderDecoderOnnxConfig(OnnxConfig): + @property + def inputs(self) -> None: + pass + + def get_encoder_config(self, encoder_config: PretrainedConfig) -> OnnxConfig: + r""" + Returns ONNX encoder config for `VisionEncoderDecoder` model. + + Args: + encoder_config (`PretrainedConfig`): + The encoder model's configuration to use when exporting to ONNX. + + Returns: + [`VisionEncoderDecoderEncoderOnnxConfig`]: An instance of the ONNX configuration object + """ + return VisionEncoderDecoderEncoderOnnxConfig(encoder_config) + + def get_decoder_config( + self, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, feature: str = "default" + ) -> OnnxConfig: + r""" + Returns ONNX decoder config for `VisionEncoderDecoder` model. + + Args: + encoder_config (`PretrainedConfig`): + The encoder model's configuration to use when exporting to ONNX. + decoder_config (`PretrainedConfig`): + The decoder model's configuration to use when exporting to ONNX + feature (`str`, *optional*): + The type of feature to export the model with. + + Returns: + [`VisionEncoderDecoderDecoderOnnxConfig`]: An instance of the ONNX configuration object. + """ + decoder_config.encoder_hidden_size = encoder_config.hidden_size + return VisionEncoderDecoderDecoderOnnxConfig(decoder_config, feature) + + +__all__ = ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..9a027f04784a68edb9ab007e07eb46decc7368d0 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py @@ -0,0 +1,700 @@ +# coding=utf-8 +# Copyright 2022 HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Classes to support TF Vision-Encoder-Text-Decoder architectures""" + +from __future__ import annotations + +import re +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...configuration_utils import PretrainedConfig +from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput +from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs +from ...tf_utils import shape_list +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ..auto.configuration_auto import AutoConfig +from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM +from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" + +DEPRECATION_WARNING = ( + "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" + " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" + " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" + " labels, no need to pass them yourself anymore." +) + +VISION_ENCODER_DECODER_START_DOCSTRING = r""" + This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model + as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via + [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] + function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream + generative task, like image captioning. + + The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation + tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation + Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi + Zhou, Wei Li, Peter J. Liu. + + Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained + Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical + character recognition (OCR) yields a significant performance improvement. + + After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any + other models (see the examples for more information). + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using + [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. + decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + Provide for sequence to sequence training to the decoder. Indices can be obtained using + [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for + details. + decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): + This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output + of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `({0})`. + decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. This is useful if you want more control over how to convert `decoder_input_ids` indices + into associated vectors than the model's internal embedding lookup matrix. + labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, + ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: + + - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. + - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. +""" + + +# Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + if pad_token_id is None: + raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + + if decoder_start_token_id is None: + raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + + start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +@add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) +class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): + r""" + [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture + with one of the base vision model classes of the library as encoder and another one of the base model classes as + decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and + [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. + """ + + config_class = VisionEncoderDecoderConfig + base_model_prefix = "vision_encoder_decoder" + load_weight_prefix = "tf_vision_encoder_decoder_model" + main_input_name = "pixel_values" + + def __init__( + self, + config: Optional[PretrainedConfig] = None, + encoder: Optional[TFPreTrainedModel] = None, + decoder: Optional[TFPreTrainedModel] = None, + ): + if config is None and (encoder is None or decoder is None): + raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") + if config is None: + config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) + else: + if not isinstance(config, self.config_class): + raise ValueError(f"config: {config} has to be of type {self.config_class}") + + if config.decoder.cross_attention_hidden_size is not None: + if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: + raise ValueError( + "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" + f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" + f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" + " `config.encoder.hidden_size`." + ) + + # initialize with config + super().__init__(config) + + if encoder is None: + encoder = TFAutoModel.from_config(config.encoder, name="encoder") + + if decoder is None: + decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") + + self.encoder = encoder + self.decoder = decoder + + if self.encoder.config.to_dict() != self.config.encoder.to_dict(): + logger.warning( + f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" + f" {self.config.encoder}" + ) + if self.decoder.config.to_dict() != self.config.decoder.to_dict(): + logger.warning( + f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" + f" {self.config.decoder}" + ) + + # make sure that the individual model's config refers to the shared config + # so that the updates to the config will be synced + self.encoder.config = self.config.encoder + self.decoder.config = self.config.decoder + + # encoder outputs might need to be projected to different dimension for decoder + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + self.enc_to_dec_proj = keras.layers.Dense( + units=self.decoder.config.hidden_size, + kernel_initializer=get_initializer(config.encoder.initializer_range), + name="enc_to_dec_proj", + ) + + if self.encoder.get_output_embeddings() is not None: + raise ValueError( + f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" + ) + + @property + def input_signature(self): + vision_config = self.config.encoder + if hasattr(vision_config, "vision_config"): + vision_config = vision_config.vision_config + if hasattr(vision_config, "image_size"): + image_size = vision_config.image_size + else: + image_size = vision_config.input_size + return { + "pixel_values": tf.TensorSpec( + shape=( + None, + vision_config.num_channels, + image_size, + image_size, + ), + dtype=tf.float32, + ), + "decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"), + } + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def get_input_embeddings(self): + return self.encoder.get_input_embeddings() + + def get_output_embeddings(self): + return self.decoder.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + return self.decoder.set_output_embeddings(new_embeddings) + + def tf_to_pt_weight_rename(self, tf_weight): + # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models + # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. + # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption + # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's + # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! + + # This override is only needed in the case where we're crossloading weights from PT. However, since weights are + # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. + # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it + # or not. + encoder_model_type = self.config.encoder.model_type + if "encoder" in tf_weight and "decoder" not in tf_weight: + return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) + else: + return (tf_weight,) + + @classmethod + def from_encoder_decoder_pretrained( + cls, + encoder_pretrained_model_name_or_path: str = None, + decoder_pretrained_model_name_or_path: str = None, + *model_args, + **kwargs, + ) -> TFPreTrainedModel: + r""" + Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model + checkpoints. + + + Params: + encoder_pretrained_model_name_or_path (`str`, *optional*): + Information necessary to initiate the encoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An + example is `google/vit-base-patch16-224-in21k`. + - A path to a *directory* containing model weights saved using + [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, + `encoder_from_pt` should be set to `True`. + + decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*): + Information necessary to initiate the decoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, + `decoder_from_pt` should be set to `True`. + + model_args (remaining positional arguments, *optional*): + All remaning positional arguments will be passed to the underlying model's `__init__` method. + + kwargs (remaining dictionary of keyword arguments, *optional*): + Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., + `output_attentions=True`). + + - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. + - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. + - To update the parent model configuration, do not use a prefix for each configuration parameter. + + Behaves differently depending on whether a `config` is provided or automatically loaded. + + Example: + + ```python + >>> from transformers import TFVisionEncoderDecoderModel + + >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized + >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( + ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased" + ... ) + >>> # saving model after fine-tuning + >>> model.save_pretrained("./vit-bert") + >>> # load fine-tuned model + >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert") + ```""" + + kwargs_encoder = { + argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") + } + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # remove encoder, decoder kwargs from kwargs + for key in kwargs_encoder.keys(): + del kwargs["encoder_" + key] + for key in kwargs_decoder.keys(): + del kwargs["decoder_" + key] + + # Load and initialize the encoder and decoder + # The distinction between encoder and decoder at the model level is made + # by the value of the flag `is_decoder` that we need to set correctly. + encoder = kwargs_encoder.pop("model", None) + if encoder is None: + if encoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_encoder: + encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) + if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: + logger.info( + f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " + "from a decoder model. Cross-attention and casual mask are disabled." + ) + encoder_config.is_decoder = False + encoder_config.add_cross_attention = False + + kwargs_encoder["config"] = encoder_config + + kwargs_encoder["name"] = "encoder" + kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix + encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) + + decoder = kwargs_decoder.pop("model", None) + if decoder is None: + if decoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_decoder: + decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) + if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: + logger.info( + f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" + f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" + f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." + ) + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + kwargs_decoder["config"] = decoder_config + + if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: + logger.warning( + f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " + f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " + "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " + "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " + "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" + ) + + kwargs_decoder["name"] = "decoder" + kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix + decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) + + # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. + if encoder.name != "encoder": + raise ValueError("encoder model must be created with the name `encoder`.") + if decoder.name != "decoder": + raise ValueError("decoder model must be created with the name `decoder`.") + + # instantiate config with corresponding kwargs + config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) + return cls(encoder=encoder, decoder=decoder, config=config) + + @unpack_inputs + @add_start_docstrings_to_model_forward( + VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") + ) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + pixel_values: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + **kwargs, + ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel + >>> from PIL import Image + >>> import requests + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + >>> decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") + + >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized + >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( + ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" + ... ) + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> img = Image.open(requests.get(url, stream=True).raw) + + >>> # forward + >>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1 + >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1 + >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) + + >>> # training + >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids) + >>> loss, logits = outputs.loss, outputs.logits + + >>> # save and load from pretrained + >>> model.save_pretrained("vit-gpt2") + >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2") + + >>> # generation + >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # Let the user be responsible for the expected format. + if encoder_outputs is not None: + if return_dict and not isinstance(encoder_outputs, ModelOutput): + raise ValueError( + "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " + f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." + ) + + if encoder_outputs is None: + encoder_inputs = { + "input_ids": pixel_values, + "output_attentions": output_attentions, + "output_hidden_states": output_hidden_states, + "return_dict": return_dict, + "training": training, + } + + # Add arguments to encoder from `kwargs_encoder` + encoder_inputs.update(kwargs_encoder) + + if "input_ids" in encoder_inputs: + encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") + + if encoder_inputs["pixel_values"] is None: + raise ValueError("You have to specify pixel_values") + + # Handle the case where the inputs are passed as a single dict which contains `labels`. + # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this + # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). + if "labels" in encoder_inputs: + labels = encoder_inputs.pop("labels") + + # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. + if "decoder_input_ids" in encoder_inputs: + decoder_input_ids = encoder_inputs.pop("decoder_input_ids") + # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. + if "decoder_attention_mask" in encoder_inputs: + decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") + + encoder_outputs = self.encoder(**encoder_inputs) + + encoder_hidden_states = encoder_outputs[0] + + # optionally project encoder_hidden_states + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) + + if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] + encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) + + decoder_inputs = { + "input_ids": decoder_input_ids, + "attention_mask": decoder_attention_mask, + "encoder_hidden_states": encoder_hidden_states, + "encoder_attention_mask": encoder_attention_mask, + "inputs_embeds": decoder_inputs_embeds, + "output_attentions": output_attentions, + "output_hidden_states": output_hidden_states, + "use_cache": use_cache, + "past_key_values": past_key_values, + "return_dict": return_dict, + "training": training, + } + + # Add arguments to decoder from `kwargs_decoder` + decoder_inputs.update(kwargs_decoder) + + decoder_outputs = self.decoder(**decoder_inputs) + + logits = decoder_outputs[0] + + # Compute loss independent from decoder (as some shift the logits inside them) + loss = None + if labels is not None: + warnings.warn(DEPRECATION_WARNING, FutureWarning) + loss = self.hf_compute_loss(labels, logits) + + if not return_dict: + past_key_values = None + if use_cache: + past_key_values = decoder_outputs[1] + # The starting index of the remaining elements in `decoder_outputs` + start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) + + if not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs + output = tuple([x for x in output if x is not None]) + return output + + return TFSeq2SeqLMOutput( + loss=loss, + logits=decoder_outputs.logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None + dec_hs = ( + tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None + ) + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None + enc_hs = ( + tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None + ) + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None + cross_attns = ( + tf.convert_to_tensor(output.cross_attentions) + if self.config.decoder.output_attentions and output.cross_attentions is not None + else None + ) + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + cross_attentions=cross_attns, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs + ): + decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) + decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None + past_key_values = decoder_inputs.get("past_key_values") + input_dict = { + "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_input_ids": decoder_inputs["input_ids"], + # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete + "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), + "past_key_values": past_key_values, + "use_cache": use_cache, + } + return input_dict + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def resize_token_embeddings(self, *args, **kwargs): + raise NotImplementedError( + "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. " + "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))" + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "enc_to_dec_proj", None) is not None: + with tf.name_scope(self.enc_to_dec_proj.name): + self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +__all__ = ["TFVisionEncoderDecoderModel"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..95fd10dab7092fb8571a332b1ecf2e9a334d8fc4 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py @@ -0,0 +1,26 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .processing_wav2vec2_with_lm import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a278928158d79bbb0f8e7be82e90ba1cf062ef7e Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d1e7b11b3c4803c377e31526774b135e14620a4 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py new file mode 100644 index 0000000000000000000000000000000000000000..f569b4f625e70a419a5eb2f6f7f8f82ee78120a1 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py @@ -0,0 +1,658 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Speech processor class for Wav2Vec2 +""" + +import os +import warnings +from contextlib import contextmanager, nullcontext +from dataclasses import dataclass +from multiprocessing import Pool, get_context, get_start_method +from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Union + +import numpy as np + +from ...processing_utils import ProcessorMixin +from ...utils import ModelOutput, logging, requires_backends + + +logger = logging.get_logger(__name__) + + +if TYPE_CHECKING: + from pyctcdecode import BeamSearchDecoderCTC + + from ...feature_extraction_utils import FeatureExtractionMixin + from ...tokenization_utils import PreTrainedTokenizerBase + + +ListOfDict = List[Dict[str, Union[int, str]]] + + +@dataclass +class Wav2Vec2DecoderWithLMOutput(ModelOutput): + """ + Output type of [`Wav2Vec2DecoderWithLM`], with transcription. + + Args: + text (list of `str` or `str`): + Decoded logits in text from. Usually the speech transcription. + logit_score (list of `float` or `float`): + Total logit score of the beams associated with produced text. + lm_score (list of `float`): + Fused lm_score of the beams associated with produced text. + word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): + Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets + can be used to compute time stamps for each word. + """ + + text: Union[List[List[str]], List[str], str] + logit_score: Union[List[List[float]], List[float], float] = None + lm_score: Union[List[List[float]], List[float], float] = None + word_offsets: Union[List[List[ListOfDict]], List[ListOfDict], ListOfDict] = None + + +class Wav2Vec2ProcessorWithLM(ProcessorMixin): + r""" + Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor, a Wav2Vec2 CTC tokenizer and a decoder + with language model support into a single processor for language model boosted speech recognition decoding. + + Args: + feature_extractor ([`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]): + An instance of [`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input. + tokenizer ([`Wav2Vec2CTCTokenizer`]): + An instance of [`Wav2Vec2CTCTokenizer`]. The tokenizer is a required input. + decoder (`pyctcdecode.BeamSearchDecoderCTC`): + An instance of [`pyctcdecode.BeamSearchDecoderCTC`]. The decoder is a required input. + """ + + feature_extractor_class = "AutoFeatureExtractor" + tokenizer_class = "Wav2Vec2CTCTokenizer" + + def __init__( + self, + feature_extractor: "FeatureExtractionMixin", + tokenizer: "PreTrainedTokenizerBase", + decoder: "BeamSearchDecoderCTC", + ): + from pyctcdecode import BeamSearchDecoderCTC + + super().__init__(feature_extractor, tokenizer) + if not isinstance(decoder, BeamSearchDecoderCTC): + raise TypeError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}") + + if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]: + raise ValueError( + f"`feature_extractor` has to be of type `Wav2Vec2FeatureExtractor` or `SeamlessM4TFeatureExtractor`, but is {type(feature_extractor)}" + ) + + # make sure that decoder's alphabet and tokenizer's vocab match in content + missing_decoder_tokens = self.get_missing_alphabet_tokens(decoder, tokenizer) + if len(missing_decoder_tokens) > 0: + raise ValueError( + f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " + "vocabulary, but not in the decoder's alphabet. " + f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." + ) + + self.decoder = decoder + self.current_processor = self.feature_extractor + self._in_target_context_manager = False + + def save_pretrained(self, save_directory): + super().save_pretrained(save_directory) + self.decoder.save_to_dir(save_directory) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): + r""" + Instantiate a [`Wav2Vec2ProcessorWithLM`] from a pretrained Wav2Vec2 processor. + + + + This class method is simply calling the feature extractor's + [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], Wav2Vec2CTCTokenizer's + [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], and + [`pyctcdecode.BeamSearchDecoderCTC.load_from_hf_hub`]. + + Please refer to the docstrings of the methods above for more information. + + + + Args: + pretrained_model_name_or_path (`str` or `os.PathLike`): + This can be either: + + - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on + huggingface.co. + - a path to a *directory* containing a feature extractor file saved using the + [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. + - a path or url to a saved feature extractor JSON *file*, e.g., + `./my_model_directory/preprocessor_config.json`. + **kwargs + Additional keyword arguments passed along to both [`SequenceFeatureExtractor`] and + [`PreTrainedTokenizer`] + """ + requires_backends(cls, "pyctcdecode") + from pyctcdecode import BeamSearchDecoderCTC + + feature_extractor, tokenizer = super()._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) + + if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path): + unigram_encoding = kwargs.get("unigram_encoding", "utf-8") + decoder = BeamSearchDecoderCTC.load_from_dir(pretrained_model_name_or_path, unigram_encoding) + else: + # BeamSearchDecoderCTC has no auto class + kwargs.pop("_from_auto", None) + # snapshot_download has no `trust_remote_code` flag + kwargs.pop("trust_remote_code", None) + + # make sure that only relevant filenames are downloaded + language_model_filenames = os.path.join(BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*") + alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME + allow_patterns = [language_model_filenames, alphabet_filename] + + decoder = BeamSearchDecoderCTC.load_from_hf_hub( + pretrained_model_name_or_path, allow_patterns=allow_patterns, **kwargs + ) + + # set language model attributes + for attribute in ["alpha", "beta", "unk_score_offset", "score_boundary"]: + value = kwargs.pop(attribute, None) + + if value is not None: + cls._set_language_model_attribute(decoder, attribute, value) + + # make sure that decoder's alphabet and tokenizer's vocab match in content + missing_decoder_tokens = cls.get_missing_alphabet_tokens(decoder, tokenizer) + if len(missing_decoder_tokens) > 0: + raise ValueError( + f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " + "vocabulary, but not in the decoder's alphabet. " + f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." + ) + + return cls(feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=decoder) + + @staticmethod + def _set_language_model_attribute(decoder: "BeamSearchDecoderCTC", attribute: str, value: float): + setattr(decoder.model_container[decoder._model_key], attribute, value) + + @property + def language_model(self): + return self.decoder.model_container[self.decoder._model_key] + + @staticmethod + def get_missing_alphabet_tokens(decoder, tokenizer): + from pyctcdecode.alphabet import BLANK_TOKEN_PTN, UNK_TOKEN, UNK_TOKEN_PTN + + # we need to make sure that all of the tokenizer's except the special tokens + # are present in the decoder's alphabet. Retrieve missing alphabet token + # from decoder + tokenizer_vocab_list = list(tokenizer.get_vocab().keys()) + + # replace special tokens + for i, token in enumerate(tokenizer_vocab_list): + if BLANK_TOKEN_PTN.match(token): + tokenizer_vocab_list[i] = "" + if token == tokenizer.word_delimiter_token: + tokenizer_vocab_list[i] = " " + if UNK_TOKEN_PTN.match(token): + tokenizer_vocab_list[i] = UNK_TOKEN + + # are any of the extra tokens no special tokenizer tokens? + missing_tokens = set(tokenizer_vocab_list) - set(decoder._alphabet.labels) + + return missing_tokens + + def __call__(self, *args, **kwargs): + """ + When used in normal mode, this method forwards all its arguments to the feature extractor's + [`~FeatureExtractionMixin.__call__`] and returns its output. If used in the context + [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to + Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.__call__`]. Please refer to the docstring of the above two + methods for more information. + """ + # For backward compatibility + if self._in_target_context_manager: + return self.current_processor(*args, **kwargs) + + if "raw_speech" in kwargs: + warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") + audio = kwargs.pop("raw_speech") + else: + audio = kwargs.pop("audio", None) + sampling_rate = kwargs.pop("sampling_rate", None) + text = kwargs.pop("text", None) + if len(args) > 0: + audio = args[0] + args = args[1:] + + if audio is None and text is None: + raise ValueError("You need to specify either an `audio` or `text` input to process.") + + if audio is not None: + inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) + if text is not None: + encodings = self.tokenizer(text, **kwargs) + + if text is None: + return inputs + elif audio is None: + return encodings + else: + inputs["labels"] = encodings["input_ids"] + return inputs + + def pad(self, *args, **kwargs): + """ + When used in normal mode, this method forwards all its arguments to the feature extractor's + [`~FeatureExtractionMixin.pad`] and returns its output. If used in the context + [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to + Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.pad`]. Please refer to the docstring of the above two methods + for more information. + """ + # For backward compatibility + if self._in_target_context_manager: + return self.current_processor.pad(*args, **kwargs) + + input_features = kwargs.pop("input_features", None) + labels = kwargs.pop("labels", None) + if len(args) > 0: + input_features = args[0] + args = args[1:] + + if input_features is not None: + input_features = self.feature_extractor.pad(input_features, *args, **kwargs) + if labels is not None: + labels = self.tokenizer.pad(labels, **kwargs) + + if labels is None: + return input_features + elif input_features is None: + return labels + else: + input_features["labels"] = labels["input_ids"] + return input_features + + def batch_decode( + self, + logits: np.ndarray, + pool: Optional[Pool] = None, + num_processes: Optional[int] = None, + beam_width: Optional[int] = None, + beam_prune_logp: Optional[float] = None, + token_min_logp: Optional[float] = None, + hotwords: Optional[Iterable[str]] = None, + hotword_weight: Optional[float] = None, + alpha: Optional[float] = None, + beta: Optional[float] = None, + unk_score_offset: Optional[float] = None, + lm_score_boundary: Optional[bool] = None, + output_word_offsets: bool = False, + n_best: int = 1, + ): + """ + Batch decode output logits to audio transcription with language model support. + + + + This function makes use of Python's multiprocessing. Currently, multiprocessing is available only on Unix + systems (see this [issue](https://github.com/kensho-technologies/pyctcdecode/issues/65)). + + If you are decoding multiple batches, consider creating a `Pool` and passing it to `batch_decode`. Otherwise, + `batch_decode` will be very slow since it will create a fresh `Pool` for each call. See usage example below. + + + + Args: + logits (`np.ndarray`): + The logits output vector of the model representing the log probabilities for each token. + pool (`multiprocessing.Pool`, *optional*): + An optional user-managed pool. If not set, one will be automatically created and closed. The pool + should be instantiated *after* `Wav2Vec2ProcessorWithLM`. Otherwise, the LM won't be available to the + pool's sub-processes. + + + + Currently, only pools created with a 'fork' context can be used. If a 'spawn' pool is passed, it will + be ignored and sequential decoding will be used instead. + + + + num_processes (`int`, *optional*): + If `pool` is not set, number of processes on which the function should be parallelized over. Defaults + to the number of available CPUs. + beam_width (`int`, *optional*): + Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. + beam_prune_logp (`int`, *optional*): + Beams that are much worse than best beam will be pruned Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. + token_min_logp (`int`, *optional*): + Tokens below this logp are skipped unless they are argmax of frame Defaults to pyctcdecode's + DEFAULT_MIN_TOKEN_LOGP. + hotwords (`List[str]`, *optional*): + List of words with extra importance, can be OOV for LM + hotword_weight (`int`, *optional*): + Weight factor for hotword importance Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. + alpha (`float`, *optional*): + Weight for language model during shallow fusion + beta (`float`, *optional*): + Weight for length score adjustment of during scoring + unk_score_offset (`float`, *optional*): + Amount of log score offset for unknown tokens + lm_score_boundary (`bool`, *optional*): + Whether to have kenlm respect boundaries when scoring + output_word_offsets (`bool`, *optional*, defaults to `False`): + Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate + and model downsampling rate to compute the time-stamps of transcribed words. + n_best (`int`, *optional*, defaults to `1`): + Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list + of lists of strings, `logit_score` will be a list of lists of floats, and `lm_score` will be a list of + lists of floats, where the length of the outer list will correspond to the batch size and the length of + the inner list will correspond to the number of returned hypotheses . The value should be >= 1. + + + + Please take a look at the Example of [`~Wav2Vec2ProcessorWithLM.decode`] to better understand how to + make use of `output_word_offsets`. [`~Wav2Vec2ProcessorWithLM.batch_decode`] works the same way with + batched output. + + + + Returns: + [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. + + Example: + See [Decoding multiple audios](#decoding-multiple-audios). + """ + + from pyctcdecode.constants import ( + DEFAULT_BEAM_WIDTH, + DEFAULT_HOTWORD_WEIGHT, + DEFAULT_MIN_TOKEN_LOGP, + DEFAULT_PRUNE_LOGP, + ) + + # set defaults + beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH + beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP + token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP + hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT + + # reset params at every forward call. It's just a `set` method in pyctcdecode + self.decoder.reset_params( + alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary + ) + + # create multiprocessing pool and list numpy arrays + # filter out logits padding + logits_list = [array[(array != -100.0).all(axis=-1)] for array in logits] + + # create a pool if necessary while also using it as a context manager to close itself + if pool is None: + # fork is safe to use only on Unix, see "Contexts and start methods" section on + # multiprocessing's docs (https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) + default_context = get_start_method() + + if default_context == "fork": + cm = pool = get_context().Pool(num_processes) + else: + logger.warning( + "Parallel batch decoding is not currently supported in this platform. " + "Falling back to sequential decoding." + ) + cm = nullcontext() + else: + # pool is managed by the user, so we don't need to close it + cm = nullcontext() + + if num_processes is not None: + logger.warning( + "Parameter `num_process` was passed, but it will be ignored since `pool` was also specified." + ) + + # pyctcdecode + with cm: + decoded_beams = self.decoder.decode_beams_batch( + pool=pool, + logits_list=logits_list, + beam_width=beam_width, + beam_prune_logp=beam_prune_logp, + token_min_logp=token_min_logp, + hotwords=hotwords, + hotword_weight=hotword_weight, + ) + + # extract text and scores + batch_texts, logit_scores, lm_scores, word_offsets = [], [], [], [] + + for d in decoded_beams: + batch_texts.append([beam[0] for beam in d]) + logit_scores.append([beam[-2] for beam in d]) + lm_scores.append([beam[-1] for beam in d]) + + # word_offsets.append([{"word": t[0], "start_offset": t[1][0], "end_offset": t[1][1]} for t in d[0][1]]) + + word_offsets.append( + [ + [ + {"word": word, "start_offset": start_offset, "end_offset": end_offset} + for word, (start_offset, end_offset) in beam[1] + ] + for beam in d + ] + ) + + word_offsets = word_offsets if output_word_offsets else None + + if n_best == 1: + return Wav2Vec2DecoderWithLMOutput( + text=[hyps[0] for hyps in batch_texts], + logit_score=[hyps[0] for hyps in logit_scores], + lm_score=[hyps[0] for hyps in lm_scores], + word_offsets=[hyps[0] for hyps in word_offsets] if word_offsets is not None else None, + ) + else: + return Wav2Vec2DecoderWithLMOutput( + text=[hyps[:n_best] for hyps in batch_texts], + logit_score=[hyps[:n_best] for hyps in logit_scores], + lm_score=[hyps[:n_best] for hyps in lm_scores], + word_offsets=[hyps[:n_best] for hyps in word_offsets] if word_offsets is not None else None, + ) + + def decode( + self, + logits: np.ndarray, + beam_width: Optional[int] = None, + beam_prune_logp: Optional[float] = None, + token_min_logp: Optional[float] = None, + hotwords: Optional[Iterable[str]] = None, + hotword_weight: Optional[float] = None, + alpha: Optional[float] = None, + beta: Optional[float] = None, + unk_score_offset: Optional[float] = None, + lm_score_boundary: Optional[bool] = None, + output_word_offsets: bool = False, + n_best: int = 1, + ): + """ + Decode output logits to audio transcription with language model support. + + Args: + logits (`np.ndarray`): + The logits output vector of the model representing the log probabilities for each token. + beam_width (`int`, *optional*): + Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. + beam_prune_logp (`int`, *optional*): + A threshold to prune beams with log-probs less than best_beam_logp + beam_prune_logp. The value should + be <= 0. Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. + token_min_logp (`int`, *optional*): + Tokens with log-probs below token_min_logp are skipped unless they are have the maximum log-prob for an + utterance. Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP. + hotwords (`List[str]`, *optional*): + List of words with extra importance which can be missing from the LM's vocabulary, e.g. ["huggingface"] + hotword_weight (`int`, *optional*): + Weight multiplier that boosts hotword scores. Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. + alpha (`float`, *optional*): + Weight for language model during shallow fusion + beta (`float`, *optional*): + Weight for length score adjustment of during scoring + unk_score_offset (`float`, *optional*): + Amount of log score offset for unknown tokens + lm_score_boundary (`bool`, *optional*): + Whether to have kenlm respect boundaries when scoring + output_word_offsets (`bool`, *optional*, defaults to `False`): + Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate + and model downsampling rate to compute the time-stamps of transcribed words. + n_best (`int`, *optional*, defaults to `1`): + Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list + of strings, `logit_score` will be a list of floats, and `lm_score` will be a list of floats, where the + length of these lists will correspond to the number of returned hypotheses. The value should be >= 1. + + + + Please take a look at the example below to better understand how to make use of `output_word_offsets`. + + + + Returns: + [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. + + Example: + + ```python + >>> # Let's see how to retrieve time steps for a model + >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC + >>> from datasets import load_dataset + >>> import datasets + >>> import torch + + >>> # import model, feature extractor, tokenizer + >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") + >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") + + >>> # load first sample of English common_voice + >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True) + >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) + >>> dataset_iter = iter(dataset) + >>> sample = next(dataset_iter) + + >>> # forward sample through model to get greedily predicted transcription ids + >>> input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values + >>> with torch.no_grad(): + ... logits = model(input_values).logits[0].cpu().numpy() + + >>> # retrieve word stamps (analogous commands for `output_char_offsets`) + >>> outputs = processor.decode(logits, output_word_offsets=True) + >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate + >>> time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate + + >>> word_offsets = [ + ... { + ... "word": d["word"], + ... "start_time": round(d["start_offset"] * time_offset, 2), + ... "end_time": round(d["end_offset"] * time_offset, 2), + ... } + ... for d in outputs.word_offsets + ... ] + >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer: + >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en + >>> word_offsets[:4] + [{'word': 'THE', 'start_time': 0.68, 'end_time': 0.78}, {'word': 'TRACK', 'start_time': 0.88, 'end_time': 1.1}, {'word': 'APPEARS', 'start_time': 1.18, 'end_time': 1.66}, {'word': 'ON', 'start_time': 1.86, 'end_time': 1.92}] + ```""" + + from pyctcdecode.constants import ( + DEFAULT_BEAM_WIDTH, + DEFAULT_HOTWORD_WEIGHT, + DEFAULT_MIN_TOKEN_LOGP, + DEFAULT_PRUNE_LOGP, + ) + + # set defaults + beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH + beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP + token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP + hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT + + # reset params at every forward call. It's just a `set` method in pyctcdecode + self.decoder.reset_params( + alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary + ) + + # pyctcdecode + decoded_beams = self.decoder.decode_beams( + logits, + beam_width=beam_width, + beam_prune_logp=beam_prune_logp, + token_min_logp=token_min_logp, + hotwords=hotwords, + hotword_weight=hotword_weight, + ) + + word_offsets = None + if output_word_offsets: + word_offsets = [ + [ + {"word": word, "start_offset": start_offset, "end_offset": end_offset} + for word, (start_offset, end_offset) in beam[2] + ] + for beam in decoded_beams + ] + logit_scores = [beam[-2] for beam in decoded_beams] + + lm_scores = [beam[-1] for beam in decoded_beams] + + hypotheses = [beam[0] for beam in decoded_beams] + + if n_best > len(decoded_beams): + logger.info( + "N-best size is larger than the number of generated hypotheses, all hypotheses will be returned." + ) + + if n_best == 1: + return Wav2Vec2DecoderWithLMOutput( + text=hypotheses[0], + logit_score=logit_scores[0], + lm_score=lm_scores[0], + word_offsets=word_offsets[0] if word_offsets is not None else None, + ) + else: + return Wav2Vec2DecoderWithLMOutput( + text=hypotheses[:n_best], + logit_score=logit_scores[:n_best], + lm_score=lm_scores[:n_best], + word_offsets=word_offsets[:n_best] if word_offsets is not None else None, + ) + + @contextmanager + def as_target_processor(self): + """ + Temporarily sets the processor for processing the target. Useful for encoding the labels when fine-tuning + Wav2Vec2. + """ + warnings.warn( + "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " + "labels by using the argument `text` of the regular `__call__` method (either in the same call as " + "your audio inputs, or in a separate call." + ) + self._in_target_context_manager = True + self.current_processor = self.tokenizer + yield + self.current_processor = self.feature_extractor + self._in_target_context_manager = False + + +__all__ = ["Wav2Vec2ProcessorWithLM"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6b865cb93ce1134a1a8761bafd1b3498931d7c83 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import _LazyModule +from ...utils.import_utils import define_import_structure + + +if TYPE_CHECKING: + from .configuration_yoso import * + from .modeling_yoso import * +else: + import sys + + _file = globals()["__file__"] + sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bddc34298be5b6d16447384b8afcc5d7e08f13ed Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6f8fe0e3f9569d7393b85d74ef98970989ad860 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08270fd87ccdf698762852c03901a0cde44eb949 Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py new file mode 100644 index 0000000000000000000000000000000000000000..9a7fb1218e402e36f6275f81783e00cc79c36a8d --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py @@ -0,0 +1,144 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""YOSO model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class YosoConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the YOSO + [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`YosoModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. + use_expectation (`bool`, *optional*, defaults to `True`): + Whether or not to use YOSO Expectation. Overrides any effect of num_hash. + hash_code_len (`int`, *optional*, defaults to 9): + The length of hashes generated by the hash functions. + num_hash (`int`, *optional*, defaults to 64): + Number of hash functions used in [`YosoSelfAttention`]. + conv_window (`int`, *optional*): + Kernel size of depth-wise convolution. + use_fast_hash (`bool`, *optional*, defaults to `False`): + Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform. + lsh_backward (`bool`, *optional*, defaults to `True`): + Whether or not to perform backpropagation using Locality Sensitive Hashing. + + Example: + + ```python + >>> from transformers import YosoConfig, YosoModel + + >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration + >>> configuration = YosoConfig() + + >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration + >>> model = YosoModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "yoso" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=4096, + type_vocab_size=1, + initializer_range=0.02, + layer_norm_eps=1e-12, + position_embedding_type="absolute", + use_expectation=True, + hash_code_len=9, + num_hash=64, + conv_window=None, + use_fast_hash=True, + lsh_backward=True, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_expectation = use_expectation + self.hash_code_len = hash_code_len + self.num_hash = num_hash + self.conv_window = conv_window + self.use_fast_hash = use_fast_hash + self.lsh_backward = lsh_backward + + +__all__ = ["YosoConfig"] diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py new file mode 100644 index 0000000000000000000000000000000000000000..edccabee2ea42d004e4b0eaefce87684e8f671c6 --- /dev/null +++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py @@ -0,0 +1,1320 @@ +# coding=utf-8 +# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch YOSO model.""" + +import math +from pathlib import Path +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_ninja_available, + is_torch_cuda_available, + logging, +) +from .configuration_yoso import YosoConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096" +_CONFIG_FOR_DOC = "YosoConfig" + + +lsh_cumulation = None + + +def load_cuda_kernels(): + global lsh_cumulation + from torch.utils.cpp_extension import load + + def append_root(files): + src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso" + return [src_folder / file for file in files] + + src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]) + + load("fast_lsh_cumulation", src_files, verbose=True) + + import fast_lsh_cumulation as lsh_cumulation + + +def to_contiguous(input_tensors): + if isinstance(input_tensors, list): + out = [] + for tensor in input_tensors: + if not tensor.is_contiguous(): + tensor = tensor.contiguous() + out.append(tensor) + return out + else: + if not input_tensors.is_contiguous(): + input_tensors = input_tensors.contiguous() + return input_tensors + + +def normalize(input_tensors): + if isinstance(input_tensors, list): + out = [] + for tensor in input_tensors: + out.append(nn.functional.normalize(tensor, p=2, dim=-1)) + return out + else: + return nn.functional.normalize(input_tensors, p=2, dim=-1) + + +def hashing(query, key, num_hash, hash_len): + if len(query.size()) != 3: + raise ValueError("Query has incorrect size.") + if len(key.size()) != 3: + raise ValueError("Key has incorrect size.") + + rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device) + raise_pow = 2 ** torch.arange(hash_len, device=query.device) + + query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len) + key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len) + query_binary = (query_projection > 0).int() + key_binary = (key_projection > 0).int() + query_hash = torch.sum(query_binary * raise_pow, dim=-1) + query_hash = torch.sum(key_binary * raise_pow, dim=-1) + + return query_hash.int(), query_hash.int() + + +class YosoCumulation(torch.autograd.Function): + @staticmethod + def forward(ctx, query_mask, key_mask, query, key, value, config): + hash_code_len = config["hash_code_len"] + + expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len + expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] + cumulation_value = torch.matmul(expectation, value) + + ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value) + ctx.config = config + + return cumulation_value + + @staticmethod + def backward(ctx, grad): + grad = to_contiguous(grad) + + query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors + config = ctx.config + + hash_code_len = config["hash_code_len"] + + weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation + grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) + grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) + grad_value = torch.matmul(expectation.transpose(-1, -2), grad) + + return None, None, grad_query, grad_key, grad_value, None + + +class YosoLSHCumulation(torch.autograd.Function): + @staticmethod + def forward(ctx, query_mask, key_mask, query, key, value, config): + if query_mask.size(0) != key_mask.size(0): + raise ValueError("Query mask and Key mask differ in sizes in dimension 0") + if query_mask.size(0) != query.size(0): + raise ValueError("Query mask and Query differ in sizes in dimension 0") + if query_mask.size(0) != key.size(0): + raise ValueError("Query mask and Key differ in sizes in dimension 0") + if query_mask.size(0) != value.size(0): + raise ValueError("Query mask and Value mask differ in sizes in dimension 0") + if key.size(1) != value.size(1): + raise ValueError("Key and Value differ in sizes in dimension 1") + if query.size(2) != key.size(2): + raise ValueError("Query and Key differ in sizes in dimension 2") + + query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value]) + + use_cuda = query_mask.is_cuda + num_hash = config["num_hash"] + hash_code_len = config["hash_code_len"] + hashtable_capacity = int(2**hash_code_len) + + if config["use_fast_hash"]: + query_hash_code, key_hash_code = lsh_cumulation.fast_hash( + query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1 + ) + else: + query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len) + + cumulation_value = lsh_cumulation.lsh_cumulation( + query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1 + ) + + ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value) + ctx.config = config + + return cumulation_value + + @staticmethod + def backward(ctx, grad): + grad = to_contiguous(grad) + + query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors + config = ctx.config + + use_cuda = grad.is_cuda + hash_code_len = config["hash_code_len"] + hashtable_capacity = int(2**hash_code_len) + + if config["lsh_backward"]: + grad_value = lsh_cumulation.lsh_cumulation( + key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1 + ) + grad_query = lsh_cumulation.lsh_weighted_cumulation( + query_mask, + query_hash_code, + grad, + key_mask, + key_hash_code, + value, + (hash_code_len / 2) * key, + hashtable_capacity, + use_cuda, + 4, + ) + grad_key = lsh_cumulation.lsh_weighted_cumulation( + key_mask, + key_hash_code, + value, + query_mask, + query_hash_code, + grad, + (hash_code_len / 2) * query, + hashtable_capacity, + use_cuda, + 4, + ) + else: + expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len + expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] + weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation + grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) + grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) + grad_value = torch.matmul(expectation.transpose(-1, -2), grad) + + return None, None, grad_query, grad_key, grad_value, None + + +# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings +class YosoEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "token_type_ids", + torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), + persistent=False, + ) + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class YosoSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + kernel_loaded = lsh_cumulation is not None + if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: + try: + load_cuda_kernels() + except Exception as e: + logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = ( + position_embedding_type if position_embedding_type is not None else config.position_embedding_type + ) + + self.use_expectation = config.use_expectation + self.hash_code_len = config.hash_code_len + self.use_conv = config.conv_window is not None + self.use_fast_hash = config.use_fast_hash + self.num_hash = config.num_hash + self.lsh_backward = config.lsh_backward + + self.lsh_config = { + "hash_code_len": self.hash_code_len, + "use_fast_hash": self.use_fast_hash, + "num_hash": self.num_hash, + "lsh_backward": self.lsh_backward, + } + + if config.conv_window is not None: + self.conv = nn.Conv2d( + in_channels=config.num_attention_heads, + out_channels=config.num_attention_heads, + kernel_size=(config.conv_window, 1), + padding=(config.conv_window // 2, 0), + bias=False, + groups=config.num_attention_heads, + ) + + def transpose_for_scores(self, layer): + new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + layer = layer.view(*new_layer_shape) + return layer.permute(0, 2, 1, 3) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.use_conv: + conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None]) + + batch_size, num_heads, seq_len, head_dim = query_layer.size() + + query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim) + key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim) + value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim) + + attention_mask = 1.0 + attention_mask / 10000.0 + attention_mask = ( + attention_mask.unsqueeze(1) + .repeat_interleave(num_heads, dim=1) + .reshape(batch_size * num_heads, seq_len) + .int() + ) + + # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs + # smaller than this are padded with zeros. + gpu_warp_size = 32 + + if (not self.use_expectation) and head_dim < gpu_warp_size: + pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim + + query_layer = torch.cat( + [ + query_layer, + torch.zeros(pad_size, device=query_layer.device), + ], + dim=-1, + ) + key_layer = torch.cat( + [ + key_layer, + torch.zeros(pad_size, device=key_layer.device), + ], + dim=-1, + ) + value_layer = torch.cat( + [ + value_layer, + torch.zeros(pad_size, device=value_layer.device), + ], + dim=-1, + ) + + if self.use_expectation or self.training: + query_layer, key_layer = normalize([query_layer, key_layer]) + + if self.use_expectation: + context_layer = YosoCumulation.apply( + attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config + ) + else: + context_layer = YosoLSHCumulation.apply( + attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config + ) + + if (not self.use_expectation) and head_dim < gpu_warp_size: + context_layer = context_layer[:, :, :head_dim] + + context_layer = normalize(context_layer) + + context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) + + if self.use_conv: + context_layer += conv_value_layer + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, context_layer) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class YosoSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class YosoAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = YosoSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + self_outputs = self.self(hidden_states, attention_mask, output_attentions) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class YosoIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class YosoOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class YosoLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = YosoAttention(config) + self.add_cross_attention = config.add_cross_attention + self.intermediate = YosoIntermediate(config) + self.output = YosoOutput(config) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) + attention_output = self_attention_outputs[0] + + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class YosoEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutputWithCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform +class YosoPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso +class YosoLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = YosoPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def _tie_weights(self): + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso +class YosoOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = YosoLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class YosoPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = YosoConfig + base_model_prefix = "yoso" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +YOSO_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`YosoConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +YOSO_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.", + YOSO_START_DOCSTRING, +) +class YosoModel(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = YosoEmbeddings(config) + self.encoder = YosoEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithCrossAttentions( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING) +class YosoForMaskedLM(YosoPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.yoso = YosoModel(config) + self.cls = YosoOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + self.cls.predictions.bias = new_embeddings.bias + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class YosoClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + self.config = config + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = ACT2FN[self.config.hidden_act](x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of + the pooled output) e.g. for GLUE tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForSequenceClassification(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.yoso = YosoModel(config) + self.classifier = YosoClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a multiple choice classification head on top (a linear layer on top of + the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForMultipleChoice(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.yoso = YosoModel(config) + self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) + pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a token classification head on top (a linear layer on top of + the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForTokenClassification(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.yoso = YosoModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # Only keep active parts of the loss + if attention_mask is not None: + active_loss = attention_mask.view(-1) == 1 + active_logits = logits.view(-1, self.num_labels) + active_labels = torch.where( + active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) + ) + loss = loss_fct(active_logits, active_labels) + else: + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", + YOSO_START_DOCSTRING, +) +class YosoForQuestionAnswering(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + + self.yoso = YosoModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +__all__ = [ + "YosoForMaskedLM", + "YosoForMultipleChoice", + "YosoForQuestionAnswering", + "YosoForSequenceClassification", + "YosoForTokenClassification", + "YosoLayer", + "YosoModel", + "YosoPreTrainedModel", +]