diff --git a/.gitattributes b/.gitattributes
index 6ae36704789fbcc40500301f193fd294c22bfce1..305489dfe1ae3c331c5ded0ad7d63009401ce8a5 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -442,3 +442,4 @@ janus/lib/libtinfow.so.6 filter=lfs diff=lfs merge=lfs -text
janus/lib/python3.10/site-packages/transformers/generation/__pycache__/logits_process.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
janus/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
janus/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
+infer_4_33_0/bin/python filter=lfs diff=lfs merge=lfs -text
diff --git a/infer_4_33_0/bin/python b/infer_4_33_0/bin/python
new file mode 100644
index 0000000000000000000000000000000000000000..bafffc821470887959012db4e827b11d89a1aba6
--- /dev/null
+++ b/infer_4_33_0/bin/python
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd12d9a162d0964191f823f51c251b1e50da59e8fd71c709a8a4e7ecdeee3d36
+size 17225608
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..87419e69e5c7f0572076832237e10f236186ec33
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py
@@ -0,0 +1,30 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_big_bird import *
+ from .modeling_big_bird import *
+ from .modeling_flax_big_bird import *
+ from .tokenization_big_bird import *
+ from .tokenization_big_bird_fast import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..41dce415eae4b688f0cdccf38b8829d1d97941fd
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b40f507420e3a2e77b7697206acdb6502e057539
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..41b46cd8d1691289fca487e74d9c62db42c3ec7b
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..42a409ede4845ebebfbddaa35e9e36745c1bbf02
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3cfaa442615d010305dadb4fac92a07f5323d778
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..341a6eb6c92fc9578d7fb1c37058007a6d682db8
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py
new file mode 100644
index 0000000000000000000000000000000000000000..1019e008aa3b3820788ee2fd642b48feb35194cd
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py
@@ -0,0 +1,176 @@
+# coding=utf-8
+# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""BigBird model configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class BigBirdConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an
+ BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the BigBird
+ [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50358):
+ Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`BigBirdModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 1024 or 2048 or 4096).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ is_decoder (`bool`, *optional*, defaults to `False`):
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ attention_type (`str`, *optional*, defaults to `"block_sparse"`)
+ Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
+ layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`.
+ use_bias (`bool`, *optional*, defaults to `True`)
+ Whether to use bias in query, key, value.
+ rescale_embeddings (`bool`, *optional*, defaults to `False`)
+ Whether to rescale embeddings with (hidden_size ** 0.5).
+ block_size (`int`, *optional*, defaults to 64)
+ Size of each block. Useful only when `attention_type == "block_sparse"`.
+ num_random_blocks (`int`, *optional*, defaults to 3)
+ Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
+ "block_sparse"`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Example:
+
+ ```python
+ >>> from transformers import BigBirdConfig, BigBirdModel
+
+ >>> # Initializing a BigBird google/bigbird-roberta-base style configuration
+ >>> configuration = BigBirdConfig()
+
+ >>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
+ >>> model = BigBirdModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "big_bird"
+
+ def __init__(
+ self,
+ vocab_size=50358,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu_new",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=4096,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ use_cache=True,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ sep_token_id=66,
+ attention_type="block_sparse",
+ use_bias=True,
+ rescale_embeddings=False,
+ block_size=64,
+ num_random_blocks=3,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ sep_token_id=sep_token_id,
+ **kwargs,
+ )
+
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+ self.use_cache = use_cache
+
+ self.rescale_embeddings = rescale_embeddings
+ self.attention_type = attention_type
+ self.use_bias = use_bias
+ self.block_size = block_size
+ self.num_random_blocks = num_random_blocks
+ self.classifier_dropout = classifier_dropout
+
+
+class BigBirdOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ]
+ )
+
+
+__all__ = ["BigBirdConfig", "BigBirdOnnxConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py
new file mode 100644
index 0000000000000000000000000000000000000000..47c78284b7f29c03602018e78448f0d3ee899682
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py
@@ -0,0 +1,3143 @@
+# coding=utf-8
+# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch BigBird model."""
+
+import math
+import os
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...generation import GenerationMixin
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_big_bird import BigBirdConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base"
+_CONFIG_FOR_DOC = "BigBirdConfig"
+
+
+_TRIVIA_QA_MAPPING = {
+ "big_bird_attention": "attention/self",
+ "output_layer_norm": "output/LayerNorm",
+ "attention_output": "attention/output/dense",
+ "output": "output/dense",
+ "self_attention_layer_norm": "attention/output/LayerNorm",
+ "intermediate": "intermediate/dense",
+ "word_embeddings": "bert/embeddings/word_embeddings",
+ "position_embedding": "bert/embeddings/position_embeddings",
+ "type_embeddings": "bert/embeddings/token_type_embeddings",
+ "embeddings": "bert/embeddings",
+ "layer_normalization": "output/LayerNorm",
+ "layer_norm": "LayerNorm",
+ "trivia_qa_head": "qa_classifier",
+ "dense": "intermediate/dense",
+ "dense_1": "qa_outputs",
+}
+
+
+def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False):
+ """Load tf checkpoints in a pytorch model."""
+
+ def load_tf_weights_bert(init_vars, tf_path):
+ names = []
+ tf_weights = {}
+
+ for name, shape in init_vars:
+ array = tf.train.load_variable(tf_path, name)
+ name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm")
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ names.append(name)
+ tf_weights[name] = array
+
+ return names, tf_weights
+
+ def load_tf_weights_trivia_qa(init_vars):
+ names = []
+ tf_weights = {}
+
+ for i, var in enumerate(init_vars):
+ name_items = var.name.split("/")
+
+ if "transformer_scaffold" in name_items[0]:
+ layer_name_items = name_items[0].split("_")
+ if len(layer_name_items) < 3:
+ layer_name_items += [0]
+
+ name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}"
+
+ name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[
+ :-2
+ ] # remove last :0 in variable
+
+ if "self/attention/output" in name:
+ name = name.replace("self/attention/output", "output")
+
+ if i >= len(init_vars) - 2:
+ name = name.replace("intermediate", "output")
+
+ logger.info(f"Loading TF weight {name} with shape {var.shape}")
+ array = var.value().numpy()
+ names.append(name)
+ tf_weights[name] = array
+
+ return names, tf_weights
+
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+
+ # Load weights from TF model
+ init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path)
+
+ if len(init_vars) <= 0:
+ raise ValueError("Loaded trained variables cannot be empty.")
+
+ pt_names = list(model.state_dict().keys())
+
+ if is_trivia_qa:
+ names, tf_weights = load_tf_weights_trivia_qa(init_vars)
+ else:
+ names, tf_weights = load_tf_weights_bert(init_vars, tf_path)
+
+ for txt_name in names:
+ array = tf_weights[txt_name]
+ name = txt_name.split("/")
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
+ for n in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ pointer = model
+ pt_name = []
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ pt_name.append("weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ pt_name.append("bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ pt_name.append("weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ pt_name.append("classifier")
+ elif scope_names[0] == "transform":
+ pointer = getattr(pointer, "transform")
+ pt_name.append("transform")
+ if ("bias" in name) or ("kernel" in name):
+ pointer = getattr(pointer, "dense")
+ pt_name.append("dense")
+ elif ("beta" in name) or ("gamma" in name):
+ pointer = getattr(pointer, "LayerNorm")
+ pt_name.append("LayerNorm")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ pt_name.append(f"{scope_names[0]}")
+ except AttributeError:
+ logger.info(f"Skipping {m_name}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ pt_name.append(f"{num}")
+ if m_name[-11:] == "_embeddings" or m_name == "embeddings":
+ pointer = getattr(pointer, "weight")
+ pt_name.append("weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape):
+ # print(txt_name, array.shape)
+ if (
+ txt_name.endswith("attention/self/key/kernel")
+ or txt_name.endswith("attention/self/query/kernel")
+ or txt_name.endswith("attention/self/value/kernel")
+ ):
+ array = array.transpose(1, 0, 2).reshape(pointer.shape)
+ elif txt_name.endswith("attention/output/dense/kernel"):
+ array = array.transpose(0, 2, 1).reshape(pointer.shape)
+ else:
+ array = array.reshape(pointer.shape)
+
+ if pointer.shape != array.shape:
+ raise ValueError(
+ f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}."
+ )
+ except ValueError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ pt_weight_name = ".".join(pt_name)
+ logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.")
+ pointer.data = torch.from_numpy(array)
+ tf_weights.pop(txt_name, None)
+ pt_names.remove(pt_weight_name)
+
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
+ logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.")
+ return model
+
+
+class BigBirdEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+ # End copy
+
+ self.rescale_embeddings = config.rescale_embeddings
+ self.hidden_size = config.hidden_size
+
+ def forward(
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if self.rescale_embeddings:
+ inputs_embeds = inputs_embeds * (self.hidden_size**0.5)
+
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+
+ embeddings = self.dropout(embeddings)
+ embeddings = self.LayerNorm(embeddings)
+ return embeddings
+
+
+class BigBirdSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+class BigBirdBlockSparseAttention(nn.Module):
+ def __init__(self, config, seed=None):
+ super().__init__()
+
+ self.max_seqlen = config.max_position_embeddings
+ self.seed = seed
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.num_random_blocks = config.num_random_blocks
+ self.block_size = config.block_size
+
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ band_mask=None,
+ from_mask=None,
+ to_mask=None,
+ from_blocked_mask=None,
+ to_blocked_mask=None,
+ output_attentions=None,
+ ):
+ # Currently this `class` can't be used in decoder.
+
+ batch_size, seqlen, _ = hidden_states.size()
+ to_seq_length = from_seq_length = seqlen
+ from_block_size = to_block_size = self.block_size
+
+ if from_seq_length % from_block_size != 0:
+ raise ValueError("Query sided sequence length must be multiple of block size")
+
+ if to_seq_length % to_block_size != 0:
+ raise ValueError("Key/Value sided sequence length must be multiple of block size")
+
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ context_layer, attention_probs = self.bigbird_block_sparse_attention(
+ query_layer,
+ key_layer,
+ value_layer,
+ band_mask,
+ from_mask,
+ to_mask,
+ from_blocked_mask,
+ to_blocked_mask,
+ self.num_attention_heads,
+ self.num_random_blocks,
+ self.attention_head_size,
+ from_block_size,
+ to_block_size,
+ batch_size,
+ from_seq_length,
+ to_seq_length,
+ seed=self.seed,
+ plan_from_length=None,
+ plan_num_rand_blocks=None,
+ output_attentions=output_attentions,
+ )
+
+ context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+ @staticmethod
+ def torch_bmm_nd(inp_1, inp_2, ndim=None):
+ """Fast nd matrix multiplication"""
+ # faster replacement of torch.einsum ("bhqk,bhkd->bhqd")
+ return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view(
+ inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1])
+ )
+
+ @staticmethod
+ def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None):
+ """Fast nd matrix multiplication with transpose"""
+ # faster replacement of torch.einsum (bhqd,bhkd->bhqk)
+ return torch.bmm(
+ inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2)
+ ).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2]))
+
+ def bigbird_block_sparse_attention(
+ self,
+ query_layer,
+ key_layer,
+ value_layer,
+ band_mask,
+ from_mask,
+ to_mask,
+ from_blocked_mask,
+ to_blocked_mask,
+ n_heads,
+ n_rand_blocks,
+ attention_head_size,
+ from_block_size,
+ to_block_size,
+ batch_size,
+ from_seq_len,
+ to_seq_len,
+ seed,
+ plan_from_length,
+ plan_num_rand_blocks,
+ output_attentions,
+ ):
+ # BigBird block-sparse attention as suggested in paper
+
+ # ITC:
+ # global tokens: 2 x block_size
+ # window tokens: 3 x block_size
+ # random tokens: num_rand_tokens x block_size
+
+ # ETC:
+ # global tokens: extra_globals_tokens + 2 x block_size
+ # window tokens: 3 x block_size
+ # random tokens: num_rand_tokens x block_size
+
+ # Note:
+ # 1) Currently, ETC is not supported.
+ # 2) Window size is fixed to 3 blocks & it can be changed only by
+ # changing `block_size`.
+ # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
+ # controlled only by `block_size`.
+
+ # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention)
+ # hence following code can be divided into 5 parts.
+
+ if from_seq_len // from_block_size != to_seq_len // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+
+ rsqrt_d = 1 / math.sqrt(attention_head_size)
+ bsz = batch_size
+ attn_mask_penalty = -10000.0
+
+ # generate random attention and corresponding masks
+ np.random.seed(seed)
+ if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
+ rand_attn = [
+ self._bigbird_block_rand_mask(
+ self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024
+ )[: (from_seq_len // from_block_size - 2)]
+ for _ in range(n_heads)
+ ]
+ else:
+ if plan_from_length is None:
+ plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
+ from_seq_len, from_block_size, n_rand_blocks
+ )
+
+ rand_attn = self._bigbird_block_rand_mask_with_head(
+ from_seq_length=from_seq_len,
+ to_seq_length=to_seq_len,
+ from_block_size=from_block_size,
+ to_block_size=to_block_size,
+ num_heads=n_heads,
+ plan_from_length=plan_from_length,
+ plan_num_rand_blocks=plan_num_rand_blocks,
+ )
+
+ rand_attn = np.stack(rand_attn, axis=0)
+ rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long)
+ rand_attn.unsqueeze_(0)
+ rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0)
+
+ rand_mask = self._create_rand_mask_from_inputs(
+ from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
+ )
+
+ blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
+ blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
+ blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
+
+ # preparing block for randn attn
+ gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn)
+ gathered_key = gathered_key.view(
+ bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
+ ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
+ gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn)
+ gathered_value = gathered_value.view(
+ bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
+ ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
+
+ # 1st PART
+ # 1st block (global block) attention scores
+ # q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
+ first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4)
+
+ first_product = first_product * rsqrt_d
+ first_product += (1.0 - to_mask) * attn_mask_penalty
+ first_attn_weights = nn.functional.softmax(
+ first_product, dim=-1
+ ) # [bsz, n_heads, from_block_size, to_seq_len]
+
+ # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
+ first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4)
+ first_context_layer.unsqueeze_(2)
+
+ # 2nd PART
+ # 2nd block attention scores
+ # q[1] x (sliding_keys, random_keys, global_keys)
+ # sliding key blocks -> 2nd, 3rd blocks
+ # global key blocks -> 1st block
+
+ second_key_mat = torch.cat(
+ [
+ blocked_key_matrix[:, :, 0],
+ blocked_key_matrix[:, :, 1],
+ blocked_key_matrix[:, :, 2],
+ blocked_key_matrix[:, :, -1],
+ gathered_key[:, :, 0],
+ ],
+ dim=2,
+ ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+ second_value_mat = torch.cat(
+ [
+ blocked_value_matrix[:, :, 0],
+ blocked_value_matrix[:, :, 1],
+ blocked_value_matrix[:, :, 2],
+ blocked_value_matrix[:, :, -1],
+ gathered_value[:, :, 0],
+ ],
+ dim=2,
+ ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+ second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4)
+ second_seq_pad = torch.cat(
+ [
+ to_mask[:, :, :, : 3 * to_block_size],
+ to_mask[:, :, :, -to_block_size:],
+ to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
+ ],
+ dim=3,
+ )
+ second_rand_pad = torch.cat(
+ [
+ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
+ rand_mask[:, :, 0],
+ ],
+ dim=3,
+ )
+ second_product = second_product * rsqrt_d
+ second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
+ second_attn_weights = nn.functional.softmax(
+ second_product, dim=-1
+ ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+
+ # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
+ second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4)
+
+ second_context_layer.unsqueeze_(2)
+
+ # 3rd PART
+ # Middle blocks attention scores
+ # q[-2:2] x (sliding_keys, random_keys, global_keys)
+ # sliding attn is calculated using special trick of shifting tokens as discussed in paper
+ # random keys are generated by taking random indices as per `rand_attn`
+ # global keys -> 1st & last block
+
+ exp_blocked_key_matrix = torch.cat(
+ [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ exp_blocked_value_matrix = torch.cat(
+ [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
+ dim=3,
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
+
+ # sliding attention scores for q[-2:2]
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5)
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
+ inner_band_product = inner_band_product * rsqrt_d
+
+ # randn attention scores for q[-2:2]
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
+ rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5)
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
+ rand_band_product = rand_band_product * rsqrt_d
+
+ # Including 1st block (since it's global)
+ first_band_product = torch.einsum(
+ "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
+ first_band_product = first_band_product * rsqrt_d
+
+ # Including last block (since it's global)
+ last_band_product = torch.einsum(
+ "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
+ last_band_product = last_band_product * rsqrt_d
+
+ # masking padded tokens
+ inner_band_product += (1.0 - band_mask) * attn_mask_penalty
+ first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty
+ last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty
+ rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
+
+ # completing attention scores matrix for all q[-2:2]
+ band_product = torch.cat(
+ [first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
+
+ # safely doing softmax since attention matrix is completed
+ attn_weights = nn.functional.softmax(
+ band_product, dim=-1
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
+
+ # contribution of sliding keys
+ # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ context_layer = self.torch_bmm_nd(
+ attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5
+ )
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+
+ # adding contribution of random keys
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
+ context_layer += self.torch_bmm_nd(
+ attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5
+ )
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+
+ # adding contribution of global keys
+ context_layer += torch.einsum(
+ "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+ context_layer += torch.einsum(
+ "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+
+ # 4th PART
+ # last 2nd token attention scores
+ # q[-2] x (sliding_keys, random_keys, global_keys)
+ # sliding key blocks -> last 3 blocks
+ # global key block -> 1st block
+ # random key block -> based on indices stored in `randn_attn`
+
+ second_last_key_mat = torch.cat(
+ [
+ blocked_key_matrix[:, :, 0],
+ blocked_key_matrix[:, :, -3],
+ blocked_key_matrix[:, :, -2],
+ blocked_key_matrix[:, :, -1],
+ gathered_key[:, :, -1],
+ ],
+ dim=2,
+ ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
+ second_last_value_mat = torch.cat(
+ [
+ blocked_value_matrix[:, :, 0],
+ blocked_value_matrix[:, :, -3],
+ blocked_value_matrix[:, :, -2],
+ blocked_value_matrix[:, :, -1],
+ gathered_value[:, :, -1],
+ ],
+ dim=2,
+ ) # [bsz, n_heads, (4+r)*to_block_size, -1]
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+ second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4)
+ second_last_seq_pad = torch.cat(
+ [
+ to_mask[:, :, :, :to_block_size],
+ to_mask[:, :, :, -3 * to_block_size :],
+ to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
+ ],
+ dim=3,
+ )
+ second_last_rand_pad = torch.cat(
+ [
+ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
+ rand_mask[:, :, -1],
+ ],
+ dim=3,
+ )
+ second_last_product = second_last_product * rsqrt_d
+ second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
+ second_last_attn_weights = nn.functional.softmax(
+ second_last_product, dim=-1
+ ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+
+ # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
+ second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4)
+ second_last_context_layer.unsqueeze_(2)
+
+ # 5th PART
+ # last block (global) attention scores
+ # q[-1] x (k[0], k[1], k[2], k[3], .... )
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
+ last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4)
+ last_product = last_product * rsqrt_d
+ last_product += (1.0 - to_mask) * attn_mask_penalty
+ last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n]
+
+ # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
+ last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4)
+ last_context_layer.unsqueeze_(2)
+
+ # combining representations of all tokens
+ context_layer = torch.cat(
+ [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
+ dim=2,
+ )
+ context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask
+ context_layer = torch.transpose(context_layer, 1, 2)
+
+ # this is just for visualizing; forward pass doesn't depend on following code
+ if output_attentions:
+ # TODO(PVP): need to verify if below code is correct
+ attention_probs = torch.zeros(
+ bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device
+ )
+
+ # 1st query block
+ # corresponding to `first_context_layer`
+ attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global
+
+ # 2nd query block
+ # corresponding to `second_context_layer`
+ attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[
+ :, :, :, : 3 * to_block_size
+ ] # 1st three key blocks (global + sliding)
+ attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[
+ :, :, :, 3 * to_block_size : 4 * to_block_size
+ ] # last key block (global)
+ # random keys
+ for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights):
+ # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
+ for p2, i2, w2 in zip(range(n_heads), i1, w1):
+ # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
+ attn_probs_view = attention_probs.view(
+ bsz,
+ n_heads,
+ from_seq_len // from_block_size,
+ from_block_size,
+ to_seq_len // to_block_size,
+ to_block_size,
+ )
+ right_slice = w2[:, 4 * to_block_size :]
+ attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view(
+ from_block_size, n_rand_blocks, to_block_size
+ )
+
+ # Middle query blocks
+ # corresponding to `context_layer`
+ # sliding keys
+ for q_idx in range(from_seq_len // from_block_size - 4):
+ attn_probs_view = attention_probs.view(
+ bsz,
+ n_heads,
+ from_seq_len // from_block_size,
+ from_block_size,
+ to_seq_len // to_block_size,
+ to_block_size,
+ )[:, :, 2:-2, :, 1:-1, :]
+ right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size]
+ attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view(
+ bsz, n_heads, from_block_size, 3, to_block_size
+ ) # inner_band_product
+ # global keys (corresponding to 1st key block)
+ attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[
+ :, :, :, :, :to_block_size
+ ].view(bsz, n_heads, -1, to_block_size) # first_band_product
+ # global keys (corresponding to last key block)
+ attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[
+ :, :, :, :, -to_block_size:
+ ].view(bsz, n_heads, -1, to_block_size) # last_band_product
+ # random keys
+ for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights):
+ # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
+ for p2, i2, w2 in zip(range(n_heads), i1, w1):
+ # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
+ for q_idx in range(1, len(i2) - 1):
+ attn_probs_view = attention_probs.view(
+ bsz,
+ n_heads,
+ from_seq_len // from_block_size,
+ from_block_size,
+ to_seq_len // to_block_size,
+ to_block_size,
+ )
+ right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size]
+ attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view(
+ from_block_size, n_rand_blocks, to_block_size
+ )
+
+ # Second-last query block
+ # corresponding to `second_last_context_layer`
+ attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[
+ :, :, :, :to_block_size
+ ] # 1st key block (global)
+ attention_probs[:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :] = (
+ second_last_attn_weights[:, :, :, to_block_size : 4 * to_block_size]
+ ) # last three blocks (global + sliding)
+ # random keys
+ for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights):
+ # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
+ for p2, i2, w2 in zip(range(n_heads), i1, w1):
+ # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
+ attn_probs_view = attention_probs.view(
+ bsz,
+ n_heads,
+ from_seq_len // from_block_size,
+ from_block_size,
+ to_seq_len // to_block_size,
+ to_block_size,
+ )
+ right_slice = w2[:, 4 * to_block_size :]
+ attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view(
+ from_block_size, n_rand_blocks, to_block_size
+ )
+
+ # last query block
+ # corresponding to `last_context_layer`
+ attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global
+
+ else:
+ attention_probs = None
+
+ return context_layer, attention_probs
+
+ @staticmethod
+ def torch_gather_b2(params, indices):
+ # this operation is equivalent to tf.gather when batch_dims=2
+
+ if params.shape[:2] != indices.shape[:2]:
+ raise ValueError(
+ "Make sure that the first two dimensions of params and indices are identical, but"
+ f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}"
+ )
+ num_indices_to_gather = indices.shape[-2] * indices.shape[-1]
+ num_indices_to_pick_from = params.shape[2]
+
+ shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device)
+ indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from
+
+ flattened_indices = indices.view(-1) + indices_shift
+ flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1])
+
+ out_flattened = flattened_params.index_select(0, flattened_indices)
+
+ out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:])
+ return out
+
+ @staticmethod
+ def _create_rand_mask_from_inputs(
+ from_blocked_mask,
+ to_blocked_mask,
+ rand_attn,
+ num_attention_heads,
+ num_rand_blocks,
+ batch_size,
+ from_seq_length,
+ from_block_size,
+ ):
+ """
+ Create 3D attention mask from a 2D tensor mask.
+
+ Args:
+ from_blocked_mask: 2D Tensor of shape [batch_size,
+ from_seq_length//from_block_size, from_block_size].
+ to_blocked_mask: int32 Tensor of shape [batch_size,
+ to_seq_length//to_block_size, to_block_size].
+ rand_attn: [batch_size, num_attention_heads,
+ from_seq_length//from_block_size-2, num_rand_blocks]
+ num_attention_heads: int. Number of attention heads.
+ num_rand_blocks: int. Number of random chunks per row.
+ batch_size: int. Batch size for computation.
+ from_seq_length: int. length of from sequence.
+ from_block_size: int. size of block in from sequence.
+
+ Returns:
+ float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2,
+ from_block_size, num_rand_blocks*to_block_size].
+ """
+ num_windows = from_seq_length // from_block_size - 2
+ rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)])
+ rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size)
+ rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
+ return rand_mask
+
+ @staticmethod
+ def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
+ """
+ Gives the plan of where to put random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ from_block_size: int. size of block in from sequence.
+ num_rand_blocks: int. Number of random chunks per row.
+
+ Returns:
+ plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
+ each block
+ """
+
+ plan_from_length = []
+ plan_num_rand_blocks = []
+ if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
+ plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
+ plan_num_rand_blocks.append(num_rand_blocks)
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(0)
+ elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
+ plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
+ plan_num_rand_blocks.append(num_rand_blocks // 2)
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
+ else:
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(num_rand_blocks)
+
+ return plan_from_length, plan_num_rand_blocks
+
+ def _bigbird_block_rand_mask(
+ self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1
+ ):
+ """
+ Create adjacency list of random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ to_seq_length: int. length of to sequence.
+ from_block_size: int. size of block in from sequence.
+ to_block_size: int. size of block in to sequence.
+ num_rand_blocks: int. Number of random chunks per row.
+ last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
+ if positive then num_rand_blocks blocks chosen only up to last_idx.
+
+ Returns:
+ adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
+ """
+ # using this method when from_seq_length in [1024, 3072, 4096]
+
+ if from_seq_length // from_block_size != to_seq_length // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+
+ rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32)
+ # During inference (eval) no randomness
+ if not self.training:
+ return rand_attn
+ middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32)
+ last = to_seq_length // to_block_size - 1
+ if last_idx > (2 * to_block_size):
+ last = (last_idx // to_block_size) - 1
+
+ r = num_rand_blocks # shorthand
+ for i in range(1, from_seq_length // from_block_size - 1):
+ start = i - 2
+ end = i
+ if i == 1:
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r]
+ elif i == 2:
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r]
+ elif i == from_seq_length // from_block_size - 3:
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
+ # Missing -3: should have been sliced till last-3
+ elif i == from_seq_length // from_block_size - 2:
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
+ # Missing -4: should have been sliced till last-4
+ else:
+ if start > last:
+ start = last
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
+ elif (end + 1) == last:
+ rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
+ else:
+ rand_attn[i - 1, :] = np.random.permutation(
+ np.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
+ )[:r]
+ return rand_attn
+
+ def _bigbird_block_rand_mask_with_head(
+ self,
+ from_seq_length,
+ to_seq_length,
+ from_block_size,
+ to_block_size,
+ num_heads,
+ plan_from_length,
+ plan_num_rand_blocks,
+ window_block_left=1,
+ window_block_right=1,
+ global_block_top=1,
+ global_block_bottom=1,
+ global_block_left=1,
+ global_block_right=1,
+ ):
+ """
+ Create adjacency list of random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ to_seq_length: int. length of to sequence.
+ from_block_size: int. size of block in from sequence.
+ to_block_size: int. size of block in to sequence.
+ num_heads: int. total number of heads.
+ plan_from_length: list. plan from length where num_random_blocks are chosen from.
+ plan_num_rand_blocks: list. number of rand blocks within the plan.
+ window_block_left: int. number of blocks of window to left of a block.
+ window_block_right: int. number of blocks of window to right of a block.
+ global_block_top: int. number of blocks at the top.
+ global_block_bottom: int. number of blocks at the bottom.
+ global_block_left: int. Number of blocks globally used to the left.
+ global_block_right: int. Number of blocks globally used to the right.
+
+ Returns:
+ adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
+ num_rand_blocks
+ """
+ # using this method when from_seq_length not in [1024, 3072, 4096]
+
+ if from_seq_length // from_block_size != to_seq_length // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+
+ if from_seq_length not in plan_from_length:
+ raise ValueError("Error from sequence length not in plan!")
+
+ # Total number of blocks in the mmask
+ num_blocks = from_seq_length // from_block_size
+ # Number of blocks per plan
+ plan_block_length = np.array(plan_from_length) // from_block_size
+ # till when to follow plan
+ max_plan_idx = plan_from_length.index(from_seq_length)
+
+ # Random Attention adjacency list
+ rand_attn = [
+ np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32)
+ for i in range(num_heads)
+ ]
+ # During inference (eval) no randomness
+ if not self.training:
+ for nh in range(num_heads):
+ rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
+ return rand_attn
+
+ # We will go iteratively over the plan blocks and pick random number of
+ # Attention blocks from the legally allowed blocks
+ for plan_idx in range(max_plan_idx + 1):
+ rnd_r_cnt = 0
+ if plan_idx > 0:
+ # set the row for all from_blocks starting from 0 to
+ # plan_block_length[plan_idx-1]
+ # column indx start fromm plan_block_length[plan_idx-1] and ends at
+ # plan_block_length[plan_idx]
+ if plan_num_rand_blocks[plan_idx] > 0:
+ rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
+ curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
+ for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
+ for h in range(num_heads):
+ rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=plan_block_length[plan_idx - 1],
+ to_end_block_id=plan_block_length[plan_idx],
+ num_rand_blocks=plan_num_rand_blocks[plan_idx],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ )
+
+ for pl_id in range(plan_idx):
+ if plan_num_rand_blocks[pl_id] == 0:
+ continue
+ for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
+ rnd_r_cnt = 0
+ to_start_block_id = 0
+ if pl_id > 0:
+ rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id]))
+ to_start_block_id = plan_block_length[pl_id - 1]
+ curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1]))
+ for h in range(num_heads):
+ rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=to_start_block_id,
+ to_end_block_id=plan_block_length[pl_id],
+ num_rand_blocks=plan_num_rand_blocks[pl_id],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ )
+
+ if plan_num_rand_blocks[plan_idx] == 0:
+ continue
+ curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
+ from_start_block_id = global_block_top
+ to_start_block_id = 0
+ if plan_idx > 0:
+ rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
+ from_start_block_id = plan_block_length[plan_idx - 1]
+ to_start_block_id = plan_block_length[plan_idx - 1]
+
+ for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
+ for h in range(num_heads):
+ rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=to_start_block_id,
+ to_end_block_id=plan_block_length[plan_idx],
+ num_rand_blocks=plan_num_rand_blocks[plan_idx],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ )
+
+ for nh in range(num_heads):
+ rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
+
+ return rand_attn
+
+ @staticmethod
+ def _get_single_block_row_attention(
+ block_id,
+ to_start_block_id,
+ to_end_block_id,
+ num_rand_blocks,
+ window_block_left=1,
+ window_block_right=1,
+ global_block_left=1,
+ global_block_right=1,
+ ):
+ """
+ For a single row block get random row attention.
+
+ Args:
+ block_id: int. block id of row.
+ to_start_block_id: int. random attention column start id.
+ to_end_block_id: int. random attention column end id.
+ num_rand_blocks: int. number of random blocks to be selected.
+ window_block_left: int. number of blocks of window to left of a block.
+ window_block_right: int. number of blocks of window to right of a block.
+ global_block_left: int. Number of blocks globally used to the left.
+ global_block_right: int. Number of blocks globally used to the right.
+
+ Returns:
+ row containing the random attention vector of size num_rand_blocks.
+ """
+ # list of to_blocks from which to choose random attention
+ to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32)
+ # permute the blocks
+ perm_block = np.random.permutation(to_block_list)
+
+ # illegal blocks for the current block id, using window
+ illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
+
+ # Add blocks at the start and at the end
+ illegal_blocks.extend(list(range(global_block_left)))
+ illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
+
+ # The second from_block cannot choose random attention on second last to_block
+ if block_id == 1:
+ illegal_blocks.append(to_end_block_id - 2)
+
+ # The second last from_block cannot choose random attention on second to_block
+ if block_id == to_end_block_id - 2:
+ illegal_blocks.append(1)
+
+ selected_random_blokcs = []
+
+ for i in range(to_end_block_id - to_start_block_id):
+ if perm_block[i] not in illegal_blocks:
+ selected_random_blokcs.append(perm_block[i])
+ if len(selected_random_blokcs) == num_rand_blocks:
+ break
+ return np.array(selected_random_blokcs, dtype=np.int32)
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird
+class BigBirdSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BigBirdAttention(nn.Module):
+ def __init__(self, config, seed=None):
+ super().__init__()
+ self.attention_type = config.attention_type
+ self.config = config
+ self.seed = seed
+
+ if self.config.attention_type == "original_full":
+ self.self = BigBirdSelfAttention(config)
+ elif self.config.attention_type == "block_sparse":
+ self.self = BigBirdBlockSparseAttention(config, seed)
+ else:
+ raise ValueError(
+ f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}"
+ )
+
+ self.output = BigBirdSelfOutput(config)
+
+ def set_attention_type(self, value: str):
+ if value not in ["original_full", "block_sparse"]:
+ raise ValueError(
+ f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
+ )
+ # attention type is already correctly set
+ if value == self.attention_type:
+ return
+
+ self.attention_type = value
+ if value == "original_full":
+ # copy all weights to new full attention class
+ attn_weights = BigBirdSelfAttention(self.config)
+ else:
+ # copy all weights to new sparse attention class
+ attn_weights = BigBirdBlockSparseAttention(self.config, self.seed)
+
+ attn_weights.query = self.self.query
+ attn_weights.value = self.self.value
+ attn_weights.key = self.self.key
+ self.self = attn_weights
+ self.attention_type = value
+ if not self.training:
+ self.self.eval()
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ # block_sparse config
+ band_mask=None,
+ from_mask=None,
+ to_mask=None,
+ from_blocked_mask=None,
+ to_blocked_mask=None,
+ ):
+ # fp16 compatibility
+ if band_mask is not None:
+ band_mask = band_mask.to(hidden_states.dtype)
+ if from_mask is not None:
+ from_mask = from_mask.to(hidden_states.dtype)
+ if to_mask is not None:
+ to_mask = to_mask.to(hidden_states.dtype)
+ if self.attention_type == "original_full":
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ if encoder_hidden_states is not None:
+ raise ValueError("BigBird cannot be used as a decoder when config.attention_type != 'original_full'")
+ self_outputs = self.self(
+ hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions
+ )
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird
+class BigBirdIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird
+class BigBirdOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BigBirdLayer(nn.Module):
+ def __init__(self, config, seed=None):
+ super().__init__()
+ self.config = config
+ self.attention_type = config.attention_type
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = BigBirdAttention(config, seed=seed)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = BigBirdAttention(config)
+ self.intermediate = BigBirdIntermediate(config)
+ self.output = BigBirdOutput(config)
+
+ def set_attention_type(self, value: str):
+ if value not in ["original_full", "block_sparse"]:
+ raise ValueError(
+ f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
+ )
+ # attention type is already correctly set
+ if value == self.attention_type:
+ return
+ self.attention_type = value
+ self.attention.set_attention_type(value)
+
+ if self.add_cross_attention:
+ self.crossattention.set_attention_type(value)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ band_mask=None,
+ from_mask=None,
+ to_mask=None,
+ blocked_encoder_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=self_attn_past_key_value,
+ output_attentions=output_attentions,
+ band_mask=band_mask,
+ from_mask=from_mask,
+ to_mask=to_mask,
+ from_blocked_mask=blocked_encoder_mask,
+ to_blocked_mask=blocked_encoder_mask,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
+ " cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class BigBirdEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.attention_type = config.attention_type
+
+ self.layer = nn.ModuleList(
+ [BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.gradient_checkpointing = False
+
+ def set_attention_type(self, value: str):
+ if value not in ["original_full", "block_sparse"]:
+ raise ValueError(
+ f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
+ )
+ # attention type is already correctly set
+ if value == self.attention_type:
+ return
+ self.attention_type = value
+ for layer in self.layer:
+ layer.set_attention_type(value)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ band_mask=None,
+ from_mask=None,
+ to_mask=None,
+ blocked_encoder_mask=None,
+ return_dict=True,
+ ) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ band_mask,
+ from_mask,
+ to_mask,
+ blocked_encoder_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ band_mask,
+ from_mask,
+ to_mask,
+ blocked_encoder_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird
+class BigBirdPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird
+class BigBirdLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = BigBirdPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def _tie_weights(self):
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird
+class BigBirdOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = BigBirdLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird
+class BigBirdOnlyNSPHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, pooled_output):
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return seq_relationship_score
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird
+class BigBirdPreTrainingHeads(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = BigBirdLMPredictionHead(config)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class BigBirdPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BigBirdConfig
+ load_tf_weights = load_tf_weights_in_big_bird
+ base_model_prefix = "bert"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+BIG_BIRD_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BIG_BIRD_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@dataclass
+class BigBirdForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`BigBirdForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: torch.FloatTensor = None
+ seq_relationship_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class BigBirdForQuestionAnsweringModelOutput(ModelOutput):
+ """
+ Base class for outputs of question answering models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
+ start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Span-start scores (before SoftMax).
+ end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Span-end scores (before SoftMax).
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`):
+ pooler output from BigBigModel
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ start_logits: torch.FloatTensor = None
+ end_logits: torch.FloatTensor = None
+ pooler_output: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@add_start_docstrings(
+ "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.",
+ BIG_BIRD_START_DOCSTRING,
+)
+class BigBirdModel(BigBirdPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.attention_type = self.config.attention_type
+ self.config = config
+
+ self.block_size = self.config.block_size
+
+ self.embeddings = BigBirdEmbeddings(config)
+ self.encoder = BigBirdEncoder(config)
+
+ if add_pooling_layer:
+ self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+ else:
+ self.pooler = None
+ self.activation = None
+
+ if self.attention_type != "original_full" and config.add_cross_attention:
+ logger.warning(
+ "When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting"
+ " `attention_type=original_full`"
+ )
+ self.set_attention_type("original_full")
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def set_attention_type(self, value: str):
+ if value not in ["original_full", "block_sparse"]:
+ raise ValueError(
+ f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
+ )
+ # attention type is already correctly set
+ if value == self.attention_type:
+ return
+ self.attention_type = value
+ self.encoder.set_attention_type(value)
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # in order to use block_sparse attention, sequence_length has to be at least
+ # bigger than all global attentions: 2 * block_size
+ # + sliding tokens: 3 * block_size
+ # + random tokens: 2 * num_random_blocks * block_size
+ max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size
+ if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend:
+ # change attention_type from block_sparse to original_full
+ sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1)
+ logger.warning(
+ "Attention type 'block_sparse' is not possible if sequence_length: "
+ f"{sequence_length} <= num global tokens: 2 * config.block_size "
+ "+ min. num sliding tokens: 3 * config.block_size "
+ "+ config.num_random_blocks * config.block_size "
+ "+ additional buffer: config.num_random_blocks * config.block_size "
+ f"= {max_tokens_to_attend} with config.block_size "
+ f"= {self.config.block_size}, config.num_random_blocks "
+ f"= {self.config.num_random_blocks}. "
+ "Changing attention type to 'original_full'..."
+ )
+ self.set_attention_type("original_full")
+
+ if self.attention_type == "block_sparse":
+ (
+ padding_len,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ inputs_embeds,
+ ) = self._pad_to_block_size(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ pad_token_id=self.config.pad_token_id,
+ )
+ else:
+ padding_len = 0
+
+ if self.attention_type == "block_sparse":
+ blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
+ attention_mask, self.block_size
+ )
+ extended_attention_mask = None
+
+ elif self.attention_type == "original_full":
+ blocked_encoder_mask = None
+ band_mask = None
+ from_mask = None
+ to_mask = None
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+ else:
+ raise ValueError(
+ f"attention_type can either be original_full or block_sparse, but is {self.attention_type}"
+ )
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ band_mask=band_mask,
+ from_mask=from_mask,
+ to_mask=to_mask,
+ blocked_encoder_mask=blocked_encoder_mask,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None
+
+ # undo padding
+ if padding_len > 0:
+ # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1)
+ sequence_output = sequence_output[:, :-padding_len]
+
+ if not return_dict:
+ return (sequence_output, pooler_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooler_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ @staticmethod
+ def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int):
+ batch_size, seq_length = attention_mask.size()
+ if seq_length % block_size != 0:
+ raise ValueError(
+ f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block"
+ f" size is {block_size}."
+ )
+
+ def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
+ """
+ Create 3D attention mask from a 2D tensor mask.
+
+ Args:
+ from_blocked_mask: 2D Tensor of shape [batch_size,
+ from_seq_length//from_block_size, from_block_size].
+ to_blocked_mask: int32 Tensor of shape [batch_size,
+ to_seq_length//to_block_size, to_block_size].
+
+ Returns:
+ float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
+ 3*to_block_size].
+ """
+ exp_blocked_to_pad = torch.cat(
+ [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2
+ )
+ band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
+ band_mask.unsqueeze_(1)
+ return band_mask
+
+ blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size)
+ band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
+
+ from_mask = attention_mask.view(batch_size, 1, seq_length, 1)
+ to_mask = attention_mask.view(batch_size, 1, 1, seq_length)
+
+ return blocked_encoder_mask, band_mask, from_mask, to_mask
+
+ def _pad_to_block_size(
+ self,
+ input_ids: torch.Tensor,
+ attention_mask: torch.Tensor,
+ token_type_ids: torch.Tensor,
+ position_ids: torch.Tensor,
+ inputs_embeds: torch.Tensor,
+ pad_token_id: int,
+ ):
+ """A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention."""
+ # padding
+ block_size = self.config.block_size
+
+ input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
+ batch_size, seq_len = input_shape[:2]
+
+ padding_len = (block_size - seq_len % block_size) % block_size
+ if padding_len > 0:
+ logger.warning_once(
+ f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
+ f"`config.block_size`: {block_size}"
+ )
+ if input_ids is not None:
+ input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id)
+ if position_ids is not None:
+ # pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings
+ position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id)
+ if inputs_embeds is not None:
+ input_ids_padding = inputs_embeds.new_full(
+ (batch_size, padding_len),
+ self.config.pad_token_id,
+ dtype=torch.long,
+ )
+ inputs_embeds_padding = self.embeddings(input_ids_padding)
+ inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)
+
+ attention_mask = nn.functional.pad(
+ attention_mask, (0, padding_len), value=False
+ ) # no attention on the padding tokens
+ token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0
+
+ return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds
+
+
+class BigBirdForPreTraining(BigBirdPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.bert = BigBirdModel(config, add_pooling_layer=True)
+ self.cls = BigBirdPreTrainingHeads(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+ self.cls.predictions.bias = new_embeddings.bias
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.FloatTensor] = None,
+ next_sentence_label: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BigBirdForPreTrainingOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be
+ added to masked_lm loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in
+ `[0, 1]`:
+
+ - 0 indicates sequence B is a continuation of sequence A,
+ - 1 indicates sequence B is a random sequence.
+ kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
+ Used to hide legacy arguments that have been deprecated.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BigBirdForPreTraining
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
+ >>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output, pooled_output = outputs[:2]
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
+
+ total_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if next_sentence_label is not None and total_loss is not None:
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
+ total_loss = total_loss + next_sentence_loss
+
+ if not return_dict:
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return BigBirdForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=prediction_scores,
+ seq_relationship_logits=seq_relationship_score,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING)
+class BigBirdForMaskedLM(BigBirdPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.bert = BigBirdModel(config)
+ self.cls = BigBirdOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+ self.cls.predictions.bias = new_embeddings.bias
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, BigBirdForMaskedLM
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
+ >>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
+ >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
+
+ >>> # select random long article
+ >>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
+ >>> # select random sentence
+ >>> LONG_ARTICLE_TARGET[332:398]
+ 'the highest values are very close to the theoretical maximum value'
+
+ >>> # add mask_token
+ >>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
+ >>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
+ >>> # long article input
+ >>> list(inputs["input_ids"].shape)
+ [1, 919]
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+ >>> # retrieve index of [MASK]
+ >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
+ >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
+ >>> tokenizer.decode(predicted_token_id)
+ 'maximum'
+ ```
+
+ ```python
+ >>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"]
+ >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
+ >>> outputs = model(**inputs, labels=labels)
+ >>> round(outputs.loss.item(), 2)
+ 1.99
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ effective_batch_size = input_shape[0]
+
+ # add a dummy token
+ if self.config.pad_token_id is None:
+ raise ValueError("The PAD token should be defined for generation")
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
+ dummy_token = torch.full(
+ (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
+ )
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
+
+
+@add_start_docstrings(
+ """BigBird Model with a `language modeling` head on top for CLM fine-tuning.""", BIG_BIRD_START_DOCSTRING
+)
+class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`")
+
+ self.bert = BigBirdModel(config)
+ self.cls = BigBirdOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+ self.cls.predictions.bias = new_embeddings.bias
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.FloatTensor]]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+
+class BigBirdClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.config = config
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class BigBirdForSequenceClassification(BigBirdPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+ self.bert = BigBirdModel(config)
+ self.classifier = BigBirdClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
+ >>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
+ >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
+
+ >>> LONG_ARTICLE = squad_ds[81514]["context"]
+ >>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
+ >>> # long input article
+ >>> list(inputs["input_ids"].shape)
+ [1, 919]
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+ >>> predicted_class_id = logits.argmax().item()
+ >>> model.config.id2label[predicted_class_id]
+ 'LABEL_0'
+ ```
+
+ ```python
+ >>> num_labels = len(model.config.id2label)
+ >>> model = BigBirdForSequenceClassification.from_pretrained(
+ ... "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels
+ ... )
+ >>> labels = torch.tensor(1)
+ >>> loss = model(**inputs, labels=labels).loss
+ >>> round(loss.item(), 2)
+ 1.13
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class BigBirdForMultipleChoice(BigBirdPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.bert = BigBirdModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class BigBirdForTokenClassification(BigBirdPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.bert = BigBirdModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class BigBirdForQuestionAnsweringHead(nn.Module):
+ """Head for question answering tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.intermediate = BigBirdIntermediate(config)
+ self.output = BigBirdOutput(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, encoder_output):
+ hidden_states = self.dropout(encoder_output)
+ hidden_states = self.intermediate(hidden_states)
+ hidden_states = self.output(hidden_states, encoder_output)
+ hidden_states = self.qa_outputs(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=False):
+ super().__init__(config)
+
+ config.num_labels = 2
+ self.num_labels = config.num_labels
+ self.sep_token_id = config.sep_token_id
+
+ self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer)
+ self.qa_classifier = BigBirdForQuestionAnsweringHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ question_lengths: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BigBirdForQuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
+ >>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
+ >>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
+
+ >>> # select random article and question
+ >>> LONG_ARTICLE = squad_ds[81514]["context"]
+ >>> QUESTION = squad_ds[81514]["question"]
+ >>> QUESTION
+ 'During daytime how high can the temperatures reach?'
+
+ >>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
+ >>> # long article and question input
+ >>> list(inputs["input_ids"].shape)
+ [1, 929]
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+
+ >>> answer_start_index = outputs.start_logits.argmax()
+ >>> answer_end_index = outputs.end_logits.argmax()
+ >>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
+ >>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
+ ```
+
+ ```python
+ >>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132])
+ >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
+ >>> loss = outputs.loss
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1)
+
+ if question_lengths is None and input_ids is not None:
+ # assuming input_ids format: context
+ question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1
+ question_lengths.unsqueeze_(1)
+
+ logits_mask = None
+ if question_lengths is not None:
+ # setting lengths logits to `-inf`
+ logits_mask = self.prepare_question_mask(question_lengths, seqlen)
+ if token_type_ids is None:
+ token_type_ids = torch.ones(logits_mask.size(), dtype=int, device=logits_mask.device) - logits_mask
+ logits_mask = logits_mask
+ logits_mask[:, 0] = False
+ logits_mask.unsqueeze_(2)
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.qa_classifier(sequence_output)
+
+ if logits_mask is not None:
+ # removing question tokens from the competition
+ logits = logits - logits_mask * 1e6
+
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return BigBirdForQuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ pooler_output=outputs.pooler_output,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ @staticmethod
+ def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int):
+ # q_lengths -> (bz, 1)
+ mask = torch.arange(0, maxlen).to(q_lengths.device)
+ mask.unsqueeze_(0) # -> (1, maxlen)
+ mask = torch.where(mask < q_lengths, 1, 0)
+ return mask
+
+
+__all__ = [
+ "BigBirdForCausalLM",
+ "BigBirdForMaskedLM",
+ "BigBirdForMultipleChoice",
+ "BigBirdForPreTraining",
+ "BigBirdForQuestionAnswering",
+ "BigBirdForSequenceClassification",
+ "BigBirdForTokenClassification",
+ "BigBirdLayer",
+ "BigBirdModel",
+ "BigBirdPreTrainedModel",
+ "load_tf_weights_in_big_bird",
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d23180a8348cd38c5bf46af5e70ea0615bb64b4
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py
@@ -0,0 +1,2648 @@
+# coding=utf-8
+# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, Optional, Tuple
+
+import flax
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen import partitioning as nn_partitioning
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxBaseModelOutputWithPooling,
+ FlaxBaseModelOutputWithPoolingAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxMaskedLMOutput,
+ FlaxMultipleChoiceModelOutput,
+ FlaxSequenceClassifierOutput,
+ FlaxTokenClassifierOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_big_bird import BigBirdConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base"
+_CONFIG_FOR_DOC = "BigBirdConfig"
+
+remat = nn_partitioning.remat
+
+
+@flax.struct.dataclass
+class FlaxBigBirdForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`BigBirdForPreTraining`].
+
+ Args:
+ prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ prediction_logits: jnp.ndarray = None
+ seq_relationship_logits: jnp.ndarray = None
+ hidden_states: Optional[Tuple[jnp.ndarray]] = None
+ attentions: Optional[Tuple[jnp.ndarray]] = None
+
+
+@flax.struct.dataclass
+class FlaxBigBirdForQuestionAnsweringModelOutput(ModelOutput):
+ """
+ Base class for outputs of question answering models.
+
+ Args:
+ start_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Span-start scores (before SoftMax).
+ end_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Span-end scores (before SoftMax).
+ pooled_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
+ pooled_output returned by FlaxBigBirdModel.
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ start_logits: jnp.ndarray = None
+ end_logits: jnp.ndarray = None
+ pooled_output: jnp.ndarray = None
+ hidden_states: Optional[Tuple[jnp.ndarray]] = None
+ attentions: Optional[Tuple[jnp.ndarray]] = None
+
+
+BIG_BIRD_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+BIG_BIRD_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ head_mask (`numpy.ndarray` of shape `({0})`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+"""
+
+
+class FlaxBigBirdEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.setup
+ def setup(self):
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.position_embeddings = nn.Embed(
+ self.config.max_position_embeddings,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.token_type_embeddings = nn.Embed(
+ self.config.type_vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
+ # Embed
+ inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
+ position_embeds = self.position_embeddings(position_ids.astype("i4"))
+ token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
+
+ if self.config.rescale_embeddings:
+ inputs_embeds *= self.config.hidden_size**0.5
+
+ # Sum all embeddings
+ hidden_states = inputs_embeds + token_type_embeddings + position_embeds
+
+ # Layer Norm
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->BigBird
+class FlaxBigBirdSelfAttention(nn.Module):
+ config: BigBirdConfig
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.head_dim = self.config.hidden_size // self.config.num_attention_heads
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
+ " : {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
+
+ @nn.compact
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.query(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.key(key_value_states)
+ value_states = self.value(key_value_states)
+ else:
+ # self_attention
+ key_states = self.key(hidden_states)
+ value_states = self.value(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+class FlaxBigBirdBlockSparseAttention(nn.Module):
+ config: BigBirdConfig
+ block_sparse_seed: int = None
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ use_bias=self.config.use_bias,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ use_bias=self.config.use_bias,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ use_bias=self.config.use_bias,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ @staticmethod
+ def transpose_for_scores(x, n_heads, head_size):
+ new_x_shape = x.shape[:-1] + (n_heads, head_size)
+ x = x.reshape(*new_x_shape)
+ return jnp.transpose(x, axes=(0, 2, 1, 3))
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic=True,
+ output_attentions=False,
+ ):
+ n_heads = self.config.num_attention_heads
+ head_size = self.config.hidden_size // n_heads
+
+ blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
+ attention_mask, self.config.block_size
+ )
+
+ query_layer = self.transpose_for_scores(self.query(hidden_states), n_heads, head_size)
+ key_layer = self.transpose_for_scores(self.key(hidden_states), n_heads, head_size)
+ value_layer = self.transpose_for_scores(self.value(hidden_states), n_heads, head_size)
+
+ indices_prng_key = None
+ if not deterministic:
+ indices_prng_key = self.make_rng("indices")
+
+ attn_output, attn_weights = self.bigbird_block_sparse_attention(
+ query_layer,
+ key_layer,
+ value_layer,
+ band_mask,
+ from_mask,
+ to_mask,
+ blocked_encoder_mask,
+ blocked_encoder_mask,
+ n_heads,
+ head_size,
+ indices_prng_key=indices_prng_key,
+ deterministic=deterministic,
+ plan_from_length=None,
+ plan_num_rand_blocks=None,
+ output_attentions=output_attentions,
+ )
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+ @staticmethod
+ def create_masks_for_block_sparse_attn(attention_mask, block_size: int):
+ batch_size, seq_length = attention_mask.shape
+ if seq_length % block_size != 0:
+ raise ValueError(
+ f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block"
+ f" size is {block_size}."
+ )
+
+ def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
+ """
+ Create 3D attention mask from a 2D tensor mask.
+
+ Args:
+ from_blocked_mask: 2D Tensor of shape [batch_size,
+ from_seq_length//from_block_size, from_block_size].
+ to_blocked_mask: int32 Tensor of shape [batch_size,
+ to_seq_length//to_block_size, to_block_size].
+
+ Returns:
+ float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
+ 3*to_block_size].
+ """
+ exp_blocked_to_pad = jnp.concatenate(
+ [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], axis=2
+ )
+ band_mask = jnp.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
+ band_mask = jnp.expand_dims(band_mask, 1)
+ return band_mask
+
+ blocked_encoder_mask = attention_mask.reshape(batch_size, seq_length // block_size, block_size)
+ band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
+
+ from_mask = attention_mask.reshape(batch_size, 1, seq_length, 1)
+ to_mask = attention_mask.reshape(batch_size, 1, 1, seq_length)
+
+ return blocked_encoder_mask, band_mask, from_mask, to_mask
+
+ def bigbird_block_sparse_attention(
+ self,
+ query_layer,
+ key_layer,
+ value_layer,
+ band_mask,
+ from_mask,
+ to_mask,
+ from_blocked_mask,
+ to_blocked_mask,
+ n_heads,
+ head_size,
+ indices_prng_key: Optional[jax.random.PRNGKey] = None,
+ deterministic: Optional[bool] = True,
+ plan_from_length=None,
+ plan_num_rand_blocks=None,
+ output_attentions=None,
+ ):
+ # BigBird block-sparse attention as suggested in paper
+
+ # ITC:
+ # global tokens: 2 x block_size
+ # window tokens: 3 x block_size
+ # random tokens: num_rand_tokens x block_size
+
+ # ETC:
+ # global tokens: extra_globals_tokens + 2 x block_size
+ # window tokens: 3 x block_size
+ # random tokens: num_rand_tokens x block_size
+
+ # Note:
+ # 1) Currently, ETC is not supported.
+ # 2) Window size is fixed to 3 blocks & it can be changed only by
+ # changing `block_size`.
+ # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
+ # controlled only by `block_size`.
+
+ # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of
+ # shifting tokens (for calculating sliding attention). hence following code can be divided into 5 parts.
+
+ bsz, _, from_seq_len, _ = query_layer.shape
+ to_seq_len = key_layer.shape[2]
+ from_block_size = to_block_size = self.config.block_size
+
+ if from_seq_len % from_block_size != 0:
+ raise ValueError("Query sided sequence length must be multiple of block size")
+
+ if to_seq_len % to_block_size != 0:
+ raise ValueError("Key/Value sided sequence length must be multiple of block size")
+
+ if from_seq_len // from_block_size != to_seq_len // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+
+ n_rand_blocks = self.config.num_random_blocks
+ rsqrt_d = 1 / jnp.sqrt(head_size)
+ attn_mask_penalty = -10000.0
+
+ if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
+ max_seqlen = self.config.max_position_embeddings
+ rand_attn = [
+ self._bigbird_block_rand_mask(
+ max_seqlen,
+ max_seqlen,
+ from_block_size,
+ to_block_size,
+ n_rand_blocks,
+ indices_prng_key=indices_prng_key,
+ deterministic=deterministic,
+ last_idx=1024,
+ )[: (from_seq_len // from_block_size - 2)]
+ for _ in range(n_heads)
+ ]
+ else:
+ if plan_from_length is None:
+ plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
+ from_seq_len, from_block_size, n_rand_blocks
+ )
+ rand_attn = self._bigbird_block_rand_mask_with_head(
+ from_seq_length=from_seq_len,
+ to_seq_length=to_seq_len,
+ from_block_size=from_block_size,
+ to_block_size=to_block_size,
+ num_heads=n_heads,
+ plan_from_length=plan_from_length,
+ plan_num_rand_blocks=plan_num_rand_blocks,
+ indices_prng_key=indices_prng_key,
+ )
+
+ rand_attn = jnp.stack(rand_attn, axis=0)
+ rand_attn = jnp.broadcast_to(rand_attn, (bsz,) + rand_attn.shape)
+
+ rand_mask = self._create_rand_mask_from_inputs(
+ from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
+ )
+
+ blocked_query_matrix = query_layer.reshape(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
+ blocked_key_matrix = key_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
+ blocked_value_matrix = value_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
+
+ shape = (bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1)
+ gathered_key = self.jax_gather(blocked_key_matrix, rand_attn, batch_dims=2).reshape(*shape)
+ gathered_value = self.jax_gather(blocked_value_matrix, rand_attn, batch_dims=2).reshape(*shape)
+
+ # 1st PART
+ # 1st block (global block) attention scores
+ # q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
+ first_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 0], key_layer)
+
+ first_product = first_product * rsqrt_d
+ first_product += (1.0 - to_mask) * attn_mask_penalty
+ first_attn_weights = jax.nn.softmax(first_product, axis=-1) # [bsz, n_heads, from_block_size, to_seq_len]
+
+ # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
+ first_context_layer = jnp.einsum("bhqk,bhkd->bhqd", first_attn_weights, value_layer)
+ first_context_layer = jnp.expand_dims(first_context_layer, 2)
+
+ # 2nd PART
+ # 2nd block attention scores
+ # q[1] x (sliding_keys, random_keys, global_keys)
+ # sliding key blocks -> 2nd, 3rd blocks
+ # global key blocks -> 1st block
+
+ second_key_mat = jnp.concatenate(
+ [
+ blocked_key_matrix[:, :, 0],
+ blocked_key_matrix[:, :, 1],
+ blocked_key_matrix[:, :, 2],
+ blocked_key_matrix[:, :, -1],
+ gathered_key[:, :, 0],
+ ],
+ axis=2,
+ ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+ second_value_mat = jnp.concatenate(
+ [
+ blocked_value_matrix[:, :, 0],
+ blocked_value_matrix[:, :, 1],
+ blocked_value_matrix[:, :, 2],
+ blocked_value_matrix[:, :, -1],
+ gathered_value[:, :, 0],
+ ],
+ axis=2,
+ ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+ # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+ second_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 1], second_key_mat)
+ second_seq_pad = jnp.concatenate(
+ [
+ to_mask[:, :, :, : 3 * to_block_size],
+ to_mask[:, :, :, -to_block_size:],
+ jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype),
+ ],
+ axis=3,
+ )
+ second_rand_pad = jnp.concatenate(
+ [
+ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype),
+ rand_mask[:, :, 0],
+ ],
+ axis=3,
+ )
+ second_product = second_product * rsqrt_d
+ second_product += (1.0 - jnp.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
+ second_attn_weights = jax.nn.softmax(
+ second_product, axis=-1
+ ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+
+ # [bsz, n_heads, from_block_size, (4+r)*to_block_size] x [bsz, n_heads, (4+r)*to_block_size, -1]
+ # ==> [bsz, n_heads, from_block_size, -1]
+ second_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_attn_weights, second_value_mat)
+ second_context_layer = jnp.expand_dims(second_context_layer, 2)
+
+ # 3rd PART
+ # Middle blocks attention scores
+ # q[-2:2] x (sliding_keys, random_keys, global_keys)
+ # sliding attn is calculated using special trick of shifting tokens as discussed in paper
+ # random keys are generated by taking random indices as per `rand_attn`
+ # global keys -> 1st & last block
+
+ exp_blocked_key_matrix = jnp.concatenate(
+ [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], axis=3
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ exp_blocked_value_matrix = jnp.concatenate(
+ [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
+ axis=3,
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
+
+ # sliding attention scores for q[-2:2]
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ inner_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, exp_blocked_key_matrix)
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
+ inner_band_product = inner_band_product * rsqrt_d
+
+ # randn attention scores for q[-2:2]
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+ # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
+ rand_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, gathered_key[:, :, 1:-1])
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
+ rand_band_product = rand_band_product * rsqrt_d
+
+ # Including 1st block (since it's global)
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1]
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
+ first_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0])
+ first_band_product = first_band_product * rsqrt_d
+
+ # Including last block (since it's global)
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1]
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
+ last_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1])
+ last_band_product = last_band_product * rsqrt_d
+
+ # masking padded tokens
+ inner_band_product += (1.0 - band_mask) * attn_mask_penalty
+ first_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, :to_block_size], 3)) * attn_mask_penalty
+ last_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, -to_block_size:], 3)) * attn_mask_penalty
+ rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
+
+ # completing attention scores matrix for all q[-2:2]
+ band_product = jnp.concatenate(
+ [first_band_product, inner_band_product, rand_band_product, last_band_product], axis=-1
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
+
+ # safely doing softmax since attention matrix is completed
+ attn_weights = jax.nn.softmax(
+ band_product, axis=-1
+ ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
+
+ # contribution of sliding keys
+ # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size]
+ # x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
+ context_layer = jnp.einsum(
+ "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix
+ )
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+
+ # adding contribution of random keys
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
+ # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
+ context_layer += jnp.einsum(
+ "bhlqk,bhlkd->bhlqd",
+ attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size],
+ gathered_value[:, :, 1:-1],
+ )
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+
+ # adding contribution of global keys
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1]
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+ context_layer += jnp.einsum(
+ "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
+ )
+ # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1]
+ # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
+ context_layer += jnp.einsum(
+ "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
+ )
+
+ # 4th PART
+ # last 2nd token attention scores
+ # q[-2] x (sliding_keys, random_keys, global_keys)
+ # sliding key blocks -> last 3 blocks
+ # global key block -> 1st block
+ # random key block -> based on indices stored in `randn_attn`
+
+ second_last_key_mat = jnp.concatenate(
+ [
+ blocked_key_matrix[:, :, 0],
+ blocked_key_matrix[:, :, -3],
+ blocked_key_matrix[:, :, -2],
+ blocked_key_matrix[:, :, -1],
+ gathered_key[:, :, -1],
+ ],
+ axis=2,
+ ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
+ second_last_value_mat = jnp.concatenate(
+ [
+ blocked_value_matrix[:, :, 0],
+ blocked_value_matrix[:, :, -3],
+ blocked_value_matrix[:, :, -2],
+ blocked_value_matrix[:, :, -1],
+ gathered_value[:, :, -1],
+ ],
+ axis=2,
+ ) # [bsz, n_heads, (4+r)*to_block_size, -1]
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+ # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+ second_last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -2], second_last_key_mat)
+ second_last_seq_pad = jnp.concatenate(
+ [
+ to_mask[:, :, :, :to_block_size],
+ to_mask[:, :, :, -3 * to_block_size :],
+ jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype),
+ ],
+ axis=3,
+ )
+ second_last_rand_pad = jnp.concatenate(
+ [
+ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype),
+ rand_mask[:, :, -1],
+ ],
+ axis=3,
+ )
+ second_last_product = second_last_product * rsqrt_d
+ second_last_product += (1.0 - jnp.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
+ second_last_attn_weights = jax.nn.softmax(
+ second_last_product, axis=-1
+ ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
+
+ # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
+ # ==> [bsz, n_heads, from_block_size, -1]
+ second_last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_last_attn_weights, second_last_value_mat)
+ second_last_context_layer = jnp.expand_dims(second_last_context_layer, 2)
+
+ # 5th PART
+ # last block (global) attention scores
+ # q[-1] x (k[0], k[1], k[2], k[3], .... )
+
+ # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
+ last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -1], key_layer)
+ last_product = last_product * rsqrt_d
+ last_product += (1.0 - to_mask) * attn_mask_penalty
+ last_attn_weights = jax.nn.softmax(last_product, axis=-1) # [bsz, n_heads, from_block_size, n]
+
+ # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
+ last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", last_attn_weights, value_layer)
+ last_context_layer = jnp.expand_dims(last_context_layer, 2)
+
+ # combining representations of all tokens
+ context_layer = jnp.concatenate(
+ [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
+ axis=2,
+ )
+ context_layer = context_layer.reshape(bsz, n_heads, from_seq_len, -1) * from_mask
+ context_layer = jnp.transpose(context_layer, axes=(0, 2, 1, 3)).reshape(bsz, from_seq_len, -1)
+
+ attention_probs = None
+
+ return context_layer, attention_probs
+
+ @staticmethod
+ def jax_gather(params, indices, batch_dims=2):
+ """
+ Gather the indices from params correctly (equivalent to tf.gather but with modifications)
+
+ Args:
+ params: (bsz, n_heads, num_blocks, block_size, head_dim)
+ indices: (bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
+ return rand_mask
+
+ @staticmethod
+ def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
+ """
+ Gives the plan of where to put random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ from_block_size: int. size of block in from sequence.
+ num_rand_blocks: int. Number of random chunks per row.
+
+ Returns:
+ plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
+ each block
+ """
+
+ plan_from_length = []
+ plan_num_rand_blocks = []
+ if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
+ plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
+ plan_num_rand_blocks.append(num_rand_blocks)
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(0)
+ elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
+ plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
+ plan_num_rand_blocks.append(num_rand_blocks // 2)
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
+ else:
+ plan_from_length.append(from_seq_length)
+ plan_num_rand_blocks.append(num_rand_blocks)
+
+ return plan_from_length, plan_num_rand_blocks
+
+ @staticmethod
+ def _bigbird_block_rand_mask(
+ from_seq_length,
+ to_seq_length,
+ from_block_size,
+ to_block_size,
+ num_rand_blocks,
+ indices_prng_key: Optional[jax.random.PRNGKey] = None,
+ deterministic: Optional[bool] = True,
+ last_idx: Optional[int] = -1,
+ ):
+ """
+ Create adjacency list of random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ to_seq_length: int. length of to sequence.
+ from_block_size: int. size of block in from sequence.
+ to_block_size: int. size of block in to sequence.
+ num_rand_blocks: int. Number of random chunks per row.
+ indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations.
+ deterministic: bool. When False random attention will be used.
+ last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
+ if positive then num_rand_blocks blocks chosen only up to last_idx.
+
+ Returns:
+ adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
+ """
+ # using this method when from_seq_length in [1024, 3072, 4096]
+
+ if from_seq_length // from_block_size != to_seq_length // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+ rand_attn = jnp.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=jnp.int32)
+ # deterministic nor randomness
+ if deterministic:
+ return rand_attn
+
+ middle_seq = jnp.arange(1, to_seq_length // to_block_size - 1, dtype=jnp.int32)
+ last = to_seq_length // to_block_size - 1
+ if last_idx > (2 * to_block_size):
+ last = (last_idx // to_block_size) - 1
+
+ r = num_rand_blocks # shorthand
+ for i in range(1, from_seq_length // from_block_size - 1):
+ start = i - 2
+ end = i
+ if i == 1:
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[2:last])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ elif i == 2:
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[3:last])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ elif i == from_seq_length // from_block_size - 3:
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ # Missing -3: should have been sliced till last-3
+ elif i == from_seq_length // from_block_size - 2:
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ # Missing -4: should have been sliced till last-4
+ else:
+ if start > last:
+ start = last
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ elif (end + 1) == last:
+ seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ else:
+ concat_values = jnp.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
+ seq_values = jax.random.permutation(indices_prng_key, concat_values)[:r]
+ rand_attn = rand_attn.at[i - 1].set(seq_values)
+ return rand_attn
+
+ def _bigbird_block_rand_mask_with_head(
+ self,
+ from_seq_length,
+ to_seq_length,
+ from_block_size,
+ to_block_size,
+ num_heads,
+ plan_from_length,
+ plan_num_rand_blocks,
+ indices_prng_key: Optional[jax.random.PRNGKey] = None,
+ deterministic: Optional[bool] = True,
+ window_block_left=1,
+ window_block_right=1,
+ global_block_top=1,
+ global_block_bottom=1,
+ global_block_left=1,
+ global_block_right=1,
+ ):
+ """
+ Create adjacency list of random attention.
+
+ Args:
+ from_seq_length: int. length of from sequence.
+ to_seq_length: int. length of to sequence.
+ from_block_size: int. size of block in from sequence.
+ to_block_size: int. size of block in to sequence.
+ num_heads: int. total number of heads.
+ plan_from_length: list. plan from length where num_random_blocks are choosen from.
+ plan_num_rand_blocks: list. number of rand blocks within the plan.
+ indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations.
+ deterministic: bool. When False random attention will be used.
+ window_block_left: int. number of blocks of window to left of a block.
+ window_block_right: int. number of blocks of window to right of a block.
+ global_block_top: int. number of blocks at the top.
+ global_block_bottom: int. number of blocks at the bottom.
+ global_block_left: int. Number of blocks globally used to the left.
+ global_block_right: int. Number of blocks globally used to the right.
+
+ Returns:
+ adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
+ num_rand_blocks
+ """
+ # using this method when from_seq_length not in [1024, 3072, 4096]
+
+ if from_seq_length // from_block_size != to_seq_length // to_block_size:
+ raise ValueError("Error the number of blocks needs to be same!")
+
+ if from_seq_length not in plan_from_length:
+ raise ValueError("Error from sequence length not in plan!")
+
+ # Total number of blocks in the mmask
+ num_blocks = from_seq_length // from_block_size
+ # Number of blocks per plan
+ plan_block_length = jnp.array(plan_from_length) // from_block_size
+ # till when to follow plan
+ max_plan_idx = plan_from_length.index(from_seq_length)
+
+ # Random Attention adjacency list
+ rand_attn = [
+ jnp.zeros((num_blocks, sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=jnp.int32)
+ for i in range(num_heads)
+ ]
+
+ # deterministic
+ if deterministic:
+ for nh in range(num_heads):
+ rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
+ return rand_attn
+
+ # We will go iteratively over the plan blocks and pick random number of
+ # Attention blocks from the legally allowed blocks
+ for plan_idx in range(max_plan_idx + 1):
+ rnd_r_cnt = 0
+ if plan_idx > 0:
+ # set the row for all from_blocks starting from 0 to
+ # plan_block_length[plan_idx-1]
+ # column indx start fromm plan_block_length[plan_idx-1] and ends at
+ # plan_block_length[plan_idx]
+ if plan_num_rand_blocks[plan_idx] > 0:
+ rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx]))
+ curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1]))
+ for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
+ for h in range(num_heads):
+ single_block_row_attention = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=plan_block_length[plan_idx - 1],
+ to_end_block_id=plan_block_length[plan_idx],
+ num_rand_blocks=plan_num_rand_blocks[plan_idx],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ indices_prng_key=indices_prng_key,
+ )
+ rand_attn[h] = (
+ rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
+ )
+
+ for pl_id in range(plan_idx):
+ if plan_num_rand_blocks[pl_id] == 0:
+ continue
+ for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
+ rnd_r_cnt = 0
+ to_start_block_id = 0
+ if pl_id > 0:
+ rnd_r_cnt = int(sum(plan_num_rand_blocks[:pl_id]))
+ to_start_block_id = plan_block_length[pl_id - 1]
+ curr_r_cnt = int(sum(plan_num_rand_blocks[: pl_id + 1]))
+ for h in range(num_heads):
+ single_block_row_attention = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=to_start_block_id,
+ to_end_block_id=plan_block_length[pl_id],
+ num_rand_blocks=plan_num_rand_blocks[pl_id],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ indices_prng_key=indices_prng_key,
+ )
+ rand_attn[h] = (
+ rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
+ )
+
+ if plan_num_rand_blocks[plan_idx] == 0:
+ continue
+ curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1]))
+ from_start_block_id = global_block_top
+ to_start_block_id = 0
+ if plan_idx > 0:
+ rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx]))
+ from_start_block_id = plan_block_length[plan_idx - 1]
+ to_start_block_id = plan_block_length[plan_idx - 1]
+ for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
+ for h in range(num_heads):
+ single_block_row_attention = self._get_single_block_row_attention(
+ block_id=blk_rw_idx,
+ to_start_block_id=to_start_block_id,
+ to_end_block_id=plan_block_length[plan_idx],
+ num_rand_blocks=plan_num_rand_blocks[plan_idx],
+ window_block_left=window_block_left,
+ window_block_right=window_block_right,
+ global_block_left=global_block_left,
+ global_block_right=global_block_right,
+ indices_prng_key=indices_prng_key,
+ )
+ rand_attn[h] = rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
+
+ for nh in range(num_heads):
+ rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
+ return rand_attn
+
+ @staticmethod
+ def _get_single_block_row_attention(
+ block_id,
+ to_start_block_id,
+ to_end_block_id,
+ num_rand_blocks,
+ indices_prng_key: Optional[jax.random.PRNGKey] = None,
+ window_block_left=1,
+ window_block_right=1,
+ global_block_left=1,
+ global_block_right=1,
+ ):
+ """
+ For a single row block get random row attention.
+
+ Args:
+ block_id: int. block id of row.
+ to_start_block_id: int. random attention column start id.
+ to_end_block_id: int. random attention column end id.
+ num_rand_blocks: int. number of random blocks to be selected.
+ indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations
+ window_block_left: int. number of blocks of window to left of a block.
+ window_block_right: int. number of blocks of window to right of a block.
+ global_block_left: int. Number of blocks globally used to the left.
+ global_block_right: int. Number of blocks globally used to the right.
+
+ Returns:
+ row containing the random attention vector of size num_rand_blocks.
+ """
+ # list of to_blocks from which to choose random attention
+ to_block_list = jnp.arange(to_start_block_id, to_end_block_id, dtype=jnp.int32)
+ # permute the blocks
+ perm_block = jax.random.permutation(indices_prng_key, to_block_list)
+
+ # illegal blocks for the current block id, using window
+ illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
+
+ # Add blocks at the start and at the end
+ illegal_blocks.extend(list(range(global_block_left)))
+ illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
+
+ # The second from_block cannot choose random attention on second last to_block
+ if block_id == 1:
+ illegal_blocks.append(to_end_block_id - 2)
+
+ # The second last from_block cannot choose random attention on second to_block
+ if block_id == to_end_block_id - 2:
+ illegal_blocks.append(1)
+
+ selected_random_blocks = []
+
+ for i in range(to_end_block_id - to_start_block_id):
+ if perm_block[i] not in illegal_blocks:
+ selected_random_blocks.append(perm_block[i])
+ if len(selected_random_blocks) == num_rand_blocks:
+ break
+ return jnp.array(selected_random_blocks, dtype=jnp.int32)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->BigBird
+class FlaxBigBirdSelfOutput(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class FlaxBigBirdAttention(nn.Module):
+ config: BigBirdConfig
+ layer_id: int = None
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ if self.config.attention_type == "original_full":
+ self.self = FlaxBigBirdSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
+ elif self.config.attention_type == "block_sparse":
+ self.self = FlaxBigBirdBlockSparseAttention(self.config, block_sparse_seed=self.layer_id, dtype=self.dtype)
+ else:
+ raise ValueError(
+ f"Your `config.attention_type` is {self.config.attention_type} but it can either be `original_full` or"
+ " `block_sparse`"
+ )
+
+ self.output = FlaxBigBirdSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states=None,
+ init_cache=False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
+ # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
+ # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
+ if self.config.attention_type == "original_full":
+ attn_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=key_value_states,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ else:
+ attn_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->BigBird
+class FlaxBigBirdIntermediate(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->BigBird
+class FlaxBigBirdOutput(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + attention_output)
+ return hidden_states
+
+
+class FlaxBigBirdLayer(nn.Module):
+ config: BigBirdConfig
+ layer_id: int = None
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxBigBirdAttention(
+ self.config, layer_id=self.layer_id, causal=self.config.is_decoder, dtype=self.dtype
+ )
+ self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype)
+ if self.config.add_cross_attention:
+ self.crossattention = FlaxBigBirdAttention(self.config, causal=False, dtype=self.dtype)
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer.__call__ with Bert->BigBird
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ # Self Attention
+ attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = attention_outputs[0]
+
+ # Cross-Attention Block
+ if encoder_hidden_states is not None:
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=encoder_hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+
+ hidden_states = self.intermediate(attention_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ if encoder_hidden_states is not None:
+ outputs += (cross_attention_outputs[1],)
+ return outputs
+
+
+class FlaxBigBirdLayerCollection(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ if self.gradient_checkpointing:
+ FlaxBigBirdCheckpointLayer = remat(FlaxBigBirdLayer, static_argnums=(5, 6, 7))
+ self.layers = [
+ FlaxBigBirdCheckpointLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+ else:
+ self.layers = [
+ FlaxBigBirdLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection.__call__ with Bert->BigBird
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ # Check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.shape[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
+ f" {head_mask.shape[0]}."
+ )
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask,
+ head_mask[i] if head_mask is not None else None,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ init_cache,
+ deterministic,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->BigBird
+class FlaxBigBirdEncoder(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.layer = FlaxBigBirdLayerCollection(
+ self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layer(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->BigBird
+class FlaxBigBirdPredictionHeadTransform(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ self.activation = ACT2FN[self.config.hidden_act]
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return self.LayerNorm(hidden_states)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->BigBird, np.ndarray->jnp.ndarray
+class FlaxBigBirdLMPredictionHead(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.transform = FlaxBigBirdPredictionHeadTransform(self.config, dtype=self.dtype)
+ self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
+ self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.transform(hidden_states)
+
+ if shared_embedding is not None:
+ hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ hidden_states = self.decoder(hidden_states)
+
+ bias = jnp.asarray(self.bias, self.dtype)
+ hidden_states += bias
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->BigBird
+class FlaxBigBirdOnlyMLMHead(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype)
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
+ return hidden_states
+
+
+class FlaxBigBirdPreTrainingHeads(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype)
+ self.seq_relationship = nn.Dense(2, dtype=self.dtype)
+
+ def __call__(self, hidden_states, pooled_output, shared_embedding=None):
+ prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BigBirdConfig
+ base_model_prefix = "bert"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: BigBirdConfig,
+ input_shape: Optional[tuple] = None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ gradient_checkpointing: bool = False,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
+ if config.attention_type == "block_sparse" and input_shape is None:
+ input_shape = (1, 12 * config.block_size)
+ elif input_shape is None:
+ input_shape = (1, 1)
+
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
+ def enable_gradient_checkpointing(self):
+ self._module = self.module_class(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=True,
+ )
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ token_type_ids = jnp.zeros_like(input_ids)
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
+ attention_mask = jnp.ones_like(input_ids)
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ params_rng, dropout_rng, indices_rng = jax.random.split(rng, num=3)
+ rngs = {"params": params_rng, "dropout": dropout_rng, "indices": indices_rng}
+
+ if self.config.add_cross_attention:
+ encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
+ encoder_attention_mask = attention_mask
+ module_init_outputs = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ return_dict=False,
+ )
+ else:
+ module_init_outputs = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ return_dict=False,
+ )
+
+ random_params = module_init_outputs["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
+ def init_cache(self, batch_size, max_length):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ """
+ # init input variables to retrieve cache
+ input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ attention_mask = jnp.ones_like(input_ids, dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ params: dict = None,
+ dropout_rng: Optional[jax.random.PRNGKey] = None,
+ indices_rng: Optional[jax.random.PRNGKey] = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ past_key_values: dict = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if head_mask is None:
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if indices_rng is not None:
+ rngs["indices"] = indices_rng
+
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ if self.config.add_cross_attention:
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
+ # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
+ # changed by FlaxBigBirdAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ mutable=mutable,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past_key_values = outputs
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past_key_values = outputs
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
+
+ else:
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ )
+
+ return outputs
+
+
+class FlaxBigBirdModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ add_pooling_layer: bool = True
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.embeddings = FlaxBigBirdEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxBigBirdEncoder(
+ self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.pooler = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ hidden_states = self.embeddings(
+ input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
+ )
+ outputs = self.encoder(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ deterministic=deterministic,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+
+ pooled = nn.tanh(self.pooler(hidden_states[:, 0, :])) if self.add_pooling_layer else None
+
+ if not return_dict:
+ # if pooled is None, don't return it
+ if pooled is None:
+ return (hidden_states,) + outputs[1:]
+ return (hidden_states, pooled) + outputs[1:]
+
+ return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ pooler_output=pooled,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.",
+ BIG_BIRD_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModel with Bert->BigBird
+class FlaxBigBirdModel(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdModule
+
+
+append_call_sample_docstring(FlaxBigBirdModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingModule with Bert->BigBird
+class FlaxBigBirdForPreTrainingModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.cls = FlaxBigBirdPreTrainingHeads(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ hidden_states = outputs[0]
+ pooled_output = outputs[1]
+
+ prediction_scores, seq_relationship_score = self.cls(
+ hidden_states, pooled_output, shared_embedding=shared_embedding
+ )
+
+ if not return_dict:
+ return (prediction_scores, seq_relationship_score) + outputs[2:]
+
+ return FlaxBigBirdForPreTrainingOutput(
+ prediction_logits=prediction_scores,
+ seq_relationship_logits=seq_relationship_score,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
+ sentence prediction (classification)` head.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTraining with Bert->BigBird
+class FlaxBigBirdForPreTraining(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForPreTrainingModule
+
+
+FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
+ >>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxBigBirdForPreTraining,
+ BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING,
+)
+append_replace_return_docstrings(
+ FlaxBigBirdForPreTraining, output_type=FlaxBigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLMModule with Bert->BigBird
+class FlaxBigBirdForMaskedLMModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config,
+ add_pooling_layer=False,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.cls(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLM with Bert->BigBird
+class FlaxBigBirdForMaskedLM(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForMaskedLMModule
+
+
+append_call_sample_docstring(FlaxBigBirdForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
+
+
+class FlaxBigBirdClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(self, features, deterministic=True):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, deterministic=deterministic)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x, deterministic=deterministic)
+ x = self.out_proj(x)
+ return x
+
+
+class FlaxBigBirdForSequenceClassificationModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
+ )
+ self.classifier = FlaxBigBirdClassificationHead(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, deterministic=deterministic)
+
+ if not return_dict:
+ return (logits,) + outputs[2:]
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForSequenceClassification with Bert->BigBird
+class FlaxBigBirdForSequenceClassification(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForSequenceClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxBigBirdForSequenceClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxSequenceClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->BigBird
+class FlaxBigBirdForMultipleChoiceModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.classifier = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ num_choices = input_ids.shape[1]
+ input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
+ attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
+ token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
+ position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
+
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.reshape(-1, num_choices)
+
+ if not return_dict:
+ return (reshaped_logits,) + outputs[2:]
+
+ return FlaxMultipleChoiceModelOutput(
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class FlaxBigBirdForMultipleChoice(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForMultipleChoiceModule
+
+ def __init__(
+ self,
+ config: BigBirdConfig,
+ input_shape: Optional[tuple] = None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ if config.attention_type == "block_sparse" and input_shape is None:
+ input_shape = (1, 1, 12 * config.block_size)
+ elif input_shape is None:
+ input_shape = (1, 1)
+ super().__init__(config, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+
+overwrite_call_docstring(
+ FlaxBigBirdForMultipleChoice, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+)
+append_call_sample_docstring(
+ FlaxBigBirdForMultipleChoice,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMultipleChoiceModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->BigBird
+class FlaxBigBirdForTokenClassificationModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config,
+ dtype=self.dtype,
+ add_pooling_layer=False,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(rate=classifier_dropout)
+ self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ logits = self.classifier(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxTokenClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassification with Bert->BigBird
+class FlaxBigBirdForTokenClassification(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForTokenClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxBigBirdForTokenClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxTokenClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxBigBirdForQuestionAnsweringHead(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype)
+ self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(self, encoder_output, deterministic=True):
+ hidden_states = self.dropout(encoder_output, deterministic=deterministic)
+ hidden_states = self.intermediate(hidden_states)
+ hidden_states = self.output(hidden_states, encoder_output)
+ hidden_states = self.qa_outputs(hidden_states)
+ return hidden_states
+
+
+class FlaxBigBirdForQuestionAnsweringModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ add_pooling_layer: bool = False
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.config.num_labels = 2
+ self.bert = FlaxBigBirdModule(
+ self.config,
+ dtype=self.dtype,
+ add_pooling_layer=self.add_pooling_layer,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.qa_classifier = FlaxBigBirdForQuestionAnsweringHead(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ logits_mask=None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ pooled_output = outputs[1] if self.add_pooling_layer else None
+ logits = self.qa_classifier(hidden_states, deterministic=deterministic)
+
+ if logits_mask is not None:
+ # removing question tokens from the competition
+ logits = logits - logits_mask * 1e6
+
+ start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ if not return_dict:
+ return (start_logits, end_logits) + outputs[1:]
+
+ return FlaxBigBirdForQuestionAnsweringModelOutput(
+ start_logits=start_logits,
+ end_logits=end_logits,
+ pooled_output=pooled_output,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForQuestionAnsweringModule
+
+ @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ question_lengths=None,
+ params: dict = None,
+ dropout_rng: Optional[jax.random.PRNGKey] = None,
+ indices_rng: Optional[jax.random.PRNGKey] = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if head_mask is None:
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ if question_lengths is None and input_ids is not None:
+ # assuming input_ids format: context
+ question_lengths = jnp.argmax((input_ids == self.config.sep_token_id).astype("i4"), axis=-1) + 1
+ question_lengths = jnp.expand_dims(question_lengths, axis=1)
+
+ seqlen = input_ids.shape[1]
+
+ logits_mask = None
+ if question_lengths is not None:
+ # setting lengths logits to `-inf`
+ logits_mask = self.prepare_question_mask(question_lengths, seqlen)
+ if token_type_ids is None:
+ token_type_ids = (~logits_mask).astype("i4")
+ logits_mask = jnp.expand_dims(logits_mask, axis=2)
+ logits_mask = logits_mask.at[:, 0].set(False)
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ if indices_rng is not None:
+ rngs["indices"] = indices_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids,
+ jnp.array(position_ids, dtype="i4"),
+ jnp.array(head_mask, dtype="i4"),
+ logits_mask,
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+ @staticmethod
+ def prepare_question_mask(q_lengths, maxlen: int):
+ # q_lengths -> (bz, 1)
+ mask = jnp.arange(0, maxlen)
+ mask = jnp.expand_dims(mask, axis=0) < q_lengths
+ return mask
+
+
+append_call_sample_docstring(
+ FlaxBigBirdForQuestionAnswering,
+ _CHECKPOINT_FOR_DOC,
+ FlaxBigBirdForQuestionAnsweringModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxBigBirdForCausalLMModule(nn.Module):
+ config: BigBirdConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.bert = FlaxBigBirdModule(
+ config=self.config,
+ add_pooling_layer=False,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ token_type_ids: Optional[jnp.ndarray] = None,
+ head_mask: Optional[jnp.ndarray] = None,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.bert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.cls(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxCausalLMOutputWithCrossAttentions(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BigBird Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
+ autoregressive tasks.
+ """,
+ BIG_BIRD_START_DOCSTRING,
+)
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->BigBird
+class FlaxBigBirdForCausalLM(FlaxBigBirdPreTrainedModel):
+ module_class = FlaxBigBirdForCausalLMModule
+
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
+ # initializing the cache
+ batch_size, seq_length = input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyway.
+ # Thus, we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if attention_mask is not None:
+ position_ids = attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "attention_mask": extended_attention_mask,
+ "position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+append_call_sample_docstring(
+ FlaxBigBirdForCausalLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxCausalLMOutputWithCrossAttentions,
+ _CONFIG_FOR_DOC,
+)
+
+
+__all__ = [
+ "FlaxBigBirdForCausalLM",
+ "FlaxBigBirdForMaskedLM",
+ "FlaxBigBirdForMultipleChoice",
+ "FlaxBigBirdForPreTraining",
+ "FlaxBigBirdForQuestionAnswering",
+ "FlaxBigBirdForSequenceClassification",
+ "FlaxBigBirdForTokenClassification",
+ "FlaxBigBirdModel",
+ "FlaxBigBirdPreTrainedModel",
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py
new file mode 100644
index 0000000000000000000000000000000000000000..194cbc68cb56ba9f39f50ea8ce35e6fdd61de82e
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py
@@ -0,0 +1,324 @@
+# coding=utf-8
+# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for BigBird."""
+
+import os
+import re
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+
+class BigBirdTokenizer(PreTrainedTokenizer):
+ """
+ Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The begin of sequence token.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ prefix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ sep_token="[SEP]",
+ mask_token="[MASK]",
+ cls_token="[CLS]",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.vocab_file = vocab_file
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ sep_token=sep_token,
+ mask_token=mask_token,
+ cls_token=cls_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def _decode(
+ self,
+ token_ids: List[int],
+ skip_special_tokens: bool = False,
+ clean_up_tokenization_spaces: bool = None,
+ spaces_between_special_tokens: bool = True,
+ **kwargs,
+ ) -> str:
+ self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
+
+ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
+
+ # To avoid mixing byte-level and unicode for byte-level BPT
+ # we need to build string separately for added tokens and byte-level tokens
+ # cf. https://github.com/huggingface/transformers/issues/1133
+ sub_texts = []
+ current_sub_text = []
+ for token in filtered_tokens:
+ if skip_special_tokens and token in self.all_special_ids:
+ continue
+ if token in self.added_tokens_encoder:
+ if current_sub_text:
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
+ current_sub_text = []
+ sub_texts.append(token)
+ else:
+ current_sub_text.append(token)
+ if current_sub_text:
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
+
+ # Mimic the behavior of the Rust tokenizer:
+ # No space before [MASK] and [SEP]
+ if spaces_between_special_tokens:
+ text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts))
+ else:
+ text = "".join(sub_texts)
+
+ clean_up_tokenization_spaces = (
+ clean_up_tokenization_spaces
+ if clean_up_tokenization_spaces is not None
+ else self.clean_up_tokenization_spaces
+ )
+ if clean_up_tokenization_spaces:
+ clean_text = self.clean_up_tokenization(text)
+ return clean_text
+ else:
+ return text
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Big Bird sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
+ pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
+ sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+
+__all__ = ["BigBirdTokenizer"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..83f2fac07fae72b758f8671458ac0843538eba4b
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py
@@ -0,0 +1,232 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for Big Bird model."""
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_big_bird import BigBirdTokenizer
+else:
+ BigBirdTokenizer = None
+
+logger = logging.get_logger(__name__)
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+class BigBirdTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" BigBird tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
+ tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
+ that is used for the end of sequence. The token used is the `sep_token`.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = BigBirdTokenizer
+ model_input_names = ["input_ids", "attention_mask"]
+ prefix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ sep_token="[SEP]",
+ mask_token="[MASK]",
+ cls_token="[CLS]",
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An BigBird sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return cls + token_ids_0 + sep
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Set to True if the token list is already formatted with special tokens for the model
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ if token_ids_1 is not None:
+ raise ValueError(
+ "You should not supply a second sequence if the provided sequence of "
+ "ids is already formatted with special tokens for the model."
+ )
+ return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
+
+
+__all__ = ["BigBirdTokenizerFast"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..2178cfd03a40593bc9acb97111204aab0423860c
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/bros/__init__.py
@@ -0,0 +1,28 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_bros import *
+ from .modeling_bros import *
+ from .processing_bros import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..377cafa32ec104ef29e225cc334d597c81d1e37b
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0fd1293963b233da99850c67212dc2998102b126
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py
@@ -0,0 +1,28 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_convnextv2 import *
+ from .modeling_convnextv2 import *
+ from .modeling_tf_convnextv2 import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fa1c5feb5aac265f7d703d9a9c349ca8fd036ef5
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2fcf9685dc41261cd54b33f8c7f0963d6e440727
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3991020e7cf63d04a36a33c50b0410a294264f8
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..09ddc7d143aee494ab2b4d6afd84e7eafb9a14a8
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..60b631a340c05115e57a65af00475cb6bb63549d
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py
@@ -0,0 +1,118 @@
+# coding=utf-8
+# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""ConvNeXTV2 model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
+
+
+logger = logging.get_logger(__name__)
+
+
+class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
+ ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2
+ [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ patch_size (`int`, *optional*, defaults to 4):
+ Patch size to use in the patch embedding layer.
+ num_stages (`int`, *optional*, defaults to 4):
+ The number of stages in the model.
+ hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`):
+ Dimensionality (hidden size) at each stage.
+ depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`):
+ Depth (number of blocks) for each stage.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
+ `"selu"` and `"gelu_new"` are supported.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
+ The drop rate for stochastic depth.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ out_features (`List[str]`, *optional*):
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
+ same order as defined in the `stage_names` attribute.
+ out_indices (`List[int]`, *optional*):
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
+ If unset and `out_features` is unset, will default to the last stage. Must be in the
+ same order as defined in the `stage_names` attribute.
+
+ Example:
+ ```python
+ >>> from transformers import ConvNeXTV2Config, ConvNextV2Model
+
+ >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration
+ >>> configuration = ConvNeXTV2Config()
+
+ >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration
+ >>> model = ConvNextV2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "convnextv2"
+
+ def __init__(
+ self,
+ num_channels=3,
+ patch_size=4,
+ num_stages=4,
+ hidden_sizes=None,
+ depths=None,
+ hidden_act="gelu",
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ drop_path_rate=0.0,
+ image_size=224,
+ out_features=None,
+ out_indices=None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.num_channels = num_channels
+ self.patch_size = patch_size
+ self.num_stages = num_stages
+ self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
+ self.depths = [3, 3, 9, 3] if depths is None else depths
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.drop_path_rate = drop_path_rate
+ self.image_size = image_size
+ self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
+ )
+
+
+__all__ = ["ConvNextV2Config"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0490eead21c88c792676cd60d6302f22fa3ebc0
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py
@@ -0,0 +1,574 @@
+# coding=utf-8
+# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch ConvNextV2 model."""
+
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BackboneOutput,
+ BaseModelOutputWithNoAttention,
+ BaseModelOutputWithPoolingAndNoAttention,
+ ImageClassifierOutputWithNoAttention,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ...utils.backbone_utils import BackboneMixin
+from .configuration_convnextv2 import ConvNextV2Config
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "ConvNextV2Config"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
+_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
+ """
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
+ argument.
+ """
+ if drop_prob == 0.0 or not training:
+ return input
+ keep_prob = 1 - drop_prob
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
+ random_tensor.floor_() # binarize
+ output = input.div(keep_prob) * random_tensor
+ return output
+
+
+# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2
+class ConvNextV2DropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
+ super().__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ return drop_path(hidden_states, self.drop_prob, self.training)
+
+ def extra_repr(self) -> str:
+ return "p={}".format(self.drop_prob)
+
+
+class ConvNextV2GRN(nn.Module):
+ """GRN (Global Response Normalization) layer"""
+
+ def __init__(self, dim: int):
+ super().__init__()
+ self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
+ self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
+ # Compute and normalize global spatial feature maps
+ global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True)
+ norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6)
+ hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
+
+ return hidden_states
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2
+class ConvNextV2LayerNorm(nn.Module):
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
+ width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.data_format = data_format
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError(f"Unsupported data format: {self.data_format}")
+ self.normalized_shape = (normalized_shape,)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ if self.data_format == "channels_last":
+ x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
+ elif self.data_format == "channels_first":
+ input_dtype = x.dtype
+ x = x.float()
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = x.to(dtype=input_dtype)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2
+class ConvNextV2Embeddings(nn.Module):
+ """This class is comparable to (and inspired by) the SwinEmbeddings class
+ found in src/transformers/models/swin/modeling_swin.py.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.patch_embeddings = nn.Conv2d(
+ config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
+ )
+ self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
+ self.num_channels = config.num_channels
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ num_channels = pixel_values.shape[1]
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ embeddings = self.patch_embeddings(pixel_values)
+ embeddings = self.layernorm(embeddings)
+ return embeddings
+
+
+class ConvNextV2Layer(nn.Module):
+ """This corresponds to the `Block` class in the original implementation.
+
+ There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
+ H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
+
+ The authors used (2) as they find it slightly faster in PyTorch.
+
+ Args:
+ config ([`ConvNextV2Config`]): Model configuration class.
+ dim (`int`): Number of input channels.
+ drop_path (`float`): Stochastic depth rate. Default: 0.0.
+ """
+
+ def __init__(self, config, dim, drop_path=0):
+ super().__init__()
+ # depthwise conv
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
+ self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6)
+ # pointwise/1x1 convs, implemented with linear layers
+ self.pwconv1 = nn.Linear(dim, 4 * dim)
+ self.act = ACT2FN[config.hidden_act]
+ self.grn = ConvNextV2GRN(4 * dim)
+ self.pwconv2 = nn.Linear(4 * dim, dim)
+ self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
+ input = hidden_states
+ x = self.dwconv(hidden_states)
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
+ x = x.permute(0, 2, 3, 1)
+ x = self.layernorm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.grn(x)
+ x = self.pwconv2(x)
+ # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
+ x = x.permute(0, 3, 1, 2)
+
+ x = input + self.drop_path(x)
+ return x
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2
+class ConvNextV2Stage(nn.Module):
+ """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
+
+ Args:
+ config ([`ConvNextV2Config`]): Model configuration class.
+ in_channels (`int`): Number of input channels.
+ out_channels (`int`): Number of output channels.
+ depth (`int`): Number of residual blocks.
+ drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
+ """
+
+ def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
+ super().__init__()
+
+ if in_channels != out_channels or stride > 1:
+ self.downsampling_layer = nn.Sequential(
+ ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
+ nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
+ )
+ else:
+ self.downsampling_layer = nn.Identity()
+ drop_path_rates = drop_path_rates or [0.0] * depth
+ self.layers = nn.Sequential(
+ *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
+ )
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
+ hidden_states = self.downsampling_layer(hidden_states)
+ hidden_states = self.layers(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2
+class ConvNextV2Encoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.stages = nn.ModuleList()
+ drop_path_rates = [
+ x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
+ ]
+ prev_chs = config.hidden_sizes[0]
+ for i in range(config.num_stages):
+ out_chs = config.hidden_sizes[i]
+ stage = ConvNextV2Stage(
+ config,
+ in_channels=prev_chs,
+ out_channels=out_chs,
+ stride=2 if i > 0 else 1,
+ depth=config.depths[i],
+ drop_path_rates=drop_path_rates[i],
+ )
+ self.stages.append(stage)
+ prev_chs = out_chs
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
+ all_hidden_states = () if output_hidden_states else None
+
+ for i, layer_module in enumerate(self.stages):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ hidden_states = layer_module(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
+
+ return BaseModelOutputWithNoAttention(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ )
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2
+class ConvNextV2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ConvNextV2Config
+ base_model_prefix = "convnextv2"
+ main_input_name = "pixel_values"
+ _no_split_modules = ["ConvNextV2Layer"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+CONVNEXTV2_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CONVNEXTV2_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See
+ [`ConvNextImageProcessor.__call__`] for details.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ConvNextV2 model outputting raw features without any specific head on top.",
+ CONVNEXTV2_START_DOCSTRING,
+)
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2
+class ConvNextV2Model(ConvNextV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ConvNextV2Embeddings(config)
+ self.encoder = ConvNextV2Encoder(config)
+
+ # final layernorm layer
+ self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndNoAttention,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ embedding_output = self.embeddings(pixel_values)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+
+ # global average pooling, (N, C, H, W) -> (N, C)
+ pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndNoAttention(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ )
+
+
+@add_start_docstrings(
+ """
+ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
+ ImageNet.
+ """,
+ CONVNEXTV2_START_DOCSTRING,
+)
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2
+class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.convnextv2 = ConvNextV2Model(config)
+
+ # Classifier head
+ self.classifier = (
+ nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutputWithNoAttention,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
+
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
+
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutputWithNoAttention(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ )
+
+
+@add_start_docstrings(
+ """
+ ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer.
+ """,
+ CONVNEXTV2_START_DOCSTRING,
+)
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224
+class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin):
+ def __init__(self, config):
+ super().__init__(config)
+ super()._init_backbone(config)
+
+ self.embeddings = ConvNextV2Embeddings(config)
+ self.encoder = ConvNextV2Encoder(config)
+ self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
+
+ # Add layer norms to hidden states of out_features
+ hidden_states_norms = {}
+ for stage, num_channels in zip(self._out_features, self.channels):
+ hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first")
+ self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
+
+ # initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> BackboneOutput:
+ """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, AutoBackbone
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224")
+ >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224")
+
+ >>> inputs = processor(image, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ embedding_output = self.embeddings(pixel_values)
+
+ outputs = self.encoder(
+ embedding_output,
+ output_hidden_states=True,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs.hidden_states if return_dict else outputs[1]
+
+ feature_maps = ()
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
+ if stage in self.out_features:
+ hidden_state = self.hidden_states_norms[stage](hidden_state)
+ feature_maps += (hidden_state,)
+
+ if not return_dict:
+ output = (feature_maps,)
+ if output_hidden_states:
+ output += (hidden_states,)
+ return output
+
+ return BackboneOutput(
+ feature_maps=feature_maps,
+ hidden_states=hidden_states if output_hidden_states else None,
+ attentions=None,
+ )
+
+
+__all__ = ["ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..c27ba2da453039c5afe9f9ebc78cbf6bbd73605a
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py
@@ -0,0 +1,683 @@
+# coding=utf-8
+# Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""TF 2.0 ConvNextV2 model."""
+
+from __future__ import annotations
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutputWithNoAttention,
+ TFBaseModelOutputWithPooling,
+ TFBaseModelOutputWithPoolingAndNoAttention,
+ TFImageClassifierOutputWithNoAttention,
+)
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ TFSequenceClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import shape_list
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_convnextv2 import ConvNextV2Config
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "ConvNextV2Config"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
+_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
+
+
+# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2
+class TFConvNextV2DropPath(keras.layers.Layer):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+ References:
+ (1) github.com:rwightman/pytorch-image-models
+ """
+
+ def __init__(self, drop_path: float, **kwargs):
+ super().__init__(**kwargs)
+ self.drop_path = drop_path
+
+ def call(self, x: tf.Tensor, training=None):
+ if training:
+ keep_prob = 1 - self.drop_path
+ shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
+ random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
+ random_tensor = tf.floor(random_tensor)
+ return (x / keep_prob) * random_tensor
+ return x
+
+
+class TFConvNextV2GRN(keras.layers.Layer):
+ """GRN (Global Response Normalization) layer"""
+
+ def __init__(self, config: ConvNextV2Config, dim: int, **kwargs):
+ super().__init__(**kwargs)
+ self.dim = dim
+
+ def build(self, input_shape: tf.TensorShape = None):
+ # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
+ self.weight = self.add_weight(
+ name="weight",
+ shape=(1, 1, 1, self.dim),
+ initializer=keras.initializers.Zeros(),
+ )
+ self.bias = self.add_weight(
+ name="bias",
+ shape=(1, 1, 1, self.dim),
+ initializer=keras.initializers.Zeros(),
+ )
+ return super().build(input_shape)
+
+ def call(self, hidden_states: tf.Tensor):
+ global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True)
+ norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6)
+ hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
+ return hidden_states
+
+
+# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2
+class TFConvNextV2Embeddings(keras.layers.Layer):
+ """This class is comparable to (and inspired by) the SwinEmbeddings class
+ found in src/transformers/models/swin/modeling_swin.py.
+ """
+
+ def __init__(self, config: ConvNextV2Config, **kwargs):
+ super().__init__(**kwargs)
+ self.patch_embeddings = keras.layers.Conv2D(
+ filters=config.hidden_sizes[0],
+ kernel_size=config.patch_size,
+ strides=config.patch_size,
+ name="patch_embeddings",
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ )
+ self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
+ self.num_channels = config.num_channels
+ self.config = config
+
+ def call(self, pixel_values):
+ if isinstance(pixel_values, dict):
+ pixel_values = pixel_values["pixel_values"]
+
+ tf.debugging.assert_equal(
+ shape_list(pixel_values)[1],
+ self.num_channels,
+ message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
+ )
+
+ # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
+ # So change the input format from `NCHW` to `NHWC`.
+ # shape = (batch_size, in_height, in_width, in_channels)
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
+
+ embeddings = self.patch_embeddings(pixel_values)
+ embeddings = self.layernorm(embeddings)
+ return embeddings
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "patch_embeddings", None) is not None:
+ with tf.name_scope(self.patch_embeddings.name):
+ self.patch_embeddings.build([None, None, None, self.config.num_channels])
+ if getattr(self, "layernorm", None) is not None:
+ with tf.name_scope(self.layernorm.name):
+ self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
+
+
+class TFConvNextV2Layer(keras.layers.Layer):
+ """This corresponds to the `Block` class in the original implementation.
+
+ There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
+ H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
+
+ The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
+ NHWC ordering, we can just apply the operations straight-away without the permutation.
+
+ Args:
+ config (`ConvNextV2Config`):
+ Model configuration class.
+ dim (`int`):
+ Number of input channels.
+ drop_path (`float`, *optional*, defaults to 0.0):
+ Stochastic depth rate.
+ """
+
+ def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs):
+ super().__init__(**kwargs)
+ self.dim = dim
+ self.config = config
+ self.dwconv = keras.layers.Conv2D(
+ filters=dim,
+ kernel_size=7,
+ padding="same",
+ groups=dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ name="dwconv",
+ ) # depthwise conv
+ self.layernorm = keras.layers.LayerNormalization(
+ epsilon=1e-6,
+ name="layernorm",
+ )
+ self.pwconv1 = keras.layers.Dense(
+ units=4 * dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ name="pwconv1",
+ ) # pointwise/1x1 convs, implemented with linear layers
+ self.act = get_tf_activation(config.hidden_act)
+ self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn")
+ self.pwconv2 = keras.layers.Dense(
+ units=dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ name="pwconv2",
+ )
+ # Using `layers.Activation` instead of `tf.identity` to better control `training`
+ # behaviour.
+ self.drop_path = (
+ TFConvNextV2DropPath(drop_path, name="drop_path")
+ if drop_path > 0.0
+ else keras.layers.Activation("linear", name="drop_path")
+ )
+
+ def call(self, hidden_states, training=False):
+ input = hidden_states
+ x = self.dwconv(hidden_states)
+ x = self.layernorm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.grn(x)
+ x = self.pwconv2(x)
+ x = self.drop_path(x, training=training)
+ x = input + x
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dwconv", None) is not None:
+ with tf.name_scope(self.dwconv.name):
+ self.dwconv.build([None, None, None, self.dim])
+ if getattr(self, "layernorm", None) is not None:
+ with tf.name_scope(self.layernorm.name):
+ self.layernorm.build([None, None, None, self.dim])
+ if getattr(self, "pwconv1", None) is not None:
+ with tf.name_scope(self.pwconv1.name):
+ self.pwconv1.build([None, None, self.dim])
+ if getattr(self, "grn", None) is not None:
+ with tf.name_scope(self.grn.name):
+ self.grn.build(None)
+ if getattr(self, "pwconv2", None) is not None:
+ with tf.name_scope(self.pwconv2.name):
+ self.pwconv2.build([None, None, 4 * self.dim])
+ if getattr(self, "drop_path", None) is not None:
+ with tf.name_scope(self.drop_path.name):
+ self.drop_path.build(None)
+
+
+# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2
+class TFConvNextV2Stage(keras.layers.Layer):
+ """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
+
+ Args:
+ config (`ConvNextV2V2Config`):
+ Model configuration class.
+ in_channels (`int`):
+ Number of input channels.
+ out_channels (`int`):
+ Number of output channels.
+ depth (`int`):
+ Number of residual blocks.
+ drop_path_rates(`List[float]`):
+ Stochastic depth rates for each layer.
+ """
+
+ def __init__(
+ self,
+ config: ConvNextV2Config,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int = 2,
+ stride: int = 2,
+ depth: int = 2,
+ drop_path_rates: Optional[List[float]] = None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ if in_channels != out_channels or stride > 1:
+ self.downsampling_layer = [
+ keras.layers.LayerNormalization(
+ epsilon=1e-6,
+ name="downsampling_layer.0",
+ ),
+ # Inputs to this layer will follow NHWC format since we
+ # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings`
+ # layer. All the outputs throughout the model will be in NHWC
+ # from this point on until the output where we again change to
+ # NCHW.
+ keras.layers.Conv2D(
+ filters=out_channels,
+ kernel_size=kernel_size,
+ strides=stride,
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ name="downsampling_layer.1",
+ ),
+ ]
+ else:
+ self.downsampling_layer = [tf.identity]
+
+ drop_path_rates = drop_path_rates or [0.0] * depth
+ self.layers = [
+ TFConvNextV2Layer(
+ config,
+ dim=out_channels,
+ drop_path=drop_path_rates[j],
+ name=f"layers.{j}",
+ )
+ for j in range(depth)
+ ]
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.stride = stride
+
+ def call(self, hidden_states):
+ for layer in self.downsampling_layer:
+ hidden_states = layer(hidden_states)
+ for layer in self.layers:
+ hidden_states = layer(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+ if self.in_channels != self.out_channels or self.stride > 1:
+ with tf.name_scope(self.downsampling_layer[0].name):
+ self.downsampling_layer[0].build([None, None, None, self.in_channels])
+ with tf.name_scope(self.downsampling_layer[1].name):
+ self.downsampling_layer[1].build([None, None, None, self.in_channels])
+
+
+class TFConvNextV2Encoder(keras.layers.Layer):
+ def __init__(self, config: ConvNextV2Config, **kwargs):
+ super().__init__(**kwargs)
+ self.stages = []
+ drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
+ drop_path_rates = tf.split(drop_path_rates, config.depths)
+ drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
+ prev_chs = config.hidden_sizes[0]
+ for i in range(config.num_stages):
+ out_chs = config.hidden_sizes[i]
+ stage = TFConvNextV2Stage(
+ config,
+ in_channels=prev_chs,
+ out_channels=out_chs,
+ stride=2 if i > 0 else 1,
+ depth=config.depths[i],
+ drop_path_rates=drop_path_rates[i],
+ name=f"stages.{i}",
+ )
+ self.stages.append(stage)
+ prev_chs = out_chs
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]:
+ all_hidden_states = () if output_hidden_states else None
+
+ for i, layer_module in enumerate(self.stages):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ hidden_states = layer_module(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
+
+ return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
+
+ def build(self, input_shape=None):
+ for stage in self.stages:
+ with tf.name_scope(stage.name):
+ stage.build(None)
+
+
+@keras_serializable
+class TFConvNextV2MainLayer(keras.layers.Layer):
+ config_class = ConvNextV2Config
+
+ def __init__(self, config: ConvNextV2Config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embeddings = TFConvNextV2Embeddings(config, name="embeddings")
+ self.encoder = TFConvNextV2Encoder(config, name="encoder")
+ self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
+ # We are setting the `data_format` like so because from here on we will revert to the
+ # NCHW output format
+ self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last")
+
+ @unpack_inputs
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ embedding_output = self.embeddings(pixel_values, training=training)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+
+ # Change to NCHW output format have uniformity in the modules
+ pooled_output = self.pooler(last_hidden_state)
+ last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
+ pooled_output = self.layernorm(pooled_output)
+
+ # Change the other hidden state outputs to NCHW as well
+ if output_hidden_states:
+ hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
+
+ if not return_dict:
+ hidden_states = hidden_states if output_hidden_states else ()
+ return (last_hidden_state, pooled_output) + hidden_states
+
+ return TFBaseModelOutputWithPoolingAndNoAttention(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "layernorm", None) is not None:
+ with tf.name_scope(self.layernorm.name):
+ self.layernorm.build([None, self.config.hidden_sizes[-1]])
+
+
+class TFConvNextV2PreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ConvNextV2Config
+ base_model_prefix = "convnextv2"
+ main_input_name = "pixel_values"
+
+
+CONVNEXTV2_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CONVNEXTV2_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`ConvNextImageProcessor.__call__`] for details.
+
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to `True`.
+"""
+
+
+@add_start_docstrings(
+ "The bare ConvNextV2 model outputting raw features without any specific head on top.",
+ CONVNEXTV2_START_DOCSTRING,
+)
+class TFConvNextV2Model(TFConvNextV2PreTrainedModel):
+ def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPoolingAndNoAttention,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ outputs = self.convnextv2(
+ pixel_values=pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return outputs[:]
+
+ return TFBaseModelOutputWithPoolingAndNoAttention(
+ last_hidden_state=outputs.last_hidden_state,
+ pooler_output=outputs.pooler_output,
+ hidden_states=outputs.hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convnextv2", None) is not None:
+ with tf.name_scope(self.convnextv2.name):
+ self.convnextv2.build(None)
+
+
+@add_start_docstrings(
+ """
+ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
+ ImageNet.
+ """,
+ CONVNEXTV2_START_DOCSTRING,
+)
+class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
+
+ # Classifier head
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ bias_initializer=keras.initializers.Zeros(),
+ name="classifier",
+ )
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=TFImageClassifierOutputWithNoAttention,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ outputs = self.convnextv2(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
+
+ logits = self.classifier(pooled_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFImageClassifierOutputWithNoAttention(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convnextv2", None) is not None:
+ with tf.name_scope(self.convnextv2.name):
+ self.convnextv2.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_sizes[-1]])
+
+
+__all__ = ["TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8555f58d1866451c38abb5559ef5bef9545f0b0
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/__init__.py
@@ -0,0 +1,29 @@
+# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_emu3 import *
+ from .image_processing_emu3 import *
+ from .modeling_emu3 import *
+ from .processing_emu3 import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c25f452673c8b3a9035b08e3a67c56cba7d0b6d6
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/configuration_emu3.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..edeaaf6780859bb8897c08ee7de78708719a86d1
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/image_processing_emu3.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1043205e54d33ec7416fec9f94bc362da1364a2c
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/modular_emu3.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7ff5821d229dc8d6c86f080965de854e67f5d549
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/emu3/__pycache__/processing_emu3.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b5abedf4016d5959c8eeea9a3d955470c8b1f13
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/configuration_emu3.py
@@ -0,0 +1,327 @@
+# coding=utf-8
+# Copyright 2024 HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Dict, List, Optional, Union
+
+from ...configuration_utils import PretrainedConfig
+from ...modeling_rope_utils import rope_config_validation
+
+
+class Emu3VQVAEConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a configuration to the VQ model presented in Emu3 paper.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+ Args:
+ codebook_size (`int`, *optional*, defaults to 32768):
+ Codebook size of the VQ model.
+ embed_dim (`int`, *optional*, defaults to 4):
+ Dimension of the quantized vector in codebook.
+ latent_channels (`int`, *optional*, defaults to 4):
+ Dimension of the output channel of encoder and the input channel of decoder
+ double_latent (`bool`, *optional*, defaults to `False`):
+ Whether double the output dim of the encoder.
+ in_channels (`int`, *optional*, defaults to 3):
+ Input channel of encoder.
+ out_channels (`int`, *optional*, defaults to 3):
+ Output channel of decoder.
+ temporal_downsample_factor (`int`, *optional*, defaults to 4):
+ Temporal downsample factor.
+ base_channels (`int`, *optional*, defaults to 256):
+ Basic channel number of the intermediate blocks.
+ channel_multiplier (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
+ Channel scaling factor of the intermediate blocks.
+ num_res_blocks (`int`, *optional*, defaults to 2):
+ Residual block number in each stage.
+ attn_resolutions (`List[int]`, *optional*, defaults to `[3]`):
+ Stage indices to apply attention.
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimension of the hidden representations in the attention layer.
+ num_attention_heads (`int`, *optional*, defaults to 1):
+ Number of attention heads for each attention layer.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+
+ ```python
+ >>> from transformers import Emu3VQVAE, Emu3VQVAEConfig
+
+ >>> # Initializing a video VQ model of Emu3 configuration
+ >>> configuration = Emu3VQVAEConfig()
+
+ >>> # Initializing a model from the Emu3 VQ model style configuration
+ >>> model = Emu3VQVAE(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "emu3_vqgan"
+ base_config_key = "vq_config"
+
+ def __init__(
+ self,
+ codebook_size: int = 32768,
+ embed_dim: int = 4,
+ latent_channels: int = 4,
+ double_latent: bool = False,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ temporal_downsample_factor: int = 4,
+ base_channels: int = 256,
+ channel_multiplier: List[int] = [1, 2, 2, 4],
+ num_res_blocks: int = 2,
+ attn_resolutions: List[int] = [3],
+ hidden_size: int = 1024,
+ num_attention_heads: int = 1,
+ attention_dropout: float = 0.0,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.codebook_size = codebook_size
+ self.embed_dim = embed_dim
+ self.latent_channels = latent_channels
+ self.double_latent = double_latent
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.temporal_downsample_factor = temporal_downsample_factor
+ self.base_channels = base_channels
+ self.channel_multiplier = channel_multiplier
+ self.num_res_blocks = num_res_blocks
+ self.attn_resolutions = attn_resolutions
+ self.hidden_size = hidden_size
+ self.num_attention_heads = num_attention_heads
+ self.attention_dropout = attention_dropout
+
+
+class Emu3TextConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a
+ emu3 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the
+ [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 184622):
+ Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`Emu3Model`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 14336):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ num_key_value_heads (`int`, *optional*, defaults to 8):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 9216):
+ The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens,
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*, defaults to 151643):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 151849):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 151850):
+ End of stream token id.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to tie weight embeddings
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
+ accordingly.
+ Expected contents:
+ `rope_type` (`str`):
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
+ 'llama3'], with 'default' being the original RoPE implementation.
+ `factor` (`float`, *optional*):
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
+ original maximum pre-trained length.
+ `original_max_position_embeddings` (`int`, *optional*):
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
+ pretraining.
+ `attention_factor` (`float`, *optional*):
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
+ `factor` field to infer the suggested value.
+ `beta_fast` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
+ ramp function. If unspecified, it defaults to 32.
+ `beta_slow` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
+ ramp function. If unspecified, it defaults to 1.
+ `short_factor` (`List[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `long_factor` (`List[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `low_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
+ `high_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
+ mlp_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
+ attention_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+
+
+ ```python
+ >>> from transformers import Emu3Model, Emu3Config
+
+ >>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration
+ >>> configuration = Emu3Config()
+
+ >>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration
+ >>> model = Emu3Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "emu3_text_model"
+ base_config_key = "text_config"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size: int = 184622,
+ hidden_size: int = 4096,
+ intermediate_size: int = 14336,
+ num_hidden_layers: int = 32,
+ num_attention_heads: int = 32,
+ num_key_value_heads: Optional[int] = 8,
+ hidden_act: str = "silu",
+ max_position_embeddings: int = 9216,
+ rms_norm_eps: float = 1e-5,
+ use_cache: bool = True,
+ pad_token_id: int = 151643,
+ bos_token_id: int = 151849,
+ eos_token_id: int = 151850,
+ tie_word_embeddings: bool = False,
+ rope_theta: float = 1000000.0,
+ rope_scaling: Optional = None,
+ mlp_bias=False,
+ attention_bias=False,
+ attention_dropout: float = 0.1,
+ initializer_range: float = 0.02,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self.mlp_bias = mlp_bias
+ self.attention_bias = attention_bias
+ self.initializer_range = initializer_range
+ rope_config_validation(self)
+
+ self.attention_dropout = attention_dropout
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+
+class Emu3Config(PretrainedConfig):
+ """
+ This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a
+ emu3 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the
+ [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*):
+ Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model.
+ text_config (`Union[Dict, Emu3TextConfig]``, *optional*):
+ Emu3TextConfig instance containing the configuration for the language model.
+ vocabulary_map (`dict`, *optional*):
+ A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs.
+ """
+
+ model_type = "emu3"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ sub_configs = {"text_config": Emu3TextConfig, "vq_config": Emu3VQVAEConfig}
+
+ def __init__(
+ self,
+ vq_config: Union[Dict, Emu3VQVAEConfig] = None,
+ text_config: Union[Dict, Emu3TextConfig] = None,
+ vocabulary_map: Dict[int, int] = None,
+ **kwargs,
+ ):
+ if vq_config is None:
+ vq_config = Emu3VQVAEConfig()
+ elif isinstance(vq_config, dict):
+ vq_config = Emu3VQVAEConfig(**vq_config)
+
+ if text_config is None:
+ text_config = Emu3TextConfig()
+ elif isinstance(text_config, dict):
+ text_config = Emu3TextConfig(**text_config)
+
+ self.vq_config = vq_config
+ self.text_config = text_config
+ self.vocabulary_map = vocabulary_map
+
+ super().__init__(**kwargs)
+
+
+__all__ = ["Emu3Config", "Emu3TextConfig", "Emu3VQVAEConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..f28bc501ba169c640251fc29991e2e523e98c574
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/image_processing_emu3.py
@@ -0,0 +1,552 @@
+# coding=utf-8
+# Copyright 2024 HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from typing import Dict, Iterable, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature
+from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
+from ...image_utils import (
+ OPENAI_CLIP_MEAN,
+ OPENAI_CLIP_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ VideoInput,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ is_valid_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+if is_vision_available():
+ from PIL import Image
+
+logger = logging.get_logger(__name__)
+
+
+def make_batched_images(images) -> List[List[ImageInput]]:
+ """
+ Accepts images in list or nested list format, and makes a list of images for preprocessing.
+
+ Args:
+ images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
+ The input image.
+
+ Returns:
+ list: A list of images.
+ """
+ if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
+ return [img for img_list in images for img in img_list]
+
+ elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
+ return images
+
+ elif is_valid_image(images):
+ return [images]
+
+ raise ValueError(f"Could not make batched images from {images}")
+
+
+def smart_resize(
+ height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
+):
+ """Rescales the image so that the following conditions are met:
+
+ 1. Both dimensions (height and width) are divisible by 'factor'.
+
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
+
+ 3. The aspect ratio of the image is maintained as closely as possible.
+
+ """
+ if height < factor or width < factor:
+ raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
+ elif max(height, width) / min(height, width) > 200:
+ raise ValueError(
+ f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
+ )
+ h_bar = round(height / factor) * factor
+ w_bar = round(width / factor) * factor
+ if h_bar * w_bar > max_pixels:
+ beta = math.sqrt((height * width) / max_pixels)
+ h_bar = math.floor(height / beta / factor) * factor
+ w_bar = math.floor(width / beta / factor) * factor
+ elif h_bar * w_bar < min_pixels:
+ beta = math.sqrt(min_pixels / (height * width))
+ h_bar = math.ceil(height * beta / factor) * factor
+ w_bar = math.ceil(width * beta / factor) * factor
+ return h_bar, w_bar
+
+
+class Emu3ImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Emu3 image processor that dynamically resizes images based on the original images.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
+ Resampling filter to use when resizing the image.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
+ Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
+ Whether to convert the image to RGB.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
+ number of patches in the batch. Padding will be applied to the bottom and right with zeros.
+ min_pixels (`int`, *optional*, defaults to `512 * 512`):
+ The min pixels of the image to resize the image.
+ max_pixels (`int`, *optional*, defaults to `1024 * 1024`):
+ The max pixels of the image to resize the image.
+ spatial_factor (`int`, *optional*, defaults to 8):
+ The spatial downsample factor the image will be downsampled in feature extracting phase
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = True,
+ do_pad: bool = True,
+ min_pixels: int = 512 * 512,
+ max_pixels: int = 1024 * 1024,
+ spatial_factor: int = 8,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ self.do_resize = do_resize
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
+ self.min_pixels = min_pixels
+ self.max_pixels = max_pixels
+ self.spatial_factor = spatial_factor
+ self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
+ self.do_convert_rgb = do_convert_rgb
+
+ def _preprocess(
+ self,
+ images: Union[ImageInput, VideoInput],
+ do_resize: bool = None,
+ resample: PILImageResampling = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
+ vision_info (`List[Dict]`, *optional*):
+ Optional list of dictionaries containing additional information about vision inputs.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Scale factor to use if rescaling the image.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ images = make_list_of_images(images)
+
+ if do_convert_rgb:
+ images = [convert_to_rgb(image) for image in images]
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ height, width = get_image_size(images[0], channel_dim=input_data_format)
+ resized_height, resized_width = height, width
+ processed_images = []
+ for image in images:
+ if do_resize:
+ resized_height, resized_width = smart_resize(
+ height,
+ width,
+ factor=self.spatial_factor,
+ min_pixels=self.min_pixels,
+ max_pixels=self.max_pixels,
+ )
+ image = resize(
+ image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
+ )
+
+ if do_rescale:
+ image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
+
+ if do_normalize:
+ image = self.normalize(
+ image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
+ )
+
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ processed_images.append(image)
+
+ images = np.array(processed_images)
+ return images
+
+ def _pad_for_batching(
+ self,
+ pixel_values: List[np.ndarray],
+ image_sizes: List[List[int]],
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ """
+ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
+
+ Args:
+ pixel_values (`List[np.ndarray]`):
+ An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
+ image_sizes (`List[List[int]]`):
+ A list of sizes for each image in `pixel_values` in (height, width) format.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ If unset, will use same as the input image.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ If unset, will use the inferred format of the input image.
+
+ Returns:
+ List[`np.ndarray`]: The padded images.
+ """
+
+ max_shape = (
+ max([size[0] for size in image_sizes]),
+ max([size[1] for size in image_sizes]),
+ )
+ pixel_values = [
+ pad(
+ image,
+ padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])),
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for image, size in zip(pixel_values, image_sizes)
+ ]
+ return pixel_values
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = None,
+ do_pad: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ """
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio.
+ resample (`int`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
+ has an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
+ `True`.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
+ number of patches in the batch. Padding will be applied to the bottom and right with zeros.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ resample = resample if resample is not None else self.resample
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
+ do_pad = do_pad if do_pad is not None else self.do_pad
+
+ if images is not None:
+ images = make_batched_images(images)
+
+ if images is not None and not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ validate_preprocess_arguments(
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ pixel_values = []
+ for image in images:
+ image = self._preprocess(
+ image,
+ do_resize=do_resize,
+ resample=resample,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ data_format=data_format,
+ do_convert_rgb=do_convert_rgb,
+ input_data_format=input_data_format,
+ )
+ pixel_values.extend(image)
+
+ image_sizes = [image.shape[-2:] for image in pixel_values]
+ if do_pad:
+ pixel_values = self._pad_for_batching(pixel_values, image_sizes)
+ pixel_values = np.array(pixel_values)
+
+ return BatchFeature(
+ data={"pixel_values": pixel_values, "image_sizes": image_sizes}, tensor_type=return_tensors
+ )
+
+ def postprocess(
+ self,
+ images: ImageInput,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Union[str, TensorType] = "PIL.Image.Image",
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ """
+ Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess.
+ The parameters should be same as in preprocess.
+ Args:
+ images (`ImageInput`):
+ Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ images = make_list_of_images(images)
+ if isinstance(images[0], Image.Image):
+ return images if len(images) > 1 else images[0]
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ pixel_values = []
+ for image in images:
+ image = to_numpy_array(image)
+ if do_normalize:
+ image = self.unnormalize(
+ image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format
+ )
+
+ if do_rescale:
+ image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
+ image = image.clip(0, 255).astype(np.uint8)
+
+ if do_normalize and do_rescale and return_tensors == "PIL.Image.Image":
+ image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format)
+ pixel_values.append(Image.fromarray(image))
+ else:
+ pixel_values.extend(image)
+
+ data = {"pixel_values": pixel_values}
+ return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
+
+ def unnormalize(
+ self,
+ image: np.array,
+ image_mean: Union[float, Iterable[float]],
+ image_std: Union[float, Iterable[float]],
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.array:
+ """
+ Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`.
+ image = (image * image_std) + image_mean
+ Args:
+ image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`):
+ Batch of pixel values to postprocess.
+ image_mean (`float` or `Iterable[float]`):
+ The mean to use for unnormalization.
+ image_std (`float` or `Iterable[float]`):
+ The standard deviation to use for unnormalization.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ num_channels = 3
+
+ if isinstance(image_mean, Iterable):
+ if len(image_mean) != num_channels:
+ raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}")
+ else:
+ image_mean = [image_mean] * num_channels
+
+ if isinstance(image_std, Iterable):
+ if len(image_std) != num_channels:
+ raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}")
+ else:
+ image_std = [image_std] * num_channels
+
+ rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std))
+ rev_image_std = tuple(1 / std for std in image_std)
+ image = self.normalize(
+ image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format
+ )
+ return image
+
+
+__all__ = ["Emu3ImageProcessor"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ee883aa406d648369eb881da1889d03b2691bcd
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/modeling_emu3.py
@@ -0,0 +1,1949 @@
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# This file was automatically generated from src/transformers/models/emu3/modular_emu3.py.
+# Do NOT edit this file manually as any edits will be overwritten by the generation of
+# the file from the modular. If any change should be done, please apply the change to the
+# modular_emu3.py file directly. One of our CI enforces this.
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# coding=utf-8
+# Copyright 2024 HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from functools import cached_property
+from typing import Callable, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ...activations import ACT2FN
+from ...cache_utils import Cache, DynamicCache, StaticCache
+from ...generation import GenerationMixin
+from ...modeling_attn_mask_utils import AttentionMaskConverter
+from ...modeling_flash_attention_utils import FlashAttentionKwargs
+from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
+from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
+from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
+from ...processing_utils import Unpack
+from ...utils import (
+ LossKwargs,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+_CONFIG_FOR_DOC = "Emu3Config"
+
+
+class Emu3RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Emu3RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+ def extra_repr(self):
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
+
+
+class Emu3MLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+ return down_proj
+
+
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+def eager_attention_forward(
+ module: nn.Module,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ attention_mask: Optional[torch.Tensor],
+ scaling: float,
+ dropout: float = 0.0,
+ **kwargs,
+):
+ key_states = repeat_kv(key, module.num_key_value_groups)
+ value_states = repeat_kv(value, module.num_key_value_groups)
+
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
+ if attention_mask is not None:
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ return attn_output, attn_weights
+
+
+class Emu3Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: Emu3Config, layer_idx: int):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
+ self.scaling = self.head_dim**-0.5
+ self.attention_dropout = config.attention_dropout
+ self.is_causal = True
+
+ self.q_proj = nn.Linear(
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.k_proj = nn.Linear(
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.v_proj = nn.Linear(
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.o_proj = nn.Linear(
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor],
+ past_key_value: Optional[Cache] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[FlashAttentionKwargs],
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ input_shape = hidden_states.shape[:-1]
+ hidden_shape = (*input_shape, -1, self.head_dim)
+
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+
+ cos, sin = position_embeddings
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ attention_interface: Callable = eager_attention_forward
+ if self.config._attn_implementation != "eager":
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
+ logger.warning_once(
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ else:
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
+
+ attn_output, attn_weights = attention_interface(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ dropout=0.0 if not self.training else self.attention_dropout,
+ scaling=self.scaling,
+ **kwargs,
+ )
+
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
+ attn_output = self.o_proj(attn_output)
+ return attn_output, attn_weights
+
+
+class Emu3DecoderLayer(nn.Module):
+ def __init__(self, config: Emu3Config, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = Emu3Attention(config=config, layer_idx=layer_idx)
+
+ self.mlp = Emu3MLP(config)
+ self.input_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_attention_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.dropout = nn.Dropout(config.attention_dropout)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*):
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
+ query_sequence_length, key_sequence_length)` if default attention is used.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence
+ kwargs (`dict`, *optional*):
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
+ into the model
+ """
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+ hidden_states = residual + self.dropout(hidden_states)
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + self.dropout(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ return outputs
+
+
+class Emu3VQVAEVectorQuantizer(nn.Module):
+ """
+ A module for vector quantization using learned embedding vectors.
+
+ This module implements the quantization process similar to te one described in
+ the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
+ input vectors into discrete codebook vectors, which are learned during training.
+ Current implementation improves over previous ones by avoiding costly matrix multiplications
+ and allowing for post-hoc remapping of indices.
+ """
+
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__()
+ self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
+ self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
+
+ def forward(self, hidden_state: torch.Tensor):
+ batch_size, temporal, channels, height, width = hidden_state.shape
+ hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous()
+ hidden_state_flattened = hidden_state.view(-1, channels)
+
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
+ hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
+ embedding_sum = torch.sum(self.embedding.weight**2, dim=1)
+
+ # "bd,dn->bn",
+ distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1))
+ distances = hidden_state_sum + embedding_sum - distances
+
+ min_encoding_indices = torch.argmin(distances, dim=1)
+ min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width)
+ return min_encoding_indices
+
+
+class Emu3VQVAEEncoderConvDownsample(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
+
+ def forward(self, hidden_states):
+ # no asymmetric padding in torch conv, must do it ourselves
+ hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0)
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAEEncoderConvUpsample(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
+
+ def forward(self, hidden_states):
+ hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAEConv3d(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ kernel_size: Tuple[int],
+ stride: Tuple[int],
+ ):
+ super().__init__()
+
+ padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])]
+ self.padding = ()
+ for pad_size in padding_sizes[::-1]:
+ self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2)
+ self.padding += (2, 0)
+
+ self.conv = nn.Conv3d(
+ in_channel,
+ out_channel,
+ kernel_size,
+ stride=stride,
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = F.pad(hidden_states, self.padding)
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAESpatialNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ ):
+ super().__init__()
+ self.norm_layer = nn.GroupNorm(
+ num_channels=out_channels,
+ num_groups=32,
+ eps=1e-6,
+ affine=True,
+ )
+
+ self.conv_y = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+ self.conv_b = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
+ quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
+ hidden_states = self.norm_layer(hidden_states)
+ hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalUpsample(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ ):
+ super().__init__()
+ self.conv = Emu3VQVAEConv3d(
+ in_channel,
+ out_channel,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ batch_size, channels, temporal, height, width = hidden_states.shape
+ hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
+ hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
+ hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalDownsample(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ ):
+ super().__init__()
+ self.conv = Emu3VQVAEConv3d(
+ in_channel,
+ out_channel,
+ kernel_size=(4, 3, 3),
+ stride=(2, 1, 1),
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalResnetBlock(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels=None,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = in_channels if out_channels is None else out_channels
+
+ self.norm1 = nn.BatchNorm3d(in_channels)
+ self.conv1 = Emu3VQVAEConv3d(
+ in_channels,
+ out_channels,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+ self.norm2 = nn.BatchNorm3d(out_channels)
+ self.conv2 = Emu3VQVAEConv3d(
+ out_channels,
+ out_channels,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+ if self.in_channels != self.out_channels:
+ self.nin_shortcut = nn.Conv3d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states):
+ residual = hidden_states
+ hidden_states = self.norm1(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv1(hidden_states)
+
+ hidden_states = self.norm2(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.in_channels != self.out_channels:
+ residual = self.nin_shortcut(residual)
+
+ return residual + hidden_states
+
+
+class Emu3VQVAEResnetBlock(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: Optional[int] = None,
+ quant_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.quant_channels = quant_channels
+
+ if quant_channels is None:
+ self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
+ self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
+ else:
+ self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
+ self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
+
+ self.conv1 = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.conv2 = nn.Conv2d(
+ out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ if self.in_channels != self.out_channels:
+ self.nin_shortcut = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
+ norm_args = () if self.quant_channels is None else (quant_channels,)
+
+ residual = hidden_states
+ hidden_states = self.norm1(hidden_states, *norm_args)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv1(hidden_states)
+
+ hidden_states = self.norm2(hidden_states, *norm_args)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.in_channels != self.out_channels:
+ residual = self.nin_shortcut(residual)
+
+ return residual + hidden_states
+
+
+class Emu3VQVAEAttentionBlock(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+ """Input shape: Batch x Time x Channel"""
+
+ batch_size, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+
+ k_v_seq_len = key_states.shape[-2]
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
+
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights + attention_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights
+
+
+class Emu3VQVAEGroupNorm(nn.GroupNorm):
+ """
+ Same as the torch GroupNorm with the only difference that this ones accepts
+ an optional kwarg `quant_states` which is not used. This class makes it easier to
+ use SpatialNorm or GroupNorm without conditionals
+ """
+
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def forward(self, input, quant_states=None):
+ return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
+
+
+class Emu3VQVAEMiddleBlock(nn.Module):
+ def __init__(self, config, in_channels, quant_channels=None):
+ super().__init__()
+
+ self.block_1 = Emu3VQVAEResnetBlock(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ quant_channels=quant_channels,
+ )
+ self.attn_1 = Emu3VQVAEAttentionBlock(config)
+ if quant_channels is None:
+ self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
+ else:
+ self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
+
+ self.block_2 = Emu3VQVAEResnetBlock(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ quant_channels=quant_channels,
+ )
+
+ def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor = None):
+ hidden_states = self.block_1(hidden_states, quant_states)
+ residual = hidden_states
+ hidden_states = self.attn_norm(hidden_states, quant_states)
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = self.attn_1(hidden_states)[0]
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+ hidden_states = self.block_2(hidden_states, quant_states)
+ return hidden_states
+
+
+class Emu3VQVAEDownBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_resolutions = len(config.channel_multiplier)
+ self.num_res_blocks = config.num_res_blocks
+ base_channels = config.base_channels
+ channel_multiplier = config.channel_multiplier
+
+ in_channel_multiplier = (1,) + tuple(channel_multiplier)
+ self.in_channel_multiplier = in_channel_multiplier
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ attn_norms = nn.ModuleList()
+ block_in = base_channels * in_channel_multiplier[i_level]
+ block_out = base_channels * channel_multiplier[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(
+ Emu3VQVAEResnetBlock(
+ in_channels=block_in,
+ out_channels=block_out,
+ )
+ )
+ block_in = block_out
+ if config.attn_resolutions is not None and i_level in config.attn_resolutions:
+ attn.append(Emu3VQVAEAttentionBlock(config))
+ attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
+
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ down.attn_norms = attn_norms
+ if i_level != self.num_resolutions - 1:
+ down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
+ self.down.append(down)
+
+ def forward(self, hidden_states: torch.FloatTensor):
+ for i_level, blocks in enumerate(self.down):
+ for i_block in range(self.num_res_blocks):
+ hidden_states = blocks.block[i_block](hidden_states)
+ if len(blocks.attn) > 0:
+ residual = hidden_states
+ hidden_states = blocks.attn_norms[i_block](hidden_states)
+
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = blocks.attn[i_block](hidden_states)[0]
+
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+
+ if i_level != self.num_resolutions - 1:
+ hidden_states = blocks.downsample(hidden_states)
+
+ return hidden_states
+
+
+class Emu3VQVAEUpBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_resolutions = len(config.channel_multiplier)
+ self.num_res_blocks = config.num_res_blocks
+
+ quant_channels = config.embed_dim
+ block_in = config.base_channels * config.channel_multiplier[-1]
+
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ attn_norms = nn.ModuleList()
+ block_out = config.base_channels * config.channel_multiplier[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ block.append(
+ Emu3VQVAEResnetBlock(
+ in_channels=block_in,
+ out_channels=block_out,
+ quant_channels=quant_channels,
+ )
+ )
+ block_in = block_out
+ if i_level in config.attn_resolutions:
+ attn.append(Emu3VQVAEAttentionBlock(config))
+ attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
+
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ up.attn_norms = attn_norms
+ if i_level != 0:
+ up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
+
+ self.up.insert(0, up)
+
+ def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
+ for i_level, blocks in enumerate(self.up[::-1]):
+ for i_block in range(self.num_res_blocks + 1):
+ hidden_states = blocks.block[i_block](hidden_states, quant_states)
+ if len(blocks.attn) > 0:
+ residual = hidden_states
+ hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
+
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = blocks.attn[i_block](hidden_states)[0]
+
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+ if i_level != len(self.up) - 1:
+ hidden_states = blocks.upsample(hidden_states)
+
+ return hidden_states
+
+
+class Emu3VQVAEEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ base_channels = config.base_channels
+ in_channels = config.in_channels
+ double_latent = config.double_latent
+ latent_channels = config.latent_channels
+ channel_multiplier = config.channel_multiplier
+ out_channels = 2 * latent_channels if double_latent else latent_channels
+ block_in = base_channels * channel_multiplier[-1]
+
+ self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
+ self.down_block = Emu3VQVAEDownBlock(config)
+ self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
+
+ self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
+ self.conv_out = torch.nn.Conv2d(
+ block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
+ self.time_conv = nn.ModuleList()
+ self.time_res_stack = nn.ModuleList()
+
+ for i in range(temporal_down_blocks):
+ conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
+ self.time_conv.append(conv)
+
+ for _ in range(config.num_res_blocks):
+ time_res_conv = Emu3VQVAETemporalResnetBlock(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ )
+ self.time_res_stack.append(time_res_conv)
+
+ def forward(self, pixel_values: torch.LongTensor):
+ temporal_dim = pixel_values.shape[1]
+ pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
+
+ # downsampling & middle
+ hidden_states = self.conv_in(pixel_values)
+ hidden_states = self.down_block(hidden_states)
+ hidden_states = self.middle_block(hidden_states)
+
+ # end
+ hidden_states = self.norm_out(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv_out(hidden_states)
+
+ hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+
+ # temporal convs
+ for conv in self.time_conv:
+ hidden_states = conv(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+
+ for layer in self.time_res_stack:
+ hidden_states = layer(hidden_states)
+
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+
+ return hidden_states
+
+
+class Emu3VQVAEDecoder(nn.Module):
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__()
+
+ quant_channels = config.embed_dim
+ block_in = config.base_channels * config.channel_multiplier[-1]
+ self.time_res_stack = nn.ModuleList()
+ for _ in range(config.num_res_blocks):
+ time_res_conv = Emu3VQVAETemporalResnetBlock(
+ in_channels=config.latent_channels, out_channels=config.latent_channels
+ )
+ self.time_res_stack.append(time_res_conv)
+
+ temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
+ self.time_conv = nn.ModuleList()
+ for i in range(temp_upsample_block_num):
+ conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
+ self.time_conv.append(conv)
+
+ self.conv_in = nn.Conv2d(
+ config.latent_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
+ self.up_block = Emu3VQVAEUpBlock(config)
+
+ block_in = config.base_channels * config.channel_multiplier[0]
+ self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
+ self.conv_out = nn.Conv2d(
+ block_in,
+ config.out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
+ hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
+ hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
+
+ # temporal convs
+ for layer in self.time_res_stack:
+ hidden_quant_states = layer(hidden_quant_states)
+
+ for layer in self.time_conv:
+ hidden_quant_states = layer(hidden_quant_states)
+ hidden_quant_states *= torch.sigmoid(hidden_quant_states)
+
+ hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
+ hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
+ hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
+ quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
+
+ hidden_states = self.conv_in(hidden_states)
+
+ # middle & upsampling
+ hidden_states = self.middle_block(hidden_states, quant_states)
+ hidden_states = self.up_block(hidden_states, quant_states)
+
+ hidden_states = self.norm_out(hidden_states, quant_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv_out(hidden_states)
+
+ return hidden_states
+
+
+EMU3_VQ_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Emu3VQVAEConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ """The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens.
+ This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
+ [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131).
+ """,
+ EMU3_VQ_START_DOCSTRING,
+)
+class Emu3VQVAE(PreTrainedModel):
+ config_class = Emu3VQVAEConfig
+ base_model_prefix = "emuvideovq"
+ main_input_name = "pixel_values"
+ _no_split_modules = [
+ "Emu3VQVAETemporalResnetBlock",
+ "Emu3VQVAEAttentionBlock",
+ "Emu3VQVAEResnetBlock",
+ "Emu3VQVAEVectorQuantizer",
+ ]
+
+ def _init_weights(self, module):
+ if isinstance(module, (nn.Conv2d, nn.Conv3d)):
+ nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
+ elif isinstance(module, nn.Linear):
+ nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
+ if module.bias is not None:
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
+ bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
+ nn.init.uniform_(module.bias, -bound, bound)
+ elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
+ nn.init.constant_(module.weight, 1)
+ nn.init.constant_(module.bias, 0)
+
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__(config)
+
+ self.config = config
+
+ self.encoder = Emu3VQVAEEncoder(config)
+ self.decoder = Emu3VQVAEDecoder(config)
+ self.quantize = Emu3VQVAEVectorQuantizer(config)
+ self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
+
+ self.quant_conv = Emu3VQVAEConv3d(
+ config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
+ )
+ self.post_quant_conv = Emu3VQVAEConv3d(
+ config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
+ )
+ self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
+ self.eval() # Emu3's VQ model is frozen
+
+ self.post_init()
+
+ def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
+ is_image = pixel_values.ndim == 4
+ if is_image:
+ temporal = self.config.temporal_downsample_factor
+ batch_size, channels, height, width = pixel_values.shape
+ pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
+ else:
+ batch_size, temporal, channels, height, width = pixel_values.shape
+
+ hidden_states = self.encoder(pixel_values)
+
+ # b t c h w -> b c t h w
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+ hidden_states = self.quant_conv(hidden_states)
+
+ # b c t h w -> b t c h w
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+ codes = self.quantize(hidden_states)
+
+ image_tokens = codes.squeeze(1) if is_image else codes
+
+ image_tokens = [
+ single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
+ for single_image, size in zip(image_tokens, image_sizes)
+ ]
+
+ return image_tokens
+
+ def decode(self, hidden_states: torch.Tensor):
+ is_image = hidden_states.ndim == 3
+ if is_image:
+ hidden_states = hidden_states.unsqueeze(1)
+
+ batch_size, temporal, height, width = hidden_states.shape
+ quant = self.quantize.embedding(hidden_states.flatten())
+
+ channels = quant.shape[-1]
+ quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
+ post_quant = self.post_quant_conv(quant)
+
+ quant = quant.permute(0, 2, 1, 3, 4)
+ post_quant = post_quant.permute(0, 2, 1, 3, 4)
+
+ video = self.decoder(post_quant, quant)
+ video = video.reshape(
+ batch_size,
+ temporal * self.config.temporal_downsample_factor,
+ self.config.out_channels,
+ height * self.spatial_scale_factor,
+ width * self.spatial_scale_factor,
+ )
+ return video[:, 0] if is_image else video
+
+
+class Emu3ImageVocabularyMapping:
+ """
+ A class for mapping discrete image tokens from VQGAN to BPE tokens.
+ """
+
+ def __init__(self, vocab_map):
+ self.vocab_map = vocab_map
+ self.eol_token_id = vocab_map.get("<|extra_200|>")
+ self.image_token_id = vocab_map.get("")
+
+ @cached_property
+ def image_tokens(self):
+ return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
+
+ @cached_property
+ def image_tokens_str(self):
+ return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
+
+ @cached_property
+ def img2bpe(self):
+ return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
+
+ @cached_property
+ def bpe2img(self):
+ return {v: k for k, v in self.img2bpe.items()}
+
+ @cached_property
+ def bpe2img_mapping_tensor(self):
+ mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
+ for k, v in self.bpe2img.items():
+ mapping[k] = v
+ return mapping
+
+ @cached_property
+ def img2bpe_mapping_tensor(self):
+ mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
+ for k, v in self.img2bpe.items():
+ mapping[k] = v
+ return mapping
+
+ def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor:
+ device = img_batch.device
+ eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
+ img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
+ img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
+ return img_tokens.to(device)
+
+ def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
+ device = img_batch.device
+ img_batch = img_batch[..., :-1] # remove last row of EOL tokens
+ img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
+ return img_tokens.to(device)
+
+
+EMU3_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Emu3Config`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare emu3 Model outputting raw hidden-states without any specific head on top.",
+ EMU3_START_DOCSTRING,
+)
+class Emu3PreTrainedModel(PreTrainedModel):
+ config_class = Emu3Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = [
+ "Emu3DecoderLayer",
+ ]
+ _skip_keys_device_placement = ["past_key_values", "causal_mask"]
+ _supports_flash_attn_2 = True
+ _supports_sdpa = True
+ _supports_quantized_cache = True
+ _supports_cache_class = True
+ _supports_static_cache = True
+ _supports_param_buffer_assignment = False
+ _supports_flex_attn = True
+
+ def _init_weights(self, module):
+ std = self.config.get_text_config().initializer_range
+ if isinstance(module, Emu3VQVAE):
+ module.apply(module._init_weights)
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+class Emu3RotaryEmbedding(nn.Module):
+ def __init__(self, config: Emu3Config, device=None):
+ super().__init__()
+ # BC: "rope_type" was originally "type"
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
+ else:
+ self.rope_type = "default"
+ self.max_seq_len_cached = config.max_position_embeddings
+ self.original_max_seq_len = config.max_position_embeddings
+
+ self.config = config
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
+
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+ self.original_inv_freq = self.inv_freq
+
+ def _dynamic_frequency_update(self, position_ids, device):
+ """
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
+ 1 - growing beyond the cached sequence length (allow scaling)
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
+ """
+ seq_len = torch.max(position_ids) + 1
+ if seq_len > self.max_seq_len_cached: # growth
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
+ self.max_seq_len_cached = seq_len
+
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
+ self.max_seq_len_cached = self.original_max_seq_len
+
+ @torch.no_grad()
+ def forward(self, x, position_ids):
+ if "dynamic" in self.rope_type:
+ self._dynamic_frequency_update(position_ids, device=x.device)
+
+ # Core RoPE block
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
+ position_ids_expanded = position_ids[:, None, :].float()
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
+ device_type = x.device.type
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False):
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos()
+ sin = emb.sin()
+
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
+ cos = cos * self.attention_scaling
+ sin = sin * self.attention_scaling
+
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
+
+
+EMU3_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Two formats are allowed:
+ - a [`~cache_utils.Cache`] instance, see our
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
+ cache format.
+
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+@add_start_docstrings(
+ "The bare Emu3Text Model outputting raw hidden-states without any specific head on top.",
+ EMU3_START_DOCSTRING,
+)
+class Emu3TextModel(Emu3PreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Emu3TextDecoderLayer`]
+
+ Args:
+ config: Emu3TextConfig
+ """
+
+ def __init__(self, config: Emu3Config):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.norm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.rotary_emb = Emu3RotaryEmbedding(config=config)
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
+
+ if self.gradient_checkpointing and self.training and use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
+ )
+ use_cache = False
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if use_cache and past_key_values is None:
+ past_key_values = DynamicCache()
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = self._update_causal_mask(
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
+ )
+
+ hidden_states = inputs_embeds
+
+ # create position embeddings to be shared across the decoder layers
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ causal_mask,
+ position_ids,
+ past_key_values,
+ output_attentions,
+ use_cache,
+ cache_position,
+ position_embeddings,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **flash_attn_kwargs,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ output = BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=past_key_values if use_cache else None,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+ return output if return_dict else output.to_tuple()
+
+ def _update_causal_mask(
+ self,
+ attention_mask: torch.Tensor,
+ input_tensor: torch.Tensor,
+ cache_position: torch.Tensor,
+ past_key_values: Cache,
+ output_attentions: bool,
+ ):
+ if self.config._attn_implementation == "flash_attention_2":
+ if attention_mask is not None and (attention_mask == 0.0).any():
+ return attention_mask
+ return None
+
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
+ # to infer the attention mask.
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ using_static_cache = isinstance(past_key_values, StaticCache)
+
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
+ attention_mask,
+ inputs_embeds=input_tensor,
+ past_key_values_length=past_seen_tokens,
+ is_training=self.training,
+ ):
+ return None
+
+ dtype, device = input_tensor.dtype, input_tensor.device
+ sequence_length = input_tensor.shape[1]
+ if using_static_cache:
+ target_length = past_key_values.get_max_cache_shape()
+ else:
+ target_length = (
+ attention_mask.shape[-1]
+ if isinstance(attention_mask, torch.Tensor)
+ else past_seen_tokens + sequence_length + 1
+ )
+
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
+ attention_mask,
+ sequence_length=sequence_length,
+ target_length=target_length,
+ dtype=dtype,
+ device=device,
+ cache_position=cache_position,
+ batch_size=input_tensor.shape[0],
+ )
+
+ if (
+ self.config._attn_implementation == "sdpa"
+ and attention_mask is not None
+ and attention_mask.device.type == "cuda"
+ and not output_attentions
+ ):
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+ # Details: https://github.com/pytorch/pytorch/issues/110213
+ min_dtype = torch.finfo(dtype).min
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+ return causal_mask
+
+ @staticmethod
+ def _prepare_4d_causal_attention_mask_with_cache_position(
+ attention_mask: torch.Tensor,
+ sequence_length: int,
+ target_length: int,
+ dtype: torch.dtype,
+ device: torch.device,
+ cache_position: torch.Tensor,
+ batch_size: int,
+ **kwargs,
+ ):
+ """
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
+
+ Args:
+ attention_mask (`torch.Tensor`):
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
+ `(batch_size, 1, query_length, key_value_length)`.
+ sequence_length (`int`):
+ The sequence length being processed.
+ target_length (`int`):
+ The target length: when generating with static cache, the mask should be as long as the static cache,
+ to account for the 0 padding, the part of the cache that is not filled yet.
+ dtype (`torch.dtype`):
+ The dtype to use for the 4D attention mask.
+ device (`torch.device`):
+ The device to plcae the 4D attention mask on.
+ cache_position (`torch.Tensor`):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ batch_size (`torch.Tensor`):
+ Batch size.
+ """
+ if attention_mask is not None and attention_mask.dim() == 4:
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
+ causal_mask = attention_mask
+ else:
+ min_dtype = torch.finfo(dtype).min
+ causal_mask = torch.full(
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
+ )
+ if sequence_length != 1:
+ causal_mask = torch.triu(causal_mask, diagonal=1)
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
+ if attention_mask is not None:
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
+ mask_length = attention_mask.shape[-1]
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
+ padding_mask = padding_mask == 0
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
+ padding_mask, min_dtype
+ )
+
+ return causal_mask
+
+
+class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
+
+
+EMU3_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Has to be an instance of [`~cache_utils.Cache`] instance, see our
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
+
+ The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+class Emu3ForCausalLM(Emu3PreTrainedModel, GenerationMixin):
+ _tied_weights_keys = ["lm_head.weight"]
+ _tp_plan = {"lm_head": "colwise_rep"}
+ config_class = Emu3TextConfig
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Emu3TextModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig")
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ num_logits_to_keep: int = 0,
+ **kwargs: Unpack[KwargsForCausalLM],
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ num_logits_to_keep (`int`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
+ >>> import torch
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> model = Emu3ForCausalLM.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
+ >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf")
+
+ >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
+
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
+ >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = outputs[0]
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
+
+ loss = None
+ if labels is not None:
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
+ def __init__(self, config):
+ super().__init__(config)
+ self.text_model = Emu3ForCausalLM._from_config(config.text_config)
+ self.vqmodel = Emu3VQVAE(config.vq_config)
+ self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.text_model.get_input_embeddings()
+
+ def set_input_embeddings(self, value):
+ self.text_model.set_input_embeddings(value)
+
+ def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
+ """
+ Tokenizes images into discrete tokens with VQGAN module. Converts
+ obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
+ special tokens.
+
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
+ The tensors corresponding to the input images.
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
+ The sizes of the images in the batch, being (height, width) for each image.
+ """
+ image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
+ bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
+ bpe_tokens = torch.cat(bpe_tokens_list)
+ return bpe_tokens
+
+ @torch.no_grad
+ def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
+ """
+ Decodes generated image tokens from language model to continuous pixel values
+ with VQGAN module via upsampling.
+
+ Args:
+ image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
+ The tensors corresponding to the input images.
+ height (`int`):
+ Height of the generated image before upsampling.
+ width (`int`):
+ Width of the generated image before upsampling.
+ """
+ sequences = image_tokens[:, :-3].view(-1, height, width + 1)
+ image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
+ image = self.vqmodel.decode(image_tokens)
+ return image
+
+ @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ pixel_values: torch.FloatTensor = None,
+ image_sizes: torch.Tensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ num_logits_to_keep: int = 0,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ num_logits_to_keep (`int`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
+ >>> import torch
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> model = Emu3ForConditionalGeneration.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
+ >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf")
+
+ >>> conversation = [
+ ... {
+ ... "role": "system",
+ ... "content": [
+ ... {"type": "text", "text": "You are a helpful assistant."},
+ ... ],
+ ... },
+ ... {
+ ... "role": "user",
+ ... "content": [
+ ... {"type": "image"},
+ ... {"type": "text", "text": "Please describe the image."},
+ ... ],
+ ... },
+ ... ]
+
+ >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
+ >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
+
+ >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
+
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
+ >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if pixel_values is not None and inputs_embeds is not None:
+ raise ValueError(
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if pixel_values is not None:
+ image_tokens = self.get_image_tokens(pixel_values, image_sizes)
+ special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
+ image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
+ input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ cache_position=cache_position,
+ num_logits_to_keep=num_logits_to_keep,
+ )
+
+ return outputs
+
+
+__all__ = ["Emu3ForConditionalGeneration", "Emu3ForCausalLM", "Emu3TextModel", "Emu3PreTrainedModel", "Emu3VQVAE"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9b80d5cbb4deb4bb0d646951966a820fa676d4c
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/modular_emu3.py
@@ -0,0 +1,1270 @@
+# coding=utf-8
+# Copyright 2024 HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from functools import cached_property
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint
+
+from ...cache_utils import Cache
+from ...generation import GenerationMixin
+from ...modeling_outputs import (
+ CausalLMOutputWithPast,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_2_available,
+ logging,
+ replace_return_docstrings,
+)
+from ..chameleon.modeling_chameleon import (
+ ChameleonPreTrainedModel,
+ ChameleonVQVAEEncoderConvDownsample,
+)
+from ..llama.modeling_llama import (
+ LlamaDecoderLayer,
+ LlamaForCausalLM,
+ LlamaModel,
+)
+from ..siglip.modeling_siglip import SiglipAttention
+from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig
+
+
+if is_flash_attn_2_available():
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+
+_CONFIG_FOR_DOC = "Emu3Config"
+_CHECKPOINT_FOR_DOC = "Emu3-community/Emu3-Chat-hf"
+
+logger = logging.get_logger(__name__)
+
+
+# Has extra dropout which no other model in the library has
+class Emu3DecoderLayer(LlamaDecoderLayer):
+ def __init__(self, config: Emu3Config, layer_idx: int):
+ super().__init__(config, layer_idx)
+ self.dropout = nn.Dropout(config.attention_dropout)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*):
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
+ query_sequence_length, key_sequence_length)` if default attention is used.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence
+ kwargs (`dict`, *optional*):
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
+ into the model
+ """
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+ hidden_states = residual + self.dropout(hidden_states)
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + self.dropout(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ return outputs
+
+
+class Emu3VQVAEVectorQuantizer(nn.Module):
+ """
+ A module for vector quantization using learned embedding vectors.
+
+ This module implements the quantization process similar to te one described in
+ the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
+ input vectors into discrete codebook vectors, which are learned during training.
+ Current implementation improves over previous ones by avoiding costly matrix multiplications
+ and allowing for post-hoc remapping of indices.
+ """
+
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__()
+ self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
+ self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
+
+ def forward(self, hidden_state: torch.Tensor):
+ batch_size, temporal, channels, height, width = hidden_state.shape
+ hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous()
+ hidden_state_flattened = hidden_state.view(-1, channels)
+
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
+ hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
+ embedding_sum = torch.sum(self.embedding.weight**2, dim=1)
+
+ # "bd,dn->bn",
+ distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1))
+ distances = hidden_state_sum + embedding_sum - distances
+
+ min_encoding_indices = torch.argmin(distances, dim=1)
+ min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width)
+ return min_encoding_indices
+
+
+class Emu3VQVAEEncoderConvDownsample(ChameleonVQVAEEncoderConvDownsample):
+ pass
+
+
+class Emu3VQVAEEncoderConvUpsample(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
+
+ def forward(self, hidden_states):
+ hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAEConv3d(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ kernel_size: Tuple[int],
+ stride: Tuple[int],
+ ):
+ super().__init__()
+
+ padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])]
+ self.padding = ()
+ for pad_size in padding_sizes[::-1]:
+ self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2)
+ self.padding += (2, 0)
+
+ self.conv = nn.Conv3d(
+ in_channel,
+ out_channel,
+ kernel_size,
+ stride=stride,
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = F.pad(hidden_states, self.padding)
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAESpatialNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ ):
+ super().__init__()
+ self.norm_layer = nn.GroupNorm(
+ num_channels=out_channels,
+ num_groups=32,
+ eps=1e-6,
+ affine=True,
+ )
+
+ self.conv_y = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+ self.conv_b = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
+ quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
+ hidden_states = self.norm_layer(hidden_states)
+ hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalUpsample(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ ):
+ super().__init__()
+ self.conv = Emu3VQVAEConv3d(
+ in_channel,
+ out_channel,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ batch_size, channels, temporal, height, width = hidden_states.shape
+ hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
+ hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
+ hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalDownsample(nn.Module):
+ def __init__(
+ self,
+ in_channel: int,
+ out_channel: int,
+ ):
+ super().__init__()
+ self.conv = Emu3VQVAEConv3d(
+ in_channel,
+ out_channel,
+ kernel_size=(4, 3, 3),
+ stride=(2, 1, 1),
+ )
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = self.conv(hidden_states)
+ return hidden_states
+
+
+class Emu3VQVAETemporalResnetBlock(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels=None,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = in_channels if out_channels is None else out_channels
+
+ self.norm1 = nn.BatchNorm3d(in_channels)
+ self.conv1 = Emu3VQVAEConv3d(
+ in_channels,
+ out_channels,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+ self.norm2 = nn.BatchNorm3d(out_channels)
+ self.conv2 = Emu3VQVAEConv3d(
+ out_channels,
+ out_channels,
+ kernel_size=(3, 3, 3),
+ stride=(1, 1, 1),
+ )
+ if self.in_channels != self.out_channels:
+ self.nin_shortcut = nn.Conv3d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states):
+ residual = hidden_states
+ hidden_states = self.norm1(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv1(hidden_states)
+
+ hidden_states = self.norm2(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.in_channels != self.out_channels:
+ residual = self.nin_shortcut(residual)
+
+ return residual + hidden_states
+
+
+class Emu3VQVAEResnetBlock(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: Optional[int] = None,
+ quant_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.quant_channels = quant_channels
+
+ if quant_channels is None:
+ self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
+ self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
+ else:
+ self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
+ self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
+
+ self.conv1 = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.conv2 = nn.Conv2d(
+ out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ if self.in_channels != self.out_channels:
+ self.nin_shortcut = nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
+ norm_args = () if self.quant_channels is None else (quant_channels,)
+
+ residual = hidden_states
+ hidden_states = self.norm1(hidden_states, *norm_args)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv1(hidden_states)
+
+ hidden_states = self.norm2(hidden_states, *norm_args)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.in_channels != self.out_channels:
+ residual = self.nin_shortcut(residual)
+
+ return residual + hidden_states
+
+
+class Emu3VQVAEAttentionBlock(SiglipAttention):
+ pass
+
+
+class Emu3VQVAEGroupNorm(nn.GroupNorm):
+ """
+ Same as the torch GroupNorm with the only difference that this ones accepts
+ an optional kwarg `quant_states` which is not used. This class makes it easier to
+ use SpatialNorm or GroupNorm without conditionals
+ """
+
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def forward(self, input, quant_states=None):
+ return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
+
+
+class Emu3VQVAEMiddleBlock(nn.Module):
+ def __init__(self, config, in_channels, quant_channels=None):
+ super().__init__()
+
+ self.block_1 = Emu3VQVAEResnetBlock(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ quant_channels=quant_channels,
+ )
+ self.attn_1 = Emu3VQVAEAttentionBlock(config)
+ if quant_channels is None:
+ self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
+ else:
+ self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
+
+ self.block_2 = Emu3VQVAEResnetBlock(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ quant_channels=quant_channels,
+ )
+
+ def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor = None):
+ hidden_states = self.block_1(hidden_states, quant_states)
+ residual = hidden_states
+ hidden_states = self.attn_norm(hidden_states, quant_states)
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = self.attn_1(hidden_states)[0]
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+ hidden_states = self.block_2(hidden_states, quant_states)
+ return hidden_states
+
+
+class Emu3VQVAEDownBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_resolutions = len(config.channel_multiplier)
+ self.num_res_blocks = config.num_res_blocks
+ base_channels = config.base_channels
+ channel_multiplier = config.channel_multiplier
+
+ in_channel_multiplier = (1,) + tuple(channel_multiplier)
+ self.in_channel_multiplier = in_channel_multiplier
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ attn_norms = nn.ModuleList()
+ block_in = base_channels * in_channel_multiplier[i_level]
+ block_out = base_channels * channel_multiplier[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(
+ Emu3VQVAEResnetBlock(
+ in_channels=block_in,
+ out_channels=block_out,
+ )
+ )
+ block_in = block_out
+ if config.attn_resolutions is not None and i_level in config.attn_resolutions:
+ attn.append(Emu3VQVAEAttentionBlock(config))
+ attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
+
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ down.attn_norms = attn_norms
+ if i_level != self.num_resolutions - 1:
+ down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
+ self.down.append(down)
+
+ def forward(self, hidden_states: torch.FloatTensor):
+ for i_level, blocks in enumerate(self.down):
+ for i_block in range(self.num_res_blocks):
+ hidden_states = blocks.block[i_block](hidden_states)
+ if len(blocks.attn) > 0:
+ residual = hidden_states
+ hidden_states = blocks.attn_norms[i_block](hidden_states)
+
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = blocks.attn[i_block](hidden_states)[0]
+
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+
+ if i_level != self.num_resolutions - 1:
+ hidden_states = blocks.downsample(hidden_states)
+
+ return hidden_states
+
+
+class Emu3VQVAEUpBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_resolutions = len(config.channel_multiplier)
+ self.num_res_blocks = config.num_res_blocks
+
+ quant_channels = config.embed_dim
+ block_in = config.base_channels * config.channel_multiplier[-1]
+
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ attn_norms = nn.ModuleList()
+ block_out = config.base_channels * config.channel_multiplier[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ block.append(
+ Emu3VQVAEResnetBlock(
+ in_channels=block_in,
+ out_channels=block_out,
+ quant_channels=quant_channels,
+ )
+ )
+ block_in = block_out
+ if i_level in config.attn_resolutions:
+ attn.append(Emu3VQVAEAttentionBlock(config))
+ attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
+
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ up.attn_norms = attn_norms
+ if i_level != 0:
+ up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
+
+ self.up.insert(0, up)
+
+ def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
+ for i_level, blocks in enumerate(self.up[::-1]):
+ for i_block in range(self.num_res_blocks + 1):
+ hidden_states = blocks.block[i_block](hidden_states, quant_states)
+ if len(blocks.attn) > 0:
+ residual = hidden_states
+ hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
+
+ batch_size, channels, height, width = hidden_states.shape
+ hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
+ hidden_states = blocks.attn[i_block](hidden_states)[0]
+
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
+ hidden_states = residual + hidden_states
+ if i_level != len(self.up) - 1:
+ hidden_states = blocks.upsample(hidden_states)
+
+ return hidden_states
+
+
+class Emu3VQVAEEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ base_channels = config.base_channels
+ in_channels = config.in_channels
+ double_latent = config.double_latent
+ latent_channels = config.latent_channels
+ channel_multiplier = config.channel_multiplier
+ out_channels = 2 * latent_channels if double_latent else latent_channels
+ block_in = base_channels * channel_multiplier[-1]
+
+ self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
+ self.down_block = Emu3VQVAEDownBlock(config)
+ self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
+
+ self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
+ self.conv_out = torch.nn.Conv2d(
+ block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
+ self.time_conv = nn.ModuleList()
+ self.time_res_stack = nn.ModuleList()
+
+ for i in range(temporal_down_blocks):
+ conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
+ self.time_conv.append(conv)
+
+ for _ in range(config.num_res_blocks):
+ time_res_conv = Emu3VQVAETemporalResnetBlock(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ )
+ self.time_res_stack.append(time_res_conv)
+
+ def forward(self, pixel_values: torch.LongTensor):
+ temporal_dim = pixel_values.shape[1]
+ pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
+
+ # downsampling & middle
+ hidden_states = self.conv_in(pixel_values)
+ hidden_states = self.down_block(hidden_states)
+ hidden_states = self.middle_block(hidden_states)
+
+ # end
+ hidden_states = self.norm_out(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv_out(hidden_states)
+
+ hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+
+ # temporal convs
+ for conv in self.time_conv:
+ hidden_states = conv(hidden_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+
+ for layer in self.time_res_stack:
+ hidden_states = layer(hidden_states)
+
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+
+ return hidden_states
+
+
+class Emu3VQVAEDecoder(nn.Module):
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__()
+
+ quant_channels = config.embed_dim
+ block_in = config.base_channels * config.channel_multiplier[-1]
+ self.time_res_stack = nn.ModuleList()
+ for _ in range(config.num_res_blocks):
+ time_res_conv = Emu3VQVAETemporalResnetBlock(
+ in_channels=config.latent_channels, out_channels=config.latent_channels
+ )
+ self.time_res_stack.append(time_res_conv)
+
+ temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
+ self.time_conv = nn.ModuleList()
+ for i in range(temp_upsample_block_num):
+ conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
+ self.time_conv.append(conv)
+
+ self.conv_in = nn.Conv2d(
+ config.latent_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
+ self.up_block = Emu3VQVAEUpBlock(config)
+
+ block_in = config.base_channels * config.channel_multiplier[0]
+ self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
+ self.conv_out = nn.Conv2d(
+ block_in,
+ config.out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
+ hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
+ hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
+
+ # temporal convs
+ for layer in self.time_res_stack:
+ hidden_quant_states = layer(hidden_quant_states)
+
+ for layer in self.time_conv:
+ hidden_quant_states = layer(hidden_quant_states)
+ hidden_quant_states *= torch.sigmoid(hidden_quant_states)
+
+ hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
+ hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
+ hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
+ quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
+
+ hidden_states = self.conv_in(hidden_states)
+
+ # middle & upsampling
+ hidden_states = self.middle_block(hidden_states, quant_states)
+ hidden_states = self.up_block(hidden_states, quant_states)
+
+ hidden_states = self.norm_out(hidden_states, quant_states)
+ hidden_states *= torch.sigmoid(hidden_states)
+ hidden_states = self.conv_out(hidden_states)
+
+ return hidden_states
+
+
+EMU3_VQ_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Emu3VQVAEConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ """The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens.
+ This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
+ [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131).
+ """,
+ EMU3_VQ_START_DOCSTRING,
+)
+class Emu3VQVAE(PreTrainedModel):
+ config_class = Emu3VQVAEConfig
+ base_model_prefix = "emuvideovq"
+ main_input_name = "pixel_values"
+ _no_split_modules = [
+ "Emu3VQVAETemporalResnetBlock",
+ "Emu3VQVAEAttentionBlock",
+ "Emu3VQVAEResnetBlock",
+ "Emu3VQVAEVectorQuantizer",
+ ]
+
+ def _init_weights(self, module):
+ if isinstance(module, (nn.Conv2d, nn.Conv3d)):
+ nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
+ elif isinstance(module, nn.Linear):
+ nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
+ if module.bias is not None:
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
+ bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
+ nn.init.uniform_(module.bias, -bound, bound)
+ elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
+ nn.init.constant_(module.weight, 1)
+ nn.init.constant_(module.bias, 0)
+
+ def __init__(self, config: Emu3VQVAEConfig):
+ super().__init__(config)
+
+ self.config = config
+
+ self.encoder = Emu3VQVAEEncoder(config)
+ self.decoder = Emu3VQVAEDecoder(config)
+ self.quantize = Emu3VQVAEVectorQuantizer(config)
+ self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
+
+ self.quant_conv = Emu3VQVAEConv3d(
+ config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
+ )
+ self.post_quant_conv = Emu3VQVAEConv3d(
+ config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
+ )
+ self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
+ self.eval() # Emu3's VQ model is frozen
+
+ self.post_init()
+
+ def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
+ is_image = pixel_values.ndim == 4
+ if is_image:
+ temporal = self.config.temporal_downsample_factor
+ batch_size, channels, height, width = pixel_values.shape
+ pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
+ else:
+ batch_size, temporal, channels, height, width = pixel_values.shape
+
+ hidden_states = self.encoder(pixel_values)
+
+ # b t c h w -> b c t h w
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+ hidden_states = self.quant_conv(hidden_states)
+
+ # b c t h w -> b t c h w
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
+ codes = self.quantize(hidden_states)
+
+ image_tokens = codes.squeeze(1) if is_image else codes
+
+ image_tokens = [
+ single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
+ for single_image, size in zip(image_tokens, image_sizes)
+ ]
+
+ return image_tokens
+
+ def decode(self, hidden_states: torch.Tensor):
+ is_image = hidden_states.ndim == 3
+ if is_image:
+ hidden_states = hidden_states.unsqueeze(1)
+
+ batch_size, temporal, height, width = hidden_states.shape
+ quant = self.quantize.embedding(hidden_states.flatten())
+
+ channels = quant.shape[-1]
+ quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
+ post_quant = self.post_quant_conv(quant)
+
+ quant = quant.permute(0, 2, 1, 3, 4)
+ post_quant = post_quant.permute(0, 2, 1, 3, 4)
+
+ video = self.decoder(post_quant, quant)
+ video = video.reshape(
+ batch_size,
+ temporal * self.config.temporal_downsample_factor,
+ self.config.out_channels,
+ height * self.spatial_scale_factor,
+ width * self.spatial_scale_factor,
+ )
+ return video[:, 0] if is_image else video
+
+
+class Emu3ImageVocabularyMapping:
+ """
+ A class for mapping discrete image tokens from VQGAN to BPE tokens.
+ """
+
+ def __init__(self, vocab_map):
+ self.vocab_map = vocab_map
+ self.eol_token_id = vocab_map.get("<|extra_200|>")
+ self.image_token_id = vocab_map.get("")
+
+ @cached_property
+ def image_tokens(self):
+ return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
+
+ @cached_property
+ def image_tokens_str(self):
+ return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
+
+ @cached_property
+ def img2bpe(self):
+ return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
+
+ @cached_property
+ def bpe2img(self):
+ return {v: k for k, v in self.img2bpe.items()}
+
+ @cached_property
+ def bpe2img_mapping_tensor(self):
+ mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
+ for k, v in self.bpe2img.items():
+ mapping[k] = v
+ return mapping
+
+ @cached_property
+ def img2bpe_mapping_tensor(self):
+ mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
+ for k, v in self.img2bpe.items():
+ mapping[k] = v
+ return mapping
+
+ def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor:
+ device = img_batch.device
+ eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
+ img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
+ img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
+ return img_tokens.to(device)
+
+ def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
+ device = img_batch.device
+ img_batch = img_batch[..., :-1] # remove last row of EOL tokens
+ img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
+ return img_tokens.to(device)
+
+
+class Emu3PreTrainedModel(ChameleonPreTrainedModel, Emu3VQVAE):
+ _no_split_modules = [
+ "Emu3DecoderLayer",
+ ]
+ _supports_flex_attn = True
+
+ def _init_weights(self, module):
+ std = self.config.get_text_config().initializer_range
+ if isinstance(module, Emu3VQVAE):
+ module.apply(module._init_weights)
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+EMU3_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Has to be an instance of [`~cache_utils.Cache`] instance, see our
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
+
+ The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+EMU3_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)):
+ The tensors corresponding to the input images. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
+ [`Emu3ImageProcessor`] for processing images).
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
+ The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using
+ [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
+ [`Emu3ImageProcessor`] for processing images).
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Has to be an instance of [`~cache_utils.Cache`] instance, see our
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
+
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+class Emu3TextModel(LlamaModel, Emu3PreTrainedModel):
+ def __init__(self, config: Emu3Config):
+ super().__init__(config)
+ self.layers = nn.ModuleList(
+ [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+
+
+class Emu3ForCausalLM(LlamaForCausalLM, Emu3PreTrainedModel, GenerationMixin):
+ config_class = Emu3TextConfig
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Emu3TextModel(config)
+
+ @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig")
+ def forward(**super_kwargs):
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ num_logits_to_keep (`int`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
+ >>> import torch
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> model = Emu3ForCausalLM.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
+ >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf")
+
+ >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
+
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
+ >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ ```"""
+ super().forward()
+
+
+class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
+ def __init__(self, config):
+ super().__init__(config)
+ self.text_model = Emu3ForCausalLM._from_config(config.text_config)
+ self.vqmodel = Emu3VQVAE(config.vq_config)
+ self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.text_model.get_input_embeddings()
+
+ def set_input_embeddings(self, value):
+ self.text_model.set_input_embeddings(value)
+
+ def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
+ """
+ Tokenizes images into discrete tokens with VQGAN module. Converts
+ obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
+ special tokens.
+
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
+ The tensors corresponding to the input images.
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
+ The sizes of the images in the batch, being (height, width) for each image.
+ """
+ image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
+ bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
+ bpe_tokens = torch.cat(bpe_tokens_list)
+ return bpe_tokens
+
+ @torch.no_grad
+ def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
+ """
+ Decodes generated image tokens from language model to continuous pixel values
+ with VQGAN module via upsampling.
+
+ Args:
+ image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
+ The tensors corresponding to the input images.
+ height (`int`):
+ Height of the generated image before upsampling.
+ width (`int`):
+ Width of the generated image before upsampling.
+ """
+ sequences = image_tokens[:, :-3].view(-1, height, width + 1)
+ image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
+ image = self.vqmodel.decode(image_tokens)
+ return image
+
+ @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ pixel_values: torch.FloatTensor = None,
+ image_sizes: torch.Tensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ num_logits_to_keep: int = 0,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ num_logits_to_keep (`int`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
+ >>> import torch
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> model = Emu3ForConditionalGeneration.from_pretrained("Emu3-community/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
+ >>> processor = Emu3Processor.from_pretrained("Emu3-community/Emu3-Chat-hf")
+
+ >>> conversation = [
+ ... {
+ ... "role": "system",
+ ... "content": [
+ ... {"type": "text", "text": "You are a helpful assistant."},
+ ... ],
+ ... },
+ ... {
+ ... "role": "user",
+ ... "content": [
+ ... {"type": "image"},
+ ... {"type": "text", "text": "Please describe the image."},
+ ... ],
+ ... },
+ ... ]
+
+ >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
+ >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
+
+ >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
+
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
+ >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if pixel_values is not None and inputs_embeds is not None:
+ raise ValueError(
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if pixel_values is not None:
+ image_tokens = self.get_image_tokens(pixel_values, image_sizes)
+ special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
+ image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
+ input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ cache_position=cache_position,
+ num_logits_to_keep=num_logits_to_keep,
+ )
+
+ return outputs
+
+
+__all__ = [
+ "Emu3ForConditionalGeneration",
+ "Emu3ForCausalLM",
+ "Emu3TextModel",
+ "Emu3PreTrainedModel",
+ "Emu3VQVAE",
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py b/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c536f5f24636f6fbb2447a5fb9b21d1d547f2af
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/emu3/processing_emu3.py
@@ -0,0 +1,217 @@
+# coding=utf-8
+# Copyright 2024 HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Union
+
+from ...image_processing_utils import BatchFeature
+from ...image_utils import ImageInput
+from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
+from ...tokenization_utils_base import PreTokenizedInput, TextInput
+
+
+class Emu3TextKwargs(TextKwargs, total=False):
+ return_for_image_generation: bool
+
+
+class Emu3ImagesKwargs(ImagesKwargs, total=False):
+ ratio: str
+ image_area: int
+
+
+class Emu3ProcessorKwargs(ProcessingKwargs, total=False):
+ text_kwargs: Emu3TextKwargs
+ images_kwargs: Emu3ImagesKwargs
+ _defaults = {
+ "text_kwargs": {
+ "return_for_image_generation": False,
+ },
+ "images_kwargs": {
+ "ratio": "1:1",
+ "image_area": 518400,
+ },
+ }
+
+
+class Emu3Processor(ProcessorMixin):
+ r"""
+ Constructs a Emu3 processor which wraps a Emu3 image processor and a GPT2 tokenizer into a single
+ processor.
+
+ [`Emu3Processor`] offers all the functionalities of [`Emu3ImageProcessor`] and [`GPT2TokenizerFast`].
+ See the [`~Emu3Processor.__call__`] and [`~Emu3Processor.decode`] for more information.
+
+ Args:
+ image_processor ([`Emu3ImageProcessor`]):
+ The image processor is a required input.
+ tokenizer ([`Emu3TokenizerFast`]):
+ The tokenizer is a required input.
+ chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
+ in a chat into a tokenizable string.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast")
+ image_processor_class = "Emu3ImageProcessor"
+
+ def __init__(
+ self,
+ image_processor,
+ tokenizer,
+ chat_template=None,
+ **kwargs,
+ ):
+ self.image_token = tokenizer.image_token # image_token as placeholder to be replaced by vq-vae tokens
+ self.image_start_token = tokenizer.boi_token # "<|image start|>" fixed tokens for start and end of image
+ self.image_end_token = tokenizer.eoi_token # "<|image end|>"
+ self.fake_token_around_image = tokenizer.image_wrapper_token # "<|image token|>" every image starts with it
+ self.eof_token = tokenizer.eof_token # "<|extra_201|>"
+ self.bos_token = tokenizer.bos_token
+ self.downsample_ratio = 8
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
+
+ def __call__(
+ self,
+ images: Optional[ImageInput] = None,
+ text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
+ audio=None,
+ videos=None,
+ **kwargs: Unpack[Emu3ProcessorKwargs],
+ ) -> BatchFeature:
+ """
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
+ and `kwargs` arguments to Emu3TokenizerFast's [`~Emu3TokenizerFast.__call__`] if `text` is not `None` to encode
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
+ of the above two methods for more information.
+
+ Args:
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
+ tensor. Both channels-first and channels-last formats are supported.
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors of a particular framework. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return NumPy `np.ndarray` objects.
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
+
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
+ `None`).
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
+ """
+ # check if images and text inputs are reversed for BC
+
+ if isinstance(text, str):
+ text = [text]
+ elif not isinstance(text, list) and not isinstance(text[0], str):
+ raise TypeError("Invalid input text. Please provide a string, or a list of strings")
+
+ output_kwargs = self._merge_kwargs(
+ Emu3ProcessorKwargs,
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
+ **kwargs,
+ )
+ return_for_image_generation = output_kwargs["text_kwargs"].pop("return_for_image_generation", False)
+ ratio = output_kwargs["images_kwargs"].pop("ratio", None)
+ image_area = output_kwargs["images_kwargs"].pop("image_area", None)
+
+ if return_for_image_generation and images is not None:
+ raise ValueError("You should not provide `images` when `return_for_image_generation=True`")
+
+ if not return_for_image_generation and text is None and images is None:
+ raise ValueError("You must provide either text or images when `return_for_image_generation=False`")
+
+ image_features = {}
+ image_start_tokens = f"{self.image_start_token}"
+ image_end_tokens = f"{self.eof_token}{self.image_end_token}"
+
+ # generate text from image + text input, so we add placeholders for image tokens
+ if not return_for_image_generation and images is not None:
+ image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
+ image_sizes = iter(image_features.image_sizes)
+
+ prompt_strings = []
+ for sample in text:
+ while self.image_token in sample:
+ image_size = next(image_sizes)
+ height, width = image_size
+ height = height // self.downsample_ratio
+ width = width // self.downsample_ratio
+ image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code
+
+ image_placeholder = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}{'' * image_seq_length}{image_end_tokens}"
+ sample = sample.replace(self.image_token, image_placeholder, 1)
+ sample = f"{self.bos_token}{sample}" # add BOS because PT tokenizer doesn't add it
+ prompt_strings.append(sample)
+ text = [sample.replace("", self.image_token) for sample in prompt_strings]
+
+ # generate image from text input, so we add begin-of-image tokens from where image generation starts
+ elif return_for_image_generation:
+ height, width = self.calculate_generate_size(ratio, image_area, self.downsample_ratio)
+ image_prompt = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}"
+ text = [f"{self.bos_token}{sample}{image_prompt}" for sample in text]
+ image_features["image_sizes"] = [[height, width]] * len(text)
+
+ # else just generate from text-only input, and we do no special treatment for text
+ data = self.tokenizer(text, **output_kwargs["text_kwargs"])
+ data.update(**image_features)
+
+ return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"]["return_tensors"])
+
+ def calculate_generate_size(self, ratio, image_area, spatial_factor):
+ width, height = map(int, ratio.split(":"))
+ current_area = width * height
+ target_ratio = (image_area / current_area) ** 0.5
+
+ token_height = int(round(height * target_ratio / spatial_factor))
+ token_width = int(round(width * target_ratio / spatial_factor))
+ return token_height, token_width
+
+ def postprocess(self, images: ImageInput, **kwargs):
+ return self.image_processor.postprocess(images, **kwargs)
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
+
+
+__all__ = ["Emu3Processor"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93f097e9fe166be8e13553120abafb2988755a4f
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2c7c99d926e9a22bc70db72ae8073005537ed7f3
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ad507465039eed2cf0729b8587a540b03c8691e
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py
@@ -0,0 +1,30 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_lxmert import *
+ from .modeling_lxmert import *
+ from .modeling_tf_lxmert import *
+ from .tokenization_lxmert import *
+ from .tokenization_lxmert_fast import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ae1729cbe4087048906350d3b53d5a5208ed4901
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..c092d01148a607629665b8742b25156730ad5024
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py
@@ -0,0 +1,169 @@
+# coding=utf-8
+# Copyright 2018, Hao Tan, Mohit Bansal
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""LXMERT model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class LxmertConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used
+ to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating
+ a configuration with the defaults will yield a similar configuration to that of the Lxmert
+ [unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the LXMERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`LxmertModel`] or [`TFLxmertModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_qa_labels (`int`, *optional*, defaults to 9500):
+ This represents the total number of different question answering (QA) labels there are. If using more than
+ one dataset with QA, the user will need to account for the total number of labels that all of the datasets
+ have in total.
+ num_object_labels (`int`, *optional*, defaults to 1600):
+ This represents the total number of semantically unique objects that lxmert will be able to classify a
+ pooled-object feature as belonging too.
+ num_attr_labels (`int`, *optional*, defaults to 400):
+ This represents the total number of semantically unique attributes that lxmert will be able to classify a
+ pooled-object feature as possessing.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the *token_type_ids* passed into [`BertModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ l_layers (`int`, *optional*, defaults to 9):
+ Number of hidden layers in the Transformer language encoder.
+ x_layers (`int`, *optional*, defaults to 5):
+ Number of hidden layers in the Transformer cross modality encoder.
+ r_layers (`int`, *optional*, defaults to 5):
+ Number of hidden layers in the Transformer visual encoder.
+ visual_feat_dim (`int`, *optional*, defaults to 2048):
+ This represents the last dimension of the pooled-object features used as input for the model, representing
+ the size of each object feature itself.
+ visual_pos_dim (`int`, *optional*, defaults to 4):
+ This represents the number of spacial features that are mixed into the visual features. The default is set
+ to 4 because most commonly this will represent the location of a bounding box. i.e., (x, y, width, height)
+ visual_loss_normalizer (`float`, *optional*, defaults to 6.67):
+ This represents the scaling factor in which each visual loss is multiplied by if during pretraining, one
+ decided to train with multiple vision-based loss objectives.
+ task_matched (`bool`, *optional*, defaults to `True`):
+ This task is used for sentence-image matching. If the sentence correctly describes the image the label will
+ be 1. If the sentence does not correctly describe the image, the label will be 0.
+ task_mask_lm (`bool`, *optional*, defaults to `True`):
+ Whether or not to add masked language modeling (as used in pretraining models such as BERT) to the loss
+ objective.
+ task_obj_predict (`bool`, *optional*, defaults to `True`):
+ Whether or not to add object prediction, attribute prediction and feature regression to the loss objective.
+ task_qa (`bool`, *optional*, defaults to `True`):
+ Whether or not to add the question-answering loss to the objective
+ visual_obj_loss (`bool`, *optional*, defaults to `True`):
+ Whether or not to calculate the object-prediction loss objective
+ visual_attr_loss (`bool`, *optional*, defaults to `True`):
+ Whether or not to calculate the attribute-prediction loss objective
+ visual_feat_loss (`bool`, *optional*, defaults to `True`):
+ Whether or not to calculate the feature-regression loss objective
+ """
+
+ model_type = "lxmert"
+ attribute_map = {}
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_attention_heads=12,
+ num_qa_labels=9500,
+ num_object_labels=1600,
+ num_attr_labels=400,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ l_layers=9,
+ x_layers=5,
+ r_layers=5,
+ visual_feat_dim=2048,
+ visual_pos_dim=4,
+ visual_loss_normalizer=6.67,
+ task_matched=True,
+ task_mask_lm=True,
+ task_obj_predict=True,
+ task_qa=True,
+ visual_obj_loss=True,
+ visual_attr_loss=True,
+ visual_feat_loss=True,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.num_qa_labels = num_qa_labels
+ self.num_object_labels = num_object_labels
+ self.num_attr_labels = num_attr_labels
+ self.l_layers = l_layers
+ self.x_layers = x_layers
+ self.r_layers = r_layers
+ self.visual_feat_dim = visual_feat_dim
+ self.visual_pos_dim = visual_pos_dim
+ self.visual_loss_normalizer = visual_loss_normalizer
+ self.task_matched = task_matched
+ self.task_mask_lm = task_mask_lm
+ self.task_obj_predict = task_obj_predict
+ self.task_qa = task_qa
+ self.visual_obj_loss = visual_obj_loss
+ self.visual_attr_loss = visual_attr_loss
+ self.visual_feat_loss = visual_feat_loss
+ self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
+ super().__init__(**kwargs)
+
+
+__all__ = ["LxmertConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..b97d78d1505b5c56ee03dc0957c83f53a232eb1b
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py
@@ -0,0 +1,1461 @@
+# coding=utf-8
+# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch LXMERT model."""
+
+import math
+import os
+import warnings
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import CrossEntropyLoss, SmoothL1Loss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_lxmert import LxmertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
+_CONFIG_FOR_DOC = "LxmertConfig"
+
+
+class GeLU(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x):
+ return gelu(x)
+
+
+@dataclass
+class LxmertModelOutput(ModelOutput):
+ """
+ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
+ visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
+ encoder")
+
+
+ Args:
+ language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the language encoder.
+ vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the visual encoder.
+ pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
+ by a Linear layer and a Tanh activation function. The Linear
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ language_output: Optional[torch.FloatTensor] = None
+ vision_output: Optional[torch.FloatTensor] = None
+ pooled_output: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class LxmertForQuestionAnsweringOutput(ModelOutput):
+ """
+ Output type of [`LxmertForQuestionAnswering`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.k.
+ question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ question_answering_score: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class LxmertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`LxmertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the textual matching objective (classification) head (scores of True/False
+ continuation before SoftMax).
+ question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: Optional[torch.FloatTensor] = None
+ cross_relationship_score: Optional[torch.FloatTensor] = None
+ question_answering_score: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array)
+
+ for name, array in zip(names, arrays):
+ name = name.split("/")
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(
+ n
+ in [
+ "adam_v",
+ "adam_m",
+ "AdamWeightDecayOptimizer",
+ "AdamWeightDecayOptimizer_1",
+ "global_step",
+ ]
+ for n in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ except AttributeError:
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ if m_name[-11:] == "_embeddings":
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ assert pointer.shape == array.shape
+ except AssertionError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ return model
+
+
+class LxmertEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, input_ids, token_type_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ device = input_ids.device
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+ device = inputs_embeds.device
+ seq_length = input_shape[1]
+
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
+ position_ids = position_ids.unsqueeze(0).expand(input_shape)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class LxmertAttention(nn.Module):
+ def __init__(self, config, ctx_dim=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.head_size = self.num_attention_heads * self.attention_head_size
+
+ # visual_dim = 2048
+ if ctx_dim is None:
+ ctx_dim = config.hidden_size
+ self.query = nn.Linear(config.hidden_size, self.head_size)
+ self.key = nn.Linear(ctx_dim, self.head_size)
+ self.value = nn.Linear(ctx_dim, self.head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, context, attention_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(context)
+ mixed_value_layer = self.value(context)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ key_layer = self.transpose_for_scores(mixed_key_layer)
+ value_layer = self.transpose_for_scores(mixed_value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ if attention_mask is not None:
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+
+class LxmertAttentionOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LxmertCrossAttentionLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.att = LxmertAttention(config)
+ self.output = LxmertAttentionOutput(config)
+
+ def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False):
+ output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions)
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.output(output[0], input_tensor)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+
+class LxmertSelfAttentionLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = LxmertAttention(config)
+ self.output = LxmertAttentionOutput(config)
+
+ def forward(self, input_tensor, attention_mask, output_attentions=False):
+ # Self attention attends to itself, thus keys and queries are the same (input_tensor).
+ output = self.self(
+ input_tensor,
+ input_tensor,
+ attention_mask,
+ output_attentions=output_attentions,
+ )
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.output(output[0], input_tensor)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+
+class LxmertIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+class LxmertOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LxmertLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = LxmertSelfAttentionLayer(config)
+ self.intermediate = LxmertIntermediate(config)
+ self.output = LxmertOutput(config)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
+ attention_output = outputs[0]
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ outputs = (layer_output,) + outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class LxmertXLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # The cross-attention Layer
+ self.visual_attention = LxmertCrossAttentionLayer(config)
+
+ # Self-attention Layers
+ self.lang_self_att = LxmertSelfAttentionLayer(config)
+ self.visn_self_att = LxmertSelfAttentionLayer(config)
+
+ # Intermediate and Output Layers (FFNs)
+ self.lang_inter = LxmertIntermediate(config)
+ self.lang_output = LxmertOutput(config)
+ self.visn_inter = LxmertIntermediate(config)
+ self.visn_output = LxmertOutput(config)
+
+ def cross_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visual_input,
+ visual_attention_mask,
+ output_x_attentions=False,
+ ):
+ # Cross Attention
+ lang_att_output = self.visual_attention(
+ lang_input,
+ visual_input,
+ ctx_att_mask=visual_attention_mask,
+ output_attentions=output_x_attentions,
+ )
+ visual_att_output = self.visual_attention(
+ visual_input,
+ lang_input,
+ ctx_att_mask=lang_attention_mask,
+ output_attentions=False,
+ )
+ return lang_att_output, visual_att_output
+
+ def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask):
+ # Self Attention
+ lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False)
+ visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False)
+ return lang_att_output[0], visual_att_output[0]
+
+ def output_fc(self, lang_input, visual_input):
+ # FC layers
+ lang_inter_output = self.lang_inter(lang_input)
+ visual_inter_output = self.visn_inter(visual_input)
+
+ # Layer output
+ lang_output = self.lang_output(lang_inter_output, lang_input)
+ visual_output = self.visn_output(visual_inter_output, visual_input)
+
+ return lang_output, visual_output
+
+ def forward(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions=False,
+ ):
+ lang_att_output, visual_att_output = self.cross_att(
+ lang_input=lang_feats,
+ lang_attention_mask=lang_attention_mask,
+ visual_input=visual_feats,
+ visual_attention_mask=visual_attention_mask,
+ output_x_attentions=output_attentions,
+ )
+ attention_probs = lang_att_output[1:]
+ lang_att_output, visual_att_output = self.self_att(
+ lang_att_output[0],
+ lang_attention_mask,
+ visual_att_output[0],
+ visual_attention_mask,
+ )
+
+ lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output)
+ return (
+ (
+ lang_output,
+ visual_output,
+ attention_probs[0],
+ )
+ if output_attentions
+ else (lang_output, visual_output)
+ )
+
+
+class LxmertVisualFeatureEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ feat_dim = config.visual_feat_dim
+ pos_dim = config.visual_pos_dim
+
+ # Object feature encoding
+ self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
+ self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ # Box position encoding
+ self.box_fc = nn.Linear(pos_dim, config.hidden_size)
+ self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, visual_feats, visual_pos):
+ x = self.visn_fc(visual_feats)
+ x = self.visn_layer_norm(x)
+ y = self.box_fc(visual_pos)
+ y = self.box_layer_norm(y)
+ output = (x + y) / 2
+
+ output = self.dropout(output)
+ return output
+
+
+class LxmertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ # Obj-level image embedding layer
+ self.visn_fc = LxmertVisualFeatureEncoder(config)
+ self.config = config
+
+ # Number of layers
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+
+ # Layers
+ # Using self.layer instead of self.l_layer to support loading BERT weights.
+ self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)])
+ self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)])
+ self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)])
+
+ def forward(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_pos,
+ visual_attention_mask=None,
+ output_attentions=None,
+ ):
+ vision_hidden_states = ()
+ language_hidden_states = ()
+ vision_attentions = () if output_attentions or self.config.output_attentions else None
+ language_attentions = () if output_attentions or self.config.output_attentions else None
+ cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
+
+ visual_feats = self.visn_fc(visual_feats, visual_pos)
+
+ # Run language layers
+ for layer_module in self.layer:
+ l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions)
+ lang_feats = l_outputs[0]
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if language_attentions is not None:
+ language_attentions = language_attentions + (l_outputs[1],)
+
+ # Run relational layers
+ for layer_module in self.r_layers:
+ v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions)
+ visual_feats = v_outputs[0]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ if vision_attentions is not None:
+ vision_attentions = vision_attentions + (v_outputs[1],)
+
+ # Run cross-modality layers
+ for layer_module in self.x_layers:
+ x_outputs = layer_module(
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions=output_attentions,
+ )
+ lang_feats, visual_feats = x_outputs[:2]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if cross_encoder_attentions is not None:
+ cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
+ visual_encoder_outputs = (
+ vision_hidden_states,
+ vision_attentions if output_attentions else None,
+ )
+ lang_encoder_outputs = (
+ language_hidden_states,
+ language_attentions if output_attentions else None,
+ )
+ return (
+ visual_encoder_outputs,
+ lang_encoder_outputs,
+ cross_encoder_attentions if output_attentions else None,
+ )
+
+
+class LxmertPooler(nn.Module):
+ def __init__(self, config):
+ super(LxmertPooler, self).__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class LxmertPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super(LxmertPredictionHeadTransform, self).__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class LxmertLMPredictionHead(nn.Module):
+ def __init__(self, config, lxmert_model_embedding_weights):
+ super(LxmertLMPredictionHead, self).__init__()
+ self.transform = LxmertPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(
+ lxmert_model_embedding_weights.size(1),
+ lxmert_model_embedding_weights.size(0),
+ bias=False,
+ )
+ self.decoder.weight = lxmert_model_embedding_weights
+ self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0)))
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states) + self.bias
+ return hidden_states
+
+
+class LxmertVisualAnswerHead(nn.Module):
+ def __init__(self, config, num_labels):
+ super().__init__()
+ hid_dim = config.hidden_size
+ self.logit_fc = nn.Sequential(
+ nn.Linear(hid_dim, hid_dim * 2),
+ GeLU(),
+ nn.LayerNorm(hid_dim * 2, eps=1e-12),
+ nn.Linear(hid_dim * 2, num_labels),
+ )
+
+ def forward(self, hidden_states):
+ return self.logit_fc(hidden_states)
+
+
+class LxmertVisualObjHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = LxmertPredictionHeadTransform(config)
+ # Decide the use of visual losses
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ }
+ self.visual_losses = visual_losses
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder_dict = nn.ModuleDict(
+ {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses}
+ )
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ output = {}
+ for key in self.visual_losses:
+ output[key] = self.decoder_dict[key](hidden_states)
+ return output
+
+
+class LxmertPreTrainingHeads(nn.Module):
+ def __init__(self, config, lxmert_model_embedding_weights):
+ super(LxmertPreTrainingHeads, self).__init__()
+ self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class LxmertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LxmertConfig
+ load_tf_weights = load_tf_weights_in_lxmert
+ base_model_prefix = "lxmert"
+ _supports_param_buffer_assignment = False
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+LXMERT_START_DOCSTRING = r"""
+
+ The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
+ Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
+ model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual
+ genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
+ for question answering attribute prediction, and object tag prediction.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LXMERT_INPUTS_DOCSTRING = r"""
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents visual features. They ROI pooled object features from bounding boxes using a
+ faster-RCNN model)
+
+ These are currently not provided by the transformers library.
+ visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`):
+ This input represents spacial features corresponding to their relative (via index) visual features. The
+ pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
+ 1.
+
+ These are currently not provided by the transformers library.
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertModel(LxmertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.embeddings = LxmertEmbeddings(config)
+ self.encoder = LxmertEncoder(config)
+ self.pooler = LxmertPooler(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embeddings.word_embeddings = new_embeddings
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LxmertModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if visual_feats is None:
+ raise ValueError("`visual_feats` cannot be `None`")
+ if visual_pos is None:
+ raise ValueError("`visual_pos` cannot be `None`")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and the dtype's smallest value for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
+
+ # Process the visual attention mask
+ if visual_attention_mask is not None:
+ extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2)
+ extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype)
+ extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min
+ else:
+ extended_visual_attention_mask = None
+
+ # Positional Word Embeddings
+ embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds)
+
+ # Run Lxmert encoder
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ visual_attention_mask=extended_visual_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
+ vision_hidden_states = visual_encoder_outputs[0]
+ language_hidden_states = lang_encoder_outputs[0]
+
+ all_attentions = ()
+ if output_attentions:
+ language_attentions = lang_encoder_outputs[1]
+ vision_attentions = visual_encoder_outputs[1]
+ cross_encoder_attentions = encoder_outputs[2]
+ all_attentions = (
+ language_attentions,
+ vision_attentions,
+ cross_encoder_attentions,
+ )
+
+ hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
+
+ visual_output = vision_hidden_states[-1]
+ lang_output = language_hidden_states[-1]
+ pooled_output = self.pooler(lang_output)
+
+ if not return_dict:
+ return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
+
+ return LxmertModelOutput(
+ pooled_output=pooled_output,
+ language_output=lang_output,
+ vision_output=visual_output,
+ language_hidden_states=language_hidden_states if output_hidden_states else None,
+ vision_hidden_states=vision_hidden_states if output_hidden_states else None,
+ language_attentions=language_attentions if output_attentions else None,
+ vision_attentions=vision_attentions if output_attentions else None,
+ cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
+ )
+
+
+@add_start_docstrings(
+ """Lxmert Model with a specified pretraining head on top.""",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertForPreTraining(LxmertPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ # Configuration
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Use of pretraining tasks
+ self.task_mask_lm = config.task_mask_lm
+ self.task_obj_predict = config.task_obj_predict
+ self.task_matched = config.task_matched
+ self.task_qa = config.task_qa
+
+ # Lxmert backbone
+ self.lxmert = LxmertModel(config)
+
+ # Pre-training heads
+ self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight)
+ if self.task_obj_predict:
+ self.obj_predict_head = LxmertVisualObjHead(config)
+ if self.task_qa:
+ self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
+
+ # Weight initialization
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Loss functions
+ self.loss_fcts = {
+ "l2": SmoothL1Loss(reduction="none"),
+ "visual_ce": CrossEntropyLoss(reduction="none"),
+ "ce": CrossEntropyLoss(),
+ }
+
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {
+ "shape": (-1,),
+ "num": config.num_object_labels,
+ "loss": "visual_ce",
+ }
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {
+ "shape": (-1,),
+ "num": config.num_attr_labels,
+ "loss": "visual_ce",
+ }
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ "loss": "l2",
+ }
+ self.visual_losses = visual_losses
+
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
+ # Adding the following steps to resize bias to match the shape of resized embeddings
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ self.cls.predictions.bias = self._resize_bias(self.cls.predictions.bias, new_num_tokens)
+ return new_embeddings
+
+ def _resize_bias(self, bias, new_num_tokens: int):
+ old_num_tokens = bias.shape[0]
+ if new_num_tokens <= old_num_tokens:
+ new_bias = bias[:new_num_tokens]
+ else:
+ extra_bias = torch.zeros(new_num_tokens - old_num_tokens, device=bias.device)
+ new_bias = torch.cat([bias, extra_bias])
+ new_bias = nn.Parameter(new_bias)
+ return new_bias
+
+ def resize_num_qa_labels(self, num_labels):
+ """
+ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
+ will add newly initialized weights. Reducing the size will remove weights from the end
+
+ Args:
+ num_labels (`int`, *optional*):
+ New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
+ weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
+ returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
+
+ Return:
+ `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
+ """
+
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ if num_labels is None or cur_qa_logit_layer is None:
+ return
+ new_qa_logit_layer = self._resize_qa_labels(num_labels)
+ self.config.num_qa_labels = num_labels
+ self.num_qa_labels = num_labels
+
+ return new_qa_logit_layer
+
+ def _resize_qa_labels(self, num_labels):
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
+ self._set_qa_logit_layer(new_qa_logit_layer)
+ return self.get_qa_logit_layer()
+
+ def get_qa_logit_layer(self) -> nn.Module:
+ """
+ Returns the linear layer that produces question answering logits.
+
+ Returns:
+ `nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT
+ does not have a visual answering head.
+ """
+ if hasattr(self, "answer_head"):
+ return self.answer_head.logit_fc[-1]
+
+ def _set_qa_logit_layer(self, qa_logit_layer):
+ self.answer_head.logit_fc[-1] = qa_logit_layer
+
+ def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
+ if num_labels is None:
+ return cur_qa_logit_layer
+
+ cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
+ if cur_qa_labels == num_labels:
+ return cur_qa_logit_layer
+
+ # Build new linear output
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
+ else:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
+
+ new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
+
+ # initialize all new labels
+ self._init_weights(new_qa_logit_layer)
+
+ # Copy labels from the previous weights
+ num_labels_to_copy = min(cur_qa_labels, num_labels)
+ new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
+
+ return new_qa_logit_layer
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
+ matched_label: Optional[torch.LongTensor] = None,
+ ans: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*):
+ each key is named after each one of the visual losses and each element of the tuple is of the shape
+ `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
+ the label score respectively
+ matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the whether or not the text input matches the image (classification) loss. Input
+ should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates that the sentence does not match the image,
+ - 1 indicates that the sentence does match the image.
+ ans (`Torch.Tensor` of shape `(batch_size)`, *optional*):
+ a one hot representation hof the correct answer *optional*
+
+ Returns:
+ """
+
+ if "masked_lm_labels" in kwargs:
+ warnings.warn(
+ "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`"
+ " instead.",
+ FutureWarning,
+ )
+ labels = kwargs.pop("masked_lm_labels")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ lxmert_output = self.lxmert(
+ input_ids=input_ids,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ token_type_ids=token_type_ids,
+ attention_mask=attention_mask,
+ visual_attention_mask=visual_attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ lang_output, visual_output, pooled_output = (
+ lxmert_output[0],
+ lxmert_output[1],
+ lxmert_output[2],
+ )
+ lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
+ if self.task_qa:
+ answer_score = self.answer_head(pooled_output)
+ else:
+ answer_score = pooled_output[0][0]
+
+ total_loss = (
+ None
+ if (labels is None and matched_label is None and obj_labels is None and ans is None)
+ else torch.tensor(0.0, device=device)
+ )
+ if labels is not None and self.task_mask_lm:
+ masked_lm_loss = self.loss_fcts["ce"](
+ lang_prediction_scores.view(-1, self.config.vocab_size),
+ labels.view(-1),
+ )
+ total_loss += masked_lm_loss
+ if matched_label is not None and self.task_matched:
+ matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1))
+ total_loss += matched_loss
+ if obj_labels is not None and self.task_obj_predict:
+ total_visual_loss = torch.tensor(0.0, device=input_ids.device)
+ visual_prediction_scores_dict = self.obj_predict_head(visual_output)
+ for key, key_info in self.visual_losses.items():
+ label, mask_conf = obj_labels[key]
+ output_dim = key_info["num"]
+ loss_fct_name = key_info["loss"]
+ label_shape = key_info["shape"]
+ weight = self.visual_loss_normalizer
+ visual_loss_fct = self.loss_fcts[loss_fct_name]
+ visual_prediction_scores = visual_prediction_scores_dict[key]
+ visual_loss = visual_loss_fct(
+ visual_prediction_scores.view(-1, output_dim),
+ label.view(label_shape),
+ )
+ if visual_loss.dim() > 1: # Regression Losses
+ visual_loss = visual_loss.mean(1)
+ visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight
+ total_visual_loss += visual_loss
+ total_loss += total_visual_loss
+ if ans is not None and self.task_qa:
+ answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1))
+ total_loss += answer_loss
+
+ if not return_dict:
+ output = (
+ lang_prediction_scores,
+ cross_relationship_score,
+ answer_score,
+ ) + lxmert_output[3:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return LxmertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=lang_prediction_scores,
+ cross_relationship_score=cross_relationship_score,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ """Lxmert Model with a visual-answering head on top for downstream QA tasks""",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertForQuestionAnswering(LxmertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ # Configuration
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Lxmert backbone
+ self.lxmert = LxmertModel(config)
+
+ self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
+
+ # Weight initialization
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Loss function
+ self.loss = CrossEntropyLoss()
+
+ def resize_num_qa_labels(self, num_labels):
+ """
+ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
+ will add newly initialized weights. Reducing the size will remove weights from the end
+
+ Args:
+ num_labels (`int`, *optional*):
+ New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
+ weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
+ returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
+
+ Return:
+ `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
+ """
+
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ if num_labels is None or cur_qa_logit_layer is None:
+ return
+ new_qa_logit_layer = self._resize_qa_labels(num_labels)
+ self.config.num_qa_labels = num_labels
+ self.num_qa_labels = num_labels
+
+ return new_qa_logit_layer
+
+ def _resize_qa_labels(self, num_labels):
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
+ self._set_qa_logit_layer(new_qa_logit_layer)
+ return self.get_qa_logit_layer()
+
+ def get_qa_logit_layer(self) -> nn.Module:
+ """
+ Returns the linear layer that produces question answering logits
+
+ Returns:
+ `nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType
+ object if Lxmert does not have the visual answering head.
+ """
+
+ if hasattr(self, "answer_head"):
+ return self.answer_head.logit_fc[-1]
+
+ def _set_qa_logit_layer(self, qa_logit_layer):
+ self.answer_head.logit_fc[-1] = qa_logit_layer
+
+ def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
+ if num_labels is None:
+ return cur_qa_logit_layer
+
+ cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
+ if cur_qa_labels == num_labels:
+ return cur_qa_logit_layer
+
+ # Build new linear output
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
+ else:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
+
+ new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
+
+ # initialize all new labels
+ self._init_weights(new_qa_logit_layer)
+
+ # Copy labels from the previous weights
+ num_labels_to_copy = min(cur_qa_labels, num_labels)
+ new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
+
+ return new_qa_logit_layer
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LxmertForQuestionAnsweringOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`Torch.Tensor` of shape `(batch_size)`, *optional*):
+ A one-hot representation of the correct answer
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ lxmert_output = self.lxmert(
+ input_ids=input_ids,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ token_type_ids=token_type_ids,
+ attention_mask=attention_mask,
+ visual_attention_mask=visual_attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ pooled_output = lxmert_output[2]
+ answer_score = self.answer_head(pooled_output)
+ loss = None
+ if labels is not None:
+ loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (answer_score,) + lxmert_output[3:]
+ return (loss,) + output if loss is not None else output
+
+ return LxmertForQuestionAnsweringOutput(
+ loss=loss,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
+
+
+__all__ = [
+ "LxmertEncoder",
+ "LxmertForPreTraining",
+ "LxmertForQuestionAnswering",
+ "LxmertModel",
+ "LxmertPreTrainedModel",
+ "LxmertVisualFeatureEncoder",
+ "LxmertXLayer",
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd07c49f4918b593524050410b5fbf2c4eb21f04
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py
@@ -0,0 +1,1661 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the
+# Lxmert Authors.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""TF 2.0 LXMERT model."""
+
+from __future__ import annotations
+
+import warnings
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ get_initializer,
+ keras,
+ keras_serializable,
+ shape_list,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_lxmert import LxmertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
+_CONFIG_FOR_DOC = "LxmertConfig"
+
+
+@dataclass
+class TFLxmertModelOutput(ModelOutput):
+ """
+ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
+ visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
+ encoder")
+
+
+ Args:
+ language_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the language encoder.
+ vision_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the visual encoder.
+ pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
+ by a Linear layer and a Tanh activation function. The Linear
+ language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ language_output: tf.Tensor | None = None
+ vision_output: tf.Tensor | None = None
+ pooled_output: tf.Tensor | None = None
+ language_hidden_states: Tuple[tf.Tensor] | None = None
+ vision_hidden_states: Tuple[tf.Tensor] | None = None
+ language_attentions: Tuple[tf.Tensor] | None = None
+ vision_attentions: Tuple[tf.Tensor] | None = None
+ cross_encoder_attentions: Tuple[tf.Tensor] | None = None
+
+
+@dataclass
+class TFLxmertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`LxmertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`):
+ Prediction scores of the textual matching objective (classification) head (scores of True/False
+ continuation before SoftMax).
+ question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+
+ """
+
+ loss: tf.Tensor | None = None
+ prediction_logits: tf.Tensor | None = None
+ cross_relationship_score: tf.Tensor | None = None
+ question_answering_score: tf.Tensor | None = None
+ language_hidden_states: Tuple[tf.Tensor] | None = None
+ vision_hidden_states: Tuple[tf.Tensor] | None = None
+ language_attentions: Tuple[tf.Tensor] | None = None
+ vision_attentions: Tuple[tf.Tensor] | None = None
+ cross_encoder_attentions: Tuple[tf.Tensor] | None = None
+
+
+class TFLxmertVisualFeatureEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ # Object feature encoding
+ self.visn_fc = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="visn_fc",
+ )
+ self.visn_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="visn_layer_norm")
+
+ # Box position encoding
+ self.box_fc = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="box_fc",
+ )
+ self.box_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm")
+
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.feat_dim = config.visual_feat_dim
+ self.pos_dim = config.visual_pos_dim
+ self.config = config
+
+ def call(self, visn_input, training=False):
+ feats, boxes = visn_input
+
+ x = self.visn_fc(feats)
+ x = self.visn_layer_norm(x)
+ y = self.box_fc(boxes)
+ y = self.box_layer_norm(y)
+ output = (x + y) / 2
+
+ output = self.dropout(output, training=training)
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visn_fc", None) is not None:
+ with tf.name_scope(self.visn_fc.name):
+ self.visn_fc.build([None, None, self.feat_dim])
+ if getattr(self, "visn_layer_norm", None) is not None:
+ with tf.name_scope(self.visn_layer_norm.name):
+ self.visn_layer_norm.build([None, None, self.config.hidden_size])
+ if getattr(self, "box_fc", None) is not None:
+ with tf.name_scope(self.box_fc.name):
+ self.box_fc.build([None, None, self.pos_dim])
+ if getattr(self, "box_layer_norm", None) is not None:
+ with tf.name_scope(self.box_layer_norm.name):
+ self.box_layer_norm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+ def call(self, input_ids=None, token_type_ids=None, inputs_embeds=None, training=False):
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFLxmertAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads}"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ assert config.hidden_size % config.num_attention_heads == 0
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="query",
+ )
+ self.key = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="key",
+ )
+ self.value = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="value",
+ )
+
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
+ self.ctx_dim = config.hidden_size
+ self.config = config
+
+ def transpose_for_scores(self, x, batch_size):
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
+ return tf.transpose(x, perm=[0, 2, 1, 3])
+
+ def call(self, hidden_states, context, attention_mask, output_attentions, training=False):
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(context)
+ mixed_value_layer = self.value(context)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = tf.matmul(
+ query_layer, key_layer, transpose_b=True
+ ) # (batch size, num_heads, seq_len_q, seq_len_k)
+ dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores
+ attention_scores = attention_scores / tf.math.sqrt(dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFLxmertModel call() function)
+ attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs, training=training)
+ context_layer = tf.matmul(attention_probs, value_layer)
+
+ context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
+ context_layer = tf.reshape(
+ context_layer, (batch_size, -1, self.all_head_size)
+ ) # (batch_size, seq_len_q, all_head_size)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.ctx_dim])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.ctx_dim])
+
+
+class TFLxmertIntermediate(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.intermediate_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertAttentionOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertSelfAttentionLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.self = TFLxmertAttention(config, name="self")
+ self.attention_output = TFLxmertAttentionOutput(config, name="output")
+
+ def call(self, input_tensor, attention_mask, output_attentions, training=False):
+ # Self attention attends to itself, thus keys and queries are the same (input_tensor).
+ self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions)
+ if output_attentions:
+ attention_probs = self_output[1]
+ attention_output = self.attention_output(self_output[0], input_tensor)
+ return (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self", None) is not None:
+ with tf.name_scope(self.self.name):
+ self.self.build(None)
+ if getattr(self, "attention_output", None) is not None:
+ with tf.name_scope(self.attention_output.name):
+ self.attention_output.build(None)
+
+
+class TFLxmertCrossAttentionLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.att = TFLxmertAttention(config, name="att")
+ self.attention_output = TFLxmertAttentionOutput(config, name="output")
+
+ def call(
+ self,
+ input_tensor,
+ ctx_tensor,
+ ctx_att_mask,
+ output_attentions=False,
+ training=False,
+ ):
+ output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training)
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.attention_output(output[0], input_tensor, training=training)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "att", None) is not None:
+ with tf.name_scope(self.att.name):
+ self.att.build(None)
+ if getattr(self, "attention_output", None) is not None:
+ with tf.name_scope(self.attention_output.name):
+ self.attention_output.build(None)
+
+
+class TFLxmertLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.attention = TFLxmertSelfAttentionLayer(config, name="attention")
+ self.intermediate = TFLxmertIntermediate(config, name="intermediate")
+ self.transformer_output = TFLxmertOutput(config, name="output")
+
+ def call(self, hidden_states, attention_mask, output_attentions, training=False):
+ attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training)
+ attention_output = attention_outputs[0]
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.transformer_output(intermediate_output, attention_output, training=training)
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "transformer_output", None) is not None:
+ with tf.name_scope(self.transformer_output.name):
+ self.transformer_output.build(None)
+
+
+class TFLxmertXLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention")
+
+ # Self-attention Layers
+ self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att")
+ self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att")
+
+ # Intermediate and Output Layers (FFNs)
+ self.lang_inter = TFLxmertIntermediate(config, name="lang_inter")
+ self.lang_output = TFLxmertOutput(config, name="lang_output")
+ self.visn_inter = TFLxmertIntermediate(config, name="visn_inter")
+ self.visn_output = TFLxmertOutput(config, name="visn_output")
+
+ def cross_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visn_input,
+ visn_attention_mask,
+ output_attentions,
+ training=False,
+ ):
+ # Cross Attention
+
+ # Keras saving and loading model *does not work* with the same inputs for two layers.
+ lang_attention_lang_input = tf.identity(lang_input)
+ visn_attention_lang_input = tf.identity(lang_input)
+ lang_attention_visn_input = tf.identity(visn_input)
+ visn_attention_visn_input = tf.identity(visn_input)
+
+ lang_att_output = self.visual_attention(
+ lang_attention_lang_input,
+ lang_attention_visn_input,
+ visn_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ visn_att_output = self.visual_attention(
+ visn_attention_visn_input,
+ visn_attention_lang_input,
+ lang_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ return lang_att_output, visn_att_output
+
+ def self_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visn_input,
+ visn_attention_mask,
+ training=False,
+ ):
+ # Self Attention
+ output_attentions = False
+ lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training)
+ visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training)
+ return lang_att_output[0], visn_att_output[0]
+
+ def output_fc(self, lang_input, visn_input, training=False):
+ # FC layers
+ lang_inter_output = self.lang_inter(lang_input)
+ visn_inter_output = self.visn_inter(visn_input)
+
+ # Layer output
+ lang_output = self.lang_output(lang_inter_output, lang_input, training)
+ visn_output = self.visn_output(visn_inter_output, visn_input, training)
+ return lang_output, visn_output
+
+ def call(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visn_feats,
+ visn_attention_mask,
+ output_attentions,
+ training=False,
+ ):
+ lang_att_output = lang_feats
+ visn_att_output = visn_feats
+
+ lang_att_output, visn_att_output = self.cross_att(
+ lang_att_output,
+ lang_attention_mask,
+ visn_att_output,
+ visn_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ attention_probs = lang_att_output[1:]
+ lang_att_output, visn_att_output = self.self_att(
+ lang_att_output[0],
+ lang_attention_mask,
+ visn_att_output[0],
+ visn_attention_mask,
+ training=training,
+ )
+ lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training)
+
+ return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visual_attention", None) is not None:
+ with tf.name_scope(self.visual_attention.name):
+ self.visual_attention.build(None)
+ if getattr(self, "lang_self_att", None) is not None:
+ with tf.name_scope(self.lang_self_att.name):
+ self.lang_self_att.build(None)
+ if getattr(self, "visn_self_att", None) is not None:
+ with tf.name_scope(self.visn_self_att.name):
+ self.visn_self_att.build(None)
+ if getattr(self, "lang_inter", None) is not None:
+ with tf.name_scope(self.lang_inter.name):
+ self.lang_inter.build(None)
+ if getattr(self, "lang_output", None) is not None:
+ with tf.name_scope(self.lang_output.name):
+ self.lang_output.build(None)
+ if getattr(self, "visn_inter", None) is not None:
+ with tf.name_scope(self.visn_inter.name):
+ self.visn_inter.build(None)
+ if getattr(self, "visn_output", None) is not None:
+ with tf.name_scope(self.visn_output.name):
+ self.visn_output.build(None)
+
+
+class TFLxmertEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc")
+
+ # Number of layers
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+
+ # Layers
+ # Using self.layer instead of self.l_layer to support loading BERT weights.
+ self.layer = [TFLxmertLayer(config, name=f"layer_._{i}") for i in range(self.num_l_layers)]
+ self.x_layers = [TFLxmertXLayer(config, name=f"x_layers_._{i}") for i in range(self.num_x_layers)]
+ self.r_layers = [TFLxmertLayer(config, name=f"r_layers_._{i}") for i in range(self.num_r_layers)]
+ self.config = config
+
+ def call(
+ self,
+ lang_feats=None,
+ lang_attention_mask=None,
+ visual_feats=None,
+ visual_pos=None,
+ visual_attention_mask=None,
+ output_attentions=None,
+ training=False,
+ ):
+ vision_hidden_states = ()
+ language_hidden_states = ()
+ vision_attentions = () if output_attentions or self.config.output_attentions else None
+ language_attentions = () if output_attentions or self.config.output_attentions else None
+ cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
+
+ visual_feats = self.visn_fc([visual_feats, visual_pos], training=training)
+
+ # Run language layers
+ for layer_module in self.layer:
+ l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training)
+ lang_feats = l_outputs[0]
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if language_attentions is not None:
+ language_attentions = language_attentions + (l_outputs[1],)
+
+ # Run relational layers
+ for layer_module in self.r_layers:
+ v_outputs = layer_module(
+ visual_feats,
+ visual_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ visual_feats = v_outputs[0]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ if vision_attentions is not None:
+ vision_attentions = vision_attentions + (v_outputs[1],)
+
+ # Run cross-modality layers
+ for layer_module in self.x_layers:
+ x_outputs = layer_module(
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ lang_feats, visual_feats = x_outputs[:2]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if cross_encoder_attentions is not None:
+ cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
+
+ visual_encoder_outputs = (
+ vision_hidden_states,
+ vision_attentions if output_attentions else None,
+ )
+ lang_encoder_outputs = (
+ language_hidden_states,
+ language_attentions if output_attentions else None,
+ )
+
+ return (
+ visual_encoder_outputs,
+ lang_encoder_outputs,
+ cross_encoder_attentions if output_attentions else None,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visn_fc", None) is not None:
+ with tf.name_scope(self.visn_fc.name):
+ self.visn_fc.build(None)
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+ if getattr(self, "x_layers", None) is not None:
+ for layer in self.x_layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+ if getattr(self, "r_layers", None) is not None:
+ for layer in self.r_layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFLxmertMainLayer(keras.layers.Layer):
+ config_class = LxmertConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.return_dict = config.use_return_dict
+ self.embeddings = TFLxmertEmbeddings(config, name="embeddings")
+ self.encoder = TFLxmertEncoder(config, name="encoder")
+ self.pooler = TFLxmertPooler(config, name="pooler")
+ self.config = config
+
+ def get_input_embeddings(self):
+ return self.embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ visual_feats=None,
+ visual_pos=None,
+ attention_mask=None,
+ visual_attention_mask=None,
+ token_type_ids=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+ if visual_pos is None or visual_feats is None:
+ raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(input_shape, 1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(input_shape, 0)
+
+ # Positional Word Embeddings
+ embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds, training)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ if visual_attention_mask is not None:
+ extended_visual_attention_mask = tf.reshape(visual_attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+ extended_visual_attention_mask = tf.expand_dims(tf.expand_dims(visual_attention_mask, axis=1), axis=1)
+
+ extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, dtype=embedding_output.dtype)
+ extended_visual_attention_mask = tf.multiply(
+ tf.subtract(one_cst, extended_visual_attention_mask), ten_thousand_cst
+ )
+ else:
+ extended_visual_attention_mask = None
+
+ # Run Lxmert encoder
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ visual_feats,
+ visual_pos,
+ extended_visual_attention_mask,
+ output_attentions,
+ training,
+ )
+ visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
+ vision_hidden_states = visual_encoder_outputs[0]
+ language_hidden_states = lang_encoder_outputs[0]
+
+ all_attentions = ()
+ if output_attentions:
+ language_attentions = lang_encoder_outputs[1]
+ vision_attentions = visual_encoder_outputs[1]
+ cross_encoder_attentions = encoder_outputs[2]
+ all_attentions = (
+ language_attentions,
+ vision_attentions,
+ cross_encoder_attentions,
+ )
+
+ hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
+
+ visual_output = vision_hidden_states[-1]
+ lang_output = language_hidden_states[-1]
+ pooled_output = self.pooler(lang_output)
+
+ if not return_dict:
+ return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
+
+ return TFLxmertModelOutput(
+ pooled_output=pooled_output,
+ language_output=lang_output,
+ vision_output=visual_output,
+ language_hidden_states=language_hidden_states if output_hidden_states else None,
+ vision_hidden_states=vision_hidden_states if output_hidden_states else None,
+ language_attentions=language_attentions if output_attentions else None,
+ vision_attentions=vision_attentions if output_attentions else None,
+ cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+
+
+class TFLxmertPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LxmertConfig
+ base_model_prefix = "lxmert"
+
+ @property
+ def dummy_inputs(self):
+ """
+ Dummy inputs to build the network.
+
+ Returns:
+ tf.Tensor with dummy inputs
+ """
+ batch_size = 2
+ num_visual_features = 10
+ input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
+ visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
+ visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
+
+ return {
+ "input_ids": input_ids,
+ "visual_feats": visual_feats,
+ "visual_pos": visual_pos,
+ }
+
+ @property
+ def input_signature(self):
+ return {
+ "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
+ "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
+ "visual_feats": tf.TensorSpec((None, None, self.config.visual_feat_dim), tf.float32, name="visual_feats"),
+ "visual_pos": tf.TensorSpec((None, None, 4), tf.float32, name="visual_pos"),
+ "visual_attention_mask": tf.TensorSpec((None, None), tf.int32, name="visual_attention_mask"),
+ "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
+ }
+
+
+LXMERT_START_DOCSTRING = r"""
+
+ The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
+ Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
+ model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual
+ genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
+ for question answering attribute prediction, and object tag prediction.
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LXMERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents visual features. They ROI pooled object features from bounding boxes using a
+ faster-RCNN model)
+
+ These are currently not provided by the transformers library.
+ visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents spacial features corresponding to their relative (via index) visual features. The
+ pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
+ 1.
+
+ These are currently not provided by the transformers library.
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ visual_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ MMask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
+ LXMERT_START_DOCSTRING,
+)
+class TFLxmertModel(TFLxmertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.lxmert = TFLxmertMainLayer(config, name="lxmert")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFLxmertModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ visual_feats: tf.Tensor | None = None,
+ visual_pos: tf.Tensor | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ visual_attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[Tuple, TFLxmertModelOutput]:
+ outputs = self.lxmert(
+ input_ids,
+ visual_feats,
+ visual_pos,
+ attention_mask,
+ visual_attention_mask,
+ token_type_ids,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "lxmert", None) is not None:
+ with tf.name_scope(self.lxmert.name):
+ self.lxmert.build(None)
+
+
+class TFLxmertPooler(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Lxmert
+class TFLxmertPredictionHeadTransform(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.transform_act_fn = config.hidden_act
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(inputs=hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Lxmert
+class TFLxmertLMPredictionHead(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+
+ self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+
+ def get_output_embeddings(self) -> keras.layers.Layer:
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value: tf.Variable):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self) -> Dict[str, tf.Variable]:
+ return {"bias": self.bias}
+
+ def set_bias(self, value: tf.Variable):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.transform(hidden_states=hidden_states)
+ seq_length = shape_list(hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Lxmert
+class TFLxmertMLMHead(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
+
+ def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
+ prediction_scores = self.predictions(hidden_states=sequence_output)
+
+ return prediction_scores
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+
+
+class TFLxmertPreTrainingHeads(keras.layers.Layer):
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+ self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
+
+ self.seq_relationship = keras.layers.Dense(
+ 2,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="seq_relationship",
+ )
+ self.config = config
+
+ def call(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+ if getattr(self, "seq_relationship", None) is not None:
+ with tf.name_scope(self.seq_relationship.name):
+ self.seq_relationship.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertVisualAnswerHead(keras.layers.Layer):
+ def __init__(self, config, num_labels, **kwargs):
+ super().__init__(**kwargs)
+ hid_dim = config.hidden_size
+ self.dense = keras.layers.Dense(
+ hid_dim * 2,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="logit_fc_._0",
+ )
+ self.activation = get_tf_activation("gelu")
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2")
+ self.dense_1 = keras.layers.Dense(
+ num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="logit_fc_._3",
+ )
+ self.hid_dim = hid_dim
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.dense_1(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.hid_dim])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, self.hid_dim * 2])
+ if getattr(self, "dense_1", None) is not None:
+ with tf.name_scope(self.dense_1.name):
+ self.dense_1.build([None, None, self.hid_dim * 2])
+
+
+class TFLxmertVisualObjHead(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
+
+ # Decide the use of visual losses
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim}
+ self.visual_losses = visual_losses
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder_dict = {
+ key: keras.layers.Dense(
+ self.visual_losses[key]["num"],
+ kernel_initializer=get_initializer(config.initializer_range),
+ name=f"decoder_dict.{key}",
+ )
+ for key in self.visual_losses
+ }
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ output = {}
+ for key in self.visual_losses:
+ output[key] = self.decoder_dict[key](hidden_states)
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+ if getattr(self, "decoder_dict", None) is not None:
+ for layer in self.decoder_dict.values():
+ with tf.name_scope(layer.name):
+ layer.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings("""Lxmert Model with a `language modeling` head on top.""", LXMERT_START_DOCSTRING)
+class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Use of pretraining tasks
+ self.task_mask_lm = config.task_mask_lm
+ self.task_obj_predict = config.task_obj_predict
+ self.task_matched = config.task_matched
+ self.task_qa = config.task_qa
+
+ # Lxmert backbone
+ self.lxmert = TFLxmertMainLayer(config, name="lxmert")
+
+ # Pre-training heads
+ self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls")
+ if self.task_obj_predict:
+ self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head")
+ if self.task_qa:
+ self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head")
+
+ # Loss functions
+ self.loss_fcts = {
+ "l2": keras.losses.Huber(delta=1.0, name="huber_loss"),
+ "visn_ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
+ "ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
+ }
+
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {
+ "shape": (-1,),
+ "num": config.num_object_labels,
+ "loss": "visn_ce",
+ }
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {
+ "shape": (-1,),
+ "num": config.num_attr_labels,
+ "loss": "visn_ce",
+ }
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ "loss": "l2",
+ }
+ self.visual_losses = visual_losses
+
+ @property
+ def dummy_inputs(self):
+ """
+ Dummy inputs to build the network.
+
+ Returns:
+ tf.Tensor with dummy inputs
+ """
+ batch_size = 2
+ num_visual_features = 10
+ input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
+ visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
+ visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
+
+ if self.config.task_obj_predict:
+ obj_labels = {}
+ if self.config.visual_attr_loss and self.config.task_obj_predict:
+ obj_labels["attr"] = (
+ tf.ones([batch_size, num_visual_features]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+ if self.config.visual_feat_loss and self.config.task_obj_predict:
+ obj_labels["feat"] = (
+ tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+ if self.config.visual_obj_loss and self.config.task_obj_predict:
+ obj_labels["obj"] = (
+ tf.ones([batch_size, num_visual_features]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+
+ return {
+ **{
+ "input_ids": input_ids,
+ "visual_feats": visual_feats,
+ "visual_pos": visual_pos,
+ },
+ **({"obj_labels": obj_labels} if self.config.task_obj_predict else {}),
+ }
+
+ def get_lm_head(self):
+ return self.cls.predictions
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ visual_feats: tf.Tensor | None = None,
+ visual_pos: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ visual_attention_mask: tf.Tensor | None = None,
+ token_type_ids: tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ masked_lm_labels: tf.Tensor | None = None,
+ obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None,
+ matched_label: tf.Tensor | None = None,
+ ans: tf.Tensor | None = None,
+ output_attentions: bool | None = None,
+ output_hidden_states: bool | None = None,
+ return_dict: bool | None = None,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput:
+ r"""
+ masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`):
+ each key is named after each one of the visual losses and each element of the tuple is of the shape
+ `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
+ the label score respectively
+ matched_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the whether or not the text input matches the image (classification) loss. Input
+ should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates that the sentence does not match the image,
+ - 1 indicates that the sentence does match the image.
+ ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`):
+ a one hot representation hof the correct answer *optional*
+
+ Returns:
+ """
+
+ lxmert_output = self.lxmert(
+ input_ids,
+ visual_feats,
+ visual_pos,
+ attention_mask,
+ visual_attention_mask,
+ token_type_ids,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training,
+ )
+
+ lang_output, visual_output, pooled_output = (
+ lxmert_output[0],
+ lxmert_output[1],
+ lxmert_output[2],
+ )
+ lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
+ if self.task_qa:
+ answer_score = self.answer_head(pooled_output)
+ else:
+ answer_score = pooled_output[0][0]
+
+ total_loss = (
+ None
+ if (masked_lm_labels is None and matched_label is None and obj_labels is None and ans is None)
+ else tf.constant(0.0)
+ )
+ losses = ()
+ if masked_lm_labels is not None and self.task_mask_lm:
+ masked_lm_loss = self.loss_fcts["ce"](
+ tf.reshape(masked_lm_labels, [-1]),
+ tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]),
+ )
+ total_loss += masked_lm_loss
+ losses += (masked_lm_loss,)
+ if matched_label is not None and self.task_matched:
+ matched_loss = self.loss_fcts["ce"](
+ tf.reshape(matched_label, [-1]),
+ tf.reshape(cross_relationship_score, [-1, 2]),
+ )
+ total_loss += matched_loss
+ losses += (matched_loss,)
+ if obj_labels is not None and self.task_obj_predict:
+ total_visn_loss = 0.0
+ visn_prediction_scores_dict = self.obj_predict_head(visual_output)
+ for key, key_info in self.visual_losses.items():
+ label, mask_conf = obj_labels[key]
+ output_dim = key_info["num"]
+ loss_fct_name = key_info["loss"]
+ label_shape = key_info["shape"]
+ weight = self.visual_loss_normalizer
+ visn_loss_fct = self.loss_fcts[loss_fct_name]
+ visn_prediction_scores = visn_prediction_scores_dict[key]
+ visn_loss = visn_loss_fct(
+ tf.reshape(label, label_shape),
+ tf.reshape(visn_prediction_scores, [-1, output_dim]),
+ )
+
+ if visn_loss.ndim > 1: # Regression Losses
+ visn_loss = tf.reduce_mean(visn_loss)
+ visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight
+ total_visn_loss += visn_loss
+ losses += (visn_loss,)
+ total_loss += total_visn_loss
+ if ans is not None and self.task_qa:
+ answer_loss = self.loss_fcts["ce"](
+ tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels])
+ )
+ # exclude "*2" here to match the effect of QA losses.
+ # Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper)
+ # Now : (loss *1) for 12 epochs
+ #
+ # * 2 # Multiply by 2 because > half of the data will not have label
+ total_loss += answer_loss
+ losses += (answer_loss,)
+ # return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach()
+
+ if not return_dict:
+ output = (
+ lang_prediction_scores,
+ cross_relationship_score,
+ answer_score,
+ ) + lxmert_output[3:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return TFLxmertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=lang_prediction_scores,
+ cross_relationship_score=cross_relationship_score,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "lxmert", None) is not None:
+ with tf.name_scope(self.lxmert.name):
+ self.lxmert.build(None)
+ if getattr(self, "cls", None) is not None:
+ with tf.name_scope(self.cls.name):
+ self.cls.build(None)
+ if getattr(self, "obj_predict_head", None) is not None:
+ with tf.name_scope(self.obj_predict_head.name):
+ self.obj_predict_head.build(None)
+ if getattr(self, "answer_head", None) is not None:
+ with tf.name_scope(self.answer_head.name):
+ self.answer_head.build(None)
+
+
+__all__ = [
+ "TFLxmertForPreTraining",
+ "TFLxmertMainLayer",
+ "TFLxmertModel",
+ "TFLxmertPreTrainedModel",
+ "TFLxmertVisualFeatureEncoder",
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..2dea92f7e0a16bcd86d3da3152a100473237762b
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py
@@ -0,0 +1,511 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+# Copied from transformers.models.bert.tokenization_bert.load_vocab
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, BertTokenizer->LxmertTokenizer
+class LxmertTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a Lxmert tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original Lxmert).
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
+ extra spaces.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ clean_up_tokenization_spaces=True,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = LxmertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text, split_special_tokens=False):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(
+ text, never_split=self.all_special_tokens if not split_special_tokens else None
+ ):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Lxmert sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer:
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer:
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
+
+
+__all__ = ["LxmertTokenizer"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a6a11bba2178ea79ee996185e7f876c697cce9e
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py
@@ -0,0 +1,172 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from .tokenization_lxmert import LxmertTokenizer
+
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+
+# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, Bert->Lxmert
+class LxmertTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" Lxmert tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ clean_text (`bool`, *optional*, defaults to `True`):
+ Whether or not to clean the text before tokenization by removing any control characters and replacing all
+ whitespaces by the classic one.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original Lxmert).
+ wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
+ The prefix for subwords.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = LxmertTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ normalizer_state.get("lowercase", do_lower_case) != do_lower_case
+ or normalizer_state.get("strip_accents", strip_accents) != strip_accents
+ or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
+ ):
+ normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
+ normalizer_state["lowercase"] = do_lower_case
+ normalizer_state["strip_accents"] = strip_accents
+ normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
+ self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
+
+ self.do_lower_case = do_lower_case
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Lxmert sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1 is not None:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+
+__all__ = ["LxmertTokenizerFast"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1389215e8398512df0285a13766d532e7117d29c
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_mamba2 import *
+ from .modeling_mamba2 import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4ac93bc6b6f7d42824d5c57dae4740d1d3e8dc34
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mamba2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..beab37f65c1a8daa20e27a816db5e832c49f6fa0
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/__init__.py
@@ -0,0 +1,29 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_mvp import *
+ from .modeling_mvp import *
+ from .tokenization_mvp import *
+ from .tokenization_mvp_fast import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..591e750ef0fe65e663bc9ad8a7da6cab3f1d0efc
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..97d10c1a8d138efcf1660c944ca7c04f3882d778
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..a270461db40d6064f0f2b738c6a01605345e94a5
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py
@@ -0,0 +1,183 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""MVP model configuration"""
+
+import warnings
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class MvpConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50267):
+ Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`MvpModel`].
+ d_model (`int`, *optional*, defaults to 1024):
+ Dimensionality of the layers and the pooler layer.
+ encoder_layers (`int`, *optional*, defaults to 12):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 12):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for classifier.
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ scale_embedding (`bool`, *optional*, defaults to `False`):
+ Scale embeddings by diving by sqrt(d_model).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
+ `eos_token_id`.
+ use_prompt (`bool`, *optional*, defaults to `False`):
+ Whether or not to use prompt.
+ prompt_length (`int`, *optional*, defaults to 100):
+ The length of prompt.
+ prompt_mid_dim (`int`, *optional*, defaults to 800):
+ Dimensionality of the "intermediate" layer in prompt.
+ Example:
+
+ ```python
+ >>> from transformers import MvpConfig, MvpModel
+
+ >>> # Initializing a MVP RUCAIBox/mvp style configuration
+ >>> configuration = MvpConfig()
+
+ >>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
+ >>> model = MvpModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "mvp"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
+
+ def __init__(
+ self,
+ vocab_size=50267,
+ max_position_embeddings=1024,
+ encoder_layers=12,
+ encoder_ffn_dim=4096,
+ encoder_attention_heads=16,
+ decoder_layers=12,
+ decoder_ffn_dim=4096,
+ decoder_attention_heads=16,
+ encoder_layerdrop=0.0,
+ decoder_layerdrop=0.0,
+ activation_function="gelu",
+ d_model=1024,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ classifier_dropout=0.0,
+ scale_embedding=False,
+ use_cache=True,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ is_encoder_decoder=True,
+ decoder_start_token_id=2,
+ forced_eos_token_id=2,
+ use_prompt=False,
+ prompt_length=100,
+ prompt_mid_dim=800,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.classifier_dropout = classifier_dropout
+ self.use_cache = use_cache
+ self.num_hidden_layers = encoder_layers
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
+ self.use_prompt = use_prompt
+ self.prompt_length = prompt_length
+ self.prompt_mid_dim = prompt_mid_dim
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ decoder_start_token_id=decoder_start_token_id,
+ forced_eos_token_id=forced_eos_token_id,
+ **kwargs,
+ )
+
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
+ self.forced_bos_token_id = self.bos_token_id
+ warnings.warn(
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
+ "The config can simply be saved and uploaded again to be fixed."
+ )
+
+
+__all__ = ["MvpConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py b/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..e3a32082cce8b374c00fb87a83566199a332f295
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py
@@ -0,0 +1,394 @@
+# coding=utf-8
+# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import json
+import os
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
+
+# See all MVP models at https://huggingface.co/models?filter=mvp
+
+
+@lru_cache()
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class MvpTokenizer(PreTrainedTokenizer):
+ """
+ Constructs a MVP tokenizer, which is smilar to the RoBERTa tokenizer, using byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import MvpTokenizer
+
+ >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
+ >>> tokenizer("Hello world")["input_ids"]
+ [0, 31414, 232, 2]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [0, 20920, 232, 2]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (MVP tokenizer detect beginning of words by the preceding space).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
+ sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ super().__init__(
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ def get_vocab(self):
+ vocab = self.encoder.copy()
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
+ return bpe_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A MVP sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
+ text = " " + text
+ return (text, kwargs)
+
+
+__all__ = ["MvpTokenizer"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2161a4948b5e32f600af135c33330c2e2c353c7
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_olmo2 import *
+ from .modeling_olmo2 import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f4a8cbb351a8c4142ad2f7fb564f7698e8e2c23a
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6236ad84307ac52c04e6a830cb094569e42b0b02
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/configuration_olmo2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c91dbc597f52f41fee630fb9b1eb30822041a935
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modeling_olmo2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ead0a81efafd795c6e18d4383211e31ca7d12b6
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/olmo2/__pycache__/modular_olmo2.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py
new file mode 100644
index 0000000000000000000000000000000000000000..83c3263de1f552042700609330429100aa2f2abc
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/configuration_olmo2.py
@@ -0,0 +1,167 @@
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py.
+# Do NOT edit this file manually as any edits will be overwritten by the generation of
+# the file from the modular. If any change should be done, please apply the change to the
+# modular_olmo2.py file directly. One of our CI enforces this.
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+
+
+from ...configuration_utils import PretrainedConfig
+
+
+class Olmo2Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50304):
+ Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`Olmo2Model`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 11008):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ num_key_value_heads (`int`, *optional*):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*, defaults to 1):
+ Padding token id.
+ bos_token_id (`int`, *optional*):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 50279):
+ End of stream token id.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to tie weight embeddings
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
+ these scaling strategies behave:
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
+ experimental feature, subject to breaking API changes in future versions.
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+
+ ```python
+ >>> from transformers import Olmo2Model, Olmo2Config
+
+ >>> # Initializing a Olmo2 7B style configuration
+ >>> configuration = Olmo2Config()
+
+ >>> # Initializing a model from the Olmo2 7B style configuration
+ >>> model = Olmo2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ model_type = "olmo2"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=50304,
+ hidden_size=4096,
+ intermediate_size=11008,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=None,
+ hidden_act="silu",
+ max_position_embeddings=2048,
+ initializer_range=0.02,
+ use_cache=True,
+ pad_token_id=1,
+ bos_token_id=None,
+ eos_token_id=50279,
+ tie_word_embeddings=False,
+ rope_theta=10000.0,
+ rope_scaling=None,
+ attention_bias=False,
+ attention_dropout=0.0,
+ rms_norm_eps=1e-5,
+ **kwargs,
+ ):
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self._rope_scaling_validation()
+ self.attention_bias = attention_bias
+ self.attention_dropout = attention_dropout
+
+ self.rms_norm_eps = rms_norm_eps
+
+ def _rope_scaling_validation(self):
+ """
+ Validate the `rope_scaling` configuration.
+ """
+ if self.rope_scaling is None:
+ return
+
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
+ raise ValueError(
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
+ )
+ rope_scaling_type = self.rope_scaling.get("type", None)
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
+ raise ValueError(
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
+ )
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
+
+
+__all__ = ["Olmo2Config"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py
new file mode 100644
index 0000000000000000000000000000000000000000..7219284bd862ca0775daae1e884cd4f1b43aa735
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modeling_olmo2.py
@@ -0,0 +1,843 @@
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py.
+# Do NOT edit this file manually as any edits will be overwritten by the generation of
+# the file from the modular. If any change should be done, please apply the change to the
+# modular_olmo2.py file directly. One of our CI enforces this.
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+from typing import Callable, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+
+from ...activations import ACT2FN
+from ...cache_utils import Cache, DynamicCache, StaticCache
+from ...generation import GenerationMixin
+from ...modeling_attn_mask_utils import AttentionMaskConverter
+from ...modeling_flash_attention_utils import FlashAttentionKwargs
+from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
+from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
+from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
+from ...processing_utils import Unpack
+from ...utils import (
+ LossKwargs,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_olmo2 import Olmo2Config
+
+
+logger = logging.get_logger(__name__)
+_CONFIG_FOR_DOC = "Olmo2Config"
+
+
+class Olmo2RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Olmo2RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+ def extra_repr(self):
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
+
+
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+def eager_attention_forward(
+ module: nn.Module,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ attention_mask: Optional[torch.Tensor],
+ scaling: float,
+ dropout: float = 0.0,
+ **kwargs,
+):
+ key_states = repeat_kv(key, module.num_key_value_groups)
+ value_states = repeat_kv(value, module.num_key_value_groups)
+
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
+ if attention_mask is not None:
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ return attn_output, attn_weights
+
+
+class Olmo2Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
+ self.scaling = self.head_dim**-0.5
+ self.attention_dropout = config.attention_dropout
+ self.is_causal = True
+
+ self.q_proj = nn.Linear(
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.k_proj = nn.Linear(
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.v_proj = nn.Linear(
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
+ )
+ self.o_proj = nn.Linear(
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
+ )
+ self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
+ self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor],
+ past_key_value: Optional[Cache] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ input_shape = hidden_states.shape[:-1]
+ hidden_shape = (*input_shape, -1, self.head_dim)
+
+ query_states = self.q_norm(self.q_proj(hidden_states))
+ key_states = self.k_norm(self.k_proj(hidden_states))
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(hidden_shape).transpose(1, 2)
+ key_states = key_states.view(hidden_shape).transpose(1, 2)
+ value_states = value_states.view(hidden_shape).transpose(1, 2)
+
+ cos, sin = position_embeddings
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ attention_interface: Callable = eager_attention_forward
+ if self.config._attn_implementation != "eager":
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
+ logger.warning_once(
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ else:
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
+
+ attn_output, attn_weights = attention_interface(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ dropout=0.0 if not self.training else self.attention_dropout,
+ scaling=self.scaling,
+ **kwargs,
+ )
+
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
+ attn_output = self.o_proj(attn_output)
+ return attn_output, attn_weights
+
+
+class Olmo2MLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+ return down_proj
+
+
+class Olmo2DecoderLayer(nn.Module):
+ def __init__(self, config: Olmo2Config, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+ self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx)
+
+ self.mlp = Olmo2MLP(config)
+ self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ residual = hidden_states
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = self.post_feedforward_layernorm(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ return outputs
+
+
+class Olmo2RotaryEmbedding(nn.Module):
+ def __init__(self, config: Olmo2Config, device=None):
+ super().__init__()
+ # BC: "rope_type" was originally "type"
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
+ else:
+ self.rope_type = "default"
+ self.max_seq_len_cached = config.max_position_embeddings
+ self.original_max_seq_len = config.max_position_embeddings
+
+ self.config = config
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
+
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+ self.original_inv_freq = self.inv_freq
+
+ def _dynamic_frequency_update(self, position_ids, device):
+ """
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
+ 1 - growing beyond the cached sequence length (allow scaling)
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
+ """
+ seq_len = torch.max(position_ids) + 1
+ if seq_len > self.max_seq_len_cached: # growth
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
+ self.max_seq_len_cached = seq_len
+
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
+ self.max_seq_len_cached = self.original_max_seq_len
+
+ @torch.no_grad()
+ def forward(self, x, position_ids):
+ if "dynamic" in self.rope_type:
+ self._dynamic_frequency_update(position_ids, device=x.device)
+
+ # Core RoPE block
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
+ position_ids_expanded = position_ids[:, None, :].float()
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
+ device_type = x.device.type
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False):
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos()
+ sin = emb.sin()
+
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
+ cos = cos * self.attention_scaling
+ sin = sin * self.attention_scaling
+
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
+
+
+OLMO2_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Olmo2Config`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare Olmo2 Model outputting raw hidden-states without any specific head on top.",
+ OLMO2_START_DOCSTRING,
+)
+class Olmo2PreTrainedModel(PreTrainedModel):
+ config_class = Olmo2Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Olmo2DecoderLayer"]
+ _skip_keys_device_placement = ["past_key_values"]
+ _supports_flash_attn_2 = True
+ _supports_sdpa = True
+ _supports_flex_attn = True
+ _supports_cache_class = True
+ _supports_quantized_cache = True
+ _supports_static_cache = True
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+OLMO2_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Two formats are allowed:
+ - a [`~cache_utils.Cache`] instance, see our
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
+ cache format.
+
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+@add_start_docstrings(
+ "The bare Olmo2 Model outputting raw hidden-states without any specific head on top.",
+ OLMO2_START_DOCSTRING,
+)
+class Olmo2Model(Olmo2PreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`]
+
+ Args:
+ config: Olmo2Config
+ """
+
+ def __init__(self, config: Olmo2Config):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.rotary_emb = Olmo2RotaryEmbedding(config=config)
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
+
+ if self.gradient_checkpointing and self.training and use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
+ )
+ use_cache = False
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if use_cache and past_key_values is None:
+ past_key_values = DynamicCache()
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = self._update_causal_mask(
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
+ )
+
+ hidden_states = inputs_embeds
+
+ # create position embeddings to be shared across the decoder layers
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ causal_mask,
+ position_ids,
+ past_key_values,
+ output_attentions,
+ use_cache,
+ cache_position,
+ position_embeddings,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **flash_attn_kwargs,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ output = BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=past_key_values if use_cache else None,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+ return output if return_dict else output.to_tuple()
+
+ def _update_causal_mask(
+ self,
+ attention_mask: torch.Tensor,
+ input_tensor: torch.Tensor,
+ cache_position: torch.Tensor,
+ past_key_values: Cache,
+ output_attentions: bool,
+ ):
+ if self.config._attn_implementation == "flash_attention_2":
+ if attention_mask is not None and (attention_mask == 0.0).any():
+ return attention_mask
+ return None
+
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
+ # to infer the attention mask.
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ using_static_cache = isinstance(past_key_values, StaticCache)
+
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
+ attention_mask,
+ inputs_embeds=input_tensor,
+ past_key_values_length=past_seen_tokens,
+ is_training=self.training,
+ ):
+ return None
+
+ dtype, device = input_tensor.dtype, input_tensor.device
+ sequence_length = input_tensor.shape[1]
+ if using_static_cache:
+ target_length = past_key_values.get_max_cache_shape()
+ else:
+ target_length = (
+ attention_mask.shape[-1]
+ if isinstance(attention_mask, torch.Tensor)
+ else past_seen_tokens + sequence_length + 1
+ )
+
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
+ attention_mask,
+ sequence_length=sequence_length,
+ target_length=target_length,
+ dtype=dtype,
+ device=device,
+ cache_position=cache_position,
+ batch_size=input_tensor.shape[0],
+ )
+
+ if (
+ self.config._attn_implementation == "sdpa"
+ and attention_mask is not None
+ and attention_mask.device.type == "cuda"
+ and not output_attentions
+ ):
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+ # Details: https://github.com/pytorch/pytorch/issues/110213
+ min_dtype = torch.finfo(dtype).min
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+ return causal_mask
+
+ @staticmethod
+ def _prepare_4d_causal_attention_mask_with_cache_position(
+ attention_mask: torch.Tensor,
+ sequence_length: int,
+ target_length: int,
+ dtype: torch.dtype,
+ device: torch.device,
+ cache_position: torch.Tensor,
+ batch_size: int,
+ **kwargs,
+ ):
+ """
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
+
+ Args:
+ attention_mask (`torch.Tensor`):
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
+ `(batch_size, 1, query_length, key_value_length)`.
+ sequence_length (`int`):
+ The sequence length being processed.
+ target_length (`int`):
+ The target length: when generating with static cache, the mask should be as long as the static cache,
+ to account for the 0 padding, the part of the cache that is not filled yet.
+ dtype (`torch.dtype`):
+ The dtype to use for the 4D attention mask.
+ device (`torch.device`):
+ The device to plcae the 4D attention mask on.
+ cache_position (`torch.Tensor`):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ batch_size (`torch.Tensor`):
+ Batch size.
+ """
+ if attention_mask is not None and attention_mask.dim() == 4:
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
+ causal_mask = attention_mask
+ else:
+ min_dtype = torch.finfo(dtype).min
+ causal_mask = torch.full(
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
+ )
+ if sequence_length != 1:
+ causal_mask = torch.triu(causal_mask, diagonal=1)
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
+ if attention_mask is not None:
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
+ mask_length = attention_mask.shape[-1]
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
+ padding_mask = padding_mask == 0
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
+ padding_mask, min_dtype
+ )
+
+ return causal_mask
+
+
+class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
+
+
+class Olmo2ForCausalLM(Olmo2PreTrainedModel, GenerationMixin):
+ _tied_weights_keys = ["lm_head.weight"]
+ _tp_plan = {"lm_head": "colwise_rep"}
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Olmo2Model(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ num_logits_to_keep: int = 0,
+ **kwargs: Unpack[KwargsForCausalLM],
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ num_logits_to_keep (`int`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, Olmo2ForCausalLM
+
+ >>> model = Olmo2ForCausalLM.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = outputs[0]
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
+
+ loss = None
+ if labels is not None:
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+__all__ = ["Olmo2ForCausalLM", "Olmo2Model", "Olmo2PreTrainedModel"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py
new file mode 100644
index 0000000000000000000000000000000000000000..5f1191708044661819e3ed672a07f325d465d619
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/olmo2/modular_olmo2.py
@@ -0,0 +1,297 @@
+from typing import Callable, Optional, Tuple
+
+import torch
+from torch import nn
+
+from ...cache_utils import Cache
+from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
+from ...pytorch_utils import ALL_LAYERNORM_LAYERS
+from ...utils import logging
+from ..llama.modeling_llama import LlamaRMSNorm, eager_attention_forward
+from ..olmo.configuration_olmo import OlmoConfig
+from ..olmo.modeling_olmo import (
+ OlmoAttention,
+ OlmoDecoderLayer,
+ OlmoForCausalLM,
+ OlmoModel,
+ apply_rotary_pos_emb,
+)
+
+
+logger = logging.get_logger(__name__)
+
+
+class Olmo2Config(OlmoConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50304):
+ Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`Olmo2Model`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 11008):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ num_key_value_heads (`int`, *optional*):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*, defaults to 1):
+ Padding token id.
+ bos_token_id (`int`, *optional*):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 50279):
+ End of stream token id.
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to tie weight embeddings
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
+ these scaling strategies behave:
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
+ experimental feature, subject to breaking API changes in future versions.
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+
+ ```python
+ >>> from transformers import Olmo2Model, Olmo2Config
+
+ >>> # Initializing a Olmo2 7B style configuration
+ >>> configuration = Olmo2Config()
+
+ >>> # Initializing a model from the Olmo2 7B style configuration
+ >>> model = Olmo2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ model_type = "olmo2"
+
+ def __init__(
+ self,
+ vocab_size=50304,
+ hidden_size=4096,
+ intermediate_size=11008,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=None,
+ hidden_act="silu",
+ max_position_embeddings=2048,
+ initializer_range=0.02,
+ use_cache=True,
+ pad_token_id=1,
+ bos_token_id=None,
+ eos_token_id=50279,
+ tie_word_embeddings=False,
+ rope_theta=10000.0,
+ rope_scaling=None,
+ attention_bias=False,
+ attention_dropout=0.0,
+ rms_norm_eps=1e-5,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_size=vocab_size,
+ hidden_size=hidden_size,
+ intermediate_size=intermediate_size,
+ num_hidden_layers=num_hidden_layers,
+ num_attention_heads=num_attention_heads,
+ num_key_value_heads=num_key_value_heads,
+ hidden_act=hidden_act,
+ max_position_embeddings=max_position_embeddings,
+ initializer_range=initializer_range,
+ use_cache=use_cache,
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ rope_theta=rope_theta,
+ rope_scaling=rope_scaling,
+ attention_bias=attention_bias,
+ attention_dropout=attention_dropout,
+ **kwargs,
+ )
+
+ self.rms_norm_eps = rms_norm_eps
+ del self.clip_qkv
+
+
+class Olmo2RMSNorm(LlamaRMSNorm):
+ pass
+
+
+ALL_LAYERNORM_LAYERS.append(Olmo2RMSNorm)
+
+
+# Olmo2 attention is identical to OLMo attention except:
+# - Norm is applied to attention queries and keys.
+# - No qkv clipping.
+class Olmo2Attention(OlmoAttention):
+ def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None):
+ super().__init__(config, layer_idx=layer_idx)
+ self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
+ self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor],
+ past_key_value: Optional[Cache] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ input_shape = hidden_states.shape[:-1]
+ hidden_shape = (*input_shape, -1, self.head_dim)
+
+ query_states = self.q_norm(self.q_proj(hidden_states))
+ key_states = self.k_norm(self.k_proj(hidden_states))
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(hidden_shape).transpose(1, 2)
+ key_states = key_states.view(hidden_shape).transpose(1, 2)
+ value_states = value_states.view(hidden_shape).transpose(1, 2)
+
+ cos, sin = position_embeddings
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ attention_interface: Callable = eager_attention_forward
+ if self.config._attn_implementation != "eager":
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
+ logger.warning_once(
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ else:
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
+
+ attn_output, attn_weights = attention_interface(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ dropout=0.0 if not self.training else self.attention_dropout,
+ scaling=self.scaling,
+ **kwargs,
+ )
+
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
+ attn_output = self.o_proj(attn_output)
+ return attn_output, attn_weights
+
+
+# The OLMo2 layers are identical to those of the OLMo model except:
+# - RMSNorm is used instead of standard layer norm.
+# - Norm is applied after attention/feedforward rather than before.
+class Olmo2DecoderLayer(OlmoDecoderLayer):
+ def __init__(self, config: Olmo2Config, layer_idx: int):
+ super().__init__(config, layer_idx=layer_idx)
+ self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx)
+ del self.input_layernorm
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ residual = hidden_states
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = self.post_feedforward_layernorm(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ return outputs
+
+
+# The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of
+# standard layer norm for the output norm.
+class Olmo2Model(OlmoModel):
+ def __init__(self, config: Olmo2Config):
+ super().__init__(config)
+ self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.layers = nn.ModuleList(
+ [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+
+
+# The heads now only need to redefine the model inside to the correct `RobertaModel`
+class Olmo2ForCausalLM(OlmoForCausalLM):
+ pass
+
+
+__all__ = [
+ "Olmo2Config",
+ "Olmo2ForCausalLM",
+ "Olmo2Model",
+ "Olmo2PreTrainedModel", # noqa: F822
+]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb71eae2547c59a4f9ba7ecbafda56fb9c86b494
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_persimmon import *
+ from .modeling_persimmon import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..94686b94610597ac3ddfddba8cd7bd9de5e963c4
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/configuration_univnet.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e449902c33e186231a064a095560f37bf73f5c99
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/univnet/__pycache__/feature_extraction_univnet.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a036fe2999c00297d7780ba1e018188ce6ff18fa
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..62ed595229adc7a04647564a5f98b83d290686fb
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72ee19821e99c1bbcee92280f7b76b00ea44f327
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..107856920610df466e857a3838b44c5bc1973b3c
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..235069ea5a8f5bd4be8f730061ec78fe907f0e67
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py
@@ -0,0 +1,213 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
+
+from packaging import version
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+from ..auto.configuration_auto import AutoConfig
+
+
+if TYPE_CHECKING:
+ from ... import PreTrainedTokenizerBase, TensorType
+
+logger = logging.get_logger(__name__)
+
+
+class VisionEncoderDecoderConfig(PretrainedConfig):
+ r"""
+ [`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a
+ [`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the
+ specified arguments, defining the encoder and decoder configs.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ kwargs (*optional*):
+ Dictionary of keyword arguments. Notably:
+
+ - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
+ the encoder config.
+ - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
+ the decoder config.
+
+ Examples:
+
+ ```python
+ >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel
+
+ >>> # Initializing a ViT & BERT style configuration
+ >>> config_encoder = ViTConfig()
+ >>> config_decoder = BertConfig()
+
+ >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
+
+ >>> # Initializing a ViTBert model (with random weights) from a ViT & google-bert/bert-base-uncased style configurations
+ >>> model = VisionEncoderDecoderModel(config=config)
+
+ >>> # Accessing the model configuration
+ >>> config_encoder = model.config.encoder
+ >>> config_decoder = model.config.decoder
+ >>> # set decoder config to causal lm
+ >>> config_decoder.is_decoder = True
+ >>> config_decoder.add_cross_attention = True
+
+ >>> # Saving the model, including its configuration
+ >>> model.save_pretrained("my-model")
+
+ >>> # loading model and config from pretrained folder
+ >>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model")
+ >>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
+ ```"""
+
+ model_type = "vision-encoder-decoder"
+ sub_configs = {"encoder": AutoConfig, "decoder": AutoConfig}
+ is_composition = True
+
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+ if "encoder" not in kwargs or "decoder" not in kwargs:
+ raise ValueError(
+ f"A configuraton of type {self.model_type} cannot be instantiated because "
+ f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}"
+ )
+
+ encoder_config = kwargs.pop("encoder")
+ encoder_model_type = encoder_config.pop("model_type")
+ decoder_config = kwargs.pop("decoder")
+ decoder_model_type = decoder_config.pop("model_type")
+
+ self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
+ self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
+ self.is_encoder_decoder = True
+
+ @classmethod
+ def from_encoder_decoder_configs(
+ cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
+ ) -> PretrainedConfig:
+ r"""
+ Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
+ configuration and decoder model configuration.
+
+ Returns:
+ [`VisionEncoderDecoderConfig`]: An instance of a configuration object
+ """
+ logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
+ decoder_config.is_decoder = True
+ decoder_config.add_cross_attention = True
+
+ return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
+
+
+class VisionEncoderDecoderEncoderOnnxConfig(OnnxConfig):
+ torch_onnx_minimum_version = version.parse("1.11")
+
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-4
+
+ @property
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}})
+
+
+class VisionEncoderDecoderDecoderOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ common_inputs = OrderedDict()
+ common_inputs["input_ids"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
+ common_inputs["attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
+ common_inputs["encoder_hidden_states"] = {0: "batch", 1: "encoder_sequence"}
+
+ return common_inputs
+
+ def generate_dummy_inputs(
+ self,
+ tokenizer: "PreTrainedTokenizerBase",
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional["TensorType"] = None,
+ ) -> Mapping[str, Any]:
+ import torch
+
+ common_inputs = OrderedDict()
+
+ dummy_input = super().generate_dummy_inputs(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ batch, encoder_sequence = dummy_input["input_ids"].shape
+ encoder_hidden_states_shape = (batch, encoder_sequence, self._config.encoder_hidden_size)
+ common_inputs["input_ids"] = dummy_input.pop("input_ids")
+ common_inputs["attention_mask"] = dummy_input.pop("attention_mask")
+ common_inputs["encoder_hidden_states"] = torch.zeros(encoder_hidden_states_shape)
+
+ return common_inputs
+
+
+class VisionEncoderDecoderOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> None:
+ pass
+
+ def get_encoder_config(self, encoder_config: PretrainedConfig) -> OnnxConfig:
+ r"""
+ Returns ONNX encoder config for `VisionEncoderDecoder` model.
+
+ Args:
+ encoder_config (`PretrainedConfig`):
+ The encoder model's configuration to use when exporting to ONNX.
+
+ Returns:
+ [`VisionEncoderDecoderEncoderOnnxConfig`]: An instance of the ONNX configuration object
+ """
+ return VisionEncoderDecoderEncoderOnnxConfig(encoder_config)
+
+ def get_decoder_config(
+ self, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, feature: str = "default"
+ ) -> OnnxConfig:
+ r"""
+ Returns ONNX decoder config for `VisionEncoderDecoder` model.
+
+ Args:
+ encoder_config (`PretrainedConfig`):
+ The encoder model's configuration to use when exporting to ONNX.
+ decoder_config (`PretrainedConfig`):
+ The decoder model's configuration to use when exporting to ONNX
+ feature (`str`, *optional*):
+ The type of feature to export the model with.
+
+ Returns:
+ [`VisionEncoderDecoderDecoderOnnxConfig`]: An instance of the ONNX configuration object.
+ """
+ decoder_config.encoder_hidden_size = encoder_config.hidden_size
+ return VisionEncoderDecoderDecoderOnnxConfig(decoder_config, feature)
+
+
+__all__ = ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a027f04784a68edb9ab007e07eb46decc7368d0
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py
@@ -0,0 +1,700 @@
+# coding=utf-8
+# Copyright 2022 HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Classes to support TF Vision-Encoder-Text-Decoder architectures"""
+
+from __future__ import annotations
+
+import re
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...configuration_utils import PretrainedConfig
+from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
+from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs
+from ...tf_utils import shape_list
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ..auto.configuration_auto import AutoConfig
+from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM
+from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "VisionEncoderDecoderConfig"
+
+DEPRECATION_WARNING = (
+ "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
+ " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
+ " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the"
+ " labels, no need to pass them yourself anymore."
+)
+
+VISION_ENCODER_DECODER_START_DOCSTRING = r"""
+ This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
+ as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
+ [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`]
+ function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
+ generative task, like image captioning.
+
+ The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
+ tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
+ Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
+ Zhou, Wei Li, Peter J. Liu.
+
+ Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
+ Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
+ character recognition (OCR) yields a significant performance improvement.
+
+ After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
+ other models (see the examples for more information).
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using
+ [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details.
+ decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ Provide for sequence to sequence training to the decoder. Indices can be obtained using
+ [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
+ details.
+ decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
+ This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output
+ of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `({0})`.
+ decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
+ into associated vectors than the model's internal embedding lookup matrix.
+ labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
+ ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
+
+ - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
+ - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
+"""
+
+
+# Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right
+def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ if pad_token_id is None:
+ raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
+
+ if decoder_start_token_id is None:
+ raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
+
+ start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids = tf.where(
+ shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
+ )
+
+ # "Verify that `labels` has only positive values and -100"
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
+
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
+ with tf.control_dependencies([assert_gte0]):
+ shifted_input_ids = tf.identity(shifted_input_ids)
+
+ return shifted_input_ids
+
+
+@add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING)
+class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
+ r"""
+ [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture
+ with one of the base vision model classes of the library as encoder and another one of the base model classes as
+ decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and
+ [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder.
+ """
+
+ config_class = VisionEncoderDecoderConfig
+ base_model_prefix = "vision_encoder_decoder"
+ load_weight_prefix = "tf_vision_encoder_decoder_model"
+ main_input_name = "pixel_values"
+
+ def __init__(
+ self,
+ config: Optional[PretrainedConfig] = None,
+ encoder: Optional[TFPreTrainedModel] = None,
+ decoder: Optional[TFPreTrainedModel] = None,
+ ):
+ if config is None and (encoder is None or decoder is None):
+ raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
+ if config is None:
+ config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
+ else:
+ if not isinstance(config, self.config_class):
+ raise ValueError(f"config: {config} has to be of type {self.config_class}")
+
+ if config.decoder.cross_attention_hidden_size is not None:
+ if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
+ raise ValueError(
+ "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
+ f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
+ f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
+ " `config.encoder.hidden_size`."
+ )
+
+ # initialize with config
+ super().__init__(config)
+
+ if encoder is None:
+ encoder = TFAutoModel.from_config(config.encoder, name="encoder")
+
+ if decoder is None:
+ decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder")
+
+ self.encoder = encoder
+ self.decoder = decoder
+
+ if self.encoder.config.to_dict() != self.config.encoder.to_dict():
+ logger.warning(
+ f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
+ f" {self.config.encoder}"
+ )
+ if self.decoder.config.to_dict() != self.config.decoder.to_dict():
+ logger.warning(
+ f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
+ f" {self.config.decoder}"
+ )
+
+ # make sure that the individual model's config refers to the shared config
+ # so that the updates to the config will be synced
+ self.encoder.config = self.config.encoder
+ self.decoder.config = self.config.decoder
+
+ # encoder outputs might need to be projected to different dimension for decoder
+ if (
+ self.encoder.config.hidden_size != self.decoder.config.hidden_size
+ and self.decoder.config.cross_attention_hidden_size is None
+ ):
+ self.enc_to_dec_proj = keras.layers.Dense(
+ units=self.decoder.config.hidden_size,
+ kernel_initializer=get_initializer(config.encoder.initializer_range),
+ name="enc_to_dec_proj",
+ )
+
+ if self.encoder.get_output_embeddings() is not None:
+ raise ValueError(
+ f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
+ )
+
+ @property
+ def input_signature(self):
+ vision_config = self.config.encoder
+ if hasattr(vision_config, "vision_config"):
+ vision_config = vision_config.vision_config
+ if hasattr(vision_config, "image_size"):
+ image_size = vision_config.image_size
+ else:
+ image_size = vision_config.input_size
+ return {
+ "pixel_values": tf.TensorSpec(
+ shape=(
+ None,
+ vision_config.num_channels,
+ image_size,
+ image_size,
+ ),
+ dtype=tf.float32,
+ ),
+ "decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"),
+ }
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def get_input_embeddings(self):
+ return self.encoder.get_input_embeddings()
+
+ def get_output_embeddings(self):
+ return self.decoder.get_output_embeddings()
+
+ def set_output_embeddings(self, new_embeddings):
+ return self.decoder.set_output_embeddings(new_embeddings)
+
+ def tf_to_pt_weight_rename(self, tf_weight):
+ # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
+ # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
+ # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption
+ # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's
+ # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name!
+
+ # This override is only needed in the case where we're crossloading weights from PT. However, since weights are
+ # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file.
+ # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it
+ # or not.
+ encoder_model_type = self.config.encoder.model_type
+ if "encoder" in tf_weight and "decoder" not in tf_weight:
+ return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),)
+ else:
+ return (tf_weight,)
+
+ @classmethod
+ def from_encoder_decoder_pretrained(
+ cls,
+ encoder_pretrained_model_name_or_path: str = None,
+ decoder_pretrained_model_name_or_path: str = None,
+ *model_args,
+ **kwargs,
+ ) -> TFPreTrainedModel:
+ r"""
+ Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
+ checkpoints.
+
+
+ Params:
+ encoder_pretrained_model_name_or_path (`str`, *optional*):
+ Information necessary to initiate the encoder. Can be either:
+
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
+ example is `google/vit-base-patch16-224-in21k`.
+ - A path to a *directory* containing model weights saved using
+ [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
+ - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
+ `encoder_from_pt` should be set to `True`.
+
+ decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*):
+ Information necessary to initiate the decoder. Can be either:
+
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
+ - A path to a *directory* containing model weights saved using
+ [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
+ - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
+ `decoder_from_pt` should be set to `True`.
+
+ model_args (remaining positional arguments, *optional*):
+ All remaning positional arguments will be passed to the underlying model's `__init__` method.
+
+ kwargs (remaining dictionary of keyword arguments, *optional*):
+ Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
+ `output_attentions=True`).
+
+ - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
+ - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
+ - To update the parent model configuration, do not use a prefix for each configuration parameter.
+
+ Behaves differently depending on whether a `config` is provided or automatically loaded.
+
+ Example:
+
+ ```python
+ >>> from transformers import TFVisionEncoderDecoderModel
+
+ >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
+ >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
+ ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
+ ... )
+ >>> # saving model after fine-tuning
+ >>> model.save_pretrained("./vit-bert")
+ >>> # load fine-tuned model
+ >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert")
+ ```"""
+
+ kwargs_encoder = {
+ argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
+ }
+
+ kwargs_decoder = {
+ argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
+ }
+
+ # remove encoder, decoder kwargs from kwargs
+ for key in kwargs_encoder.keys():
+ del kwargs["encoder_" + key]
+ for key in kwargs_decoder.keys():
+ del kwargs["decoder_" + key]
+
+ # Load and initialize the encoder and decoder
+ # The distinction between encoder and decoder at the model level is made
+ # by the value of the flag `is_decoder` that we need to set correctly.
+ encoder = kwargs_encoder.pop("model", None)
+ if encoder is None:
+ if encoder_pretrained_model_name_or_path is None:
+ raise ValueError(
+ "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
+ "to be defined."
+ )
+
+ if "config" not in kwargs_encoder:
+ encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
+ if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
+ logger.info(
+ f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
+ "from a decoder model. Cross-attention and casual mask are disabled."
+ )
+ encoder_config.is_decoder = False
+ encoder_config.add_cross_attention = False
+
+ kwargs_encoder["config"] = encoder_config
+
+ kwargs_encoder["name"] = "encoder"
+ kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix
+ encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
+
+ decoder = kwargs_decoder.pop("model", None)
+ if decoder is None:
+ if decoder_pretrained_model_name_or_path is None:
+ raise ValueError(
+ "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
+ "to be defined."
+ )
+
+ if "config" not in kwargs_decoder:
+ decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
+ if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
+ logger.info(
+ f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
+ f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
+ f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
+ )
+ decoder_config.is_decoder = True
+ decoder_config.add_cross_attention = True
+
+ kwargs_decoder["config"] = decoder_config
+
+ if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
+ logger.warning(
+ f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
+ f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
+ "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
+ "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
+ "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
+ )
+
+ kwargs_decoder["name"] = "decoder"
+ kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix
+ decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
+
+ # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly.
+ if encoder.name != "encoder":
+ raise ValueError("encoder model must be created with the name `encoder`.")
+ if decoder.name != "decoder":
+ raise ValueError("decoder model must be created with the name `decoder`.")
+
+ # instantiate config with corresponding kwargs
+ config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
+ return cls(encoder=encoder, decoder=decoder, config=config)
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(
+ VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+ )
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ pixel_values: np.ndarray | tf.Tensor | None = None,
+ decoder_input_ids: np.ndarray | tf.Tensor | None = None,
+ decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ **kwargs,
+ ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ >>> decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
+
+ >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
+ >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
+ ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2"
+ ... )
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> img = Image.open(requests.get(url, stream=True).raw)
+
+ >>> # forward
+ >>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1
+ >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1
+ >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
+
+ >>> # training
+ >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
+ >>> loss, logits = outputs.loss, outputs.logits
+
+ >>> # save and load from pretrained
+ >>> model.save_pretrained("vit-gpt2")
+ >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2")
+
+ >>> # generation
+ >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
+
+ kwargs_decoder = {
+ argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
+ }
+
+ # Let the user be responsible for the expected format.
+ if encoder_outputs is not None:
+ if return_dict and not isinstance(encoder_outputs, ModelOutput):
+ raise ValueError(
+ "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of "
+ f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`."
+ )
+
+ if encoder_outputs is None:
+ encoder_inputs = {
+ "input_ids": pixel_values,
+ "output_attentions": output_attentions,
+ "output_hidden_states": output_hidden_states,
+ "return_dict": return_dict,
+ "training": training,
+ }
+
+ # Add arguments to encoder from `kwargs_encoder`
+ encoder_inputs.update(kwargs_encoder)
+
+ if "input_ids" in encoder_inputs:
+ encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids")
+
+ if encoder_inputs["pixel_values"] is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Handle the case where the inputs are passed as a single dict which contains `labels`.
+ # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
+ # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`).
+ if "labels" in encoder_inputs:
+ labels = encoder_inputs.pop("labels")
+
+ # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
+ if "decoder_input_ids" in encoder_inputs:
+ decoder_input_ids = encoder_inputs.pop("decoder_input_ids")
+ # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
+ if "decoder_attention_mask" in encoder_inputs:
+ decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask")
+
+ encoder_outputs = self.encoder(**encoder_inputs)
+
+ encoder_hidden_states = encoder_outputs[0]
+
+ # optionally project encoder_hidden_states
+ if (
+ self.encoder.config.hidden_size != self.decoder.config.hidden_size
+ and self.decoder.config.cross_attention_hidden_size is None
+ ):
+ encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
+
+ if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ batch_size, sequence_length = shape_list(encoder_hidden_states)[:2]
+ encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32)
+
+ decoder_inputs = {
+ "input_ids": decoder_input_ids,
+ "attention_mask": decoder_attention_mask,
+ "encoder_hidden_states": encoder_hidden_states,
+ "encoder_attention_mask": encoder_attention_mask,
+ "inputs_embeds": decoder_inputs_embeds,
+ "output_attentions": output_attentions,
+ "output_hidden_states": output_hidden_states,
+ "use_cache": use_cache,
+ "past_key_values": past_key_values,
+ "return_dict": return_dict,
+ "training": training,
+ }
+
+ # Add arguments to decoder from `kwargs_decoder`
+ decoder_inputs.update(kwargs_decoder)
+
+ decoder_outputs = self.decoder(**decoder_inputs)
+
+ logits = decoder_outputs[0]
+
+ # Compute loss independent from decoder (as some shift the logits inside them)
+ loss = None
+ if labels is not None:
+ warnings.warn(DEPRECATION_WARNING, FutureWarning)
+ loss = self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ past_key_values = None
+ if use_cache:
+ past_key_values = decoder_outputs[1]
+ # The starting index of the remaining elements in `decoder_outputs`
+ start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)])
+
+ if not isinstance(encoder_outputs, tuple):
+ encoder_outputs = encoder_outputs.to_tuple()
+ output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs
+ output = tuple([x for x in output if x is not None])
+ return output
+
+ return TFSeq2SeqLMOutput(
+ loss=loss,
+ logits=decoder_outputs.logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None
+ dec_hs = (
+ tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None
+ )
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None
+ enc_hs = (
+ tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None
+ )
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None
+ cross_attns = (
+ tf.convert_to_tensor(output.cross_attentions)
+ if self.config.decoder.output_attentions and output.cross_attentions is not None
+ else None
+ )
+
+ return TFSeq2SeqLMOutput(
+ logits=output.logits,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ cross_attentions=cross_attns,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
+ ):
+ decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
+ decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
+ past_key_values = decoder_inputs.get("past_key_values")
+ input_dict = {
+ "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "decoder_input_ids": decoder_inputs["input_ids"],
+ # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete
+ "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]),
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+ return input_dict
+
+ def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
+ return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
+
+ def resize_token_embeddings(self, *args, **kwargs):
+ raise NotImplementedError(
+ "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. "
+ "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))"
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "enc_to_dec_proj", None) is not None:
+ with tf.name_scope(self.enc_to_dec_proj.name):
+ self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size])
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "decoder", None) is not None:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build(None)
+
+
+__all__ = ["TFVisionEncoderDecoderModel"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..95fd10dab7092fb8571a332b1ecf2e9a334d8fc4
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py
@@ -0,0 +1,26 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .processing_wav2vec2_with_lm import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a278928158d79bbb0f8e7be82e90ba1cf062ef7e
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3d1e7b11b3c4803c377e31526774b135e14620a4
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
new file mode 100644
index 0000000000000000000000000000000000000000..f569b4f625e70a419a5eb2f6f7f8f82ee78120a1
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
@@ -0,0 +1,658 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Speech processor class for Wav2Vec2
+"""
+
+import os
+import warnings
+from contextlib import contextmanager, nullcontext
+from dataclasses import dataclass
+from multiprocessing import Pool, get_context, get_start_method
+from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Union
+
+import numpy as np
+
+from ...processing_utils import ProcessorMixin
+from ...utils import ModelOutput, logging, requires_backends
+
+
+logger = logging.get_logger(__name__)
+
+
+if TYPE_CHECKING:
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ from ...feature_extraction_utils import FeatureExtractionMixin
+ from ...tokenization_utils import PreTrainedTokenizerBase
+
+
+ListOfDict = List[Dict[str, Union[int, str]]]
+
+
+@dataclass
+class Wav2Vec2DecoderWithLMOutput(ModelOutput):
+ """
+ Output type of [`Wav2Vec2DecoderWithLM`], with transcription.
+
+ Args:
+ text (list of `str` or `str`):
+ Decoded logits in text from. Usually the speech transcription.
+ logit_score (list of `float` or `float`):
+ Total logit score of the beams associated with produced text.
+ lm_score (list of `float`):
+ Fused lm_score of the beams associated with produced text.
+ word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
+ Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
+ can be used to compute time stamps for each word.
+ """
+
+ text: Union[List[List[str]], List[str], str]
+ logit_score: Union[List[List[float]], List[float], float] = None
+ lm_score: Union[List[List[float]], List[float], float] = None
+ word_offsets: Union[List[List[ListOfDict]], List[ListOfDict], ListOfDict] = None
+
+
+class Wav2Vec2ProcessorWithLM(ProcessorMixin):
+ r"""
+ Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor, a Wav2Vec2 CTC tokenizer and a decoder
+ with language model support into a single processor for language model boosted speech recognition decoding.
+
+ Args:
+ feature_extractor ([`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]):
+ An instance of [`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer ([`Wav2Vec2CTCTokenizer`]):
+ An instance of [`Wav2Vec2CTCTokenizer`]. The tokenizer is a required input.
+ decoder (`pyctcdecode.BeamSearchDecoderCTC`):
+ An instance of [`pyctcdecode.BeamSearchDecoderCTC`]. The decoder is a required input.
+ """
+
+ feature_extractor_class = "AutoFeatureExtractor"
+ tokenizer_class = "Wav2Vec2CTCTokenizer"
+
+ def __init__(
+ self,
+ feature_extractor: "FeatureExtractionMixin",
+ tokenizer: "PreTrainedTokenizerBase",
+ decoder: "BeamSearchDecoderCTC",
+ ):
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ super().__init__(feature_extractor, tokenizer)
+ if not isinstance(decoder, BeamSearchDecoderCTC):
+ raise TypeError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}")
+
+ if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]:
+ raise ValueError(
+ f"`feature_extractor` has to be of type `Wav2Vec2FeatureExtractor` or `SeamlessM4TFeatureExtractor`, but is {type(feature_extractor)}"
+ )
+
+ # make sure that decoder's alphabet and tokenizer's vocab match in content
+ missing_decoder_tokens = self.get_missing_alphabet_tokens(decoder, tokenizer)
+ if len(missing_decoder_tokens) > 0:
+ raise ValueError(
+ f"The tokens {missing_decoder_tokens} are defined in the tokenizer's "
+ "vocabulary, but not in the decoder's alphabet. "
+ f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet."
+ )
+
+ self.decoder = decoder
+ self.current_processor = self.feature_extractor
+ self._in_target_context_manager = False
+
+ def save_pretrained(self, save_directory):
+ super().save_pretrained(save_directory)
+ self.decoder.save_to_dir(save_directory)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
+ r"""
+ Instantiate a [`Wav2Vec2ProcessorWithLM`] from a pretrained Wav2Vec2 processor.
+
+
+
+ This class method is simply calling the feature extractor's
+ [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], Wav2Vec2CTCTokenizer's
+ [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], and
+ [`pyctcdecode.BeamSearchDecoderCTC.load_from_hf_hub`].
+
+ Please refer to the docstrings of the methods above for more information.
+
+
+
+ Args:
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
+ This can be either:
+
+ - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
+ huggingface.co.
+ - a path to a *directory* containing a feature extractor file saved using the
+ [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
+ - a path or url to a saved feature extractor JSON *file*, e.g.,
+ `./my_model_directory/preprocessor_config.json`.
+ **kwargs
+ Additional keyword arguments passed along to both [`SequenceFeatureExtractor`] and
+ [`PreTrainedTokenizer`]
+ """
+ requires_backends(cls, "pyctcdecode")
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ feature_extractor, tokenizer = super()._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
+
+ if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path):
+ unigram_encoding = kwargs.get("unigram_encoding", "utf-8")
+ decoder = BeamSearchDecoderCTC.load_from_dir(pretrained_model_name_or_path, unigram_encoding)
+ else:
+ # BeamSearchDecoderCTC has no auto class
+ kwargs.pop("_from_auto", None)
+ # snapshot_download has no `trust_remote_code` flag
+ kwargs.pop("trust_remote_code", None)
+
+ # make sure that only relevant filenames are downloaded
+ language_model_filenames = os.path.join(BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*")
+ alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
+ allow_patterns = [language_model_filenames, alphabet_filename]
+
+ decoder = BeamSearchDecoderCTC.load_from_hf_hub(
+ pretrained_model_name_or_path, allow_patterns=allow_patterns, **kwargs
+ )
+
+ # set language model attributes
+ for attribute in ["alpha", "beta", "unk_score_offset", "score_boundary"]:
+ value = kwargs.pop(attribute, None)
+
+ if value is not None:
+ cls._set_language_model_attribute(decoder, attribute, value)
+
+ # make sure that decoder's alphabet and tokenizer's vocab match in content
+ missing_decoder_tokens = cls.get_missing_alphabet_tokens(decoder, tokenizer)
+ if len(missing_decoder_tokens) > 0:
+ raise ValueError(
+ f"The tokens {missing_decoder_tokens} are defined in the tokenizer's "
+ "vocabulary, but not in the decoder's alphabet. "
+ f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet."
+ )
+
+ return cls(feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=decoder)
+
+ @staticmethod
+ def _set_language_model_attribute(decoder: "BeamSearchDecoderCTC", attribute: str, value: float):
+ setattr(decoder.model_container[decoder._model_key], attribute, value)
+
+ @property
+ def language_model(self):
+ return self.decoder.model_container[self.decoder._model_key]
+
+ @staticmethod
+ def get_missing_alphabet_tokens(decoder, tokenizer):
+ from pyctcdecode.alphabet import BLANK_TOKEN_PTN, UNK_TOKEN, UNK_TOKEN_PTN
+
+ # we need to make sure that all of the tokenizer's except the special tokens
+ # are present in the decoder's alphabet. Retrieve missing alphabet token
+ # from decoder
+ tokenizer_vocab_list = list(tokenizer.get_vocab().keys())
+
+ # replace special tokens
+ for i, token in enumerate(tokenizer_vocab_list):
+ if BLANK_TOKEN_PTN.match(token):
+ tokenizer_vocab_list[i] = ""
+ if token == tokenizer.word_delimiter_token:
+ tokenizer_vocab_list[i] = " "
+ if UNK_TOKEN_PTN.match(token):
+ tokenizer_vocab_list[i] = UNK_TOKEN
+
+ # are any of the extra tokens no special tokenizer tokens?
+ missing_tokens = set(tokenizer_vocab_list) - set(decoder._alphabet.labels)
+
+ return missing_tokens
+
+ def __call__(self, *args, **kwargs):
+ """
+ When used in normal mode, this method forwards all its arguments to the feature extractor's
+ [`~FeatureExtractionMixin.__call__`] and returns its output. If used in the context
+ [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to
+ Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.__call__`]. Please refer to the docstring of the above two
+ methods for more information.
+ """
+ # For backward compatibility
+ if self._in_target_context_manager:
+ return self.current_processor(*args, **kwargs)
+
+ if "raw_speech" in kwargs:
+ warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
+ audio = kwargs.pop("raw_speech")
+ else:
+ audio = kwargs.pop("audio", None)
+ sampling_rate = kwargs.pop("sampling_rate", None)
+ text = kwargs.pop("text", None)
+ if len(args) > 0:
+ audio = args[0]
+ args = args[1:]
+
+ if audio is None and text is None:
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
+
+ if audio is not None:
+ inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
+ if text is not None:
+ encodings = self.tokenizer(text, **kwargs)
+
+ if text is None:
+ return inputs
+ elif audio is None:
+ return encodings
+ else:
+ inputs["labels"] = encodings["input_ids"]
+ return inputs
+
+ def pad(self, *args, **kwargs):
+ """
+ When used in normal mode, this method forwards all its arguments to the feature extractor's
+ [`~FeatureExtractionMixin.pad`] and returns its output. If used in the context
+ [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to
+ Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.pad`]. Please refer to the docstring of the above two methods
+ for more information.
+ """
+ # For backward compatibility
+ if self._in_target_context_manager:
+ return self.current_processor.pad(*args, **kwargs)
+
+ input_features = kwargs.pop("input_features", None)
+ labels = kwargs.pop("labels", None)
+ if len(args) > 0:
+ input_features = args[0]
+ args = args[1:]
+
+ if input_features is not None:
+ input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
+ if labels is not None:
+ labels = self.tokenizer.pad(labels, **kwargs)
+
+ if labels is None:
+ return input_features
+ elif input_features is None:
+ return labels
+ else:
+ input_features["labels"] = labels["input_ids"]
+ return input_features
+
+ def batch_decode(
+ self,
+ logits: np.ndarray,
+ pool: Optional[Pool] = None,
+ num_processes: Optional[int] = None,
+ beam_width: Optional[int] = None,
+ beam_prune_logp: Optional[float] = None,
+ token_min_logp: Optional[float] = None,
+ hotwords: Optional[Iterable[str]] = None,
+ hotword_weight: Optional[float] = None,
+ alpha: Optional[float] = None,
+ beta: Optional[float] = None,
+ unk_score_offset: Optional[float] = None,
+ lm_score_boundary: Optional[bool] = None,
+ output_word_offsets: bool = False,
+ n_best: int = 1,
+ ):
+ """
+ Batch decode output logits to audio transcription with language model support.
+
+
+
+ This function makes use of Python's multiprocessing. Currently, multiprocessing is available only on Unix
+ systems (see this [issue](https://github.com/kensho-technologies/pyctcdecode/issues/65)).
+
+ If you are decoding multiple batches, consider creating a `Pool` and passing it to `batch_decode`. Otherwise,
+ `batch_decode` will be very slow since it will create a fresh `Pool` for each call. See usage example below.
+
+
+
+ Args:
+ logits (`np.ndarray`):
+ The logits output vector of the model representing the log probabilities for each token.
+ pool (`multiprocessing.Pool`, *optional*):
+ An optional user-managed pool. If not set, one will be automatically created and closed. The pool
+ should be instantiated *after* `Wav2Vec2ProcessorWithLM`. Otherwise, the LM won't be available to the
+ pool's sub-processes.
+
+
+
+ Currently, only pools created with a 'fork' context can be used. If a 'spawn' pool is passed, it will
+ be ignored and sequential decoding will be used instead.
+
+
+
+ num_processes (`int`, *optional*):
+ If `pool` is not set, number of processes on which the function should be parallelized over. Defaults
+ to the number of available CPUs.
+ beam_width (`int`, *optional*):
+ Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH.
+ beam_prune_logp (`int`, *optional*):
+ Beams that are much worse than best beam will be pruned Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP.
+ token_min_logp (`int`, *optional*):
+ Tokens below this logp are skipped unless they are argmax of frame Defaults to pyctcdecode's
+ DEFAULT_MIN_TOKEN_LOGP.
+ hotwords (`List[str]`, *optional*):
+ List of words with extra importance, can be OOV for LM
+ hotword_weight (`int`, *optional*):
+ Weight factor for hotword importance Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT.
+ alpha (`float`, *optional*):
+ Weight for language model during shallow fusion
+ beta (`float`, *optional*):
+ Weight for length score adjustment of during scoring
+ unk_score_offset (`float`, *optional*):
+ Amount of log score offset for unknown tokens
+ lm_score_boundary (`bool`, *optional*):
+ Whether to have kenlm respect boundaries when scoring
+ output_word_offsets (`bool`, *optional*, defaults to `False`):
+ Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
+ and model downsampling rate to compute the time-stamps of transcribed words.
+ n_best (`int`, *optional*, defaults to `1`):
+ Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list
+ of lists of strings, `logit_score` will be a list of lists of floats, and `lm_score` will be a list of
+ lists of floats, where the length of the outer list will correspond to the batch size and the length of
+ the inner list will correspond to the number of returned hypotheses . The value should be >= 1.
+
+
+
+ Please take a look at the Example of [`~Wav2Vec2ProcessorWithLM.decode`] to better understand how to
+ make use of `output_word_offsets`. [`~Wav2Vec2ProcessorWithLM.batch_decode`] works the same way with
+ batched output.
+
+
+
+ Returns:
+ [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`].
+
+ Example:
+ See [Decoding multiple audios](#decoding-multiple-audios).
+ """
+
+ from pyctcdecode.constants import (
+ DEFAULT_BEAM_WIDTH,
+ DEFAULT_HOTWORD_WEIGHT,
+ DEFAULT_MIN_TOKEN_LOGP,
+ DEFAULT_PRUNE_LOGP,
+ )
+
+ # set defaults
+ beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH
+ beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP
+ token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP
+ hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT
+
+ # reset params at every forward call. It's just a `set` method in pyctcdecode
+ self.decoder.reset_params(
+ alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary
+ )
+
+ # create multiprocessing pool and list numpy arrays
+ # filter out logits padding
+ logits_list = [array[(array != -100.0).all(axis=-1)] for array in logits]
+
+ # create a pool if necessary while also using it as a context manager to close itself
+ if pool is None:
+ # fork is safe to use only on Unix, see "Contexts and start methods" section on
+ # multiprocessing's docs (https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
+ default_context = get_start_method()
+
+ if default_context == "fork":
+ cm = pool = get_context().Pool(num_processes)
+ else:
+ logger.warning(
+ "Parallel batch decoding is not currently supported in this platform. "
+ "Falling back to sequential decoding."
+ )
+ cm = nullcontext()
+ else:
+ # pool is managed by the user, so we don't need to close it
+ cm = nullcontext()
+
+ if num_processes is not None:
+ logger.warning(
+ "Parameter `num_process` was passed, but it will be ignored since `pool` was also specified."
+ )
+
+ # pyctcdecode
+ with cm:
+ decoded_beams = self.decoder.decode_beams_batch(
+ pool=pool,
+ logits_list=logits_list,
+ beam_width=beam_width,
+ beam_prune_logp=beam_prune_logp,
+ token_min_logp=token_min_logp,
+ hotwords=hotwords,
+ hotword_weight=hotword_weight,
+ )
+
+ # extract text and scores
+ batch_texts, logit_scores, lm_scores, word_offsets = [], [], [], []
+
+ for d in decoded_beams:
+ batch_texts.append([beam[0] for beam in d])
+ logit_scores.append([beam[-2] for beam in d])
+ lm_scores.append([beam[-1] for beam in d])
+
+ # word_offsets.append([{"word": t[0], "start_offset": t[1][0], "end_offset": t[1][1]} for t in d[0][1]])
+
+ word_offsets.append(
+ [
+ [
+ {"word": word, "start_offset": start_offset, "end_offset": end_offset}
+ for word, (start_offset, end_offset) in beam[1]
+ ]
+ for beam in d
+ ]
+ )
+
+ word_offsets = word_offsets if output_word_offsets else None
+
+ if n_best == 1:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=[hyps[0] for hyps in batch_texts],
+ logit_score=[hyps[0] for hyps in logit_scores],
+ lm_score=[hyps[0] for hyps in lm_scores],
+ word_offsets=[hyps[0] for hyps in word_offsets] if word_offsets is not None else None,
+ )
+ else:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=[hyps[:n_best] for hyps in batch_texts],
+ logit_score=[hyps[:n_best] for hyps in logit_scores],
+ lm_score=[hyps[:n_best] for hyps in lm_scores],
+ word_offsets=[hyps[:n_best] for hyps in word_offsets] if word_offsets is not None else None,
+ )
+
+ def decode(
+ self,
+ logits: np.ndarray,
+ beam_width: Optional[int] = None,
+ beam_prune_logp: Optional[float] = None,
+ token_min_logp: Optional[float] = None,
+ hotwords: Optional[Iterable[str]] = None,
+ hotword_weight: Optional[float] = None,
+ alpha: Optional[float] = None,
+ beta: Optional[float] = None,
+ unk_score_offset: Optional[float] = None,
+ lm_score_boundary: Optional[bool] = None,
+ output_word_offsets: bool = False,
+ n_best: int = 1,
+ ):
+ """
+ Decode output logits to audio transcription with language model support.
+
+ Args:
+ logits (`np.ndarray`):
+ The logits output vector of the model representing the log probabilities for each token.
+ beam_width (`int`, *optional*):
+ Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH.
+ beam_prune_logp (`int`, *optional*):
+ A threshold to prune beams with log-probs less than best_beam_logp + beam_prune_logp. The value should
+ be <= 0. Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP.
+ token_min_logp (`int`, *optional*):
+ Tokens with log-probs below token_min_logp are skipped unless they are have the maximum log-prob for an
+ utterance. Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP.
+ hotwords (`List[str]`, *optional*):
+ List of words with extra importance which can be missing from the LM's vocabulary, e.g. ["huggingface"]
+ hotword_weight (`int`, *optional*):
+ Weight multiplier that boosts hotword scores. Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT.
+ alpha (`float`, *optional*):
+ Weight for language model during shallow fusion
+ beta (`float`, *optional*):
+ Weight for length score adjustment of during scoring
+ unk_score_offset (`float`, *optional*):
+ Amount of log score offset for unknown tokens
+ lm_score_boundary (`bool`, *optional*):
+ Whether to have kenlm respect boundaries when scoring
+ output_word_offsets (`bool`, *optional*, defaults to `False`):
+ Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
+ and model downsampling rate to compute the time-stamps of transcribed words.
+ n_best (`int`, *optional*, defaults to `1`):
+ Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list
+ of strings, `logit_score` will be a list of floats, and `lm_score` will be a list of floats, where the
+ length of these lists will correspond to the number of returned hypotheses. The value should be >= 1.
+
+
+
+ Please take a look at the example below to better understand how to make use of `output_word_offsets`.
+
+
+
+ Returns:
+ [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`].
+
+ Example:
+
+ ```python
+ >>> # Let's see how to retrieve time steps for a model
+ >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC
+ >>> from datasets import load_dataset
+ >>> import datasets
+ >>> import torch
+
+ >>> # import model, feature extractor, tokenizer
+ >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
+ >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
+
+ >>> # load first sample of English common_voice
+ >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True)
+ >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
+ >>> dataset_iter = iter(dataset)
+ >>> sample = next(dataset_iter)
+
+ >>> # forward sample through model to get greedily predicted transcription ids
+ >>> input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values
+ >>> with torch.no_grad():
+ ... logits = model(input_values).logits[0].cpu().numpy()
+
+ >>> # retrieve word stamps (analogous commands for `output_char_offsets`)
+ >>> outputs = processor.decode(logits, output_word_offsets=True)
+ >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
+ >>> time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
+
+ >>> word_offsets = [
+ ... {
+ ... "word": d["word"],
+ ... "start_time": round(d["start_offset"] * time_offset, 2),
+ ... "end_time": round(d["end_offset"] * time_offset, 2),
+ ... }
+ ... for d in outputs.word_offsets
+ ... ]
+ >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer:
+ >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en
+ >>> word_offsets[:4]
+ [{'word': 'THE', 'start_time': 0.68, 'end_time': 0.78}, {'word': 'TRACK', 'start_time': 0.88, 'end_time': 1.1}, {'word': 'APPEARS', 'start_time': 1.18, 'end_time': 1.66}, {'word': 'ON', 'start_time': 1.86, 'end_time': 1.92}]
+ ```"""
+
+ from pyctcdecode.constants import (
+ DEFAULT_BEAM_WIDTH,
+ DEFAULT_HOTWORD_WEIGHT,
+ DEFAULT_MIN_TOKEN_LOGP,
+ DEFAULT_PRUNE_LOGP,
+ )
+
+ # set defaults
+ beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH
+ beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP
+ token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP
+ hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT
+
+ # reset params at every forward call. It's just a `set` method in pyctcdecode
+ self.decoder.reset_params(
+ alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary
+ )
+
+ # pyctcdecode
+ decoded_beams = self.decoder.decode_beams(
+ logits,
+ beam_width=beam_width,
+ beam_prune_logp=beam_prune_logp,
+ token_min_logp=token_min_logp,
+ hotwords=hotwords,
+ hotword_weight=hotword_weight,
+ )
+
+ word_offsets = None
+ if output_word_offsets:
+ word_offsets = [
+ [
+ {"word": word, "start_offset": start_offset, "end_offset": end_offset}
+ for word, (start_offset, end_offset) in beam[2]
+ ]
+ for beam in decoded_beams
+ ]
+ logit_scores = [beam[-2] for beam in decoded_beams]
+
+ lm_scores = [beam[-1] for beam in decoded_beams]
+
+ hypotheses = [beam[0] for beam in decoded_beams]
+
+ if n_best > len(decoded_beams):
+ logger.info(
+ "N-best size is larger than the number of generated hypotheses, all hypotheses will be returned."
+ )
+
+ if n_best == 1:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=hypotheses[0],
+ logit_score=logit_scores[0],
+ lm_score=lm_scores[0],
+ word_offsets=word_offsets[0] if word_offsets is not None else None,
+ )
+ else:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=hypotheses[:n_best],
+ logit_score=logit_scores[:n_best],
+ lm_score=lm_scores[:n_best],
+ word_offsets=word_offsets[:n_best] if word_offsets is not None else None,
+ )
+
+ @contextmanager
+ def as_target_processor(self):
+ """
+ Temporarily sets the processor for processing the target. Useful for encoding the labels when fine-tuning
+ Wav2Vec2.
+ """
+ warnings.warn(
+ "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
+ "labels by using the argument `text` of the regular `__call__` method (either in the same call as "
+ "your audio inputs, or in a separate call."
+ )
+ self._in_target_context_manager = True
+ self.current_processor = self.tokenizer
+ yield
+ self.current_processor = self.feature_extractor
+ self._in_target_context_manager = False
+
+
+__all__ = ["Wav2Vec2ProcessorWithLM"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b865cb93ce1134a1a8761bafd1b3498931d7c83
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_yoso import *
+ from .modeling_yoso import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bddc34298be5b6d16447384b8afcc5d7e08f13ed
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6f8fe0e3f9569d7393b85d74ef98970989ad860
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..08270fd87ccdf698762852c03901a0cde44eb949
Binary files /dev/null and b/janus/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc differ
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a7fb1218e402e36f6275f81783e00cc79c36a8d
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py
@@ -0,0 +1,144 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""YOSO model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class YosoConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the YOSO
+ [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`YosoModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
+ use_expectation (`bool`, *optional*, defaults to `True`):
+ Whether or not to use YOSO Expectation. Overrides any effect of num_hash.
+ hash_code_len (`int`, *optional*, defaults to 9):
+ The length of hashes generated by the hash functions.
+ num_hash (`int`, *optional*, defaults to 64):
+ Number of hash functions used in [`YosoSelfAttention`].
+ conv_window (`int`, *optional*):
+ Kernel size of depth-wise convolution.
+ use_fast_hash (`bool`, *optional*, defaults to `False`):
+ Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.
+ lsh_backward (`bool`, *optional*, defaults to `True`):
+ Whether or not to perform backpropagation using Locality Sensitive Hashing.
+
+ Example:
+
+ ```python
+ >>> from transformers import YosoConfig, YosoModel
+
+ >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration
+ >>> configuration = YosoConfig()
+
+ >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration
+ >>> model = YosoModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "yoso"
+
+ def __init__(
+ self,
+ vocab_size=50265,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=4096,
+ type_vocab_size=1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ position_embedding_type="absolute",
+ use_expectation=True,
+ hash_code_len=9,
+ num_hash=64,
+ conv_window=None,
+ use_fast_hash=True,
+ lsh_backward=True,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_expectation = use_expectation
+ self.hash_code_len = hash_code_len
+ self.num_hash = num_hash
+ self.conv_window = conv_window
+ self.use_fast_hash = use_fast_hash
+ self.lsh_backward = lsh_backward
+
+
+__all__ = ["YosoConfig"]
diff --git a/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py b/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py
new file mode 100644
index 0000000000000000000000000000000000000000..edccabee2ea42d004e4b0eaefce87684e8f671c6
--- /dev/null
+++ b/janus/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py
@@ -0,0 +1,1320 @@
+# coding=utf-8
+# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch YOSO model."""
+
+import math
+from pathlib import Path
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_ninja_available,
+ is_torch_cuda_available,
+ logging,
+)
+from .configuration_yoso import YosoConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096"
+_CONFIG_FOR_DOC = "YosoConfig"
+
+
+lsh_cumulation = None
+
+
+def load_cuda_kernels():
+ global lsh_cumulation
+ from torch.utils.cpp_extension import load
+
+ def append_root(files):
+ src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso"
+ return [src_folder / file for file in files]
+
+ src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"])
+
+ load("fast_lsh_cumulation", src_files, verbose=True)
+
+ import fast_lsh_cumulation as lsh_cumulation
+
+
+def to_contiguous(input_tensors):
+ if isinstance(input_tensors, list):
+ out = []
+ for tensor in input_tensors:
+ if not tensor.is_contiguous():
+ tensor = tensor.contiguous()
+ out.append(tensor)
+ return out
+ else:
+ if not input_tensors.is_contiguous():
+ input_tensors = input_tensors.contiguous()
+ return input_tensors
+
+
+def normalize(input_tensors):
+ if isinstance(input_tensors, list):
+ out = []
+ for tensor in input_tensors:
+ out.append(nn.functional.normalize(tensor, p=2, dim=-1))
+ return out
+ else:
+ return nn.functional.normalize(input_tensors, p=2, dim=-1)
+
+
+def hashing(query, key, num_hash, hash_len):
+ if len(query.size()) != 3:
+ raise ValueError("Query has incorrect size.")
+ if len(key.size()) != 3:
+ raise ValueError("Key has incorrect size.")
+
+ rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device)
+ raise_pow = 2 ** torch.arange(hash_len, device=query.device)
+
+ query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len)
+ key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len)
+ query_binary = (query_projection > 0).int()
+ key_binary = (key_projection > 0).int()
+ query_hash = torch.sum(query_binary * raise_pow, dim=-1)
+ query_hash = torch.sum(key_binary * raise_pow, dim=-1)
+
+ return query_hash.int(), query_hash.int()
+
+
+class YosoCumulation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, query_mask, key_mask, query, key, value, config):
+ hash_code_len = config["hash_code_len"]
+
+ expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
+ expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
+ cumulation_value = torch.matmul(expectation, value)
+
+ ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value)
+ ctx.config = config
+
+ return cumulation_value
+
+ @staticmethod
+ def backward(ctx, grad):
+ grad = to_contiguous(grad)
+
+ query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors
+ config = ctx.config
+
+ hash_code_len = config["hash_code_len"]
+
+ weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
+ grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
+ grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
+ grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
+
+ return None, None, grad_query, grad_key, grad_value, None
+
+
+class YosoLSHCumulation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, query_mask, key_mask, query, key, value, config):
+ if query_mask.size(0) != key_mask.size(0):
+ raise ValueError("Query mask and Key mask differ in sizes in dimension 0")
+ if query_mask.size(0) != query.size(0):
+ raise ValueError("Query mask and Query differ in sizes in dimension 0")
+ if query_mask.size(0) != key.size(0):
+ raise ValueError("Query mask and Key differ in sizes in dimension 0")
+ if query_mask.size(0) != value.size(0):
+ raise ValueError("Query mask and Value mask differ in sizes in dimension 0")
+ if key.size(1) != value.size(1):
+ raise ValueError("Key and Value differ in sizes in dimension 1")
+ if query.size(2) != key.size(2):
+ raise ValueError("Query and Key differ in sizes in dimension 2")
+
+ query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value])
+
+ use_cuda = query_mask.is_cuda
+ num_hash = config["num_hash"]
+ hash_code_len = config["hash_code_len"]
+ hashtable_capacity = int(2**hash_code_len)
+
+ if config["use_fast_hash"]:
+ query_hash_code, key_hash_code = lsh_cumulation.fast_hash(
+ query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1
+ )
+ else:
+ query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len)
+
+ cumulation_value = lsh_cumulation.lsh_cumulation(
+ query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1
+ )
+
+ ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value)
+ ctx.config = config
+
+ return cumulation_value
+
+ @staticmethod
+ def backward(ctx, grad):
+ grad = to_contiguous(grad)
+
+ query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors
+ config = ctx.config
+
+ use_cuda = grad.is_cuda
+ hash_code_len = config["hash_code_len"]
+ hashtable_capacity = int(2**hash_code_len)
+
+ if config["lsh_backward"]:
+ grad_value = lsh_cumulation.lsh_cumulation(
+ key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1
+ )
+ grad_query = lsh_cumulation.lsh_weighted_cumulation(
+ query_mask,
+ query_hash_code,
+ grad,
+ key_mask,
+ key_hash_code,
+ value,
+ (hash_code_len / 2) * key,
+ hashtable_capacity,
+ use_cuda,
+ 4,
+ )
+ grad_key = lsh_cumulation.lsh_weighted_cumulation(
+ key_mask,
+ key_hash_code,
+ value,
+ query_mask,
+ query_hash_code,
+ grad,
+ (hash_code_len / 2) * query,
+ hashtable_capacity,
+ use_cuda,
+ 4,
+ )
+ else:
+ expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
+ expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
+ weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
+ grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
+ grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
+ grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
+
+ return None, None, grad_query, grad_key, grad_value, None
+
+
+# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings
+class YosoEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "token_type_ids",
+ torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
+ persistent=False,
+ )
+
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class YosoSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ kernel_loaded = lsh_cumulation is not None
+ if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
+ try:
+ load_cuda_kernels()
+ except Exception as e:
+ logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = (
+ position_embedding_type if position_embedding_type is not None else config.position_embedding_type
+ )
+
+ self.use_expectation = config.use_expectation
+ self.hash_code_len = config.hash_code_len
+ self.use_conv = config.conv_window is not None
+ self.use_fast_hash = config.use_fast_hash
+ self.num_hash = config.num_hash
+ self.lsh_backward = config.lsh_backward
+
+ self.lsh_config = {
+ "hash_code_len": self.hash_code_len,
+ "use_fast_hash": self.use_fast_hash,
+ "num_hash": self.num_hash,
+ "lsh_backward": self.lsh_backward,
+ }
+
+ if config.conv_window is not None:
+ self.conv = nn.Conv2d(
+ in_channels=config.num_attention_heads,
+ out_channels=config.num_attention_heads,
+ kernel_size=(config.conv_window, 1),
+ padding=(config.conv_window // 2, 0),
+ bias=False,
+ groups=config.num_attention_heads,
+ )
+
+ def transpose_for_scores(self, layer):
+ new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ layer = layer.view(*new_layer_shape)
+ return layer.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ if self.use_conv:
+ conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None])
+
+ batch_size, num_heads, seq_len, head_dim = query_layer.size()
+
+ query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+ key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+ value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim)
+
+ attention_mask = 1.0 + attention_mask / 10000.0
+ attention_mask = (
+ attention_mask.unsqueeze(1)
+ .repeat_interleave(num_heads, dim=1)
+ .reshape(batch_size * num_heads, seq_len)
+ .int()
+ )
+
+ # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
+ # smaller than this are padded with zeros.
+ gpu_warp_size = 32
+
+ if (not self.use_expectation) and head_dim < gpu_warp_size:
+ pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim
+
+ query_layer = torch.cat(
+ [
+ query_layer,
+ torch.zeros(pad_size, device=query_layer.device),
+ ],
+ dim=-1,
+ )
+ key_layer = torch.cat(
+ [
+ key_layer,
+ torch.zeros(pad_size, device=key_layer.device),
+ ],
+ dim=-1,
+ )
+ value_layer = torch.cat(
+ [
+ value_layer,
+ torch.zeros(pad_size, device=value_layer.device),
+ ],
+ dim=-1,
+ )
+
+ if self.use_expectation or self.training:
+ query_layer, key_layer = normalize([query_layer, key_layer])
+
+ if self.use_expectation:
+ context_layer = YosoCumulation.apply(
+ attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
+ )
+ else:
+ context_layer = YosoLSHCumulation.apply(
+ attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
+ )
+
+ if (not self.use_expectation) and head_dim < gpu_warp_size:
+ context_layer = context_layer[:, :, :head_dim]
+
+ context_layer = normalize(context_layer)
+
+ context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
+
+ if self.use_conv:
+ context_layer += conv_value_layer
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, context_layer) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class YosoSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class YosoAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = YosoSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ self_outputs = self.self(hidden_states, attention_mask, output_attentions)
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class YosoIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class YosoOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class YosoLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = YosoAttention(config)
+ self.add_cross_attention = config.add_cross_attention
+ self.intermediate = YosoIntermediate(config)
+ self.output = YosoOutput(config)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
+ attention_output = self_attention_outputs[0]
+
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class YosoEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutputWithCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
+class YosoPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso
+class YosoLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = YosoPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def _tie_weights(self):
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso
+class YosoOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = YosoLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+class YosoPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = YosoConfig
+ base_model_prefix = "yoso"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+YOSO_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`YosoConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+YOSO_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.",
+ YOSO_START_DOCSTRING,
+)
+class YosoModel(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = YosoEmbeddings(config)
+ self.encoder = YosoEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithCrossAttentions(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING)
+class YosoForMaskedLM(YosoPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.yoso = YosoModel(config)
+ self.cls = YosoOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+ self.cls.predictions.bias = new_embeddings.bias
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class YosoClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.config = config
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of
+ the pooled output) e.g. for GLUE tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForSequenceClassification(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.yoso = YosoModel(config)
+ self.classifier = YosoClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a multiple choice classification head on top (a linear layer on top of
+ the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForMultipleChoice(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.yoso = YosoModel(config)
+ self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
+ pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
+ pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
+ pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a token classification head on top (a linear layer on top of
+ the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForTokenClassification(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.yoso = YosoModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ # Only keep active parts of the loss
+ if attention_mask is not None:
+ active_loss = attention_mask.view(-1) == 1
+ active_logits = logits.view(-1, self.num_labels)
+ active_labels = torch.where(
+ active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
+ )
+ loss = loss_fct(active_logits, active_labels)
+ else:
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
+ YOSO_START_DOCSTRING,
+)
+class YosoForQuestionAnswering(YosoPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ config.num_labels = 2
+ self.num_labels = config.num_labels
+
+ self.yoso = YosoModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.yoso(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+__all__ = [
+ "YosoForMaskedLM",
+ "YosoForMultipleChoice",
+ "YosoForQuestionAnswering",
+ "YosoForSequenceClassification",
+ "YosoForTokenClassification",
+ "YosoLayer",
+ "YosoModel",
+ "YosoPreTrainedModel",
+]