Create make_summarization_csv.py
Browse files- make_summarization_csv.py +90 -0
make_summarization_csv.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
import pickle
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
|
13 |
+
def make_summarization_csv(args):
|
14 |
+
if args.for_qfid:
|
15 |
+
logging.info('Making csv files for QFiD...')
|
16 |
+
logging.info('Columns={"reference": literature review title <s> chapter title </s> literature review title <s> chapter title <s> abstract of cited paper 1 <s> BIB001 </s> literature review title <s> chapter title <s> abstract of cited paper 2 <s> BIB002 </s> ..., "target": literature review chapter}')
|
17 |
+
else:
|
18 |
+
logging.info('Making csv files for summarization...')
|
19 |
+
logging.info('Columns={"reference": literature review title <s> chapter title <s> abstract of cited paper 1 <s> BIB001 </s> literature review title <s> chapter title <s> abstract of cited paper 2 <s> BIB002 </s> ..., "target": literature review chapter}')
|
20 |
+
section_df = pd.read_pickle(os.path.join(args.dataset_path, 'split_survey_df.pkl'))
|
21 |
+
|
22 |
+
dataset_df = section_df[section_df['n_bibs'].apply(lambda n_bibs: n_bibs >= 2)]
|
23 |
+
|
24 |
+
dataset_df = dataset_df.rename(columns={'text': 'target'})
|
25 |
+
dataset_df = dataset_df.rename(columns={'bib_cinting_sentences': 'bib_citing_sentences'})
|
26 |
+
|
27 |
+
dataset_df['reference'] = dataset_df[['bib_abstracts', 'section', 'title']].apply(lambda bib_abstracts: ' '.join(['</s> {} <s> {} <s> {} <s> BIB{}'.format(bib_abstracts[2], bib_abstracts[1], abstract, bib) for bib, abstract in bib_abstracts[0].items()]), axis=1)
|
28 |
+
if args.for_qfid:
|
29 |
+
dataset_df['reference'] = dataset_df['title'] + ' <s> ' + dataset_df['section'] + ' ' + dataset_df['reference']
|
30 |
+
else:
|
31 |
+
dataset_df['reference'] = dataset_df['reference'].apply(lambda s: s[5:])
|
32 |
+
|
33 |
+
split_df = dataset_df['split']
|
34 |
+
dataset_df = dataset_df[['reference', 'target']]
|
35 |
+
|
36 |
+
train_df = dataset_df[split_df == 'train']
|
37 |
+
val_df = dataset_df[split_df == 'val']
|
38 |
+
test_df = dataset_df[split_df == 'test']
|
39 |
+
|
40 |
+
if args.for_qfid:
|
41 |
+
train_df.to_csv(os.path.join(args.dataset_path, 'train_qfid.csv'), index=False)
|
42 |
+
val_df.to_csv(os.path.join(args.dataset_path, 'val_qfid.csv'), index=False)
|
43 |
+
test_df.to_csv(os.path.join(args.dataset_path, 'test_qfid.csv'), index=False)
|
44 |
+
else:
|
45 |
+
train_df.to_csv(os.path.join(args.dataset_path, 'train.csv'), index=False)
|
46 |
+
val_df.to_csv(os.path.join(args.dataset_path, 'val.csv'), index=False)
|
47 |
+
test_df.to_csv(os.path.join(args.dataset_path, 'test.csv'), index=False)
|
48 |
+
logging.info('Done!')
|
49 |
+
|
50 |
+
|
51 |
+
def anonymize_bib(args):
|
52 |
+
logging.info('Converting BIB identifiers...')
|
53 |
+
for split in ['val', 'test', 'train']:
|
54 |
+
if args.for_qfid:
|
55 |
+
df = pd.read_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split)))
|
56 |
+
else:
|
57 |
+
df = pd.read_csv(os.path.join(args.dataset_path, '{}.csv'.format(split)))
|
58 |
+
bar = tqdm(total=len(df))
|
59 |
+
for row in df.itertuples():
|
60 |
+
cnt = 1
|
61 |
+
bib_dict = {}
|
62 |
+
for i in range(len(row.reference)):
|
63 |
+
if row.reference[i:i+7] == '<s> BIB':
|
64 |
+
bib_dict[row.reference[i+7:].split(' ')[0]] = cnt
|
65 |
+
cnt += 1
|
66 |
+
ref = row.reference
|
67 |
+
tgt = row.target
|
68 |
+
for key, value in bib_dict.items():
|
69 |
+
ref = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), ref)
|
70 |
+
tgt = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), tgt)
|
71 |
+
df.at[row.Index, 'reference'] = ref
|
72 |
+
df.at[row.Index, 'target'] = tgt
|
73 |
+
bar.update(1)
|
74 |
+
logging.info('Saving...')
|
75 |
+
if args.for_qfid:
|
76 |
+
df.to_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split)), index=False)
|
77 |
+
else:
|
78 |
+
df.to_csv(os.path.join(args.dataset_path, '{}.csv'.format(split)), index=False)
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
logging.basicConfig(format='%(message)s', level=logging.DEBUG)
|
83 |
+
|
84 |
+
parser = argparse.ArgumentParser(description='')
|
85 |
+
parser.add_argument('-dataset_path', default=".", help='Path to the generated dataset')
|
86 |
+
parser.add_argument('--for_qfid', action='store_true', help='Add if you train QFiD on the generated csv files')
|
87 |
+
args = parser.parse_args()
|
88 |
+
|
89 |
+
make_summarization_csv(args) # Convert split_survey_df into csv files suitable for summarization
|
90 |
+
anonymize_bib(args) # Converting BIB{paper_id} into BIB{001, 002, ...}
|