import re import os import logging import pickle import argparse import numpy as np import pandas as pd from tqdm import tqdm def make_summarization_csv(args): if args.for_qfid: logging.info('Making csv files for QFiD...') logging.info('Columns={"reference": literature review title chapter title literature review title chapter title abstract of cited paper 1 BIB001 literature review title chapter title abstract of cited paper 2 BIB002 ..., "target": literature review chapter}') else: logging.info('Making csv files for summarization...') logging.info('Columns={"reference": literature review title chapter title abstract of cited paper 1 BIB001 literature review title chapter title abstract of cited paper 2 BIB002 ..., "target": literature review chapter}') section_df = pd.read_pickle(os.path.join(args.dataset_path, 'split_survey_df.pkl')) dataset_df = section_df[section_df['n_bibs'].apply(lambda n_bibs: n_bibs >= 2)] dataset_df = dataset_df.rename(columns={'text': 'target'}) dataset_df = dataset_df.rename(columns={'bib_cinting_sentences': 'bib_citing_sentences'}) dataset_df['reference'] = dataset_df[['bib_abstracts', 'section', 'title']].apply(lambda bib_abstracts: ' '.join([' {} {} {} BIB{}'.format(bib_abstracts[2], bib_abstracts[1], abstract, bib) for bib, abstract in bib_abstracts[0].items()]), axis=1) if args.for_qfid: dataset_df['reference'] = dataset_df['title'] + ' ' + dataset_df['section'] + ' ' + dataset_df['reference'] else: dataset_df['reference'] = dataset_df['reference'].apply(lambda s: s[5:]) split_df = dataset_df['split'] dataset_df = dataset_df[['reference', 'target']] train_df = dataset_df[split_df == 'train'] val_df = dataset_df[split_df == 'val'] test_df = dataset_df[split_df == 'test'] if args.for_qfid: train_df.to_csv(os.path.join(args.dataset_path, 'train_qfid.csv'), index=False) val_df.to_csv(os.path.join(args.dataset_path, 'val_qfid.csv'), index=False) test_df.to_csv(os.path.join(args.dataset_path, 'test_qfid.csv'), index=False) else: train_df.to_csv(os.path.join(args.dataset_path, 'train.csv'), index=False) val_df.to_csv(os.path.join(args.dataset_path, 'val.csv'), index=False) test_df.to_csv(os.path.join(args.dataset_path, 'test.csv'), index=False) logging.info('Done!') def anonymize_bib(args): logging.info('Converting BIB identifiers...') for split in ['val', 'test', 'train']: if args.for_qfid: df = pd.read_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split))) else: df = pd.read_csv(os.path.join(args.dataset_path, '{}.csv'.format(split))) bar = tqdm(total=len(df)) for row in df.itertuples(): cnt = 1 bib_dict = {} for i in range(len(row.reference)): if row.reference[i:i+7] == ' BIB': bib_dict[row.reference[i+7:].split(' ')[0]] = cnt cnt += 1 ref = row.reference tgt = row.target for key, value in bib_dict.items(): ref = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), ref) tgt = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), tgt) df.at[row.Index, 'reference'] = ref df.at[row.Index, 'target'] = tgt bar.update(1) logging.info('Saving...') if args.for_qfid: df.to_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split)), index=False) else: df.to_csv(os.path.join(args.dataset_path, '{}.csv'.format(split)), index=False) if __name__ == '__main__': logging.basicConfig(format='%(message)s', level=logging.DEBUG) parser = argparse.ArgumentParser(description='') parser.add_argument('-dataset_path', default=".", help='Path to the generated dataset') parser.add_argument('--for_qfid', action='store_true', help='Add if you train QFiD on the generated csv files') args = parser.parse_args() make_summarization_csv(args) # Convert split_survey_df into csv files suitable for summarization anonymize_bib(args) # Converting BIB{paper_id} into BIB{001, 002, ...}