Upload folder using huggingface_hub
Browse files
.gitattributes
CHANGED
@@ -72,3 +72,5 @@ Goodreads-Mystery/raw/goodreads_book_genres_initial.json filter=lfs diff=lfs mer
|
|
72 |
Goodreads-Mystery/raw/goodreads_books_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
|
73 |
Goodreads-Mystery/raw/goodreads_reviews_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
|
74 |
reddit/raw/reddit.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
72 |
Goodreads-Mystery/raw/goodreads_books_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
|
73 |
Goodreads-Mystery/raw/goodreads_reviews_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
|
74 |
reddit/raw/reddit.csv filter=lfs diff=lfs merge=lfs -text
|
75 |
+
amazon_apps/raw/Apps_for_Android_5.json filter=lfs diff=lfs merge=lfs -text
|
76 |
+
amazon_apps/raw/meta_Apps_for_Android.json filter=lfs diff=lfs merge=lfs -text
|
amazon_apps/apps.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Amazon-Apps Datasets
|
2 |
+
|
3 |
+
## Dataset Description
|
4 |
+
The Amazon-Apps dataset is a shopping network. It includes information about items, users and reviews. Nodes represent items and users. Text on a user node is the `reviwer` and on a item node is `item`. Edges represent relationships between items and users. Text on an edge is a user's review of a item including following information: `Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].`.
|
5 |
+
|
6 |
+
|
7 |
+
## Graph Machine Learning Tasks
|
8 |
+
|
9 |
+
### Link Prediction
|
10 |
+
Link prediction in the Amazon-Apps dataset involves predicting potential connections between users and items. The goal is to predict whether a user will purchase a item.
|
11 |
+
|
12 |
+
### Node Classification
|
13 |
+
Node classification tasks in the Amazon-Apps dataset include predicting the items' category.
|
14 |
+
|
15 |
+
|
16 |
+
## Dataset Source
|
17 |
+
http://jmcauley.ucsd.edu/data/amazon/links.html
|
amazon_apps/processed/apps.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b657d31db43cb1a2c9a7854dcf2720c0b80e06c336d8e9ac803d5dd71e4048
|
3 |
+
size 305378380
|
amazon_apps/raw/Apps_for_Android_5.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55a30be054c139b900fd93fe3cffda17caf49b3a91760dc2e40eb84ea59ad958
|
3 |
+
size 337389838
|
amazon_apps/raw/meta_Apps_for_Android.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdc12d4b8bfe4bc9c88b29752f6138ffd0ea41a9e3740388002ae64d2b5d6e81
|
3 |
+
size 59955438
|
amazon_apps/raw/process_final.ipynb
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 7,
|
6 |
+
"id": "2b881572b62f8ce1",
|
7 |
+
"metadata": {
|
8 |
+
"ExecuteTime": {
|
9 |
+
"end_time": "2024-10-19T08:11:58.339331100Z",
|
10 |
+
"start_time": "2024-10-19T08:11:51.232136400Z"
|
11 |
+
},
|
12 |
+
"collapsed": false
|
13 |
+
},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import json\n",
|
17 |
+
"path = \"Apps_for_Android_5.json\"\n",
|
18 |
+
"dict_edge = {} #example: 8842281e1d1347389f2ab93d60773d4d|23310161 : One of my favorite books.\n",
|
19 |
+
"dict_num_to_id = {} # reorder the node's id\n",
|
20 |
+
"edge_score = []\n",
|
21 |
+
"count = 0\n",
|
22 |
+
"review_text = \"Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].\"\n",
|
23 |
+
"with open(path) as f:\n",
|
24 |
+
" for line in f:\n",
|
25 |
+
" d = json.loads(line)\n",
|
26 |
+
" edge = d[\"reviewerID\"] + \"|\" + d[\"asin\"]\n",
|
27 |
+
" try:\n",
|
28 |
+
" reviewtext = review_text.replace(\"[reviewerName]\", d[\"reviewerName\"])\n",
|
29 |
+
" except:\n",
|
30 |
+
" reviewtext = review_text.replace(\"[reviewerName]\", \"\")\n",
|
31 |
+
" if d[\"reviewTime\"] == \"\":\n",
|
32 |
+
" reviewtext = reviewtext.replace(\"[reviewTime]\", \"Unknown reviewtime\")\n",
|
33 |
+
" else:\n",
|
34 |
+
" reviewtext = reviewtext.replace(\"[reviewTime]\", d[\"reviewTime\"])\n",
|
35 |
+
" if d[\"overall\"] == \"\":\n",
|
36 |
+
" reviewtext = reviewtext.replace(\"[rating]\", \"Unknown\")\n",
|
37 |
+
" else:\n",
|
38 |
+
" reviewtext = reviewtext.replace(\"[rating]\", str(d[\"overall\"]))\n",
|
39 |
+
" reviewtext = reviewtext.replace(\"[reviewText]\", d[\"reviewText\"])\n",
|
40 |
+
" if d[\"summary\"] == \"\":\n",
|
41 |
+
" reviewtext = reviewtext.replace(\"[summary]\", \"Unknown\")\n",
|
42 |
+
" else:\n",
|
43 |
+
" reviewtext = reviewtext.replace(\"[summary]\", d[\"summary\"])\n",
|
44 |
+
" dict_edge[edge] = reviewtext\n",
|
45 |
+
" edge_score.append(d[\"overall\"])\n",
|
46 |
+
" if d[\"reviewerID\"] not in dict_num_to_id:\n",
|
47 |
+
" dict_num_to_id[d[\"reviewerID\"]] = count\n",
|
48 |
+
" count += 1\n",
|
49 |
+
" if d[\"asin\"] not in dict_num_to_id:\n",
|
50 |
+
" dict_num_to_id[d[\"asin\"]] = count\n",
|
51 |
+
" count += 1\n",
|
52 |
+
" "
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 8,
|
58 |
+
"id": "3cfd947d",
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"import json\n",
|
63 |
+
"dict_id_to_text = {}\n",
|
64 |
+
"dictid_to_label = {}\n",
|
65 |
+
"node_texts = \"item\"\n",
|
66 |
+
"\n",
|
67 |
+
"with open(\"meta_Apps_for_Android.json\") as f:\n",
|
68 |
+
" for line in f:\n",
|
69 |
+
" d = json.loads(line)\n",
|
70 |
+
" break"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 10,
|
76 |
+
"id": "acb9e595af870544",
|
77 |
+
"metadata": {
|
78 |
+
"ExecuteTime": {
|
79 |
+
"end_time": "2024-10-19T08:15:01.303897900Z",
|
80 |
+
"start_time": "2024-10-19T08:15:00.542531700Z"
|
81 |
+
},
|
82 |
+
"collapsed": false
|
83 |
+
},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"import json\n",
|
87 |
+
"dict_id_to_text = {}\n",
|
88 |
+
"dictid_to_label = {}\n",
|
89 |
+
"node_texts = \"item\"\n",
|
90 |
+
"\n",
|
91 |
+
"with open(\"meta_Apps_for_Android.json\") as f:\n",
|
92 |
+
" for line in f:\n",
|
93 |
+
" d = json.loads(line)\n",
|
94 |
+
" label_list = []\n",
|
95 |
+
" for x in d[\"categories\"]:\n",
|
96 |
+
" for label in x:\n",
|
97 |
+
" label_list.append(label)\n",
|
98 |
+
" dictid_to_label[d[\"asin\"]] = label_list\n",
|
99 |
+
" product_text = node_texts\n",
|
100 |
+
" '''\n",
|
101 |
+
" product_text = nodes_texts.replace(\"[title]\", d[\"title\"])\n",
|
102 |
+
" category_text = \", \".join(label_list[1:])\n",
|
103 |
+
" product_text = product_text.replace(\"[category]\", category_text)\n",
|
104 |
+
" if d[\"feature\"] == []:\n",
|
105 |
+
" product_text = product_text.replace(\"[feature]\",\"Unknown feature\")\n",
|
106 |
+
" else:\n",
|
107 |
+
" feature_text = \", \".join(d[\"feature\"])\n",
|
108 |
+
" product_text = product_text.replace(\"[feature]\",feature_text)\n",
|
109 |
+
" if d[\"description\"] == []:\n",
|
110 |
+
" product_text = product_text.replace(\"[description]\",\"Unknown description\")\n",
|
111 |
+
" else:\n",
|
112 |
+
" description_text = \", \".join(d[\"description\"])\n",
|
113 |
+
" product_text = product_text.replace(\"[description]\",description_text)\n",
|
114 |
+
" if d[\"fit\"] == \"\":\n",
|
115 |
+
" product_text = product_text.replace(\"[fit]\",\"Unknown fit\")\n",
|
116 |
+
" else:\n",
|
117 |
+
" product_text = product_text.replace(\"[fit]\",d[\"fit\"])\n",
|
118 |
+
" if d[\"price\"] == \"\":\n",
|
119 |
+
" product_text = product_text.replace(\"[price]\",\"Unknown price\")\n",
|
120 |
+
" else:\n",
|
121 |
+
" product_text = product_text.replace(\"[price]\",d[\"price\"])\n",
|
122 |
+
" if d[\"brand\"] == \"\":\n",
|
123 |
+
" product_text = product_text.replace(\"[brand]\",\"Unknown brand\")\n",
|
124 |
+
" else:\n",
|
125 |
+
" product_text = product_text.replace(\"[brand]\",d[\"brand\"])\n",
|
126 |
+
" if d[\"rank\"] == \"\":\n",
|
127 |
+
" product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
|
128 |
+
" else:\n",
|
129 |
+
" try:\n",
|
130 |
+
" product_text = product_text.replace(\"[rank]\",d[\"rank\"])\n",
|
131 |
+
" except:\n",
|
132 |
+
" product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
|
133 |
+
" if d[\"date\"] == \"\":\n",
|
134 |
+
" product_text = product_text.replace(\"[date]\",\"Unknown date\")\n",
|
135 |
+
" else:\n",
|
136 |
+
" product_text = product_text.replace(\"[date]\",d[\"date\"])\n",
|
137 |
+
" if d[\"imageURL\"] == []:\n",
|
138 |
+
" product_text = product_text.replace(\"[imageURL]\",\"Unknown imageURL\")\n",
|
139 |
+
" else:\n",
|
140 |
+
" imageURL_text = \", \".join(d[\"imageURL\"])\n",
|
141 |
+
" product_text = product_text.replace(\"[imageURL]\",imageURL_text)\n",
|
142 |
+
" if d[\"imageURLHighRes\"] == []:\n",
|
143 |
+
" product_text = product_text.replace(\"[imageURLHighRes]\",\"Unknown imageURLHighRes\")\n",
|
144 |
+
" else:\n",
|
145 |
+
" imageURLHighRes_text = \", \".join(d[\"imageURLHighRes\"])\n",
|
146 |
+
" product_text = product_text.replace(\"[imageURLHighRes]\",imageURLHighRes_text)\n",
|
147 |
+
" '''\n",
|
148 |
+
" dict_id_to_text[d[\"asin\"]] = product_text"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 11,
|
154 |
+
"id": "5e69e274cb42bf36",
|
155 |
+
"metadata": {
|
156 |
+
"ExecuteTime": {
|
157 |
+
"end_time": "2024-10-19T08:15:01.999784800Z",
|
158 |
+
"start_time": "2024-10-19T08:15:01.989277300Z"
|
159 |
+
},
|
160 |
+
"collapsed": false
|
161 |
+
},
|
162 |
+
"outputs": [],
|
163 |
+
"source": [
|
164 |
+
"edge1 = [] \n",
|
165 |
+
"edge2 = [] # edge1 edge2 are to generate edge_index\n",
|
166 |
+
"text_nodes = [None] * len(dict_num_to_id)\n",
|
167 |
+
"text_edges = []\n",
|
168 |
+
"text_node_labels = [-1] * len(dict_num_to_id)"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": 12,
|
174 |
+
"id": "f2adedbc870feda",
|
175 |
+
"metadata": {
|
176 |
+
"ExecuteTime": {
|
177 |
+
"end_time": "2024-10-19T08:15:04.385748Z",
|
178 |
+
"start_time": "2024-10-19T08:15:02.732806400Z"
|
179 |
+
},
|
180 |
+
"collapsed": false
|
181 |
+
},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"for edge, edge_text in dict_edge.items():\n",
|
185 |
+
" node1 = edge.split(\"|\")[0]\n",
|
186 |
+
" node2 = edge.split(\"|\")[1]\n",
|
187 |
+
" node1_id = int(dict_num_to_id[node1])\n",
|
188 |
+
" node2_id = int(dict_num_to_id[node2])\n",
|
189 |
+
" edge1.append(node1_id)\n",
|
190 |
+
" edge2.append(node2_id)\n",
|
191 |
+
" text_nodes[node1_id] = \"reviewer\"\n",
|
192 |
+
" try:\n",
|
193 |
+
" text_nodes[node2_id] = dict_id_to_text[node2]\n",
|
194 |
+
" except:\n",
|
195 |
+
" text_nodes[node2_id] = \"Unknown node texts\"\n",
|
196 |
+
" text_edges.append(edge_text)\n",
|
197 |
+
" try:\n",
|
198 |
+
" text_node_labels[node2_id] = dictid_to_label[node2]\n",
|
199 |
+
" except:\n",
|
200 |
+
" text_node_labels[node2_id] = -1"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 14,
|
206 |
+
"id": "3305934f1a11caa7",
|
207 |
+
"metadata": {
|
208 |
+
"ExecuteTime": {
|
209 |
+
"end_time": "2024-10-19T08:15:04.410284900Z",
|
210 |
+
"start_time": "2024-10-19T08:15:04.384747Z"
|
211 |
+
},
|
212 |
+
"collapsed": false
|
213 |
+
},
|
214 |
+
"outputs": [],
|
215 |
+
"source": [
|
216 |
+
"from torch_geometric.data import Data\n",
|
217 |
+
"import torch"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 15,
|
223 |
+
"id": "5030fa8672f2b177",
|
224 |
+
"metadata": {
|
225 |
+
"ExecuteTime": {
|
226 |
+
"end_time": "2024-10-19T08:15:04.678317100Z",
|
227 |
+
"start_time": "2024-10-19T08:15:04.398293500Z"
|
228 |
+
},
|
229 |
+
"collapsed": false
|
230 |
+
},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"edge_index = torch.tensor([edge1,edge2])"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 16,
|
239 |
+
"id": "21085a8a04df7062",
|
240 |
+
"metadata": {
|
241 |
+
"ExecuteTime": {
|
242 |
+
"end_time": "2024-10-19T08:15:04.696139900Z",
|
243 |
+
"start_time": "2024-10-19T08:15:04.683323900Z"
|
244 |
+
},
|
245 |
+
"collapsed": false
|
246 |
+
},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"new_data = Data(\n",
|
250 |
+
" edge_index=edge_index,\n",
|
251 |
+
" text_nodes=text_nodes,\n",
|
252 |
+
" text_edges=text_edges,\n",
|
253 |
+
" text_node_labels=text_node_labels,\n",
|
254 |
+
" edge_score=edge_score\n",
|
255 |
+
")"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 17,
|
261 |
+
"id": "d39601d90a0171c5",
|
262 |
+
"metadata": {
|
263 |
+
"collapsed": false,
|
264 |
+
"is_executing": true
|
265 |
+
},
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"name": "stdout",
|
269 |
+
"output_type": "stream",
|
270 |
+
"text": [
|
271 |
+
"Data saved to ../processed/apps.pkl\n"
|
272 |
+
]
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"source": [
|
276 |
+
"import pickle\n",
|
277 |
+
"output_file_path = '../processed/apps.pkl'\n",
|
278 |
+
"with open(output_file_path, 'wb') as output_file:\n",
|
279 |
+
" pickle.dump(new_data, output_file)\n",
|
280 |
+
"\n",
|
281 |
+
"print(f\"Data saved to {output_file_path}\")"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "code",
|
286 |
+
"execution_count": null,
|
287 |
+
"id": "60f52e9317cfad61",
|
288 |
+
"metadata": {
|
289 |
+
"collapsed": false,
|
290 |
+
"is_executing": true
|
291 |
+
},
|
292 |
+
"outputs": [],
|
293 |
+
"source": []
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": null,
|
298 |
+
"id": "4aaa10c4d649044a",
|
299 |
+
"metadata": {
|
300 |
+
"collapsed": false,
|
301 |
+
"is_executing": true
|
302 |
+
},
|
303 |
+
"outputs": [],
|
304 |
+
"source": []
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"metadata": {
|
308 |
+
"kernelspec": {
|
309 |
+
"display_name": ".venv",
|
310 |
+
"language": "python",
|
311 |
+
"name": "python3"
|
312 |
+
},
|
313 |
+
"language_info": {
|
314 |
+
"codemirror_mode": {
|
315 |
+
"name": "ipython",
|
316 |
+
"version": 3
|
317 |
+
},
|
318 |
+
"file_extension": ".py",
|
319 |
+
"mimetype": "text/x-python",
|
320 |
+
"name": "python",
|
321 |
+
"nbconvert_exporter": "python",
|
322 |
+
"pygments_lexer": "ipython3",
|
323 |
+
"version": "3.10.12"
|
324 |
+
}
|
325 |
+
},
|
326 |
+
"nbformat": 4,
|
327 |
+
"nbformat_minor": 5
|
328 |
+
}
|