ZhuofengLi commited on
Commit
5fceca5
·
verified ·
1 Parent(s): f76fc17

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -72,3 +72,5 @@ Goodreads-Mystery/raw/goodreads_book_genres_initial.json filter=lfs diff=lfs mer
72
  Goodreads-Mystery/raw/goodreads_books_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
73
  Goodreads-Mystery/raw/goodreads_reviews_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
74
  reddit/raw/reddit.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
72
  Goodreads-Mystery/raw/goodreads_books_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
73
  Goodreads-Mystery/raw/goodreads_reviews_mystery_thriller_crime.json filter=lfs diff=lfs merge=lfs -text
74
  reddit/raw/reddit.csv filter=lfs diff=lfs merge=lfs -text
75
+ amazon_apps/raw/Apps_for_Android_5.json filter=lfs diff=lfs merge=lfs -text
76
+ amazon_apps/raw/meta_Apps_for_Android.json filter=lfs diff=lfs merge=lfs -text
amazon_apps/apps.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Amazon-Apps Datasets
2
+
3
+ ## Dataset Description
4
+ The Amazon-Apps dataset is a shopping network. It includes information about items, users and reviews. Nodes represent items and users. Text on a user node is the `reviwer` and on a item node is `item`. Edges represent relationships between items and users. Text on an edge is a user's review of a item including following information: `Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].`.
5
+
6
+
7
+ ## Graph Machine Learning Tasks
8
+
9
+ ### Link Prediction
10
+ Link prediction in the Amazon-Apps dataset involves predicting potential connections between users and items. The goal is to predict whether a user will purchase a item.
11
+
12
+ ### Node Classification
13
+ Node classification tasks in the Amazon-Apps dataset include predicting the items' category.
14
+
15
+
16
+ ## Dataset Source
17
+ http://jmcauley.ucsd.edu/data/amazon/links.html
amazon_apps/processed/apps.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69b657d31db43cb1a2c9a7854dcf2720c0b80e06c336d8e9ac803d5dd71e4048
3
+ size 305378380
amazon_apps/raw/Apps_for_Android_5.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55a30be054c139b900fd93fe3cffda17caf49b3a91760dc2e40eb84ea59ad958
3
+ size 337389838
amazon_apps/raw/meta_Apps_for_Android.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdc12d4b8bfe4bc9c88b29752f6138ffd0ea41a9e3740388002ae64d2b5d6e81
3
+ size 59955438
amazon_apps/raw/process_final.ipynb ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 7,
6
+ "id": "2b881572b62f8ce1",
7
+ "metadata": {
8
+ "ExecuteTime": {
9
+ "end_time": "2024-10-19T08:11:58.339331100Z",
10
+ "start_time": "2024-10-19T08:11:51.232136400Z"
11
+ },
12
+ "collapsed": false
13
+ },
14
+ "outputs": [],
15
+ "source": [
16
+ "import json\n",
17
+ "path = \"Apps_for_Android_5.json\"\n",
18
+ "dict_edge = {} #example: 8842281e1d1347389f2ab93d60773d4d|23310161 : One of my favorite books.\n",
19
+ "dict_num_to_id = {} # reorder the node's id\n",
20
+ "edge_score = []\n",
21
+ "count = 0\n",
22
+ "review_text = \"Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].\"\n",
23
+ "with open(path) as f:\n",
24
+ " for line in f:\n",
25
+ " d = json.loads(line)\n",
26
+ " edge = d[\"reviewerID\"] + \"|\" + d[\"asin\"]\n",
27
+ " try:\n",
28
+ " reviewtext = review_text.replace(\"[reviewerName]\", d[\"reviewerName\"])\n",
29
+ " except:\n",
30
+ " reviewtext = review_text.replace(\"[reviewerName]\", \"\")\n",
31
+ " if d[\"reviewTime\"] == \"\":\n",
32
+ " reviewtext = reviewtext.replace(\"[reviewTime]\", \"Unknown reviewtime\")\n",
33
+ " else:\n",
34
+ " reviewtext = reviewtext.replace(\"[reviewTime]\", d[\"reviewTime\"])\n",
35
+ " if d[\"overall\"] == \"\":\n",
36
+ " reviewtext = reviewtext.replace(\"[rating]\", \"Unknown\")\n",
37
+ " else:\n",
38
+ " reviewtext = reviewtext.replace(\"[rating]\", str(d[\"overall\"]))\n",
39
+ " reviewtext = reviewtext.replace(\"[reviewText]\", d[\"reviewText\"])\n",
40
+ " if d[\"summary\"] == \"\":\n",
41
+ " reviewtext = reviewtext.replace(\"[summary]\", \"Unknown\")\n",
42
+ " else:\n",
43
+ " reviewtext = reviewtext.replace(\"[summary]\", d[\"summary\"])\n",
44
+ " dict_edge[edge] = reviewtext\n",
45
+ " edge_score.append(d[\"overall\"])\n",
46
+ " if d[\"reviewerID\"] not in dict_num_to_id:\n",
47
+ " dict_num_to_id[d[\"reviewerID\"]] = count\n",
48
+ " count += 1\n",
49
+ " if d[\"asin\"] not in dict_num_to_id:\n",
50
+ " dict_num_to_id[d[\"asin\"]] = count\n",
51
+ " count += 1\n",
52
+ " "
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 8,
58
+ "id": "3cfd947d",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "import json\n",
63
+ "dict_id_to_text = {}\n",
64
+ "dictid_to_label = {}\n",
65
+ "node_texts = \"item\"\n",
66
+ "\n",
67
+ "with open(\"meta_Apps_for_Android.json\") as f:\n",
68
+ " for line in f:\n",
69
+ " d = json.loads(line)\n",
70
+ " break"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 10,
76
+ "id": "acb9e595af870544",
77
+ "metadata": {
78
+ "ExecuteTime": {
79
+ "end_time": "2024-10-19T08:15:01.303897900Z",
80
+ "start_time": "2024-10-19T08:15:00.542531700Z"
81
+ },
82
+ "collapsed": false
83
+ },
84
+ "outputs": [],
85
+ "source": [
86
+ "import json\n",
87
+ "dict_id_to_text = {}\n",
88
+ "dictid_to_label = {}\n",
89
+ "node_texts = \"item\"\n",
90
+ "\n",
91
+ "with open(\"meta_Apps_for_Android.json\") as f:\n",
92
+ " for line in f:\n",
93
+ " d = json.loads(line)\n",
94
+ " label_list = []\n",
95
+ " for x in d[\"categories\"]:\n",
96
+ " for label in x:\n",
97
+ " label_list.append(label)\n",
98
+ " dictid_to_label[d[\"asin\"]] = label_list\n",
99
+ " product_text = node_texts\n",
100
+ " '''\n",
101
+ " product_text = nodes_texts.replace(\"[title]\", d[\"title\"])\n",
102
+ " category_text = \", \".join(label_list[1:])\n",
103
+ " product_text = product_text.replace(\"[category]\", category_text)\n",
104
+ " if d[\"feature\"] == []:\n",
105
+ " product_text = product_text.replace(\"[feature]\",\"Unknown feature\")\n",
106
+ " else:\n",
107
+ " feature_text = \", \".join(d[\"feature\"])\n",
108
+ " product_text = product_text.replace(\"[feature]\",feature_text)\n",
109
+ " if d[\"description\"] == []:\n",
110
+ " product_text = product_text.replace(\"[description]\",\"Unknown description\")\n",
111
+ " else:\n",
112
+ " description_text = \", \".join(d[\"description\"])\n",
113
+ " product_text = product_text.replace(\"[description]\",description_text)\n",
114
+ " if d[\"fit\"] == \"\":\n",
115
+ " product_text = product_text.replace(\"[fit]\",\"Unknown fit\")\n",
116
+ " else:\n",
117
+ " product_text = product_text.replace(\"[fit]\",d[\"fit\"])\n",
118
+ " if d[\"price\"] == \"\":\n",
119
+ " product_text = product_text.replace(\"[price]\",\"Unknown price\")\n",
120
+ " else:\n",
121
+ " product_text = product_text.replace(\"[price]\",d[\"price\"])\n",
122
+ " if d[\"brand\"] == \"\":\n",
123
+ " product_text = product_text.replace(\"[brand]\",\"Unknown brand\")\n",
124
+ " else:\n",
125
+ " product_text = product_text.replace(\"[brand]\",d[\"brand\"])\n",
126
+ " if d[\"rank\"] == \"\":\n",
127
+ " product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
128
+ " else:\n",
129
+ " try:\n",
130
+ " product_text = product_text.replace(\"[rank]\",d[\"rank\"])\n",
131
+ " except:\n",
132
+ " product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
133
+ " if d[\"date\"] == \"\":\n",
134
+ " product_text = product_text.replace(\"[date]\",\"Unknown date\")\n",
135
+ " else:\n",
136
+ " product_text = product_text.replace(\"[date]\",d[\"date\"])\n",
137
+ " if d[\"imageURL\"] == []:\n",
138
+ " product_text = product_text.replace(\"[imageURL]\",\"Unknown imageURL\")\n",
139
+ " else:\n",
140
+ " imageURL_text = \", \".join(d[\"imageURL\"])\n",
141
+ " product_text = product_text.replace(\"[imageURL]\",imageURL_text)\n",
142
+ " if d[\"imageURLHighRes\"] == []:\n",
143
+ " product_text = product_text.replace(\"[imageURLHighRes]\",\"Unknown imageURLHighRes\")\n",
144
+ " else:\n",
145
+ " imageURLHighRes_text = \", \".join(d[\"imageURLHighRes\"])\n",
146
+ " product_text = product_text.replace(\"[imageURLHighRes]\",imageURLHighRes_text)\n",
147
+ " '''\n",
148
+ " dict_id_to_text[d[\"asin\"]] = product_text"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 11,
154
+ "id": "5e69e274cb42bf36",
155
+ "metadata": {
156
+ "ExecuteTime": {
157
+ "end_time": "2024-10-19T08:15:01.999784800Z",
158
+ "start_time": "2024-10-19T08:15:01.989277300Z"
159
+ },
160
+ "collapsed": false
161
+ },
162
+ "outputs": [],
163
+ "source": [
164
+ "edge1 = [] \n",
165
+ "edge2 = [] # edge1 edge2 are to generate edge_index\n",
166
+ "text_nodes = [None] * len(dict_num_to_id)\n",
167
+ "text_edges = []\n",
168
+ "text_node_labels = [-1] * len(dict_num_to_id)"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": 12,
174
+ "id": "f2adedbc870feda",
175
+ "metadata": {
176
+ "ExecuteTime": {
177
+ "end_time": "2024-10-19T08:15:04.385748Z",
178
+ "start_time": "2024-10-19T08:15:02.732806400Z"
179
+ },
180
+ "collapsed": false
181
+ },
182
+ "outputs": [],
183
+ "source": [
184
+ "for edge, edge_text in dict_edge.items():\n",
185
+ " node1 = edge.split(\"|\")[0]\n",
186
+ " node2 = edge.split(\"|\")[1]\n",
187
+ " node1_id = int(dict_num_to_id[node1])\n",
188
+ " node2_id = int(dict_num_to_id[node2])\n",
189
+ " edge1.append(node1_id)\n",
190
+ " edge2.append(node2_id)\n",
191
+ " text_nodes[node1_id] = \"reviewer\"\n",
192
+ " try:\n",
193
+ " text_nodes[node2_id] = dict_id_to_text[node2]\n",
194
+ " except:\n",
195
+ " text_nodes[node2_id] = \"Unknown node texts\"\n",
196
+ " text_edges.append(edge_text)\n",
197
+ " try:\n",
198
+ " text_node_labels[node2_id] = dictid_to_label[node2]\n",
199
+ " except:\n",
200
+ " text_node_labels[node2_id] = -1"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": 14,
206
+ "id": "3305934f1a11caa7",
207
+ "metadata": {
208
+ "ExecuteTime": {
209
+ "end_time": "2024-10-19T08:15:04.410284900Z",
210
+ "start_time": "2024-10-19T08:15:04.384747Z"
211
+ },
212
+ "collapsed": false
213
+ },
214
+ "outputs": [],
215
+ "source": [
216
+ "from torch_geometric.data import Data\n",
217
+ "import torch"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": 15,
223
+ "id": "5030fa8672f2b177",
224
+ "metadata": {
225
+ "ExecuteTime": {
226
+ "end_time": "2024-10-19T08:15:04.678317100Z",
227
+ "start_time": "2024-10-19T08:15:04.398293500Z"
228
+ },
229
+ "collapsed": false
230
+ },
231
+ "outputs": [],
232
+ "source": [
233
+ "edge_index = torch.tensor([edge1,edge2])"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": 16,
239
+ "id": "21085a8a04df7062",
240
+ "metadata": {
241
+ "ExecuteTime": {
242
+ "end_time": "2024-10-19T08:15:04.696139900Z",
243
+ "start_time": "2024-10-19T08:15:04.683323900Z"
244
+ },
245
+ "collapsed": false
246
+ },
247
+ "outputs": [],
248
+ "source": [
249
+ "new_data = Data(\n",
250
+ " edge_index=edge_index,\n",
251
+ " text_nodes=text_nodes,\n",
252
+ " text_edges=text_edges,\n",
253
+ " text_node_labels=text_node_labels,\n",
254
+ " edge_score=edge_score\n",
255
+ ")"
256
+ ]
257
+ },
258
+ {
259
+ "cell_type": "code",
260
+ "execution_count": 17,
261
+ "id": "d39601d90a0171c5",
262
+ "metadata": {
263
+ "collapsed": false,
264
+ "is_executing": true
265
+ },
266
+ "outputs": [
267
+ {
268
+ "name": "stdout",
269
+ "output_type": "stream",
270
+ "text": [
271
+ "Data saved to ../processed/apps.pkl\n"
272
+ ]
273
+ }
274
+ ],
275
+ "source": [
276
+ "import pickle\n",
277
+ "output_file_path = '../processed/apps.pkl'\n",
278
+ "with open(output_file_path, 'wb') as output_file:\n",
279
+ " pickle.dump(new_data, output_file)\n",
280
+ "\n",
281
+ "print(f\"Data saved to {output_file_path}\")"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "code",
286
+ "execution_count": null,
287
+ "id": "60f52e9317cfad61",
288
+ "metadata": {
289
+ "collapsed": false,
290
+ "is_executing": true
291
+ },
292
+ "outputs": [],
293
+ "source": []
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": null,
298
+ "id": "4aaa10c4d649044a",
299
+ "metadata": {
300
+ "collapsed": false,
301
+ "is_executing": true
302
+ },
303
+ "outputs": [],
304
+ "source": []
305
+ }
306
+ ],
307
+ "metadata": {
308
+ "kernelspec": {
309
+ "display_name": ".venv",
310
+ "language": "python",
311
+ "name": "python3"
312
+ },
313
+ "language_info": {
314
+ "codemirror_mode": {
315
+ "name": "ipython",
316
+ "version": 3
317
+ },
318
+ "file_extension": ".py",
319
+ "mimetype": "text/x-python",
320
+ "name": "python",
321
+ "nbconvert_exporter": "python",
322
+ "pygments_lexer": "ipython3",
323
+ "version": "3.10.12"
324
+ }
325
+ },
326
+ "nbformat": 4,
327
+ "nbformat_minor": 5
328
+ }