Upload folder using huggingface_hub
Browse files
goodreads_children/goodreads.md
CHANGED
|
@@ -10,4 +10,7 @@ The Goodreads datasets consist of four datasets, specifically labeled as Goodrea
|
|
| 10 |
Link prediction in the Goodreads dataset involves predicting potential connections between users and books. The goal is to predict whether a user will review a book.
|
| 11 |
|
| 12 |
### Node Classification
|
| 13 |
-
Node classification tasks in the Goodreads dataset include predicting the book's category.
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
Link prediction in the Goodreads dataset involves predicting potential connections between users and books. The goal is to predict whether a user will review a book.
|
| 11 |
|
| 12 |
### Node Classification
|
| 13 |
+
Node classification tasks in the Goodreads dataset include predicting the book's category.
|
| 14 |
+
|
| 15 |
+
## Dataset Source
|
| 16 |
+
https://mengtingwan.github.io/data/goodreads.html
|
goodreads_children/raw/download_data.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import gzip
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# 定义文件下载链接和对应的保存路径
|
| 6 |
+
files = {
|
| 7 |
+
#'goodreads_reviews_children.json.gz': 'https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/goodreads/byGenre/goodreads_reviews_children.json.gz',
|
| 8 |
+
'goodreads_books_history_biography.json.gz': 'https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/goodreads/byGenre/goodreads_books_history_biography.json.gz',
|
| 9 |
+
'goodreads_books_comics_graphic.json.gz': 'https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/goodreads/byGenre/goodreads_books_comics_graphic.json.gz',
|
| 10 |
+
'goodreads_books_mystery_thriller_crime.json.gz': 'https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/goodreads/byGenre/goodreads_books_mystery_thriller_crime.json.gz'
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
download_folder_name = ["../../goodreads_history/raw", "../../goodreads_comics/raw", "../../goodreads_crime/raw"]
|
| 14 |
+
|
| 15 |
+
def download_and_extract(filename, url, folder):
|
| 16 |
+
|
| 17 |
+
if not os.path.exists(folder):
|
| 18 |
+
os.makedirs(folder)
|
| 19 |
+
|
| 20 |
+
response = requests.get(url)
|
| 21 |
+
gz_path = os.path.join(folder, filename)
|
| 22 |
+
|
| 23 |
+
with open(gz_path, 'wb') as f:
|
| 24 |
+
f.write(response.content)
|
| 25 |
+
|
| 26 |
+
json_path = gz_path.replace('.gz', '')
|
| 27 |
+
with gzip.open(gz_path, 'rb') as f_in:
|
| 28 |
+
with open(json_path, 'wb') as f_out:
|
| 29 |
+
f_out.write(f_in.read())
|
| 30 |
+
|
| 31 |
+
print(f"{filename} 下载并解压到 {folder} 完成")
|
| 32 |
+
|
| 33 |
+
for folder, url in zip(download_folder_name,files.values()):
|
| 34 |
+
folder_name = folder
|
| 35 |
+
download_and_extract(os.path.basename(url), url, folder_name)
|
goodreads_children/raw/process_final_goodreads.ipynb
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 9,
|
| 6 |
+
"id": "44b09756",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import tqdm"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 1,
|
| 16 |
+
"id": "2b881572b62f8ce1",
|
| 17 |
+
"metadata": {
|
| 18 |
+
"ExecuteTime": {
|
| 19 |
+
"end_time": "2024-10-05T02:27:58.446078900Z",
|
| 20 |
+
"start_time": "2024-10-05T02:27:46.539697200Z"
|
| 21 |
+
},
|
| 22 |
+
"collapsed": false
|
| 23 |
+
},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"import json\n",
|
| 27 |
+
"path = \"goodreads_reviews_children.json\"\n",
|
| 28 |
+
"dict_edge = {} #example: 8842281e1d1347389f2ab93d60773d4d|23310161 : One of my favorite books.\n",
|
| 29 |
+
"dict_num_to_id = {} # reorder the node's id # TODO\n",
|
| 30 |
+
"edge_score = []\n",
|
| 31 |
+
"count = 0\n",
|
| 32 |
+
"with open(path) as f:\n",
|
| 33 |
+
" for line in f:\n",
|
| 34 |
+
" d = json.loads(line)\n",
|
| 35 |
+
" edge = d[\"user_id\"] + \"|\" + d[\"book_id\"]\n",
|
| 36 |
+
" dict_edge[edge] = d[\"review_text\"]\n",
|
| 37 |
+
" edge_score.append(d[\"rating\"])\n",
|
| 38 |
+
" if d[\"user_id\"] not in dict_num_to_id:\n",
|
| 39 |
+
" dict_num_to_id[d[\"user_id\"]] = count\n",
|
| 40 |
+
" count += 1\n",
|
| 41 |
+
" if d[\"book_id\"] not in dict_num_to_id:\n",
|
| 42 |
+
" dict_num_to_id[d[\"book_id\"]] = count\n",
|
| 43 |
+
" count += 1"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": 3,
|
| 49 |
+
"id": "c64f4d2d8949368f",
|
| 50 |
+
"metadata": {
|
| 51 |
+
"ExecuteTime": {
|
| 52 |
+
"end_time": "2024-10-05T02:28:48.893801500Z",
|
| 53 |
+
"start_time": "2024-10-05T02:28:27.239080300Z"
|
| 54 |
+
},
|
| 55 |
+
"collapsed": false
|
| 56 |
+
},
|
| 57 |
+
"outputs": [],
|
| 58 |
+
"source": [
|
| 59 |
+
"path = \"goodreads_book_genres_initial.json\"\n",
|
| 60 |
+
"bookid_to_label = {}\n",
|
| 61 |
+
"with open(path,'rb') as f:\n",
|
| 62 |
+
" for line in f:\n",
|
| 63 |
+
" d = json.loads(line)\n",
|
| 64 |
+
" label_list = []\n",
|
| 65 |
+
" for x in d[\"genres\"]:\n",
|
| 66 |
+
" label_list.append(x)\n",
|
| 67 |
+
" bookid_to_label[d[\"book_id\"]] = label_list"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 4,
|
| 73 |
+
"id": "8b0b220f7b0f42d2",
|
| 74 |
+
"metadata": {
|
| 75 |
+
"ExecuteTime": {
|
| 76 |
+
"end_time": "2024-10-05T02:28:48.915454200Z",
|
| 77 |
+
"start_time": "2024-10-05T02:28:48.898878300Z"
|
| 78 |
+
},
|
| 79 |
+
"collapsed": false
|
| 80 |
+
},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"dict_month = {\n",
|
| 84 |
+
" \"1\": \"January\", \n",
|
| 85 |
+
" \"2\": \"February\", \n",
|
| 86 |
+
" \"3\": \"March\", \n",
|
| 87 |
+
" \"4\": \"April\", \n",
|
| 88 |
+
" \"5\": \"May\", \n",
|
| 89 |
+
" \"6\": \"June\", \n",
|
| 90 |
+
" \"7\": \"July\", \n",
|
| 91 |
+
" \"8\": \"August\", \n",
|
| 92 |
+
" \"9\": \"September\", \n",
|
| 93 |
+
" \"10\": \"October\", \n",
|
| 94 |
+
" \"11\": \"November\", \n",
|
| 95 |
+
" \"12\": \"December\"\n",
|
| 96 |
+
"}\n"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": 14,
|
| 102 |
+
"id": "b32fd5e90ab106d",
|
| 103 |
+
"metadata": {
|
| 104 |
+
"ExecuteTime": {
|
| 105 |
+
"end_time": "2024-10-05T02:28:58.994242600Z",
|
| 106 |
+
"start_time": "2024-10-05T02:28:48.916449100Z"
|
| 107 |
+
},
|
| 108 |
+
"collapsed": false
|
| 109 |
+
},
|
| 110 |
+
"outputs": [
|
| 111 |
+
{
|
| 112 |
+
"name": "stderr",
|
| 113 |
+
"output_type": "stream",
|
| 114 |
+
"text": [
|
| 115 |
+
"124082it [00:06, 18574.44it/s]\n"
|
| 116 |
+
]
|
| 117 |
+
}
|
| 118 |
+
],
|
| 119 |
+
"source": [
|
| 120 |
+
"path = \"goodreads_books_children.json\"\n",
|
| 121 |
+
"bookid_to_text = {}\n",
|
| 122 |
+
"text = \"This book tittled [title] is a [format] edition published by [publisher] in [publication_month] [publication_year] about [description], consisting of [num_pages] pages.\"\n",
|
| 123 |
+
"with open(path,'rb') as f:\n",
|
| 124 |
+
" for line in tqdm.tqdm(f):\n",
|
| 125 |
+
" d = json.loads(line)\n",
|
| 126 |
+
" book_id = d[\"book_id\"]\n",
|
| 127 |
+
" book_text = text.replace(\"[title]\", d[\"title\"])\n",
|
| 128 |
+
" book_text = book_text.replace(\"[publisher]\", d[\"publisher\"])\n",
|
| 129 |
+
" book_text = book_text.replace(\"[format]\", d[\"format\"])\n",
|
| 130 |
+
" try:\n",
|
| 131 |
+
" book_text = book_text.replace(\"[publication_month]\", dict_month[d[\"publication_month\"]])\n",
|
| 132 |
+
" except:\n",
|
| 133 |
+
" book_text = book_text.replace(\"[publication_month]\", \"Unknown Month\")\n",
|
| 134 |
+
" book_text = book_text.replace(\"[publication_year]\", d[\"publication_year\"])\n",
|
| 135 |
+
" book_text = book_text.replace(\"[description]\", d[\"description\"])\n",
|
| 136 |
+
" book_text = book_text.replace(\"[num_pages]\", d[\"num_pages\"])\n",
|
| 137 |
+
" bookid_to_text[book_id] = book_text"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "code",
|
| 142 |
+
"execution_count": 19,
|
| 143 |
+
"id": "5e69e274cb42bf36",
|
| 144 |
+
"metadata": {
|
| 145 |
+
"ExecuteTime": {
|
| 146 |
+
"end_time": "2024-10-05T02:28:59.093097Z",
|
| 147 |
+
"start_time": "2024-10-05T02:28:59.065287600Z"
|
| 148 |
+
},
|
| 149 |
+
"collapsed": false
|
| 150 |
+
},
|
| 151 |
+
"outputs": [],
|
| 152 |
+
"source": [
|
| 153 |
+
"edge1 = [] \n",
|
| 154 |
+
"edge2 = [] # edge1 edge2 are to generate edge_index\n",
|
| 155 |
+
"text_nodes = [None] * len(dict_num_to_id)\n",
|
| 156 |
+
"text_edges = []\n",
|
| 157 |
+
"text_node_labels = [-1] * len(dict_num_to_id)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": 21,
|
| 163 |
+
"id": "f2adedbc870feda",
|
| 164 |
+
"metadata": {
|
| 165 |
+
"ExecuteTime": {
|
| 166 |
+
"end_time": "2024-10-05T02:29:16.329596100Z",
|
| 167 |
+
"start_time": "2024-10-05T02:29:13.594803Z"
|
| 168 |
+
},
|
| 169 |
+
"collapsed": false
|
| 170 |
+
},
|
| 171 |
+
"outputs": [
|
| 172 |
+
{
|
| 173 |
+
"name": "stderr",
|
| 174 |
+
"output_type": "stream",
|
| 175 |
+
"text": [
|
| 176 |
+
"100%|██████████| 734640/734640 [00:02<00:00, 363991.85it/s]\n"
|
| 177 |
+
]
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"source": [
|
| 181 |
+
"for edge, edge_text in tqdm.tqdm(dict_edge.items()):\n",
|
| 182 |
+
" node1 = edge.split(\"|\")[0]\n",
|
| 183 |
+
" node2 = edge.split(\"|\")[1]\n",
|
| 184 |
+
" node1_id = int(dict_num_to_id[node1])\n",
|
| 185 |
+
" node2_id = int(dict_num_to_id[node2])\n",
|
| 186 |
+
" edge1.append(node1_id)\n",
|
| 187 |
+
" edge2.append(node2_id)\n",
|
| 188 |
+
" text_nodes[node1_id] = \"user\"\n",
|
| 189 |
+
" text_nodes[node2_id] = bookid_to_text[node2]\n",
|
| 190 |
+
" text_edges.append(edge_text)\n",
|
| 191 |
+
" text_node_labels[node2_id] = bookid_to_label[node2]"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": 22,
|
| 197 |
+
"id": "3305934f1a11caa7",
|
| 198 |
+
"metadata": {
|
| 199 |
+
"ExecuteTime": {
|
| 200 |
+
"end_time": "2024-10-05T02:30:27.810685400Z",
|
| 201 |
+
"start_time": "2024-10-05T02:30:07.522283400Z"
|
| 202 |
+
},
|
| 203 |
+
"collapsed": false
|
| 204 |
+
},
|
| 205 |
+
"outputs": [],
|
| 206 |
+
"source": [
|
| 207 |
+
"from torch_geometric.data import Data\n",
|
| 208 |
+
"import torch"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": 23,
|
| 214 |
+
"id": "5030fa8672f2b177",
|
| 215 |
+
"metadata": {
|
| 216 |
+
"ExecuteTime": {
|
| 217 |
+
"end_time": "2024-10-05T02:30:28.108006200Z",
|
| 218 |
+
"start_time": "2024-10-05T02:30:28.066559800Z"
|
| 219 |
+
},
|
| 220 |
+
"collapsed": false
|
| 221 |
+
},
|
| 222 |
+
"outputs": [],
|
| 223 |
+
"source": [
|
| 224 |
+
"edge_index = torch.tensor([edge1,edge2])"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": 25,
|
| 230 |
+
"id": "21085a8a04df7062",
|
| 231 |
+
"metadata": {
|
| 232 |
+
"ExecuteTime": {
|
| 233 |
+
"end_time": "2024-10-05T02:30:28.123004600Z",
|
| 234 |
+
"start_time": "2024-10-05T02:30:28.082105900Z"
|
| 235 |
+
},
|
| 236 |
+
"collapsed": false
|
| 237 |
+
},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"new_data = Data(\n",
|
| 241 |
+
" edge_index=edge_index,\n",
|
| 242 |
+
" text_nodes=text_nodes,\n",
|
| 243 |
+
" text_edges=text_edges,\n",
|
| 244 |
+
" text_node_labels=text_node_labels,\n",
|
| 245 |
+
" edge_score=edge_score\n",
|
| 246 |
+
")"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": 29,
|
| 252 |
+
"id": "0355133f",
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"new_data.edge_score = torch.tensor(edge_score, dtype=torch.long)"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": 30,
|
| 262 |
+
"id": "d39601d90a0171c5",
|
| 263 |
+
"metadata": {
|
| 264 |
+
"ExecuteTime": {
|
| 265 |
+
"end_time": "2024-10-05T02:31:58.346932900Z",
|
| 266 |
+
"start_time": "2024-10-05T02:31:57.351248600Z"
|
| 267 |
+
},
|
| 268 |
+
"collapsed": false
|
| 269 |
+
},
|
| 270 |
+
"outputs": [
|
| 271 |
+
{
|
| 272 |
+
"name": "stdout",
|
| 273 |
+
"output_type": "stream",
|
| 274 |
+
"text": [
|
| 275 |
+
"Data saved to ../processed/children.pkl\n"
|
| 276 |
+
]
|
| 277 |
+
}
|
| 278 |
+
],
|
| 279 |
+
"source": [
|
| 280 |
+
"import pickle\n",
|
| 281 |
+
"output_file_path = '../processed/children.pkl'\n",
|
| 282 |
+
"with open(output_file_path, 'wb') as output_file:\n",
|
| 283 |
+
" pickle.dump(new_data, output_file)\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"print(f\"Data saved to {output_file_path}\")"
|
| 286 |
+
]
|
| 287 |
+
}
|
| 288 |
+
],
|
| 289 |
+
"metadata": {
|
| 290 |
+
"kernelspec": {
|
| 291 |
+
"display_name": "Python 3",
|
| 292 |
+
"language": "python",
|
| 293 |
+
"name": "python3"
|
| 294 |
+
},
|
| 295 |
+
"language_info": {
|
| 296 |
+
"codemirror_mode": {
|
| 297 |
+
"name": "ipython",
|
| 298 |
+
"version": 3
|
| 299 |
+
},
|
| 300 |
+
"file_extension": ".py",
|
| 301 |
+
"mimetype": "text/x-python",
|
| 302 |
+
"name": "python",
|
| 303 |
+
"nbconvert_exporter": "python",
|
| 304 |
+
"pygments_lexer": "ipython3",
|
| 305 |
+
"version": "3.10.12"
|
| 306 |
+
}
|
| 307 |
+
},
|
| 308 |
+
"nbformat": 4,
|
| 309 |
+
"nbformat_minor": 5
|
| 310 |
+
}
|