Upload folder using huggingface_hub
Browse files- arxiv/arxiv.md +1 -1
- arxiv/emb/arxiv_bert_base_uncased_512_cls_edge.pt +3 -0
- arxiv/emb/arxiv_bert_base_uncased_512_cls_node.pt +3 -0
- arxiv/emb/arxiv_bert_large_uncased_512_cls_edge.pt +3 -0
- arxiv/emb/arxiv_bert_large_uncased_512_cls_node.pt +3 -0
- arxiv/processed/arxiv.pkl +2 -2
- arxiv/tmp.ipynb +109 -0
- twitter/emb/tweets_bert_base_uncased_512_cls_edge.pt +1 -1
- twitter/emb/tweets_bert_base_uncased_512_cls_node.pt +1 -1
- twitter/emb/tweets_bert_large_uncased_512_cls_edge.pt +3 -0
- twitter/emb/tweets_bert_large_uncased_512_cls_node.pt +3 -0
- twitter/processed/twitter.pkl +2 -2
- twitter/raw/process_final_twitter.ipynb +27 -26
arxiv/arxiv.md
CHANGED
@@ -17,7 +17,7 @@ Node classification tasks in the arxiv dataset include predicting the paper's ca
|
|
17 |
|
18 |
* Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020
|
19 |
|
20 |
-
You can directly
|
21 |
|
22 |
```python
|
23 |
from ogb.nodeproppred import PygNodePropPredDataset
|
|
|
17 |
|
18 |
* Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020
|
19 |
|
20 |
+
You can directly get the raw dataset from following codes:
|
21 |
|
22 |
```python
|
23 |
from ogb.nodeproppred import PygNodePropPredDataset
|
arxiv/emb/arxiv_bert_base_uncased_512_cls_edge.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aac49e42ef2e2509f236854cdb0a6ed32816a12abb67b0a2278fab1f0839c43f
|
3 |
+
size 1791350701
|
arxiv/emb/arxiv_bert_base_uncased_512_cls_node.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ca5fe5986a551aa3bafd00ba33037522fa30ee4f9aac2d91340fa3b6d25198e
|
3 |
+
size 260112301
|
arxiv/emb/arxiv_bert_large_uncased_512_cls_edge.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cb97fb3973c645f6ea4103d51e33008e9ba1885521410498c1cd0b359fc8b94
|
3 |
+
size 2388467122
|
arxiv/emb/arxiv_bert_large_uncased_512_cls_node.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15640c1948a6a0de9a6992fa39be8ce5ef7dc2c5584b0ae95c8d63631897cee4
|
3 |
+
size 346815922
|
arxiv/processed/arxiv.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c79dbeaf0b9bc1458c04d385c492742987cd02a08beda123387ca392cb27e59
|
3 |
+
size 389843902
|
arxiv/tmp.ipynb
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/home/lizhuofeng/.local/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
|
13 |
+
" return torch.load(io.BytesIO(b))\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "stdout",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"Data(edge_index=[2, 1166243], text_nodes=[169343], text_edges=[1166243], node_labels=[169343])\n"
|
21 |
+
]
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"import pickle \n",
|
26 |
+
"\n",
|
27 |
+
"with open('processed/arxiv.pkl', 'rb') as f:\n",
|
28 |
+
" data = pickle.load(f)\n",
|
29 |
+
"\n",
|
30 |
+
"print(data)"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 11,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [
|
38 |
+
{
|
39 |
+
"name": "stdout",
|
40 |
+
"output_type": "stream",
|
41 |
+
"text": [
|
42 |
+
"0\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"count = 0\n",
|
48 |
+
"for j, i, in enumerate(data.text_nodes):\n",
|
49 |
+
" if i == None:\n",
|
50 |
+
" count += 1\n",
|
51 |
+
" data.text_nodes[j] = ''\n",
|
52 |
+
"\n",
|
53 |
+
"\n",
|
54 |
+
"for j, i in enumerate(data.text_edges):\n",
|
55 |
+
" if i == None:\n",
|
56 |
+
" count += 1\n",
|
57 |
+
" data.text_edges[j] = ''\n",
|
58 |
+
"print(count)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 10,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"count = 0"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 12,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"with open('processed/arxiv.pkl', 'wb') as f:\n",
|
77 |
+
" pickle.dump(data, f)"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": []
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"kernelspec": {
|
90 |
+
"display_name": "Python 3",
|
91 |
+
"language": "python",
|
92 |
+
"name": "python3"
|
93 |
+
},
|
94 |
+
"language_info": {
|
95 |
+
"codemirror_mode": {
|
96 |
+
"name": "ipython",
|
97 |
+
"version": 3
|
98 |
+
},
|
99 |
+
"file_extension": ".py",
|
100 |
+
"mimetype": "text/x-python",
|
101 |
+
"name": "python",
|
102 |
+
"nbconvert_exporter": "python",
|
103 |
+
"pygments_lexer": "ipython3",
|
104 |
+
"version": "3.10.12"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"nbformat": 4,
|
108 |
+
"nbformat_minor": 2
|
109 |
+
}
|
twitter/emb/tweets_bert_base_uncased_512_cls_edge.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 114688434
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d22f6c2918334bc862d19a0f55f7669c47283eb2056631612521c193e0aa6438
|
3 |
size 114688434
|
twitter/emb/tweets_bert_base_uncased_512_cls_node.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 93367154
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7a312cdb158d74c970c447f46e51355f9cc85d8fa0f3cea1f161dfe2978325c
|
3 |
size 93367154
|
twitter/emb/tweets_bert_large_uncased_512_cls_edge.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86102df08c60b5a757a5ebd4526287e667283e8f30de30df3a567a8276e24cfc
|
3 |
+
size 152917431
|
twitter/emb/tweets_bert_large_uncased_512_cls_node.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c6e3ea52aaf5af001587cc3be1df17192a363c6ca71e2ead45893ae1deb448b
|
3 |
+
size 124489143
|
twitter/processed/twitter.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73792b04968c3cb94930a8f84db6e99e96605816ea590d9171328af5e2ebd14a
|
3 |
+
size 7971933
|
twitter/raw/process_final_twitter.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -17,7 +17,7 @@
|
|
17 |
},
|
18 |
{
|
19 |
"cell_type": "code",
|
20 |
-
"execution_count":
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
23 |
"source": [
|
@@ -31,14 +31,14 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"metadata": {},
|
36 |
"outputs": [
|
37 |
{
|
38 |
"name": "stderr",
|
39 |
"output_type": "stream",
|
40 |
"text": [
|
41 |
-
"67682it [00:04,
|
42 |
]
|
43 |
}
|
44 |
],
|
@@ -50,21 +50,25 @@
|
|
50 |
"text_edges = []\n",
|
51 |
"text_nodes = [-1] * len(df) * 20\n",
|
52 |
"count = 0\n",
|
|
|
53 |
"\n",
|
54 |
"# Use df instead of g for iteration\n",
|
55 |
"for _, row in tqdm.tqdm(df.iterrows()):\n",
|
56 |
" # Convert tweet_id and user_id to string to ensure consistency\n",
|
57 |
-
" tweet_id = str(row[
|
58 |
-
" user_id = str(row[
|
59 |
-
"
|
60 |
" if tweet_id not in tweet_id2idx:\n",
|
61 |
" tweet_id2idx[tweet_id] = count\n",
|
62 |
" tweet.append(count)\n",
|
63 |
" count += 1\n",
|
64 |
" else:\n",
|
65 |
" tweet.append(tweet_id2idx[tweet_id])\n",
|
66 |
-
" text_nodes[tweet_id2idx[tweet_id]] =
|
67 |
-
"
|
|
|
|
|
|
|
68 |
" if user_id not in user_id2idx:\n",
|
69 |
" user_id2idx[user_id] = count\n",
|
70 |
" user.append(count)\n",
|
@@ -72,10 +76,11 @@
|
|
72 |
" else:\n",
|
73 |
" user.append(user_id2idx[user_id])\n",
|
74 |
" text_nodes[user_id2idx[user_id]] = f\"user\"\n",
|
75 |
-
" \n",
|
76 |
-
"
|
77 |
-
" \n",
|
78 |
-
"
|
|
|
79 |
" if mention not in user_id2idx:\n",
|
80 |
" user_id2idx[mention] = count\n",
|
81 |
" user.append(count)\n",
|
@@ -84,21 +89,23 @@
|
|
84 |
" user.append(user_id2idx[mention])\n",
|
85 |
" tweet.append(tweet_id2idx[tweet_id])\n",
|
86 |
" text_nodes[user_id2idx[mention]] = f\"mentioned user\"\n",
|
87 |
-
"
|
|
|
88 |
]
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
-
"execution_count":
|
93 |
"metadata": {},
|
94 |
"outputs": [],
|
95 |
"source": [
|
96 |
-
"text_nodes = text_nodes[:count]"
|
|
|
97 |
]
|
98 |
},
|
99 |
{
|
100 |
"cell_type": "code",
|
101 |
-
"execution_count":
|
102 |
"metadata": {},
|
103 |
"outputs": [],
|
104 |
"source": [
|
@@ -106,26 +113,20 @@
|
|
106 |
"graph = Data(\n",
|
107 |
"\t\t\ttext_nodes=text_nodes,\n",
|
108 |
"\t\t\ttext_edges=text_edges,\n",
|
109 |
-
"\t\t\tedge_index=torch.tensor(edge_index, dtype=torch.long)
|
|
|
110 |
"\t\t)"
|
111 |
]
|
112 |
},
|
113 |
{
|
114 |
"cell_type": "code",
|
115 |
-
"execution_count":
|
116 |
"metadata": {},
|
117 |
"outputs": [],
|
118 |
"source": [
|
119 |
"with open('../processed/twitter.pkl', 'wb') as f:\n",
|
120 |
" pickle.dump(graph, f)"
|
121 |
]
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"cell_type": "code",
|
125 |
-
"execution_count": null,
|
126 |
-
"metadata": {},
|
127 |
-
"outputs": [],
|
128 |
-
"source": []
|
129 |
}
|
130 |
],
|
131 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
17 |
},
|
18 |
{
|
19 |
"cell_type": "code",
|
20 |
+
"execution_count": 3,
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
23 |
"source": [
|
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
+
"execution_count": 17,
|
35 |
"metadata": {},
|
36 |
"outputs": [
|
37 |
{
|
38 |
"name": "stderr",
|
39 |
"output_type": "stream",
|
40 |
"text": [
|
41 |
+
"67682it [00:04, 14848.15it/s]\n"
|
42 |
]
|
43 |
}
|
44 |
],
|
|
|
50 |
"text_edges = []\n",
|
51 |
"text_nodes = [-1] * len(df) * 20\n",
|
52 |
"count = 0\n",
|
53 |
+
"node_labels = [-1] * len(df) * 20\n",
|
54 |
"\n",
|
55 |
"# Use df instead of g for iteration\n",
|
56 |
"for _, row in tqdm.tqdm(df.iterrows()):\n",
|
57 |
" # Convert tweet_id and user_id to string to ensure consistency\n",
|
58 |
+
" tweet_id = str(row[\"tweet_id\"])\n",
|
59 |
+
" user_id = str(row[\"user_id\"])\n",
|
60 |
+
"\n",
|
61 |
" if tweet_id not in tweet_id2idx:\n",
|
62 |
" tweet_id2idx[tweet_id] = count\n",
|
63 |
" tweet.append(count)\n",
|
64 |
" count += 1\n",
|
65 |
" else:\n",
|
66 |
" tweet.append(tweet_id2idx[tweet_id])\n",
|
67 |
+
" text_nodes[tweet_id2idx[tweet_id]] = (\n",
|
68 |
+
" f\"tweet\"\n",
|
69 |
+
" )\n",
|
70 |
+
" node_labels[tweet_id2idx[tweet_id]] = str(row[\"event_id\"])\n",
|
71 |
+
"\n",
|
72 |
" if user_id not in user_id2idx:\n",
|
73 |
" user_id2idx[user_id] = count\n",
|
74 |
" user.append(count)\n",
|
|
|
76 |
" else:\n",
|
77 |
" user.append(user_id2idx[user_id])\n",
|
78 |
" text_nodes[user_id2idx[user_id]] = f\"user\"\n",
|
79 |
+
" node_labels[user_id2idx[user_id]] = -1\n",
|
80 |
+
"\n",
|
81 |
+
" text_edges.append(row[\"text\"])\n",
|
82 |
+
"\n",
|
83 |
+
" for mention in row[\"user_mentions\"]:\n",
|
84 |
" if mention not in user_id2idx:\n",
|
85 |
" user_id2idx[mention] = count\n",
|
86 |
" user.append(count)\n",
|
|
|
89 |
" user.append(user_id2idx[mention])\n",
|
90 |
" tweet.append(tweet_id2idx[tweet_id])\n",
|
91 |
" text_nodes[user_id2idx[mention]] = f\"mentioned user\"\n",
|
92 |
+
" node_labels[user_id2idx[mention]] = -1\n",
|
93 |
+
" text_edges.append(row[\"text\"])"
|
94 |
]
|
95 |
},
|
96 |
{
|
97 |
"cell_type": "code",
|
98 |
+
"execution_count": 18,
|
99 |
"metadata": {},
|
100 |
"outputs": [],
|
101 |
"source": [
|
102 |
+
"text_nodes = text_nodes[:count]\n",
|
103 |
+
"node_labels = node_labels[:count]"
|
104 |
]
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
+
"execution_count": 19,
|
109 |
"metadata": {},
|
110 |
"outputs": [],
|
111 |
"source": [
|
|
|
113 |
"graph = Data(\n",
|
114 |
"\t\t\ttext_nodes=text_nodes,\n",
|
115 |
"\t\t\ttext_edges=text_edges,\n",
|
116 |
+
"\t\t\tedge_index=torch.tensor(edge_index, dtype=torch.long),\n",
|
117 |
+
"\t\t\tnode_labels=node_labels\n",
|
118 |
"\t\t)"
|
119 |
]
|
120 |
},
|
121 |
{
|
122 |
"cell_type": "code",
|
123 |
+
"execution_count": 20,
|
124 |
"metadata": {},
|
125 |
"outputs": [],
|
126 |
"source": [
|
127 |
"with open('../processed/twitter.pkl', 'wb') as f:\n",
|
128 |
" pickle.dump(graph, f)"
|
129 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
],
|
132 |
"metadata": {
|