abdoelsayed commited on
Commit
4c35222
·
1 Parent(s): 9641585
Files changed (1) hide show
  1. dataset_infos.json +0 -111
dataset_infos.json DELETED
@@ -1,111 +0,0 @@
1
- {
2
- "queries": {
3
- "description": "FutureQueryEval query collection with 148 queries across 7 categories",
4
- "citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
5
- "homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
6
- "license": "Apache-2.0",
7
- "features": {
8
- "query_id": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "query_text": {
14
- "dtype": "string",
15
- "id": null,
16
- "_type": "Value"
17
- },
18
- "category": {
19
- "dtype": "string",
20
- "id": null,
21
- "_type": "Value"
22
- }
23
- },
24
- "splits": {
25
- "queries": {
26
- "name": "queries",
27
- "num_bytes": 45056,
28
- "num_examples": 148,
29
- "dataset_name": "future_query_eval"
30
- }
31
- },
32
- "download_size": 45056,
33
- "dataset_size": 45056
34
- },
35
- "corpus": {
36
- "description": "FutureQueryEval document corpus with 2,787 documents",
37
- "citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
38
- "homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
39
- "license": "Apache-2.0",
40
- "features": {
41
- "doc_id": {
42
- "dtype": "string",
43
- "id": null,
44
- "_type": "Value"
45
- },
46
- "title": {
47
- "dtype": "string",
48
- "id": null,
49
- "_type": "Value"
50
- },
51
- "text": {
52
- "dtype": "string",
53
- "id": null,
54
- "_type": "Value"
55
- },
56
- "url": {
57
- "dtype": "string",
58
- "id": null,
59
- "_type": "Value"
60
- }
61
- },
62
- "splits": {
63
- "corpus": {
64
- "name": "corpus",
65
- "num_bytes": 964608,
66
- "num_examples": 2787,
67
- "dataset_name": "future_query_eval"
68
- }
69
- },
70
- "download_size": 964608,
71
- "dataset_size": 964608
72
- },
73
- "qrels": {
74
- "description": "FutureQueryEval relevance judgments with 2,938 query-document pairs",
75
- "citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
76
- "homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
77
- "license": "Apache-2.0",
78
- "features": {
79
- "query_id": {
80
- "dtype": "string",
81
- "id": null,
82
- "_type": "Value"
83
- },
84
- "iteration": {
85
- "dtype": "int32",
86
- "id": null,
87
- "_type": "Value"
88
- },
89
- "doc_id": {
90
- "dtype": "string",
91
- "id": null,
92
- "_type": "Value"
93
- },
94
- "relevance": {
95
- "dtype": "int32",
96
- "id": null,
97
- "_type": "Value"
98
- }
99
- },
100
- "splits": {
101
- "qrels": {
102
- "name": "qrels",
103
- "num_bytes": 99328,
104
- "num_examples": 2938,
105
- "dataset_name": "future_query_eval"
106
- }
107
- },
108
- "download_size": 99328,
109
- "dataset_size": 99328
110
- }
111
- }