Datasets:
Commit
·
4c35222
1
Parent(s):
9641585
asd
Browse files- dataset_infos.json +0 -111
dataset_infos.json
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"queries": {
|
3 |
-
"description": "FutureQueryEval query collection with 148 queries across 7 categories",
|
4 |
-
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
5 |
-
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
6 |
-
"license": "Apache-2.0",
|
7 |
-
"features": {
|
8 |
-
"query_id": {
|
9 |
-
"dtype": "string",
|
10 |
-
"id": null,
|
11 |
-
"_type": "Value"
|
12 |
-
},
|
13 |
-
"query_text": {
|
14 |
-
"dtype": "string",
|
15 |
-
"id": null,
|
16 |
-
"_type": "Value"
|
17 |
-
},
|
18 |
-
"category": {
|
19 |
-
"dtype": "string",
|
20 |
-
"id": null,
|
21 |
-
"_type": "Value"
|
22 |
-
}
|
23 |
-
},
|
24 |
-
"splits": {
|
25 |
-
"queries": {
|
26 |
-
"name": "queries",
|
27 |
-
"num_bytes": 45056,
|
28 |
-
"num_examples": 148,
|
29 |
-
"dataset_name": "future_query_eval"
|
30 |
-
}
|
31 |
-
},
|
32 |
-
"download_size": 45056,
|
33 |
-
"dataset_size": 45056
|
34 |
-
},
|
35 |
-
"corpus": {
|
36 |
-
"description": "FutureQueryEval document corpus with 2,787 documents",
|
37 |
-
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
38 |
-
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
39 |
-
"license": "Apache-2.0",
|
40 |
-
"features": {
|
41 |
-
"doc_id": {
|
42 |
-
"dtype": "string",
|
43 |
-
"id": null,
|
44 |
-
"_type": "Value"
|
45 |
-
},
|
46 |
-
"title": {
|
47 |
-
"dtype": "string",
|
48 |
-
"id": null,
|
49 |
-
"_type": "Value"
|
50 |
-
},
|
51 |
-
"text": {
|
52 |
-
"dtype": "string",
|
53 |
-
"id": null,
|
54 |
-
"_type": "Value"
|
55 |
-
},
|
56 |
-
"url": {
|
57 |
-
"dtype": "string",
|
58 |
-
"id": null,
|
59 |
-
"_type": "Value"
|
60 |
-
}
|
61 |
-
},
|
62 |
-
"splits": {
|
63 |
-
"corpus": {
|
64 |
-
"name": "corpus",
|
65 |
-
"num_bytes": 964608,
|
66 |
-
"num_examples": 2787,
|
67 |
-
"dataset_name": "future_query_eval"
|
68 |
-
}
|
69 |
-
},
|
70 |
-
"download_size": 964608,
|
71 |
-
"dataset_size": 964608
|
72 |
-
},
|
73 |
-
"qrels": {
|
74 |
-
"description": "FutureQueryEval relevance judgments with 2,938 query-document pairs",
|
75 |
-
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
76 |
-
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
77 |
-
"license": "Apache-2.0",
|
78 |
-
"features": {
|
79 |
-
"query_id": {
|
80 |
-
"dtype": "string",
|
81 |
-
"id": null,
|
82 |
-
"_type": "Value"
|
83 |
-
},
|
84 |
-
"iteration": {
|
85 |
-
"dtype": "int32",
|
86 |
-
"id": null,
|
87 |
-
"_type": "Value"
|
88 |
-
},
|
89 |
-
"doc_id": {
|
90 |
-
"dtype": "string",
|
91 |
-
"id": null,
|
92 |
-
"_type": "Value"
|
93 |
-
},
|
94 |
-
"relevance": {
|
95 |
-
"dtype": "int32",
|
96 |
-
"id": null,
|
97 |
-
"_type": "Value"
|
98 |
-
}
|
99 |
-
},
|
100 |
-
"splits": {
|
101 |
-
"qrels": {
|
102 |
-
"name": "qrels",
|
103 |
-
"num_bytes": 99328,
|
104 |
-
"num_examples": 2938,
|
105 |
-
"dataset_name": "future_query_eval"
|
106 |
-
}
|
107 |
-
},
|
108 |
-
"download_size": 99328,
|
109 |
-
"dataset_size": 99328
|
110 |
-
}
|
111 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|