ad6398 commited on
Commit
690c31d
·
verified ·
1 Parent(s): eda52aa

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +8 -0
  2. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/README.md +202 -0
  3. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/adapter_config.json +31 -0
  4. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/adapter_model.safetensors +3 -0
  5. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/added_tokens.json +24 -0
  6. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/chat_template.json +3 -0
  7. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/merges.txt +0 -0
  8. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/optimizer.pt +3 -0
  9. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/preprocessor_config.json +29 -0
  10. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/rng_state.pth +3 -0
  11. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/scheduler.pt +3 -0
  12. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/special_tokens_map.json +31 -0
  13. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/tokenizer.json +3 -0
  14. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/tokenizer_config.json +210 -0
  15. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/trainer_state.json +734 -0
  16. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/training_args.bin +3 -0
  17. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/vocab.json +0 -0
  18. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/README.md +202 -0
  19. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/adapter_config.json +31 -0
  20. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/adapter_model.safetensors +3 -0
  21. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/added_tokens.json +24 -0
  22. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/chat_template.json +3 -0
  23. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/merges.txt +0 -0
  24. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/optimizer.pt +3 -0
  25. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/preprocessor_config.json +29 -0
  26. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/rng_state.pth +3 -0
  27. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/scheduler.pt +3 -0
  28. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/special_tokens_map.json +31 -0
  29. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/tokenizer.json +3 -0
  30. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/tokenizer_config.json +210 -0
  31. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/trainer_state.json +1434 -0
  32. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/training_args.bin +3 -0
  33. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/vocab.json +0 -0
  34. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/README.md +202 -0
  35. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/adapter_config.json +31 -0
  36. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/adapter_model.safetensors +3 -0
  37. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/added_tokens.json +24 -0
  38. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/chat_template.json +3 -0
  39. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/merges.txt +0 -0
  40. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/optimizer.pt +3 -0
  41. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/preprocessor_config.json +29 -0
  42. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/rng_state.pth +3 -0
  43. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/scheduler.pt +3 -0
  44. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/special_tokens_map.json +31 -0
  45. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/tokenizer.json +3 -0
  46. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/tokenizer_config.json +210 -0
  47. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/trainer_state.json +2134 -0
  48. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/training_args.bin +3 -0
  49. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/vocab.json +0 -0
  50. SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-400/README.md +202 -0
.gitattributes CHANGED
@@ -92,3 +92,11 @@ raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-300/tokenizer.json filter=lf
92
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
93
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
94
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
92
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
93
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
94
  raft-qwen2.5vl-sft-colqwen-top2-min2cand/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
95
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
96
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
97
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
98
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
99
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
100
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
101
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
102
+ SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-776/tokenizer.json filter=lfs diff=lfs merge=lfs -text
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "(?:.*?(?:vision|image|visual|patch|language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj)))",
27
+ "task_type": "CAUSAL_LM",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0da3c9d4084c4f7bef3890b15ba8ff196dfb4f17f4a223fafe3bcab919ffe897
3
+ size 206181032
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2ef13653ad2095083fac7c167073890554b9b269daa4a38e09d0c4be7bb61c
3
+ size 82462277
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d565802a8e26c4e8a31328752b7a7fdc186d9401aa008e65697d0ad8c22e33
3
+ size 14645
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b954bc1f162eab88170069c3ce1111c8725a43fb4298c0e653ecd18953b5cca
3
+ size 1465
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741c85ffe434aad73e934a73ef380c85e94cd863b8f55e1a1ad66cacb5a93dfd
3
+ size 11422164
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|vision_pad|>",
205
+ "padding_side": "right",
206
+ "processor_class": "Qwen2_5_VLProcessor",
207
+ "split_special_tokens": false,
208
+ "tokenizer_class": "Qwen2Tokenizer",
209
+ "unk_token": null
210
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.1288244766505636,
6
+ "eval_steps": 500,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0012882447665056361,
14
+ "grad_norm": 5.4613566398620605,
15
+ "learning_rate": 0.0,
16
+ "loss": 9.9597,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0025764895330112722,
21
+ "grad_norm": 5.388463497161865,
22
+ "learning_rate": 4e-05,
23
+ "loss": 9.8249,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.003864734299516908,
28
+ "grad_norm": 5.5101494789123535,
29
+ "learning_rate": 8e-05,
30
+ "loss": 9.7668,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0051529790660225444,
35
+ "grad_norm": 6.290860176086426,
36
+ "learning_rate": 0.00012,
37
+ "loss": 9.4381,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.00644122383252818,
42
+ "grad_norm": 6.80733060836792,
43
+ "learning_rate": 0.00016,
44
+ "loss": 7.8238,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.007729468599033816,
49
+ "grad_norm": 6.231540203094482,
50
+ "learning_rate": 0.0002,
51
+ "loss": 5.6276,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.009017713365539453,
56
+ "grad_norm": 3.279449224472046,
57
+ "learning_rate": 0.00019974059662775616,
58
+ "loss": 3.7187,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.010305958132045089,
63
+ "grad_norm": 2.8460264205932617,
64
+ "learning_rate": 0.00019948119325551234,
65
+ "loss": 3.3663,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.011594202898550725,
70
+ "grad_norm": 3.11165452003479,
71
+ "learning_rate": 0.0001992217898832685,
72
+ "loss": 2.7895,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.01288244766505636,
77
+ "grad_norm": 3.625304698944092,
78
+ "learning_rate": 0.00019896238651102467,
79
+ "loss": 2.4614,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.014170692431561997,
84
+ "grad_norm": 3.7168405055999756,
85
+ "learning_rate": 0.00019870298313878082,
86
+ "loss": 2.0685,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.015458937198067632,
91
+ "grad_norm": 3.233873128890991,
92
+ "learning_rate": 0.00019844357976653697,
93
+ "loss": 1.6585,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.01674718196457327,
98
+ "grad_norm": 1.8818095922470093,
99
+ "learning_rate": 0.00019818417639429315,
100
+ "loss": 1.5527,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.018035426731078906,
105
+ "grad_norm": 1.1915298700332642,
106
+ "learning_rate": 0.0001979247730220493,
107
+ "loss": 1.4238,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.01932367149758454,
112
+ "grad_norm": 1.0285066366195679,
113
+ "learning_rate": 0.00019766536964980547,
114
+ "loss": 1.2794,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.020611916264090178,
119
+ "grad_norm": 0.7898640632629395,
120
+ "learning_rate": 0.00019740596627756162,
121
+ "loss": 1.1589,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.021900161030595812,
126
+ "grad_norm": 1.196444034576416,
127
+ "learning_rate": 0.00019714656290531778,
128
+ "loss": 1.1131,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.02318840579710145,
133
+ "grad_norm": 0.9169692397117615,
134
+ "learning_rate": 0.00019688715953307395,
135
+ "loss": 0.9846,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.024476650563607084,
140
+ "grad_norm": 0.4427192509174347,
141
+ "learning_rate": 0.00019662775616083008,
142
+ "loss": 0.8775,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.02576489533011272,
147
+ "grad_norm": 0.4866611063480377,
148
+ "learning_rate": 0.00019636835278858625,
149
+ "loss": 0.8505,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.02705314009661836,
154
+ "grad_norm": 0.5251604914665222,
155
+ "learning_rate": 0.0001961089494163424,
156
+ "loss": 0.9328,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.028341384863123993,
161
+ "grad_norm": 0.649874210357666,
162
+ "learning_rate": 0.00019584954604409858,
163
+ "loss": 0.5923,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.02962962962962963,
168
+ "grad_norm": 0.42215585708618164,
169
+ "learning_rate": 0.00019559014267185473,
170
+ "loss": 0.759,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.030917874396135265,
175
+ "grad_norm": 0.639950692653656,
176
+ "learning_rate": 0.0001953307392996109,
177
+ "loss": 0.9802,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.0322061191626409,
182
+ "grad_norm": 0.43067610263824463,
183
+ "learning_rate": 0.00019507133592736706,
184
+ "loss": 0.8397,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.03349436392914654,
189
+ "grad_norm": 0.5399283766746521,
190
+ "learning_rate": 0.0001948119325551232,
191
+ "loss": 0.8954,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.034782608695652174,
196
+ "grad_norm": 0.45180439949035645,
197
+ "learning_rate": 0.0001945525291828794,
198
+ "loss": 0.8487,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.03607085346215781,
203
+ "grad_norm": 0.393189013004303,
204
+ "learning_rate": 0.00019429312581063554,
205
+ "loss": 0.6933,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.03735909822866344,
210
+ "grad_norm": 0.4162645936012268,
211
+ "learning_rate": 0.00019403372243839172,
212
+ "loss": 0.868,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.03864734299516908,
217
+ "grad_norm": 0.35941243171691895,
218
+ "learning_rate": 0.00019377431906614787,
219
+ "loss": 0.8156,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.03993558776167472,
224
+ "grad_norm": 0.32675009965896606,
225
+ "learning_rate": 0.00019351491569390402,
226
+ "loss": 0.7893,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.041223832528180356,
231
+ "grad_norm": 0.5361427068710327,
232
+ "learning_rate": 0.0001932555123216602,
233
+ "loss": 0.7538,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.04251207729468599,
238
+ "grad_norm": 0.3309827744960785,
239
+ "learning_rate": 0.00019299610894941635,
240
+ "loss": 0.6795,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.043800322061191624,
245
+ "grad_norm": 0.3792180120944977,
246
+ "learning_rate": 0.00019273670557717253,
247
+ "loss": 0.8356,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.04508856682769726,
252
+ "grad_norm": 0.3215338885784149,
253
+ "learning_rate": 0.00019247730220492868,
254
+ "loss": 0.8977,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.0463768115942029,
259
+ "grad_norm": 0.40453818440437317,
260
+ "learning_rate": 0.00019221789883268483,
261
+ "loss": 0.9196,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.04766505636070854,
266
+ "grad_norm": 0.3489324152469635,
267
+ "learning_rate": 0.000191958495460441,
268
+ "loss": 0.821,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.04895330112721417,
273
+ "grad_norm": 0.36633986234664917,
274
+ "learning_rate": 0.00019169909208819716,
275
+ "loss": 0.6199,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.050241545893719805,
280
+ "grad_norm": 0.33272671699523926,
281
+ "learning_rate": 0.00019143968871595333,
282
+ "loss": 0.7487,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.05152979066022544,
287
+ "grad_norm": 0.3444036543369293,
288
+ "learning_rate": 0.00019118028534370949,
289
+ "loss": 0.9279,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.05281803542673108,
294
+ "grad_norm": 0.3984861671924591,
295
+ "learning_rate": 0.00019092088197146564,
296
+ "loss": 0.9586,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.05410628019323672,
301
+ "grad_norm": 0.34713220596313477,
302
+ "learning_rate": 0.00019066147859922181,
303
+ "loss": 0.8446,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.05539452495974235,
308
+ "grad_norm": 0.34841418266296387,
309
+ "learning_rate": 0.00019040207522697794,
310
+ "loss": 0.8358,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.056682769726247986,
315
+ "grad_norm": 0.3403330147266388,
316
+ "learning_rate": 0.00019014267185473412,
317
+ "loss": 0.7746,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.057971014492753624,
322
+ "grad_norm": 0.3140932321548462,
323
+ "learning_rate": 0.00018988326848249027,
324
+ "loss": 0.8189,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.05925925925925926,
329
+ "grad_norm": 0.363057017326355,
330
+ "learning_rate": 0.00018962386511024644,
331
+ "loss": 0.8164,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.06054750402576489,
336
+ "grad_norm": 0.30131247639656067,
337
+ "learning_rate": 0.0001893644617380026,
338
+ "loss": 0.7268,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.06183574879227053,
343
+ "grad_norm": 0.41050782799720764,
344
+ "learning_rate": 0.00018910505836575875,
345
+ "loss": 0.8165,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.06312399355877617,
350
+ "grad_norm": 0.3251776099205017,
351
+ "learning_rate": 0.00018884565499351492,
352
+ "loss": 0.7986,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.0644122383252818,
357
+ "grad_norm": 0.35201895236968994,
358
+ "learning_rate": 0.00018858625162127107,
359
+ "loss": 0.6955,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.06570048309178744,
364
+ "grad_norm": 0.48456817865371704,
365
+ "learning_rate": 0.00018832684824902725,
366
+ "loss": 1.0044,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.06698872785829307,
371
+ "grad_norm": 0.32610711455345154,
372
+ "learning_rate": 0.0001880674448767834,
373
+ "loss": 0.8097,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.06827697262479872,
378
+ "grad_norm": 0.35323548316955566,
379
+ "learning_rate": 0.00018780804150453958,
380
+ "loss": 0.8622,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.06956521739130435,
385
+ "grad_norm": 0.34506356716156006,
386
+ "learning_rate": 0.00018754863813229573,
387
+ "loss": 0.782,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.07085346215780998,
392
+ "grad_norm": 0.42462947964668274,
393
+ "learning_rate": 0.00018728923476005188,
394
+ "loss": 0.9256,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.07214170692431562,
399
+ "grad_norm": 0.33884117007255554,
400
+ "learning_rate": 0.00018702983138780806,
401
+ "loss": 0.6513,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.07342995169082125,
406
+ "grad_norm": 0.28885480761528015,
407
+ "learning_rate": 0.0001867704280155642,
408
+ "loss": 0.5568,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.07471819645732689,
413
+ "grad_norm": 0.35344091057777405,
414
+ "learning_rate": 0.0001865110246433204,
415
+ "loss": 0.6914,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.07600644122383253,
420
+ "grad_norm": 0.3396419584751129,
421
+ "learning_rate": 0.00018625162127107654,
422
+ "loss": 0.738,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.07729468599033816,
427
+ "grad_norm": 0.31393012404441833,
428
+ "learning_rate": 0.0001859922178988327,
429
+ "loss": 0.7314,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.0785829307568438,
434
+ "grad_norm": 0.3600565791130066,
435
+ "learning_rate": 0.00018573281452658887,
436
+ "loss": 0.7431,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.07987117552334944,
441
+ "grad_norm": 0.34962427616119385,
442
+ "learning_rate": 0.00018547341115434502,
443
+ "loss": 0.7046,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.08115942028985507,
448
+ "grad_norm": 0.3548364043235779,
449
+ "learning_rate": 0.0001852140077821012,
450
+ "loss": 0.8334,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.08244766505636071,
455
+ "grad_norm": 0.34312623739242554,
456
+ "learning_rate": 0.00018495460440985735,
457
+ "loss": 0.626,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.08373590982286634,
462
+ "grad_norm": 0.37719225883483887,
463
+ "learning_rate": 0.0001846952010376135,
464
+ "loss": 0.7224,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.08502415458937199,
469
+ "grad_norm": 0.3368130624294281,
470
+ "learning_rate": 0.00018443579766536967,
471
+ "loss": 0.7476,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.08631239935587762,
476
+ "grad_norm": 0.3777587413787842,
477
+ "learning_rate": 0.0001841763942931258,
478
+ "loss": 0.6291,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.08760064412238325,
483
+ "grad_norm": 0.33600497245788574,
484
+ "learning_rate": 0.00018391699092088198,
485
+ "loss": 0.7294,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.08888888888888889,
490
+ "grad_norm": 0.43032655119895935,
491
+ "learning_rate": 0.00018365758754863813,
492
+ "loss": 0.8395,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.09017713365539452,
497
+ "grad_norm": 0.42399662733078003,
498
+ "learning_rate": 0.0001833981841763943,
499
+ "loss": 0.7155,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.09146537842190017,
504
+ "grad_norm": 0.34154751896858215,
505
+ "learning_rate": 0.00018313878080415046,
506
+ "loss": 0.7175,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.0927536231884058,
511
+ "grad_norm": 0.43316715955734253,
512
+ "learning_rate": 0.0001828793774319066,
513
+ "loss": 0.7819,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.09404186795491143,
518
+ "grad_norm": 0.4109691381454468,
519
+ "learning_rate": 0.00018261997405966278,
520
+ "loss": 0.7776,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.09533011272141707,
525
+ "grad_norm": 0.37350183725357056,
526
+ "learning_rate": 0.00018236057068741893,
527
+ "loss": 0.723,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.0966183574879227,
532
+ "grad_norm": 0.36530762910842896,
533
+ "learning_rate": 0.0001821011673151751,
534
+ "loss": 0.7987,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.09790660225442833,
539
+ "grad_norm": 0.41217753291130066,
540
+ "learning_rate": 0.00018184176394293126,
541
+ "loss": 0.9543,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.09919484702093398,
546
+ "grad_norm": 0.34720832109451294,
547
+ "learning_rate": 0.0001815823605706874,
548
+ "loss": 0.6793,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.10048309178743961,
553
+ "grad_norm": 0.3973989188671112,
554
+ "learning_rate": 0.0001813229571984436,
555
+ "loss": 0.7437,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.10177133655394525,
560
+ "grad_norm": 0.3629179000854492,
561
+ "learning_rate": 0.00018106355382619974,
562
+ "loss": 0.8523,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.10305958132045089,
567
+ "grad_norm": 0.36521610617637634,
568
+ "learning_rate": 0.00018080415045395592,
569
+ "loss": 0.7627,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.10434782608695652,
574
+ "grad_norm": 0.3619866967201233,
575
+ "learning_rate": 0.00018054474708171207,
576
+ "loss": 0.8563,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.10563607085346216,
581
+ "grad_norm": 0.3756084144115448,
582
+ "learning_rate": 0.00018028534370946825,
583
+ "loss": 0.6468,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.10692431561996779,
588
+ "grad_norm": 0.3905584216117859,
589
+ "learning_rate": 0.0001800259403372244,
590
+ "loss": 0.7779,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.10821256038647344,
595
+ "grad_norm": 0.43176719546318054,
596
+ "learning_rate": 0.00017976653696498055,
597
+ "loss": 0.8001,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.10950080515297907,
602
+ "grad_norm": 0.4288632571697235,
603
+ "learning_rate": 0.00017950713359273673,
604
+ "loss": 0.7873,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1107890499194847,
609
+ "grad_norm": 0.45645642280578613,
610
+ "learning_rate": 0.00017924773022049288,
611
+ "loss": 0.7735,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.11207729468599034,
616
+ "grad_norm": 0.4353061020374298,
617
+ "learning_rate": 0.00017898832684824906,
618
+ "loss": 0.8197,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.11336553945249597,
623
+ "grad_norm": 0.4613772928714752,
624
+ "learning_rate": 0.0001787289234760052,
625
+ "loss": 0.7914,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.11465378421900162,
630
+ "grad_norm": 0.3765336573123932,
631
+ "learning_rate": 0.00017846952010376136,
632
+ "loss": 0.554,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.11594202898550725,
637
+ "grad_norm": 0.4083232283592224,
638
+ "learning_rate": 0.00017821011673151754,
639
+ "loss": 0.8627,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.11723027375201288,
644
+ "grad_norm": 0.41450583934783936,
645
+ "learning_rate": 0.00017795071335927366,
646
+ "loss": 0.558,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.11851851851851852,
651
+ "grad_norm": 0.40102478861808777,
652
+ "learning_rate": 0.00017769130998702984,
653
+ "loss": 0.8672,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.11980676328502415,
658
+ "grad_norm": 0.4192351996898651,
659
+ "learning_rate": 0.000177431906614786,
660
+ "loss": 0.7901,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.12109500805152978,
665
+ "grad_norm": 0.4145065248012543,
666
+ "learning_rate": 0.00017717250324254217,
667
+ "loss": 0.6246,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.12238325281803543,
672
+ "grad_norm": 0.40400928258895874,
673
+ "learning_rate": 0.00017691309987029832,
674
+ "loss": 0.7239,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.12367149758454106,
679
+ "grad_norm": 0.36219555139541626,
680
+ "learning_rate": 0.00017665369649805447,
681
+ "loss": 0.6078,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.1249597423510467,
686
+ "grad_norm": 0.46309852600097656,
687
+ "learning_rate": 0.00017639429312581064,
688
+ "loss": 0.6834,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.12624798711755233,
693
+ "grad_norm": 0.44735029339790344,
694
+ "learning_rate": 0.0001761348897535668,
695
+ "loss": 0.934,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.12753623188405797,
700
+ "grad_norm": 0.42460861802101135,
701
+ "learning_rate": 0.00017587548638132297,
702
+ "loss": 0.9051,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.1288244766505636,
707
+ "grad_norm": 0.41505753993988037,
708
+ "learning_rate": 0.00017561608300907912,
709
+ "loss": 0.6545,
710
+ "step": 100
711
+ }
712
+ ],
713
+ "logging_steps": 1,
714
+ "max_steps": 776,
715
+ "num_input_tokens_seen": 0,
716
+ "num_train_epochs": 1,
717
+ "save_steps": 100,
718
+ "stateful_callbacks": {
719
+ "TrainerControl": {
720
+ "args": {
721
+ "should_epoch_stop": false,
722
+ "should_evaluate": false,
723
+ "should_log": false,
724
+ "should_save": true,
725
+ "should_training_stop": false
726
+ },
727
+ "attributes": {}
728
+ }
729
+ },
730
+ "total_flos": 7.929322006644326e+16,
731
+ "train_batch_size": 4,
732
+ "trial_name": null,
733
+ "trial_params": null
734
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22ca3222c707eaec384daa2e32352930c2c72d5ed6bf8f6ab5a59a7f87d56d0
3
+ size 6033
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "(?:.*?(?:vision|image|visual|patch|language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj)))",
27
+ "task_type": "CAUSAL_LM",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:146f569fa10e7019b20c9b64336b5a6e686f158aa8e6fa4f7069e8d7c4320219
3
+ size 206181032
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd50575f236c9aa56818656eed9c27559b6de62d04201c7b1605c2aff0253490
3
+ size 82462277
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d565802a8e26c4e8a31328752b7a7fdc186d9401aa008e65697d0ad8c22e33
3
+ size 14645
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceb9da010f2f6a4f85be50fe5aba831c3a0ebd409e5879ba151460948eb2740e
3
+ size 1465
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741c85ffe434aad73e934a73ef380c85e94cd863b8f55e1a1ad66cacb5a93dfd
3
+ size 11422164
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|vision_pad|>",
205
+ "padding_side": "right",
206
+ "processor_class": "Qwen2_5_VLProcessor",
207
+ "split_special_tokens": false,
208
+ "tokenizer_class": "Qwen2Tokenizer",
209
+ "unk_token": null
210
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.2576489533011272,
6
+ "eval_steps": 500,
7
+ "global_step": 200,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0012882447665056361,
14
+ "grad_norm": 5.4613566398620605,
15
+ "learning_rate": 0.0,
16
+ "loss": 9.9597,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0025764895330112722,
21
+ "grad_norm": 5.388463497161865,
22
+ "learning_rate": 4e-05,
23
+ "loss": 9.8249,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.003864734299516908,
28
+ "grad_norm": 5.5101494789123535,
29
+ "learning_rate": 8e-05,
30
+ "loss": 9.7668,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0051529790660225444,
35
+ "grad_norm": 6.290860176086426,
36
+ "learning_rate": 0.00012,
37
+ "loss": 9.4381,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.00644122383252818,
42
+ "grad_norm": 6.80733060836792,
43
+ "learning_rate": 0.00016,
44
+ "loss": 7.8238,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.007729468599033816,
49
+ "grad_norm": 6.231540203094482,
50
+ "learning_rate": 0.0002,
51
+ "loss": 5.6276,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.009017713365539453,
56
+ "grad_norm": 3.279449224472046,
57
+ "learning_rate": 0.00019974059662775616,
58
+ "loss": 3.7187,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.010305958132045089,
63
+ "grad_norm": 2.8460264205932617,
64
+ "learning_rate": 0.00019948119325551234,
65
+ "loss": 3.3663,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.011594202898550725,
70
+ "grad_norm": 3.11165452003479,
71
+ "learning_rate": 0.0001992217898832685,
72
+ "loss": 2.7895,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.01288244766505636,
77
+ "grad_norm": 3.625304698944092,
78
+ "learning_rate": 0.00019896238651102467,
79
+ "loss": 2.4614,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.014170692431561997,
84
+ "grad_norm": 3.7168405055999756,
85
+ "learning_rate": 0.00019870298313878082,
86
+ "loss": 2.0685,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.015458937198067632,
91
+ "grad_norm": 3.233873128890991,
92
+ "learning_rate": 0.00019844357976653697,
93
+ "loss": 1.6585,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.01674718196457327,
98
+ "grad_norm": 1.8818095922470093,
99
+ "learning_rate": 0.00019818417639429315,
100
+ "loss": 1.5527,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.018035426731078906,
105
+ "grad_norm": 1.1915298700332642,
106
+ "learning_rate": 0.0001979247730220493,
107
+ "loss": 1.4238,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.01932367149758454,
112
+ "grad_norm": 1.0285066366195679,
113
+ "learning_rate": 0.00019766536964980547,
114
+ "loss": 1.2794,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.020611916264090178,
119
+ "grad_norm": 0.7898640632629395,
120
+ "learning_rate": 0.00019740596627756162,
121
+ "loss": 1.1589,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.021900161030595812,
126
+ "grad_norm": 1.196444034576416,
127
+ "learning_rate": 0.00019714656290531778,
128
+ "loss": 1.1131,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.02318840579710145,
133
+ "grad_norm": 0.9169692397117615,
134
+ "learning_rate": 0.00019688715953307395,
135
+ "loss": 0.9846,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.024476650563607084,
140
+ "grad_norm": 0.4427192509174347,
141
+ "learning_rate": 0.00019662775616083008,
142
+ "loss": 0.8775,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.02576489533011272,
147
+ "grad_norm": 0.4866611063480377,
148
+ "learning_rate": 0.00019636835278858625,
149
+ "loss": 0.8505,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.02705314009661836,
154
+ "grad_norm": 0.5251604914665222,
155
+ "learning_rate": 0.0001961089494163424,
156
+ "loss": 0.9328,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.028341384863123993,
161
+ "grad_norm": 0.649874210357666,
162
+ "learning_rate": 0.00019584954604409858,
163
+ "loss": 0.5923,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.02962962962962963,
168
+ "grad_norm": 0.42215585708618164,
169
+ "learning_rate": 0.00019559014267185473,
170
+ "loss": 0.759,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.030917874396135265,
175
+ "grad_norm": 0.639950692653656,
176
+ "learning_rate": 0.0001953307392996109,
177
+ "loss": 0.9802,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.0322061191626409,
182
+ "grad_norm": 0.43067610263824463,
183
+ "learning_rate": 0.00019507133592736706,
184
+ "loss": 0.8397,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.03349436392914654,
189
+ "grad_norm": 0.5399283766746521,
190
+ "learning_rate": 0.0001948119325551232,
191
+ "loss": 0.8954,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.034782608695652174,
196
+ "grad_norm": 0.45180439949035645,
197
+ "learning_rate": 0.0001945525291828794,
198
+ "loss": 0.8487,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.03607085346215781,
203
+ "grad_norm": 0.393189013004303,
204
+ "learning_rate": 0.00019429312581063554,
205
+ "loss": 0.6933,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.03735909822866344,
210
+ "grad_norm": 0.4162645936012268,
211
+ "learning_rate": 0.00019403372243839172,
212
+ "loss": 0.868,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.03864734299516908,
217
+ "grad_norm": 0.35941243171691895,
218
+ "learning_rate": 0.00019377431906614787,
219
+ "loss": 0.8156,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.03993558776167472,
224
+ "grad_norm": 0.32675009965896606,
225
+ "learning_rate": 0.00019351491569390402,
226
+ "loss": 0.7893,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.041223832528180356,
231
+ "grad_norm": 0.5361427068710327,
232
+ "learning_rate": 0.0001932555123216602,
233
+ "loss": 0.7538,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.04251207729468599,
238
+ "grad_norm": 0.3309827744960785,
239
+ "learning_rate": 0.00019299610894941635,
240
+ "loss": 0.6795,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.043800322061191624,
245
+ "grad_norm": 0.3792180120944977,
246
+ "learning_rate": 0.00019273670557717253,
247
+ "loss": 0.8356,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.04508856682769726,
252
+ "grad_norm": 0.3215338885784149,
253
+ "learning_rate": 0.00019247730220492868,
254
+ "loss": 0.8977,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.0463768115942029,
259
+ "grad_norm": 0.40453818440437317,
260
+ "learning_rate": 0.00019221789883268483,
261
+ "loss": 0.9196,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.04766505636070854,
266
+ "grad_norm": 0.3489324152469635,
267
+ "learning_rate": 0.000191958495460441,
268
+ "loss": 0.821,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.04895330112721417,
273
+ "grad_norm": 0.36633986234664917,
274
+ "learning_rate": 0.00019169909208819716,
275
+ "loss": 0.6199,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.050241545893719805,
280
+ "grad_norm": 0.33272671699523926,
281
+ "learning_rate": 0.00019143968871595333,
282
+ "loss": 0.7487,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.05152979066022544,
287
+ "grad_norm": 0.3444036543369293,
288
+ "learning_rate": 0.00019118028534370949,
289
+ "loss": 0.9279,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.05281803542673108,
294
+ "grad_norm": 0.3984861671924591,
295
+ "learning_rate": 0.00019092088197146564,
296
+ "loss": 0.9586,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.05410628019323672,
301
+ "grad_norm": 0.34713220596313477,
302
+ "learning_rate": 0.00019066147859922181,
303
+ "loss": 0.8446,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.05539452495974235,
308
+ "grad_norm": 0.34841418266296387,
309
+ "learning_rate": 0.00019040207522697794,
310
+ "loss": 0.8358,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.056682769726247986,
315
+ "grad_norm": 0.3403330147266388,
316
+ "learning_rate": 0.00019014267185473412,
317
+ "loss": 0.7746,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.057971014492753624,
322
+ "grad_norm": 0.3140932321548462,
323
+ "learning_rate": 0.00018988326848249027,
324
+ "loss": 0.8189,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.05925925925925926,
329
+ "grad_norm": 0.363057017326355,
330
+ "learning_rate": 0.00018962386511024644,
331
+ "loss": 0.8164,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.06054750402576489,
336
+ "grad_norm": 0.30131247639656067,
337
+ "learning_rate": 0.0001893644617380026,
338
+ "loss": 0.7268,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.06183574879227053,
343
+ "grad_norm": 0.41050782799720764,
344
+ "learning_rate": 0.00018910505836575875,
345
+ "loss": 0.8165,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.06312399355877617,
350
+ "grad_norm": 0.3251776099205017,
351
+ "learning_rate": 0.00018884565499351492,
352
+ "loss": 0.7986,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.0644122383252818,
357
+ "grad_norm": 0.35201895236968994,
358
+ "learning_rate": 0.00018858625162127107,
359
+ "loss": 0.6955,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.06570048309178744,
364
+ "grad_norm": 0.48456817865371704,
365
+ "learning_rate": 0.00018832684824902725,
366
+ "loss": 1.0044,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.06698872785829307,
371
+ "grad_norm": 0.32610711455345154,
372
+ "learning_rate": 0.0001880674448767834,
373
+ "loss": 0.8097,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.06827697262479872,
378
+ "grad_norm": 0.35323548316955566,
379
+ "learning_rate": 0.00018780804150453958,
380
+ "loss": 0.8622,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.06956521739130435,
385
+ "grad_norm": 0.34506356716156006,
386
+ "learning_rate": 0.00018754863813229573,
387
+ "loss": 0.782,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.07085346215780998,
392
+ "grad_norm": 0.42462947964668274,
393
+ "learning_rate": 0.00018728923476005188,
394
+ "loss": 0.9256,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.07214170692431562,
399
+ "grad_norm": 0.33884117007255554,
400
+ "learning_rate": 0.00018702983138780806,
401
+ "loss": 0.6513,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.07342995169082125,
406
+ "grad_norm": 0.28885480761528015,
407
+ "learning_rate": 0.0001867704280155642,
408
+ "loss": 0.5568,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.07471819645732689,
413
+ "grad_norm": 0.35344091057777405,
414
+ "learning_rate": 0.0001865110246433204,
415
+ "loss": 0.6914,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.07600644122383253,
420
+ "grad_norm": 0.3396419584751129,
421
+ "learning_rate": 0.00018625162127107654,
422
+ "loss": 0.738,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.07729468599033816,
427
+ "grad_norm": 0.31393012404441833,
428
+ "learning_rate": 0.0001859922178988327,
429
+ "loss": 0.7314,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.0785829307568438,
434
+ "grad_norm": 0.3600565791130066,
435
+ "learning_rate": 0.00018573281452658887,
436
+ "loss": 0.7431,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.07987117552334944,
441
+ "grad_norm": 0.34962427616119385,
442
+ "learning_rate": 0.00018547341115434502,
443
+ "loss": 0.7046,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.08115942028985507,
448
+ "grad_norm": 0.3548364043235779,
449
+ "learning_rate": 0.0001852140077821012,
450
+ "loss": 0.8334,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.08244766505636071,
455
+ "grad_norm": 0.34312623739242554,
456
+ "learning_rate": 0.00018495460440985735,
457
+ "loss": 0.626,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.08373590982286634,
462
+ "grad_norm": 0.37719225883483887,
463
+ "learning_rate": 0.0001846952010376135,
464
+ "loss": 0.7224,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.08502415458937199,
469
+ "grad_norm": 0.3368130624294281,
470
+ "learning_rate": 0.00018443579766536967,
471
+ "loss": 0.7476,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.08631239935587762,
476
+ "grad_norm": 0.3777587413787842,
477
+ "learning_rate": 0.0001841763942931258,
478
+ "loss": 0.6291,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.08760064412238325,
483
+ "grad_norm": 0.33600497245788574,
484
+ "learning_rate": 0.00018391699092088198,
485
+ "loss": 0.7294,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.08888888888888889,
490
+ "grad_norm": 0.43032655119895935,
491
+ "learning_rate": 0.00018365758754863813,
492
+ "loss": 0.8395,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.09017713365539452,
497
+ "grad_norm": 0.42399662733078003,
498
+ "learning_rate": 0.0001833981841763943,
499
+ "loss": 0.7155,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.09146537842190017,
504
+ "grad_norm": 0.34154751896858215,
505
+ "learning_rate": 0.00018313878080415046,
506
+ "loss": 0.7175,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.0927536231884058,
511
+ "grad_norm": 0.43316715955734253,
512
+ "learning_rate": 0.0001828793774319066,
513
+ "loss": 0.7819,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.09404186795491143,
518
+ "grad_norm": 0.4109691381454468,
519
+ "learning_rate": 0.00018261997405966278,
520
+ "loss": 0.7776,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.09533011272141707,
525
+ "grad_norm": 0.37350183725357056,
526
+ "learning_rate": 0.00018236057068741893,
527
+ "loss": 0.723,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.0966183574879227,
532
+ "grad_norm": 0.36530762910842896,
533
+ "learning_rate": 0.0001821011673151751,
534
+ "loss": 0.7987,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.09790660225442833,
539
+ "grad_norm": 0.41217753291130066,
540
+ "learning_rate": 0.00018184176394293126,
541
+ "loss": 0.9543,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.09919484702093398,
546
+ "grad_norm": 0.34720832109451294,
547
+ "learning_rate": 0.0001815823605706874,
548
+ "loss": 0.6793,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.10048309178743961,
553
+ "grad_norm": 0.3973989188671112,
554
+ "learning_rate": 0.0001813229571984436,
555
+ "loss": 0.7437,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.10177133655394525,
560
+ "grad_norm": 0.3629179000854492,
561
+ "learning_rate": 0.00018106355382619974,
562
+ "loss": 0.8523,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.10305958132045089,
567
+ "grad_norm": 0.36521610617637634,
568
+ "learning_rate": 0.00018080415045395592,
569
+ "loss": 0.7627,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.10434782608695652,
574
+ "grad_norm": 0.3619866967201233,
575
+ "learning_rate": 0.00018054474708171207,
576
+ "loss": 0.8563,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.10563607085346216,
581
+ "grad_norm": 0.3756084144115448,
582
+ "learning_rate": 0.00018028534370946825,
583
+ "loss": 0.6468,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.10692431561996779,
588
+ "grad_norm": 0.3905584216117859,
589
+ "learning_rate": 0.0001800259403372244,
590
+ "loss": 0.7779,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.10821256038647344,
595
+ "grad_norm": 0.43176719546318054,
596
+ "learning_rate": 0.00017976653696498055,
597
+ "loss": 0.8001,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.10950080515297907,
602
+ "grad_norm": 0.4288632571697235,
603
+ "learning_rate": 0.00017950713359273673,
604
+ "loss": 0.7873,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1107890499194847,
609
+ "grad_norm": 0.45645642280578613,
610
+ "learning_rate": 0.00017924773022049288,
611
+ "loss": 0.7735,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.11207729468599034,
616
+ "grad_norm": 0.4353061020374298,
617
+ "learning_rate": 0.00017898832684824906,
618
+ "loss": 0.8197,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.11336553945249597,
623
+ "grad_norm": 0.4613772928714752,
624
+ "learning_rate": 0.0001787289234760052,
625
+ "loss": 0.7914,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.11465378421900162,
630
+ "grad_norm": 0.3765336573123932,
631
+ "learning_rate": 0.00017846952010376136,
632
+ "loss": 0.554,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.11594202898550725,
637
+ "grad_norm": 0.4083232283592224,
638
+ "learning_rate": 0.00017821011673151754,
639
+ "loss": 0.8627,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.11723027375201288,
644
+ "grad_norm": 0.41450583934783936,
645
+ "learning_rate": 0.00017795071335927366,
646
+ "loss": 0.558,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.11851851851851852,
651
+ "grad_norm": 0.40102478861808777,
652
+ "learning_rate": 0.00017769130998702984,
653
+ "loss": 0.8672,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.11980676328502415,
658
+ "grad_norm": 0.4192351996898651,
659
+ "learning_rate": 0.000177431906614786,
660
+ "loss": 0.7901,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.12109500805152978,
665
+ "grad_norm": 0.4145065248012543,
666
+ "learning_rate": 0.00017717250324254217,
667
+ "loss": 0.6246,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.12238325281803543,
672
+ "grad_norm": 0.40400928258895874,
673
+ "learning_rate": 0.00017691309987029832,
674
+ "loss": 0.7239,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.12367149758454106,
679
+ "grad_norm": 0.36219555139541626,
680
+ "learning_rate": 0.00017665369649805447,
681
+ "loss": 0.6078,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.1249597423510467,
686
+ "grad_norm": 0.46309852600097656,
687
+ "learning_rate": 0.00017639429312581064,
688
+ "loss": 0.6834,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.12624798711755233,
693
+ "grad_norm": 0.44735029339790344,
694
+ "learning_rate": 0.0001761348897535668,
695
+ "loss": 0.934,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.12753623188405797,
700
+ "grad_norm": 0.42460861802101135,
701
+ "learning_rate": 0.00017587548638132297,
702
+ "loss": 0.9051,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.1288244766505636,
707
+ "grad_norm": 0.41505753993988037,
708
+ "learning_rate": 0.00017561608300907912,
709
+ "loss": 0.6545,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.13011272141706925,
714
+ "grad_norm": 0.4106407165527344,
715
+ "learning_rate": 0.00017535667963683527,
716
+ "loss": 0.6681,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.13140096618357489,
721
+ "grad_norm": 0.5651662945747375,
722
+ "learning_rate": 0.00017509727626459145,
723
+ "loss": 0.9613,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.13268921095008052,
728
+ "grad_norm": 0.5200956463813782,
729
+ "learning_rate": 0.0001748378728923476,
730
+ "loss": 0.7751,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.13397745571658615,
735
+ "grad_norm": 0.3946162164211273,
736
+ "learning_rate": 0.00017457846952010378,
737
+ "loss": 0.5986,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.13526570048309178,
742
+ "grad_norm": 0.41149747371673584,
743
+ "learning_rate": 0.00017431906614785993,
744
+ "loss": 0.651,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.13655394524959744,
749
+ "grad_norm": 0.39719873666763306,
750
+ "learning_rate": 0.00017405966277561608,
751
+ "loss": 0.6689,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.13784219001610307,
756
+ "grad_norm": 0.4418695569038391,
757
+ "learning_rate": 0.00017380025940337226,
758
+ "loss": 0.596,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.1391304347826087,
763
+ "grad_norm": 0.37728822231292725,
764
+ "learning_rate": 0.0001735408560311284,
765
+ "loss": 0.6916,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.14041867954911433,
770
+ "grad_norm": 0.3840548098087311,
771
+ "learning_rate": 0.0001732814526588846,
772
+ "loss": 0.6632,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.14170692431561996,
777
+ "grad_norm": 0.44417718052864075,
778
+ "learning_rate": 0.00017302204928664074,
779
+ "loss": 0.7104,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.14299516908212562,
784
+ "grad_norm": 0.36671656370162964,
785
+ "learning_rate": 0.00017276264591439692,
786
+ "loss": 0.7547,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.14428341384863125,
791
+ "grad_norm": 0.34892189502716064,
792
+ "learning_rate": 0.00017250324254215307,
793
+ "loss": 0.5974,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.14557165861513688,
798
+ "grad_norm": 0.5085009336471558,
799
+ "learning_rate": 0.00017224383916990922,
800
+ "loss": 0.9988,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.1468599033816425,
805
+ "grad_norm": 0.46035563945770264,
806
+ "learning_rate": 0.0001719844357976654,
807
+ "loss": 0.7921,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.14814814814814814,
812
+ "grad_norm": 0.4752040505409241,
813
+ "learning_rate": 0.00017172503242542152,
814
+ "loss": 0.8445,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.14943639291465377,
819
+ "grad_norm": 0.409305602312088,
820
+ "learning_rate": 0.0001714656290531777,
821
+ "loss": 0.7504,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.15072463768115943,
826
+ "grad_norm": 0.6183521747589111,
827
+ "learning_rate": 0.00017120622568093385,
828
+ "loss": 0.815,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.15201288244766506,
833
+ "grad_norm": 0.4095537066459656,
834
+ "learning_rate": 0.00017094682230869003,
835
+ "loss": 0.6045,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.1533011272141707,
840
+ "grad_norm": 0.49161475896835327,
841
+ "learning_rate": 0.00017068741893644618,
842
+ "loss": 0.7382,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.15458937198067632,
847
+ "grad_norm": 0.5018863081932068,
848
+ "learning_rate": 0.00017042801556420233,
849
+ "loss": 0.7363,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.15587761674718195,
854
+ "grad_norm": 0.41128432750701904,
855
+ "learning_rate": 0.0001701686121919585,
856
+ "loss": 0.7246,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.1571658615136876,
861
+ "grad_norm": 0.4444568455219269,
862
+ "learning_rate": 0.00016990920881971466,
863
+ "loss": 0.7002,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.15845410628019324,
868
+ "grad_norm": 0.39982640743255615,
869
+ "learning_rate": 0.00016964980544747083,
870
+ "loss": 0.9531,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.15974235104669887,
875
+ "grad_norm": 0.4098430871963501,
876
+ "learning_rate": 0.00016939040207522698,
877
+ "loss": 0.7071,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.1610305958132045,
882
+ "grad_norm": 0.4217020571231842,
883
+ "learning_rate": 0.00016913099870298313,
884
+ "loss": 0.7215,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.16231884057971013,
889
+ "grad_norm": 0.47349125146865845,
890
+ "learning_rate": 0.0001688715953307393,
891
+ "loss": 0.8271,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.1636070853462158,
896
+ "grad_norm": 0.5245679616928101,
897
+ "learning_rate": 0.00016861219195849546,
898
+ "loss": 0.9152,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.16489533011272142,
903
+ "grad_norm": 0.4204537570476532,
904
+ "learning_rate": 0.00016835278858625164,
905
+ "loss": 0.5607,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.16618357487922705,
910
+ "grad_norm": 0.4292148947715759,
911
+ "learning_rate": 0.0001680933852140078,
912
+ "loss": 0.7199,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.16747181964573268,
917
+ "grad_norm": 0.4466223418712616,
918
+ "learning_rate": 0.00016783398184176394,
919
+ "loss": 0.6066,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.16876006441223831,
924
+ "grad_norm": 0.4251168668270111,
925
+ "learning_rate": 0.00016757457846952012,
926
+ "loss": 0.5534,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.17004830917874397,
931
+ "grad_norm": 0.463151216506958,
932
+ "learning_rate": 0.00016731517509727627,
933
+ "loss": 0.8579,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.1713365539452496,
938
+ "grad_norm": 0.4957478940486908,
939
+ "learning_rate": 0.00016705577172503245,
940
+ "loss": 0.8427,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.17262479871175523,
945
+ "grad_norm": 0.4005911946296692,
946
+ "learning_rate": 0.0001667963683527886,
947
+ "loss": 0.5457,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.17391304347826086,
952
+ "grad_norm": 0.426756352186203,
953
+ "learning_rate": 0.00016653696498054475,
954
+ "loss": 0.7292,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.1752012882447665,
959
+ "grad_norm": 0.46122246980667114,
960
+ "learning_rate": 0.00016627756160830093,
961
+ "loss": 0.8017,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.17648953301127215,
966
+ "grad_norm": 0.4660143256187439,
967
+ "learning_rate": 0.00016601815823605708,
968
+ "loss": 0.8905,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.17777777777777778,
973
+ "grad_norm": 0.4115317463874817,
974
+ "learning_rate": 0.00016575875486381326,
975
+ "loss": 0.6911,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.17906602254428342,
980
+ "grad_norm": 0.4249230623245239,
981
+ "learning_rate": 0.00016549935149156938,
982
+ "loss": 0.6696,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.18035426731078905,
987
+ "grad_norm": 0.39602991938591003,
988
+ "learning_rate": 0.00016523994811932556,
989
+ "loss": 0.6071,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.18164251207729468,
994
+ "grad_norm": 0.399972140789032,
995
+ "learning_rate": 0.0001649805447470817,
996
+ "loss": 0.6502,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.18293075684380034,
1001
+ "grad_norm": 0.44152483344078064,
1002
+ "learning_rate": 0.00016472114137483789,
1003
+ "loss": 0.7057,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.18421900161030597,
1008
+ "grad_norm": 0.46175718307495117,
1009
+ "learning_rate": 0.00016446173800259404,
1010
+ "loss": 0.7853,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.1855072463768116,
1015
+ "grad_norm": 0.4025271236896515,
1016
+ "learning_rate": 0.0001642023346303502,
1017
+ "loss": 0.5798,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.18679549114331723,
1022
+ "grad_norm": 0.4135390818119049,
1023
+ "learning_rate": 0.00016394293125810637,
1024
+ "loss": 0.7672,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.18808373590982286,
1029
+ "grad_norm": 0.44383513927459717,
1030
+ "learning_rate": 0.00016368352788586252,
1031
+ "loss": 0.7492,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.18937198067632852,
1036
+ "grad_norm": 0.4189338684082031,
1037
+ "learning_rate": 0.0001634241245136187,
1038
+ "loss": 0.8282,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.19066022544283415,
1043
+ "grad_norm": 0.4431954622268677,
1044
+ "learning_rate": 0.00016316472114137484,
1045
+ "loss": 0.9127,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.19194847020933978,
1050
+ "grad_norm": 0.4382760524749756,
1051
+ "learning_rate": 0.000162905317769131,
1052
+ "loss": 0.9119,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.1932367149758454,
1057
+ "grad_norm": 0.4436795115470886,
1058
+ "learning_rate": 0.00016264591439688717,
1059
+ "loss": 0.6665,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.19452495974235104,
1064
+ "grad_norm": 0.4900800585746765,
1065
+ "learning_rate": 0.00016238651102464332,
1066
+ "loss": 0.6791,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.19581320450885667,
1071
+ "grad_norm": 0.45277830958366394,
1072
+ "learning_rate": 0.0001621271076523995,
1073
+ "loss": 0.6947,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.19710144927536233,
1078
+ "grad_norm": 0.5545029640197754,
1079
+ "learning_rate": 0.00016186770428015565,
1080
+ "loss": 0.8732,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.19838969404186796,
1085
+ "grad_norm": 0.4231799840927124,
1086
+ "learning_rate": 0.0001616083009079118,
1087
+ "loss": 0.8342,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.1996779388083736,
1092
+ "grad_norm": 0.4343210458755493,
1093
+ "learning_rate": 0.00016134889753566798,
1094
+ "loss": 0.7941,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.20096618357487922,
1099
+ "grad_norm": 0.4704267084598541,
1100
+ "learning_rate": 0.00016108949416342413,
1101
+ "loss": 0.8256,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.20225442834138485,
1106
+ "grad_norm": 0.4171951115131378,
1107
+ "learning_rate": 0.0001608300907911803,
1108
+ "loss": 0.7084,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.2035426731078905,
1113
+ "grad_norm": 0.4284476041793823,
1114
+ "learning_rate": 0.00016057068741893646,
1115
+ "loss": 0.757,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.20483091787439614,
1120
+ "grad_norm": 0.508334755897522,
1121
+ "learning_rate": 0.0001603112840466926,
1122
+ "loss": 0.9374,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.20611916264090177,
1127
+ "grad_norm": 0.4968143701553345,
1128
+ "learning_rate": 0.0001600518806744488,
1129
+ "loss": 0.7551,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.2074074074074074,
1134
+ "grad_norm": 0.41236674785614014,
1135
+ "learning_rate": 0.00015979247730220494,
1136
+ "loss": 0.6889,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.20869565217391303,
1141
+ "grad_norm": 0.4891696870326996,
1142
+ "learning_rate": 0.00015953307392996112,
1143
+ "loss": 0.7935,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.2099838969404187,
1148
+ "grad_norm": 0.46381738781929016,
1149
+ "learning_rate": 0.00015927367055771724,
1150
+ "loss": 0.7379,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.21127214170692432,
1155
+ "grad_norm": 0.44059839844703674,
1156
+ "learning_rate": 0.00015901426718547342,
1157
+ "loss": 0.8041,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.21256038647342995,
1162
+ "grad_norm": 0.4157409965991974,
1163
+ "learning_rate": 0.00015875486381322957,
1164
+ "loss": 0.6478,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.21384863123993558,
1169
+ "grad_norm": 0.4567868411540985,
1170
+ "learning_rate": 0.00015849546044098572,
1171
+ "loss": 0.7187,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.2151368760064412,
1176
+ "grad_norm": 0.4747803509235382,
1177
+ "learning_rate": 0.0001582360570687419,
1178
+ "loss": 0.7007,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.21642512077294687,
1183
+ "grad_norm": 0.41447919607162476,
1184
+ "learning_rate": 0.00015797665369649805,
1185
+ "loss": 0.748,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.2177133655394525,
1190
+ "grad_norm": 0.43258461356163025,
1191
+ "learning_rate": 0.00015771725032425423,
1192
+ "loss": 0.7018,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.21900161030595813,
1197
+ "grad_norm": 0.430125892162323,
1198
+ "learning_rate": 0.00015745784695201038,
1199
+ "loss": 0.7626,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.22028985507246376,
1204
+ "grad_norm": 0.5202476382255554,
1205
+ "learning_rate": 0.00015719844357976655,
1206
+ "loss": 0.8591,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.2215780998389694,
1211
+ "grad_norm": 0.5006714463233948,
1212
+ "learning_rate": 0.0001569390402075227,
1213
+ "loss": 0.6393,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.22286634460547505,
1218
+ "grad_norm": 0.5033003091812134,
1219
+ "learning_rate": 0.00015667963683527886,
1220
+ "loss": 0.6468,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.22415458937198068,
1225
+ "grad_norm": 0.5392705202102661,
1226
+ "learning_rate": 0.00015642023346303503,
1227
+ "loss": 0.9214,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.22544283413848631,
1232
+ "grad_norm": 0.5133917927742004,
1233
+ "learning_rate": 0.00015616083009079118,
1234
+ "loss": 0.8553,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.22673107890499195,
1239
+ "grad_norm": 0.4788094758987427,
1240
+ "learning_rate": 0.00015590142671854736,
1241
+ "loss": 0.843,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.22801932367149758,
1246
+ "grad_norm": 0.42810189723968506,
1247
+ "learning_rate": 0.0001556420233463035,
1248
+ "loss": 0.6681,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.22930756843800323,
1253
+ "grad_norm": 0.5283413529396057,
1254
+ "learning_rate": 0.00015538261997405966,
1255
+ "loss": 0.7525,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.23059581320450886,
1260
+ "grad_norm": 0.45462605357170105,
1261
+ "learning_rate": 0.00015512321660181584,
1262
+ "loss": 0.7936,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.2318840579710145,
1267
+ "grad_norm": 0.47412481904029846,
1268
+ "learning_rate": 0.000154863813229572,
1269
+ "loss": 0.7423,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.23317230273752013,
1274
+ "grad_norm": 0.4658280909061432,
1275
+ "learning_rate": 0.00015460440985732817,
1276
+ "loss": 0.6515,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.23446054750402576,
1281
+ "grad_norm": 0.4392845034599304,
1282
+ "learning_rate": 0.00015434500648508432,
1283
+ "loss": 0.5136,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.2357487922705314,
1288
+ "grad_norm": 0.41688844561576843,
1289
+ "learning_rate": 0.00015408560311284047,
1290
+ "loss": 0.6897,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.23703703703703705,
1295
+ "grad_norm": 0.4741729497909546,
1296
+ "learning_rate": 0.00015382619974059665,
1297
+ "loss": 0.8226,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.23832528180354268,
1302
+ "grad_norm": 0.4735780656337738,
1303
+ "learning_rate": 0.0001535667963683528,
1304
+ "loss": 0.9066,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.2396135265700483,
1309
+ "grad_norm": 0.43401920795440674,
1310
+ "learning_rate": 0.00015330739299610898,
1311
+ "loss": 0.9114,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.24090177133655394,
1316
+ "grad_norm": 0.4879320561885834,
1317
+ "learning_rate": 0.0001530479896238651,
1318
+ "loss": 0.6929,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.24219001610305957,
1323
+ "grad_norm": 0.43077850341796875,
1324
+ "learning_rate": 0.00015278858625162128,
1325
+ "loss": 0.7925,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.24347826086956523,
1330
+ "grad_norm": 0.44918107986450195,
1331
+ "learning_rate": 0.00015252918287937743,
1332
+ "loss": 0.7412,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.24476650563607086,
1337
+ "grad_norm": 0.4338708519935608,
1338
+ "learning_rate": 0.00015226977950713358,
1339
+ "loss": 0.6829,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.2460547504025765,
1344
+ "grad_norm": 0.495004802942276,
1345
+ "learning_rate": 0.00015201037613488976,
1346
+ "loss": 0.7447,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.24734299516908212,
1351
+ "grad_norm": 0.4711913466453552,
1352
+ "learning_rate": 0.0001517509727626459,
1353
+ "loss": 0.6961,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.24863123993558775,
1358
+ "grad_norm": 0.41086235642433167,
1359
+ "learning_rate": 0.0001514915693904021,
1360
+ "loss": 0.8094,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.2499194847020934,
1365
+ "grad_norm": 0.4413953423500061,
1366
+ "learning_rate": 0.00015123216601815824,
1367
+ "loss": 0.576,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.25120772946859904,
1372
+ "grad_norm": 0.46921825408935547,
1373
+ "learning_rate": 0.0001509727626459144,
1374
+ "loss": 0.6542,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.25249597423510467,
1379
+ "grad_norm": 0.4307248890399933,
1380
+ "learning_rate": 0.00015071335927367057,
1381
+ "loss": 0.6021,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.2537842190016103,
1386
+ "grad_norm": 0.5045284032821655,
1387
+ "learning_rate": 0.00015045395590142672,
1388
+ "loss": 0.7323,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.25507246376811593,
1393
+ "grad_norm": 0.447826087474823,
1394
+ "learning_rate": 0.0001501945525291829,
1395
+ "loss": 0.78,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.25636070853462156,
1400
+ "grad_norm": 0.4777592420578003,
1401
+ "learning_rate": 0.00014993514915693904,
1402
+ "loss": 0.6421,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.2576489533011272,
1407
+ "grad_norm": 0.5190320014953613,
1408
+ "learning_rate": 0.00014967574578469522,
1409
+ "loss": 0.7775,
1410
+ "step": 200
1411
+ }
1412
+ ],
1413
+ "logging_steps": 1,
1414
+ "max_steps": 776,
1415
+ "num_input_tokens_seen": 0,
1416
+ "num_train_epochs": 1,
1417
+ "save_steps": 100,
1418
+ "stateful_callbacks": {
1419
+ "TrainerControl": {
1420
+ "args": {
1421
+ "should_epoch_stop": false,
1422
+ "should_evaluate": false,
1423
+ "should_log": false,
1424
+ "should_save": true,
1425
+ "should_training_stop": false
1426
+ },
1427
+ "attributes": {}
1428
+ }
1429
+ },
1430
+ "total_flos": 1.5859991627061658e+17,
1431
+ "train_batch_size": 4,
1432
+ "trial_name": null,
1433
+ "trial_params": null
1434
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22ca3222c707eaec384daa2e32352930c2c72d5ed6bf8f6ab5a59a7f87d56d0
3
+ size 6033
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-200/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "(?:.*?(?:vision|image|visual|patch|language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:qkv|proj|gate_proj|up_proj|down_proj|q_proj|k_proj|v_proj|o_proj)))",
27
+ "task_type": "CAUSAL_LM",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20ba56b68878d8c74b3cb2675b9b21960f3596e8501608eb3f4de7ed6ece9d88
3
+ size 206181032
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf6da6649ae9ffd623d722c687a99fe0f698ee2740324e63527ce6c45cadb5d
3
+ size 82462661
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d565802a8e26c4e8a31328752b7a7fdc186d9401aa008e65697d0ad8c22e33
3
+ size 14645
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c20b1ae2c922eacdc7f2e501477e7ff61ef21eeda7e7eeb9af5af4c1ccbbc3c
3
+ size 1465
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741c85ffe434aad73e934a73ef380c85e94cd863b8f55e1a1ad66cacb5a93dfd
3
+ size 11422164
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|vision_pad|>",
205
+ "padding_side": "right",
206
+ "processor_class": "Qwen2_5_VLProcessor",
207
+ "split_special_tokens": false,
208
+ "tokenizer_class": "Qwen2Tokenizer",
209
+ "unk_token": null
210
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,2134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.3864734299516908,
6
+ "eval_steps": 500,
7
+ "global_step": 300,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0012882447665056361,
14
+ "grad_norm": 5.4613566398620605,
15
+ "learning_rate": 0.0,
16
+ "loss": 9.9597,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0025764895330112722,
21
+ "grad_norm": 5.388463497161865,
22
+ "learning_rate": 4e-05,
23
+ "loss": 9.8249,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.003864734299516908,
28
+ "grad_norm": 5.5101494789123535,
29
+ "learning_rate": 8e-05,
30
+ "loss": 9.7668,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0051529790660225444,
35
+ "grad_norm": 6.290860176086426,
36
+ "learning_rate": 0.00012,
37
+ "loss": 9.4381,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.00644122383252818,
42
+ "grad_norm": 6.80733060836792,
43
+ "learning_rate": 0.00016,
44
+ "loss": 7.8238,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.007729468599033816,
49
+ "grad_norm": 6.231540203094482,
50
+ "learning_rate": 0.0002,
51
+ "loss": 5.6276,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.009017713365539453,
56
+ "grad_norm": 3.279449224472046,
57
+ "learning_rate": 0.00019974059662775616,
58
+ "loss": 3.7187,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.010305958132045089,
63
+ "grad_norm": 2.8460264205932617,
64
+ "learning_rate": 0.00019948119325551234,
65
+ "loss": 3.3663,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.011594202898550725,
70
+ "grad_norm": 3.11165452003479,
71
+ "learning_rate": 0.0001992217898832685,
72
+ "loss": 2.7895,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.01288244766505636,
77
+ "grad_norm": 3.625304698944092,
78
+ "learning_rate": 0.00019896238651102467,
79
+ "loss": 2.4614,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.014170692431561997,
84
+ "grad_norm": 3.7168405055999756,
85
+ "learning_rate": 0.00019870298313878082,
86
+ "loss": 2.0685,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.015458937198067632,
91
+ "grad_norm": 3.233873128890991,
92
+ "learning_rate": 0.00019844357976653697,
93
+ "loss": 1.6585,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.01674718196457327,
98
+ "grad_norm": 1.8818095922470093,
99
+ "learning_rate": 0.00019818417639429315,
100
+ "loss": 1.5527,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.018035426731078906,
105
+ "grad_norm": 1.1915298700332642,
106
+ "learning_rate": 0.0001979247730220493,
107
+ "loss": 1.4238,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.01932367149758454,
112
+ "grad_norm": 1.0285066366195679,
113
+ "learning_rate": 0.00019766536964980547,
114
+ "loss": 1.2794,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.020611916264090178,
119
+ "grad_norm": 0.7898640632629395,
120
+ "learning_rate": 0.00019740596627756162,
121
+ "loss": 1.1589,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.021900161030595812,
126
+ "grad_norm": 1.196444034576416,
127
+ "learning_rate": 0.00019714656290531778,
128
+ "loss": 1.1131,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.02318840579710145,
133
+ "grad_norm": 0.9169692397117615,
134
+ "learning_rate": 0.00019688715953307395,
135
+ "loss": 0.9846,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.024476650563607084,
140
+ "grad_norm": 0.4427192509174347,
141
+ "learning_rate": 0.00019662775616083008,
142
+ "loss": 0.8775,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.02576489533011272,
147
+ "grad_norm": 0.4866611063480377,
148
+ "learning_rate": 0.00019636835278858625,
149
+ "loss": 0.8505,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.02705314009661836,
154
+ "grad_norm": 0.5251604914665222,
155
+ "learning_rate": 0.0001961089494163424,
156
+ "loss": 0.9328,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.028341384863123993,
161
+ "grad_norm": 0.649874210357666,
162
+ "learning_rate": 0.00019584954604409858,
163
+ "loss": 0.5923,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.02962962962962963,
168
+ "grad_norm": 0.42215585708618164,
169
+ "learning_rate": 0.00019559014267185473,
170
+ "loss": 0.759,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.030917874396135265,
175
+ "grad_norm": 0.639950692653656,
176
+ "learning_rate": 0.0001953307392996109,
177
+ "loss": 0.9802,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.0322061191626409,
182
+ "grad_norm": 0.43067610263824463,
183
+ "learning_rate": 0.00019507133592736706,
184
+ "loss": 0.8397,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.03349436392914654,
189
+ "grad_norm": 0.5399283766746521,
190
+ "learning_rate": 0.0001948119325551232,
191
+ "loss": 0.8954,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.034782608695652174,
196
+ "grad_norm": 0.45180439949035645,
197
+ "learning_rate": 0.0001945525291828794,
198
+ "loss": 0.8487,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.03607085346215781,
203
+ "grad_norm": 0.393189013004303,
204
+ "learning_rate": 0.00019429312581063554,
205
+ "loss": 0.6933,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.03735909822866344,
210
+ "grad_norm": 0.4162645936012268,
211
+ "learning_rate": 0.00019403372243839172,
212
+ "loss": 0.868,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.03864734299516908,
217
+ "grad_norm": 0.35941243171691895,
218
+ "learning_rate": 0.00019377431906614787,
219
+ "loss": 0.8156,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.03993558776167472,
224
+ "grad_norm": 0.32675009965896606,
225
+ "learning_rate": 0.00019351491569390402,
226
+ "loss": 0.7893,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.041223832528180356,
231
+ "grad_norm": 0.5361427068710327,
232
+ "learning_rate": 0.0001932555123216602,
233
+ "loss": 0.7538,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.04251207729468599,
238
+ "grad_norm": 0.3309827744960785,
239
+ "learning_rate": 0.00019299610894941635,
240
+ "loss": 0.6795,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.043800322061191624,
245
+ "grad_norm": 0.3792180120944977,
246
+ "learning_rate": 0.00019273670557717253,
247
+ "loss": 0.8356,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.04508856682769726,
252
+ "grad_norm": 0.3215338885784149,
253
+ "learning_rate": 0.00019247730220492868,
254
+ "loss": 0.8977,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.0463768115942029,
259
+ "grad_norm": 0.40453818440437317,
260
+ "learning_rate": 0.00019221789883268483,
261
+ "loss": 0.9196,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.04766505636070854,
266
+ "grad_norm": 0.3489324152469635,
267
+ "learning_rate": 0.000191958495460441,
268
+ "loss": 0.821,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.04895330112721417,
273
+ "grad_norm": 0.36633986234664917,
274
+ "learning_rate": 0.00019169909208819716,
275
+ "loss": 0.6199,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.050241545893719805,
280
+ "grad_norm": 0.33272671699523926,
281
+ "learning_rate": 0.00019143968871595333,
282
+ "loss": 0.7487,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.05152979066022544,
287
+ "grad_norm": 0.3444036543369293,
288
+ "learning_rate": 0.00019118028534370949,
289
+ "loss": 0.9279,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.05281803542673108,
294
+ "grad_norm": 0.3984861671924591,
295
+ "learning_rate": 0.00019092088197146564,
296
+ "loss": 0.9586,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.05410628019323672,
301
+ "grad_norm": 0.34713220596313477,
302
+ "learning_rate": 0.00019066147859922181,
303
+ "loss": 0.8446,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.05539452495974235,
308
+ "grad_norm": 0.34841418266296387,
309
+ "learning_rate": 0.00019040207522697794,
310
+ "loss": 0.8358,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.056682769726247986,
315
+ "grad_norm": 0.3403330147266388,
316
+ "learning_rate": 0.00019014267185473412,
317
+ "loss": 0.7746,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.057971014492753624,
322
+ "grad_norm": 0.3140932321548462,
323
+ "learning_rate": 0.00018988326848249027,
324
+ "loss": 0.8189,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.05925925925925926,
329
+ "grad_norm": 0.363057017326355,
330
+ "learning_rate": 0.00018962386511024644,
331
+ "loss": 0.8164,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.06054750402576489,
336
+ "grad_norm": 0.30131247639656067,
337
+ "learning_rate": 0.0001893644617380026,
338
+ "loss": 0.7268,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.06183574879227053,
343
+ "grad_norm": 0.41050782799720764,
344
+ "learning_rate": 0.00018910505836575875,
345
+ "loss": 0.8165,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.06312399355877617,
350
+ "grad_norm": 0.3251776099205017,
351
+ "learning_rate": 0.00018884565499351492,
352
+ "loss": 0.7986,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.0644122383252818,
357
+ "grad_norm": 0.35201895236968994,
358
+ "learning_rate": 0.00018858625162127107,
359
+ "loss": 0.6955,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.06570048309178744,
364
+ "grad_norm": 0.48456817865371704,
365
+ "learning_rate": 0.00018832684824902725,
366
+ "loss": 1.0044,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.06698872785829307,
371
+ "grad_norm": 0.32610711455345154,
372
+ "learning_rate": 0.0001880674448767834,
373
+ "loss": 0.8097,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.06827697262479872,
378
+ "grad_norm": 0.35323548316955566,
379
+ "learning_rate": 0.00018780804150453958,
380
+ "loss": 0.8622,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.06956521739130435,
385
+ "grad_norm": 0.34506356716156006,
386
+ "learning_rate": 0.00018754863813229573,
387
+ "loss": 0.782,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.07085346215780998,
392
+ "grad_norm": 0.42462947964668274,
393
+ "learning_rate": 0.00018728923476005188,
394
+ "loss": 0.9256,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.07214170692431562,
399
+ "grad_norm": 0.33884117007255554,
400
+ "learning_rate": 0.00018702983138780806,
401
+ "loss": 0.6513,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.07342995169082125,
406
+ "grad_norm": 0.28885480761528015,
407
+ "learning_rate": 0.0001867704280155642,
408
+ "loss": 0.5568,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.07471819645732689,
413
+ "grad_norm": 0.35344091057777405,
414
+ "learning_rate": 0.0001865110246433204,
415
+ "loss": 0.6914,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.07600644122383253,
420
+ "grad_norm": 0.3396419584751129,
421
+ "learning_rate": 0.00018625162127107654,
422
+ "loss": 0.738,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.07729468599033816,
427
+ "grad_norm": 0.31393012404441833,
428
+ "learning_rate": 0.0001859922178988327,
429
+ "loss": 0.7314,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.0785829307568438,
434
+ "grad_norm": 0.3600565791130066,
435
+ "learning_rate": 0.00018573281452658887,
436
+ "loss": 0.7431,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.07987117552334944,
441
+ "grad_norm": 0.34962427616119385,
442
+ "learning_rate": 0.00018547341115434502,
443
+ "loss": 0.7046,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.08115942028985507,
448
+ "grad_norm": 0.3548364043235779,
449
+ "learning_rate": 0.0001852140077821012,
450
+ "loss": 0.8334,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.08244766505636071,
455
+ "grad_norm": 0.34312623739242554,
456
+ "learning_rate": 0.00018495460440985735,
457
+ "loss": 0.626,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.08373590982286634,
462
+ "grad_norm": 0.37719225883483887,
463
+ "learning_rate": 0.0001846952010376135,
464
+ "loss": 0.7224,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.08502415458937199,
469
+ "grad_norm": 0.3368130624294281,
470
+ "learning_rate": 0.00018443579766536967,
471
+ "loss": 0.7476,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.08631239935587762,
476
+ "grad_norm": 0.3777587413787842,
477
+ "learning_rate": 0.0001841763942931258,
478
+ "loss": 0.6291,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.08760064412238325,
483
+ "grad_norm": 0.33600497245788574,
484
+ "learning_rate": 0.00018391699092088198,
485
+ "loss": 0.7294,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.08888888888888889,
490
+ "grad_norm": 0.43032655119895935,
491
+ "learning_rate": 0.00018365758754863813,
492
+ "loss": 0.8395,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.09017713365539452,
497
+ "grad_norm": 0.42399662733078003,
498
+ "learning_rate": 0.0001833981841763943,
499
+ "loss": 0.7155,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.09146537842190017,
504
+ "grad_norm": 0.34154751896858215,
505
+ "learning_rate": 0.00018313878080415046,
506
+ "loss": 0.7175,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.0927536231884058,
511
+ "grad_norm": 0.43316715955734253,
512
+ "learning_rate": 0.0001828793774319066,
513
+ "loss": 0.7819,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.09404186795491143,
518
+ "grad_norm": 0.4109691381454468,
519
+ "learning_rate": 0.00018261997405966278,
520
+ "loss": 0.7776,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.09533011272141707,
525
+ "grad_norm": 0.37350183725357056,
526
+ "learning_rate": 0.00018236057068741893,
527
+ "loss": 0.723,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.0966183574879227,
532
+ "grad_norm": 0.36530762910842896,
533
+ "learning_rate": 0.0001821011673151751,
534
+ "loss": 0.7987,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.09790660225442833,
539
+ "grad_norm": 0.41217753291130066,
540
+ "learning_rate": 0.00018184176394293126,
541
+ "loss": 0.9543,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.09919484702093398,
546
+ "grad_norm": 0.34720832109451294,
547
+ "learning_rate": 0.0001815823605706874,
548
+ "loss": 0.6793,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.10048309178743961,
553
+ "grad_norm": 0.3973989188671112,
554
+ "learning_rate": 0.0001813229571984436,
555
+ "loss": 0.7437,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.10177133655394525,
560
+ "grad_norm": 0.3629179000854492,
561
+ "learning_rate": 0.00018106355382619974,
562
+ "loss": 0.8523,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.10305958132045089,
567
+ "grad_norm": 0.36521610617637634,
568
+ "learning_rate": 0.00018080415045395592,
569
+ "loss": 0.7627,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.10434782608695652,
574
+ "grad_norm": 0.3619866967201233,
575
+ "learning_rate": 0.00018054474708171207,
576
+ "loss": 0.8563,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.10563607085346216,
581
+ "grad_norm": 0.3756084144115448,
582
+ "learning_rate": 0.00018028534370946825,
583
+ "loss": 0.6468,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.10692431561996779,
588
+ "grad_norm": 0.3905584216117859,
589
+ "learning_rate": 0.0001800259403372244,
590
+ "loss": 0.7779,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.10821256038647344,
595
+ "grad_norm": 0.43176719546318054,
596
+ "learning_rate": 0.00017976653696498055,
597
+ "loss": 0.8001,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.10950080515297907,
602
+ "grad_norm": 0.4288632571697235,
603
+ "learning_rate": 0.00017950713359273673,
604
+ "loss": 0.7873,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1107890499194847,
609
+ "grad_norm": 0.45645642280578613,
610
+ "learning_rate": 0.00017924773022049288,
611
+ "loss": 0.7735,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.11207729468599034,
616
+ "grad_norm": 0.4353061020374298,
617
+ "learning_rate": 0.00017898832684824906,
618
+ "loss": 0.8197,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.11336553945249597,
623
+ "grad_norm": 0.4613772928714752,
624
+ "learning_rate": 0.0001787289234760052,
625
+ "loss": 0.7914,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.11465378421900162,
630
+ "grad_norm": 0.3765336573123932,
631
+ "learning_rate": 0.00017846952010376136,
632
+ "loss": 0.554,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.11594202898550725,
637
+ "grad_norm": 0.4083232283592224,
638
+ "learning_rate": 0.00017821011673151754,
639
+ "loss": 0.8627,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.11723027375201288,
644
+ "grad_norm": 0.41450583934783936,
645
+ "learning_rate": 0.00017795071335927366,
646
+ "loss": 0.558,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.11851851851851852,
651
+ "grad_norm": 0.40102478861808777,
652
+ "learning_rate": 0.00017769130998702984,
653
+ "loss": 0.8672,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.11980676328502415,
658
+ "grad_norm": 0.4192351996898651,
659
+ "learning_rate": 0.000177431906614786,
660
+ "loss": 0.7901,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.12109500805152978,
665
+ "grad_norm": 0.4145065248012543,
666
+ "learning_rate": 0.00017717250324254217,
667
+ "loss": 0.6246,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.12238325281803543,
672
+ "grad_norm": 0.40400928258895874,
673
+ "learning_rate": 0.00017691309987029832,
674
+ "loss": 0.7239,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.12367149758454106,
679
+ "grad_norm": 0.36219555139541626,
680
+ "learning_rate": 0.00017665369649805447,
681
+ "loss": 0.6078,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.1249597423510467,
686
+ "grad_norm": 0.46309852600097656,
687
+ "learning_rate": 0.00017639429312581064,
688
+ "loss": 0.6834,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.12624798711755233,
693
+ "grad_norm": 0.44735029339790344,
694
+ "learning_rate": 0.0001761348897535668,
695
+ "loss": 0.934,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.12753623188405797,
700
+ "grad_norm": 0.42460861802101135,
701
+ "learning_rate": 0.00017587548638132297,
702
+ "loss": 0.9051,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.1288244766505636,
707
+ "grad_norm": 0.41505753993988037,
708
+ "learning_rate": 0.00017561608300907912,
709
+ "loss": 0.6545,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.13011272141706925,
714
+ "grad_norm": 0.4106407165527344,
715
+ "learning_rate": 0.00017535667963683527,
716
+ "loss": 0.6681,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.13140096618357489,
721
+ "grad_norm": 0.5651662945747375,
722
+ "learning_rate": 0.00017509727626459145,
723
+ "loss": 0.9613,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.13268921095008052,
728
+ "grad_norm": 0.5200956463813782,
729
+ "learning_rate": 0.0001748378728923476,
730
+ "loss": 0.7751,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.13397745571658615,
735
+ "grad_norm": 0.3946162164211273,
736
+ "learning_rate": 0.00017457846952010378,
737
+ "loss": 0.5986,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.13526570048309178,
742
+ "grad_norm": 0.41149747371673584,
743
+ "learning_rate": 0.00017431906614785993,
744
+ "loss": 0.651,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.13655394524959744,
749
+ "grad_norm": 0.39719873666763306,
750
+ "learning_rate": 0.00017405966277561608,
751
+ "loss": 0.6689,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.13784219001610307,
756
+ "grad_norm": 0.4418695569038391,
757
+ "learning_rate": 0.00017380025940337226,
758
+ "loss": 0.596,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.1391304347826087,
763
+ "grad_norm": 0.37728822231292725,
764
+ "learning_rate": 0.0001735408560311284,
765
+ "loss": 0.6916,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.14041867954911433,
770
+ "grad_norm": 0.3840548098087311,
771
+ "learning_rate": 0.0001732814526588846,
772
+ "loss": 0.6632,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.14170692431561996,
777
+ "grad_norm": 0.44417718052864075,
778
+ "learning_rate": 0.00017302204928664074,
779
+ "loss": 0.7104,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.14299516908212562,
784
+ "grad_norm": 0.36671656370162964,
785
+ "learning_rate": 0.00017276264591439692,
786
+ "loss": 0.7547,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.14428341384863125,
791
+ "grad_norm": 0.34892189502716064,
792
+ "learning_rate": 0.00017250324254215307,
793
+ "loss": 0.5974,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.14557165861513688,
798
+ "grad_norm": 0.5085009336471558,
799
+ "learning_rate": 0.00017224383916990922,
800
+ "loss": 0.9988,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.1468599033816425,
805
+ "grad_norm": 0.46035563945770264,
806
+ "learning_rate": 0.0001719844357976654,
807
+ "loss": 0.7921,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.14814814814814814,
812
+ "grad_norm": 0.4752040505409241,
813
+ "learning_rate": 0.00017172503242542152,
814
+ "loss": 0.8445,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.14943639291465377,
819
+ "grad_norm": 0.409305602312088,
820
+ "learning_rate": 0.0001714656290531777,
821
+ "loss": 0.7504,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.15072463768115943,
826
+ "grad_norm": 0.6183521747589111,
827
+ "learning_rate": 0.00017120622568093385,
828
+ "loss": 0.815,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.15201288244766506,
833
+ "grad_norm": 0.4095537066459656,
834
+ "learning_rate": 0.00017094682230869003,
835
+ "loss": 0.6045,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.1533011272141707,
840
+ "grad_norm": 0.49161475896835327,
841
+ "learning_rate": 0.00017068741893644618,
842
+ "loss": 0.7382,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.15458937198067632,
847
+ "grad_norm": 0.5018863081932068,
848
+ "learning_rate": 0.00017042801556420233,
849
+ "loss": 0.7363,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.15587761674718195,
854
+ "grad_norm": 0.41128432750701904,
855
+ "learning_rate": 0.0001701686121919585,
856
+ "loss": 0.7246,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.1571658615136876,
861
+ "grad_norm": 0.4444568455219269,
862
+ "learning_rate": 0.00016990920881971466,
863
+ "loss": 0.7002,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.15845410628019324,
868
+ "grad_norm": 0.39982640743255615,
869
+ "learning_rate": 0.00016964980544747083,
870
+ "loss": 0.9531,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.15974235104669887,
875
+ "grad_norm": 0.4098430871963501,
876
+ "learning_rate": 0.00016939040207522698,
877
+ "loss": 0.7071,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.1610305958132045,
882
+ "grad_norm": 0.4217020571231842,
883
+ "learning_rate": 0.00016913099870298313,
884
+ "loss": 0.7215,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.16231884057971013,
889
+ "grad_norm": 0.47349125146865845,
890
+ "learning_rate": 0.0001688715953307393,
891
+ "loss": 0.8271,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.1636070853462158,
896
+ "grad_norm": 0.5245679616928101,
897
+ "learning_rate": 0.00016861219195849546,
898
+ "loss": 0.9152,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.16489533011272142,
903
+ "grad_norm": 0.4204537570476532,
904
+ "learning_rate": 0.00016835278858625164,
905
+ "loss": 0.5607,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.16618357487922705,
910
+ "grad_norm": 0.4292148947715759,
911
+ "learning_rate": 0.0001680933852140078,
912
+ "loss": 0.7199,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.16747181964573268,
917
+ "grad_norm": 0.4466223418712616,
918
+ "learning_rate": 0.00016783398184176394,
919
+ "loss": 0.6066,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.16876006441223831,
924
+ "grad_norm": 0.4251168668270111,
925
+ "learning_rate": 0.00016757457846952012,
926
+ "loss": 0.5534,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.17004830917874397,
931
+ "grad_norm": 0.463151216506958,
932
+ "learning_rate": 0.00016731517509727627,
933
+ "loss": 0.8579,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.1713365539452496,
938
+ "grad_norm": 0.4957478940486908,
939
+ "learning_rate": 0.00016705577172503245,
940
+ "loss": 0.8427,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.17262479871175523,
945
+ "grad_norm": 0.4005911946296692,
946
+ "learning_rate": 0.0001667963683527886,
947
+ "loss": 0.5457,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.17391304347826086,
952
+ "grad_norm": 0.426756352186203,
953
+ "learning_rate": 0.00016653696498054475,
954
+ "loss": 0.7292,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.1752012882447665,
959
+ "grad_norm": 0.46122246980667114,
960
+ "learning_rate": 0.00016627756160830093,
961
+ "loss": 0.8017,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.17648953301127215,
966
+ "grad_norm": 0.4660143256187439,
967
+ "learning_rate": 0.00016601815823605708,
968
+ "loss": 0.8905,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.17777777777777778,
973
+ "grad_norm": 0.4115317463874817,
974
+ "learning_rate": 0.00016575875486381326,
975
+ "loss": 0.6911,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.17906602254428342,
980
+ "grad_norm": 0.4249230623245239,
981
+ "learning_rate": 0.00016549935149156938,
982
+ "loss": 0.6696,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.18035426731078905,
987
+ "grad_norm": 0.39602991938591003,
988
+ "learning_rate": 0.00016523994811932556,
989
+ "loss": 0.6071,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.18164251207729468,
994
+ "grad_norm": 0.399972140789032,
995
+ "learning_rate": 0.0001649805447470817,
996
+ "loss": 0.6502,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.18293075684380034,
1001
+ "grad_norm": 0.44152483344078064,
1002
+ "learning_rate": 0.00016472114137483789,
1003
+ "loss": 0.7057,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.18421900161030597,
1008
+ "grad_norm": 0.46175718307495117,
1009
+ "learning_rate": 0.00016446173800259404,
1010
+ "loss": 0.7853,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.1855072463768116,
1015
+ "grad_norm": 0.4025271236896515,
1016
+ "learning_rate": 0.0001642023346303502,
1017
+ "loss": 0.5798,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.18679549114331723,
1022
+ "grad_norm": 0.4135390818119049,
1023
+ "learning_rate": 0.00016394293125810637,
1024
+ "loss": 0.7672,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.18808373590982286,
1029
+ "grad_norm": 0.44383513927459717,
1030
+ "learning_rate": 0.00016368352788586252,
1031
+ "loss": 0.7492,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.18937198067632852,
1036
+ "grad_norm": 0.4189338684082031,
1037
+ "learning_rate": 0.0001634241245136187,
1038
+ "loss": 0.8282,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.19066022544283415,
1043
+ "grad_norm": 0.4431954622268677,
1044
+ "learning_rate": 0.00016316472114137484,
1045
+ "loss": 0.9127,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.19194847020933978,
1050
+ "grad_norm": 0.4382760524749756,
1051
+ "learning_rate": 0.000162905317769131,
1052
+ "loss": 0.9119,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.1932367149758454,
1057
+ "grad_norm": 0.4436795115470886,
1058
+ "learning_rate": 0.00016264591439688717,
1059
+ "loss": 0.6665,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.19452495974235104,
1064
+ "grad_norm": 0.4900800585746765,
1065
+ "learning_rate": 0.00016238651102464332,
1066
+ "loss": 0.6791,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.19581320450885667,
1071
+ "grad_norm": 0.45277830958366394,
1072
+ "learning_rate": 0.0001621271076523995,
1073
+ "loss": 0.6947,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.19710144927536233,
1078
+ "grad_norm": 0.5545029640197754,
1079
+ "learning_rate": 0.00016186770428015565,
1080
+ "loss": 0.8732,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.19838969404186796,
1085
+ "grad_norm": 0.4231799840927124,
1086
+ "learning_rate": 0.0001616083009079118,
1087
+ "loss": 0.8342,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.1996779388083736,
1092
+ "grad_norm": 0.4343210458755493,
1093
+ "learning_rate": 0.00016134889753566798,
1094
+ "loss": 0.7941,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.20096618357487922,
1099
+ "grad_norm": 0.4704267084598541,
1100
+ "learning_rate": 0.00016108949416342413,
1101
+ "loss": 0.8256,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.20225442834138485,
1106
+ "grad_norm": 0.4171951115131378,
1107
+ "learning_rate": 0.0001608300907911803,
1108
+ "loss": 0.7084,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.2035426731078905,
1113
+ "grad_norm": 0.4284476041793823,
1114
+ "learning_rate": 0.00016057068741893646,
1115
+ "loss": 0.757,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.20483091787439614,
1120
+ "grad_norm": 0.508334755897522,
1121
+ "learning_rate": 0.0001603112840466926,
1122
+ "loss": 0.9374,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.20611916264090177,
1127
+ "grad_norm": 0.4968143701553345,
1128
+ "learning_rate": 0.0001600518806744488,
1129
+ "loss": 0.7551,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.2074074074074074,
1134
+ "grad_norm": 0.41236674785614014,
1135
+ "learning_rate": 0.00015979247730220494,
1136
+ "loss": 0.6889,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.20869565217391303,
1141
+ "grad_norm": 0.4891696870326996,
1142
+ "learning_rate": 0.00015953307392996112,
1143
+ "loss": 0.7935,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.2099838969404187,
1148
+ "grad_norm": 0.46381738781929016,
1149
+ "learning_rate": 0.00015927367055771724,
1150
+ "loss": 0.7379,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.21127214170692432,
1155
+ "grad_norm": 0.44059839844703674,
1156
+ "learning_rate": 0.00015901426718547342,
1157
+ "loss": 0.8041,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.21256038647342995,
1162
+ "grad_norm": 0.4157409965991974,
1163
+ "learning_rate": 0.00015875486381322957,
1164
+ "loss": 0.6478,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.21384863123993558,
1169
+ "grad_norm": 0.4567868411540985,
1170
+ "learning_rate": 0.00015849546044098572,
1171
+ "loss": 0.7187,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.2151368760064412,
1176
+ "grad_norm": 0.4747803509235382,
1177
+ "learning_rate": 0.0001582360570687419,
1178
+ "loss": 0.7007,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.21642512077294687,
1183
+ "grad_norm": 0.41447919607162476,
1184
+ "learning_rate": 0.00015797665369649805,
1185
+ "loss": 0.748,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.2177133655394525,
1190
+ "grad_norm": 0.43258461356163025,
1191
+ "learning_rate": 0.00015771725032425423,
1192
+ "loss": 0.7018,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.21900161030595813,
1197
+ "grad_norm": 0.430125892162323,
1198
+ "learning_rate": 0.00015745784695201038,
1199
+ "loss": 0.7626,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.22028985507246376,
1204
+ "grad_norm": 0.5202476382255554,
1205
+ "learning_rate": 0.00015719844357976655,
1206
+ "loss": 0.8591,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.2215780998389694,
1211
+ "grad_norm": 0.5006714463233948,
1212
+ "learning_rate": 0.0001569390402075227,
1213
+ "loss": 0.6393,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.22286634460547505,
1218
+ "grad_norm": 0.5033003091812134,
1219
+ "learning_rate": 0.00015667963683527886,
1220
+ "loss": 0.6468,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.22415458937198068,
1225
+ "grad_norm": 0.5392705202102661,
1226
+ "learning_rate": 0.00015642023346303503,
1227
+ "loss": 0.9214,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.22544283413848631,
1232
+ "grad_norm": 0.5133917927742004,
1233
+ "learning_rate": 0.00015616083009079118,
1234
+ "loss": 0.8553,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.22673107890499195,
1239
+ "grad_norm": 0.4788094758987427,
1240
+ "learning_rate": 0.00015590142671854736,
1241
+ "loss": 0.843,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.22801932367149758,
1246
+ "grad_norm": 0.42810189723968506,
1247
+ "learning_rate": 0.0001556420233463035,
1248
+ "loss": 0.6681,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.22930756843800323,
1253
+ "grad_norm": 0.5283413529396057,
1254
+ "learning_rate": 0.00015538261997405966,
1255
+ "loss": 0.7525,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.23059581320450886,
1260
+ "grad_norm": 0.45462605357170105,
1261
+ "learning_rate": 0.00015512321660181584,
1262
+ "loss": 0.7936,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.2318840579710145,
1267
+ "grad_norm": 0.47412481904029846,
1268
+ "learning_rate": 0.000154863813229572,
1269
+ "loss": 0.7423,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.23317230273752013,
1274
+ "grad_norm": 0.4658280909061432,
1275
+ "learning_rate": 0.00015460440985732817,
1276
+ "loss": 0.6515,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.23446054750402576,
1281
+ "grad_norm": 0.4392845034599304,
1282
+ "learning_rate": 0.00015434500648508432,
1283
+ "loss": 0.5136,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.2357487922705314,
1288
+ "grad_norm": 0.41688844561576843,
1289
+ "learning_rate": 0.00015408560311284047,
1290
+ "loss": 0.6897,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.23703703703703705,
1295
+ "grad_norm": 0.4741729497909546,
1296
+ "learning_rate": 0.00015382619974059665,
1297
+ "loss": 0.8226,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.23832528180354268,
1302
+ "grad_norm": 0.4735780656337738,
1303
+ "learning_rate": 0.0001535667963683528,
1304
+ "loss": 0.9066,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.2396135265700483,
1309
+ "grad_norm": 0.43401920795440674,
1310
+ "learning_rate": 0.00015330739299610898,
1311
+ "loss": 0.9114,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.24090177133655394,
1316
+ "grad_norm": 0.4879320561885834,
1317
+ "learning_rate": 0.0001530479896238651,
1318
+ "loss": 0.6929,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.24219001610305957,
1323
+ "grad_norm": 0.43077850341796875,
1324
+ "learning_rate": 0.00015278858625162128,
1325
+ "loss": 0.7925,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.24347826086956523,
1330
+ "grad_norm": 0.44918107986450195,
1331
+ "learning_rate": 0.00015252918287937743,
1332
+ "loss": 0.7412,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.24476650563607086,
1337
+ "grad_norm": 0.4338708519935608,
1338
+ "learning_rate": 0.00015226977950713358,
1339
+ "loss": 0.6829,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.2460547504025765,
1344
+ "grad_norm": 0.495004802942276,
1345
+ "learning_rate": 0.00015201037613488976,
1346
+ "loss": 0.7447,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.24734299516908212,
1351
+ "grad_norm": 0.4711913466453552,
1352
+ "learning_rate": 0.0001517509727626459,
1353
+ "loss": 0.6961,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.24863123993558775,
1358
+ "grad_norm": 0.41086235642433167,
1359
+ "learning_rate": 0.0001514915693904021,
1360
+ "loss": 0.8094,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.2499194847020934,
1365
+ "grad_norm": 0.4413953423500061,
1366
+ "learning_rate": 0.00015123216601815824,
1367
+ "loss": 0.576,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.25120772946859904,
1372
+ "grad_norm": 0.46921825408935547,
1373
+ "learning_rate": 0.0001509727626459144,
1374
+ "loss": 0.6542,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.25249597423510467,
1379
+ "grad_norm": 0.4307248890399933,
1380
+ "learning_rate": 0.00015071335927367057,
1381
+ "loss": 0.6021,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.2537842190016103,
1386
+ "grad_norm": 0.5045284032821655,
1387
+ "learning_rate": 0.00015045395590142672,
1388
+ "loss": 0.7323,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.25507246376811593,
1393
+ "grad_norm": 0.447826087474823,
1394
+ "learning_rate": 0.0001501945525291829,
1395
+ "loss": 0.78,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.25636070853462156,
1400
+ "grad_norm": 0.4777592420578003,
1401
+ "learning_rate": 0.00014993514915693904,
1402
+ "loss": 0.6421,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.2576489533011272,
1407
+ "grad_norm": 0.5190320014953613,
1408
+ "learning_rate": 0.00014967574578469522,
1409
+ "loss": 0.7775,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.2589371980676328,
1414
+ "grad_norm": 0.4549712538719177,
1415
+ "learning_rate": 0.00014941634241245137,
1416
+ "loss": 0.664,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.2602254428341385,
1421
+ "grad_norm": 0.5831903219223022,
1422
+ "learning_rate": 0.00014915693904020752,
1423
+ "loss": 0.8724,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.26151368760064414,
1428
+ "grad_norm": 0.4627177119255066,
1429
+ "learning_rate": 0.0001488975356679637,
1430
+ "loss": 0.7253,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.26280193236714977,
1435
+ "grad_norm": 0.43168967962265015,
1436
+ "learning_rate": 0.00014863813229571985,
1437
+ "loss": 0.6912,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.2640901771336554,
1442
+ "grad_norm": 0.4626029431819916,
1443
+ "learning_rate": 0.00014837872892347603,
1444
+ "loss": 0.6935,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.26537842190016103,
1449
+ "grad_norm": 0.511044979095459,
1450
+ "learning_rate": 0.00014811932555123218,
1451
+ "loss": 0.7837,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.26666666666666666,
1456
+ "grad_norm": 0.3897499144077301,
1457
+ "learning_rate": 0.00014785992217898833,
1458
+ "loss": 0.5906,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.2679549114331723,
1463
+ "grad_norm": 0.4974556267261505,
1464
+ "learning_rate": 0.0001476005188067445,
1465
+ "loss": 0.7238,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.2692431561996779,
1470
+ "grad_norm": 0.4196576178073883,
1471
+ "learning_rate": 0.00014734111543450066,
1472
+ "loss": 0.7287,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.27053140096618356,
1477
+ "grad_norm": 0.5362788438796997,
1478
+ "learning_rate": 0.00014708171206225684,
1479
+ "loss": 0.668,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.2718196457326892,
1484
+ "grad_norm": 0.43480581045150757,
1485
+ "learning_rate": 0.00014682230869001296,
1486
+ "loss": 0.5143,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.27310789049919487,
1491
+ "grad_norm": 0.46580636501312256,
1492
+ "learning_rate": 0.00014656290531776914,
1493
+ "loss": 0.6337,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.2743961352657005,
1498
+ "grad_norm": 0.47339197993278503,
1499
+ "learning_rate": 0.0001463035019455253,
1500
+ "loss": 0.6417,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.27568438003220613,
1505
+ "grad_norm": 0.4848175048828125,
1506
+ "learning_rate": 0.00014604409857328144,
1507
+ "loss": 0.5845,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.27697262479871176,
1512
+ "grad_norm": 0.4684532880783081,
1513
+ "learning_rate": 0.00014578469520103762,
1514
+ "loss": 0.6441,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.2782608695652174,
1519
+ "grad_norm": 0.4803209900856018,
1520
+ "learning_rate": 0.00014552529182879377,
1521
+ "loss": 0.6989,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.279549114331723,
1526
+ "grad_norm": 0.46223482489585876,
1527
+ "learning_rate": 0.00014526588845654995,
1528
+ "loss": 0.6183,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.28083735909822866,
1533
+ "grad_norm": 0.5008508563041687,
1534
+ "learning_rate": 0.0001450064850843061,
1535
+ "loss": 0.6637,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.2821256038647343,
1540
+ "grad_norm": 0.44153040647506714,
1541
+ "learning_rate": 0.00014474708171206225,
1542
+ "loss": 0.6889,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.2834138486312399,
1547
+ "grad_norm": 0.506165623664856,
1548
+ "learning_rate": 0.00014448767833981843,
1549
+ "loss": 0.8105,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.28470209339774555,
1554
+ "grad_norm": 0.4361568093299866,
1555
+ "learning_rate": 0.00014422827496757458,
1556
+ "loss": 0.7039,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.28599033816425123,
1561
+ "grad_norm": 0.5168837904930115,
1562
+ "learning_rate": 0.00014396887159533075,
1563
+ "loss": 0.7339,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.28727858293075687,
1568
+ "grad_norm": 0.4989911913871765,
1569
+ "learning_rate": 0.0001437094682230869,
1570
+ "loss": 0.7406,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.2885668276972625,
1575
+ "grad_norm": 0.43478649854660034,
1576
+ "learning_rate": 0.00014345006485084306,
1577
+ "loss": 0.6974,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.2898550724637681,
1582
+ "grad_norm": 0.5874804854393005,
1583
+ "learning_rate": 0.00014319066147859923,
1584
+ "loss": 0.8201,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.29114331723027376,
1589
+ "grad_norm": 0.49163615703582764,
1590
+ "learning_rate": 0.00014293125810635538,
1591
+ "loss": 0.6899,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.2924315619967794,
1596
+ "grad_norm": 0.5334035158157349,
1597
+ "learning_rate": 0.00014267185473411156,
1598
+ "loss": 0.708,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.293719806763285,
1603
+ "grad_norm": 0.44491249322891235,
1604
+ "learning_rate": 0.0001424124513618677,
1605
+ "loss": 0.7202,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.29500805152979065,
1610
+ "grad_norm": 0.45758000016212463,
1611
+ "learning_rate": 0.0001421530479896239,
1612
+ "loss": 0.7295,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.2962962962962963,
1617
+ "grad_norm": 0.5486440062522888,
1618
+ "learning_rate": 0.00014189364461738004,
1619
+ "loss": 0.7453,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.2975845410628019,
1624
+ "grad_norm": 0.4736718535423279,
1625
+ "learning_rate": 0.0001416342412451362,
1626
+ "loss": 0.7404,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.29887278582930754,
1631
+ "grad_norm": 0.5729131698608398,
1632
+ "learning_rate": 0.00014137483787289237,
1633
+ "loss": 0.9412,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.3001610305958132,
1638
+ "grad_norm": 0.45495712757110596,
1639
+ "learning_rate": 0.00014111543450064852,
1640
+ "loss": 0.6675,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.30144927536231886,
1645
+ "grad_norm": 0.46452659368515015,
1646
+ "learning_rate": 0.0001408560311284047,
1647
+ "loss": 0.6429,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.3027375201288245,
1652
+ "grad_norm": 0.4072677195072174,
1653
+ "learning_rate": 0.00014059662775616082,
1654
+ "loss": 0.528,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.3040257648953301,
1659
+ "grad_norm": 0.4578579068183899,
1660
+ "learning_rate": 0.000140337224383917,
1661
+ "loss": 0.674,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.30531400966183575,
1666
+ "grad_norm": 0.4598025381565094,
1667
+ "learning_rate": 0.00014007782101167315,
1668
+ "loss": 0.6126,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.3066022544283414,
1673
+ "grad_norm": 0.5314367413520813,
1674
+ "learning_rate": 0.0001398184176394293,
1675
+ "loss": 0.7004,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.307890499194847,
1680
+ "grad_norm": 0.5645276308059692,
1681
+ "learning_rate": 0.00013955901426718548,
1682
+ "loss": 0.8215,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.30917874396135264,
1687
+ "grad_norm": 0.48600032925605774,
1688
+ "learning_rate": 0.00013929961089494163,
1689
+ "loss": 0.7588,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.3104669887278583,
1694
+ "grad_norm": 0.5009229183197021,
1695
+ "learning_rate": 0.0001390402075226978,
1696
+ "loss": 0.7744,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.3117552334943639,
1701
+ "grad_norm": 0.49043935537338257,
1702
+ "learning_rate": 0.00013878080415045396,
1703
+ "loss": 0.7356,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.3130434782608696,
1708
+ "grad_norm": 0.5135766267776489,
1709
+ "learning_rate": 0.0001385214007782101,
1710
+ "loss": 0.6255,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.3143317230273752,
1715
+ "grad_norm": 0.5073742866516113,
1716
+ "learning_rate": 0.0001382619974059663,
1717
+ "loss": 0.7268,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.31561996779388085,
1722
+ "grad_norm": 0.44320011138916016,
1723
+ "learning_rate": 0.00013800259403372244,
1724
+ "loss": 0.6446,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.3169082125603865,
1729
+ "grad_norm": 0.44117873907089233,
1730
+ "learning_rate": 0.00013774319066147862,
1731
+ "loss": 0.5721,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.3181964573268921,
1736
+ "grad_norm": 0.43970006704330444,
1737
+ "learning_rate": 0.00013748378728923477,
1738
+ "loss": 0.7704,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.31948470209339774,
1743
+ "grad_norm": 0.4866350591182709,
1744
+ "learning_rate": 0.00013722438391699092,
1745
+ "loss": 0.7034,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.3207729468599034,
1750
+ "grad_norm": 0.47486335039138794,
1751
+ "learning_rate": 0.0001369649805447471,
1752
+ "loss": 0.6241,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.322061191626409,
1757
+ "grad_norm": 0.49636659026145935,
1758
+ "learning_rate": 0.00013670557717250325,
1759
+ "loss": 0.6357,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.32334943639291464,
1764
+ "grad_norm": 0.5032861232757568,
1765
+ "learning_rate": 0.00013644617380025942,
1766
+ "loss": 0.6439,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.32463768115942027,
1771
+ "grad_norm": 0.451587975025177,
1772
+ "learning_rate": 0.00013618677042801557,
1773
+ "loss": 0.6405,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.32592592592592595,
1778
+ "grad_norm": 0.42393797636032104,
1779
+ "learning_rate": 0.00013592736705577172,
1780
+ "loss": 0.5055,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.3272141706924316,
1785
+ "grad_norm": 0.6110167503356934,
1786
+ "learning_rate": 0.0001356679636835279,
1787
+ "loss": 0.6999,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.3285024154589372,
1792
+ "grad_norm": 0.4716608226299286,
1793
+ "learning_rate": 0.00013540856031128405,
1794
+ "loss": 0.6535,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.32979066022544284,
1799
+ "grad_norm": 0.5266287922859192,
1800
+ "learning_rate": 0.00013514915693904023,
1801
+ "loss": 0.6765,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.3310789049919485,
1806
+ "grad_norm": 0.46154212951660156,
1807
+ "learning_rate": 0.00013488975356679638,
1808
+ "loss": 0.5471,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.3323671497584541,
1813
+ "grad_norm": 0.4804733395576477,
1814
+ "learning_rate": 0.00013463035019455256,
1815
+ "loss": 0.6702,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.33365539452495974,
1820
+ "grad_norm": 0.49193087220191956,
1821
+ "learning_rate": 0.00013437094682230868,
1822
+ "loss": 0.7892,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.33494363929146537,
1827
+ "grad_norm": 0.4984692335128784,
1828
+ "learning_rate": 0.00013411154345006486,
1829
+ "loss": 0.7068,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.336231884057971,
1834
+ "grad_norm": 0.43365561962127686,
1835
+ "learning_rate": 0.000133852140077821,
1836
+ "loss": 0.749,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.33752012882447663,
1841
+ "grad_norm": 0.4937152564525604,
1842
+ "learning_rate": 0.00013359273670557716,
1843
+ "loss": 0.6132,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.33880837359098226,
1848
+ "grad_norm": 0.47276434302330017,
1849
+ "learning_rate": 0.00013333333333333334,
1850
+ "loss": 0.7577,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.34009661835748795,
1855
+ "grad_norm": 0.45947062969207764,
1856
+ "learning_rate": 0.0001330739299610895,
1857
+ "loss": 0.5817,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.3413848631239936,
1862
+ "grad_norm": 0.5005177855491638,
1863
+ "learning_rate": 0.00013281452658884567,
1864
+ "loss": 0.6246,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.3426731078904992,
1869
+ "grad_norm": 0.43123242259025574,
1870
+ "learning_rate": 0.00013255512321660182,
1871
+ "loss": 0.6185,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.34396135265700484,
1876
+ "grad_norm": 0.4792143702507019,
1877
+ "learning_rate": 0.00013229571984435797,
1878
+ "loss": 0.6849,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.34524959742351047,
1883
+ "grad_norm": 0.4801141917705536,
1884
+ "learning_rate": 0.00013203631647211415,
1885
+ "loss": 0.6731,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.3465378421900161,
1890
+ "grad_norm": 0.49759840965270996,
1891
+ "learning_rate": 0.0001317769130998703,
1892
+ "loss": 0.636,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.34782608695652173,
1897
+ "grad_norm": 0.48205459117889404,
1898
+ "learning_rate": 0.00013151750972762648,
1899
+ "loss": 0.6318,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.34911433172302736,
1904
+ "grad_norm": 0.41286125779151917,
1905
+ "learning_rate": 0.00013125810635538263,
1906
+ "loss": 0.5356,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.350402576489533,
1911
+ "grad_norm": 0.46837830543518066,
1912
+ "learning_rate": 0.00013099870298313878,
1913
+ "loss": 0.699,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.3516908212560386,
1918
+ "grad_norm": 0.4104952812194824,
1919
+ "learning_rate": 0.00013073929961089496,
1920
+ "loss": 0.5981,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.3529790660225443,
1925
+ "grad_norm": 0.460675984621048,
1926
+ "learning_rate": 0.0001304798962386511,
1927
+ "loss": 0.5823,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.35426731078904994,
1932
+ "grad_norm": 0.46157538890838623,
1933
+ "learning_rate": 0.00013022049286640728,
1934
+ "loss": 0.6501,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.35555555555555557,
1939
+ "grad_norm": 0.48864203691482544,
1940
+ "learning_rate": 0.00012996108949416343,
1941
+ "loss": 0.8645,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.3568438003220612,
1946
+ "grad_norm": 0.39761456847190857,
1947
+ "learning_rate": 0.00012970168612191958,
1948
+ "loss": 0.6207,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.35813204508856683,
1953
+ "grad_norm": 0.4314393997192383,
1954
+ "learning_rate": 0.00012944228274967576,
1955
+ "loss": 0.5643,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.35942028985507246,
1960
+ "grad_norm": 0.45536157488822937,
1961
+ "learning_rate": 0.0001291828793774319,
1962
+ "loss": 0.6155,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.3607085346215781,
1967
+ "grad_norm": 0.4470048248767853,
1968
+ "learning_rate": 0.0001289234760051881,
1969
+ "loss": 0.5292,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.3619967793880837,
1974
+ "grad_norm": 0.6278201937675476,
1975
+ "learning_rate": 0.00012866407263294424,
1976
+ "loss": 0.7243,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.36328502415458935,
1981
+ "grad_norm": 0.4364555776119232,
1982
+ "learning_rate": 0.0001284046692607004,
1983
+ "loss": 0.639,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.364573268921095,
1988
+ "grad_norm": 0.5580682754516602,
1989
+ "learning_rate": 0.00012814526588845657,
1990
+ "loss": 0.7451,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.36586151368760067,
1995
+ "grad_norm": 0.46860554814338684,
1996
+ "learning_rate": 0.0001278858625162127,
1997
+ "loss": 0.7121,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.3671497584541063,
2002
+ "grad_norm": 0.5397869944572449,
2003
+ "learning_rate": 0.00012762645914396887,
2004
+ "loss": 0.6785,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.36843800322061193,
2009
+ "grad_norm": 0.48607107996940613,
2010
+ "learning_rate": 0.00012736705577172502,
2011
+ "loss": 0.7664,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.36972624798711756,
2016
+ "grad_norm": 0.5256248116493225,
2017
+ "learning_rate": 0.0001271076523994812,
2018
+ "loss": 0.7952,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.3710144927536232,
2023
+ "grad_norm": 0.4726184606552124,
2024
+ "learning_rate": 0.00012684824902723735,
2025
+ "loss": 0.8335,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.3723027375201288,
2030
+ "grad_norm": 0.4700171947479248,
2031
+ "learning_rate": 0.00012658884565499353,
2032
+ "loss": 0.7707,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.37359098228663445,
2037
+ "grad_norm": 0.4519100785255432,
2038
+ "learning_rate": 0.00012632944228274968,
2039
+ "loss": 0.7,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.3748792270531401,
2044
+ "grad_norm": 0.49171459674835205,
2045
+ "learning_rate": 0.00012607003891050583,
2046
+ "loss": 0.7308,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.3761674718196457,
2051
+ "grad_norm": 0.4756461977958679,
2052
+ "learning_rate": 0.000125810635538262,
2053
+ "loss": 0.6244,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.37745571658615135,
2058
+ "grad_norm": 0.48130884766578674,
2059
+ "learning_rate": 0.00012555123216601816,
2060
+ "loss": 0.524,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.37874396135265703,
2065
+ "grad_norm": 0.5525088906288147,
2066
+ "learning_rate": 0.00012529182879377434,
2067
+ "loss": 0.8136,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.38003220611916266,
2072
+ "grad_norm": 0.5249974131584167,
2073
+ "learning_rate": 0.0001250324254215305,
2074
+ "loss": 0.6887,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.3813204508856683,
2079
+ "grad_norm": 0.48815739154815674,
2080
+ "learning_rate": 0.00012477302204928664,
2081
+ "loss": 0.8028,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.3826086956521739,
2086
+ "grad_norm": 0.49328386783599854,
2087
+ "learning_rate": 0.00012451361867704282,
2088
+ "loss": 0.7626,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.38389694041867956,
2093
+ "grad_norm": 0.4708958566188812,
2094
+ "learning_rate": 0.00012425421530479897,
2095
+ "loss": 0.7049,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.3851851851851852,
2100
+ "grad_norm": 0.583230197429657,
2101
+ "learning_rate": 0.00012399481193255514,
2102
+ "loss": 0.7998,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.3864734299516908,
2107
+ "grad_norm": 0.4299347698688507,
2108
+ "learning_rate": 0.0001237354085603113,
2109
+ "loss": 0.5559,
2110
+ "step": 300
2111
+ }
2112
+ ],
2113
+ "logging_steps": 1,
2114
+ "max_steps": 776,
2115
+ "num_input_tokens_seen": 0,
2116
+ "num_train_epochs": 1,
2117
+ "save_steps": 100,
2118
+ "stateful_callbacks": {
2119
+ "TrainerControl": {
2120
+ "args": {
2121
+ "should_epoch_stop": false,
2122
+ "should_evaluate": false,
2123
+ "should_log": false,
2124
+ "should_save": true,
2125
+ "should_training_stop": false
2126
+ },
2127
+ "attributes": {}
2128
+ }
2129
+ },
2130
+ "total_flos": 2.3788471375097856e+17,
2131
+ "train_batch_size": 4,
2132
+ "trial_name": null,
2133
+ "trial_params": null
2134
+ }
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22ca3222c707eaec384daa2e32352930c2c72d5ed6bf8f6ab5a59a7f87d56d0
3
+ size 6033
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-300/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
SFT-Qwen2.5VL-top1-min2cand-ckpts/checkpoint-400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2