ad6398 commited on
Commit
8e8c303
·
verified ·
1 Parent(s): 12f9a39

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. checkpoint-1000/README.md +202 -0
  3. checkpoint-1000/adapter_config.json +34 -0
  4. checkpoint-1000/adapter_model.safetensors +3 -0
  5. checkpoint-1000/added_tokens.json +24 -0
  6. checkpoint-1000/merges.txt +0 -0
  7. checkpoint-1000/optimizer.pt +3 -0
  8. checkpoint-1000/rng_state.pth +3 -0
  9. checkpoint-1000/scheduler.pt +3 -0
  10. checkpoint-1000/special_tokens_map.json +31 -0
  11. checkpoint-1000/tokenizer.json +3 -0
  12. checkpoint-1000/tokenizer_config.json +208 -0
  13. checkpoint-1000/trainer_state.json +0 -0
  14. checkpoint-1000/training_args.bin +3 -0
  15. checkpoint-1000/vocab.json +0 -0
  16. checkpoint-250/README.md +202 -0
  17. checkpoint-250/adapter_config.json +34 -0
  18. checkpoint-250/adapter_model.safetensors +3 -0
  19. checkpoint-250/added_tokens.json +24 -0
  20. checkpoint-250/merges.txt +0 -0
  21. checkpoint-250/optimizer.pt +3 -0
  22. checkpoint-250/rng_state.pth +3 -0
  23. checkpoint-250/scheduler.pt +3 -0
  24. checkpoint-250/special_tokens_map.json +31 -0
  25. checkpoint-250/tokenizer.json +3 -0
  26. checkpoint-250/tokenizer_config.json +208 -0
  27. checkpoint-250/trainer_state.json +2284 -0
  28. checkpoint-250/training_args.bin +3 -0
  29. checkpoint-250/vocab.json +0 -0
  30. checkpoint-500/README.md +202 -0
  31. checkpoint-500/adapter_config.json +34 -0
  32. checkpoint-500/adapter_model.safetensors +3 -0
  33. checkpoint-500/added_tokens.json +24 -0
  34. checkpoint-500/merges.txt +0 -0
  35. checkpoint-500/optimizer.pt +3 -0
  36. checkpoint-500/rng_state.pth +3 -0
  37. checkpoint-500/scheduler.pt +3 -0
  38. checkpoint-500/special_tokens_map.json +31 -0
  39. checkpoint-500/tokenizer.json +3 -0
  40. checkpoint-500/tokenizer_config.json +208 -0
  41. checkpoint-500/trainer_state.json +0 -0
  42. checkpoint-500/training_args.bin +3 -0
  43. checkpoint-500/vocab.json +0 -0
  44. checkpoint-750/README.md +202 -0
  45. checkpoint-750/adapter_config.json +34 -0
  46. checkpoint-750/adapter_model.safetensors +3 -0
  47. checkpoint-750/added_tokens.json +24 -0
  48. checkpoint-750/merges.txt +0 -0
  49. checkpoint-750/optimizer.pt +3 -0
  50. checkpoint-750/rng_state.pth +3 -0
.gitattributes CHANGED
@@ -61,3 +61,7 @@ sft-colqwen-image-embeddings-21-4-1k filter=lfs diff=lfs merge=lfs -text
61
  sft-colqwen-image-embeddings-21-4-1k-ckpt filter=lfs diff=lfs merge=lfs -text
62
  vanilla-colqwen-image-embeddings-21-4-1k-ckpt filter=lfs diff=lfs merge=lfs -text
63
  sft-colqwen-val-queries-embeddings-24-apr filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
61
  sft-colqwen-image-embeddings-21-4-1k-ckpt filter=lfs diff=lfs merge=lfs -text
62
  vanilla-colqwen-image-embeddings-21-4-1k-ckpt filter=lfs diff=lfs merge=lfs -text
63
  sft-colqwen-val-queries-embeddings-24-apr filter=lfs diff=lfs merge=lfs -text
64
+ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
65
+ checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
66
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
67
+ checkpoint-750/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8601bfe73b8f37d53798fb9d82734a77e9afbec16b714f79e4863b875e073e1b
3
+ size 10107280
checkpoint-1000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f6a99364bbb000c7dcef57851d3315ce9f1d6316dc713308afe498c5608bbdd
3
+ size 20279354
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d01f01453677505af4aa11c7850642575f56bce3e76e1eac2393bee448a0e540
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:250808f4d22322244aa9e9fd377fc2f92b37d5d5e6f6cc7ac62f86ce40c2dce7
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8d81f76a78ae3475b48f07cad8c818b7d053e9df8d0311b83fc183e0d06528
3
+ size 5816
checkpoint-1000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:886acd7524fe7fce8d5daf465778b18f4212e20c367d3898ebbee11ee4ba678e
3
+ size 10107280
checkpoint-250/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-250/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3248fb14a232fc30a934da5952e161ac43bfd86a706acdfe8a939062f8ef66c9
3
+ size 20279354
checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edbb50ccf89eb8543453db660e13e3acfca9f97cbd60c80d902a6f7bae6c276
3
+ size 14244
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26b0f38577550e6ec2e1e288967c2288fd5a2c13e848d2c3aaf444b917f2052e
3
+ size 1064
checkpoint-250/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-250/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-250/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,2284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.05,
6
+ "eval_steps": 500,
7
+ "global_step": 250,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0002,
14
+ "grad_norm": 5.698113441467285,
15
+ "learning_rate": 5e-06,
16
+ "loss": 12.2509,
17
+ "mean_token_accuracy": 0.2450142428278923,
18
+ "num_tokens": 16438.0,
19
+ "step": 1
20
+ },
21
+ {
22
+ "epoch": 0.0004,
23
+ "grad_norm": 6.063949108123779,
24
+ "learning_rate": 4.999000000000001e-06,
25
+ "loss": 13.3748,
26
+ "mean_token_accuracy": 0.2325708046555519,
27
+ "num_tokens": 31368.0,
28
+ "step": 2
29
+ },
30
+ {
31
+ "epoch": 0.0006,
32
+ "grad_norm": 8.026069641113281,
33
+ "learning_rate": 4.998e-06,
34
+ "loss": 12.5454,
35
+ "mean_token_accuracy": 0.2398785501718521,
36
+ "num_tokens": 58542.0,
37
+ "step": 3
38
+ },
39
+ {
40
+ "epoch": 0.0008,
41
+ "grad_norm": 6.758559703826904,
42
+ "learning_rate": 4.997000000000001e-06,
43
+ "loss": 13.9155,
44
+ "mean_token_accuracy": 0.21041666716337204,
45
+ "num_tokens": 77844.0,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.001,
50
+ "grad_norm": 6.786197185516357,
51
+ "learning_rate": 4.996e-06,
52
+ "loss": 13.2561,
53
+ "mean_token_accuracy": 0.1967741921544075,
54
+ "num_tokens": 89661.0,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.0012,
59
+ "grad_norm": 9.514345169067383,
60
+ "learning_rate": 4.9950000000000005e-06,
61
+ "loss": 12.3378,
62
+ "mean_token_accuracy": 0.20638945698738098,
63
+ "num_tokens": 104612.0,
64
+ "step": 6
65
+ },
66
+ {
67
+ "epoch": 0.0014,
68
+ "grad_norm": 7.438795566558838,
69
+ "learning_rate": 4.994000000000001e-06,
70
+ "loss": 12.0814,
71
+ "mean_token_accuracy": 0.2916666716337204,
72
+ "num_tokens": 114269.0,
73
+ "step": 7
74
+ },
75
+ {
76
+ "epoch": 0.0016,
77
+ "grad_norm": 15.847832679748535,
78
+ "learning_rate": 4.993e-06,
79
+ "loss": 13.2761,
80
+ "mean_token_accuracy": 0.2450142428278923,
81
+ "num_tokens": 128762.0,
82
+ "step": 8
83
+ },
84
+ {
85
+ "epoch": 0.0018,
86
+ "grad_norm": 7.620685577392578,
87
+ "learning_rate": 4.992e-06,
88
+ "loss": 13.1792,
89
+ "mean_token_accuracy": 0.2165178582072258,
90
+ "num_tokens": 148453.0,
91
+ "step": 9
92
+ },
93
+ {
94
+ "epoch": 0.002,
95
+ "grad_norm": 8.26969051361084,
96
+ "learning_rate": 4.991e-06,
97
+ "loss": 12.853,
98
+ "mean_token_accuracy": 0.21405228972434998,
99
+ "num_tokens": 167693.0,
100
+ "step": 10
101
+ },
102
+ {
103
+ "epoch": 0.0022,
104
+ "grad_norm": 7.328786373138428,
105
+ "learning_rate": 4.9900000000000005e-06,
106
+ "loss": 12.9578,
107
+ "mean_token_accuracy": 0.2115987464785576,
108
+ "num_tokens": 182157.0,
109
+ "step": 11
110
+ },
111
+ {
112
+ "epoch": 0.0024,
113
+ "grad_norm": 7.058177947998047,
114
+ "learning_rate": 4.989000000000001e-06,
115
+ "loss": 12.7711,
116
+ "mean_token_accuracy": 0.2002224698662758,
117
+ "num_tokens": 201457.0,
118
+ "step": 12
119
+ },
120
+ {
121
+ "epoch": 0.0026,
122
+ "grad_norm": 6.48744010925293,
123
+ "learning_rate": 4.988e-06,
124
+ "loss": 13.006,
125
+ "mean_token_accuracy": 0.23790322244167328,
126
+ "num_tokens": 215922.0,
127
+ "step": 13
128
+ },
129
+ {
130
+ "epoch": 0.0028,
131
+ "grad_norm": 6.006223201751709,
132
+ "learning_rate": 4.987e-06,
133
+ "loss": 10.5975,
134
+ "mean_token_accuracy": 0.2096899226307869,
135
+ "num_tokens": 225597.0,
136
+ "step": 14
137
+ },
138
+ {
139
+ "epoch": 0.003,
140
+ "grad_norm": 6.274689674377441,
141
+ "learning_rate": 4.986e-06,
142
+ "loss": 11.2766,
143
+ "mean_token_accuracy": 0.26851852238178253,
144
+ "num_tokens": 240100.0,
145
+ "step": 15
146
+ },
147
+ {
148
+ "epoch": 0.0032,
149
+ "grad_norm": 8.211908340454102,
150
+ "learning_rate": 4.9850000000000006e-06,
151
+ "loss": 13.7091,
152
+ "mean_token_accuracy": 0.20202020555734634,
153
+ "num_tokens": 259400.0,
154
+ "step": 16
155
+ },
156
+ {
157
+ "epoch": 0.0034,
158
+ "grad_norm": 6.356493949890137,
159
+ "learning_rate": 4.984000000000001e-06,
160
+ "loss": 12.043,
161
+ "mean_token_accuracy": 0.20519480854272842,
162
+ "num_tokens": 278628.0,
163
+ "step": 17
164
+ },
165
+ {
166
+ "epoch": 0.0036,
167
+ "grad_norm": 6.438048839569092,
168
+ "learning_rate": 4.983e-06,
169
+ "loss": 11.5484,
170
+ "mean_token_accuracy": 0.2343137264251709,
171
+ "num_tokens": 303856.0,
172
+ "step": 18
173
+ },
174
+ {
175
+ "epoch": 0.0038,
176
+ "grad_norm": 7.152822494506836,
177
+ "learning_rate": 4.982e-06,
178
+ "loss": 13.4607,
179
+ "mean_token_accuracy": 0.17500000447034836,
180
+ "num_tokens": 318686.0,
181
+ "step": 19
182
+ },
183
+ {
184
+ "epoch": 0.004,
185
+ "grad_norm": 6.464632034301758,
186
+ "learning_rate": 4.981e-06,
187
+ "loss": 11.7533,
188
+ "mean_token_accuracy": 0.21959459781646729,
189
+ "num_tokens": 337999.0,
190
+ "step": 20
191
+ },
192
+ {
193
+ "epoch": 0.0042,
194
+ "grad_norm": 7.051283836364746,
195
+ "learning_rate": 4.980000000000001e-06,
196
+ "loss": 12.9788,
197
+ "mean_token_accuracy": 0.22011494636535645,
198
+ "num_tokens": 356602.0,
199
+ "step": 21
200
+ },
201
+ {
202
+ "epoch": 0.0044,
203
+ "grad_norm": 9.595747947692871,
204
+ "learning_rate": 4.979e-06,
205
+ "loss": 10.9347,
206
+ "mean_token_accuracy": 0.2645348906517029,
207
+ "num_tokens": 373201.0,
208
+ "step": 22
209
+ },
210
+ {
211
+ "epoch": 0.0046,
212
+ "grad_norm": 7.404125213623047,
213
+ "learning_rate": 4.9780000000000005e-06,
214
+ "loss": 12.5181,
215
+ "mean_token_accuracy": 0.2666666731238365,
216
+ "num_tokens": 387660.0,
217
+ "step": 23
218
+ },
219
+ {
220
+ "epoch": 0.0048,
221
+ "grad_norm": 6.656332969665527,
222
+ "learning_rate": 4.977e-06,
223
+ "loss": 11.5566,
224
+ "mean_token_accuracy": 0.209001787006855,
225
+ "num_tokens": 402129.0,
226
+ "step": 24
227
+ },
228
+ {
229
+ "epoch": 0.005,
230
+ "grad_norm": 6.866989612579346,
231
+ "learning_rate": 4.976e-06,
232
+ "loss": 12.4797,
233
+ "mean_token_accuracy": 0.2379310354590416,
234
+ "num_tokens": 421133.0,
235
+ "step": 25
236
+ },
237
+ {
238
+ "epoch": 0.0052,
239
+ "grad_norm": 6.77735710144043,
240
+ "learning_rate": 4.975000000000001e-06,
241
+ "loss": 13.6256,
242
+ "mean_token_accuracy": 0.22177419066429138,
243
+ "num_tokens": 440531.0,
244
+ "step": 26
245
+ },
246
+ {
247
+ "epoch": 0.0054,
248
+ "grad_norm": 8.206353187561035,
249
+ "learning_rate": 4.974e-06,
250
+ "loss": 13.0667,
251
+ "mean_token_accuracy": 0.21791187673807144,
252
+ "num_tokens": 459798.0,
253
+ "step": 27
254
+ },
255
+ {
256
+ "epoch": 0.0056,
257
+ "grad_norm": 7.40612268447876,
258
+ "learning_rate": 4.9730000000000005e-06,
259
+ "loss": 13.5884,
260
+ "mean_token_accuracy": 0.19052419066429138,
261
+ "num_tokens": 478587.0,
262
+ "step": 28
263
+ },
264
+ {
265
+ "epoch": 0.0058,
266
+ "grad_norm": 6.71999454498291,
267
+ "learning_rate": 4.972e-06,
268
+ "loss": 12.0322,
269
+ "mean_token_accuracy": 0.24526315927505493,
270
+ "num_tokens": 492356.0,
271
+ "step": 29
272
+ },
273
+ {
274
+ "epoch": 0.006,
275
+ "grad_norm": 8.108094215393066,
276
+ "learning_rate": 4.971e-06,
277
+ "loss": 12.4858,
278
+ "mean_token_accuracy": 0.2566666677594185,
279
+ "num_tokens": 507242.0,
280
+ "step": 30
281
+ },
282
+ {
283
+ "epoch": 0.0062,
284
+ "grad_norm": 7.7994513511657715,
285
+ "learning_rate": 4.970000000000001e-06,
286
+ "loss": 13.0762,
287
+ "mean_token_accuracy": 0.24568965286016464,
288
+ "num_tokens": 525987.0,
289
+ "step": 31
290
+ },
291
+ {
292
+ "epoch": 0.0064,
293
+ "grad_norm": 7.258217811584473,
294
+ "learning_rate": 4.969e-06,
295
+ "loss": 12.7757,
296
+ "mean_token_accuracy": 0.24137930572032928,
297
+ "num_tokens": 540447.0,
298
+ "step": 32
299
+ },
300
+ {
301
+ "epoch": 0.0066,
302
+ "grad_norm": 14.746047973632812,
303
+ "learning_rate": 4.9680000000000005e-06,
304
+ "loss": 14.4335,
305
+ "mean_token_accuracy": 0.22649572789669037,
306
+ "num_tokens": 560131.0,
307
+ "step": 33
308
+ },
309
+ {
310
+ "epoch": 0.0068,
311
+ "grad_norm": 5.289712429046631,
312
+ "learning_rate": 4.967e-06,
313
+ "loss": 9.6693,
314
+ "mean_token_accuracy": 0.2875000089406967,
315
+ "num_tokens": 579313.0,
316
+ "step": 34
317
+ },
318
+ {
319
+ "epoch": 0.007,
320
+ "grad_norm": 7.960392951965332,
321
+ "learning_rate": 4.966e-06,
322
+ "loss": 13.1738,
323
+ "mean_token_accuracy": 0.25833334028720856,
324
+ "num_tokens": 598611.0,
325
+ "step": 35
326
+ },
327
+ {
328
+ "epoch": 0.0072,
329
+ "grad_norm": 8.295417785644531,
330
+ "learning_rate": 4.965000000000001e-06,
331
+ "loss": 11.8889,
332
+ "mean_token_accuracy": 0.24144145101308823,
333
+ "num_tokens": 615588.0,
334
+ "step": 36
335
+ },
336
+ {
337
+ "epoch": 0.0074,
338
+ "grad_norm": 7.051126480102539,
339
+ "learning_rate": 4.964e-06,
340
+ "loss": 12.1364,
341
+ "mean_token_accuracy": 0.23590733855962753,
342
+ "num_tokens": 636032.0,
343
+ "step": 37
344
+ },
345
+ {
346
+ "epoch": 0.0076,
347
+ "grad_norm": 7.895816326141357,
348
+ "learning_rate": 4.963000000000001e-06,
349
+ "loss": 12.8971,
350
+ "mean_token_accuracy": 0.18571428954601288,
351
+ "num_tokens": 655299.0,
352
+ "step": 38
353
+ },
354
+ {
355
+ "epoch": 0.0078,
356
+ "grad_norm": 7.544738292694092,
357
+ "learning_rate": 4.962e-06,
358
+ "loss": 13.0581,
359
+ "mean_token_accuracy": 0.20937500149011612,
360
+ "num_tokens": 674357.0,
361
+ "step": 39
362
+ },
363
+ {
364
+ "epoch": 0.008,
365
+ "grad_norm": 7.548039436340332,
366
+ "learning_rate": 4.9610000000000004e-06,
367
+ "loss": 13.2158,
368
+ "mean_token_accuracy": 0.20892494916915894,
369
+ "num_tokens": 693698.0,
370
+ "step": 40
371
+ },
372
+ {
373
+ "epoch": 0.0082,
374
+ "grad_norm": 7.687658309936523,
375
+ "learning_rate": 4.960000000000001e-06,
376
+ "loss": 12.8524,
377
+ "mean_token_accuracy": 0.28735632449388504,
378
+ "num_tokens": 703433.0,
379
+ "step": 41
380
+ },
381
+ {
382
+ "epoch": 0.0084,
383
+ "grad_norm": 8.011468887329102,
384
+ "learning_rate": 4.959e-06,
385
+ "loss": 13.5655,
386
+ "mean_token_accuracy": 0.21635150164365768,
387
+ "num_tokens": 722733.0,
388
+ "step": 42
389
+ },
390
+ {
391
+ "epoch": 0.0086,
392
+ "grad_norm": 11.084840774536133,
393
+ "learning_rate": 4.958000000000001e-06,
394
+ "loss": 12.7054,
395
+ "mean_token_accuracy": 0.21746384352445602,
396
+ "num_tokens": 738121.0,
397
+ "step": 43
398
+ },
399
+ {
400
+ "epoch": 0.0088,
401
+ "grad_norm": 9.436426162719727,
402
+ "learning_rate": 4.957e-06,
403
+ "loss": 13.5213,
404
+ "mean_token_accuracy": 0.22783251106739044,
405
+ "num_tokens": 757723.0,
406
+ "step": 44
407
+ },
408
+ {
409
+ "epoch": 0.009,
410
+ "grad_norm": 8.382990837097168,
411
+ "learning_rate": 4.9560000000000005e-06,
412
+ "loss": 12.6328,
413
+ "mean_token_accuracy": 0.2567741870880127,
414
+ "num_tokens": 772646.0,
415
+ "step": 45
416
+ },
417
+ {
418
+ "epoch": 0.0092,
419
+ "grad_norm": 8.272336959838867,
420
+ "learning_rate": 4.955e-06,
421
+ "loss": 13.0365,
422
+ "mean_token_accuracy": 0.2611111178994179,
423
+ "num_tokens": 792334.0,
424
+ "step": 46
425
+ },
426
+ {
427
+ "epoch": 0.0094,
428
+ "grad_norm": 10.347405433654785,
429
+ "learning_rate": 4.954e-06,
430
+ "loss": 12.8164,
431
+ "mean_token_accuracy": 0.22616633027791977,
432
+ "num_tokens": 811713.0,
433
+ "step": 47
434
+ },
435
+ {
436
+ "epoch": 0.0096,
437
+ "grad_norm": 7.27515983581543,
438
+ "learning_rate": 4.953000000000001e-06,
439
+ "loss": 11.0123,
440
+ "mean_token_accuracy": 0.23790322244167328,
441
+ "num_tokens": 832998.0,
442
+ "step": 48
443
+ },
444
+ {
445
+ "epoch": 0.0098,
446
+ "grad_norm": 8.973237991333008,
447
+ "learning_rate": 4.952e-06,
448
+ "loss": 12.9664,
449
+ "mean_token_accuracy": 0.19805195182561874,
450
+ "num_tokens": 861717.0,
451
+ "step": 49
452
+ },
453
+ {
454
+ "epoch": 0.01,
455
+ "grad_norm": 8.738320350646973,
456
+ "learning_rate": 4.9510000000000005e-06,
457
+ "loss": 12.5728,
458
+ "mean_token_accuracy": 0.24344827979803085,
459
+ "num_tokens": 875736.0,
460
+ "step": 50
461
+ },
462
+ {
463
+ "epoch": 0.0102,
464
+ "grad_norm": 8.51733112335205,
465
+ "learning_rate": 4.95e-06,
466
+ "loss": 12.7596,
467
+ "mean_token_accuracy": 0.22380952537059784,
468
+ "num_tokens": 894386.0,
469
+ "step": 51
470
+ },
471
+ {
472
+ "epoch": 0.0104,
473
+ "grad_norm": 8.787413597106934,
474
+ "learning_rate": 4.949e-06,
475
+ "loss": 12.4493,
476
+ "mean_token_accuracy": 0.268075630068779,
477
+ "num_tokens": 908848.0,
478
+ "step": 52
479
+ },
480
+ {
481
+ "epoch": 0.0106,
482
+ "grad_norm": 7.849542617797852,
483
+ "learning_rate": 4.948000000000001e-06,
484
+ "loss": 12.7514,
485
+ "mean_token_accuracy": 0.23790322244167328,
486
+ "num_tokens": 923309.0,
487
+ "step": 53
488
+ },
489
+ {
490
+ "epoch": 0.0108,
491
+ "grad_norm": 8.378942489624023,
492
+ "learning_rate": 4.947e-06,
493
+ "loss": 11.4953,
494
+ "mean_token_accuracy": 0.2290322557091713,
495
+ "num_tokens": 938298.0,
496
+ "step": 54
497
+ },
498
+ {
499
+ "epoch": 0.011,
500
+ "grad_norm": 8.311882972717285,
501
+ "learning_rate": 4.946000000000001e-06,
502
+ "loss": 12.0904,
503
+ "mean_token_accuracy": 0.24014336615800858,
504
+ "num_tokens": 948288.0,
505
+ "step": 55
506
+ },
507
+ {
508
+ "epoch": 0.0112,
509
+ "grad_norm": 9.599881172180176,
510
+ "learning_rate": 4.945e-06,
511
+ "loss": 14.3569,
512
+ "mean_token_accuracy": 0.22649572789669037,
513
+ "num_tokens": 967543.0,
514
+ "step": 56
515
+ },
516
+ {
517
+ "epoch": 0.0114,
518
+ "grad_norm": 8.84776496887207,
519
+ "learning_rate": 4.9440000000000004e-06,
520
+ "loss": 12.2268,
521
+ "mean_token_accuracy": 0.28287841379642487,
522
+ "num_tokens": 981726.0,
523
+ "step": 57
524
+ },
525
+ {
526
+ "epoch": 0.0116,
527
+ "grad_norm": 11.259871482849121,
528
+ "learning_rate": 4.943000000000001e-06,
529
+ "loss": 12.6356,
530
+ "mean_token_accuracy": 0.22177419066429138,
531
+ "num_tokens": 996225.0,
532
+ "step": 58
533
+ },
534
+ {
535
+ "epoch": 0.0118,
536
+ "grad_norm": 10.529711723327637,
537
+ "learning_rate": 4.942e-06,
538
+ "loss": 11.9829,
539
+ "mean_token_accuracy": 0.26986077427864075,
540
+ "num_tokens": 1015573.0,
541
+ "step": 59
542
+ },
543
+ {
544
+ "epoch": 0.012,
545
+ "grad_norm": 8.90577220916748,
546
+ "learning_rate": 4.941000000000001e-06,
547
+ "loss": 11.4895,
548
+ "mean_token_accuracy": 0.2374911978840828,
549
+ "num_tokens": 1034198.0,
550
+ "step": 60
551
+ },
552
+ {
553
+ "epoch": 0.0122,
554
+ "grad_norm": 7.851955413818359,
555
+ "learning_rate": 4.94e-06,
556
+ "loss": 12.0083,
557
+ "mean_token_accuracy": 0.22478991746902466,
558
+ "num_tokens": 1045419.0,
559
+ "step": 61
560
+ },
561
+ {
562
+ "epoch": 0.0124,
563
+ "grad_norm": 9.812698364257812,
564
+ "learning_rate": 4.9390000000000005e-06,
565
+ "loss": 12.9777,
566
+ "mean_token_accuracy": 0.2379310354590416,
567
+ "num_tokens": 1064723.0,
568
+ "step": 62
569
+ },
570
+ {
571
+ "epoch": 0.0126,
572
+ "grad_norm": 8.35107707977295,
573
+ "learning_rate": 4.938000000000001e-06,
574
+ "loss": 11.3187,
575
+ "mean_token_accuracy": 0.24358975142240524,
576
+ "num_tokens": 1079171.0,
577
+ "step": 63
578
+ },
579
+ {
580
+ "epoch": 0.0128,
581
+ "grad_norm": 7.16640567779541,
582
+ "learning_rate": 4.937e-06,
583
+ "loss": 10.2182,
584
+ "mean_token_accuracy": 0.34151194989681244,
585
+ "num_tokens": 1093695.0,
586
+ "step": 64
587
+ },
588
+ {
589
+ "epoch": 0.013,
590
+ "grad_norm": 10.18386459350586,
591
+ "learning_rate": 4.936e-06,
592
+ "loss": 12.2175,
593
+ "mean_token_accuracy": 0.25961539149284363,
594
+ "num_tokens": 1108580.0,
595
+ "step": 65
596
+ },
597
+ {
598
+ "epoch": 0.0132,
599
+ "grad_norm": 8.232446670532227,
600
+ "learning_rate": 4.935e-06,
601
+ "loss": 11.8182,
602
+ "mean_token_accuracy": 0.27314814925193787,
603
+ "num_tokens": 1123098.0,
604
+ "step": 66
605
+ },
606
+ {
607
+ "epoch": 0.0134,
608
+ "grad_norm": 8.809263229370117,
609
+ "learning_rate": 4.9340000000000005e-06,
610
+ "loss": 10.9148,
611
+ "mean_token_accuracy": 0.20927418768405914,
612
+ "num_tokens": 1137548.0,
613
+ "step": 67
614
+ },
615
+ {
616
+ "epoch": 0.0136,
617
+ "grad_norm": 9.865777015686035,
618
+ "learning_rate": 4.933000000000001e-06,
619
+ "loss": 12.6294,
620
+ "mean_token_accuracy": 0.22962962836027145,
621
+ "num_tokens": 1156845.0,
622
+ "step": 68
623
+ },
624
+ {
625
+ "epoch": 0.0138,
626
+ "grad_norm": 7.259024620056152,
627
+ "learning_rate": 4.932e-06,
628
+ "loss": 9.7717,
629
+ "mean_token_accuracy": 0.26875001192092896,
630
+ "num_tokens": 1171363.0,
631
+ "step": 69
632
+ },
633
+ {
634
+ "epoch": 0.014,
635
+ "grad_norm": 11.756244659423828,
636
+ "learning_rate": 4.931e-06,
637
+ "loss": 12.6686,
638
+ "mean_token_accuracy": 0.28285714983940125,
639
+ "num_tokens": 1185814.0,
640
+ "step": 70
641
+ },
642
+ {
643
+ "epoch": 0.0142,
644
+ "grad_norm": 9.128395080566406,
645
+ "learning_rate": 4.93e-06,
646
+ "loss": 11.1826,
647
+ "mean_token_accuracy": 0.21765056997537613,
648
+ "num_tokens": 1200437.0,
649
+ "step": 71
650
+ },
651
+ {
652
+ "epoch": 0.0144,
653
+ "grad_norm": 8.472599029541016,
654
+ "learning_rate": 4.929000000000001e-06,
655
+ "loss": 11.6617,
656
+ "mean_token_accuracy": 0.2060810774564743,
657
+ "num_tokens": 1219264.0,
658
+ "step": 72
659
+ },
660
+ {
661
+ "epoch": 0.0146,
662
+ "grad_norm": 11.549400329589844,
663
+ "learning_rate": 4.928000000000001e-06,
664
+ "loss": 12.9588,
665
+ "mean_token_accuracy": 0.25,
666
+ "num_tokens": 1238560.0,
667
+ "step": 73
668
+ },
669
+ {
670
+ "epoch": 0.0148,
671
+ "grad_norm": 11.084433555603027,
672
+ "learning_rate": 4.9270000000000004e-06,
673
+ "loss": 10.4111,
674
+ "mean_token_accuracy": 0.21954887360334396,
675
+ "num_tokens": 1247376.0,
676
+ "step": 74
677
+ },
678
+ {
679
+ "epoch": 0.015,
680
+ "grad_norm": 10.906563758850098,
681
+ "learning_rate": 4.926e-06,
682
+ "loss": 12.5231,
683
+ "mean_token_accuracy": 0.23307790607213974,
684
+ "num_tokens": 1266611.0,
685
+ "step": 75
686
+ },
687
+ {
688
+ "epoch": 0.0152,
689
+ "grad_norm": 9.466647148132324,
690
+ "learning_rate": 4.925e-06,
691
+ "loss": 11.4363,
692
+ "mean_token_accuracy": 0.24193547666072845,
693
+ "num_tokens": 1281132.0,
694
+ "step": 76
695
+ },
696
+ {
697
+ "epoch": 0.0154,
698
+ "grad_norm": 11.185935020446777,
699
+ "learning_rate": 4.924000000000001e-06,
700
+ "loss": 12.6383,
701
+ "mean_token_accuracy": 0.22685185074806213,
702
+ "num_tokens": 1301049.0,
703
+ "step": 77
704
+ },
705
+ {
706
+ "epoch": 0.0156,
707
+ "grad_norm": 11.0143461227417,
708
+ "learning_rate": 4.923000000000001e-06,
709
+ "loss": 12.479,
710
+ "mean_token_accuracy": 0.22962962836027145,
711
+ "num_tokens": 1322278.0,
712
+ "step": 78
713
+ },
714
+ {
715
+ "epoch": 0.0158,
716
+ "grad_norm": 12.330080032348633,
717
+ "learning_rate": 4.9220000000000005e-06,
718
+ "loss": 12.2351,
719
+ "mean_token_accuracy": 0.2675606608390808,
720
+ "num_tokens": 1341536.0,
721
+ "step": 79
722
+ },
723
+ {
724
+ "epoch": 0.016,
725
+ "grad_norm": 10.486513137817383,
726
+ "learning_rate": 4.921e-06,
727
+ "loss": 11.6896,
728
+ "mean_token_accuracy": 0.25356507301330566,
729
+ "num_tokens": 1355885.0,
730
+ "step": 80
731
+ },
732
+ {
733
+ "epoch": 0.0162,
734
+ "grad_norm": 12.150262832641602,
735
+ "learning_rate": 4.92e-06,
736
+ "loss": 12.5725,
737
+ "mean_token_accuracy": 0.2321428582072258,
738
+ "num_tokens": 1375181.0,
739
+ "step": 81
740
+ },
741
+ {
742
+ "epoch": 0.0164,
743
+ "grad_norm": 11.387964248657227,
744
+ "learning_rate": 4.919000000000001e-06,
745
+ "loss": 11.5796,
746
+ "mean_token_accuracy": 0.29461538791656494,
747
+ "num_tokens": 1384853.0,
748
+ "step": 82
749
+ },
750
+ {
751
+ "epoch": 0.0166,
752
+ "grad_norm": 9.878727912902832,
753
+ "learning_rate": 4.918e-06,
754
+ "loss": 11.7534,
755
+ "mean_token_accuracy": 0.24473684281110764,
756
+ "num_tokens": 1401178.0,
757
+ "step": 83
758
+ },
759
+ {
760
+ "epoch": 0.0168,
761
+ "grad_norm": 9.827662467956543,
762
+ "learning_rate": 4.9170000000000005e-06,
763
+ "loss": 12.0345,
764
+ "mean_token_accuracy": 0.18034055829048157,
765
+ "num_tokens": 1419976.0,
766
+ "step": 84
767
+ },
768
+ {
769
+ "epoch": 0.017,
770
+ "grad_norm": 10.327628135681152,
771
+ "learning_rate": 4.916e-06,
772
+ "loss": 11.1049,
773
+ "mean_token_accuracy": 0.3095238208770752,
774
+ "num_tokens": 1429652.0,
775
+ "step": 85
776
+ },
777
+ {
778
+ "epoch": 0.0172,
779
+ "grad_norm": 10.67590045928955,
780
+ "learning_rate": 4.915e-06,
781
+ "loss": 10.7087,
782
+ "mean_token_accuracy": 0.2750582844018936,
783
+ "num_tokens": 1444113.0,
784
+ "step": 86
785
+ },
786
+ {
787
+ "epoch": 0.0174,
788
+ "grad_norm": 20.292959213256836,
789
+ "learning_rate": 4.914000000000001e-06,
790
+ "loss": 10.797,
791
+ "mean_token_accuracy": 0.32500000298023224,
792
+ "num_tokens": 1453773.0,
793
+ "step": 87
794
+ },
795
+ {
796
+ "epoch": 0.0176,
797
+ "grad_norm": 8.3117036819458,
798
+ "learning_rate": 4.913e-06,
799
+ "loss": 9.394,
800
+ "mean_token_accuracy": 0.31915584206581116,
801
+ "num_tokens": 1475024.0,
802
+ "step": 88
803
+ },
804
+ {
805
+ "epoch": 0.0178,
806
+ "grad_norm": 11.334404945373535,
807
+ "learning_rate": 4.9120000000000006e-06,
808
+ "loss": 11.0718,
809
+ "mean_token_accuracy": 0.2678571492433548,
810
+ "num_tokens": 1489489.0,
811
+ "step": 89
812
+ },
813
+ {
814
+ "epoch": 0.018,
815
+ "grad_norm": 15.36023235321045,
816
+ "learning_rate": 4.911e-06,
817
+ "loss": 11.7992,
818
+ "mean_token_accuracy": 0.28607918322086334,
819
+ "num_tokens": 1508816.0,
820
+ "step": 90
821
+ },
822
+ {
823
+ "epoch": 0.0182,
824
+ "grad_norm": 11.725635528564453,
825
+ "learning_rate": 4.9100000000000004e-06,
826
+ "loss": 11.9207,
827
+ "mean_token_accuracy": 0.26123301684856415,
828
+ "num_tokens": 1530050.0,
829
+ "step": 91
830
+ },
831
+ {
832
+ "epoch": 0.0184,
833
+ "grad_norm": 14.75428295135498,
834
+ "learning_rate": 4.909000000000001e-06,
835
+ "loss": 11.0294,
836
+ "mean_token_accuracy": 0.21236559003591537,
837
+ "num_tokens": 1544713.0,
838
+ "step": 92
839
+ },
840
+ {
841
+ "epoch": 0.0186,
842
+ "grad_norm": 10.447436332702637,
843
+ "learning_rate": 4.908e-06,
844
+ "loss": 9.7536,
845
+ "mean_token_accuracy": 0.24568965286016464,
846
+ "num_tokens": 1559226.0,
847
+ "step": 93
848
+ },
849
+ {
850
+ "epoch": 0.0188,
851
+ "grad_norm": 14.036280632019043,
852
+ "learning_rate": 4.907000000000001e-06,
853
+ "loss": 12.2065,
854
+ "mean_token_accuracy": 0.2771739065647125,
855
+ "num_tokens": 1568898.0,
856
+ "step": 94
857
+ },
858
+ {
859
+ "epoch": 0.019,
860
+ "grad_norm": 13.364744186401367,
861
+ "learning_rate": 4.906e-06,
862
+ "loss": 13.168,
863
+ "mean_token_accuracy": 0.2321428582072258,
864
+ "num_tokens": 1588133.0,
865
+ "step": 95
866
+ },
867
+ {
868
+ "epoch": 0.0192,
869
+ "grad_norm": 12.441611289978027,
870
+ "learning_rate": 4.9050000000000005e-06,
871
+ "loss": 11.6806,
872
+ "mean_token_accuracy": 0.21875,
873
+ "num_tokens": 1607218.0,
874
+ "step": 96
875
+ },
876
+ {
877
+ "epoch": 0.0194,
878
+ "grad_norm": 11.559666633605957,
879
+ "learning_rate": 4.904000000000001e-06,
880
+ "loss": 12.2055,
881
+ "mean_token_accuracy": 0.23010753095149994,
882
+ "num_tokens": 1626557.0,
883
+ "step": 97
884
+ },
885
+ {
886
+ "epoch": 0.0196,
887
+ "grad_norm": 11.131147384643555,
888
+ "learning_rate": 4.903e-06,
889
+ "loss": 11.4201,
890
+ "mean_token_accuracy": 0.2931034490466118,
891
+ "num_tokens": 1641017.0,
892
+ "step": 98
893
+ },
894
+ {
895
+ "epoch": 0.0198,
896
+ "grad_norm": 12.186894416809082,
897
+ "learning_rate": 4.902000000000001e-06,
898
+ "loss": 12.1568,
899
+ "mean_token_accuracy": 0.23180076479911804,
900
+ "num_tokens": 1655475.0,
901
+ "step": 99
902
+ },
903
+ {
904
+ "epoch": 0.02,
905
+ "grad_norm": 11.864778518676758,
906
+ "learning_rate": 4.901e-06,
907
+ "loss": 12.4851,
908
+ "mean_token_accuracy": 0.21008403599262238,
909
+ "num_tokens": 1674815.0,
910
+ "step": 100
911
+ },
912
+ {
913
+ "epoch": 0.0202,
914
+ "grad_norm": 14.35185718536377,
915
+ "learning_rate": 4.9000000000000005e-06,
916
+ "loss": 11.1814,
917
+ "mean_token_accuracy": 0.2612612694501877,
918
+ "num_tokens": 1686681.0,
919
+ "step": 101
920
+ },
921
+ {
922
+ "epoch": 0.0204,
923
+ "grad_norm": 18.715627670288086,
924
+ "learning_rate": 4.899e-06,
925
+ "loss": 11.632,
926
+ "mean_token_accuracy": 0.30199430882930756,
927
+ "num_tokens": 1701565.0,
928
+ "step": 102
929
+ },
930
+ {
931
+ "epoch": 0.0206,
932
+ "grad_norm": 12.892010688781738,
933
+ "learning_rate": 4.898e-06,
934
+ "loss": 12.3157,
935
+ "mean_token_accuracy": 0.23806367069482803,
936
+ "num_tokens": 1715938.0,
937
+ "step": 103
938
+ },
939
+ {
940
+ "epoch": 0.0208,
941
+ "grad_norm": 13.078173637390137,
942
+ "learning_rate": 4.897000000000001e-06,
943
+ "loss": 11.4954,
944
+ "mean_token_accuracy": 0.22177419066429138,
945
+ "num_tokens": 1734685.0,
946
+ "step": 104
947
+ },
948
+ {
949
+ "epoch": 0.021,
950
+ "grad_norm": 14.580618858337402,
951
+ "learning_rate": 4.896e-06,
952
+ "loss": 10.4619,
953
+ "mean_token_accuracy": 0.2797202914953232,
954
+ "num_tokens": 1757899.0,
955
+ "step": 105
956
+ },
957
+ {
958
+ "epoch": 0.0212,
959
+ "grad_norm": 13.174345016479492,
960
+ "learning_rate": 4.8950000000000006e-06,
961
+ "loss": 10.5835,
962
+ "mean_token_accuracy": 0.27546295523643494,
963
+ "num_tokens": 1778410.0,
964
+ "step": 106
965
+ },
966
+ {
967
+ "epoch": 0.0214,
968
+ "grad_norm": 13.970446586608887,
969
+ "learning_rate": 4.894e-06,
970
+ "loss": 11.1265,
971
+ "mean_token_accuracy": 0.2693749964237213,
972
+ "num_tokens": 1791819.0,
973
+ "step": 107
974
+ },
975
+ {
976
+ "epoch": 0.0216,
977
+ "grad_norm": 11.994514465332031,
978
+ "learning_rate": 4.893e-06,
979
+ "loss": 11.3511,
980
+ "mean_token_accuracy": 0.25462962687015533,
981
+ "num_tokens": 1811118.0,
982
+ "step": 108
983
+ },
984
+ {
985
+ "epoch": 0.0218,
986
+ "grad_norm": 13.328775405883789,
987
+ "learning_rate": 4.892000000000001e-06,
988
+ "loss": 11.9787,
989
+ "mean_token_accuracy": 0.23790322244167328,
990
+ "num_tokens": 1825598.0,
991
+ "step": 109
992
+ },
993
+ {
994
+ "epoch": 0.022,
995
+ "grad_norm": 11.813949584960938,
996
+ "learning_rate": 4.891e-06,
997
+ "loss": 10.614,
998
+ "mean_token_accuracy": 0.25833334028720856,
999
+ "num_tokens": 1840096.0,
1000
+ "step": 110
1001
+ },
1002
+ {
1003
+ "epoch": 0.0222,
1004
+ "grad_norm": 17.409263610839844,
1005
+ "learning_rate": 4.890000000000001e-06,
1006
+ "loss": 10.5087,
1007
+ "mean_token_accuracy": 0.32692308723926544,
1008
+ "num_tokens": 1849750.0,
1009
+ "step": 111
1010
+ },
1011
+ {
1012
+ "epoch": 0.0224,
1013
+ "grad_norm": 19.462722778320312,
1014
+ "learning_rate": 4.889e-06,
1015
+ "loss": 10.2288,
1016
+ "mean_token_accuracy": 0.25729166716337204,
1017
+ "num_tokens": 1859433.0,
1018
+ "step": 112
1019
+ },
1020
+ {
1021
+ "epoch": 0.0226,
1022
+ "grad_norm": 11.595419883728027,
1023
+ "learning_rate": 4.8880000000000005e-06,
1024
+ "loss": 11.0996,
1025
+ "mean_token_accuracy": 0.2807881832122803,
1026
+ "num_tokens": 1873892.0,
1027
+ "step": 113
1028
+ },
1029
+ {
1030
+ "epoch": 0.0228,
1031
+ "grad_norm": 14.413046836853027,
1032
+ "learning_rate": 4.887000000000001e-06,
1033
+ "loss": 11.6535,
1034
+ "mean_token_accuracy": 0.2341153472661972,
1035
+ "num_tokens": 1893196.0,
1036
+ "step": 114
1037
+ },
1038
+ {
1039
+ "epoch": 0.023,
1040
+ "grad_norm": 12.218829154968262,
1041
+ "learning_rate": 4.886e-06,
1042
+ "loss": 10.9169,
1043
+ "mean_token_accuracy": 0.2557603716850281,
1044
+ "num_tokens": 1907676.0,
1045
+ "step": 115
1046
+ },
1047
+ {
1048
+ "epoch": 0.0232,
1049
+ "grad_norm": 16.51720428466797,
1050
+ "learning_rate": 4.885000000000001e-06,
1051
+ "loss": 9.8406,
1052
+ "mean_token_accuracy": 0.25968992710113525,
1053
+ "num_tokens": 1921596.0,
1054
+ "step": 116
1055
+ },
1056
+ {
1057
+ "epoch": 0.0234,
1058
+ "grad_norm": 10.608232498168945,
1059
+ "learning_rate": 4.884e-06,
1060
+ "loss": 9.9809,
1061
+ "mean_token_accuracy": 0.22068965435028076,
1062
+ "num_tokens": 1940247.0,
1063
+ "step": 117
1064
+ },
1065
+ {
1066
+ "epoch": 0.0236,
1067
+ "grad_norm": 14.17568302154541,
1068
+ "learning_rate": 4.8830000000000005e-06,
1069
+ "loss": 11.3908,
1070
+ "mean_token_accuracy": 0.23790322244167328,
1071
+ "num_tokens": 1959268.0,
1072
+ "step": 118
1073
+ },
1074
+ {
1075
+ "epoch": 0.0238,
1076
+ "grad_norm": 12.197131156921387,
1077
+ "learning_rate": 4.882000000000001e-06,
1078
+ "loss": 10.9438,
1079
+ "mean_token_accuracy": 0.2538699731230736,
1080
+ "num_tokens": 1978218.0,
1081
+ "step": 119
1082
+ },
1083
+ {
1084
+ "epoch": 0.024,
1085
+ "grad_norm": 15.261062622070312,
1086
+ "learning_rate": 4.881e-06,
1087
+ "loss": 11.0329,
1088
+ "mean_token_accuracy": 0.24621212482452393,
1089
+ "num_tokens": 1997519.0,
1090
+ "step": 120
1091
+ },
1092
+ {
1093
+ "epoch": 0.0242,
1094
+ "grad_norm": 13.116536140441895,
1095
+ "learning_rate": 4.880000000000001e-06,
1096
+ "loss": 11.9918,
1097
+ "mean_token_accuracy": 0.24137930572032928,
1098
+ "num_tokens": 2016817.0,
1099
+ "step": 121
1100
+ },
1101
+ {
1102
+ "epoch": 0.0244,
1103
+ "grad_norm": 18.174373626708984,
1104
+ "learning_rate": 4.879e-06,
1105
+ "loss": 11.0414,
1106
+ "mean_token_accuracy": 0.25833334028720856,
1107
+ "num_tokens": 2035875.0,
1108
+ "step": 122
1109
+ },
1110
+ {
1111
+ "epoch": 0.0246,
1112
+ "grad_norm": 17.258121490478516,
1113
+ "learning_rate": 4.8780000000000006e-06,
1114
+ "loss": 11.1173,
1115
+ "mean_token_accuracy": 0.3010057359933853,
1116
+ "num_tokens": 2050330.0,
1117
+ "step": 123
1118
+ },
1119
+ {
1120
+ "epoch": 0.0248,
1121
+ "grad_norm": 12.636884689331055,
1122
+ "learning_rate": 4.877000000000001e-06,
1123
+ "loss": 11.3399,
1124
+ "mean_token_accuracy": 0.2879464328289032,
1125
+ "num_tokens": 2070156.0,
1126
+ "step": 124
1127
+ },
1128
+ {
1129
+ "epoch": 0.025,
1130
+ "grad_norm": 18.457618713378906,
1131
+ "learning_rate": 4.876e-06,
1132
+ "loss": 11.5595,
1133
+ "mean_token_accuracy": 0.28418803960084915,
1134
+ "num_tokens": 2084771.0,
1135
+ "step": 125
1136
+ },
1137
+ {
1138
+ "epoch": 0.0252,
1139
+ "grad_norm": 14.281397819519043,
1140
+ "learning_rate": 4.875e-06,
1141
+ "loss": 10.9901,
1142
+ "mean_token_accuracy": 0.28140393644571304,
1143
+ "num_tokens": 2104228.0,
1144
+ "step": 126
1145
+ },
1146
+ {
1147
+ "epoch": 0.0254,
1148
+ "grad_norm": 13.08484935760498,
1149
+ "learning_rate": 4.874e-06,
1150
+ "loss": 9.4802,
1151
+ "mean_token_accuracy": 0.2637759745121002,
1152
+ "num_tokens": 2118877.0,
1153
+ "step": 127
1154
+ },
1155
+ {
1156
+ "epoch": 0.0256,
1157
+ "grad_norm": 11.949925422668457,
1158
+ "learning_rate": 4.873000000000001e-06,
1159
+ "loss": 10.3703,
1160
+ "mean_token_accuracy": 0.2619825750589371,
1161
+ "num_tokens": 2133298.0,
1162
+ "step": 128
1163
+ },
1164
+ {
1165
+ "epoch": 0.0258,
1166
+ "grad_norm": 14.950297355651855,
1167
+ "learning_rate": 4.872000000000001e-06,
1168
+ "loss": 10.6116,
1169
+ "mean_token_accuracy": 0.33000001311302185,
1170
+ "num_tokens": 2142955.0,
1171
+ "step": 129
1172
+ },
1173
+ {
1174
+ "epoch": 0.026,
1175
+ "grad_norm": 16.433286666870117,
1176
+ "learning_rate": 4.8710000000000005e-06,
1177
+ "loss": 9.4482,
1178
+ "mean_token_accuracy": 0.3333333432674408,
1179
+ "num_tokens": 2159447.0,
1180
+ "step": 130
1181
+ },
1182
+ {
1183
+ "epoch": 0.0262,
1184
+ "grad_norm": 12.467981338500977,
1185
+ "learning_rate": 4.87e-06,
1186
+ "loss": 10.2354,
1187
+ "mean_token_accuracy": 0.33796295523643494,
1188
+ "num_tokens": 2178352.0,
1189
+ "step": 131
1190
+ },
1191
+ {
1192
+ "epoch": 0.0264,
1193
+ "grad_norm": 11.493000030517578,
1194
+ "learning_rate": 4.869e-06,
1195
+ "loss": 9.0597,
1196
+ "mean_token_accuracy": 0.2736175060272217,
1197
+ "num_tokens": 2199174.0,
1198
+ "step": 132
1199
+ },
1200
+ {
1201
+ "epoch": 0.0266,
1202
+ "grad_norm": 13.966115951538086,
1203
+ "learning_rate": 4.868000000000001e-06,
1204
+ "loss": 10.3177,
1205
+ "mean_token_accuracy": 0.3325917571783066,
1206
+ "num_tokens": 2213636.0,
1207
+ "step": 133
1208
+ },
1209
+ {
1210
+ "epoch": 0.0268,
1211
+ "grad_norm": 13.971321105957031,
1212
+ "learning_rate": 4.867000000000001e-06,
1213
+ "loss": 10.2564,
1214
+ "mean_token_accuracy": 0.31481482088565826,
1215
+ "num_tokens": 2228050.0,
1216
+ "step": 134
1217
+ },
1218
+ {
1219
+ "epoch": 0.027,
1220
+ "grad_norm": 16.246124267578125,
1221
+ "learning_rate": 4.8660000000000005e-06,
1222
+ "loss": 10.7549,
1223
+ "mean_token_accuracy": 0.30943846702575684,
1224
+ "num_tokens": 2247348.0,
1225
+ "step": 135
1226
+ },
1227
+ {
1228
+ "epoch": 0.0272,
1229
+ "grad_norm": 17.702425003051758,
1230
+ "learning_rate": 4.865e-06,
1231
+ "loss": 10.1729,
1232
+ "mean_token_accuracy": 0.3575989753007889,
1233
+ "num_tokens": 2261806.0,
1234
+ "step": 136
1235
+ },
1236
+ {
1237
+ "epoch": 0.0274,
1238
+ "grad_norm": 13.732104301452637,
1239
+ "learning_rate": 4.864e-06,
1240
+ "loss": 10.9004,
1241
+ "mean_token_accuracy": 0.28607918322086334,
1242
+ "num_tokens": 2281224.0,
1243
+ "step": 137
1244
+ },
1245
+ {
1246
+ "epoch": 0.0276,
1247
+ "grad_norm": 17.568925857543945,
1248
+ "learning_rate": 4.863000000000001e-06,
1249
+ "loss": 10.1658,
1250
+ "mean_token_accuracy": 0.2857142984867096,
1251
+ "num_tokens": 2295720.0,
1252
+ "step": 138
1253
+ },
1254
+ {
1255
+ "epoch": 0.0278,
1256
+ "grad_norm": 13.424271583557129,
1257
+ "learning_rate": 4.862e-06,
1258
+ "loss": 10.3543,
1259
+ "mean_token_accuracy": 0.28928571939468384,
1260
+ "num_tokens": 2310345.0,
1261
+ "step": 139
1262
+ },
1263
+ {
1264
+ "epoch": 0.028,
1265
+ "grad_norm": 14.413524627685547,
1266
+ "learning_rate": 4.8610000000000006e-06,
1267
+ "loss": 11.3822,
1268
+ "mean_token_accuracy": 0.22828783839941025,
1269
+ "num_tokens": 2347736.0,
1270
+ "step": 140
1271
+ },
1272
+ {
1273
+ "epoch": 0.0282,
1274
+ "grad_norm": 22.185630798339844,
1275
+ "learning_rate": 4.86e-06,
1276
+ "loss": 10.6185,
1277
+ "mean_token_accuracy": 0.2911111190915108,
1278
+ "num_tokens": 2361685.0,
1279
+ "step": 141
1280
+ },
1281
+ {
1282
+ "epoch": 0.0284,
1283
+ "grad_norm": 12.253998756408691,
1284
+ "learning_rate": 4.859e-06,
1285
+ "loss": 9.2399,
1286
+ "mean_token_accuracy": 0.288621261715889,
1287
+ "num_tokens": 2376158.0,
1288
+ "step": 142
1289
+ },
1290
+ {
1291
+ "epoch": 0.0286,
1292
+ "grad_norm": 16.229686737060547,
1293
+ "learning_rate": 4.858000000000001e-06,
1294
+ "loss": 10.3377,
1295
+ "mean_token_accuracy": 0.22227822244167328,
1296
+ "num_tokens": 2391501.0,
1297
+ "step": 143
1298
+ },
1299
+ {
1300
+ "epoch": 0.0288,
1301
+ "grad_norm": 9.664397239685059,
1302
+ "learning_rate": 4.857e-06,
1303
+ "loss": 9.3351,
1304
+ "mean_token_accuracy": 0.26456456631422043,
1305
+ "num_tokens": 2411105.0,
1306
+ "step": 144
1307
+ },
1308
+ {
1309
+ "epoch": 0.029,
1310
+ "grad_norm": 12.8119478225708,
1311
+ "learning_rate": 4.856e-06,
1312
+ "loss": 9.87,
1313
+ "mean_token_accuracy": 0.24166666716337204,
1314
+ "num_tokens": 2431185.0,
1315
+ "step": 145
1316
+ },
1317
+ {
1318
+ "epoch": 0.0292,
1319
+ "grad_norm": 10.490764617919922,
1320
+ "learning_rate": 4.855e-06,
1321
+ "loss": 8.7889,
1322
+ "mean_token_accuracy": 0.36666667461395264,
1323
+ "num_tokens": 2452470.0,
1324
+ "step": 146
1325
+ },
1326
+ {
1327
+ "epoch": 0.0294,
1328
+ "grad_norm": 13.65211296081543,
1329
+ "learning_rate": 4.8540000000000005e-06,
1330
+ "loss": 10.4286,
1331
+ "mean_token_accuracy": 0.2718253955245018,
1332
+ "num_tokens": 2472396.0,
1333
+ "step": 147
1334
+ },
1335
+ {
1336
+ "epoch": 0.0296,
1337
+ "grad_norm": 18.866209030151367,
1338
+ "learning_rate": 4.853000000000001e-06,
1339
+ "loss": 10.2372,
1340
+ "mean_token_accuracy": 0.38141025602817535,
1341
+ "num_tokens": 2486886.0,
1342
+ "step": 148
1343
+ },
1344
+ {
1345
+ "epoch": 0.0298,
1346
+ "grad_norm": 14.852785110473633,
1347
+ "learning_rate": 4.852e-06,
1348
+ "loss": 10.0487,
1349
+ "mean_token_accuracy": 0.30820105969905853,
1350
+ "num_tokens": 2506143.0,
1351
+ "step": 149
1352
+ },
1353
+ {
1354
+ "epoch": 0.03,
1355
+ "grad_norm": 13.972378730773926,
1356
+ "learning_rate": 4.851e-06,
1357
+ "loss": 10.6291,
1358
+ "mean_token_accuracy": 0.25820106267929077,
1359
+ "num_tokens": 2520401.0,
1360
+ "step": 150
1361
+ },
1362
+ {
1363
+ "epoch": 0.0302,
1364
+ "grad_norm": 14.618459701538086,
1365
+ "learning_rate": 4.85e-06,
1366
+ "loss": 10.7579,
1367
+ "mean_token_accuracy": 0.23571428656578064,
1368
+ "num_tokens": 2539135.0,
1369
+ "step": 151
1370
+ },
1371
+ {
1372
+ "epoch": 0.0304,
1373
+ "grad_norm": 15.176739692687988,
1374
+ "learning_rate": 4.8490000000000005e-06,
1375
+ "loss": 9.6595,
1376
+ "mean_token_accuracy": 0.2510339096188545,
1377
+ "num_tokens": 2558562.0,
1378
+ "step": 152
1379
+ },
1380
+ {
1381
+ "epoch": 0.0306,
1382
+ "grad_norm": 16.972919464111328,
1383
+ "learning_rate": 4.848000000000001e-06,
1384
+ "loss": 10.8999,
1385
+ "mean_token_accuracy": 0.25925925374031067,
1386
+ "num_tokens": 2577856.0,
1387
+ "step": 153
1388
+ },
1389
+ {
1390
+ "epoch": 0.0308,
1391
+ "grad_norm": 16.451147079467773,
1392
+ "learning_rate": 4.847e-06,
1393
+ "loss": 8.5505,
1394
+ "mean_token_accuracy": 0.36249999701976776,
1395
+ "num_tokens": 2592246.0,
1396
+ "step": 154
1397
+ },
1398
+ {
1399
+ "epoch": 0.031,
1400
+ "grad_norm": 24.95278549194336,
1401
+ "learning_rate": 4.846e-06,
1402
+ "loss": 10.2367,
1403
+ "mean_token_accuracy": 0.28735632449388504,
1404
+ "num_tokens": 2607133.0,
1405
+ "step": 155
1406
+ },
1407
+ {
1408
+ "epoch": 0.0312,
1409
+ "grad_norm": 15.770346641540527,
1410
+ "learning_rate": 4.845e-06,
1411
+ "loss": 9.6085,
1412
+ "mean_token_accuracy": 0.27272728085517883,
1413
+ "num_tokens": 2621734.0,
1414
+ "step": 156
1415
+ },
1416
+ {
1417
+ "epoch": 0.0314,
1418
+ "grad_norm": 12.314064025878906,
1419
+ "learning_rate": 4.8440000000000005e-06,
1420
+ "loss": 9.816,
1421
+ "mean_token_accuracy": 0.2540322542190552,
1422
+ "num_tokens": 2641357.0,
1423
+ "step": 157
1424
+ },
1425
+ {
1426
+ "epoch": 0.0316,
1427
+ "grad_norm": 13.379799842834473,
1428
+ "learning_rate": 4.843000000000001e-06,
1429
+ "loss": 10.378,
1430
+ "mean_token_accuracy": 0.32804232835769653,
1431
+ "num_tokens": 2660177.0,
1432
+ "step": 158
1433
+ },
1434
+ {
1435
+ "epoch": 0.0318,
1436
+ "grad_norm": 17.458240509033203,
1437
+ "learning_rate": 4.842e-06,
1438
+ "loss": 9.3842,
1439
+ "mean_token_accuracy": 0.2557164579629898,
1440
+ "num_tokens": 2679528.0,
1441
+ "step": 159
1442
+ },
1443
+ {
1444
+ "epoch": 0.032,
1445
+ "grad_norm": 25.741785049438477,
1446
+ "learning_rate": 4.841e-06,
1447
+ "loss": 9.0768,
1448
+ "mean_token_accuracy": 0.3270474076271057,
1449
+ "num_tokens": 2693652.0,
1450
+ "step": 160
1451
+ },
1452
+ {
1453
+ "epoch": 0.0322,
1454
+ "grad_norm": 13.557204246520996,
1455
+ "learning_rate": 4.84e-06,
1456
+ "loss": 9.6471,
1457
+ "mean_token_accuracy": 0.28735632449388504,
1458
+ "num_tokens": 2713320.0,
1459
+ "step": 161
1460
+ },
1461
+ {
1462
+ "epoch": 0.0324,
1463
+ "grad_norm": 14.830061912536621,
1464
+ "learning_rate": 4.839000000000001e-06,
1465
+ "loss": 11.3496,
1466
+ "mean_token_accuracy": 0.24049513787031174,
1467
+ "num_tokens": 2733424.0,
1468
+ "step": 162
1469
+ },
1470
+ {
1471
+ "epoch": 0.0326,
1472
+ "grad_norm": 12.371265411376953,
1473
+ "learning_rate": 4.838e-06,
1474
+ "loss": 8.6217,
1475
+ "mean_token_accuracy": 0.25988225638866425,
1476
+ "num_tokens": 2752613.0,
1477
+ "step": 163
1478
+ },
1479
+ {
1480
+ "epoch": 0.0328,
1481
+ "grad_norm": 12.722640037536621,
1482
+ "learning_rate": 4.8370000000000004e-06,
1483
+ "loss": 9.2979,
1484
+ "mean_token_accuracy": 0.2337121218442917,
1485
+ "num_tokens": 2773896.0,
1486
+ "step": 164
1487
+ },
1488
+ {
1489
+ "epoch": 0.033,
1490
+ "grad_norm": 12.796667098999023,
1491
+ "learning_rate": 4.836e-06,
1492
+ "loss": 9.9112,
1493
+ "mean_token_accuracy": 0.3337438404560089,
1494
+ "num_tokens": 2793334.0,
1495
+ "step": 165
1496
+ },
1497
+ {
1498
+ "epoch": 0.0332,
1499
+ "grad_norm": 15.983271598815918,
1500
+ "learning_rate": 4.835e-06,
1501
+ "loss": 9.5066,
1502
+ "mean_token_accuracy": 0.29256465286016464,
1503
+ "num_tokens": 2807755.0,
1504
+ "step": 166
1505
+ },
1506
+ {
1507
+ "epoch": 0.0334,
1508
+ "grad_norm": 15.554715156555176,
1509
+ "learning_rate": 4.834000000000001e-06,
1510
+ "loss": 10.5127,
1511
+ "mean_token_accuracy": 0.2986453175544739,
1512
+ "num_tokens": 2827193.0,
1513
+ "step": 167
1514
+ },
1515
+ {
1516
+ "epoch": 0.0336,
1517
+ "grad_norm": 14.6381196975708,
1518
+ "learning_rate": 4.833e-06,
1519
+ "loss": 9.7383,
1520
+ "mean_token_accuracy": 0.2586618810892105,
1521
+ "num_tokens": 2846449.0,
1522
+ "step": 168
1523
+ },
1524
+ {
1525
+ "epoch": 0.0338,
1526
+ "grad_norm": 16.013647079467773,
1527
+ "learning_rate": 4.8320000000000005e-06,
1528
+ "loss": 9.0009,
1529
+ "mean_token_accuracy": 0.32356322556734085,
1530
+ "num_tokens": 2860910.0,
1531
+ "step": 169
1532
+ },
1533
+ {
1534
+ "epoch": 0.034,
1535
+ "grad_norm": 13.708538055419922,
1536
+ "learning_rate": 4.831e-06,
1537
+ "loss": 9.4298,
1538
+ "mean_token_accuracy": 0.28114478290081024,
1539
+ "num_tokens": 2880172.0,
1540
+ "step": 170
1541
+ },
1542
+ {
1543
+ "epoch": 0.0342,
1544
+ "grad_norm": 14.314607620239258,
1545
+ "learning_rate": 4.83e-06,
1546
+ "loss": 9.2596,
1547
+ "mean_token_accuracy": 0.3014460504055023,
1548
+ "num_tokens": 2899434.0,
1549
+ "step": 171
1550
+ },
1551
+ {
1552
+ "epoch": 0.0344,
1553
+ "grad_norm": 12.27084732055664,
1554
+ "learning_rate": 4.829000000000001e-06,
1555
+ "loss": 9.5638,
1556
+ "mean_token_accuracy": 0.33095238357782364,
1557
+ "num_tokens": 2913932.0,
1558
+ "step": 172
1559
+ },
1560
+ {
1561
+ "epoch": 0.0346,
1562
+ "grad_norm": 14.023222923278809,
1563
+ "learning_rate": 4.828e-06,
1564
+ "loss": 9.689,
1565
+ "mean_token_accuracy": 0.31680162250995636,
1566
+ "num_tokens": 2928356.0,
1567
+ "step": 173
1568
+ },
1569
+ {
1570
+ "epoch": 0.0348,
1571
+ "grad_norm": 14.490949630737305,
1572
+ "learning_rate": 4.8270000000000005e-06,
1573
+ "loss": 8.8018,
1574
+ "mean_token_accuracy": 0.34068627655506134,
1575
+ "num_tokens": 2940589.0,
1576
+ "step": 174
1577
+ },
1578
+ {
1579
+ "epoch": 0.035,
1580
+ "grad_norm": 17.97809410095215,
1581
+ "learning_rate": 4.826e-06,
1582
+ "loss": 9.9556,
1583
+ "mean_token_accuracy": 0.3452381044626236,
1584
+ "num_tokens": 2959486.0,
1585
+ "step": 175
1586
+ },
1587
+ {
1588
+ "epoch": 0.0352,
1589
+ "grad_norm": 13.302875518798828,
1590
+ "learning_rate": 4.825e-06,
1591
+ "loss": 9.4104,
1592
+ "mean_token_accuracy": 0.23885918408632278,
1593
+ "num_tokens": 2974195.0,
1594
+ "step": 176
1595
+ },
1596
+ {
1597
+ "epoch": 0.0354,
1598
+ "grad_norm": 12.792606353759766,
1599
+ "learning_rate": 4.824000000000001e-06,
1600
+ "loss": 8.2518,
1601
+ "mean_token_accuracy": 0.42592592537403107,
1602
+ "num_tokens": 2984011.0,
1603
+ "step": 177
1604
+ },
1605
+ {
1606
+ "epoch": 0.0356,
1607
+ "grad_norm": 18.23525619506836,
1608
+ "learning_rate": 4.823e-06,
1609
+ "loss": 8.8069,
1610
+ "mean_token_accuracy": 0.40079365670681,
1611
+ "num_tokens": 2998487.0,
1612
+ "step": 178
1613
+ },
1614
+ {
1615
+ "epoch": 0.0358,
1616
+ "grad_norm": 14.206355094909668,
1617
+ "learning_rate": 4.822000000000001e-06,
1618
+ "loss": 9.1892,
1619
+ "mean_token_accuracy": 0.2290322557091713,
1620
+ "num_tokens": 3019773.0,
1621
+ "step": 179
1622
+ },
1623
+ {
1624
+ "epoch": 0.036,
1625
+ "grad_norm": 12.26903247833252,
1626
+ "learning_rate": 4.821e-06,
1627
+ "loss": 8.4939,
1628
+ "mean_token_accuracy": 0.28287841379642487,
1629
+ "num_tokens": 3040775.0,
1630
+ "step": 180
1631
+ },
1632
+ {
1633
+ "epoch": 0.0362,
1634
+ "grad_norm": 15.23544979095459,
1635
+ "learning_rate": 4.8200000000000004e-06,
1636
+ "loss": 8.9121,
1637
+ "mean_token_accuracy": 0.3285440653562546,
1638
+ "num_tokens": 3060080.0,
1639
+ "step": 181
1640
+ },
1641
+ {
1642
+ "epoch": 0.0364,
1643
+ "grad_norm": 57.132049560546875,
1644
+ "learning_rate": 4.819e-06,
1645
+ "loss": 8.9738,
1646
+ "mean_token_accuracy": 0.3175750821828842,
1647
+ "num_tokens": 3079332.0,
1648
+ "step": 182
1649
+ },
1650
+ {
1651
+ "epoch": 0.0366,
1652
+ "grad_norm": 13.691211700439453,
1653
+ "learning_rate": 4.818e-06,
1654
+ "loss": 8.0025,
1655
+ "mean_token_accuracy": 0.34656085073947906,
1656
+ "num_tokens": 3088989.0,
1657
+ "step": 183
1658
+ },
1659
+ {
1660
+ "epoch": 0.0368,
1661
+ "grad_norm": 15.762035369873047,
1662
+ "learning_rate": 4.817000000000001e-06,
1663
+ "loss": 9.4602,
1664
+ "mean_token_accuracy": 0.34457671642303467,
1665
+ "num_tokens": 3107732.0,
1666
+ "step": 184
1667
+ },
1668
+ {
1669
+ "epoch": 0.037,
1670
+ "grad_norm": 17.034019470214844,
1671
+ "learning_rate": 4.816e-06,
1672
+ "loss": 9.4491,
1673
+ "mean_token_accuracy": 0.34666667878627777,
1674
+ "num_tokens": 3122423.0,
1675
+ "step": 185
1676
+ },
1677
+ {
1678
+ "epoch": 0.0372,
1679
+ "grad_norm": 12.461385726928711,
1680
+ "learning_rate": 4.8150000000000005e-06,
1681
+ "loss": 9.0659,
1682
+ "mean_token_accuracy": 0.2838345915079117,
1683
+ "num_tokens": 3141889.0,
1684
+ "step": 186
1685
+ },
1686
+ {
1687
+ "epoch": 0.0374,
1688
+ "grad_norm": 13.194416046142578,
1689
+ "learning_rate": 4.814e-06,
1690
+ "loss": 8.8107,
1691
+ "mean_token_accuracy": 0.36685824394226074,
1692
+ "num_tokens": 3161194.0,
1693
+ "step": 187
1694
+ },
1695
+ {
1696
+ "epoch": 0.0376,
1697
+ "grad_norm": 14.799727439880371,
1698
+ "learning_rate": 4.813e-06,
1699
+ "loss": 9.7196,
1700
+ "mean_token_accuracy": 0.377616748213768,
1701
+ "num_tokens": 3175646.0,
1702
+ "step": 188
1703
+ },
1704
+ {
1705
+ "epoch": 0.0378,
1706
+ "grad_norm": 15.303200721740723,
1707
+ "learning_rate": 4.812000000000001e-06,
1708
+ "loss": 10.0029,
1709
+ "mean_token_accuracy": 0.38161374628543854,
1710
+ "num_tokens": 3194941.0,
1711
+ "step": 189
1712
+ },
1713
+ {
1714
+ "epoch": 0.038,
1715
+ "grad_norm": 13.99432373046875,
1716
+ "learning_rate": 4.811000000000001e-06,
1717
+ "loss": 8.4004,
1718
+ "mean_token_accuracy": 0.37096773087978363,
1719
+ "num_tokens": 3214205.0,
1720
+ "step": 190
1721
+ },
1722
+ {
1723
+ "epoch": 0.0382,
1724
+ "grad_norm": 12.163537979125977,
1725
+ "learning_rate": 4.8100000000000005e-06,
1726
+ "loss": 9.0058,
1727
+ "mean_token_accuracy": 0.35395538806915283,
1728
+ "num_tokens": 3235063.0,
1729
+ "step": 191
1730
+ },
1731
+ {
1732
+ "epoch": 0.0384,
1733
+ "grad_norm": 12.369959831237793,
1734
+ "learning_rate": 4.809e-06,
1735
+ "loss": 9.0358,
1736
+ "mean_token_accuracy": 0.4807407408952713,
1737
+ "num_tokens": 3249517.0,
1738
+ "step": 192
1739
+ },
1740
+ {
1741
+ "epoch": 0.0386,
1742
+ "grad_norm": 21.97284698486328,
1743
+ "learning_rate": 4.808e-06,
1744
+ "loss": 8.7725,
1745
+ "mean_token_accuracy": 0.41179338097572327,
1746
+ "num_tokens": 3268738.0,
1747
+ "step": 193
1748
+ },
1749
+ {
1750
+ "epoch": 0.0388,
1751
+ "grad_norm": 13.040814399719238,
1752
+ "learning_rate": 4.807000000000001e-06,
1753
+ "loss": 9.4628,
1754
+ "mean_token_accuracy": 0.424450546503067,
1755
+ "num_tokens": 3288032.0,
1756
+ "step": 194
1757
+ },
1758
+ {
1759
+ "epoch": 0.039,
1760
+ "grad_norm": 14.395992279052734,
1761
+ "learning_rate": 4.806000000000001e-06,
1762
+ "loss": 9.1626,
1763
+ "mean_token_accuracy": 0.454365074634552,
1764
+ "num_tokens": 3306813.0,
1765
+ "step": 195
1766
+ },
1767
+ {
1768
+ "epoch": 0.0392,
1769
+ "grad_norm": 11.64809799194336,
1770
+ "learning_rate": 4.805000000000001e-06,
1771
+ "loss": 8.7527,
1772
+ "mean_token_accuracy": 0.3843159079551697,
1773
+ "num_tokens": 3325561.0,
1774
+ "step": 196
1775
+ },
1776
+ {
1777
+ "epoch": 0.0394,
1778
+ "grad_norm": 25.551607131958008,
1779
+ "learning_rate": 4.804e-06,
1780
+ "loss": 8.5253,
1781
+ "mean_token_accuracy": 0.3452381044626236,
1782
+ "num_tokens": 3339397.0,
1783
+ "step": 197
1784
+ },
1785
+ {
1786
+ "epoch": 0.0396,
1787
+ "grad_norm": 12.025030136108398,
1788
+ "learning_rate": 4.8030000000000004e-06,
1789
+ "loss": 7.7581,
1790
+ "mean_token_accuracy": 0.5191570967435837,
1791
+ "num_tokens": 3349055.0,
1792
+ "step": 198
1793
+ },
1794
+ {
1795
+ "epoch": 0.0398,
1796
+ "grad_norm": 10.044900894165039,
1797
+ "learning_rate": 4.802000000000001e-06,
1798
+ "loss": 9.0733,
1799
+ "mean_token_accuracy": 0.4278416335582733,
1800
+ "num_tokens": 3368313.0,
1801
+ "step": 199
1802
+ },
1803
+ {
1804
+ "epoch": 0.04,
1805
+ "grad_norm": 10.911112785339355,
1806
+ "learning_rate": 4.801e-06,
1807
+ "loss": 8.6906,
1808
+ "mean_token_accuracy": 0.5000000149011612,
1809
+ "num_tokens": 3383810.0,
1810
+ "step": 200
1811
+ },
1812
+ {
1813
+ "epoch": 0.0402,
1814
+ "grad_norm": 10.119377136230469,
1815
+ "learning_rate": 4.800000000000001e-06,
1816
+ "loss": 8.8941,
1817
+ "mean_token_accuracy": 0.4000000059604645,
1818
+ "num_tokens": 3398244.0,
1819
+ "step": 201
1820
+ },
1821
+ {
1822
+ "epoch": 0.0404,
1823
+ "grad_norm": 10.526436805725098,
1824
+ "learning_rate": 4.799e-06,
1825
+ "loss": 7.8408,
1826
+ "mean_token_accuracy": 0.39772726595401764,
1827
+ "num_tokens": 3414686.0,
1828
+ "step": 202
1829
+ },
1830
+ {
1831
+ "epoch": 0.0406,
1832
+ "grad_norm": 10.947959899902344,
1833
+ "learning_rate": 4.7980000000000005e-06,
1834
+ "loss": 8.4085,
1835
+ "mean_token_accuracy": 0.40992647409439087,
1836
+ "num_tokens": 3433954.0,
1837
+ "step": 203
1838
+ },
1839
+ {
1840
+ "epoch": 0.0408,
1841
+ "grad_norm": 10.811299324035645,
1842
+ "learning_rate": 4.797000000000001e-06,
1843
+ "loss": 7.7418,
1844
+ "mean_token_accuracy": 0.5370370447635651,
1845
+ "num_tokens": 3443610.0,
1846
+ "step": 204
1847
+ },
1848
+ {
1849
+ "epoch": 0.041,
1850
+ "grad_norm": 9.57394027709961,
1851
+ "learning_rate": 4.796e-06,
1852
+ "loss": 8.6595,
1853
+ "mean_token_accuracy": 0.45967741310596466,
1854
+ "num_tokens": 3462909.0,
1855
+ "step": 205
1856
+ },
1857
+ {
1858
+ "epoch": 0.0412,
1859
+ "grad_norm": 12.8336181640625,
1860
+ "learning_rate": 4.795e-06,
1861
+ "loss": 8.6943,
1862
+ "mean_token_accuracy": 0.45967741310596466,
1863
+ "num_tokens": 3477620.0,
1864
+ "step": 206
1865
+ },
1866
+ {
1867
+ "epoch": 0.0414,
1868
+ "grad_norm": 11.37842845916748,
1869
+ "learning_rate": 4.794e-06,
1870
+ "loss": 8.5963,
1871
+ "mean_token_accuracy": 0.4539627134799957,
1872
+ "num_tokens": 3496675.0,
1873
+ "step": 207
1874
+ },
1875
+ {
1876
+ "epoch": 0.0416,
1877
+ "grad_norm": 12.427331924438477,
1878
+ "learning_rate": 4.7930000000000005e-06,
1879
+ "loss": 8.67,
1880
+ "mean_token_accuracy": 0.3821548819541931,
1881
+ "num_tokens": 3515975.0,
1882
+ "step": 208
1883
+ },
1884
+ {
1885
+ "epoch": 0.0418,
1886
+ "grad_norm": 10.371417045593262,
1887
+ "learning_rate": 4.792000000000001e-06,
1888
+ "loss": 8.4859,
1889
+ "mean_token_accuracy": 0.40784314274787903,
1890
+ "num_tokens": 3535241.0,
1891
+ "step": 209
1892
+ },
1893
+ {
1894
+ "epoch": 0.042,
1895
+ "grad_norm": 11.788932800292969,
1896
+ "learning_rate": 4.791e-06,
1897
+ "loss": 8.7143,
1898
+ "mean_token_accuracy": 0.3741379380226135,
1899
+ "num_tokens": 3554502.0,
1900
+ "step": 210
1901
+ },
1902
+ {
1903
+ "epoch": 0.0422,
1904
+ "grad_norm": 15.102238655090332,
1905
+ "learning_rate": 4.79e-06,
1906
+ "loss": 8.5368,
1907
+ "mean_token_accuracy": 0.40980392694473267,
1908
+ "num_tokens": 3574437.0,
1909
+ "step": 211
1910
+ },
1911
+ {
1912
+ "epoch": 0.0424,
1913
+ "grad_norm": 11.23690128326416,
1914
+ "learning_rate": 4.789e-06,
1915
+ "loss": 8.7326,
1916
+ "mean_token_accuracy": 0.45628078281879425,
1917
+ "num_tokens": 3593696.0,
1918
+ "step": 212
1919
+ },
1920
+ {
1921
+ "epoch": 0.0426,
1922
+ "grad_norm": 11.3884859085083,
1923
+ "learning_rate": 4.7880000000000006e-06,
1924
+ "loss": 9.0773,
1925
+ "mean_token_accuracy": 0.4404761791229248,
1926
+ "num_tokens": 3608150.0,
1927
+ "step": 213
1928
+ },
1929
+ {
1930
+ "epoch": 0.0428,
1931
+ "grad_norm": 11.106508255004883,
1932
+ "learning_rate": 4.787000000000001e-06,
1933
+ "loss": 9.5678,
1934
+ "mean_token_accuracy": 0.3500000089406967,
1935
+ "num_tokens": 3627724.0,
1936
+ "step": 214
1937
+ },
1938
+ {
1939
+ "epoch": 0.043,
1940
+ "grad_norm": 11.691924095153809,
1941
+ "learning_rate": 4.7860000000000004e-06,
1942
+ "loss": 8.2192,
1943
+ "mean_token_accuracy": 0.41582491993904114,
1944
+ "num_tokens": 3642224.0,
1945
+ "step": 215
1946
+ },
1947
+ {
1948
+ "epoch": 0.0432,
1949
+ "grad_norm": 13.973259925842285,
1950
+ "learning_rate": 4.785e-06,
1951
+ "loss": 8.9823,
1952
+ "mean_token_accuracy": 0.44195401668548584,
1953
+ "num_tokens": 3660885.0,
1954
+ "step": 216
1955
+ },
1956
+ {
1957
+ "epoch": 0.0434,
1958
+ "grad_norm": 11.744901657104492,
1959
+ "learning_rate": 4.784e-06,
1960
+ "loss": 8.698,
1961
+ "mean_token_accuracy": 0.4291125535964966,
1962
+ "num_tokens": 3679634.0,
1963
+ "step": 217
1964
+ },
1965
+ {
1966
+ "epoch": 0.0436,
1967
+ "grad_norm": 13.440972328186035,
1968
+ "learning_rate": 4.783000000000001e-06,
1969
+ "loss": 8.3414,
1970
+ "mean_token_accuracy": 0.47999998927116394,
1971
+ "num_tokens": 3689286.0,
1972
+ "step": 218
1973
+ },
1974
+ {
1975
+ "epoch": 0.0438,
1976
+ "grad_norm": 9.561469078063965,
1977
+ "learning_rate": 4.782e-06,
1978
+ "loss": 7.6889,
1979
+ "mean_token_accuracy": 0.41898825764656067,
1980
+ "num_tokens": 3710533.0,
1981
+ "step": 219
1982
+ },
1983
+ {
1984
+ "epoch": 0.044,
1985
+ "grad_norm": 12.257551193237305,
1986
+ "learning_rate": 4.7810000000000005e-06,
1987
+ "loss": 8.4541,
1988
+ "mean_token_accuracy": 0.5016103088855743,
1989
+ "num_tokens": 3725145.0,
1990
+ "step": 220
1991
+ },
1992
+ {
1993
+ "epoch": 0.0442,
1994
+ "grad_norm": 10.785005569458008,
1995
+ "learning_rate": 4.78e-06,
1996
+ "loss": 9.7029,
1997
+ "mean_token_accuracy": 0.4015151560306549,
1998
+ "num_tokens": 3743544.0,
1999
+ "step": 221
2000
+ },
2001
+ {
2002
+ "epoch": 0.0444,
2003
+ "grad_norm": 10.52768611907959,
2004
+ "learning_rate": 4.779e-06,
2005
+ "loss": 8.6062,
2006
+ "mean_token_accuracy": 0.40740741789340973,
2007
+ "num_tokens": 3762705.0,
2008
+ "step": 222
2009
+ },
2010
+ {
2011
+ "epoch": 0.0446,
2012
+ "grad_norm": 17.872329711914062,
2013
+ "learning_rate": 4.778000000000001e-06,
2014
+ "loss": 7.3673,
2015
+ "mean_token_accuracy": 0.45370370149612427,
2016
+ "num_tokens": 3777166.0,
2017
+ "step": 223
2018
+ },
2019
+ {
2020
+ "epoch": 0.0448,
2021
+ "grad_norm": 11.053666114807129,
2022
+ "learning_rate": 4.777e-06,
2023
+ "loss": 9.3428,
2024
+ "mean_token_accuracy": 0.4186507910490036,
2025
+ "num_tokens": 3795909.0,
2026
+ "step": 224
2027
+ },
2028
+ {
2029
+ "epoch": 0.045,
2030
+ "grad_norm": 9.966497421264648,
2031
+ "learning_rate": 4.7760000000000005e-06,
2032
+ "loss": 7.9071,
2033
+ "mean_token_accuracy": 0.44636015594005585,
2034
+ "num_tokens": 3815176.0,
2035
+ "step": 225
2036
+ },
2037
+ {
2038
+ "epoch": 0.0452,
2039
+ "grad_norm": 12.605799674987793,
2040
+ "learning_rate": 4.775e-06,
2041
+ "loss": 8.3063,
2042
+ "mean_token_accuracy": 0.41692790389060974,
2043
+ "num_tokens": 3834478.0,
2044
+ "step": 226
2045
+ },
2046
+ {
2047
+ "epoch": 0.0454,
2048
+ "grad_norm": 9.679677963256836,
2049
+ "learning_rate": 4.774e-06,
2050
+ "loss": 8.7331,
2051
+ "mean_token_accuracy": 0.45628078281879425,
2052
+ "num_tokens": 3853737.0,
2053
+ "step": 227
2054
+ },
2055
+ {
2056
+ "epoch": 0.0456,
2057
+ "grad_norm": 27.174549102783203,
2058
+ "learning_rate": 4.773000000000001e-06,
2059
+ "loss": 8.0078,
2060
+ "mean_token_accuracy": 0.4434434473514557,
2061
+ "num_tokens": 3873882.0,
2062
+ "step": 228
2063
+ },
2064
+ {
2065
+ "epoch": 0.0458,
2066
+ "grad_norm": 11.591468811035156,
2067
+ "learning_rate": 4.772e-06,
2068
+ "loss": 8.237,
2069
+ "mean_token_accuracy": 0.36707451939582825,
2070
+ "num_tokens": 3888302.0,
2071
+ "step": 229
2072
+ },
2073
+ {
2074
+ "epoch": 0.046,
2075
+ "grad_norm": 10.10312271118164,
2076
+ "learning_rate": 4.7710000000000006e-06,
2077
+ "loss": 7.6694,
2078
+ "mean_token_accuracy": 0.5105820149183273,
2079
+ "num_tokens": 3902804.0,
2080
+ "step": 230
2081
+ },
2082
+ {
2083
+ "epoch": 0.0462,
2084
+ "grad_norm": 13.620348930358887,
2085
+ "learning_rate": 4.77e-06,
2086
+ "loss": 8.4942,
2087
+ "mean_token_accuracy": 0.421875,
2088
+ "num_tokens": 3922146.0,
2089
+ "step": 231
2090
+ },
2091
+ {
2092
+ "epoch": 0.0464,
2093
+ "grad_norm": 11.014819145202637,
2094
+ "learning_rate": 4.769e-06,
2095
+ "loss": 7.637,
2096
+ "mean_token_accuracy": 0.4495798349380493,
2097
+ "num_tokens": 3936372.0,
2098
+ "step": 232
2099
+ },
2100
+ {
2101
+ "epoch": 0.0466,
2102
+ "grad_norm": 14.10721492767334,
2103
+ "learning_rate": 4.768000000000001e-06,
2104
+ "loss": 7.4068,
2105
+ "mean_token_accuracy": 0.5078571289777756,
2106
+ "num_tokens": 3946456.0,
2107
+ "step": 233
2108
+ },
2109
+ {
2110
+ "epoch": 0.0468,
2111
+ "grad_norm": 13.256854057312012,
2112
+ "learning_rate": 4.767e-06,
2113
+ "loss": 7.9252,
2114
+ "mean_token_accuracy": 0.41277891397476196,
2115
+ "num_tokens": 3965955.0,
2116
+ "step": 234
2117
+ },
2118
+ {
2119
+ "epoch": 0.047,
2120
+ "grad_norm": 12.264280319213867,
2121
+ "learning_rate": 4.766000000000001e-06,
2122
+ "loss": 7.6561,
2123
+ "mean_token_accuracy": 0.4913793057203293,
2124
+ "num_tokens": 3980412.0,
2125
+ "step": 235
2126
+ },
2127
+ {
2128
+ "epoch": 0.0472,
2129
+ "grad_norm": 11.942499160766602,
2130
+ "learning_rate": 4.765e-06,
2131
+ "loss": 8.0462,
2132
+ "mean_token_accuracy": 0.4900284856557846,
2133
+ "num_tokens": 3999823.0,
2134
+ "step": 236
2135
+ },
2136
+ {
2137
+ "epoch": 0.0474,
2138
+ "grad_norm": 10.043482780456543,
2139
+ "learning_rate": 4.7640000000000005e-06,
2140
+ "loss": 7.0965,
2141
+ "mean_token_accuracy": 0.4025973975658417,
2142
+ "num_tokens": 4014414.0,
2143
+ "step": 237
2144
+ },
2145
+ {
2146
+ "epoch": 0.0476,
2147
+ "grad_norm": 12.545036315917969,
2148
+ "learning_rate": 4.763000000000001e-06,
2149
+ "loss": 7.667,
2150
+ "mean_token_accuracy": 0.38708220422267914,
2151
+ "num_tokens": 4028922.0,
2152
+ "step": 238
2153
+ },
2154
+ {
2155
+ "epoch": 0.0478,
2156
+ "grad_norm": 10.067218780517578,
2157
+ "learning_rate": 4.762e-06,
2158
+ "loss": 7.1117,
2159
+ "mean_token_accuracy": 0.37129031121730804,
2160
+ "num_tokens": 4050175.0,
2161
+ "step": 239
2162
+ },
2163
+ {
2164
+ "epoch": 0.048,
2165
+ "grad_norm": 13.74410343170166,
2166
+ "learning_rate": 4.761000000000001e-06,
2167
+ "loss": 7.9069,
2168
+ "mean_token_accuracy": 0.47333332896232605,
2169
+ "num_tokens": 4064811.0,
2170
+ "step": 240
2171
+ },
2172
+ {
2173
+ "epoch": 0.0482,
2174
+ "grad_norm": 9.813583374023438,
2175
+ "learning_rate": 4.76e-06,
2176
+ "loss": 6.8128,
2177
+ "mean_token_accuracy": 0.4273170679807663,
2178
+ "num_tokens": 4079317.0,
2179
+ "step": 241
2180
+ },
2181
+ {
2182
+ "epoch": 0.0484,
2183
+ "grad_norm": 10.31633472442627,
2184
+ "learning_rate": 4.7590000000000005e-06,
2185
+ "loss": 7.676,
2186
+ "mean_token_accuracy": 0.43584655225276947,
2187
+ "num_tokens": 4094093.0,
2188
+ "step": 242
2189
+ },
2190
+ {
2191
+ "epoch": 0.0486,
2192
+ "grad_norm": 13.174894332885742,
2193
+ "learning_rate": 4.758e-06,
2194
+ "loss": 8.5029,
2195
+ "mean_token_accuracy": 0.42592592537403107,
2196
+ "num_tokens": 4113778.0,
2197
+ "step": 243
2198
+ },
2199
+ {
2200
+ "epoch": 0.0488,
2201
+ "grad_norm": 11.068340301513672,
2202
+ "learning_rate": 4.757e-06,
2203
+ "loss": 7.6392,
2204
+ "mean_token_accuracy": 0.5028571337461472,
2205
+ "num_tokens": 4125078.0,
2206
+ "step": 244
2207
+ },
2208
+ {
2209
+ "epoch": 0.049,
2210
+ "grad_norm": 11.669493675231934,
2211
+ "learning_rate": 4.756000000000001e-06,
2212
+ "loss": 8.0877,
2213
+ "mean_token_accuracy": 0.3697916716337204,
2214
+ "num_tokens": 4144451.0,
2215
+ "step": 245
2216
+ },
2217
+ {
2218
+ "epoch": 0.0492,
2219
+ "grad_norm": 12.121454238891602,
2220
+ "learning_rate": 4.755e-06,
2221
+ "loss": 8.3639,
2222
+ "mean_token_accuracy": 0.3320707082748413,
2223
+ "num_tokens": 4164189.0,
2224
+ "step": 246
2225
+ },
2226
+ {
2227
+ "epoch": 0.0494,
2228
+ "grad_norm": 11.231935501098633,
2229
+ "learning_rate": 4.7540000000000006e-06,
2230
+ "loss": 8.1039,
2231
+ "mean_token_accuracy": 0.40060852468013763,
2232
+ "num_tokens": 4183560.0,
2233
+ "step": 247
2234
+ },
2235
+ {
2236
+ "epoch": 0.0496,
2237
+ "grad_norm": 14.818300247192383,
2238
+ "learning_rate": 4.753e-06,
2239
+ "loss": 8.3393,
2240
+ "mean_token_accuracy": 0.4365079402923584,
2241
+ "num_tokens": 4203160.0,
2242
+ "step": 248
2243
+ },
2244
+ {
2245
+ "epoch": 0.0498,
2246
+ "grad_norm": 10.595967292785645,
2247
+ "learning_rate": 4.752e-06,
2248
+ "loss": 8.2095,
2249
+ "mean_token_accuracy": 0.3896551728248596,
2250
+ "num_tokens": 4222502.0,
2251
+ "step": 249
2252
+ },
2253
+ {
2254
+ "epoch": 0.05,
2255
+ "grad_norm": 10.283987998962402,
2256
+ "learning_rate": 4.751000000000001e-06,
2257
+ "loss": 7.8432,
2258
+ "mean_token_accuracy": 0.41187499463558197,
2259
+ "num_tokens": 4236999.0,
2260
+ "step": 250
2261
+ }
2262
+ ],
2263
+ "logging_steps": 1,
2264
+ "max_steps": 5000,
2265
+ "num_input_tokens_seen": 0,
2266
+ "num_train_epochs": 1,
2267
+ "save_steps": 250,
2268
+ "stateful_callbacks": {
2269
+ "TrainerControl": {
2270
+ "args": {
2271
+ "should_epoch_stop": false,
2272
+ "should_evaluate": false,
2273
+ "should_log": false,
2274
+ "should_save": true,
2275
+ "should_training_stop": false
2276
+ },
2277
+ "attributes": {}
2278
+ }
2279
+ },
2280
+ "total_flos": 1.970126341013975e+17,
2281
+ "train_batch_size": 1,
2282
+ "trial_name": null,
2283
+ "trial_params": null
2284
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:552386998b88dd47fc2a23967a5c6beff7f2b7783f5e34527219b0a8f1d48205
3
+ size 5816
checkpoint-250/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c80c92a9c25702a4416af4b6783f141f47a94fed375f300d85315bcef9f3b7
3
+ size 10107280
checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:634521430b75312e7ac75dcaced0b6cbdb4f09667712e9dc40adf6c4fbcc6954
3
+ size 20279354
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47225804ff95392a66d24cffda07bfcd22b73026ace32c85a52e639cea18a3a8
3
+ size 14244
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ee1d47813d00a4e1e72607b91aa663b800ea0e750aa7e232f6a5ddab77a344
3
+ size 1064
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:552386998b88dd47fc2a23967a5c6beff7f2b7783f5e34527219b0a8f1d48205
3
+ size 5816
checkpoint-500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-750/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-750/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-750/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edc8e99d87e6e60907281cf4e3684e91a850cb6d46b44f75b45bebf9b4fd60c0
3
+ size 10107280
checkpoint-750/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-750/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-750/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6426574cc99c29ddc51a6b6112c38e4c3ffb5c67ffac6caffb5fc6199ef7f1d
3
+ size 20279354
checkpoint-750/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e0761f5d735d3e0af3e96783bb63e61cf21b8444a1b15db1eee557804b0ea0
3
+ size 14244