--- dataset_info: features: - name: audio dtype: audio - name: sentence dtype: string - name: phonemes dtype: string splits: - name: train num_bytes: 754910024.376 num_examples: 3336 - name: test num_bytes: 185837173 num_examples: 834 download_size: 885325061 dataset_size: 940747197.376 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: mit task_categories: - text-to-speech - automatic-speech-recognition language: - dv tags: - dhivehi - divehi - speech - voice pretty_name: kn_audio_dataset size_categories: - 1K Your browser does not support the audio element. | | | | | | | | ## Use Cases This dataset is suitable for: - **Text-to-Speech (TTS) synthesis** - Training neural speech synthesis models - **Automatic Speech Recognition (ASR)** - Dhivehi speech recognition systems - **Phonetic research** - Analysis of Dhivehi phonology and pronunciation - **Language preservation** - Digital archiving of Dhivehi speech patterns - **Cross-lingual studies** - Comparative phonetic analysis ## Loading the Dataset ### Using 🤗 Datasets ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("alakxender/dhivehi-audio-kn") # Access training split train_data = dataset["train"] # Example: Get first sample sample = train_data[0] print(f"Text: {sample['sentence']}") print(f"Phonemes: {sample['phonemes']}") # Audio is available in sample['audio'] ``` ## Acknowledgments Special thanks to [@kudanai](https://huggingface.co/kudanai) for providing the dataset used as the source. This dataset retains the same speaker, offering consistent voice characteristics across all recordings.