Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,70 @@ task_categories:
|
|
32 |
|
33 |
# MS-COCO2017
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
```py
|
38 |
!wget http://images.cocodataset.org/zips/train2017.zip
|
@@ -116,56 +179,4 @@ from datasets import load_dataset
|
|
116 |
|
117 |
dataset = load_dataset("imagefolder", data_dir="/content/coco_imagefolder")
|
118 |
dataset.push_to_hub("ariG23498/coco2017")
|
119 |
-
```
|
120 |
-
|
121 |
-
## Use the dataset
|
122 |
-
|
123 |
-
```py
|
124 |
-
from datasets import load_dataset
|
125 |
-
ds = load_dataset("ariG23498/coco2017", streaming=True, split="validation")
|
126 |
-
|
127 |
-
sample = next(iter(ds))
|
128 |
-
|
129 |
-
from PIL import Image, ImageDraw
|
130 |
-
|
131 |
-
def draw_bboxes_on_image(
|
132 |
-
image: Image.Image,
|
133 |
-
objects: dict,
|
134 |
-
category_names: dict = None,
|
135 |
-
box_color: str = "red",
|
136 |
-
text_color: str = "white"
|
137 |
-
):
|
138 |
-
draw = ImageDraw.Draw(image)
|
139 |
-
bboxes = objects.get("bbox", [])
|
140 |
-
categories = objects.get("categories", [])
|
141 |
-
|
142 |
-
for i, bbox in enumerate(bboxes):
|
143 |
-
x, y, width, height = bbox
|
144 |
-
# PIL expects (x_min, y_min, x_max, y_max) for rectangle
|
145 |
-
x_min, y_min, x_max, y_max = x, y, x + width, y + height
|
146 |
-
|
147 |
-
# Draw the rectangle
|
148 |
-
draw.rectangle([x_min, y_min, x_max, y_max], outline=box_color, width=2)
|
149 |
-
|
150 |
-
# Get category label
|
151 |
-
category_id = categories[i]
|
152 |
-
label = str(category_id)
|
153 |
-
if category_names and category_id in category_names:
|
154 |
-
label = category_names[category_id]
|
155 |
-
|
156 |
-
# Draw the category label
|
157 |
-
text_bbox = draw.textbbox((x_min, y_min), label) # Use textbbox to get text size
|
158 |
-
text_width = text_bbox[2] - text_bbox[0]
|
159 |
-
text_height = text_bbox[3] - text_bbox[1]
|
160 |
-
|
161 |
-
# Draw a filled rectangle behind the text for better readability
|
162 |
-
draw.rectangle([x_min, y_min - text_height - 5, x_min + text_width + 5, y_min], fill=box_color)
|
163 |
-
draw.text((x_min + 2, y_min - text_height - 2), label, fill=text_color)
|
164 |
-
|
165 |
-
return image
|
166 |
-
|
167 |
-
draw_bboxes_on_image(
|
168 |
-
image=sample["image"],
|
169 |
-
objects=sample["objects"],
|
170 |
-
)
|
171 |
```
|
|
|
32 |
|
33 |
# MS-COCO2017
|
34 |
|
35 |
+
## Use the dataset
|
36 |
+
|
37 |
+
```py
|
38 |
+
from datasets import load_dataset
|
39 |
+
ds = load_dataset("ariG23498/coco2017", streaming=True, split="validation")
|
40 |
+
|
41 |
+
sample = next(iter(ds))
|
42 |
+
|
43 |
+
from PIL import Image, ImageDraw
|
44 |
+
|
45 |
+
def draw_bboxes_on_image(
|
46 |
+
image: Image.Image,
|
47 |
+
objects: dict,
|
48 |
+
category_names: dict = None,
|
49 |
+
box_color: str = "red",
|
50 |
+
text_color: str = "white"
|
51 |
+
):
|
52 |
+
draw = ImageDraw.Draw(image)
|
53 |
+
bboxes = objects.get("bbox", [])
|
54 |
+
categories = objects.get("categories", [])
|
55 |
+
|
56 |
+
for i, bbox in enumerate(bboxes):
|
57 |
+
x, y, width, height = bbox
|
58 |
+
# PIL expects (x_min, y_min, x_max, y_max) for rectangle
|
59 |
+
x_min, y_min, x_max, y_max = x, y, x + width, y + height
|
60 |
+
|
61 |
+
# Draw the rectangle
|
62 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline=box_color, width=2)
|
63 |
+
|
64 |
+
# Get category label
|
65 |
+
category_id = categories[i]
|
66 |
+
label = str(category_id)
|
67 |
+
if category_names and category_id in category_names:
|
68 |
+
label = category_names[category_id]
|
69 |
+
|
70 |
+
# Draw the category label
|
71 |
+
text_bbox = draw.textbbox((x_min, y_min), label) # Use textbbox to get text size
|
72 |
+
text_width = text_bbox[2] - text_bbox[0]
|
73 |
+
text_height = text_bbox[3] - text_bbox[1]
|
74 |
+
|
75 |
+
# Draw a filled rectangle behind the text for better readability
|
76 |
+
draw.rectangle([x_min, y_min - text_height - 5, x_min + text_width + 5, y_min], fill=box_color)
|
77 |
+
draw.text((x_min + 2, y_min - text_height - 2), label, fill=text_color)
|
78 |
+
|
79 |
+
return image
|
80 |
+
|
81 |
+
draw_bboxes_on_image(
|
82 |
+
image=sample["image"],
|
83 |
+
objects=sample["objects"],
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Get the categories
|
88 |
+
|
89 |
+
```py
|
90 |
+
import json
|
91 |
+
|
92 |
+
with open("/content/annotations/instances_train2017.json") as f:
|
93 |
+
instances = json.load(f)
|
94 |
+
|
95 |
+
instances["categories"]
|
96 |
+
```
|
97 |
+
|
98 |
+
## Build the dataset and upload to Hub
|
99 |
|
100 |
```py
|
101 |
!wget http://images.cocodataset.org/zips/train2017.zip
|
|
|
179 |
|
180 |
dataset = load_dataset("imagefolder", data_dir="/content/coco_imagefolder")
|
181 |
dataset.push_to_hub("ariG23498/coco2017")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
```
|