File size: 4,635 Bytes
081b853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6671267
 
800f161
 
6671267
 
 
 
 
 
800f161
 
 
 
6671267
 
 
 
 
081b853
 
38fd5eb
6951f5d
081b853
 
 
f59ae6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081b853
 
1131b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59191ab
1131b0d
 
 
59191ab
1131b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081b853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: cc-by-nc-sa-4.0
task_categories:
- audio-classification
language:
- en
tags:
- MIDI
- music
- score
- representations
- tokenized
- music AI
pretty_name: godzillapiano
size_categories:
- 1M<n<10M
dataset_info:
  features:
  - name: dataset
    dtype: string
  - name: md5
    dtype: string
  - name: score
    sequence: int64
  splits:
  - name: train
    num_bytes: 56796114600
    num_examples: 1138048
  download_size: 7136701973
  dataset_size: 56796114600
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Godzilla Piano
## 1.1M+ select normalized solo piano scores representations from [Godzilla MIDI dataset](https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset)

![Godzilla-Piano-Logo.png](https://cdn-uploads.huggingface.co/production/uploads/5f57ea2d3f32f12a3c0692e6/hxmRb6PZE6EpoLaiUaQ5X.png)

```
Godzilla's Musical Transformation by Microsoft Copilot

In the neon glow of a midnight throng,
A beast with headphones hums along.
Where thunderous roars once led the fray,
Now delicate keystrokes steal the day.

Godzilla, master of storm and lore,
Swaps terror for tunes, a musical score.
Each note a spark on the ebony keys,
Transforming chaos into rhythmic ease.

Under moonlit skies and electric sound,
The once-feared monster becomes beautifully profound.
A gentle reminder in each playful beat,
Even legends can find joy in something sweet.

So let the bass and melody entwine,
In a magical dance, uniquely divine.
For in each unexpected twist and gleam,
Lies the heart of a dreamer and a dreamer's dream.
```

***

## Installation and use

***

### Load dataset

```python
#===================================================================

from datasets import load_dataset

#===================================================================

godzilla_piano = load_dataset('asigalov61/Godzilla-Piano')

dataset_split = 'train'
dataset_entry_index = 0

dataset_entry = godzilla_piano[dataset_split][dataset_entry_index]

midi_dataset = dataset_entry['dataset']
midi_hash = dataset_entry['md5']
midi_score = dataset_entry['score']

print(midi_dataset)
print(midi_hash)
print(midi_score[:15])
```

***

### Decode score to MIDI

```python
#===================================================================
# !git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#===================================================================

import TMIDIX

#===================================================================

def decode_to_ms_MIDI_score(midi_score):

    score = []

    time = 0
    
    for m in midi_score:

        if 0 <= m < 128:
            time += m * 32

        elif 128 < m < 256:
            dur = (m-128) * 32

        elif 256 < m < 384:
            pitch = (m-256)

        elif 384 < m < 512:
            vel = (m-384)

            score.append(['note', time, dur, 0, pitch, vel, 0])

    return score
    
#===================================================================

ms_MIDI_score = decode_to_ms_MIDI_score(midi_score)

#===================================================================

detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(ms_MIDI_score,
                                                          output_signature = midi_hash,
                                                          output_file_name = midi_hash,
                                                          track_name='Project Los Angeles'
                                                          )
```

***

## Citations

```bibtex
@misc{GodzillaMIDIDataset2025,
  title        = {Godzilla MIDI Dataset: Enormous, comprehensive, normalized and searchable MIDI dataset for MIR and symbolic music AI purposes},
  author       = {Alex Lev},
  publisher    = {Project Los Angeles / Tegridy Code},
  year         = {2025},
  url          = {https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset}
```

```bibtex
@misc {breadai_2025,
    author       = { {BreadAi} },
    title        = { Sourdough-midi-dataset (Revision cd19431) },
    year         = 2025,
    url          = {\url{https://huggingface.co/datasets/BreadAi/Sourdough-midi-dataset}},
    doi          = { 10.57967/hf/4743 },
    publisher    = { Hugging Face }
}
```

```bibtex
@inproceedings{bradshawaria,
  title={Aria-MIDI: A Dataset of Piano MIDI Files for Symbolic Music Modeling},
  author={Bradshaw, Louis and Colton, Simon},
  booktitle={International Conference on Learning Representations},
  year={2025},
  url={https://openreview.net/forum?id=X5hrhgndxW}, 
}
```

***

### Project Los Angeles
### Tegridy Code 2025