asigalov61 commited on
Commit
10c9409
1 Parent(s): 0004d49

Upload 2 files

Browse files
Imagen_MIDI_Images_Solo_Piano_Model_Maker.ipynb ADDED
@@ -0,0 +1,490 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "private_outputs": true,
7
+ "provenance": [],
8
+ "gpuType": "T4"
9
+ },
10
+ "kernelspec": {
11
+ "name": "python3",
12
+ "display_name": "Python 3"
13
+ },
14
+ "language_info": {
15
+ "name": "python"
16
+ },
17
+ "accelerator": "GPU"
18
+ },
19
+ "cells": [
20
+ {
21
+ "cell_type": "markdown",
22
+ "source": [
23
+ "# Imagen MIDI Images Solo Piano Model Maker (ver. 1.0)\n",
24
+ "\n",
25
+ "***\n",
26
+ "\n",
27
+ "Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
28
+ "\n",
29
+ "***\n",
30
+ "\n",
31
+ "WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
32
+ "\n",
33
+ "***\n",
34
+ "\n",
35
+ "#### Project Los Angeles\n",
36
+ "\n",
37
+ "#### Tegridy Code 2024\n",
38
+ "\n",
39
+ "***"
40
+ ],
41
+ "metadata": {
42
+ "id": "ipXP5fe65oQQ"
43
+ }
44
+ },
45
+ {
46
+ "cell_type": "markdown",
47
+ "source": [
48
+ "# (SETUP ENVIRONMENT)"
49
+ ],
50
+ "metadata": {
51
+ "id": "ZLJbLL226y2m"
52
+ }
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {
58
+ "id": "pxNxlyfZ8hCg",
59
+ "cellView": "form"
60
+ },
61
+ "outputs": [],
62
+ "source": [
63
+ "# @title Install dependecies\n",
64
+ "!git clone --depth 1 https://github.com/asigalov61/tegridy-tools\n",
65
+ "\n",
66
+ "!pip install -U imagen-pytorch\n",
67
+ "\n",
68
+ "!pip install -U huggingface_hub"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "source": [
74
+ "#@title Import all needed modules\n",
75
+ "\n",
76
+ "print('=' * 70)\n",
77
+ "print('Loading core modules...')\n",
78
+ "\n",
79
+ "import os\n",
80
+ "\n",
81
+ "import numpy as np\n",
82
+ "from tqdm import tqdm\n",
83
+ "\n",
84
+ "from huggingface_hub import snapshot_download\n",
85
+ "\n",
86
+ "print('Done!')\n",
87
+ "print('=' * 70)\n",
88
+ "print('Creating I/O dirs...')\n",
89
+ "\n",
90
+ "if not os.path.exists('/content/Dataset'):\n",
91
+ " os.makedirs('/content/Dataset')\n",
92
+ "\n",
93
+ "print('Done!')\n",
94
+ "print('=' * 70)\n",
95
+ "print('Loading tegridy-tools modules...')\n",
96
+ "print('=' * 70)\n",
97
+ "\n",
98
+ "%cd /content/tegridy-tools/tegridy-tools\n",
99
+ "\n",
100
+ "import TMIDIX\n",
101
+ "import TPLOTS\n",
102
+ "\n",
103
+ "%cd /content/\n",
104
+ "\n",
105
+ "print('=' * 70)\n",
106
+ "print('Done!')\n",
107
+ "print('=' * 70)\n",
108
+ "print('Loading Imagen...')\n",
109
+ "\n",
110
+ "import torch\n",
111
+ "from imagen_pytorch import Unet, Imagen, ImagenTrainer\n",
112
+ "from imagen_pytorch.data import Dataset\n",
113
+ "\n",
114
+ "print('Done!')\n",
115
+ "print('=' * 70)\n",
116
+ "print('Torch version:', torch.__version__)\n",
117
+ "print('=' * 70)\n",
118
+ "print('Done!')\n",
119
+ "print('=' * 70)"
120
+ ],
121
+ "metadata": {
122
+ "id": "OblKfMMT8rfM",
123
+ "cellView": "form"
124
+ },
125
+ "execution_count": null,
126
+ "outputs": []
127
+ },
128
+ {
129
+ "cell_type": "markdown",
130
+ "source": [
131
+ "# (DOWNLOAD DATASET)"
132
+ ],
133
+ "metadata": {
134
+ "id": "iDdMYg4haGFn"
135
+ }
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "source": [
140
+ "# @title Download and unzip MIDI Images POP909 Solo Piano dataset\n",
141
+ "\n",
142
+ "print('=' * 70)\n",
143
+ "print('Downloading MIDI Images dataset repo...')\n",
144
+ "print('=' * 70)\n",
145
+ "\n",
146
+ "repo_id = \"asigalov61/MIDI-Images\"\n",
147
+ "repo_type = 'dataset'\n",
148
+ "\n",
149
+ "local_dir = \"./MIDI-Images\"\n",
150
+ "\n",
151
+ "snapshot_download(repo_id, repo_type=repo_type, local_dir=local_dir)\n",
152
+ "\n",
153
+ "print('=' * 70)\n",
154
+ "print('Done!')\n",
155
+ "print('=' * 70)\n",
156
+ "\n",
157
+ "print('Unzipping POP909 MIDI Images dataset...')\n",
158
+ "print('=' * 70)\n",
159
+ "%cd /content/Dataset/\n",
160
+ "!unzip /content/MIDI-Images/POP909_MIDI_Dataset_Solo_Piano_MIDI_Images_128_128_32_BW_Ver_1_CC_BY_NC_SA.zip > /dev/null\n",
161
+ "%cd /content/\n",
162
+ "print('=' * 70)\n",
163
+ "print('Done!')\n",
164
+ "print('=' * 70)"
165
+ ],
166
+ "metadata": {
167
+ "cellView": "form",
168
+ "id": "ydi1B-KD7oCC"
169
+ },
170
+ "execution_count": null,
171
+ "outputs": []
172
+ },
173
+ {
174
+ "cell_type": "markdown",
175
+ "source": [
176
+ "# (INIT MODEL)"
177
+ ],
178
+ "metadata": {
179
+ "id": "llSBItTq9LaP"
180
+ }
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "source": [
185
+ "# @title Init Imagen model\n",
186
+ "\n",
187
+ "print('=' * 70)\n",
188
+ "print('Instantiating Imagen model...')\n",
189
+ "print('=' * 70)\n",
190
+ "\n",
191
+ "# unets for unconditional imagen\n",
192
+ "\n",
193
+ "unet = Unet(\n",
194
+ " dim = 64,\n",
195
+ " dim_mults = (1, 2, 4, 8),\n",
196
+ " num_resnet_blocks = 1,\n",
197
+ " channels=1,\n",
198
+ " layer_attns = (False, False, False, True),\n",
199
+ " layer_cross_attns = False\n",
200
+ ")\n",
201
+ "\n",
202
+ "# imagen, which contains the unet above\n",
203
+ "\n",
204
+ "imagen = Imagen(\n",
205
+ " condition_on_text = False, # this must be set to False for unconditional Imagen\n",
206
+ " unets = unet,\n",
207
+ " channels=1,\n",
208
+ " image_sizes = 128,\n",
209
+ " timesteps = 1000\n",
210
+ ")\n",
211
+ "\n",
212
+ "trainer = ImagenTrainer(\n",
213
+ " imagen = imagen,\n",
214
+ " split_valid_from_train = True # whether to split the validation dataset from the training\n",
215
+ ").cuda()\n",
216
+ "\n",
217
+ "print('=' * 70)\n",
218
+ "print('Done!')\n",
219
+ "print('=' * 70)"
220
+ ],
221
+ "metadata": {
222
+ "id": "m_1uKB_I5ctR",
223
+ "cellView": "form"
224
+ },
225
+ "execution_count": null,
226
+ "outputs": []
227
+ },
228
+ {
229
+ "cell_type": "markdown",
230
+ "source": [
231
+ "# (INIT DATASET)"
232
+ ],
233
+ "metadata": {
234
+ "id": "vAJkOmUD-Bzb"
235
+ }
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "source": [
240
+ "# @title Prep and init dataset\n",
241
+ "batch_size = 16 # @param {\"type\":\"slider\",\"min\":4,\"max\":64,\"step\":4}\n",
242
+ "\n",
243
+ "print('=' * 70)\n",
244
+ "print('Instantiating dataloader...')\n",
245
+ "print('=' * 70)\n",
246
+ "\n",
247
+ "# instantiate your dataloader, which returns the necessary inputs to the DDPM as tuple in the order of images, text embeddings, then text masks. in this case, only images is returned as it is unconditional training\n",
248
+ "\n",
249
+ "dataset = Dataset('/content/Dataset', image_size = 128)\n",
250
+ "\n",
251
+ "try:\n",
252
+ " trainer.add_train_dataset(dataset, batch_size = batch_size)\n",
253
+ "\n",
254
+ "except:\n",
255
+ " print('Dataset is ready!')\n",
256
+ " pass\n",
257
+ "\n",
258
+ "print('=' * 70)\n",
259
+ "print('Done!')\n",
260
+ "print('=' * 70)"
261
+ ],
262
+ "metadata": {
263
+ "cellView": "form",
264
+ "id": "nC4H4bKE-GuQ"
265
+ },
266
+ "execution_count": null,
267
+ "outputs": []
268
+ },
269
+ {
270
+ "cell_type": "markdown",
271
+ "source": [
272
+ "# (TRAIN MODEL)"
273
+ ],
274
+ "metadata": {
275
+ "id": "9-R2bCz1_M4Z"
276
+ }
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "source": [
281
+ "# @title Train Imagen model\n",
282
+ "\n",
283
+ "NUM_EPOCHS = 10\n",
284
+ "\n",
285
+ "print('=' * 70)\n",
286
+ "print('Training...')\n",
287
+ "print('=' * 70)\n",
288
+ "\n",
289
+ "NUM_STEPS = NUM_EPOCHS * len(dataset)\n",
290
+ "\n",
291
+ "# working training loop\n",
292
+ "\n",
293
+ "epoch = 1\n",
294
+ "\n",
295
+ "print('=' * 70)\n",
296
+ "print('Epoch #', epoch)\n",
297
+ "print('=' * 70)\n",
298
+ "\n",
299
+ "for i in range(NUM_STEPS):\n",
300
+ "\n",
301
+ " try:\n",
302
+ "\n",
303
+ " loss = trainer.train_step(unet_number = 1, max_batch_size = batch_size)\n",
304
+ " print(f'loss: {loss}', '===', i)\n",
305
+ "\n",
306
+ " if not (i % 50):\n",
307
+ " valid_loss = trainer.valid_step(unet_number = 1, max_batch_size = batch_size)\n",
308
+ " print('=' * 70)\n",
309
+ " print(f'valid loss: {valid_loss}')\n",
310
+ " print('=' * 70)\n",
311
+ "\n",
312
+ " if not (i % 1000) and trainer.is_main: # is_main makes sure this can run in distributed\n",
313
+ " print('=' * 70)\n",
314
+ " images = trainer.sample(batch_size = batch_size // 4, return_pil_images = True) # returns List[Image]\n",
315
+ " images[0].save(f'./sample-{i // 100}.png')\n",
316
+ " print('=' * 70)\n",
317
+ "\n",
318
+ " if not (i % len(dataset)):\n",
319
+ " print('=' * 70)\n",
320
+ " print('Epoch #', epoch)\n",
321
+ " print('=' * 70)\n",
322
+ "\n",
323
+ " except KeyboardInterrupt:\n",
324
+ " print('=' * 70)\n",
325
+ " print('Stopping training...')\n",
326
+ " break\n",
327
+ "\n",
328
+ "print('=' * 70)\n",
329
+ "print('Done!')\n",
330
+ "print('=' * 70)"
331
+ ],
332
+ "metadata": {
333
+ "cellView": "form",
334
+ "id": "PPH5xRwl9kB7"
335
+ },
336
+ "execution_count": null,
337
+ "outputs": []
338
+ },
339
+ {
340
+ "cell_type": "markdown",
341
+ "source": [
342
+ "# (SAVE/LOAD MODEL)"
343
+ ],
344
+ "metadata": {
345
+ "id": "mA-Of_2-BF7n"
346
+ }
347
+ },
348
+ {
349
+ "cell_type": "code",
350
+ "source": [
351
+ "# @title Save trained model\n",
352
+ "\n",
353
+ "print('=' * 70)\n",
354
+ "print('Saving model...')\n",
355
+ "print('=' * 70)\n",
356
+ "\n",
357
+ "trainer.save('./Imagen_POP909_64_dim_'+str(i)+'_steps_'+str(loss)+'_loss.ckpt')\n",
358
+ "\n",
359
+ "print('=' * 70)\n",
360
+ "print('Done!')\n",
361
+ "print('=' * 70)"
362
+ ],
363
+ "metadata": {
364
+ "id": "3GmoHTGW2_h0",
365
+ "cellView": "form"
366
+ },
367
+ "execution_count": null,
368
+ "outputs": []
369
+ },
370
+ {
371
+ "cell_type": "code",
372
+ "source": [
373
+ "# @title Load/reload trained model\n",
374
+ "full_path_to_model_checkpoint = \"./Imagen_POP909_64_dim_10000_steps_0.01_loss.ckpt\" # @param {\"type\":\"string\"}\n",
375
+ "\n",
376
+ "print('=' * 70)\n",
377
+ "print('Loading model...')\n",
378
+ "print('=' * 70)\n",
379
+ "\n",
380
+ "unet = Unet(\n",
381
+ " dim = 64,\n",
382
+ " dim_mults = (1, 2, 4, 8),\n",
383
+ " num_resnet_blocks = 1,\n",
384
+ " channels=1,\n",
385
+ " layer_attns = (False, False, False, True),\n",
386
+ " layer_cross_attns = False\n",
387
+ ")\n",
388
+ "\n",
389
+ "imagen = Imagen(\n",
390
+ " condition_on_text = False, # this must be set to False for unconditional Imagen\n",
391
+ " unets = unet,\n",
392
+ " channels=1,\n",
393
+ " image_sizes = 128,\n",
394
+ " timesteps = 1000\n",
395
+ ")\n",
396
+ "\n",
397
+ "trainer = ImagenTrainer(\n",
398
+ " imagen = imagen,\n",
399
+ " split_valid_from_train = True # whether to split the validation dataset from the training\n",
400
+ ").cuda()\n",
401
+ "\n",
402
+ "trainer.load(full_path_to_model_checkpoint)\n",
403
+ "\n",
404
+ "print('=' * 70)\n",
405
+ "print('Done!')\n",
406
+ "print('=' * 70)"
407
+ ],
408
+ "metadata": {
409
+ "id": "lBK05tTeBCIz",
410
+ "cellView": "form"
411
+ },
412
+ "execution_count": null,
413
+ "outputs": []
414
+ },
415
+ {
416
+ "cell_type": "markdown",
417
+ "source": [
418
+ "# (GENERATE)"
419
+ ],
420
+ "metadata": {
421
+ "id": "uBB8c3sGFQ78"
422
+ }
423
+ },
424
+ {
425
+ "cell_type": "code",
426
+ "source": [
427
+ "# @title Generate music\n",
428
+ "\n",
429
+ "number_of_compositions_to_generate = 8 # @param {\"type\":\"slider\",\"min\":1,\"max\":64,\"step\":1}\n",
430
+ "noise_threshold = 128 # @param {\"type\":\"slider\",\"min\":0,\"max\":255,\"step\":1}\n",
431
+ "\n",
432
+ "print('=' * 70)\n",
433
+ "print('Imagen Model Generator')\n",
434
+ "print('=' * 70)\n",
435
+ "print('Generating', number_of_compositions_to_generate, 'compositions...')\n",
436
+ "print('=' * 70)\n",
437
+ "\n",
438
+ "images = trainer.sample(batch_size = number_of_compositions_to_generate, return_pil_images = True)\n",
439
+ "\n",
440
+ "print('Done!')\n",
441
+ "print('=' * 70)\n",
442
+ "print('Converting to MIDIs...')\n",
443
+ "\n",
444
+ "imgs_array = []\n",
445
+ "\n",
446
+ "for idx, image in enumerate(images):\n",
447
+ "\n",
448
+ " print('=' * 70)\n",
449
+ " print('Converting image #', idx)\n",
450
+ " print('=' * 70)\n",
451
+ "\n",
452
+ " arr = np.array(image)\n",
453
+ " farr = np.where(arr < noise_threshold, 0, 1)\n",
454
+ "\n",
455
+ " bmatrix = TPLOTS.images_to_binary_matrix([farr])\n",
456
+ "\n",
457
+ " score = TMIDIX.binary_matrix_to_original_escore_notes(bmatrix)\n",
458
+ "\n",
459
+ " output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(score)\n",
460
+ "\n",
461
+ " detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,\n",
462
+ " output_signature = 'MIDI Images',\n",
463
+ " output_file_name = '/content/MIDI-Images-Composition_'+str(idx),\n",
464
+ " track_name='Project Los Angeles',\n",
465
+ " list_of_MIDI_patches=patches,\n",
466
+ " timings_multiplier=256\n",
467
+ " )\n",
468
+ "\n",
469
+ "print('=' * 70)\n",
470
+ "print('Done!')\n",
471
+ "print('=' * 70)"
472
+ ],
473
+ "metadata": {
474
+ "id": "c-WFUfLvE_lm",
475
+ "cellView": "form"
476
+ },
477
+ "execution_count": null,
478
+ "outputs": []
479
+ },
480
+ {
481
+ "cell_type": "markdown",
482
+ "source": [
483
+ "# Congrats! You did it! :)"
484
+ ],
485
+ "metadata": {
486
+ "id": "F9_DkzNzHWZq"
487
+ }
488
+ }
489
+ ]
490
+ }
imagen_midi_images_solo_piano_model_maker.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Imagen_MIDI_Images_Solo_Piano_Model_Maker.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/189FJfPRxZ8zrwi44fAR_ywKnMeb73XJJ
8
+
9
+ # Imagen MIDI Images Solo Piano Model Maker (ver. 1.0)
10
+
11
+ ***
12
+
13
+ Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
14
+
15
+ ***
16
+
17
+ WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
18
+
19
+ ***
20
+
21
+ #### Project Los Angeles
22
+
23
+ #### Tegridy Code 2024
24
+
25
+ ***
26
+
27
+ # (SETUP ENVIRONMENT)
28
+ """
29
+
30
+ # @title Install dependecies
31
+ !git clone --depth 1 https://github.com/asigalov61/tegridy-tools
32
+
33
+ !pip install -U imagen-pytorch
34
+
35
+ !pip install -U huggingface_hub
36
+
37
+ # Commented out IPython magic to ensure Python compatibility.
38
+ #@title Import all needed modules
39
+
40
+ print('=' * 70)
41
+ print('Loading core modules...')
42
+
43
+ import os
44
+
45
+ import numpy as np
46
+ from tqdm import tqdm
47
+
48
+ from huggingface_hub import snapshot_download
49
+
50
+ print('Done!')
51
+ print('=' * 70)
52
+ print('Creating I/O dirs...')
53
+
54
+ if not os.path.exists('/content/Dataset'):
55
+ os.makedirs('/content/Dataset')
56
+
57
+ print('Done!')
58
+ print('=' * 70)
59
+ print('Loading tegridy-tools modules...')
60
+ print('=' * 70)
61
+
62
+ # %cd /content/tegridy-tools/tegridy-tools
63
+
64
+ import TMIDIX
65
+ import TPLOTS
66
+
67
+ # %cd /content/
68
+
69
+ print('=' * 70)
70
+ print('Done!')
71
+ print('=' * 70)
72
+ print('Loading Imagen...')
73
+
74
+ import torch
75
+ from imagen_pytorch import Unet, Imagen, ImagenTrainer
76
+ from imagen_pytorch.data import Dataset
77
+
78
+ print('Done!')
79
+ print('=' * 70)
80
+ print('Torch version:', torch.__version__)
81
+ print('=' * 70)
82
+ print('Done!')
83
+ print('=' * 70)
84
+
85
+ """# (DOWNLOAD DATASET)"""
86
+
87
+ # Commented out IPython magic to ensure Python compatibility.
88
+ # @title Download and unzip MIDI Images POP909 Solo Piano dataset
89
+
90
+ print('=' * 70)
91
+ print('Downloading MIDI Images dataset repo...')
92
+ print('=' * 70)
93
+
94
+ repo_id = "asigalov61/MIDI-Images"
95
+ repo_type = 'dataset'
96
+
97
+ local_dir = "./MIDI-Images"
98
+
99
+ snapshot_download(repo_id, repo_type=repo_type, local_dir=local_dir)
100
+
101
+ print('=' * 70)
102
+ print('Done!')
103
+ print('=' * 70)
104
+
105
+ print('Unzipping POP909 MIDI Images dataset...')
106
+ print('=' * 70)
107
+ # %cd /content/Dataset/
108
+ !unzip /content/MIDI-Images/POP909_MIDI_Dataset_Solo_Piano_MIDI_Images_128_128_32_BW_Ver_1_CC_BY_NC_SA.zip > /dev/null
109
+ # %cd /content/
110
+ print('=' * 70)
111
+ print('Done!')
112
+ print('=' * 70)
113
+
114
+ """# (INIT MODEL)"""
115
+
116
+ # @title Init Imagen model
117
+
118
+ print('=' * 70)
119
+ print('Instantiating Imagen model...')
120
+ print('=' * 70)
121
+
122
+ # unets for unconditional imagen
123
+
124
+ unet = Unet(
125
+ dim = 64,
126
+ dim_mults = (1, 2, 4, 8),
127
+ num_resnet_blocks = 1,
128
+ channels=1,
129
+ layer_attns = (False, False, False, True),
130
+ layer_cross_attns = False
131
+ )
132
+
133
+ # imagen, which contains the unet above
134
+
135
+ imagen = Imagen(
136
+ condition_on_text = False, # this must be set to False for unconditional Imagen
137
+ unets = unet,
138
+ channels=1,
139
+ image_sizes = 128,
140
+ timesteps = 1000
141
+ )
142
+
143
+ trainer = ImagenTrainer(
144
+ imagen = imagen,
145
+ split_valid_from_train = True # whether to split the validation dataset from the training
146
+ ).cuda()
147
+
148
+ print('=' * 70)
149
+ print('Done!')
150
+ print('=' * 70)
151
+
152
+ """# (INIT DATASET)"""
153
+
154
+ # @title Prep and init dataset
155
+ batch_size = 16 # @param {"type":"slider","min":4,"max":64,"step":4}
156
+
157
+ print('=' * 70)
158
+ print('Instantiating dataloader...')
159
+ print('=' * 70)
160
+
161
+ # instantiate your dataloader, which returns the necessary inputs to the DDPM as tuple in the order of images, text embeddings, then text masks. in this case, only images is returned as it is unconditional training
162
+
163
+ dataset = Dataset('/content/Dataset', image_size = 128)
164
+
165
+ try:
166
+ trainer.add_train_dataset(dataset, batch_size = batch_size)
167
+
168
+ except:
169
+ print('Dataset is ready!')
170
+ pass
171
+
172
+ print('=' * 70)
173
+ print('Done!')
174
+ print('=' * 70)
175
+
176
+ """# (TRAIN MODEL)"""
177
+
178
+ # @title Train Imagen model
179
+
180
+ NUM_EPOCHS = 10
181
+
182
+ print('=' * 70)
183
+ print('Training...')
184
+ print('=' * 70)
185
+
186
+ NUM_STEPS = NUM_EPOCHS * len(dataset)
187
+
188
+ # working training loop
189
+
190
+ epoch = 1
191
+
192
+ print('=' * 70)
193
+ print('Epoch #', epoch)
194
+ print('=' * 70)
195
+
196
+ for i in range(NUM_STEPS):
197
+
198
+ try:
199
+
200
+ loss = trainer.train_step(unet_number = 1, max_batch_size = batch_size)
201
+ print(f'loss: {loss}', '===', i)
202
+
203
+ if not (i % 50):
204
+ valid_loss = trainer.valid_step(unet_number = 1, max_batch_size = batch_size)
205
+ print('=' * 70)
206
+ print(f'valid loss: {valid_loss}')
207
+ print('=' * 70)
208
+
209
+ if not (i % 1000) and trainer.is_main: # is_main makes sure this can run in distributed
210
+ print('=' * 70)
211
+ images = trainer.sample(batch_size = batch_size // 4, return_pil_images = True) # returns List[Image]
212
+ images[0].save(f'./sample-{i // 100}.png')
213
+ print('=' * 70)
214
+
215
+ if not (i % len(dataset)):
216
+ print('=' * 70)
217
+ print('Epoch #', epoch)
218
+ print('=' * 70)
219
+
220
+ except KeyboardInterrupt:
221
+ print('=' * 70)
222
+ print('Stopping training...')
223
+ break
224
+
225
+ print('=' * 70)
226
+ print('Done!')
227
+ print('=' * 70)
228
+
229
+ """# (SAVE/LOAD MODEL)"""
230
+
231
+ # @title Save trained model
232
+
233
+ print('=' * 70)
234
+ print('Saving model...')
235
+ print('=' * 70)
236
+
237
+ trainer.save('./Imagen_POP909_64_dim_'+str(i)+'_steps_'+str(loss)+'_loss.ckpt')
238
+
239
+ print('=' * 70)
240
+ print('Done!')
241
+ print('=' * 70)
242
+
243
+ # @title Load/reload trained model
244
+ full_path_to_model_checkpoint = "./Imagen_POP909_64_dim_10000_steps_0.01_loss.ckpt" # @param {"type":"string"}
245
+
246
+ print('=' * 70)
247
+ print('Loading model...')
248
+ print('=' * 70)
249
+
250
+ unet = Unet(
251
+ dim = 64,
252
+ dim_mults = (1, 2, 4, 8),
253
+ num_resnet_blocks = 1,
254
+ channels=1,
255
+ layer_attns = (False, False, False, True),
256
+ layer_cross_attns = False
257
+ )
258
+
259
+ imagen = Imagen(
260
+ condition_on_text = False, # this must be set to False for unconditional Imagen
261
+ unets = unet,
262
+ channels=1,
263
+ image_sizes = 128,
264
+ timesteps = 1000
265
+ )
266
+
267
+ trainer = ImagenTrainer(
268
+ imagen = imagen,
269
+ split_valid_from_train = True # whether to split the validation dataset from the training
270
+ ).cuda()
271
+
272
+ trainer.load(full_path_to_model_checkpoint)
273
+
274
+ print('=' * 70)
275
+ print('Done!')
276
+ print('=' * 70)
277
+
278
+ """# (GENERATE)"""
279
+
280
+ # @title Generate music
281
+
282
+ number_of_compositions_to_generate = 8 # @param {"type":"slider","min":1,"max":64,"step":1}
283
+ noise_threshold = 128 # @param {"type":"slider","min":0,"max":255,"step":1}
284
+
285
+ print('=' * 70)
286
+ print('Imagen Model Generator')
287
+ print('=' * 70)
288
+ print('Generating', number_of_compositions_to_generate, 'compositions...')
289
+ print('=' * 70)
290
+
291
+ images = trainer.sample(batch_size = number_of_compositions_to_generate, return_pil_images = True)
292
+
293
+ print('Done!')
294
+ print('=' * 70)
295
+ print('Converting to MIDIs...')
296
+
297
+ imgs_array = []
298
+
299
+ for idx, image in enumerate(images):
300
+
301
+ print('=' * 70)
302
+ print('Converting image #', idx)
303
+ print('=' * 70)
304
+
305
+ arr = np.array(image)
306
+ farr = np.where(arr < noise_threshold, 0, 1)
307
+
308
+ bmatrix = TPLOTS.images_to_binary_matrix([farr])
309
+
310
+ score = TMIDIX.binary_matrix_to_original_escore_notes(bmatrix)
311
+
312
+ output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(score)
313
+
314
+ detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
315
+ output_signature = 'MIDI Images',
316
+ output_file_name = '/content/MIDI-Images-Composition_'+str(idx),
317
+ track_name='Project Los Angeles',
318
+ list_of_MIDI_patches=patches,
319
+ timings_multiplier=256
320
+ )
321
+
322
+ print('=' * 70)
323
+ print('Done!')
324
+ print('=' * 70)
325
+
326
+ """# Congrats! You did it! :)"""