{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "private_outputs": true, "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# MIDI Images Solo Piano Dataset Maker (ver. 1.0)\n", "\n", "***\n", "\n", "Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n", "\n", "***\n", "\n", "#### Project Los Angeles\n", "\n", "#### Tegridy Code 2024\n", "\n", "***" ], "metadata": { "id": "LUgrspEA-68o" } }, { "cell_type": "markdown", "source": [ "# (SETUP ENVIRONMENT)" ], "metadata": { "id": "7N-KXNgQ_a0h" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pxNxlyfZ8hCg", "cellView": "form" }, "outputs": [], "source": [ "# @title Install dependecies\n", "!git clone --depth 1 https://github.com/asigalov61/tegridy-tools" ] }, { "cell_type": "code", "source": [ "#@title Import all needed modules\n", "\n", "print('=' * 70)\n", "print('Loading core modules...')\n", "print('Please wait...')\n", "print('=' * 70)\n", "\n", "import os\n", "import copy\n", "import math\n", "import statistics\n", "import random\n", "import pickle\n", "import shutil\n", "from itertools import groupby\n", "from collections import Counter\n", "from sklearn.metrics import pairwise_distances\n", "from sklearn import metrics\n", "from joblib import Parallel, delayed, parallel_config\n", "import numpy as np\n", "from tqdm import tqdm\n", "from PIL import Image\n", "import matplotlib.pyplot as plt\n", "\n", "print('Done!')\n", "print('=' * 70)\n", "print('Creating I/O dirs...')\n", "\n", "if not os.path.exists('/content/Dataset'):\n", " os.makedirs('/content/Dataset')\n", "\n", "print('Done!')\n", "print('=' * 70)\n", "print('Loading tegridy-tools modules...')\n", "print('=' * 70)\n", "\n", "%cd /content/tegridy-tools/tegridy-tools\n", "\n", "import TMIDIX\n", "import TMELODIES\n", "import TPLOTS\n", "import HaystackSearch\n", "\n", "%cd /content/\n", "\n", "print('=' * 70)\n", "print('Done!')\n", "print('=' * 70)" ], "metadata": { "id": "OblKfMMT8rfM", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (DOWNLOAD SAMPLE MIDI DATASET)" ], "metadata": { "id": "gUXM7WsN_ioe" } }, { "cell_type": "code", "source": [ "# @title Download sample MIDI dataset (POP909)\n", "%cd /content/Dataset/\n", "!git clone --depth 1 https://github.com/music-x-lab/POP909-Dataset\n", "%cd /content/" ], "metadata": { "id": "JLm4OmOUYlEK", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#@title Save file list\n", "###########\n", "\n", "print('=' * 70)\n", "print('Loading MIDI files...')\n", "print('This may take a while on a large dataset in particular...')\n", "\n", "dataset_addr = '/content/Dataset/'\n", "\n", "# os.chdir(dataset_addr)\n", "filez = list()\n", "for (dirpath, dirnames, filenames) in os.walk(dataset_addr):\n", " filez += [os.path.join(dirpath, file) for file in filenames if file.endswith('.mid') or file.endswith('.midi') or file.endswith('.kar')]\n", "print('=' * 70)\n", "\n", "if filez == []:\n", " print('Could not find any MIDI files. Please check Dataset dir...')\n", " print('=' * 70)\n", "\n", "print('Randomizing file list...')\n", "random.shuffle(filez)\n", "print('Done!')\n", "print('=' * 70)\n", "print('Total found MIDI files:', len(filez))\n", "print('=' * 70)\n", "\n", "TMIDIX.Tegridy_Any_Pickle_File_Writer(filez, 'filez')\n", "\n", "print('=' * 70)" ], "metadata": { "cellView": "form", "id": "AJrFrZ9grhMM" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (LOAD TMIDIX MIDI PROCESSOR)" ], "metadata": { "id": "RJeTdierAbeF" } }, { "cell_type": "code", "source": [ "#@title Load TMIDIX MIDI processor\n", "\n", "print('=' * 70)\n", "print('TMIDIX MIDI Processor')\n", "print('=' * 70)\n", "print('Loading...')\n", "\n", "###########\n", "\n", "def TMIDIX_MIDI_Processor(midi_file):\n", "\n", " fn = os.path.basename(midi_file)\n", " fn1 = fn.split('.mid')[0]\n", "\n", " try:\n", "\n", " #=======================================================\n", " # START PROCESSING\n", "\n", " raw_score = TMIDIX.midi2single_track_ms_score(midi_file)\n", "\n", " escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]\n", "\n", " escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=256)\n", "\n", " sp_escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False))\n", "\n", " if sp_escore_notes:\n", "\n", " bmatrix = TMIDIX.escore_notes_to_binary_matrix(sp_escore_notes)\n", "\n", " return [fn1, bmatrix]\n", "\n", " else:\n", " return [fn1, []]\n", "\n", " #=======================================================\n", "\n", " except Exception as ex:\n", " print('WARNING !!!')\n", " print('=' * 70)\n", " print('Bad MIDI:', midi_file)\n", " print('Error detected:', ex)\n", " print('=' * 70)\n", " return None\n", "\n", "print('Done!')\n", "print('=' * 70)" ], "metadata": { "cellView": "form", "id": "fBbIiUWSZA5y" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (PROCESS MIDIs)" ], "metadata": { "id": "R3QxQN6OA_jX" } }, { "cell_type": "code", "source": [ "#@title Process MIDIs with TMIDIX MIDI processor\n", "output_folder = \"/content/MIDI-Images/\" # @param {\"type\":\"string\"}\n", "\n", "NUMBER_OF_PARALLEL_JOBS = 4 # Number of parallel jobs\n", "NUMBER_OF_FILES_PER_ITERATION = 4 # Number of files to queue for each parallel iteration\n", "SAVE_EVERY_NUMBER_OF_ITERATIONS = 128 # Save every 2560 files\n", "\n", "print('=' * 70)\n", "print('TMIDIX MIDI Processor')\n", "print('=' * 70)\n", "print('Starting up...')\n", "print('=' * 70)\n", "\n", "###########\n", "\n", "melody_chords_f = []\n", "\n", "files_count = 0\n", "\n", "print('Processing MIDI files...')\n", "print('Please wait...')\n", "print('=' * 70)\n", "\n", "for i in tqdm(range(0, len(filez), NUMBER_OF_FILES_PER_ITERATION)):\n", "\n", " with parallel_config(backend='threading', n_jobs=NUMBER_OF_PARALLEL_JOBS, verbose = 0):\n", "\n", " output = Parallel(n_jobs=NUMBER_OF_PARALLEL_JOBS, verbose=0)(delayed(TMIDIX_MIDI_Processor)(f) for f in filez[i:i+NUMBER_OF_FILES_PER_ITERATION])\n", "\n", " for o in output:\n", "\n", " if o is not None:\n", " melody_chords_f.append(o)\n", "\n", " if i % (NUMBER_OF_FILES_PER_ITERATION * SAVE_EVERY_NUMBER_OF_ITERATIONS) == 0 and i != 0:\n", "\n", " print('SAVING !!!')\n", " print('=' * 70)\n", " print('Saving processed files...')\n", " files_count += len(melody_chords_f)\n", " print('=' * 70)\n", " print('Processed so far:', files_count, 'out of', len(filez), '===', files_count / len(filez), 'good files ratio')\n", " print('=' * 70)\n", " print('Writing images...')\n", " print('Please wait...')\n", "\n", " for mat in melody_chords_f:\n", "\n", " if mat[1]:\n", "\n", " TPLOTS.binary_matrix_to_images(mat[1],\n", " 128,\n", " 32,\n", " output_folder=output_folder+str(mat[0])+'/',\n", " output_img_prefix=str(mat[0]),\n", " output_img_ext='.png',\n", " verbose=False\n", " )\n", "\n", " print('Done!')\n", " print('=' * 70)\n", " melody_chords_f = []\n", "\n", "print('SAVING !!!')\n", "print('=' * 70)\n", "print('Saving processed files...')\n", "files_count += len(melody_chords_f)\n", "print('=' * 70)\n", "print('Processed so far:', files_count, 'out of', len(filez), '===', files_count / len(filez), 'good files ratio')\n", "print('=' * 70)\n", "print('Writing images...')\n", "print('Please wait...')\n", "\n", "for mat in melody_chords_f:\n", "\n", " if mat[1]:\n", "\n", " TPLOTS.binary_matrix_to_images(mat[1],\n", " 128,\n", " 32,\n", " output_folder=output_folder+str(mat[0])+'/',\n", " output_img_prefix=str(mat[0]),\n", " output_img_ext='.png',\n", " verbose=False\n", " )\n", "\n", "print('Done!')\n", "print('=' * 70)" ], "metadata": { "cellView": "form", "id": "15y4uzSOZX52" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (LOAD IMAGES)" ], "metadata": { "id": "GtejvUFAFocZ" } }, { "cell_type": "code", "source": [ "#@title Load created MIDI images\n", "full_path_to_metadata_pickle_files = \"/content/MIDI-Images\" #@param {type:\"string\"}\n", "\n", "print('=' * 70)\n", "print('MIDI Images Reader')\n", "print('=' * 70)\n", "print('Searching for images...')\n", "\n", "filez = list()\n", "for (dirpath, dirnames, filenames) in os.walk(full_path_to_metadata_pickle_files):\n", " filez += [os.path.join(dirpath, file) for file in filenames if file.endswith('.png')]\n", "print('=' * 70)\n", "\n", "filez.sort()\n", "\n", "print('Found', len(filez), 'images!')\n", "print('=' * 70)\n", "print('Reading images...')\n", "print('Please wait...')\n", "print('=' * 70)\n", "\n", "fidx = 0\n", "\n", "all_read_images = []\n", "\n", "for img in tqdm(filez):\n", "\n", " img = Image.open(img)\n", "\n", " img_arr = np.array(img).tolist()\n", "\n", " all_read_images.append(img_arr)\n", "\n", " fidx += 1\n", "\n", "print('Done!')\n", "print('=' * 70)\n", "print('Loaded', fidx, 'images!')\n", "print('=' * 70)\n", "print('Done!')\n", "print('=' * 70)" ], "metadata": { "cellView": "form", "id": "cXpLWHG1dBB3" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (TEST IMAGES)" ], "metadata": { "id": "qbClHSmhB1NF" } }, { "cell_type": "code", "source": [ "# @title Test created MIDI images\n", "\n", "print('=' * 70)\n", "\n", "image = random.choice(all_read_images)\n", "\n", "escore = TMIDIX.binary_matrix_to_original_escore_notes(image)\n", "\n", "output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(escore)\n", "\n", "detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,\n", " output_signature = 'MIDI Images',\n", " output_file_name = '/content/MIDI-Images-Composition',\n", " track_name='Project Los Angeles',\n", " list_of_MIDI_patches=patches,\n", " timings_multiplier=256\n", " )\n", "\n", "print('=' * 70)" ], "metadata": { "id": "nrPDM1VQdKES", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# (ZIP IMAGES)" ], "metadata": { "id": "sIq55gvPCgJh" } }, { "cell_type": "code", "source": [ "# @title Zip created MIDI images\n", "!zip -9 -r POP909_MIDI_Images_128_128_32_BW.zip MIDI-Images/ > /dev/null" ], "metadata": { "id": "tVe0REKSqJeV", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Congrats! You did it! :)" ], "metadata": { "id": "iDdMYg4haGFn" } } ] }