Update README.md
Browse files
README.md
CHANGED
@@ -942,339 +942,10 @@ configs:
|
|
942 |
|
943 |
This dataset contains the hidden state tensors of the [austindavis/chessGPT2](https://huggingface.co/austindavis/chessGPT2) model recorded during forward passes over the [lichess-uci-fens dataset](https://huggingface.co/datasets/austindavis/lichess-uci-fens/viewer/201301/train) (config: "201301").
|
944 |
|
945 |
-
|
946 |
```sh
|
947 |
-
|
|
|
948 |
```
|
949 |
|
950 |
-
The generation script is:
|
951 |
-
```python
|
952 |
|
953 |
-
import argparse
|
954 |
-
import os
|
955 |
-
import re
|
956 |
-
from io import BufferedWriter
|
957 |
-
from typing import List, Tuple
|
958 |
-
|
959 |
-
import chess
|
960 |
-
import datasets
|
961 |
-
import numpy as np
|
962 |
-
import pandas as pd
|
963 |
-
import torch
|
964 |
-
from tqdm.auto import tqdm
|
965 |
-
from transformers import BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizerFast
|
966 |
-
|
967 |
-
from dataset_generation.command_pattern import AbstractCommand, CommandExecutor
|
968 |
-
from modeling.chess_utils import uci_to_board
|
969 |
-
|
970 |
-
torch._C._set_grad_enabled(False)
|
971 |
-
|
972 |
-
FenString = str
|
973 |
-
|
974 |
-
|
975 |
-
def main():
|
976 |
-
parser = argparse.ArgumentParser()
|
977 |
-
executor = CommandExecutor(
|
978 |
-
{"record_activations": ActivationDatasetGenerator(), "push_to_hub": HubPusher()}
|
979 |
-
)
|
980 |
-
|
981 |
-
parser = executor.add_commands_to_argparser(parser)
|
982 |
-
|
983 |
-
args = parser.parse_args()
|
984 |
-
|
985 |
-
executor.execute_from_args(args, cfg=args)
|
986 |
-
|
987 |
-
|
988 |
-
class HubPusher(AbstractCommand):
|
989 |
-
"""Pushes hidden state vectors for given layer and phase to the Huggingface 🤗 Hub"""
|
990 |
-
|
991 |
-
split_name = "train"
|
992 |
-
|
993 |
-
def add_arguments(self, parser):
|
994 |
-
# fmt: off
|
995 |
-
parser.add_argument("data_dir", type=str,help="Directory where processed files are saved")
|
996 |
-
parser.add_argument("ds_repo", type=str, help="Hf 🤗 repository to which dataset will be published")
|
997 |
-
parser.add_argument("-l","--layer", type=int, required=False, help="The layer to process")
|
998 |
-
parser.add_argument("-p","--phase", type=int, required=False, help="The phase to process")
|
999 |
-
# fmt: on
|
1000 |
-
return parser
|
1001 |
-
|
1002 |
-
def execute(self, cfg: argparse.Namespace):
|
1003 |
-
|
1004 |
-
assert cfg.layer is not None
|
1005 |
-
assert cfg.phase is not None
|
1006 |
-
|
1007 |
-
out_dir = lambda L, P: os.path.join(cfg.data_dir, f"L{L}", f"P{P}")
|
1008 |
-
file_path = lambda L, P: os.path.join(out_dir(L, P), f"dfs-L{L}-P{P}.csv")
|
1009 |
-
|
1010 |
-
csv_path = file_path(cfg.layer, cfg.phase)
|
1011 |
-
|
1012 |
-
ds = datasets.Dataset.from_csv(csv_path, num_proc=16)
|
1013 |
-
|
1014 |
-
def fix_pos_and_data(pos_str: str, data_str: str):
|
1015 |
-
pos_int = int(re.search(r"\d+", pos_str).group())
|
1016 |
-
data_str = data_str.replace("\n", " ").strip("[]")
|
1017 |
-
try:
|
1018 |
-
np_array = np.fromstring(data_str, sep=" ")
|
1019 |
-
except ValueError as e:
|
1020 |
-
print(f"Error parsing: {e}")
|
1021 |
-
return {"pos": pos_int, "data": np_array}
|
1022 |
-
|
1023 |
-
ds = ds.map(fix_pos_and_data, input_columns=["pos", "data"], num_proc=16)
|
1024 |
-
|
1025 |
-
config_name = f"layer-{cfg.layer:02}-phase-{cfg.phase}"
|
1026 |
-
print(f"Pushing {config_name} to hub")
|
1027 |
-
ds.push_to_hub(cfg.ds_repo, config_name=config_name, split=self.split_name)
|
1028 |
-
|
1029 |
-
|
1030 |
-
class ActivationDatasetGenerator(AbstractCommand):
|
1031 |
-
"""Exports activations in CSV format for all layers and phases."""
|
1032 |
-
|
1033 |
-
cfg: argparse.Namespace
|
1034 |
-
|
1035 |
-
MOVE_PHASES = [
|
1036 |
-
WHITE_FROM,
|
1037 |
-
WHITE_TO,
|
1038 |
-
WHITE_PROMOTION,
|
1039 |
-
# BLACK_FROM,
|
1040 |
-
# BLACK_TO,
|
1041 |
-
# BLACK_PROMOTION,
|
1042 |
-
SPECIAL,
|
1043 |
-
] = range(4)
|
1044 |
-
N_PHASES = len(MOVE_PHASES) - 1 # When iterating skip the SPECIAL token
|
1045 |
-
START_POS = -6 # only capture state of final 6 tokens from an encoding
|
1046 |
-
|
1047 |
-
N_LAYERS: int = None
|
1048 |
-
|
1049 |
-
def add_arguments(self, parser):
|
1050 |
-
# fmt: off
|
1051 |
-
parser.add_argument("data_dir", type=str, help="Directory where processed files are saved.")
|
1052 |
-
parser.add_argument("ds_config", type=str, help="Hf 🤗 dataset config name (e.g., '202301')")
|
1053 |
-
parser.add_argument("ds_repo", type=str, help="Hf 🤗 dataset repository name (e.g., 'user/repo')")
|
1054 |
-
parser.add_argument("ds_split", type=str, help="Hf 🤗 dataset split name (e.g. 'train')")
|
1055 |
-
parser.add_argument("model_checkpoint", type=str, help="local or Hf 🤗 model used to generate hidden state vectors")
|
1056 |
-
parser.add_argument("--start_pos", type=int, default=-6, help="Number of steps from the end of the token sequence to process.")
|
1057 |
-
# fmt: on
|
1058 |
-
return parser
|
1059 |
-
|
1060 |
-
def execute(self, cfg: argparse.Namespace):
|
1061 |
-
|
1062 |
-
self.cfg = cfg
|
1063 |
-
|
1064 |
-
########################
|
1065 |
-
## Load model & tokenizer
|
1066 |
-
########################
|
1067 |
-
|
1068 |
-
model = GPT2LMHeadModel.from_pretrained(cfg.model_checkpoint).train(False).to(torch.device("cuda"))
|
1069 |
-
|
1070 |
-
self.N_LAYERS = len(model.transformer.h) + 1
|
1071 |
-
tokenizer: PreTrainedTokenizerFast = PreTrainedTokenizerFast.from_pretrained(cfg.model_checkpoint)
|
1072 |
-
|
1073 |
-
########################
|
1074 |
-
## Load dataset and tokenize
|
1075 |
-
########################
|
1076 |
-
|
1077 |
-
dataset = (
|
1078 |
-
datasets.load_dataset(cfg.ds_repo, name=cfg.ds_config, split=cfg.ds_split)
|
1079 |
-
.map(
|
1080 |
-
# token count estimate based on 3-phases per ply
|
1081 |
-
lambda t: {"num_tokens": 1 + len(t.split()) * 3},
|
1082 |
-
input_columns="Transcript",
|
1083 |
-
num_proc=16,
|
1084 |
-
)
|
1085 |
-
.sort("num_tokens", reverse=True)
|
1086 |
-
.filter(lambda num_tokens: num_tokens < 512, input_columns="num_tokens")
|
1087 |
-
)
|
1088 |
-
|
1089 |
-
########################
|
1090 |
-
## Prepare paths and BufferedWriters
|
1091 |
-
########################
|
1092 |
-
out_dir = lambda L, P: os.path.join(cfg.data_dir, f"L{L}", f"P{P}")
|
1093 |
-
file_path = lambda L, P: os.path.join(out_dir(L, P), f"dfs-L{L}-P{P}.csv")
|
1094 |
-
|
1095 |
-
for L in range(self.N_LAYERS):
|
1096 |
-
for P in range(self.N_PHASES):
|
1097 |
-
os.makedirs(out_dir(L, P), exist_ok=True)
|
1098 |
-
|
1099 |
-
writers: BufferedWriter = [
|
1100 |
-
[open(file_path(L, P), "a") for L in range(self.N_LAYERS)] for P in range(self.N_PHASES)
|
1101 |
-
]
|
1102 |
-
|
1103 |
-
print_headers = True # only once at the start
|
1104 |
-
batch_size = 32
|
1105 |
-
for batch_index in tqdm(range(0, len(dataset), batch_size)):
|
1106 |
-
|
1107 |
-
batch = dataset[batch_index : batch_index + batch_size]
|
1108 |
-
|
1109 |
-
########################
|
1110 |
-
## Process Board state
|
1111 |
-
########################
|
1112 |
-
# transcript = batch["Transcript"]
|
1113 |
-
# fens = batch["Fens"]
|
1114 |
-
|
1115 |
-
encoding = tokenizer.batch_encode_plus(
|
1116 |
-
batch["Transcript"],
|
1117 |
-
padding=True,
|
1118 |
-
truncation=True,
|
1119 |
-
max_length=1024,
|
1120 |
-
return_special_tokens_mask=True,
|
1121 |
-
return_length=True,
|
1122 |
-
return_attention_mask=True,
|
1123 |
-
return_token_type_ids=True,
|
1124 |
-
return_tensors="pt",
|
1125 |
-
)
|
1126 |
-
|
1127 |
-
########################
|
1128 |
-
## Process Hidden States
|
1129 |
-
########################
|
1130 |
-
hidden_states_by_game = self.transcript_to_hidden_states(encoding, model)
|
1131 |
-
|
1132 |
-
num_tokens_per_game = encoding.attention_mask.sum(dim=-1)
|
1133 |
-
seqn_start_pos_idx = num_tokens_per_game + cfg.start_pos
|
1134 |
-
|
1135 |
-
selected = torch.stack(
|
1136 |
-
[
|
1137 |
-
hidden_states_by_game[i, :, seqn_start_pos_idx[i] : num_tokens_per_game[i]]
|
1138 |
-
for i in range(batch_size) # TODO raises error on final batch
|
1139 |
-
]
|
1140 |
-
)
|
1141 |
-
|
1142 |
-
########################
|
1143 |
-
## Process Board States
|
1144 |
-
########################
|
1145 |
-
|
1146 |
-
phase_by_pos = [[i % 3 for i in range(t)] for t in num_tokens_per_game]
|
1147 |
-
try:
|
1148 |
-
fen_by_pos = [
|
1149 |
-
(
|
1150 |
-
["rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"] * 3
|
1151 |
-
+ [batch["Fens"][game][i // 3] for i in range(token_count - 3)]
|
1152 |
-
)
|
1153 |
-
for game, token_count in enumerate(num_tokens_per_game)
|
1154 |
-
]
|
1155 |
-
except:
|
1156 |
-
# We skip games (actually whole batch) if Fens does not contain the correct number of
|
1157 |
-
# board states.
|
1158 |
-
continue
|
1159 |
-
|
1160 |
-
fen_by_pos = [fen_by_pos[g][cfg.start_pos :] for g in range(batch_size)]
|
1161 |
-
phase_by_pos = [phase_by_pos[g][cfg.start_pos :] for g in range(batch_size)]
|
1162 |
-
|
1163 |
-
########################
|
1164 |
-
## Export/append to CSV
|
1165 |
-
########################
|
1166 |
-
dfs = list(
|
1167 |
-
map(
|
1168 |
-
self.records_to_df,
|
1169 |
-
selected,
|
1170 |
-
seqn_start_pos_idx,
|
1171 |
-
fen_by_pos,
|
1172 |
-
phase_by_pos,
|
1173 |
-
batch["Site"],
|
1174 |
-
)
|
1175 |
-
)
|
1176 |
-
df = pd.concat(dfs)
|
1177 |
-
|
1178 |
-
for L in range(self.N_LAYERS):
|
1179 |
-
for P in range(self.N_PHASES):
|
1180 |
-
LP_subset: pd.DataFrame = df[(df["layer"] == L) & (df["phase"] == P)]
|
1181 |
-
LP_subset.to_csv(writers[P][L], index=False, header=print_headers)
|
1182 |
-
print_headers = False
|
1183 |
-
|
1184 |
-
def transcript_to_hidden_states(
|
1185 |
-
self,
|
1186 |
-
encoding: BatchEncoding,
|
1187 |
-
model: GPT2LMHeadModel,
|
1188 |
-
) -> List[torch.Tensor]:
|
1189 |
-
"""
|
1190 |
-
Converts a batch of uci transcripts into a list of hidden state tensors of
|
1191 |
-
shape [batch_size, [n_layer, n_pos, d_model]]
|
1192 |
-
"""
|
1193 |
-
# forward pass
|
1194 |
-
outputs = model(**encoding.to("cuda"), output_hidden_states=True)
|
1195 |
-
|
1196 |
-
# stack hidden states
|
1197 |
-
hidden_states = outputs.hidden_states
|
1198 |
-
hidden_states = torch.stack(hidden_states, dim=1)
|
1199 |
-
|
1200 |
-
hidden_states = hidden_states.to("cpu")
|
1201 |
-
return hidden_states
|
1202 |
-
|
1203 |
-
def hidden_states_to_records(
|
1204 |
-
self, hidden_state_tensors: torch.Tensor, min_pos: int
|
1205 |
-
) -> Tuple[tuple, torch.Tensor]:
|
1206 |
-
r"""Flattens the hidden state tensor into a list of tensors.
|
1207 |
-
Iteration is like:
|
1208 |
-
original[L,P] === records[P*9+L]
|
1209 |
-
|
1210 |
-
Example::
|
1211 |
-
|
1212 |
-
>>> indices, records = hidden_states_to_records(output)
|
1213 |
-
>>> k = 15
|
1214 |
-
>>> L, P = indices[k]
|
1215 |
-
>>> print(f"L: {L}, P: {P}")
|
1216 |
-
L: 6, P: 1
|
1217 |
-
>>> print(sum(abs(records[k]-records[P*9+L])))
|
1218 |
-
tensor(0.)
|
1219 |
-
>>> print(sum(abs(output[L,P]-records[P*9+L])))
|
1220 |
-
tensor(0.)
|
1221 |
-
"""
|
1222 |
-
|
1223 |
-
n_layer, n_pos, d_model = hidden_state_tensors.shape
|
1224 |
-
records = hidden_state_tensors.permute(1, 0, 2).reshape(-1, d_model).unbind()
|
1225 |
-
indices = [(L, P + min_pos) for P in range(n_pos) for L in range(n_layer)]
|
1226 |
-
return indices, records
|
1227 |
-
|
1228 |
-
def trim_hidden_states(
|
1229 |
-
self, hs: torch.Tensor, pos_start: int = -6, pos_end: int = None
|
1230 |
-
) -> Tuple[torch.Tensor, int]:
|
1231 |
-
n_pos = hs.shape[1]
|
1232 |
-
hs = hs[:, pos_start:]
|
1233 |
-
return hs, n_pos + pos_start
|
1234 |
-
|
1235 |
-
def diff(self, x):
|
1236 |
-
return x[1] - x[0]
|
1237 |
-
|
1238 |
-
def get_board_fens_by_pos(self, transcript: str, num_tokens: int):
|
1239 |
-
|
1240 |
-
board_stack: List[FenString] = uci_to_board(
|
1241 |
-
transcript.lower(),
|
1242 |
-
as_board_stack=True,
|
1243 |
-
force=False,
|
1244 |
-
verbose=False,
|
1245 |
-
map_function=chess.Board.fen,
|
1246 |
-
)
|
1247 |
-
|
1248 |
-
fens_by_pos: List[str] = [board_stack[0]] # always include 1st board
|
1249 |
-
phases_by_pos: List[int] = [self.SPECIAL] # first phase is SPECIAL <|startoftext|> token
|
1250 |
-
|
1251 |
-
fens_by_pos += [board_stack[(i // 3)] for i in range(num_tokens - 1)]
|
1252 |
-
phases_by_pos += [i % 3 for i in range(num_tokens - 1)]
|
1253 |
-
|
1254 |
-
return fens_by_pos, phases_by_pos
|
1255 |
-
|
1256 |
-
def records_to_df(
|
1257 |
-
self,
|
1258 |
-
hidden_states: torch.Tensor,
|
1259 |
-
seqn_start_pos: Tuple[torch.Tensor],
|
1260 |
-
fen_by_pos,
|
1261 |
-
phase_by_pos,
|
1262 |
-
site,
|
1263 |
-
):
|
1264 |
-
|
1265 |
-
n_layer, n_pos, d_model = hidden_states.shape
|
1266 |
-
records: tuple[torch.Tensor] = hidden_states.permute(1, 0, 2).reshape(-1, d_model).unbind()
|
1267 |
-
indices = [(L, P + seqn_start_pos) for P in range(n_pos) for L in range(n_layer)]
|
1268 |
-
|
1269 |
-
df = pd.DataFrame(indices, columns=["layer", "pos"])
|
1270 |
-
n_layer = max(df["layer"]) + 1
|
1271 |
-
df["phase"] = [phase_by_pos[i // n_layer] for i in range(len(phase_by_pos) * n_layer)]
|
1272 |
-
df["site"] = [site] * len(df)
|
1273 |
-
df["fen"] = [fen_by_pos[i // n_layer] for i in range(len(fen_by_pos) * n_layer)]
|
1274 |
-
df["data"] = [r.numpy() for r in records]
|
1275 |
-
return df
|
1276 |
-
|
1277 |
-
|
1278 |
-
if __name__ == "__main__":
|
1279 |
-
main()
|
1280 |
-
```
|
|
|
942 |
|
943 |
This dataset contains the hidden state tensors of the [austindavis/chessGPT2](https://huggingface.co/austindavis/chessGPT2) model recorded during forward passes over the [lichess-uci-fens dataset](https://huggingface.co/datasets/austindavis/lichess-uci-fens/viewer/201301/train) (config: "201301").
|
944 |
|
945 |
+
This dataset was generated using [prepare_hidden_states.py](https://huggingface.co/datasets/austindavis/chessgpt2-hiddenstates/blob/main/src/dataset_generation/prepare_hidden_states.py) using the following CLI arguments:
|
946 |
```sh
|
947 |
+
cd src
|
948 |
+
python dataset_generation/prepare_hidden_states.py record_activations data/activations-chessgpt2-fens 201301 austindavis/lichess-uci-fens train austindavis/chessgpt2
|
949 |
```
|
950 |
|
|
|
|
|
951 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|