su_id_asr_split / su_id_asr_split.py
Bagas Shalahuddin Wahid
aa
8a562f9
raw
history blame
6.71 kB
import csv
import os
from pathlib import Path
from typing import List
import gdown
import tempfile
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_DATASETNAME = "su_id_asr"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={66--70},
doi={10.21437/SLTU.2018-14}
}
"""
_DESCRIPTION = """\
Sundanese ASR training data set containing ~220K utterances.
This dataset was collected by Google in Indonesia.
"""
_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"
_LICENSE = "Attribution-ShareAlike 4.0 International."
_URLs = {
"su_id_asr_train": "https://drive.google.com/file/d/1-9oCkIQSok_STemyNBLx2EDQXfmWabsU/view?usp=sharing",
"su_id_asr_dev": "https://drive.google.com/file/d/1IkqEuGrIyKbCSDo9q6F6_r_vkeJ1pcrp/view?usp=sharing",
"su_id_asr_test": "https://drive.google.com/file/d/1-7aLW9Tzs4lxm9ImWho91FjpgpVC6wAc/view?usp=sharing",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def download_from_gdrive(url, output_dir):
"""Download a file from Google Drive and save it to the specified directory."""
file_id = url.split("/d/")[-1].split("/")[0] # Extract FILE_ID from URL
gdrive_url = f"https://drive.google.com/uc?id={file_id}"
output_path = os.path.join(output_dir, f"{file_id}.zip") # Save file
gdown.download(gdrive_url, output_path, quiet=False)
return output_path
class SuIdASR(datasets.GeneratorBasedBuilder):
"""Javanese ASR training data set containing ~185K utterances."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="su_id_asr_source",
version=SOURCE_VERSION,
description="su_id_asr source schema",
schema="source",
subset_id="su_id_asr",
),
SEACrowdConfig(
name="su_id_asr_seacrowd_sptext",
version=SEACROWD_VERSION,
description="su_id_asr Nusantara schema",
schema="seacrowd_sptext",
subset_id="su_id_asr",
),
]
DEFAULT_CONFIG_NAME = "su_id_asr_source"
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
def download_from_gdrive(url, name):
# Create a temporary directory for downloads
with tempfile.TemporaryDirectory() as temp_dir:
file_id = url.split("/d/")[-1].split("/")[0]
output_path = os.path.join(temp_dir, f"{name}.zip")
# Download using gdown with fuzzy=True
gdown.download(url, output_path, fuzzy=True)
# Use dl_manager to extract and manage the downloaded file
extracted_path = dl_manager.extract(output_path)
return extracted_path
# Download and extract all splits
paths = {
"train": download_from_gdrive(_URLs["su_id_asr_train"], 'asr_sundanese_train'),
"dev": download_from_gdrive(_URLs["su_id_asr_dev"], 'asr_sundanese_dev'),
"test": download_from_gdrive(_URLs["su_id_asr_test"], 'asr_sundanese_test')
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": paths["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": paths["dev"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": paths["test"]},
),
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _generate_examples(self, filepath: str):
tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv")
with open(tsv_file, "r") as f:
tsv_file = csv.reader(f, delimiter="\t")
for line in tsv_file:
audio_id, sp_id, text = line[0], line[1], line[2]
wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
if os.path.exists(wav_path):
if self.config.schema == "source":
ex = {
"id": audio_id,
"speaker_id": sp_id,
"path": wav_path,
"audio": wav_path,
"text": text,
}
yield audio_id, ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": audio_id,
"speaker_id": sp_id,
"path": wav_path,
"audio": wav_path,
"text": text,
"metadata": {
"speaker_age": None,
"speaker_gender": None,
},
}
yield audio_id, ex
f.close()