Bagas Shalahuddin Wahid commited on
Commit
6dd5316
·
1 Parent(s): 29ecf0c
Files changed (4) hide show
  1. README.md +9 -0
  2. __init__.py +0 -0
  3. requirements.txt +2 -0
  4. su_id_asr_split.py +176 -0
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - jav
4
+ pretty_name: Jv Id Asr
5
+ task_categories:
6
+ - speech-recognition
7
+ tags:
8
+ - speech-recognition
9
+ ---
__init__.py ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ seacrowd>=0.2.0
2
+ gdown
su_id_asr_split.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ from typing import Dict, List
4
+
5
+ import datasets
6
+
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
10
+ DEFAULT_SOURCE_VIEW_NAME, Tasks)
11
+
12
+ _DATASETNAME = "su_id_asr"
13
+ _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
14
+ _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
15
+
16
+ _LANGUAGES = ["sun"]
17
+ _LOCAL = False
18
+ _CITATION = """\
19
+ @inproceedings{sodimana18_sltu,
20
+ author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
21
+ title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
22
+ year=2018,
23
+ booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
24
+ pages={66--70},
25
+ doi={10.21437/SLTU.2018-14}
26
+ }
27
+ """
28
+
29
+ _DESCRIPTION = """\
30
+ Sundanese ASR training data set containing ~220K utterances.
31
+ This dataset was collected by Google in Indonesia.
32
+ """
33
+
34
+ _HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"
35
+
36
+ _LICENSE = "Attribution-ShareAlike 4.0 International."
37
+
38
+ _URLs = {
39
+ "su_id_asr_train": "https://drive.google.com/file/d/1-9oCkIQSok_STemyNBLx2EDQXfmWabsU/view?usp=sharing",
40
+ "su_id_asr_dev": "https://drive.google.com/file/d/1IkqEuGrIyKbCSDo9q6F6_r_vkeJ1pcrp/view?usp=sharing",
41
+ "su_id_asr_test": "https://drive.google.com/file/d/1-7aLW9Tzs4lxm9ImWho91FjpgpVC6wAc/view?usp=sharing",
42
+ }
43
+
44
+ _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
45
+
46
+ _SOURCE_VERSION = "1.0.0"
47
+
48
+ _SEACROWD_VERSION = "2024.06.20"
49
+
50
+ def download_from_gdrive(url, output_dir):
51
+ """Download a file from Google Drive and save it to the specified directory."""
52
+ file_id = url.split("/d/")[-1].split("/")[0] # Extract FILE_ID from URL
53
+ gdrive_url = f"https://drive.google.com/uc?id={file_id}"
54
+ output_path = os.path.join(output_dir, f"{file_id}.zip") # Save file
55
+ gdown.download(gdrive_url, output_path, quiet=False)
56
+ return output_path
57
+
58
+
59
+ class JvIdASR(datasets.GeneratorBasedBuilder):
60
+ """Javanese ASR training data set containing ~185K utterances."""
61
+
62
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
63
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
64
+
65
+ BUILDER_CONFIGS = [
66
+ SEACrowdConfig(
67
+ name="su_id_asr_source",
68
+ version=SOURCE_VERSION,
69
+ description="su_id_asr source schema",
70
+ schema="source",
71
+ subset_id="su_id_asr",
72
+ ),
73
+ SEACrowdConfig(
74
+ name="su_id_asr_seacrowd_sptext",
75
+ version=SEACROWD_VERSION,
76
+ description="su_id_asr Nusantara schema",
77
+ schema="seacrowd_sptext",
78
+ subset_id="su_id_asr",
79
+ ),
80
+ ]
81
+
82
+ DEFAULT_CONFIG_NAME = "su_id_asr_source"
83
+
84
+
85
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
86
+ """Returns SplitGenerators."""
87
+
88
+ def download_from_gdrive(url, name):
89
+ # Create a temporary directory for downloads
90
+ with tempfile.TemporaryDirectory() as temp_dir:
91
+ file_id = url.split("/d/")[-1].split("/")[0]
92
+ output_path = os.path.join(temp_dir, f"{name}.zip")
93
+
94
+ # Download using gdown with fuzzy=True
95
+ gdown.download(url, output_path, fuzzy=True)
96
+
97
+ # Use dl_manager to extract and manage the downloaded file
98
+ extracted_path = dl_manager.extract(output_path)
99
+ return extracted_path
100
+
101
+ # Download and extract all splits
102
+ paths = {
103
+ "train": download_from_gdrive(_URLs["su_id_asr_train"], 'asr_sundanese_train'),
104
+ "dev": download_from_gdrive(_URLs["su_id_asr_dev"], 'asr_sundanese_dev'),
105
+ "test": download_from_gdrive(_URLs["su_id_asr_test"], 'asr_sundanese_test')
106
+ }
107
+
108
+ return [
109
+ datasets.SplitGenerator(
110
+ name=datasets.Split.TRAIN,
111
+ gen_kwargs={"filepath": paths["train"]},
112
+ ),
113
+ datasets.SplitGenerator(
114
+ name=datasets.Split.VALIDATION,
115
+ gen_kwargs={"filepath": paths["dev"]},
116
+ ),
117
+ datasets.SplitGenerator(
118
+ name=datasets.Split.TEST,
119
+ gen_kwargs={"filepath": paths["test"]},
120
+ ),
121
+ ]
122
+
123
+ def _info(self) -> datasets.DatasetInfo:
124
+ if self.config.schema == "source":
125
+ features = datasets.Features(
126
+ {
127
+ "id": datasets.Value("string"),
128
+ "speaker_id": datasets.Value("string"),
129
+ "path": datasets.Value("string"),
130
+ "audio": datasets.Audio(sampling_rate=16_000),
131
+ "text": datasets.Value("string"),
132
+ }
133
+ )
134
+ elif self.config.schema == "seacrowd_sptext":
135
+ features = schemas.speech_text_features
136
+
137
+ return datasets.DatasetInfo(
138
+ description=_DESCRIPTION,
139
+ features=features,
140
+ homepage=_HOMEPAGE,
141
+ license=_LICENSE,
142
+ citation=_CITATION,
143
+ )
144
+
145
+ def _generate_examples(self, filepath: str):
146
+ tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv")
147
+ with open(tsv_file, "r") as f:
148
+ tsv_file = csv.reader(f, delimiter="\t")
149
+ for line in tsv_file:
150
+ audio_id, sp_id, text = line[0], line[1], line[2]
151
+ wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
152
+
153
+ if os.path.exists(wav_path):
154
+ if self.config.schema == "source":
155
+ ex = {
156
+ "id": audio_id,
157
+ "speaker_id": sp_id,
158
+ "path": wav_path,
159
+ "audio": wav_path,
160
+ "text": text,
161
+ }
162
+ yield audio_id, ex
163
+ elif self.config.schema == "seacrowd_sptext":
164
+ ex = {
165
+ "id": audio_id,
166
+ "speaker_id": sp_id,
167
+ "path": wav_path,
168
+ "audio": wav_path,
169
+ "text": text,
170
+ "metadata": {
171
+ "speaker_age": None,
172
+ "speaker_gender": None,
173
+ },
174
+ }
175
+ yield audio_id, ex
176
+ f.close()