Upload index-monarch-kg.ipynb with huggingface_hub
Browse files- index-monarch-kg.ipynb +245 -0
index-monarch-kg.ipynb
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"outputs": [],
|
7 |
+
"source": [
|
8 |
+
"!pip install git+https://github.com/monarch-initiative/curate-gpt.git\n",
|
9 |
+
"!pip install huggingface_hub pyyaml pandas pyarrow"
|
10 |
+
],
|
11 |
+
"metadata": {
|
12 |
+
"collapsed": false
|
13 |
+
},
|
14 |
+
"id": "6ccb0b14fb5a11a1"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 12,
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"# Import necessary libraries\n",
|
22 |
+
"from huggingface_hub import HfApi, create_repo\n",
|
23 |
+
"import yaml"
|
24 |
+
],
|
25 |
+
"metadata": {
|
26 |
+
"collapsed": false,
|
27 |
+
"ExecuteTime": {
|
28 |
+
"end_time": "2024-08-02T11:22:16.789896Z",
|
29 |
+
"start_time": "2024-08-02T11:22:16.378435Z"
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"id": "105b0e6972a9e087"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"!wget https://data.monarchinitiative.org/monarch-kg/latest/monarch-kg.tar.gz\n",
|
40 |
+
"!tar -xvzf monarch-kg.tar.gz"
|
41 |
+
],
|
42 |
+
"metadata": {
|
43 |
+
"collapsed": false
|
44 |
+
},
|
45 |
+
"id": "fb9336dad1877366"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"!curategpt index -p stagedb -c monarch_kg -m openai: monarch-kg_nodes.tsv"
|
53 |
+
],
|
54 |
+
"metadata": {
|
55 |
+
"collapsed": false
|
56 |
+
},
|
57 |
+
"id": "f47fce4b73e51127"
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 10,
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"name": "stdout",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"About to write to monarch_text_embeddings.parquet\n",
|
68 |
+
"Embeddings have been successfully exported to monarch_text_embeddings.parquet\n"
|
69 |
+
]
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"import os\n",
|
74 |
+
"import pandas as pd\n",
|
75 |
+
"from curate_gpt import ChromaDBAdapter\n",
|
76 |
+
"\n",
|
77 |
+
"def fetch_embeddings_from_chromadb(path, collection):\n",
|
78 |
+
" # Initialize the database adapter\n",
|
79 |
+
" db = ChromaDBAdapter(path)\n",
|
80 |
+
" \n",
|
81 |
+
" # Fetch embeddings from the specified collection using get\n",
|
82 |
+
" collection_obj = db.client.get_collection(name=collection)\n",
|
83 |
+
" # results = collection_obj.peek(include=[\"embeddings\"])\n",
|
84 |
+
" results = collection_obj.get(include=[\"embeddings\"])\n",
|
85 |
+
" \n",
|
86 |
+
" return results['embeddings']\n",
|
87 |
+
"\n",
|
88 |
+
"def export_embeddings_to_parquet(path, collection, output_file):\n",
|
89 |
+
" try:\n",
|
90 |
+
" # Fetch embeddings\n",
|
91 |
+
" embeddings = fetch_embeddings_from_chromadb(path, collection)\n",
|
92 |
+
" \n",
|
93 |
+
" # Convert embeddings to DataFrame\n",
|
94 |
+
" df_embeddings = pd.DataFrame(embeddings)\n",
|
95 |
+
" \n",
|
96 |
+
" # Debugging statement: confirm path before writing\n",
|
97 |
+
" print(f\"About to write to {output_file}\")\n",
|
98 |
+
" \n",
|
99 |
+
" # Export DataFrame to Parquet file\n",
|
100 |
+
" df_embeddings.to_parquet(output_file, engine='pyarrow')\n",
|
101 |
+
" \n",
|
102 |
+
" # Confirm file creation\n",
|
103 |
+
" if os.path.exists(output_file):\n",
|
104 |
+
" print(f\"Embeddings have been successfully exported to {output_file}\")\n",
|
105 |
+
" else:\n",
|
106 |
+
" print(f\"Failed to write file to {output_file}\")\n",
|
107 |
+
" except Exception as e:\n",
|
108 |
+
" print(f\"An error occurred: {e}\")\n",
|
109 |
+
"\n",
|
110 |
+
"# Example usage\n",
|
111 |
+
"path_to_chromadb = '../../stagedb'\n",
|
112 |
+
"collection_name = 'monarch_kg'\n",
|
113 |
+
"output_parquet_file = 'monarch_text_embeddings.parquet'\n",
|
114 |
+
"\n",
|
115 |
+
"export_embeddings_to_parquet(path_to_chromadb, collection_name, output_parquet_file)"
|
116 |
+
],
|
117 |
+
"metadata": {
|
118 |
+
"collapsed": false,
|
119 |
+
"ExecuteTime": {
|
120 |
+
"end_time": "2024-08-02T03:55:35.337205Z",
|
121 |
+
"start_time": "2024-08-01T21:29:05.165170Z"
|
122 |
+
}
|
123 |
+
},
|
124 |
+
"id": "4c04eeafb792a7bd"
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 13,
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"name": "stdout",
|
132 |
+
"output_type": "stream",
|
133 |
+
"text": [
|
134 |
+
"Metadata saved to ./metadata.yaml\n"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"source": [
|
139 |
+
"# Generate metadata in venomx format\n",
|
140 |
+
"metadata = {\n",
|
141 |
+
" 'description': 'Embeddings of the Monarch KG nodes, generated using curategpt and the nodes.tsv file from the Monarch KG version 2024-07-12',\n",
|
142 |
+
" 'model': {\n",
|
143 |
+
" 'name': 'text-embedding-ada-002'\n",
|
144 |
+
" },\n",
|
145 |
+
" 'dataset': {\n",
|
146 |
+
" 'name': 'Monarch KG 2024-07-12',\n",
|
147 |
+
" 'url': 'https://data.monarchinitiative.org/monarch-kg/2024-07-12/'\n",
|
148 |
+
" }\n",
|
149 |
+
"}\n",
|
150 |
+
"\n",
|
151 |
+
"# Save the metadata to a YAML file\n",
|
152 |
+
"metadata_file_path = './metadata.yaml'\n",
|
153 |
+
"with open(metadata_file_path, 'w') as f:\n",
|
154 |
+
" yaml.dump(metadata, f)\n",
|
155 |
+
"\n",
|
156 |
+
"print(f\"Metadata saved to {metadata_file_path}\")"
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"collapsed": false,
|
160 |
+
"ExecuteTime": {
|
161 |
+
"end_time": "2024-08-02T11:22:21.170816Z",
|
162 |
+
"start_time": "2024-08-02T11:22:21.161180Z"
|
163 |
+
}
|
164 |
+
},
|
165 |
+
"id": "e4573dbb4c2cc72b"
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": null,
|
170 |
+
"outputs": [
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"text/plain": "monarch_text_embeddings.parquet: 0%| | 0.00/9.93G [00:00<?, ?B/s]",
|
174 |
+
"application/vnd.jupyter.widget-view+json": {
|
175 |
+
"version_major": 2,
|
176 |
+
"version_minor": 0,
|
177 |
+
"model_id": "0a53be0630394f5b913470726d32f526"
|
178 |
+
}
|
179 |
+
},
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "display_data"
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"# Upload to Hugging Face\n",
|
186 |
+
"repo_id = \"biomedical-translator/monarch_kg_node_text_embeddings\"\n",
|
187 |
+
"create_repo(repo_id, repo_type=\"dataset\")\n",
|
188 |
+
"\n",
|
189 |
+
"this_notebook_path = \"index-monarch-kg.ipynb\"\n",
|
190 |
+
"\n",
|
191 |
+
"api = HfApi()\n",
|
192 |
+
"files_to_upload = [output_parquet_file, metadata_file_path, this_notebook_path]\n",
|
193 |
+
"\n",
|
194 |
+
"for file in files_to_upload:\n",
|
195 |
+
" api.upload_file(\n",
|
196 |
+
" path_or_fileobj=file,\n",
|
197 |
+
" path_in_repo=file,\n",
|
198 |
+
" repo_id=repo_id,\n",
|
199 |
+
" repo_type=\"dataset\"\n",
|
200 |
+
" )\n",
|
201 |
+
"\n",
|
202 |
+
"print(f\"Files uploaded to Hugging Face in repository: {repo_id}\")"
|
203 |
+
],
|
204 |
+
"metadata": {
|
205 |
+
"collapsed": false,
|
206 |
+
"is_executing": true,
|
207 |
+
"ExecuteTime": {
|
208 |
+
"start_time": "2024-08-02T11:52:43.155295Z"
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"id": "d3fcdcba15078167"
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"outputs": [],
|
217 |
+
"source": [],
|
218 |
+
"metadata": {
|
219 |
+
"collapsed": false
|
220 |
+
},
|
221 |
+
"id": "af213f49b772ace7"
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"metadata": {
|
225 |
+
"kernelspec": {
|
226 |
+
"display_name": "Python 3",
|
227 |
+
"language": "python",
|
228 |
+
"name": "python3"
|
229 |
+
},
|
230 |
+
"language_info": {
|
231 |
+
"codemirror_mode": {
|
232 |
+
"name": "ipython",
|
233 |
+
"version": 2
|
234 |
+
},
|
235 |
+
"file_extension": ".py",
|
236 |
+
"mimetype": "text/x-python",
|
237 |
+
"name": "python",
|
238 |
+
"nbconvert_exporter": "python",
|
239 |
+
"pygments_lexer": "ipython2",
|
240 |
+
"version": "2.7.6"
|
241 |
+
}
|
242 |
+
},
|
243 |
+
"nbformat": 4,
|
244 |
+
"nbformat_minor": 5
|
245 |
+
}
|