import cv2 import requests from io import BytesIO from PIL import Image from segment_anything import SamPredictor, sam_model_registry from segment_anything import SamAutomaticMaskGenerator, sam_model_registry import matplotlib.pyplot as plt import numpy as np def segment_image_from_url(image_url): sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth") mask_generator = SamAutomaticMaskGenerator(sam) response = requests.get(image_url) img = Image.open(BytesIO(response.content)) image = np.array(img) masks = mask_generator.generate(image) plt.figure(figsize=(20,20)) plt.imshow(image) show_anns(masks) plt.axis('off') output_file = 'segmented_image.png' plt.savefig(output_file) plt.close() return output_file def show_anns(anns): if len(anns) == 0: return sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in sorted_anns: m = ann['segmentation'] img = np.ones((m.shape[0], m.shape[1], 3)) color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack((img, m*0.35))) # Example usage # image_url = 'https://example.com/path/to/image.jpg' # output_file = segment_image_from_url(image_url) # print(f"Segmented image saved to {output_file}")