Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update lm_finetuning.py
Browse files- lm_finetuning.py +2 -2
lm_finetuning.py
CHANGED
@@ -169,7 +169,7 @@ def main():
|
|
169 |
trainer.save_model(pj(opt.output_dir, 'best_model'))
|
170 |
best_model_path = pj(opt.output_dir, 'best_model')
|
171 |
else:
|
172 |
-
best_model_path = opt.output_dir
|
173 |
|
174 |
# evaluation
|
175 |
model = AutoModelForSequenceClassification.from_pretrained(
|
@@ -218,7 +218,7 @@ def main():
|
|
218 |
extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic."
|
219 |
readme = get_readme(
|
220 |
model_name=opt.model_alias,
|
221 |
-
metric=
|
222 |
language_model=opt.model,
|
223 |
extra_desc= extra_desc
|
224 |
)
|
|
|
169 |
trainer.save_model(pj(opt.output_dir, 'best_model'))
|
170 |
best_model_path = pj(opt.output_dir, 'best_model')
|
171 |
else:
|
172 |
+
best_model_path = pj(opt.output_dir, 'best_model')
|
173 |
|
174 |
# evaluation
|
175 |
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
218 |
extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic."
|
219 |
readme = get_readme(
|
220 |
model_name=opt.model_alias,
|
221 |
+
metric=summary_file,
|
222 |
language_model=opt.model,
|
223 |
extra_desc= extra_desc
|
224 |
)
|