File size: 9,943 Bytes
7611952 1846b49 7611952 10c9b1e 7611952 2c6fe49 7611952 f461000 7611952 2c6fe49 7611952 efb33e5 7611952 f461000 2c6fe49 1846b49 7611952 2c6fe49 7611952 1846b49 2c6fe49 7611952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "pandas==2.2.2",
# "aiohttp",
# "python-dotenv==1.0.1",
# "huggingface-hub==0.24.3",
# "tenacity==9.0.0",
# "pyarrow==17.0.0",
# "requests",
# ]
# ///
import json
import os
import asyncio
import time
import pandas as pd
import aiohttp
import requests.utils
from dotenv import load_dotenv
from huggingface_hub import HfApi
from tenacity import retry, stop_after_attempt, wait_exponential
load_dotenv()
CACHE_DIR = ".hf_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
api = HfApi()
USER_ID = api.whoami()["name"]
REPO_ID = f"{USER_ID}/hub-stats"
print(f"π Hugging Face Hub Stats Collector")
print(f"π Dataset will be uploaded to: {REPO_ID}")
print(f"π€ User: {USER_ID}")
print("-" * 50)
ENDPOINT_CONFIGS = {
"models": {
"limit": 1000,
"params": {
"full": "true",
"config": "true",
"expand[]": [
"gguf",
"downloadsAllTime",
"transformersInfo",
"cardData",
"safetensors",
"baseModels",
"author",
"likes",
"inferenceProviderMapping",
"downloads",
"siblings",
"tags",
"pipeline_tag",
"lastModified",
"createdAt",
"config",
"library_name",
],
},
},
"datasets": {
"limit": 1000,
"params": {
"full": "true",
"expand[]": [
"author",
"cardData",
"citation",
"createdAt",
"disabled",
"description",
"downloads",
"downloadsAllTime",
"gated",
"lastModified",
"likes",
"paperswithcode_id",
"private",
"siblings",
"sha",
"tags",
"trendingScore",
],
},
},
"spaces": {"limit": 1000, "params": {"full": "true"}},
"posts": {"limit": 50, "params": {"skip": 0}},
"daily_papers": {
"limit": 50,
"params": {},
"base_url": "https://huggingface.co/api/daily_papers",
},
}
def parse_link_header(link_header):
if not link_header:
return None
links = requests.utils.parse_header_links(link_header)
for link in links:
if link.get("rel") == "next":
return link.get("url")
return None
def to_json_string(x):
return (
json.dumps(x)
if isinstance(x, (dict, list))
else str(x) if x is not None else None
)
def process_dataframe(df, endpoint):
if len(df) == 0:
return df
if endpoint == "posts":
if "author" in df.columns:
author_df = pd.json_normalize(df["author"])
author_cols = ["avatarUrl", "followerCount", "fullname", "name"]
for col in author_cols:
if col in author_df.columns:
df[col] = author_df[col]
df = df.drop("author", axis=1)
for ts_col in ["publishedAt", "updatedAt"]:
if ts_col in df.columns:
df[ts_col] = pd.to_datetime(df[ts_col]).dt.tz_localize(None)
elif endpoint == "daily_papers":
if "paper" in df.columns:
paper_df = pd.json_normalize(df["paper"], errors="ignore").add_prefix(
"paper_"
)
df = pd.concat([df.drop("paper", axis=1), paper_df], axis=1)
for ts_col in ["publishedAt", "paper_publishedAt"]:
if ts_col in df.columns:
df[ts_col] = pd.to_datetime(df[ts_col], errors="coerce").dt.tz_localize(
None
)
else:
for field in ["createdAt", "lastModified"]:
if field in df.columns:
df[field] = pd.to_datetime(df[field], errors="coerce").dt.tz_localize(
None
)
if "gated" in df.columns:
df["gated"] = df["gated"].astype(str)
for col in ["cardData", "config", "gguf"]:
if col in df.columns:
df[col] = df[col].apply(to_json_string)
return df
def save_parquet(df, output_file):
df.to_parquet(output_file, index=False, engine="pyarrow")
@retry(stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=4, max=60))
async def fetch_data_page(session, url, params=None, headers=None):
async with session.get(url, params=params, headers=headers) as response:
response.raise_for_status()
return await response.json(), response.headers.get("Link")
async def create_parquet_files(skip_upload=False):
start_time = time.time()
endpoints = ["daily_papers", "models", "spaces", "datasets", "posts"]
created_files = []
async with aiohttp.ClientSession() as session:
for endpoint in endpoints:
print(f"Processing {endpoint}...")
config = ENDPOINT_CONFIGS[endpoint]
base_url = config.get("base_url", f"https://huggingface.co/api/{endpoint}")
params = {"limit": config["limit"]}
params.update(config["params"])
headers = {"Accept": "application/json"}
all_data = []
url = base_url
page = 0
jsonl_file = None
if skip_upload:
jsonl_file = os.path.join(CACHE_DIR, f"{endpoint}_raw.jsonl")
with open(jsonl_file, "w") as f:
pass
while url:
if endpoint == "posts":
params["skip"] = page * params["limit"]
try:
data, link_header = await fetch_data_page(
session, url, params, headers
)
if skip_upload and jsonl_file:
with open(jsonl_file, "a") as f:
f.write(json.dumps(data) + "\n")
if endpoint == "posts":
items = data["socialPosts"]
total_items = data["numTotalItems"]
all_data.extend(items)
if (page + 1) * params["limit"] >= total_items:
url = None
else:
url = base_url
else:
all_data.extend(data)
url = parse_link_header(link_header)
if url:
params = {}
if len(all_data) % 10000 == 0:
print(f" {len(all_data):,} records processed")
page += 1
except Exception as e:
print(f"Error on page {page}: {e}")
await asyncio.sleep(2)
if page > 0:
url = None
else:
raise
if skip_upload and jsonl_file and os.path.exists(jsonl_file):
print(f" Raw data saved to {jsonl_file}")
df = pd.DataFrame(all_data)
df = process_dataframe(df, endpoint)
output_file = os.path.join(CACHE_DIR, f"{endpoint}.parquet")
save_parquet(df, output_file)
created_files.append(output_file)
print(f"β {endpoint}: {len(df):,} rows -> {output_file}")
if not skip_upload:
upload_to_hub(output_file, REPO_ID)
elapsed = time.time() - start_time
return created_files, elapsed
def recreate_from_jsonl():
endpoints = ["daily_papers", "models", "spaces", "datasets", "posts"]
for endpoint in endpoints:
jsonl_file = os.path.join(CACHE_DIR, f"{endpoint}_raw.jsonl")
if not os.path.exists(jsonl_file):
print(f"β {jsonl_file} not found")
continue
print(f"Recreating {endpoint} from {jsonl_file}...")
all_data = []
with open(jsonl_file, "r") as f:
for line in f:
data = json.loads(line.strip())
if endpoint == "posts":
all_data.extend(data["socialPosts"])
else:
all_data.extend(data)
df = pd.DataFrame(all_data)
df = process_dataframe(df, endpoint)
output_file = os.path.join(CACHE_DIR, f"{endpoint}.parquet")
save_parquet(df, output_file)
print(f"β {endpoint}: {len(df):,} rows -> {output_file}")
def upload_to_hub(file_path, repo_id):
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.basename(file_path),
repo_id=repo_id,
repo_type="dataset",
)
print(f"β Uploaded {os.path.basename(file_path)} to {repo_id}")
return True
except Exception as e:
print(f"β Failed to upload {os.path.basename(file_path)}: {e}")
return False
def main(skip_upload=False):
created_files, elapsed = asyncio.run(create_parquet_files(skip_upload=skip_upload))
print(f"\nCompleted in {elapsed:.2f} seconds")
print(f"Created {len(created_files)} parquet files:")
for file in created_files:
size = os.path.getsize(file)
rows = len(pd.read_parquet(file))
print(f" {os.path.basename(file)}: {rows:,} rows, {size:,} bytes")
if skip_upload:
print(f"\nRaw JSONL files saved to {CACHE_DIR}/ for recreation")
print("Use 'python app.py --recreate' to recreate parquet files from JSONL")
if __name__ == "__main__":
import sys
if "--recreate" in sys.argv:
recreate_from_jsonl()
else:
skip_upload = "--skip-upload" in sys.argv
main(skip_upload=skip_upload)
|