KoreanSAT / data /json /2025 /math.json
cfpark00
add 2025
bd8400b
raw
history blame
24 kB
{"id":1,"name":"1","problem":"1. $\\sqrt[3]{5} \\times 25^{\\frac{1}{3}}$ ์˜ ๊ฐ’์€? [2์ ]\\n\\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":5,"score":2,"review":null}
{"id":2,"name":"2","problem":"2. ํ•จ์ˆ˜ \\( f(x) = x^3 - 8x + 7 \\)์— ๋Œ€ํ•˜์—ฌ \\[ \\lim_{h \\to 0} \\frac{f(2 + h) - f(2)}{h} \\] ์˜ ๊ฐ’์€? [2์ ]\\n\\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":2,"review":null}
{"id":3,"name":"3","problem":"3. ์ฒซ์งธํ•ญ๊ณผ ๊ณต๋น„๊ฐ€ ๋ชจ๋‘ ์–‘์ˆ˜ \\(k\\)์ธ ๋“ฑ๋น„์ˆ˜์—ด \\(\\{a_n\\}\\)์ด \\[ \\frac{a_4}{a_2} + \\frac{a_2}{a_1} = 30 \\] ์„ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, \\(k\\)์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] \\(1\\) \\item[2] \\(2\\) \\item[3] \\(3\\) \\item[4] \\(4\\) \\item[5] \\(5\\) \\end{itemize}","answer":5,"score":3,"review":null}
{"id":4,"name":"4","problem":"4. ํ•จ์ˆ˜ \\[ f(x) = \\begin{cases} 5x + a & (x < -2) \\\\ x^2 - a & (x \\geq -2) \\end{cases} \\] ๊ฐ€ ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์—ฐ์†์ผ ๋•Œ, ์ƒ์ˆ˜ $a$์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] 6 \\item[2] 7 \\item[3] 8 \\item[4] 9 \\item[5] 10 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":5,"name":"5","problem":"5. ํ•จ์ˆ˜ \\( f(x) = (x^2 + 1)(3x^2 - x) \\)์— ๋Œ€ํ•˜์—ฌ \\( f'(1) \\)์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] \\( 8 \\) \\item[2] \\( 10 \\) \\item[3] \\( 12 \\) \\item[4] \\( 14 \\) \\item[5] \\( 16 \\) \\end{itemize}","answer":4,"score":3,"review":null}
{"id":6,"name":"6","problem":"6. \\(\\cos\\left(\\frac{\\pi}{2} + \\theta\\right) = -\\frac{1}{5}\\) ์ผ ๋•Œ, \\(\\frac{\\sin\\theta}{1 - \\cos^2\\theta}\\) ์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] $-5$ \\item[2] $-\\sqrt{5}$ \\item[3] $0$ \\item[4] $\\sqrt{5}$ \\item[5] $5$ \\end{itemize}","answer":5,"score":3,"review":null}
{"id":7,"name":"7","problem":"7. ๋‹คํ•ญํ•จ์ˆ˜ $f(x)$๊ฐ€ ๋ชจ๋“  ์‹ค์ˆ˜ $x$์— ๋Œ€ํ•˜์—ฌ\\n\\n\\[\\int_{0}^{x} f(t) \\, dt = 3x^3 + 2x\\]\\n\\n๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, $f(1)$์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] 7 \\item[2] 9 \\item[3] 11 \\item[4] 13 \\item[5] 15 \\end{itemize}","answer":3,"score":3,"review":null}
{"id":8,"name":"8","problem":"8. ๋‘ ์‹ค์ˆ˜ \\( a = 2 \\log \\frac{1}{\\sqrt{10}} + \\log_2 20, \\ b = \\log 2 \\) ์— ๋Œ€ํ•˜์—ฌ\\n\\n\\[ a \\times b \\]์˜ ๊ฐ’์€? [3์ ]\\n\\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":1,"score":3,"review":null}
{"id":9,"name":"9","problem":"9. ํ•จ์ˆ˜ $f(x) = 3x^2 - 16x - 20$์— ๋Œ€ํ•˜์—ฌ\\n\\n\\[\\int_{-2}^a f(x) \\, dx = \\int_{-2}^0 f(x) \\, dx\\]\\n\\n์ผ ๋•Œ, ์–‘์ˆ˜ $a$์˜ ๊ฐ’์€? [4์ ]\\n\\n\\begin{itemize} \\item[1] 16 \\item[2] 14 \\item[3] 12 \\item[4] 10 \\item[5] 8 \\end{itemize}","answer":4,"score":4,"review":null}
{"id":10,"name":"10","problem":"10. ๋‹ซํžŒ๊ตฌ๊ฐ„ $[0, 2\\pi]$ ์—์„œ ์ •์˜๋œ ํ•จ์ˆ˜ $f(x) = a \\cos bx + 3$์ด\\nx = \\frac{\\pi}{3}$ ์—์„œ ์ตœ๋Œ“๊ฐ’ 13์„ ๊ฐ–๋„๋ก ํ•˜๋Š” ๋‘ ์ž์—ฐ์ˆ˜ $a$, $b$์˜ \\n์ˆœ์„œ์Œ $(a, b)$์— ๋Œ€ํ•˜์—ฌ $a + b$์˜ ์ตœ์†Ÿ๊ฐ’์€? [4์ ]\\n\\n\\begin{itemize} \\item[1] 12 \\item[2] 14 \\item[3] 16 \\item[4] 18 \\item[5] 20 \\end{itemize}","answer":3,"score":4,"review":null}
{"id":11,"name":"11","problem":"11. ์‹œ๊ฐ $t=0$์ผ ๋•Œ ์ถœ๋ฐœํ•˜์—ฌ ์ˆ˜์ง์„  ์œ„๋ฅผ ์›€์ง์ด๋Š” ์  $\\mathrm{P}$์˜ ์‹œ๊ฐ $t \\ (t \\geq 0)$์—์„œ์˜ ์œ„์น˜ $x$๊ฐ€\\n\\n\\[ x = t^3 - \\frac{3}{2}t^2 - 6t \\]\\n\\n์ด๋‹ค. ์ถœ๋ฐœํ•œ ํ›„ ์  $\\mathrm{P}$์˜ ์šด๋™ ๋ฐฉํ–ฅ์ด ๋ฐ”๋€Œ๋Š” ์‹œ๊ฐ์—์„œ์˜ ์  $\\mathrm{P}$์˜ ๊ฐ€์†๋„๋Š”? [4์ ]\\n\\n\\begin{itemize} \\item[1] 6 \\item[2] 9 \\item[3] 12 \\item[4] 15 \\item[5] 18 \\end{itemize}","answer":2,"score":4,"review":null}
{"id":12,"name":"12","problem":"12. $a_1 = 2$์ธ ์ˆ˜์—ด $\\{a_n\\}$๊ณผ $b_1 = 2$์ธ ๋“ฑ์ฐจ์ˆ˜์—ด $\\{b_n\\}$์ด ๋ชจ๋“  ์ž์—ฐ์ˆ˜ $n$์— ๋Œ€ํ•˜์—ฌ\\n\\n\\[ \\sum_{k=1}^n \\frac{a_k}{b_{k+1}} = \\frac{1}{2}n^2 \\]\\n\\n์„ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, $\\sum_{k=1}^5 a_k$์˜ ๊ฐ’์€? [4์ ]\\n\\n\\begin{itemize} \\item[1] 120 \\item[2] 125 \\item[3] 130 \\item[4] 135 \\item[5] 140 \\end{itemize}","answer":1,"score":4,"review":null}
{"id":13,"name":"13","problem":"13. ์ตœ๊ณ ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜๊ฐ€ $1$์ธ ์‚ผ์ฐจํ•จ์ˆ˜ $f(x)$๊ฐ€\\n\\n\\[ f(1) = f(2) = 0, \\quad f'(0) = -7 \\]\\n\\n์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค. ์›์  $\\mathrm{O}$์™€ ์  $\\mathrm{P}(3, f(3))$์— ๋Œ€ํ•˜์—ฌ ์„ ๋ถ„ $\\mathrm{OP}$๊ฐ€ ๊ณก์„  $y = f(x)$์™€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{P}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{Q}$๋ผ ํ•˜์ž. \\n๊ณก์„  $y = f(x)$์™€ $y$์ถ• ๋ฐ ์„ ๋ถ„ $\\mathrm{OQ}$๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ $A$, \\n๊ณก์„  $y = f(x)$์™€ ์„ ๋ถ„ $\\mathrm{PQ}$๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ $B$๋ผ ํ•  ๋•Œ, \\n$B - A$์˜ ๊ฐ’์€? \\hfill [4์ ]\\n\\n\\begin{itemize} \\item[1] $\\frac{37}{4}$ \\item[2] $\\frac{39}{4}$ \\item[3] $\\frac{41}{4}$ \\item[4] $\\frac{43}{4}$ \\item[5] $\\frac{45}{4}$ \\end{itemize}","answer":5,"score":4,"review":"Removed figure."}
{"id":14,"name":"14","problem":"14. ์‚ผ๊ฐํ˜• \\(\\mathrm{ABC}\\)์—์„œ ์„ ๋ถ„ \\(\\mathrm{AB}\\) ์œ„์— \\(\\overline{\\mathrm{AD}} : \\overline{\\mathrm{DB}} = 3 : 2\\)์ธ ์  \\(\\mathrm{D}\\)๋ฅผ ์žก๊ณ , ์  \\(\\mathrm{A}\\)๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๊ณ  ์  \\(\\mathrm{D}\\)๋ฅผ ์ง€๋‚˜๋Š” ์›์„ \\(O\\), ์› \\(O\\)์™€ ์„ ๋ถ„ \\(\\mathrm{AC}\\)๊ฐ€ ๋งŒ๋‚˜๋Š” ์ ์„ \\(\\mathrm{E}\\)๋ผ ํ•˜์ž. \\n\\(\\sin A : \\sin C = 8 : 5\\)์ด๊ณ , ์‚ผ๊ฐํ˜• \\(\\mathrm{ADE}\\)์™€ ์‚ผ๊ฐํ˜• \\(\\mathrm{ABC}\\)์˜ ๋„“์ด์˜ ๋น„๊ฐ€ \\(9 : 35\\)์ด๋‹ค. ์‚ผ๊ฐํ˜• \\(\\mathrm{ABC}\\)์˜ ์™ธ์ ‘์›์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ \\(7\\)์ผ ๋•Œ, ์› \\(O\\) ์œ„์˜ ์  \\(\\mathrm{P}\\)์— ๋Œ€ํ•˜์—ฌ ์‚ผ๊ฐํ˜• \\(\\mathrm{PBC}\\)์˜ ๋„“์ด์˜ ์ตœ๋Œ“๊ฐ’์€? (๋‹จ,\\( \\ \\overline{\\mathrm{AB}} < \\overline{\\mathrm{AC}}\\)) [4์ ]\\n\\n\\begin{itemize} \\item[1] $18 + 15 \\sqrt{3}$ \\item[2] $24 + 20 \\sqrt{3}$ \\item[3] $30 + 25 \\sqrt{3}$ \\item[4] $36 + 30 \\sqrt{3}$ \\item[5] $42 + 35 \\sqrt{3}$ \\end{itemize}","answer":4,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":15,"name":"15","problem":"15. ์ƒ์ˆ˜ \\(a \\ (a \\neq 3\\sqrt{5})\\)์™€ ์ตœ๊ณ ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜๊ฐ€ ์Œ์ˆ˜์ธ ์ด์ฐจํ•จ์ˆ˜ \\(f(x)\\)์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜\\n\\n\\[\\ng(x) =\\n\\begin{cases}\\nx^3 + ax^2 + 15x + 7 & (x \\leq 0) \\\\\\nf(x) & (x > 0)\\n\\end{cases}\\n\\]\\n\\n์ด ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.\\n\\n\\begin{itemize}\\n\\item[(๊ฐ€)] ํ•จ์ˆ˜ \\(g(x)\\)๋Š” ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•˜๋‹ค.\\n\\item[(๋‚˜)] \\(x\\)์— ๋Œ€ํ•œ ๋ฐฉ์ •์‹ \\(g'(x) \\times g'(x - 4) = 0\\)์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹ค๊ทผ์˜ ๊ฐœ์ˆ˜๋Š” 4์ด๋‹ค.\\n\\end{itemize}\\n\\n\\(g(-2) + g(2)\\)์˜ ๊ฐ’์€? [4์ ]\\n\\n\\begin{itemize}\\n\\item[1] 30\\n\\item[2] 32\\n\\item[3] 34\\n\\item[4] 36\\n\\item[5] 38\\n\\end{itemize}","answer":2,"score":4,"review":null}
{"id":16,"name":"16","problem":"16. ๋ฐฉ์ •์‹\\n\\[\\n\\log_2(x-3) = \\log_4(3x-5)\\n\\]\\n๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์‹ค์ˆ˜ \\(x\\)์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]","answer":7,"score":3,"review":null}
{"id":17,"name":"17","problem":"17. ๋‹คํ•ญํ•จ์ˆ˜ \\( f(x) \\)์— ๋Œ€ํ•˜์—ฌ \\( f'(x) = 9x^2 + 4x \\)์ด๊ณ  \\( f(1) = 6 \\)์ผ ๋•Œ, \\( f(2) \\)์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]","answer":33,"score":3,"review":null}
{"id":18,"name":"18","problem":"18. ์ˆ˜์—ด $\\{a_n\\}$์ด ๋ชจ๋“  ์ž์—ฐ์ˆ˜ $n$์— ๋Œ€ํ•˜์—ฌ\n\n\\[\na_n + a_{n+4} = 12\n\\]\n\n๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, $\\sum_{n=1}^{16} a_n$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]","answer":96,"score":3,"review":null}
{"id":19,"name":"19","problem":"19. ์–‘์ˆ˜ \\(a\\)์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ \\(f(x)\\)๋ฅผ\n\\[\nf(x) = 2x^3 - 3ax^2 - 12a^2x\n\\]\n๋ผ ํ•˜์ž. ํ•จ์ˆ˜ \\(f(x)\\)์˜ ๊ทน๋Œ“๊ฐ’์ด \\(\\frac{7}{27}\\)์ผ ๋•Œ, \\(f(3)\\)์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]","answer":41,"score":3,"review":null}
{"id":20,"name":"20","problem":"20. ๊ณก์„  \\( y = \\left( \\frac{1}{5} \\right)^{x-3} \\)๊ณผ ์ง์„  \\( y = x \\)๊ฐ€ ๋งŒ๋‚˜๋Š” ์ ์˜ \\( x \\)์ขŒํ‘œ๋ฅผ \\( k \\)๋ผ ํ•˜์ž. ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์ •์˜๋œ ํ•จ์ˆ˜ \\( f(x) \\)๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.\n\\[\nx > k \\text{์ธ ๋ชจ๋“  ์‹ค์ˆ˜ } x \\text{์— ๋Œ€ํ•˜์—ฌ} \\\\\nf(x) = \\left( \\frac{1}{5} \\right)^{x-3} \\quad \\text{์ด๊ณ } \\quad f(f(x)) = 3x \\text{์ด๋‹ค.}\n\\]\n\\[\nf\\left( \\frac{1}{k^3 \\times 5^{3k}} \\right) \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n\\]","answer":36,"score":4,"review":null}
{"id":21,"name":"21","problem":"21. ํ•จ์ˆ˜ $f(x) = x^3 + ax^2 + bx + 4$๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋„๋ก ํ•˜๋Š” ๋‘ ์ •์ˆ˜ $a, b$์— ๋Œ€ํ•˜์—ฌ $f(1)$์˜ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]\n\n\\[\n\\text{๋ชจ๋“  ์‹ค์ˆ˜ } \\alpha \\text{์— ๋Œ€ํ•˜์—ฌ } \\lim_{x \\to \\alpha} \\frac{f(2x+1)}{f(x)} \\text{์˜ ๊ฐ’์ด ์กด์žฌํ•œ๋‹ค.}\n\\]","answer":16,"score":4,"review":null}
{"id":22,"name":"22","problem":"22. ๋ชจ๋“  ํ•ญ์ด ์ •์ˆ˜์ด๊ณ  ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋“  ์ˆ˜์—ด \\( \\{a_n\\} \\) ์— ๋Œ€ํ•˜์—ฌ \\( |a_1| \\) ์˜ ๊ฐ’์˜ ํ•ฉ์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]\n\n\\begin{itemize}\n \\item[(๊ฐ€)] ๋ชจ๋“  ์ž์—ฐ์ˆ˜ $n$์— ๋Œ€ํ•˜์—ฌ\n \\[\n a_{n+1} = \n \\begin{cases} \n a_n - 3 & (|a_n| \\text{์ด ํ™€์ˆ˜์ธ ๊ฒฝ์šฐ}) \\\\\n \\frac{1}{2}a_n & (a_n = 0 \\ \\text{๋˜๋Š”} \\ |a_n| \\text{์ด ์ง์ˆ˜์ธ ๊ฒฝ์šฐ})\n \\end{cases}\n \\]\n \\text{์ด๋‹ค.}\n \\item[(๋‚˜)] $|a_m| = |a_{m+2}|$์ธ ์ž์—ฐ์ˆ˜ $m$์˜ ์ตœ์†Ÿ๊ฐ’์€ $3$์ด๋‹ค.\n\\end{itemize}","answer":64,"score":4,"review":null}
{"id":23,"name":"23_prob","problem":"23. ๋‹คํ•ญ์‹ \\((x^3 + 2)^5\\)์˜ ์ „๊ฐœ์‹์—์„œ \\(x^6\\)์˜ ๊ณ„์ˆ˜๋Š”? [2์ ]\n\n\\begin{itemize}\n \\item[1] 40\n \\item[2] 50\n \\item[3] 60\n \\item[4] 70\n \\item[5] 80\n\\end{itemize}","answer":5,"score":2,"review":null}
{"id":24,"name":"24_prob","problem":"24. ๋‘ ์‚ฌ๊ฑด \\( A, B \\) ์— ๋Œ€ํ•˜์—ฌ\n\n\\[\n\\mathrm{P}(A|B) = P(A) = \\frac{1}{2}, \\quad \\mathrm{P}(A \\cap B) = \\frac{1}{5}\n\\]\n\n์ผ ๋•Œ, \\( \\mathrm{P}(A \\cup B) \\) ์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] \\( \\frac{1}{2} \\)\n \\item[2] \\( \\frac{3}{5} \\)\n \\item[3] \\( \\frac{7}{10} \\)\n \\item[4] \\( \\frac{4}{5} \\)\n \\item[5] \\( \\frac{9}{10} \\)\n\\end{itemize}","answer":3,"score":3,"review":null}
{"id":25,"name":"25_prob","problem":"25. ์ •๊ทœ๋ถ„ํฌ \\( \\mathrm{N}(m, 2^2) \\)์„ ๋”ฐ๋ฅด๋Š” ๋ชจ์ง‘๋‹จ์—์„œ ํฌ๊ธฐ๊ฐ€ 256์ธ ํ‘œ๋ณธ์„ ์ž„์˜์ถ”์ถœํ•˜์—ฌ ์–ป์€ ํ‘œ๋ณธํ‰๊ท ์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•œ \\( m \\)์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ 95\\%์˜ ์‹ ๋ขฐ๊ตฌ๊ฐ„์ด \\( a \\leq m \\leq b \\)์ด๋‹ค. \\( b - a \\)์˜ ๊ฐ’์€?\n(๋‹จ, \\( Z \\)๊ฐ€ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜์ผ ๋•Œ, \\( \\mathrm{P}(|Z| \\leq 1.96) = 0.95 \\)๋กœ ๊ณ„์‚ฐํ•œ๋‹ค.) [3์ ]\n\n\\begin{itemize}\n \\item[1] 0.49\n \\item[2] 0.52\n \\item[3] 0.55\n \\item[4] 0.58\n \\item[5] 0.61\n\\end{itemize}","answer":1,"score":3,"review":null}
{"id":26,"name":"26_prob","problem":"26. ์–ด๋Š ํ•™๊ธ‰์˜ ํ•™์ƒ 16๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ๊ณผ๋ชฉ A์™€ ๊ณผ๋ชฉ B์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ด ์กฐ์‚ฌ์— ์ฐธ์—ฌํ•œ ํ•™์ƒ์€ ๊ณผ๋ชฉ A์™€ ๊ณผ๋ชฉ B ์ค‘ ํ•˜๋‚˜๋ฅผ ์„ ํƒํ•˜์˜€๊ณ , ๊ณผ๋ชฉ A๋ฅผ ์„ ํƒํ•œ ํ•™์ƒ์€ 9๋ช…, ๊ณผ๋ชฉ B๋ฅผ ์„ ํƒํ•œ ํ•™์ƒ์€ 7๋ช…์ด๋‹ค. ์ด ์กฐ์‚ฌ์— ์ฐธ์—ฌํ•œ ํ•™์ƒ 16๋ช… ์ค‘์—์„œ ์ž„์˜๋กœ 3๋ช…์„ ์„ ํƒํ•  ๋•Œ, ์„ ํƒํ•œ 3๋ช…์˜ ํ•™์ƒ ์ค‘์—์„œ ์ ์–ด๋„ ํ•œ ๋ช…์ด ๊ณผ๋ชฉ B๋ฅผ ์„ ํƒํ•œ ํ•™์ƒ์ผ ํ™•๋ฅ ์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] $\\frac{3}{4}$\n \\item[2] $\\frac{4}{5}$\n \\item[3] $\\frac{17}{20}$\n \\item[4] $\\frac{9}{10}$\n \\item[5] $\\frac{19}{20}$\n\\end{itemize}","answer":3,"score":3,"review":null}
{"id":27,"name":"27_prob","problem":"27. ์ˆซ์ž \\( 1, 3, 5, 7, 9 \\)๊ฐ€ ๊ฐ๊ฐ ํ•˜๋‚˜์”ฉ ์ ํ˜€ ์žˆ๋Š” 5์žฅ์˜ ์นด๋“œ๊ฐ€ ๋“ค์–ด ์žˆ๋Š” ์ฃผ๋จธ๋‹ˆ๊ฐ€ ์žˆ๋‹ค. ์ด ์ฃผ๋จธ๋‹ˆ์—์„œ ์ž„์˜๋กœ 1์žฅ์˜ ์นด๋“œ๋ฅผ ๊บผ๋‚ด์–ด ์นด๋“œ์— ์ ํ˜€ ์žˆ๋Š” ์ˆ˜๋ฅผ ํ™•์ธํ•œ ํ›„ ๋‹ค์‹œ ๋„ฃ๋Š” ์‹œํ–‰์„ ํ•œ๋‹ค. ์ด ์‹œํ–‰์„ 3๋ฒˆ ๋ฐ˜๋ณตํ•˜์—ฌ ํ™•์ธํ•œ ์„ธ ๊ฐœ์˜ ์ˆ˜์˜ ํ‰๊ท ์„ \\(\\overline{X}\\)๋ผ ํ•˜์ž. \\( V(a\\overline{X} + 6) = 24 \\)์ผ ๋•Œ, ์–‘์ˆ˜ \\(a\\)์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}","answer":3,"score":3,"review":"Removed figure."}
{"id":28,"name":"28_prob","problem":"28. ์ง‘ํ•ฉ \\( X = \\{ 1, 2, 3, 4, 5, 6 \\} \\)์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ํ•จ์ˆ˜ \\( f : X \\to X \\)์˜ ๊ฐœ์ˆ˜๋Š”? [4์ ]\n\n\\[\n\\begin{aligned}\n &\\text{(๊ฐ€) } f(1) \\times f(6) \\text{์˜ ๊ฐ’์ด 6์˜ ์•ฝ์ˆ˜์ด๋‹ค.} \\\\\n &\\text{(๋‚˜) } 2f(1) \\leq f(2) \\leq f(3) \\leq f(4) \\leq f(5) \\leq 2f(6)\n\\end{aligned}\n\\]\n\n\\begin{itemize}\n \\item[1] 166\n \\item[2] 171\n \\item[3] 176\n \\item[4] 181\n \\item[5] 186\n\\end{itemize}","answer":2,"score":4,"review":null}
{"id":29,"name":"29_prob","problem":"29. ์ •๊ทœ๋ถ„ํฌ $\\mathrm{N}(m_1, \\sigma_1^2)$์„ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜ $X$์™€ ์ •๊ทœ๋ถ„ํฌ $\\mathrm{N}(m_2, \\sigma_2^2)$์„ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜ $Y$๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.\n\\[\n\\text{๋ชจ๋“  ์‹ค์ˆ˜} \\ x \\text{์— ๋Œ€ํ•˜์—ฌ} \\quad \\mathrm{P}(X \\leq x) = \\mathrm{P}(X \\geq 40 - x) \\quad \\text{์ด๊ณ } \\quad \\mathrm{P}(Y \\leq x) = \\mathrm{P}(X \\leq x + 10)\\text{์ด๋‹ค.}\n\\]\n$\\mathrm{P}(15 \\leq X \\leq 20) + \\mathrm{P}(15 \\leq Y \\leq 20)$์˜ ๊ฐ’์„ ๋‹ค์Œ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌํ‘œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•œ ๊ฒƒ์ด $0.4772$์ผ ๋•Œ, $m_1 + \\sigma_2$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค.\n(๋‹จ, $\\sigma_1$๊ณผ $\\sigma_2$๋Š” ์–‘์ˆ˜์ด๋‹ค.) [4์ ]\n\n\\[\n\\begin{array}{|c|c|}\n\\hline\nz & \\mathrm{P}(0 \\leq Z \\leq z) \\\\\n\\hline\n0.5 & 0.1915 \\\\\n1.0 & 0.3413 \\\\\n1.5 & 0.4332 \\\\\n2.0 & 0.4772 \\\\\n\\hline\n\\end{array}\n\\]","answer":25,"score":4,"review":"'์˜ค๋ฅธ์ชฝ' changed to '๋‹ค์Œ'."}
{"id":30,"name":"30_prob","problem":"30. ํƒ์ž ์œ„์— 5๊ฐœ์˜ ๋™์ „์ด ์ผ๋ ฌ๋กœ ๋†“์—ฌ ์žˆ๋‹ค. ์ด 5๊ฐœ์˜ ๋™์ „ ์ค‘ 1๋ฒˆ์งธ ์ž๋ฆฌ์™€ 2๋ฒˆ์งธ ์ž๋ฆฌ์˜ ๋™์ „์€ ์•ž๋ฉด์ด ๋ณด์ด๋„๋ก ๋†“์—ฌ ์žˆ๊ณ , ๋‚˜๋จธ์ง€ ์ž๋ฆฌ์˜ 3๊ฐœ์˜ ๋™์ „์€ ๋’ท๋ฉด์ด ๋ณด์ด๋„๋ก ๋†“์—ฌ ์žˆ๋‹ค. ์ด 5๊ฐœ์˜ ๋™์ „๊ณผ ํ•œ ๊ฐœ์˜ ์ฃผ์‚ฌ์œ„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์‹œํ–‰์„ ํ•œ๋‹ค.\n\n์ฃผ์‚ฌ์œ„๋ฅผ ํ•œ ๋ฒˆ ๋˜์ ธ ๋‚˜์˜จ ๋ˆˆ์˜ ์ˆ˜๊ฐ€ \\( k \\)์ผ ๋•Œ, \n\\[\nk \\leq 5 \\quad \\text{์ด๋ฉด } k\\text{๋ฒˆ์งธ ์ž๋ฆฌ์˜ ๋™์ „์„ ํ•œ ๋ฒˆ ๋’ค์ง‘์–ด ์ œ์ž๋ฆฌ์— ๋†“๊ณ ,}\n\\]\n\\[\nk = 6 \\quad \\text{์ด๋ฉด ๋ชจ๋“  ๋™์ „์„ ํ•œ ๋ฒˆ์”ฉ ๋’ค์ง‘์–ด ์ œ์ž๋ฆฌ์— ๋†“๋Š”๋‹ค.}\n\\]\n\n์œ„์˜ ์‹œํ–‰์„ 3๋ฒˆ ๋ฐ˜๋ณตํ•œ ํ›„ ์ด 5๊ฐœ์˜ ๋™์ „์ด ๋ชจ๋‘ ์•ž๋ฉด์ด ๋ณด์ด๋„๋ก ๋†“์—ฌ ์žˆ์„ ํ™•๋ฅ ์„ \\(\\frac{q}{p}\\)์ด๋‹ค. \\( p+q \\)์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. \n(๋‹จ, \\( p \\)์™€ \\( q \\)๋Š” ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜์ด๋‹ค.) [4์ ]","answer":19,"score":4,"review":"Removed figure."}
{"id":31,"name":"23_calc","problem":"23. $\\lim_{x \\to 0} \\frac{3x^2}{\\sin^2 x}$ ์˜ ๊ฐ’์€? [2์ ]\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}","answer":3,"score":2,"review":null}
{"id":32,"name":"24_calc","problem":"24. \\[\n\\int_{0}^{10} \\frac{x+2}{x+1} \\, dx\n\\]\n์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] $10 + \\ln 5$\n \\item[2] $10 + \\ln 7$\n \\item[3] $10 + 2\\ln 3$\n \\item[4] $10 + \\ln 11$\n \\item[5] $10 + \\ln 13$\n\\end{itemize}","answer":4,"score":3,"review":null}
{"id":33,"name":"25_calc","problem":"25. ์ˆ˜์—ด $\\{a_n\\}$์— ๋Œ€ํ•˜์—ฌ $\\lim_{n \\to \\infty} \\frac{n a_n}{n^2 + 3} = 1$ ์ผ ๋•Œ, \n\\[\n\\lim_{n \\to \\infty} \\left( \\sqrt{a_n^2 + n} - a_n \\right) \\text{์˜ ๊ฐ’์€?} \\ [3 \\text{์ }] \n\\]\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{3}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $3$\n\\end{itemize}","answer":2,"score":3,"review":null}
{"id":34,"name":"26_calc","problem":"26. ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ๊ณก์„  $y = \\sqrt{\\frac{x+1}{x(x+\\ln x)}}$ ๊ณผ $x$์ถ• ๋ฐ ๋‘ ์ง์„  $x=1, \\ x=e$๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์„ ๋ฐ‘๋ฉด์œผ๋กœ ํ•˜๋Š” ์ž…์ฒด๋„ํ˜•์ด ์žˆ๋‹ค. ์ด ์ž…์ฒด๋„ํ˜•์„ $x$์ถ•์— ์ˆ˜์ง์ธ ํ‰๋ฉด์œผ๋กœ ์ž๋ฅธ ๋‹จ๋ฉด์ด ๋ชจ๋‘ ์ •์‚ฌ๊ฐํ˜•์ผ ๋•Œ, ์ด ์ž…์ฒด๋„ํ˜•์˜ ๋ถ€ํ”ผ๋Š”? [3์ ]\n\n\\begin{itemize}\n \\item[1] $\\ln(e+1)$\n \\item[2] $\\ln(e+2)$\n \\item[3] $\\ln(e+3)$\n \\item[4] $\\ln(2e+1)$\n \\item[5] $\\ln(2e+2)$\n\\end{itemize}","answer":1,"score":3,"review":"Removed figure and the statement referring to the figure."}
{"id":35,"name":"27_calc","problem":"27. ์ตœ๊ณ ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜๊ฐ€ 1์ธ ์‚ผ์ฐจํ•จ์ˆ˜ \\( f(x) \\)์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ \\( g(x) \\)๋ฅผ\n\n\\[\ng(x) = f(e^x) + e^x\n\\]\n\n์ด๋ผ ํ•˜์ž. ๊ณก์„  \\( y = g(x) \\) ์œ„์˜ ์  \\( (0, g(0)) \\)์—์„œ์˜ ์ ‘์„ ์ด \\( x \\)์ถ•์ด๊ณ  ํ•จ์ˆ˜ \\( g(x) \\)๊ฐ€ ์—ญํ•จ์ˆ˜ \\( h(x) \\)๋ฅผ ๊ฐ€์งˆ ๋•Œ, \\( h'(8) \\)์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] \\( \\frac{1}{36} \\)\n \\item[2] \\( \\frac{1}{18} \\)\n \\item[3] \\( \\frac{1}{12} \\)\n \\item[4] \\( \\frac{1}{9} \\)\n \\item[5] \\( \\frac{5}{36} \\)\n\\end{itemize}","answer":1,"score":3,"review":null}
{"id":36,"name":"28_calc","problem":"28. ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜ $f(x)$์˜ ๋„ํ•จ์ˆ˜ $f'(x)$๊ฐ€\n\n\\[\nf'(x) = -x + e^{1 - x^2}\n\\]\n\n์ด๋‹ค. ์–‘์ˆ˜ $t$์— ๋Œ€ํ•˜์—ฌ ๊ณก์„  $y=f(x)$ ์œ„์˜ ์  $(t, f(t))$์—์„œ์˜ ์ ‘์„ ๊ณผ ๊ณก์„  $y=f(x)$ ๋ฐ $y$์ถ•์œผ๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ $g(t)$๋ผ ํ•˜์ž. $g(1) + g'(1)$์˜ ๊ฐ’์€? [4์ ]\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{2} e + \\frac{1}{2}$\n \\item[2] $\\frac{1}{2} e + \\frac{2}{3}$\n \\item[3] $\\frac{1}{2} e + \\frac{5}{6}$\n \\item[4] $\\frac{2}{3} e + \\frac{1}{2}$\n \\item[5] $\\frac{2}{3} e + \\frac{2}{3}$\n\\end{itemize}","answer":2,"score":4,"review":null}
{"id":37,"name":"29_calc","problem":"29. ๋“ฑ๋น„์ˆ˜์—ด ${a_n}$์ด \\[\n\\sum_{n=1}^\\infty (|a_n| + a_n) = \\frac{40}{3}, \\quad \\sum_{n=1}^\\infty (|a_n| - a_n) = \\frac{20}{3}\n\\]\n๋ฅผ ๋งŒ์กฑ์‹œํ‚จ๋‹ค. ๋ถ€๋“ฑ์‹\n\\[\n\\lim_{n \\to \\infty} \\sum_{k=1}^{2n} \\left((-1)^ \\frac{k(k+1)}{2} \\times a_{m+k} \\right) > \\frac{1}{700}\n\\]\n์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋“  ์ž์—ฐ์ˆ˜ $m$์˜ ๊ฐ’์˜ ํ•ฉ์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]","answer":25,"score":4,"review":null}
{"id":38,"name":"30_calc","problem":"30. ๋‘ ์ƒ์ˆ˜ \\( a \\ (1 \\leq a \\leq 2), \\ b \\)์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜\n\\[ f(x) = \\sin(ax + b + \\sin x) \\]\n๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.\n\n\\begin{itemize}\n \\item[(๊ฐ€)] \\( f(0) = 0, \\quad f(2\\pi) = 2\\pi a + b \\)\n \\item[(๋‚˜)] \\( f'(0) = f'(t) \\)์ธ ์–‘์ˆ˜ \\( t \\)์˜ ์ตœ์†Ÿ๊ฐ’์€ \\( 4\\pi \\)์ด๋‹ค.\n\\end{itemize}\n\nํ•จ์ˆ˜ \\( f(x) \\)๊ฐ€ \\( x = \\alpha \\)์—์„œ ๊ทน๋Œ€์ธ \\(\\alpha\\)์˜ ๊ฐ’ ์ค‘ ์—ด๋ฆฐ๊ตฌ๊ฐ„ \\((0, 4\\pi)\\)์— ์†ํ•˜๋Š” ๋ชจ๋“  ๊ฐ’์˜ ์ง‘ํ•ฉ์„ \\( A \\)๋ผ ํ•˜์ž. ์ง‘ํ•ฉ \\( A \\)์˜ ์›์†Œ์˜ ๊ฐœ์ˆ˜๋ฅผ \\( n \\),\n์ง‘ํ•ฉ \\( A \\)์˜ ์›์†Œ ์ค‘ ๊ฐ€์žฅ ์ž‘์€ ๊ฐ’์„ \\( \\alpha_1 \\)์ด๋ผ ํ•˜๋ฉด,\n\\[ n \\alpha_1 - ab = \\frac{q}{p} \\pi \\]\n์ด๋‹ค. \\( p + q \\)์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. (๋‹จ, \\(p\\)์™€ \\(q\\)๋Š” ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜์ด๋‹ค.) [4์ ]","answer":17,"score":4,"review":null}
{"id":39,"name":"23_geom","problem":"23. ๋‘ ๋ฒกํ„ฐ \\(\\vec{a} = (k, 3)\\), \\(\\vec{b} = (1, 2)\\)์— ๋Œ€ํ•˜์—ฌ \\(\\vec{a} + 3\\vec{b} = (6, 9)\\)์ผ ๋•Œ, \\(k\\)์˜ ๊ฐ’์€? [2์ ]\n\n\\begin{itemize}\n \\item[1] \\(1\\)\n \\item[2] \\(2\\)\n \\item[3] \\(3\\)\n \\item[4] \\(4\\)\n \\item[5] \\(5\\)\n\\end{itemize}","answer":3,"score":2,"review":null}
{"id":40,"name":"24_geom","problem":"24. ๊ผญ์ง“์ ์˜ ์ขŒํ‘œ๊ฐ€ $(1, 0)$์ด๊ณ , ์ค€์„ ์ด $x = -1$์ธ ํฌ๋ฌผ์„ ์ด ์  $(3, a)$๋ฅผ ์ง€๋‚  ๋•Œ, ์–‘์ˆ˜ $a$์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}","answer":4,"score":3,"review":null}
{"id":41,"name":"25_geom","problem":"25. ์ขŒํ‘œ๊ณต๊ฐ„์˜ ๋‘ ์  \\( \\mathrm{A}(a, b, 6) \\), \\( \\mathrm{B}(-4, -2, c) \\)์— ๋Œ€ํ•˜์—ฌ \n์„ ๋ถ„ \\( \\mathrm{AB} \\)๋ฅผ \\( 3:2 \\)๋กœ ๋‚ด๋ถ„ํ•˜๋Š” ์ ์ด \\( z \\)์ถ• ์œ„์— ์žˆ๊ณ , \n์„ ๋ถ„ \\( \\mathrm{AB} \\)๋ฅผ \\( 3:2 \\)๋กœ ์™ธ๋ถ„ํ•˜๋Š” ์ ์ด \\( xy \\)ํ‰๋ฉด ์œ„์— ์žˆ์„ ๋•Œ, \n\\( a + b + c \\)์˜ ๊ฐ’์€? [3์ ]\n\n\\begin{itemize}\n \\item[1] 11\n \\item[2] 12\n \\item[3] 13\n \\item[4] 14\n \\item[5] 15\n\\end{itemize}","answer":3,"score":3,"review":null}
{"id":42,"name":"26_geom","problem":"26. ์ž์—ฐ์ˆ˜ $n \\ (n \\geq 2)$์— ๋Œ€ํ•˜์—ฌ ์ง์„  $x = \\frac{1}{n}$ ์ด ๋‘ ํƒ€์›\n\\[\nC_1 : \\frac{x^2}{2} + y^2 = 1, \\quad C_2 : 2x^2 + \\frac{y^2}{2} = 1\n\\]\n๊ณผ ๋งŒ๋‚˜๋Š” ์ œ1์‚ฌ๋ถ„๋ฉด ์œ„์˜ ์ ์„ ๊ฐ๊ฐ $\\mathrm{P}$, $\\mathrm{Q}$๋ผ ํ•˜์ž. ํƒ€์› $C_1$ ์œ„์˜ ์  $\\mathrm{P}$์—์„œ์˜ ์ ‘์„ ์˜ $x$์ ˆํŽธ์„ $\\alpha$, ํƒ€์› $C_2$ ์œ„์˜ ์  $\\mathrm{Q}$์—์„œ์˜ ์ ‘์„ ์˜ $x$์ ˆํŽธ์„ $\\beta$๋ผ ํ•  ๋•Œ, \n\\[\n6 \\leq \\alpha - \\beta \\leq 15\n\\]\n๊ฐ€ ๋˜๋„๋ก ํ•˜๋Š” ๋ชจ๋“  $n$์˜ ๊ฐœ์ˆ˜๋Š”? [3์ ]\n\n\\begin{itemize}\n \\item[1] 7\n \\item[2] 9\n \\item[3] 11\n \\item[4] 13\n \\item[5] 15\n\\end{itemize}","answer":1,"score":3,"review":null}
{"id":43,"name":"27_geom","problem":"27. ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด $\\overline{\\mathrm{AB}} = 6$, $\\overline{\\mathrm{BC}} = 4\\sqrt{5}$ ์ธ ์‚ฌ๋ฉด์ฒด $\\mathrm{ABCD}$์— ๋Œ€ํ•˜์—ฌ ์„ ๋ถ„ $\\mathrm{BC}$์˜ ์ค‘์ ์„ $\\mathrm{M}$์ด๋ผ ํ•˜์ž. ์‚ผ๊ฐํ˜• $\\mathrm{AMD}$๊ฐ€ ์ •์‚ผ๊ฐํ˜•์ด๊ณ , ์ง์„  $\\mathrm{BC}$๋Š” ํ‰๋ฉด $\\mathrm{AMD}$์™€ ์ˆ˜์ง์ผ ๋•Œ, ์‚ผ๊ฐํ˜• $\\mathrm{ACD}$์— ๋‚ด์ ‘ํ•˜๋Š” ์›์˜ ํ‰๋ฉด $\\mathrm{BCD}$ ์œ„๋กœ์˜ ์ •์‚ฌ์˜์˜ ๋„“์ด๋Š”? [3์ ]\n\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{10}}{4} \\pi$\n \\item[2] $\\frac{\\sqrt{10}}{6} \\pi$\n \\item[3] $\\frac{\\sqrt{10}}{8} \\pi$\n \\item[4] $\\frac{\\sqrt{10}}{10} \\pi$\n \\item[5] $\\frac{\\sqrt{10}}{12} \\pi$\n\\end{itemize}","answer":1,"score":3,"review":"Removed figure and the statement referring to the figure."}
{"id":44,"name":"28_geom","problem":"28. ์ขŒํ‘œ๊ณต๊ฐ„์— $\\overline{\\mathrm{AB}} = 8$, $\\overline{\\mathrm{BC}} = 6$, $\\angle \\mathrm{ABC} = \\frac{\\pi}{2}$์ธ ์ง๊ฐ์‚ผ๊ฐํ˜• $\\mathrm{ABC}$์™€ ์„ ๋ถ„ $\\mathrm{AC}$๋ฅผ ์ง€๋ฆ„์œผ๋กœ ํ•˜๋Š” ๊ตฌ $S$๊ฐ€ ์žˆ๋‹ค. ์ง์„  $\\mathrm{AB}$๋ฅผ ํฌํ•จํ•˜๊ณ  ํ‰๋ฉด $\\mathrm{ABC}$์— ์ˆ˜์ง์ธ ํ‰๋ฉด์ด ๊ตฌ $S$์™€ ๋งŒ๋‚˜์„œ ์ƒ๊ธฐ๋Š” ์›์„ $O$๋ผ ํ•˜์ž. ์› $O$ ์œ„์˜ ์  ์ค‘์—์„œ ์ง์„  $\\mathrm{AC}$๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๊ฐ€ $4$์ธ ์„œ๋กœ ๋‹ค๋ฅธ ๋‘ ์ ์„ $\\mathrm{P}$, $\\mathrm{Q}$๋ผ ํ•  ๋•Œ, ์„ ๋ถ„ $\\mathrm{PQ}$์˜ ๊ธธ์ด๋Š”? [4์ ]\n\n\\begin{itemize}\n \\item[1] $\\sqrt{43}$\n \\item[2] $\\sqrt{47}$\n \\item[3] $\\sqrt{51}$\n \\item[4] $\\sqrt{55}$\n \\item[5] $\\sqrt{59}$\n\\end{itemize}","answer":4,"score":4,"review":"Removed figure."}
{"id":45,"name":"29_geom","problem":"29. ๋‘ ์ดˆ์ ์ด $\\mathrm{F}(c, 0)$, $\\mathrm{F'}(-c, 0)$ $(c > 0)$์ธ ์Œ๊ณก์„  $x^2 - \\frac{y^2}{35} = 1$์ด ์žˆ๋‹ค. ์ด ์Œ๊ณก์„  ์œ„์— ์žˆ๋Š” ์ œ1์‚ฌ๋ถ„๋ฉด ์œ„์˜ ์  $\\mathrm{P}$์— ๋Œ€ํ•˜์—ฌ ์ง์„  $\\mathrm{PF'}$ ์œ„์— $\\overline{\\mathrm{PQ}} = \\overline{\\mathrm{PF}}$์ธ ์  $\\mathrm{Q}$๋ฅผ ์žก์ž. ์‚ผ๊ฐํ˜• $\\mathrm{QF'F}$์™€ ์‚ผ๊ฐํ˜• $\\mathrm{FF'P}$๊ฐ€ ์„œ๋กœ ๋‹ฎ์Œ์ผ ๋•Œ, ์‚ผ๊ฐํ˜• $\\mathrm{PFQ}$์˜ ๋„“์ด๋Š” $\\frac{q}{p}\\sqrt{5}$์ด๋‹ค. $p+q$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. \n\n(๋‹จ, $\\overline{\\mathrm{PF'}} < \\overline{\\mathrm{QF'}}$์ด๊ณ , $p$์™€ $q$๋Š” ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜์ด๋‹ค.) [4์ ]","answer":107,"score":4,"review":"Removed figure."}
{"id":46,"name":"30_geom","problem":"30. ์ขŒํ‘œํ‰๋ฉด์— ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ $4$์ธ ์ •์‚ฌ๊ฐํ˜• $\\mathrm{ABCD}$๊ฐ€ ์žˆ๋‹ค.\\[|\\overrightarrow{\\mathrm{XB}} + \\overrightarrow{\\mathrm{XC}}| = |\\overrightarrow{\\mathrm{XB}} - \\overrightarrow{\\mathrm{XC}}|\\]๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์  $\\mathrm{X}$๊ฐ€ ๋‚˜ํƒ€๋‚ด๋Š” ๋„ํ˜•์„ $S$๋ผ ํ•˜์ž. \\\\๋„ํ˜• $S$ ์œ„์˜ ์  $\\mathrm{P}$์— ๋Œ€ํ•˜์—ฌ\\[4\\overrightarrow{\\mathrm{PQ}} = \\overrightarrow{\\mathrm{PB}} + 2\\overrightarrow{\\mathrm{PD}}\\]๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ ์„ $\\mathrm{Q}$๋ผ ํ•  ๋•Œ, $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{AQ}}$์˜ ์ตœ๋Œ“๊ฐ’๊ณผ ์ตœ์†Ÿ๊ฐ’์„ ๊ฐ๊ฐ $M, m$์ด๋ผ ํ•˜์ž. $M \\times m$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]","answer":316,"score":4,"review":"Removed figure."}