|
14. κ·Έλ¦Όκ³Ό κ°μ΄ μΌκ°ν \(\mathrm{ABC}\)μμ μ λΆ \(\mathrm{AB}\) μμ \(\overline{\mathrm{AD}} : \overline{\mathrm{DB}} = 3 : 2\)μΈ μ \(\mathrm{D}\)λ₯Ό μ‘κ³ , μ \(\mathrm{A}\)λ₯Ό μ€μ¬μΌλ‘ νκ³ μ \(\mathrm{D}\)λ₯Ό μ§λλ μμ \(O\), μ \(O\)μ μ λΆ \(\mathrm{AC}\)κ° λ§λλ μ μ \(\mathrm{E}\)λΌ νμ. |
|
\(\sin A : \sin C = 8 : 5\)μ΄κ³ , μΌκ°ν \(\mathrm{ADE}\)μ μΌκ°ν \(\mathrm{ABC}\)μ λμ΄μ λΉκ° \(9 : 35\)μ΄λ€. μΌκ°ν \(\mathrm{ABC}\)μ μΈμ μμ λ°μ§λ¦μ κΈΈμ΄κ° \(7\)μΌ λ, μ \(O\) μμ μ \(\mathrm{P}\)μ λνμ¬ μΌκ°ν \(\mathrm{PBC}\)μ λμ΄μ μ΅λκ°μ? (λ¨,\( \ \overline{\mathrm{AB}} < \overline{\mathrm{AC}}\)) [4μ ] |
|
|
|
\begin{itemize} |
|
\item[1] $18 + 15 \sqrt{3}$ |
|
\item[2] $24 + 20 \sqrt{3}$ |
|
\item[3] $30 + 25 \sqrt{3}$ |
|
\item[4] $36 + 30 \sqrt{3}$ |
|
\item[5] $42 + 35 \sqrt{3}$ |
|
\end{itemize} |