cfpark00 commited on
Commit
435cbca
·
1 Parent(s): 0c300d7
data/2022_math-00000-of-00001-b73cb6283dc02610.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:17c8cd0b0c4f1db55d5806474c34a0c178195240e1b84dae6f34eb4edc3105d2
3
- size 15937
 
 
 
 
data/2023_math-00000-of-00001-3ef9ab05717b4a30.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3aed6ddac55a89558bb52b5ce64b1ad7462b745f3777ed5f2cdac324c9c931cd
3
- size 15251
 
 
 
 
data/2024_math-00000-of-00001.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:81857574f303138b7a69049f1f7dbf1b87fd9af80891c33c3230c6378cb930f7
3
- size 15701
 
 
 
 
data/json/2023/math.json CHANGED
@@ -1,4 +1,3 @@
1
- <<<<<<< HEAD
2
  {"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ 의 값은? [2점] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
3
  {"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ 의 값은? [2점] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
4
  {"id": 3, "name": "3", "problem": "3. 공비가 양수인 등비수열$\\{a_n\\}$이 \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] 를 만족시킬 때, $a_1$ 의 값은? [3점] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
@@ -45,51 +44,3 @@
45
  {"id": 44, "name": "28_geom", "problem": "28. 두 초점이 $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$인 쌍곡선 $( C )$와 $( y )$축 위의 점 $( \\mathrm{A} )$가 있다. 쌍곡선 $( C )$가 선분 $( \\mathrm{AF} )$와 만나는 점을 $( \\mathrm{P} )$, 선분 $( \\mathrm{AF'} )$와 만나는 점을 $( \\mathrm{P'} )$이라 하자. 직선 $( \\mathrm{AF} )$는 쌍곡선 $( C )$의 한 점근선과 평행하고\n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n일 때, 쌍곡선 $( C )$의 주축의 길이는? [4점]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
46
  {"id": 45, "name": "29_geom", "problem": "29. 평면 $\\alpha$ 위에 $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ 인 사다리꼴 $\\mathrm{ABCD}$가 있다. 다음 조건을 만족시키는 평면 $\\alpha$ 위의 두 점 $\\mathrm{P}$, $\\mathrm{Q}$에 대하여 $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$의 값을 구하시오. [4점]\n\n\\begin{itemize} \\item[(가)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(나)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(다)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
47
  {"id": 46, "name": "30_geom", "problem": "30. 좌표공간에 정사면체 $\\mathrm{ABCD}$가 있다. 정삼각형 $\\mathrm{BCD}$의 외심을 중심으로 하고 점 $\\mathrm{B}$를 지나는 구를 $S$라 하자.\n\n구 $S$와 선분 $\\mathrm{AB}$가 만나는 점 중 $\\mathrm{B}$가 아닌 점을 $\\mathrm{P}$, 구 $S$와 선분 $\\mathrm{AC}$가 만나는 점 중 $\\mathrm{C}$가 아닌 점을 $\\mathrm{Q}$, 구 $S$와 선분 $\\mathrm{AD}$가 만나는 점 중 $\\mathrm{D}$가 아닌 점을 $\\mathrm{R}$라 하고, 점 $\\mathrm{P}$에서 구 $S$에 접하는 평면을 $\\alpha$라 하자.\n\n구 $S$의 반지름의 길이가 $6$일 때, 삼각형 $\\mathrm{PQR}$의 평면 $\\alpha$ 위로의 정사영의 넓이는 $k$이다. $k^2$의 값을 구하시오. [4점]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
48
- =======
49
- {"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
50
- {"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2 + 3x}}{x + 5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
51
- {"id":3,"name":"3","problem":"3. \\text{\uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_1 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
52
- {"id":4,"name":"4","problem":"4. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c}\n\n\\[ g(x) = x^2 f(x) \\]\n\\text{\ub77c \ud558\uc790. } f(2) = 1, \\ f'(2) = 3 \\text{\uc77c \ub54c, } g'(2) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
53
- {"id":5,"name":"5","problem":"5. \\tan \\theta < 0 \\text{\uc774\uace0} \\cos \\left( \\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5} \\text{\uc77c \ub54c, } \\cos \\theta \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] - \\frac{2 \\sqrt{5}}{5}\n \\item[2] - \\frac{\\sqrt{5}}{5}\n \\item[3] 0\n \\item[4] \\frac{\\sqrt{5}}{5}\n \\item[5] \\frac{2 \\sqrt{5}}{5}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
54
- {"id":6,"name":"6","problem":"6. \\text{\ud568\uc218 } f(x) = 2x^3 - 9x^2 + ax + 5 \\text{\ub294 } x = 1 \\text{\uc5d0\uc11c \uadf9\ub300\uc774\uace0, } x = b \\text{\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. } a + b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
55
- {"id":7,"name":"7","problem":"7. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_4 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
56
- {"id":8,"name":"8","problem":"8. \\text{\uc810 } (0, 4) \\text{\uc5d0\uc11c \uace1\uc120 } y = x^3 - x + 2 \\text{\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 } x \\text{\uc808\ud3b8\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{1}{2}\n \\item[2] -1\n \\item[3] -\\frac{3}{2}\n \\item[4] -2\n \\item[5] -\\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
57
- {"id":9,"name":"9","problem":"9. \\text{\ud568\uc218}\n\n\\[ f(x) = a - \\sqrt{3} \\tan 2x \\]\n\\text{\uac00 \ub2eb\ud78c\uad6c\uac04} \\left[ -\\frac{\\pi}{6}, b \\right] \\text{\uc5d0\uc11c \ucd5c\ub300\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, } a \\times b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\pi}{2}\n \\item[2] \\frac{5\\pi}{12}\n \\item[3] \\frac{\\pi}{3}\n \\item[4] \\frac{\\pi}{4}\n \\item[5] \\frac{\\pi}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
58
- {"id":10,"name":"10","problem":"10. \\text{\ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 } y \\text{\ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } A, \\text{ \ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 \uc9c1\uc120 } x = 2 \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } B \\text{\ub77c \ud558\uc790.} A = B \\text{\uc77c \ub54c, \uc0c1\uc218 } k \\text{\uc758 \uac12\uc740? (\ub2e8, } 4 < k < 5) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{25}{6}\n \\item[2] \\frac{13}{3}\n \\item[3] \\frac{9}{2}\n \\item[4] \\frac{14}{3}\n \\item[5] \\frac{29}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
59
- {"id":11,"name":"11","problem":"11. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 } ABCD \\text{\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0}\n\n\\[ \\overline{AB} = 5, \\quad \\overline{AC} = 3 \\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD \\]\n\\text{\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{5 \\sqrt{2}}{2}\n \\item[2] \\frac{8 \\sqrt{5}}{5}\n \\item[3] \\frac{5 \\sqrt{5}}{3}\n \\item[4] \\frac{8 \\sqrt{2}}{3}\n \\item[5] \\frac{9 \\sqrt{3}}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
60
- {"id":12,"name":"12","problem":"12. \\text{\uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } f(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\[ n - 1 \\leq x < n \\text{\uc77c \ub54c, } |f(x)| = |6(x - n + 1)(x - n)| \\text{\uc774\ub2e4. (\ub2e8, } n \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.)} \\]\n\n\\text{\uc5f4\ub9b0\uad6c\uac04 } (0, 4) \\text{\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218} \n\\[ g(x) = \\int_0^x f(t) dt - \\int_x^4 f(t) dt \\]\n\\text{\uac00 } x = 2 \\text{\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, } \\int_{\\frac{1}{2}}^4 f(x) dx \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{3}{2}\n \\item[2] -\\frac{1}{2}\n \\item[3] \\frac{1}{2}\n \\item[4] \\frac{3}{2}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
61
- {"id":13,"name":"13","problem":"13. \\text{\uc790\uc5f0\uc218 } m(m \\geq 2) \\text{\uc5d0 \ub300\ud558\uc5ec } m^{12} \\text{\uc758 } n \\text{\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac1c\uc218\ub97c } f(m) \\text{\uc774\ub77c \ud560 \ub54c,} \n\\[ \\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \\]\n\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
62
- {"id":14,"name":"14","problem":"14. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.}\n\n\\[ g(x) = \\begin{cases} x & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\]\n\\text{\ud568\uc218 } h(x) = \\lim_{t \\to 0^+} g(x+t) \\times \\lim_{t \\to 2^+} g(x+t) \\text{\uc5d0 \ub300\ud558\uc5ec} \n\\text{\ubcf4\uae30\uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]}\n\n\\<\ubcf4\uae30>\n\n\u3131. h(1) = 3 \n\n\u3134. \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \n\n\u3137. \ud568\uc218 g(x)\uac00 \ub2eb\ud78c\uad6c\uac04 \\([-1, 1]\\)\uc5d0\uc11c \uac10\uc18c\ud558\uace0 \\(g(-1) = -2\\)\uc774\uba74 \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n\n\\begin{itemize}\n \\item[1] \u3131\n \\item[2] \u3134\n \\item[3] \u3131, \u3134\n \\item[4] \u3131, \u3137\n \\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
63
- {"id":15,"name":"15","problem":"15. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } a_9 \\text{\uc758 \ucd5c\ub300\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 } M, m \\text{\uc774\ub77c \ud560 \ub54c, } M + m \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\text{(\uac00) } a_7 = 40 \n\n\\text{(\ub098) \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec}\n\\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0}) \\end{cases} \\]\n\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
64
- {"id":16,"name":"16","problem":"16. \\text{\ubc29\uc815\uc2dd}\n\n\\[ \\log_2(3x + 2) = 2 + \\log_2(x - 2) \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } x \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
65
- {"id":17,"name":"17","problem":"17. \\text{\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec } f'(x) = 4x^3 - 2x \\text{\uc774\uace0 } f(0) = 3 \\text{\uc77c \ub54c, } f(2) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
66
- {"id":18,"name":"18","problem":"18. \\text{\ub450 \uc218\uc5f4 } \\{a_n\\}, \\{b_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec}\n\n\\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\]\n\\text{\uc77c \ub54c, } \\sum_{k=1}^{5} b_k \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
67
- {"id":19,"name":"19","problem":"19. \\text{\ubc29\uc815\uc2dd } 2x^3 - 6x^2 + k = 0 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 } k \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
68
- {"id":20,"name":"20","problem":"20. \\text{\uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 } t(t \\geq 0) \\text{\uc5d0\uc11c\uc758 \uc18d\ub3c4 } v(t) \\text{\uc640 \uac00\uc18d\ub3c4 } a(t) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } 0 \\leq t \\leq 2 \\text{\uc77c \ub54c, } v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\text{(\ub098) } t \\geq 2 \\text{\uc77c \ub54c, } a(t) = 6t + 4 \\text{\uc774\ub2e4.}\n\n\\text{\uc2dc\uac01 } t = 0 \\text{\uc5d0\uc11c } t = 3 \\text{\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
69
- {"id":21,"name":"21","problem":"21. \\text{\uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) \\text{\ub97c}\n\n\\[ f(x) = \\begin{cases} |3^x + 2 - n| & (x < 0) \\\\ |\\log_2(x + 4) - n| & (x \\geq 0) \\end{cases} \\]\n\\text{\uc774\ub77c \ud558\uc790. \uc2e4\uc218 } t \\text{\uc5d0 \ub300\ud558\uc5ec } x \\text{\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd } f(x) = t \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c } g(t) \\text{\ub77c \ud560 \ub54c, \ud568\uc218 } g(t) \\text{\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
70
- {"id":22,"name":"22","problem":"22. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } g(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, } f(4) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) \ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.}\n\\text{(\ub098) \ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(0) = -3, \\quad f(g(1)) = 6 \n","answer":-1,"score":-1,"review":null}
71
- {"id":23,"name":"23_prob","problem":"23. \\( (x^3 + 3)^5 \\)\uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c \\(x^9\\)\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
72
- {"id":24,"name":"24_prob","problem":"24. \\text{\uc22b\uc790 } 1, 2, 3, 4, 5 \\text{ \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
73
- {"id":25,"name":"25_prob","problem":"25. \\text{\ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{8}{13}\n \\item[2] \\frac{17}{26}\n \\item[3] \\frac{9}{13}\n \\item[4] \\frac{19}{26}\n \\item[5] \\frac{10}{13}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
74
- {"id":26,"name":"26_prob","problem":"26. \\text{\uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 } A, \\text{ \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 } B \\text{\ub77c \ud560 \ub54c, } P(A \\cup B) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{20}\n \\item[2] \\frac{3}{5}\n \\item[3] \\frac{13}{20}\n \\item[4] \\frac{7}{10}\n \\item[5] \\frac{3}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
75
- {"id":27,"name":"27_prob","problem":"27. \\text{\uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec } N(m, \\sigma^2) \\text{\uc744 \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } 746.1 \\leq m \\leq 755.9 \\text{\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c } n \\text{\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } a \\leq m \\leq b \\text{\uc77c \ub54c, } b - a \\text{\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 } n \\text{\uc758 \ucd5c\uc19f\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, } Z \\text{\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, } P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\text{\ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
76
- {"id":28,"name":"28_prob","problem":"28. \\text{\uc5f0\uc18d\ud655\ub960\ubcc0\uc218 } X \\text{\uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 } 0 \\leq X \\leq a \\text{\uc774\uace0, } X \\text{\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.}\n\n\\[ P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\]\n\\text{\uc77c \ub54c, } a + b + c \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b, c \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{2}\n \\item[2] 6\n \\item[3] \\frac{13}{2}\n \\item[4] 7\n \\item[5] \\frac{15}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":2.0}
77
- {"id":29,"name":"29_prob","problem":"29. \\text{\uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0, \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 } k \\text{\uc5d0 \ub300\ud558\uc5ec } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 } k \\text{\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4.}\n\n\\text{\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4.}\n\n\\[ \\text{\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 } k \\text{\uc774\uba74 } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.} \\]\n\n\\text{\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc740 } \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":1.0}
78
- {"id":30,"name":"30_prob","problem":"30. \\text{\uc9d1\ud569 } X = \\{x | x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\} \\text{\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 } f: X \\to X \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) \\leq f(x+1) \\text{\uc774\ub2e4.}\n\\text{(\ub098) } 1 \\leq x \\leq 5 \\text{\uc77c \ub54c } f(x) \\leq x \\text{\uc774\uace0, } 6 \\leq x \\leq 10 \\text{\uc77c \ub54c } f(x) \\geq x \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(6) = f(5) + 6\n","answer":-1,"score":-1,"review":null}
79
- {"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
80
- {"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{4}{3}\n \\item[2] \\frac{13}{9}\n \\item[3] \\frac{14}{9}\n \\item[4] \\frac{5}{3}\n \\item[5] \\frac{16}{9}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
81
- {"id":33,"name":"25_calc","problem":"25. \\text{\ub4f1\ube44\uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } \\lim_{n \\to \\infty} \\frac{a_n + 1}{3^n + 2^{2n-1}} = 3 \\text{\uc77c \ub54c, } a_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
82
- {"id":34,"name":"26_calc","problem":"26. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 } y = \\sqrt{\\sec^2 x} + \\tan x \\left(0 \\leq x \\leq \\frac{\\pi}{3}\\right) \\text{\uc640 } x \\text{\ucd95, } y \\text{\ucd95 \ubc0f \uc9c1\uc120 } x = \\frac{\\pi}{3} \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 } x \\text{\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}\n \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2\n \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2}\n \\item[4] \\sqrt{3} + \\ln 2\n \\item[5] \\sqrt{3} + 2\\ln 2\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
83
- {"id":35,"name":"27_prob","problem":"27. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 1\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc774 \uc788\ub2e4. \ud638 } A_1B_1 \\text{ \uc704\uc5d0 \uc810 } P_1, \\text{\uc120\ubd84 } OA_1 \\text{ \uc704\uc5d0 \uc810 } C_1, \\text{\uc120\ubd84 } OB_1 \\text{ \uc704\uc5d0 \uc810 } D_1 \\text{\uc744 \uc0ac\uac01\ud615 } OC_1P_1D_1 \\text{\uc774 } OC_1 : OD_1 = 3:4 \\text{\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\n\\text{\ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc758 \ub0b4\ubd80\uc5d0 \uc810 } Q_1 \\text{\uc744 } PQ_1 = AQ_1, \\angle PQ_1A_1 = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_1Q_1A_1 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_1 \\text{\uc774\ub77c \ud558\uc790.}\n\\text{\uadf8\ub9bc } R_1 \\text{\uc5d0\uc11c \uc120\ubd84 } OA_1 \\text{ \uc704\uc758 \uc810 } A_2 \\text{\uc640 \uc120\ubd84 } OB_1 \\text{ \uc704\uc758 \uc810 } B_2 \\text{\ub97c } OQ_1 = OA_2 = OB_2 \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 } OQ_1, \\text{\uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_2B_2 \\text{\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9b0 } R_1 \\text{\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 } P_2, C_2, D_2, Q_2 \\text{\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_2Q_2A_2 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_2 \\text{\ub77c \ud558\uc790. \uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec } n \\text{\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc } R_n \\text{\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } S_n \\text{\uc774\ub77c \ud560 \ub54c, } \\lim_{n \\to \\infty} S_n \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{9}{40}\n \\item[2] \\frac{1}{4}\n \\item[3] \\frac{11}{40}\n \\item[4] \\frac{3}{10}\n \\item[5] \\frac{13}{40}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
84
- {"id":36,"name":"28_prob","problem":"28. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O \\text{\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 } AB \\text{\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 } \\angle AOC = \\frac{\\pi}{2} \\text{\uc778 \uc810 } C \\text{\uac00 \uc788\ub2e4.}\n\\text{\ud638 } BC \\text{ \uc704\uc5d0 \uc810 } P \\text{\uc640 \ud638 } CA \\text{ \uc704\uc5d0 \uc810 } Q \\text{\ub97c } PB = QC \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 } AP \\text{ \uc704\uc5d0 \uc810 } R \\text{\uc744 } \\angle CQR = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\\text{\uc120\ubd84 } AP \\text{\uc640 \uc120\ubd84 } CO \\text{\uc758 \uad50\uc810\uc744 } S \\text{\ub77c \ud558\uc790. } \\angle PAB = \\theta \\text{\uc77c \ub54c, \uc0bc\uac01\ud615 } POB \\text{\uc758 \ub113\uc774\ub97c } f(\\theta), \\text{\uc0ac\uac01\ud615 } CQRS \\text{\uc758 \ub113\uc774\ub97c } g(\\theta) \\text{\ub77c \ud558\uc790.}\n\n\\lim_{\\theta \\to 0^+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\text{\uc758 \uac12\uc740? (\ub2e8, } 0 < \\theta < \\frac{\\pi}{4} \\text{) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
85
- {"id":37,"name":"29_prob","problem":"29. \\text{\uc138 \uc0c1\uc218 } a, b, c \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) = ae^{2x} + be^x + c \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\text{(\ub098) } f(\\ln 2) = 0\n\n\\text{\ud568\uc218 } f(x) \\text{\uc758 \uc5ed\ud568\uc218\ub97c } g(x) \\text{\ub77c \ud560 \ub54c,}\n\\[ \\int_0^{14} g(x) dx = p + q \\ln 2 \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.}\n\\text{(\ub2e8, } p, q \\text{\ub294 \uc720\ub9ac\uc218\uc774\uace0, } \\ln 2 \\text{\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
86
- {"id":38,"name":"30_prob","problem":"30. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \ud568\uc218 } g(x) = e^{\\sin \\pi x} - 1 \\text{\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 } h(x) = g(f(x)) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) \ud568\uc218 } h(x) \\text{\ub294 } x = 0 \\text{\uc5d0\uc11c \uadf9\ub313\uac12 0\uc744 \uac16\ub294\ub2e4.}\n\\text{(\ub098) \uc5f4\ub9b0\uad6c\uac04 } (0, 3) \\text{\uc5d0\uc11c \ubc29\uc815\uc2dd } h(x) = 1 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.}\n\nf(3) = \\frac{1}{2}, f'(3) = 0 \\text{\uc77c \ub54c, } f(2) = \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
87
- {"id":39,"name":"23_geom","problem":"23. \\text{\uc88c\ud45c\uacf5\uac04\uc758 \uc810 } A(2, 2, -1) \\text{\uc744 } x \\text{\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 } B \\text{\ub77c \ud558\uc790. \uc810 } C(-2, 1, 1) \\text{\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
88
- {"id":40,"name":"24_geom","problem":"24. \\text{\ucd08\uc810\uc774 } F\\left(\\frac{1}{3}, 0\\right) \\text{\uc774\uace0 \uc900\uc120\uc774 } x = -\\frac{1}{3} \\text{\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 } (a, 2) \\text{\ub97c \uc9c0\ub0a0 \ub54c, } a \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
89
- {"id":41,"name":"25_geom","problem":"25. \\text{\ud0c0\uc6d0 } \\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\text{ \uc704\uc758 \uc810 } (2, 1) \\text{\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 } -\\frac{1}{2} \\text{\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294? (\ub2e8, } a, b \\text{\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 2\\sqrt{3}\n \\item[2] 4\n \\item[3] 2\\sqrt{5}\n \\item[4] 2\\sqrt{6}\n \\item[5] 2\\sqrt{7}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
90
- {"id":42,"name":"26_geom","problem":"26. \\text{\uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130 } \\vec{a} = (2, 4), \\vec{b} = (2, 8), \\vec{c} = (1, 0) \\text{\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 } \\vec{p}, \\vec{q} \\text{\uac00}\n\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{\ub294 \uc2e4\uc218}) \\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } |\\vec{p} - \\vec{q}| \\text{\uc758 \ucd5c\uc19f\uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{3}{2}\n \\item[2] 2\n \\item[3] \\frac{5}{2}\n \\item[4] 3\n \\item[5] \\frac{7}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
91
- {"id":43,"name":"27_geom","problem":"27. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc788\ub2e4. \ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_1 \\text{\uc774\ub77c \ud560 \ub54c } \\sin \\theta_1 = \\frac{4}{5} \\text{\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 } \\frac{\\pi}{2} - \\theta_1 \\text{\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_2 \\text{\ub77c \ud560 \ub54c, } \\cos \\theta_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{7}}{4}\n \\item[2] \\frac{\\sqrt{7}}{5}\n \\item[3] \\frac{\\sqrt{7}}{6}\n \\item[4] \\frac{\\sqrt{7}}{7}\n \\item[5] \\frac{\\sqrt{7}}{8}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
92
- {"id":44,"name":"28_geom","problem":"28. \\text{\ub450 \ucd08\uc810\uc774 } F(c, 0), F'(-c, 0) \\text{(} c > 0 \\text{)\uc778 \uc30d\uace1\uc120 } C \\text{\uc640 } y \\text{\ucd95 \uc704\uc758 \uc810 } A \\text{\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 } C \\text{\uac00 \uc120\ubd84 } AF \\text{\uc640 \ub9cc\ub098\ub294 \uc810\uc744 } P, \\text{\uc120\ubd84 } AF' \\text{\uacfc \ub9cc\ub098\ub294 \uc810\uc744 } P' \\text{\uc774\ub77c \ud558\uc790. \uc9c1\uc120 } AF \\text{\ub294 \uc30d\uace1\uc120 } C \\text{\uc758 \ud55c \uc811\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 }\n\\frac{AP}{PP'} = \\frac{5}{6}, PF = 1 \\text{\uc77c \ub54c, \uc30d\uace1\uc120 } C \\text{\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{13}{6}\n \\item[2] \\frac{9}{4}\n \\item[3] \\frac{7}{3}\n \\item[4] \\frac{29}{12}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
93
- {"id":45,"name":"29_geom","problem":"29. \\text{\ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 } \\overline{AB} = \\overline{CD} = \\overline{AD} = 2, \\quad \\angle ABC = \\angle BCD = \\frac{\\pi}{3} \\text{\uc778 \uc0ac\ub2e4\ub9ac\uaf34 ABCD\uac00 \uc788\ub2e4. \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud3c9\uba74 } \\alpha \\text{ \uc704\uc758 \ub450 \uc810 P, Q\uc5d0 \ub300\ud558\uc5ec } \\overrightarrow{CP} \\cdot \\overrightarrow{DQ} \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) } \\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\n\\text{(\ub098) } \\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\n\\text{(\ub2e4) } 2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\n","answer":-1,"score":-1,"review":2.0}
94
- {"id":46,"name":"30_geom","problem":"30. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 ABCD\uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 BCD\uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 B\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c } S \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AB\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 B\uac00 \uc544\ub2cc \uc810\uc744 P,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AC\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 C\uac00 \uc544\ub2cc \uc810\uc744 Q,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AD\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 D\uac00 \uc544\ub2cc \uc810\uc744 R\ub77c \ud558\uace0, \uc810 P\uc5d0\uc11c \uad6c } S \\text{\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 } \\alpha \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 PQR\uc758 \ud3c9\uba74 } \\alpha \\text{\uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 } k \\alpha \\text{\uc774\ub2e4. } k^2 \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
95
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
 
 
1
  {"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ 의 값은? [2점] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
2
  {"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ 의 값은? [2점] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
3
  {"id": 3, "name": "3", "problem": "3. 공비가 양수인 등비수열$\\{a_n\\}$이 \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] 를 만족시킬 때, $a_1$ 의 값은? [3점] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
 
44
  {"id": 44, "name": "28_geom", "problem": "28. 두 초점이 $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$인 쌍곡선 $( C )$와 $( y )$축 위의 점 $( \\mathrm{A} )$가 있다. 쌍곡선 $( C )$가 선분 $( \\mathrm{AF} )$와 만나는 점을 $( \\mathrm{P} )$, 선분 $( \\mathrm{AF'} )$와 만나는 점을 $( \\mathrm{P'} )$이라 하자. 직선 $( \\mathrm{AF} )$는 쌍곡선 $( C )$의 한 점근선과 평행하고\n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n일 때, 쌍곡선 $( C )$의 주축의 길이는? [4점]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
45
  {"id": 45, "name": "29_geom", "problem": "29. 평면 $\\alpha$ 위에 $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ 인 사다리꼴 $\\mathrm{ABCD}$가 있다. 다음 조건을 만족시키는 평면 $\\alpha$ 위의 두 점 $\\mathrm{P}$, $\\mathrm{Q}$에 대하여 $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$의 값을 구하시오. [4점]\n\n\\begin{itemize} \\item[(가)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(나)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(다)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
46
  {"id": 46, "name": "30_geom", "problem": "30. 좌표공간에 정사면체 $\\mathrm{ABCD}$가 있다. 정삼각형 $\\mathrm{BCD}$의 외심을 중심으로 하고 점 $\\mathrm{B}$를 지나는 구를 $S$라 하자.\n\n구 $S$와 선분 $\\mathrm{AB}$가 만나는 점 중 $\\mathrm{B}$가 아닌 점을 $\\mathrm{P}$, 구 $S$와 선분 $\\mathrm{AC}$가 만나는 점 중 $\\mathrm{C}$가 아닌 점을 $\\mathrm{Q}$, 구 $S$와 선분 $\\mathrm{AD}$가 만나는 점 중 $\\mathrm{D}$가 아닌 점을 $\\mathrm{R}$라 하고, 점 $\\mathrm{P}$에서 구 $S$에 접하는 평면을 $\\alpha$라 하자.\n\n구 $S$의 반지름의 길이가 $6$일 때, 삼각형 $\\mathrm{PQR}$의 평면 $\\alpha$ 위로의 정사영의 넓이는 $k$이다. $k^2$의 값을 구하시오. [4점]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to_parquet.ipynb CHANGED
@@ -2,26 +2,17 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- <<<<<<< HEAD
6
- "execution_count": 19,
7
  "metadata": {},
8
  "outputs": [],
9
  "source": [
10
  "from datasets import load_dataset\n",
11
  "import json"
12
- =======
13
- "execution_count": 2,
14
- "metadata": {},
15
- "outputs": [],
16
- "source": [
17
- "from datasets import load_dataset"
18
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
19
  ]
20
  },
21
  {
22
  "cell_type": "code",
23
- <<<<<<< HEAD
24
- "execution_count": 21,
25
  "metadata": {},
26
  "outputs": [],
27
  "source": [
@@ -40,17 +31,13 @@
40
  },
41
  {
42
  "cell_type": "code",
43
- "execution_count": 22,
44
- =======
45
- "execution_count": 4,
46
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
47
  "metadata": {},
48
  "outputs": [
49
  {
50
  "data": {
51
  "application/vnd.jupyter.widget-view+json": {
52
- <<<<<<< HEAD
53
- "model_id": "462231fd51404fd290bffe90a8c0b158",
54
  "version_major": 2,
55
  "version_minor": 0
56
  },
@@ -64,7 +51,7 @@
64
  {
65
  "data": {
66
  "application/vnd.jupyter.widget-view+json": {
67
- "model_id": "baa7471b21ee486fb4b4ab7c2a3c7ece",
68
  "version_major": 2,
69
  "version_minor": 0
70
  },
@@ -78,7 +65,7 @@
78
  {
79
  "data": {
80
  "application/vnd.jupyter.widget-view+json": {
81
- "model_id": "49b01ff66b3f4c3ab7927cdd94c24212",
82
  "version_major": 2,
83
  "version_minor": 0
84
  },
@@ -92,10 +79,7 @@
92
  {
93
  "data": {
94
  "application/vnd.jupyter.widget-view+json": {
95
- "model_id": "3598e1ab98304d5a98a1cd7c322c7fa6",
96
- =======
97
- "model_id": "b5d51386a14e407ca2bdd18926ef997c",
98
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
99
  "version_major": 2,
100
  "version_minor": 0
101
  },
@@ -105,140 +89,16 @@
105
  },
106
  "metadata": {},
107
  "output_type": "display_data"
108
- <<<<<<< HEAD
109
  }
110
  ],
111
  "source": [
112
  "dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
113
  " \"2023_math\":\"./data/json/2023/math.json\"})"
114
- =======
115
- },
116
- {
117
- "data": {
118
- "application/vnd.jupyter.widget-view+json": {
119
- "model_id": "a3015bdd603e44c789b8347863bb94c8",
120
- "version_major": 2,
121
- "version_minor": 0
122
- },
123
- "text/plain": [
124
- "Generating 2024_math split: 0 examples [00:00, ? examples/s]"
125
- ]
126
- },
127
- "metadata": {},
128
- "output_type": "display_data"
129
- }
130
- ],
131
- "source": [
132
- "dataset=load_dataset(\"json\",data_files={\"2023_math\":\"./data/json/2023/math.json\",\n",
133
- " \"2024_math\":\"./data/json/2024/math.json\"})"
134
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- <<<<<<< HEAD
140
- "execution_count": 25,
141
- =======
142
- "execution_count": 5,
143
- "metadata": {},
144
- "outputs": [
145
- {
146
- "data": {
147
- "application/vnd.jupyter.widget-view+json": {
148
- "model_id": "221c4bba0e78418b9686c1ba0a0fa668",
149
- "version_major": 2,
150
- "version_minor": 0
151
- },
152
- "text/plain": [
153
- "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
154
- ]
155
- },
156
- "metadata": {},
157
- "output_type": "display_data"
158
- },
159
- {
160
- "data": {
161
- "application/vnd.jupyter.widget-view+json": {
162
- "model_id": "1763d5a9fc5c4c8099d0deb716f06c73",
163
- "version_major": 2,
164
- "version_minor": 0
165
- },
166
- "text/plain": [
167
- "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
168
- ]
169
- },
170
- "metadata": {},
171
- "output_type": "display_data"
172
- },
173
- {
174
- "data": {
175
- "application/vnd.jupyter.widget-view+json": {
176
- "model_id": "04f7bfc0e76c438ab84048301cb0e10e",
177
- "version_major": 2,
178
- "version_minor": 0
179
- },
180
- "text/plain": [
181
- "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
182
- ]
183
- },
184
- "metadata": {},
185
- "output_type": "display_data"
186
- },
187
- {
188
- "data": {
189
- "application/vnd.jupyter.widget-view+json": {
190
- "model_id": "8707c527afaf47d0928b5167c509d5f7",
191
- "version_major": 2,
192
- "version_minor": 0
193
- },
194
- "text/plain": [
195
- "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
196
- ]
197
- },
198
- "metadata": {},
199
- "output_type": "display_data"
200
- },
201
- {
202
- "data": {
203
- "text/plain": [
204
- "CommitInfo(commit_url='https://huggingface.co/datasets/cfpark00/KoreanSAT/commit/8fdf990d118abc5511f7fe828a4ae482e4b67d07', commit_message='Upload dataset', commit_description='', oid='8fdf990d118abc5511f7fe828a4ae482e4b67d07', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/cfpark00/KoreanSAT', endpoint='https://huggingface.co', repo_type='dataset', repo_id='cfpark00/KoreanSAT'), pr_revision=None, pr_num=None)"
205
- ]
206
- },
207
- "execution_count": 5,
208
- "metadata": {},
209
- "output_type": "execute_result"
210
- }
211
- ],
212
- "source": [
213
- "#save as parquet\n",
214
- "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
215
  ]
216
  },
217
  {
218
  "cell_type": "code",
219
- "execution_count": null,
220
- "metadata": {},
221
- "outputs": [],
222
- "source": []
223
- },
224
- {
225
- "cell_type": "code",
226
- "execution_count": null,
227
- "metadata": {},
228
- "outputs": [],
229
- "source": []
230
- },
231
- {
232
- "cell_type": "code",
233
- "execution_count": null,
234
- "metadata": {},
235
- "outputs": [],
236
- "source": []
237
- },
238
- {
239
- "cell_type": "code",
240
- "execution_count": 4,
241
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
242
  "metadata": {},
243
  "outputs": [
244
  {
@@ -246,7 +106,6 @@
246
  "text/plain": [
247
  "{'id': 1,\n",
248
  " 'name': '1',\n",
249
- <<<<<<< HEAD
250
  " 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ 의 값은? [2점] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
251
  " 'answer': 2,\n",
252
  " 'score': 2,\n",
@@ -254,74 +113,29 @@
254
  " 'incomplete': False}"
255
  ]
256
  },
257
- "execution_count": 25,
258
- =======
259
- " 'problem': '1. \\\\left( \\\\frac{4}{2^{\\\\sqrt{2}}} \\\\right)^{2 + \\\\sqrt{2}} \\\\text{의 값은? [2점]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] $\\\\frac{1}{4}$\\n \\\\item[2] $\\\\frac{1}{2}$\\n \\\\item[3] $1$\\n \\\\item[4] $2$\\n \\\\item[5] $4$\\n\\\\end{itemize}\\n',\n",
260
- " 'answer': -1,\n",
261
- " 'score': -1}"
262
- ]
263
- },
264
- "execution_count": 4,
265
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
266
  "metadata": {},
267
  "output_type": "execute_result"
268
  }
269
  ],
270
  "source": [
271
- <<<<<<< HEAD
272
  "dataset[\"2022_math\"][0]"
273
- =======
274
- "dataset[\"2023_math\"][0]"
275
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
276
  ]
277
  },
278
  {
279
  "cell_type": "code",
280
- <<<<<<< HEAD
281
- "execution_count": 24,
282
- =======
283
- "execution_count": null,
284
- "metadata": {},
285
- "outputs": [],
286
- "source": []
287
- },
288
- {
289
- "cell_type": "code",
290
- "execution_count": null,
291
- "metadata": {},
292
- "outputs": [],
293
- "source": []
294
- },
295
- {
296
- "cell_type": "code",
297
- "execution_count": null,
298
- "metadata": {},
299
- "outputs": [],
300
- "source": []
301
- },
302
- {
303
- "cell_type": "code",
304
- "execution_count": 19,
305
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
306
  "metadata": {},
307
  "outputs": [
308
  {
309
  "data": {
310
  "application/vnd.jupyter.widget-view+json": {
311
- <<<<<<< HEAD
312
- "model_id": "f612f040825040c6affa3b897f2633ef",
313
- =======
314
- "model_id": "ed6870fcaa5d4641ae911c05f8d5e1a3",
315
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
316
  "version_major": 2,
317
  "version_minor": 0
318
  },
319
  "text/plain": [
320
- <<<<<<< HEAD
321
  "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
322
- =======
323
- "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
324
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
325
  ]
326
  },
327
  "metadata": {},
@@ -329,9 +143,8 @@
329
  },
330
  {
331
  "data": {
332
- <<<<<<< HEAD
333
  "application/vnd.jupyter.widget-view+json": {
334
- "model_id": "f3cb1129210b4586bbb81b52357c424e",
335
  "version_major": 2,
336
  "version_minor": 0
337
  },
@@ -345,12 +158,12 @@
345
  {
346
  "data": {
347
  "application/vnd.jupyter.widget-view+json": {
348
- "model_id": "0ebfe1b984304baf85c7ff3fdd836835",
349
  "version_major": 2,
350
  "version_minor": 0
351
  },
352
  "text/plain": [
353
- "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
354
  ]
355
  },
356
  "metadata": {},
@@ -359,12 +172,12 @@
359
  {
360
  "data": {
361
  "application/vnd.jupyter.widget-view+json": {
362
- "model_id": "5177d4e1287d4b86a8a79865c1bdff83",
363
  "version_major": 2,
364
  "version_minor": 0
365
  },
366
  "text/plain": [
367
- "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
368
  ]
369
  },
370
  "metadata": {},
@@ -373,12 +186,12 @@
373
  {
374
  "data": {
375
  "application/vnd.jupyter.widget-view+json": {
376
- "model_id": "50d7d7a030f64ad4ad13d6f6f57bb583",
377
  "version_major": 2,
378
  "version_minor": 0
379
  },
380
  "text/plain": [
381
- "Deleting unused files from dataset repository: 0%| | 0/1 [00:00<?, ?it/s]"
382
  ]
383
  },
384
  "metadata": {},
@@ -387,163 +200,35 @@
387
  {
388
  "data": {
389
  "application/vnd.jupyter.widget-view+json": {
390
- "model_id": "d0e94febebca4af989c1517727feb56a",
391
  "version_major": 2,
392
  "version_minor": 0
393
  },
394
  "text/plain": [
395
- "Downloading metadata: 0%| | 0.00/1.21k [00:00<?, ?B/s]"
396
  ]
397
  },
398
  "metadata": {},
399
  "output_type": "display_data"
400
- }
401
- ],
402
- "source": [
403
- "#save as parquet\n",
404
- "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
405
- =======
406
- "text/plain": [
407
- "33057"
408
- ]
409
- },
410
- "execution_count": 19,
411
- "metadata": {},
412
- "output_type": "execute_result"
413
- }
414
- ],
415
- "source": [
416
- "from datasets import load_dataset\n",
417
- "\n",
418
- "ds = load_dataset(\"cfpark00/KoreanSAT\")\n",
419
- "ds[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
420
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
421
- ]
422
- },
423
- {
424
- "cell_type": "code",
425
- <<<<<<< HEAD
426
- =======
427
- "execution_count": 46,
428
- "metadata": {},
429
- "outputs": [
430
- {
431
- "data": {
432
- "text/plain": [
433
- "DatasetDict({\n",
434
- " 2024_math: Dataset({\n",
435
- " features: ['id', 'name', 'problem', 'answer', 'score'],\n",
436
- " num_rows: 46\n",
437
- " })\n",
438
- "})"
439
- ]
440
- },
441
- "execution_count": 46,
442
- "metadata": {},
443
- "output_type": "execute_result"
444
- }
445
- ],
446
- "source": [
447
- "ds"
448
- ]
449
- },
450
- {
451
- "cell_type": "code",
452
- "execution_count": null,
453
- "metadata": {},
454
- "outputs": [],
455
- "source": []
456
- },
457
- {
458
- "cell_type": "code",
459
- "execution_count": 37,
460
- "metadata": {},
461
- "outputs": [
462
  {
463
  "data": {
464
  "application/vnd.jupyter.widget-view+json": {
465
- "model_id": "56b0357800c24f42af02e56bcd9f9133",
466
  "version_major": 2,
467
  "version_minor": 0
468
  },
469
  "text/plain": [
470
- "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
471
  ]
472
  },
473
  "metadata": {},
474
  "output_type": "display_data"
475
- },
476
- {
477
- "data": {
478
- "text/plain": [
479
- "33057"
480
- ]
481
- },
482
- "execution_count": 37,
483
- "metadata": {},
484
- "output_type": "execute_result"
485
- }
486
- ],
487
- "source": [
488
- "dataset[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
489
- ]
490
- },
491
- {
492
- "cell_type": "code",
493
- "execution_count": 29,
494
- "metadata": {},
495
- "outputs": [],
496
- "source": [
497
- "import json\n",
498
- "jsons=[]\n",
499
- "for line in open(\"./data/json/2024/math.json\"):\n",
500
- " jsons.append(json.loads(line))"
501
- ]
502
- },
503
- {
504
- "cell_type": "code",
505
- "execution_count": 31,
506
- "metadata": {},
507
- "outputs": [
508
- {
509
- "name": "stdout",
510
- "output_type": "stream",
511
- "text": [
512
- "16. 방정식\n",
513
- "\\[\n",
514
- "\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n",
515
- "\\]\n",
516
- "\\text{를 만족시키는 실수 } \\( x \\) \\text{의 값을 구하시오. [3점]}\n",
517
- "\n"
518
- ]
519
  }
520
  ],
521
  "source": [
522
- "print(jsons[15][\"problem\"])"
523
- ]
524
- },
525
- {
526
- "cell_type": "code",
527
- "execution_count": 30,
528
- "metadata": {},
529
- "outputs": [
530
- {
531
- "data": {
532
- "text/plain": [
533
- "{'id': 16,\n",
534
- " 'name': '16',\n",
535
- " 'problem': '16. 방정식\\n\\\\[\\n\\\\log_2{(3x+2)} = 2 + \\\\log_2{(x-2)}\\n\\\\]\\n\\\\text{를 만족시키는 실수 } \\\\( x \\\\) \\\\text{의 값을 구하시오. [3점]}\\n',\n",
536
- " 'answer': '2',\n",
537
- " 'score': 3}"
538
- ]
539
- },
540
- "execution_count": 30,
541
- "metadata": {},
542
- "output_type": "execute_result"
543
- }
544
- ],
545
- "source": [
546
- "jsons[15]"
547
  ]
548
  },
549
  {
@@ -555,14 +240,6 @@
555
  },
556
  {
557
  "cell_type": "code",
558
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
559
- "execution_count": null,
560
- "metadata": {},
561
- "outputs": [],
562
- "source": []
563
- },
564
- {
565
- "cell_type": "code",
566
  "execution_count": null,
567
  "metadata": {},
568
  "outputs": [],
@@ -585,11 +262,7 @@
585
  "name": "python",
586
  "nbconvert_exporter": "python",
587
  "pygments_lexer": "ipython3",
588
- <<<<<<< HEAD
589
  "version": "3.10.9"
590
- =======
591
- "version": "3.8.9"
592
- >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
593
  }
594
  },
595
  "nbformat": 4,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 26,
 
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "from datasets import load_dataset\n",
10
  "import json"
 
 
 
 
 
 
 
11
  ]
12
  },
13
  {
14
  "cell_type": "code",
15
+ "execution_count": 27,
 
16
  "metadata": {},
17
  "outputs": [],
18
  "source": [
 
31
  },
32
  {
33
  "cell_type": "code",
34
+ "execution_count": 28,
 
 
 
35
  "metadata": {},
36
  "outputs": [
37
  {
38
  "data": {
39
  "application/vnd.jupyter.widget-view+json": {
40
+ "model_id": "a98671ee84414941b4533a3e983ba194",
 
41
  "version_major": 2,
42
  "version_minor": 0
43
  },
 
51
  {
52
  "data": {
53
  "application/vnd.jupyter.widget-view+json": {
54
+ "model_id": "fe778b5d74b342808a031a20efb4d7a2",
55
  "version_major": 2,
56
  "version_minor": 0
57
  },
 
65
  {
66
  "data": {
67
  "application/vnd.jupyter.widget-view+json": {
68
+ "model_id": "ad24c53f78a040a8a7fcdae8b1d0e871",
69
  "version_major": 2,
70
  "version_minor": 0
71
  },
 
79
  {
80
  "data": {
81
  "application/vnd.jupyter.widget-view+json": {
82
+ "model_id": "fa398f6b98c5481aae72e0433a6b36b2",
 
 
 
83
  "version_major": 2,
84
  "version_minor": 0
85
  },
 
89
  },
90
  "metadata": {},
91
  "output_type": "display_data"
 
92
  }
93
  ],
94
  "source": [
95
  "dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
96
  " \"2023_math\":\"./data/json/2023/math.json\"})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ]
98
  },
99
  {
100
  "cell_type": "code",
101
+ "execution_count": 29,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  "metadata": {},
103
  "outputs": [
104
  {
 
106
  "text/plain": [
107
  "{'id': 1,\n",
108
  " 'name': '1',\n",
 
109
  " 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ 의 값은? [2점] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
110
  " 'answer': 2,\n",
111
  " 'score': 2,\n",
 
113
  " 'incomplete': False}"
114
  ]
115
  },
116
+ "execution_count": 29,
 
 
 
 
 
 
 
 
117
  "metadata": {},
118
  "output_type": "execute_result"
119
  }
120
  ],
121
  "source": [
 
122
  "dataset[\"2022_math\"][0]"
 
 
 
123
  ]
124
  },
125
  {
126
  "cell_type": "code",
127
+ "execution_count": 30,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  "metadata": {},
129
  "outputs": [
130
  {
131
  "data": {
132
  "application/vnd.jupyter.widget-view+json": {
133
+ "model_id": "c1882b4bf3aa43e8bfe63d0d98353ef8",
 
 
 
 
134
  "version_major": 2,
135
  "version_minor": 0
136
  },
137
  "text/plain": [
 
138
  "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
 
 
 
139
  ]
140
  },
141
  "metadata": {},
 
143
  },
144
  {
145
  "data": {
 
146
  "application/vnd.jupyter.widget-view+json": {
147
+ "model_id": "4cad375e694c4f80a07f3c00271d7710",
148
  "version_major": 2,
149
  "version_minor": 0
150
  },
 
158
  {
159
  "data": {
160
  "application/vnd.jupyter.widget-view+json": {
161
+ "model_id": "6bc64540e82b4da2a25ae9181bc46127",
162
  "version_major": 2,
163
  "version_minor": 0
164
  },
165
  "text/plain": [
166
+ "Deleting unused files from dataset repository: 0%| | 0/1 [00:00<?, ?it/s]"
167
  ]
168
  },
169
  "metadata": {},
 
172
  {
173
  "data": {
174
  "application/vnd.jupyter.widget-view+json": {
175
+ "model_id": "e2d64acd927f47da8655ec427f9a6473",
176
  "version_major": 2,
177
  "version_minor": 0
178
  },
179
  "text/plain": [
180
+ "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
181
  ]
182
  },
183
  "metadata": {},
 
186
  {
187
  "data": {
188
  "application/vnd.jupyter.widget-view+json": {
189
+ "model_id": "2dc25cac4920406f86a0b76c0c0e7335",
190
  "version_major": 2,
191
  "version_minor": 0
192
  },
193
  "text/plain": [
194
+ "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
195
  ]
196
  },
197
  "metadata": {},
 
200
  {
201
  "data": {
202
  "application/vnd.jupyter.widget-view+json": {
203
+ "model_id": "c133269c18d242628d2a18c31765057f",
204
  "version_major": 2,
205
  "version_minor": 0
206
  },
207
  "text/plain": [
208
+ "Deleting unused files from dataset repository: 0%| | 0/1 [00:00<?, ?it/s]"
209
  ]
210
  },
211
  "metadata": {},
212
  "output_type": "display_data"
213
+ },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
  {
215
  "data": {
216
  "application/vnd.jupyter.widget-view+json": {
217
+ "model_id": "eaa619a21fdc48fdaf813fa744a0ef2e",
218
  "version_major": 2,
219
  "version_minor": 0
220
  },
221
  "text/plain": [
222
+ "Downloading metadata: 0%| | 0.00/1.24k [00:00<?, ?B/s]"
223
  ]
224
  },
225
  "metadata": {},
226
  "output_type": "display_data"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
  }
228
  ],
229
  "source": [
230
+ "#save as parquet\n",
231
+ "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
  ]
233
  },
234
  {
 
240
  },
241
  {
242
  "cell_type": "code",
 
 
 
 
 
 
 
 
243
  "execution_count": null,
244
  "metadata": {},
245
  "outputs": [],
 
262
  "name": "python",
263
  "nbconvert_exporter": "python",
264
  "pygments_lexer": "ipython3",
 
265
  "version": "3.10.9"
 
 
 
266
  }
267
  },
268
  "nbformat": 4,