cfpark00 commited on
Commit
6e35fdd
·
1 Parent(s): 499090a
.gitattributes DELETED
@@ -1,58 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
- *.model filter=lfs diff=lfs merge=lfs -text
14
- *.msgpack filter=lfs diff=lfs merge=lfs -text
15
- *.npy filter=lfs diff=lfs merge=lfs -text
16
- *.npz filter=lfs diff=lfs merge=lfs -text
17
- *.onnx filter=lfs diff=lfs merge=lfs -text
18
- *.ot filter=lfs diff=lfs merge=lfs -text
19
- *.parquet filter=lfs diff=lfs merge=lfs -text
20
- *.pb filter=lfs diff=lfs merge=lfs -text
21
- *.pickle filter=lfs diff=lfs merge=lfs -text
22
- *.pkl filter=lfs diff=lfs merge=lfs -text
23
- *.pt filter=lfs diff=lfs merge=lfs -text
24
- *.pth filter=lfs diff=lfs merge=lfs -text
25
- *.rar filter=lfs diff=lfs merge=lfs -text
26
- *.safetensors filter=lfs diff=lfs merge=lfs -text
27
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
- *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tar filter=lfs diff=lfs merge=lfs -text
30
- *.tflite filter=lfs diff=lfs merge=lfs -text
31
- *.tgz filter=lfs diff=lfs merge=lfs -text
32
- *.wasm filter=lfs diff=lfs merge=lfs -text
33
- *.xz filter=lfs diff=lfs merge=lfs -text
34
- *.zip filter=lfs diff=lfs merge=lfs -text
35
- *.zst filter=lfs diff=lfs merge=lfs -text
36
- *tfevents* filter=lfs diff=lfs merge=lfs -text
37
- # Audio files - uncompressed
38
- *.pcm filter=lfs diff=lfs merge=lfs -text
39
- *.sam filter=lfs diff=lfs merge=lfs -text
40
- *.raw filter=lfs diff=lfs merge=lfs -text
41
- # Audio files - compressed
42
- *.aac filter=lfs diff=lfs merge=lfs -text
43
- *.flac filter=lfs diff=lfs merge=lfs -text
44
- *.mp3 filter=lfs diff=lfs merge=lfs -text
45
- *.ogg filter=lfs diff=lfs merge=lfs -text
46
- *.wav filter=lfs diff=lfs merge=lfs -text
47
- # Image files - uncompressed
48
- *.bmp filter=lfs diff=lfs merge=lfs -text
49
- *.gif filter=lfs diff=lfs merge=lfs -text
50
- *.png filter=lfs diff=lfs merge=lfs -text
51
- *.tiff filter=lfs diff=lfs merge=lfs -text
52
- # Image files - compressed
53
- *.jpg filter=lfs diff=lfs merge=lfs -text
54
- *.jpeg filter=lfs diff=lfs merge=lfs -text
55
- *.webp filter=lfs diff=lfs merge=lfs -text
56
- # Video files - compressed
57
- *.mp4 filter=lfs diff=lfs merge=lfs -text
58
- *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,57 +0,0 @@
1
- ---
2
- language:
3
- - ko
4
- - en
5
- license: cc-by-nc-sa-4.0
6
- size_categories:
7
- - n<1K
8
- task_categories:
9
- - question-answering
10
- tags:
11
- - math
12
- - QA
13
- - Korean
14
- - Exam
15
- configs:
16
- - config_name: default
17
- data_files:
18
- - split: 2024_math
19
- path: data/2024_math-*
20
- dataset_info:
21
- features:
22
- - name: id
23
- dtype: int64
24
- - name: name
25
- dtype: string
26
- - name: problem
27
- dtype: string
28
- - name: answer
29
- dtype: string
30
- - name: score
31
- dtype: int64
32
- splits:
33
- - name: 2024_math
34
- num_bytes: 22489
35
- num_examples: 46
36
- download_size: 15235
37
- dataset_size: 22489
38
- ---
39
-
40
- # KoreanSAT Benchmark
41
-
42
- ### Current Topics over years
43
-
44
- From 2022
45
- | Year | Math | Korean | English |
46
- |------|-----------|-----------|-----------|
47
- | 2024 | | | |
48
- | 2023 | | | |
49
- | 2022 | | | |
50
-
51
- Before 2022
52
- | Year | Math | Korean | English |
53
- |------|-----------|-----------|-----------|
54
- | 2021 | | | |
55
- | 2020 | | | |
56
- | 2019 | | | |
57
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/2024_math-00000-of-00001-589645d2d672c249.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:87246482e1e38dd1668d9d71fdbdcfb769a25b86929c3c34531691ce29b42fde
3
- size 15235
 
 
 
 
data/json/2024/math.json DELETED
@@ -1,46 +0,0 @@
1
- {"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2 ^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":"1","score":2}
2
- {"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x+5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
3
- {"id":3,"name":"3","problem":"3. \uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc774\n\\[\na_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2}\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_1$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":"2","score":3}
4
- {"id":4,"name":"4","problem":"4. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c\n\\[\ng(x) = x^2 f(x)\n\\]\n\ub77c \ud558\uc790. $f(2) = 1$, $f'(2) = 3$\uc77c \ub54c, $g'(2)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"1","score":3}
5
- {"id":5,"name":"5","problem":"5. \\(\\tan \\theta < 0\\)\uc774\uace0 \\(\\cos \\left(\\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5}\\)\uc77c \ub54c, \\(\\cos \\theta\\)\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(- \\frac{2\\sqrt{5}}{5}\\)\n \\item[2] \\(- \\frac{\\sqrt{5}}{5}\\)\n \\item[3] 0\n \\item[4] \\(\\frac{\\sqrt{5}}{5}\\)\n \\item[5] \\(\\frac{2\\sqrt{5}}{5}\\)\n\\end{itemize}\n","answer":"4","score":3}
6
- {"id":6,"name":"6","problem":"6. \ud568\uc218 \\( f(x) = 2x^3 - 9x^2 + ax + 5 \\)\ub294 \\( x = 1 \\)\uc5d0\uc11c \uadf9\ub300\uc774\uace0, \\( x = b \\)\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. \\( a + b \\)\uc758 \uac12\uc740? (\ub2e8, \\( a, b \\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"4","score":3}
7
- {"id":7,"name":"7","problem":"7. \ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 $\\{a_n\\}$\uc774 \n\\[\n\\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_4$\uc758 \uac12\uc740? \\textbf{[3\uc810]}\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":"5","score":3}
8
- {"id":8,"name":"8","problem":"8. \uc810 $(0, 4)$\uc5d0\uc11c \uace1\uc120 $y = x^3 - x + 2$\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 $x$\uc808\ud3b8\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $-\\frac{1}{2}$\n \\item[2] $-1$\n \\item[3] $-\\frac{3}{2}$\n \\item[4] $-2$\n \\item[5] $-\\frac{5}{2}$\n\\end{itemize}\n","answer":"2","score":3}
9
- {"id":9,"name":"9","problem":"9. \ud568\uc218\n\\[\nf(x) = a - \\sqrt{3} \\tan 2x\n\\]\n\uac00 \ub2eb\ud78c\uad6c\uac04 \\(\\left[ -\\frac{\\pi}{6}, b \\right]\\) \uc5d0\uc11c \ucd5c\ub313\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, \\(a \\times b\\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{\\pi}{2}\\)\n \\item[2] \\(\\frac{5\\pi}{12}\\)\n \\item[3] \\(\\frac{\\pi}{3}\\)\n \\item[4] \\(\\frac{\\pi}{4}\\)\n \\item[5] \\(\\frac{\\pi}{6}\\)\n\\end{itemize}\n","answer":"4","score":4}
10
- {"id":10,"name":"10","problem":"10. \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \\(y\\) \ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(A\\), \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \uc9c1\uc120 \\(x = 2\\)\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(B\\)\ub77c \ud558\uc790. \\(A = B\\)\uc77c \ub54c, \uc0c1\uc218 \\(k\\)\uc758 \uac12\uc740? (\ub2e8, \\(4 < k < 5\\)) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{25}{6}\\)\n \\item[2] \\(\\frac{13}{3}\\)\n \\item[3] \\(\\frac{9}{2}\\)\n \\item[4] \\(\\frac{14}{3}\\)\n \\item[5] \\(\\frac{29}{6}\\)\n\\end{itemize}\n","answer":"2","score":4}
11
- {"id":11,"name":"11","problem":"11. \uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 ABCD\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0 \\\\\n\\[\n\\overline{AB} = 5, \\quad \\overline{AC} = 3\\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD\n\\]\n\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]}\\\\\n\\begin{itemize}\n \\item[1] \\(\\frac{5\\sqrt{2}}{2}\\)\n \\item[2] \\(\\frac{8\\sqrt{5}}{5}\\)\n \\item[3] \\(\\frac{5\\sqrt{5}}{3}\\)\n \\item[4] \\(\\frac{8\\sqrt{2}}{3}\\)\n \\item[5] \\(\\frac{9\\sqrt{3}}{4}\\)\n\\end{itemize}\n","answer":"1","score":4}
12
- {"id":12,"name":"12","problem":"12. \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( f(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\boxed{\nn-1 \\leq x < n \\text{\uc77c \ub54c}, \\, |f(x)| = |6(x-n+1)(x-n)| \\, \\text{\uc774\ub2e4}. \\, (\\text{\ub2e8}, n \\, \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.})\n}\n\\]\n\uc5f4\ub9b0\uad6c\uac04 \\( (0, 4) \\)\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218\n\\[\ng(x) = \\int_0^x f(t)dt - \\int_x^4 f(t)dt\n\\]\n\uac00 \\( x = 2 \\)\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, \\( \\int_\\frac{1}{2}^4 f(x)dx \\)\uc758 \uac12\uc740? [4\uc810]\n\\begin{itemize}\n \\item[1] \\( -\\frac{3}{2} \\)\n \\item[2] \\( -\\frac{1}{2} \\)\n \\item[3] \\( \\frac{1}{2} \\)\n \\item[4] \\( \\frac{3}{2} \\)\n \\item[5] \\( \\frac{5}{2} \\)\n\\end{itemize}\n","answer":"3","score":4}
13
- {"id":13,"name":"13","problem":"13. \uc790\uc5f0\uc218 $m(m \\geq 2)$\uc5d0 \ub300\ud558\uc5ec $m^{12}$\uc758 $n$\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 $n$\uc758 \uac1c\uc218\ub97c $f(m)$\uc774\ub77c \ud560 \ub54c,\n\\[\n\\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \n\\]\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":"1","score":4}
14
- {"id":14,"name":"14","problem":"14. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.\n\\[\ng(x) = \\begin{cases} \nx & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\\nf(x) & (-1 \\leq x \\leq 1)\n\\end{cases}\n\\]\n\ud568\uc218 $h(x) = \\lim_{t \\to 0^+} g(x + t) \\times \\lim_{t \\to 2^+} g(x + t)$\uc5d0 \ub300\ud558\uc5ec \\\\\n\\textless \ubcf4\uae30\\textgreater \uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]\n\\textless \ubcf4\uae30\\textgreater \\\\\n\\fbox{\n \\parbox{\\textwidth}{\n \u3131. $h(1) = 3$ \\\\\n \u3134. \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \\\\\n \u3137. \ud568\uc218 $g(x)$\uac00 \ub2eb\ud78c\uad6c\uac04 $[-1, 1]$\uc5d0\uc11c \uac10\uc18c\ud558\uace0 $g(-1) = -2$\uc774\uba74 \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n }\n}\n\\begin{itemize}\n\\item[1] \u3131\n\\item[2] \u3134\n\\item[3] \u3131, \u3134\n\\item[4] \u3131, \u3137\n\\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":"1","score":4}
15
- {"id":15,"name":"15","problem":"15. \ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $a_9$\uc758 \ucd5c\ub313\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 $M, m$\uc774\ub77c \ud560 \ub54c, $M+m$\uc758 \uac12\uc740? \\textbf{[4\uc810]}\n\\[\n\\text{(\uac00)} \\quad a_7 = 40\n\\]\n\\text{(\ub098)} \\quad \ubaa8\ub4e0 \uc790\uc5f0\uc218 $n$\uc5d0 \ub300\ud558\uc5ec \n\\[\na_{n+2} = \n\\begin{cases} \na_{n+1} + a_n & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0)}\\\\\n\\frac{1}{3} a_{n+1} & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0)}\n\\end{cases}\n\\]\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":"3","score":4}
16
- {"id":16,"name":"16","problem":"16. \ubc29\uc815\uc2dd\n\\[\n\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n\\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } \\( x \\) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":"2","score":3}
17
- {"id":17,"name":"17","problem":"17. \ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec $f'(x) = 4x^3 - 2x$\uc774\uace0 $f(0) = 3$\uc77c \ub54c, $f(2)$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"8","score":3}
18
- {"id":18,"name":"18","problem":"18. \ub450 \uc218\uc5f4 $\\{a_n\\}$, $\\{b_n\\}$\uc5d0 \ub300\ud558\uc5ec\n\\[\n\\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32\n\\]\n\uc77c \ub54c, $\\sum_{k=1}^{5} b_k$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"9","score":3}
19
- {"id":19,"name":"19","problem":"19. \ubc29\uc815\uc2dd $2x^3 - 6x^2 + k = 0$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 $k$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"32","score":3}
20
- {"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
21
- {"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
22
- {"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
23
- {"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
24
- {"id":24,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
25
- {"id":25,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
26
- {"id":26,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
27
- {"id":27,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
28
- {"id":28,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
29
- {"id":29,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
30
- {"id":30,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
31
- {"id":31,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
32
- {"id":32,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
33
- {"id":33,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
34
- {"id":34,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
35
- {"id":35,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
36
- {"id":36,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
37
- {"id":37,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
38
- {"id":38,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
39
- {"id":39,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
40
- {"id":40,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
41
- {"id":41,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
42
- {"id":42,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
43
- {"id":43,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
44
- {"id":44,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
45
- {"id":45,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
46
- {"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to_json.ipynb DELETED
@@ -1,405 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 38,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "from datasets import load_dataset"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": 39,
15
- "metadata": {},
16
- "outputs": [
17
- {
18
- "data": {
19
- "application/vnd.jupyter.widget-view+json": {
20
- "model_id": "3a8b3dffa1b948aaa0733e2ab086920d",
21
- "version_major": 2,
22
- "version_minor": 0
23
- },
24
- "text/plain": [
25
- "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
26
- ]
27
- },
28
- "metadata": {},
29
- "output_type": "display_data"
30
- },
31
- {
32
- "data": {
33
- "application/vnd.jupyter.widget-view+json": {
34
- "model_id": "1f11b1625c5d488a87faa0159fa7dcb4",
35
- "version_major": 2,
36
- "version_minor": 0
37
- },
38
- "text/plain": [
39
- "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
40
- ]
41
- },
42
- "metadata": {},
43
- "output_type": "display_data"
44
- },
45
- {
46
- "data": {
47
- "application/vnd.jupyter.widget-view+json": {
48
- "model_id": "e9c7863b49734ed2b44438e8312d7d5c",
49
- "version_major": 2,
50
- "version_minor": 0
51
- },
52
- "text/plain": [
53
- "Generating 2024_math split: 0 examples [00:00, ? examples/s]"
54
- ]
55
- },
56
- "metadata": {},
57
- "output_type": "display_data"
58
- }
59
- ],
60
- "source": [
61
- "dataset=load_dataset(\"json\",data_files={\"2024_math\":\"./data/json/2024/math.json\"})"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": 40,
67
- "metadata": {},
68
- "outputs": [
69
- {
70
- "data": {
71
- "text/plain": [
72
- "DatasetDict({\n",
73
- " 2024_math: Dataset({\n",
74
- " features: ['id', 'name', 'problem', 'answer', 'score'],\n",
75
- " num_rows: 46\n",
76
- " })\n",
77
- "})"
78
- ]
79
- },
80
- "execution_count": 40,
81
- "metadata": {},
82
- "output_type": "execute_result"
83
- }
84
- ],
85
- "source": [
86
- "dataset"
87
- ]
88
- },
89
- {
90
- "cell_type": "code",
91
- "execution_count": 44,
92
- "metadata": {},
93
- "outputs": [
94
- {
95
- "data": {
96
- "application/vnd.jupyter.widget-view+json": {
97
- "model_id": "d7597eced7414d229ecff3c3d1bd2739",
98
- "version_major": 2,
99
- "version_minor": 0
100
- },
101
- "text/plain": [
102
- "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
103
- ]
104
- },
105
- "metadata": {},
106
- "output_type": "display_data"
107
- },
108
- {
109
- "data": {
110
- "application/vnd.jupyter.widget-view+json": {
111
- "model_id": "751cbdf0381b4fea91ff4dc1f0697bd0",
112
- "version_major": 2,
113
- "version_minor": 0
114
- },
115
- "text/plain": [
116
- "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
117
- ]
118
- },
119
- "metadata": {},
120
- "output_type": "display_data"
121
- },
122
- {
123
- "data": {
124
- "application/vnd.jupyter.widget-view+json": {
125
- "model_id": "f9e6119ff58243b28480d9659a390037",
126
- "version_major": 2,
127
- "version_minor": 0
128
- },
129
- "text/plain": [
130
- "Downloading metadata: 0%| | 0.00/1.05k [00:00<?, ?B/s]"
131
- ]
132
- },
133
- "metadata": {},
134
- "output_type": "display_data"
135
- }
136
- ],
137
- "source": [
138
- "#save as parquet\n",
139
- "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
140
- ]
141
- },
142
- {
143
- "cell_type": "code",
144
- "execution_count": null,
145
- "metadata": {},
146
- "outputs": [],
147
- "source": []
148
- },
149
- {
150
- "cell_type": "code",
151
- "execution_count": null,
152
- "metadata": {},
153
- "outputs": [],
154
- "source": []
155
- },
156
- {
157
- "cell_type": "code",
158
- "execution_count": 45,
159
- "metadata": {},
160
- "outputs": [
161
- {
162
- "data": {
163
- "application/vnd.jupyter.widget-view+json": {
164
- "model_id": "4008ff6d9bd347d9898bb7bde7df1ae3",
165
- "version_major": 2,
166
- "version_minor": 0
167
- },
168
- "text/plain": [
169
- "Downloading readme: 0%| | 0.00/1.06k [00:00<?, ?B/s]"
170
- ]
171
- },
172
- "metadata": {},
173
- "output_type": "display_data"
174
- },
175
- {
176
- "data": {
177
- "application/vnd.jupyter.widget-view+json": {
178
- "model_id": "c1404a18c0734c62abcbe89245a967dd",
179
- "version_major": 2,
180
- "version_minor": 0
181
- },
182
- "text/plain": [
183
- "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
184
- ]
185
- },
186
- "metadata": {},
187
- "output_type": "display_data"
188
- },
189
- {
190
- "data": {
191
- "application/vnd.jupyter.widget-view+json": {
192
- "model_id": "c7022d40bfab4776a76b000df1179300",
193
- "version_major": 2,
194
- "version_minor": 0
195
- },
196
- "text/plain": [
197
- "Downloading data: 0%| | 0.00/15.2k [00:00<?, ?B/s]"
198
- ]
199
- },
200
- "metadata": {},
201
- "output_type": "display_data"
202
- },
203
- {
204
- "data": {
205
- "application/vnd.jupyter.widget-view+json": {
206
- "model_id": "ed08141788444f01994fff9580596bc5",
207
- "version_major": 2,
208
- "version_minor": 0
209
- },
210
- "text/plain": [
211
- "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
212
- ]
213
- },
214
- "metadata": {},
215
- "output_type": "display_data"
216
- },
217
- {
218
- "data": {
219
- "application/vnd.jupyter.widget-view+json": {
220
- "model_id": "abbcfec95f544869bbce8682a7108610",
221
- "version_major": 2,
222
- "version_minor": 0
223
- },
224
- "text/plain": [
225
- "Generating 2024_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
226
- ]
227
- },
228
- "metadata": {},
229
- "output_type": "display_data"
230
- }
231
- ],
232
- "source": [
233
- "from datasets import load_dataset\n",
234
- "\n",
235
- "ds = load_dataset(\"cfpark00/KoreanSAT\")"
236
- ]
237
- },
238
- {
239
- "cell_type": "code",
240
- "execution_count": 46,
241
- "metadata": {},
242
- "outputs": [
243
- {
244
- "data": {
245
- "text/plain": [
246
- "DatasetDict({\n",
247
- " 2024_math: Dataset({\n",
248
- " features: ['id', 'name', 'problem', 'answer', 'score'],\n",
249
- " num_rows: 46\n",
250
- " })\n",
251
- "})"
252
- ]
253
- },
254
- "execution_count": 46,
255
- "metadata": {},
256
- "output_type": "execute_result"
257
- }
258
- ],
259
- "source": [
260
- "ds"
261
- ]
262
- },
263
- {
264
- "cell_type": "code",
265
- "execution_count": null,
266
- "metadata": {},
267
- "outputs": [],
268
- "source": []
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": 37,
273
- "metadata": {},
274
- "outputs": [
275
- {
276
- "data": {
277
- "application/vnd.jupyter.widget-view+json": {
278
- "model_id": "56b0357800c24f42af02e56bcd9f9133",
279
- "version_major": 2,
280
- "version_minor": 0
281
- },
282
- "text/plain": [
283
- "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
284
- ]
285
- },
286
- "metadata": {},
287
- "output_type": "display_data"
288
- },
289
- {
290
- "data": {
291
- "text/plain": [
292
- "33057"
293
- ]
294
- },
295
- "execution_count": 37,
296
- "metadata": {},
297
- "output_type": "execute_result"
298
- }
299
- ],
300
- "source": [
301
- "dataset[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
302
- ]
303
- },
304
- {
305
- "cell_type": "code",
306
- "execution_count": 29,
307
- "metadata": {},
308
- "outputs": [],
309
- "source": [
310
- "import json\n",
311
- "jsons=[]\n",
312
- "for line in open(\"./data/json/2024/math.json\"):\n",
313
- " jsons.append(json.loads(line))"
314
- ]
315
- },
316
- {
317
- "cell_type": "code",
318
- "execution_count": 31,
319
- "metadata": {},
320
- "outputs": [
321
- {
322
- "name": "stdout",
323
- "output_type": "stream",
324
- "text": [
325
- "16. 방정식\n",
326
- "\\[\n",
327
- "\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n",
328
- "\\]\n",
329
- "\\text{를 만족시키는 실수 } \\( x \\) \\text{의 값을 구하시오. [3점]}\n",
330
- "\n"
331
- ]
332
- }
333
- ],
334
- "source": [
335
- "print(jsons[15][\"problem\"])"
336
- ]
337
- },
338
- {
339
- "cell_type": "code",
340
- "execution_count": 30,
341
- "metadata": {},
342
- "outputs": [
343
- {
344
- "data": {
345
- "text/plain": [
346
- "{'id': 16,\n",
347
- " 'name': '16',\n",
348
- " 'problem': '16. 방정식\\n\\\\[\\n\\\\log_2{(3x+2)} = 2 + \\\\log_2{(x-2)}\\n\\\\]\\n\\\\text{를 만족시키는 실수 } \\\\( x \\\\) \\\\text{의 값을 구하시오. [3점]}\\n',\n",
349
- " 'answer': '2',\n",
350
- " 'score': 3}"
351
- ]
352
- },
353
- "execution_count": 30,
354
- "metadata": {},
355
- "output_type": "execute_result"
356
- }
357
- ],
358
- "source": [
359
- "jsons[15]"
360
- ]
361
- },
362
- {
363
- "cell_type": "code",
364
- "execution_count": null,
365
- "metadata": {},
366
- "outputs": [],
367
- "source": []
368
- },
369
- {
370
- "cell_type": "code",
371
- "execution_count": null,
372
- "metadata": {},
373
- "outputs": [],
374
- "source": []
375
- },
376
- {
377
- "cell_type": "code",
378
- "execution_count": null,
379
- "metadata": {},
380
- "outputs": [],
381
- "source": []
382
- }
383
- ],
384
- "metadata": {
385
- "kernelspec": {
386
- "display_name": "venv1",
387
- "language": "python",
388
- "name": "python3"
389
- },
390
- "language_info": {
391
- "codemirror_mode": {
392
- "name": "ipython",
393
- "version": 3
394
- },
395
- "file_extension": ".py",
396
- "mimetype": "text/x-python",
397
- "name": "python",
398
- "nbconvert_exporter": "python",
399
- "pygments_lexer": "ipython3",
400
- "version": "3.10.9"
401
- }
402
- },
403
- "nbformat": 4,
404
- "nbformat_minor": 2
405
- }