Datasets:
Formats:
parquet
Size:
10K - 100K
ArXiv:
Tags:
personalization
instance_detection
instance_classification
instance_segmentation
instance_retrieval
License:
File size: 3,888 Bytes
cfd6bab ea9cf70 b603fd7 a2fb6f4 b603fd7 58bb1c5 b603fd7 58bb1c5 b603fd7 ceec0e5 b603fd7 ea9cf70 bf86a3c b603fd7 ea9cf70 bf86a3c b603fd7 ea9cf70 b603fd7 ea9cf70 016dcc9 b603fd7 00529a3 8fdae8a 00529a3 96f0bd1 00529a3 96f0bd1 00529a3 cff5f1b 00529a3 01320e8 00529a3 867647d e4d2734 01320e8 e4d2734 81550b2 5ab65f0 81550b2 e4d2734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: mit
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: test_dense
path: data/test_dense-*
dataset_info:
features:
- name: image
dtype: image
- name: mask
dtype: image
- name: label
dtype: string
- name: scene_type
dtype: string
splits:
- name: train
num_bytes: 27536486.0
num_examples: 300
- name: test
num_bytes: 1057988392.0
num_examples: 10888
- name: test_dense
num_bytes: 142893072.0
num_examples: 1200
download_size: 1168238221
dataset_size: 1228417950.0
tags:
- personalization
- instance_detection
- instance_classification
- instance_segmentation
- instance_retrieval
---
# PODS: Personal Object Discrimination Suite
<h3 align="center"><a href="https://personalized-rep.github.io" style="color: #2088FF;">🌐Project page</a>           
<a href="https://arxiv.org/abs/2412.16156" style="color: #2088FF;">📖Paper</a>           
<a href="https://github.com/ssundaram21/personalized-rep" style="color: #2088FF;">GitHub</a><br></h3>
We introduce the PODS (Personal Object Discrimination Suite) dataset, a new benchmark for personalized vision tasks.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65f9d4100f717eb3e67556df/uMgazSWsxjqEa4wXSmkVi.jpeg" alt="pods.jpg" />
</p>
## PODS
The PODS dataset is new a benchmark for personalized vision tasks. It includes:
* 100 common household objects from 5 semantic categories
* 4 tasks (classification, retrieval, segmentation, detection)
* 4 test splits with different distribution shifts.
* 71-201 test images per instance with classification label annotations.
* 12 test images per instance (3 per split) with segmentation annotations.
PODS is split *class-wise* into a validation set (6 classes per semantic category) and a test set (14 classes per semantic category). All test performance reported in our paper is from the test set of classes.
*Within each class*, images are divided into a train/retrieval set (3 images) and a test/query set. The test/query set is then further divided into 4 test splits reflecting different distribution shifts.
Metadata is stored in two files:
* `pods_info.json`:
* `classes`: A list of class names
* `class_to_idx`: Mapping of each class to an integer id
* `class_to_sc`: Mapping of each class to a broad, single-word semantic category
* `class_to_split`: Mapping of each class to the `val` or `test` split.
* `pods_image_annos.json`: Maps every image ID to a dictionary:
* `class`: The class name that the image belongs to
* `split`: One of `[train, test]` indicating if the image is in the train or test set for that class.
* `test_split`: For images in the `test` split, denotes which distribution-shift test split the image is in: One of `[in_distribution, pose, distractors, pose_and_distractors]`
## Using PODS
### Loading the dataset using HuggingFace
To load the dataset using HuggingFace `datasets`, install the library by `pip install datasets`
```
from datasets import load_dataset
pods_dataset = load_dataset("chaenayo/PODS")
```
You can also specify a split by:
```
pods_dataset = load_dataset("chaenayo/PODS", split="train") # or "test" or "test_dense"
```
### Loading the dataset directly
PODS can also be directly downloaded via command:
```
wget https://data.csail.mit.edu/personal_rep/pods.zip
```
## Citation
If you find our dataset useful, please cite our paper:
```
@article{sundaram2024personalized,
title = {Personalized Representation from Personalized Generation}
author = {Sundaram, Shobhita and Chae, Julia and Tian, Yonglong and Beery, Sara and Isola, Phillip},
journal = {Arxiv},
year = {2024},
}
``` |