chandrabhuma commited on
Commit
bc955ee
Β·
verified Β·
1 Parent(s): de1167d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -9
README.md CHANGED
@@ -1,9 +1,46 @@
1
- ---
2
- license: apache-2.0
3
- task_categories:
4
- - image-text-to-text
5
- language:
6
- - en
7
- size_categories:
8
- - 10K<n<100K
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ πŸ“Š DigitConfuse-23k: A Synthetic Dataset of Digit Confusion Patterns
2
+ ...DigitConfuse-23k is a synthetic dataset containing 23,000 images of digit pairs designed to capture visual anomalies and confusion cases commonly encountered in OCR, CAPTCHA recognition, optical illusions and human digit interpretation tasks.
3
+ ...Each image contains two-digit numbers generated using the Humor-Sans font (font_size=32, cell_w=60, cell_h=40). For each confusion category, ~1000 images are included.
4
+ πŸ”’ Categories of Digit Anomalies
5
+ πŸ”Έ Digit shape confusion (similar glyphs) β†’ 11 ↔ 17, 21 ↔ 27, 71 ↔ 77
6
+ πŸ”„ Mirror / rotation confusion β†’ 69 ↔ 96, 68 ↔ 86, 89↔98, 26 ↔ 62
7
+ 🎯 One-pixel stroke differences β†’ 33 ↔ 38, 35 ↔ 36, 53 ↔ 58, 39↔89
8
+ πŸŒ€ Closed vs. open loop confusion β†’ 38 ↔ 88, 98 ↔ 99, 18 ↔ 19, 56↔58, 28↔88
9
+ ➿ Nearly identical when repeated β†’ 88 ↔ 89, 11 ↔ 12, 55 ↔ 56
10
+ πŸ‘€ Human OCR-like errors (CAPTCHA/OCR cases) β†’ 47 ↔ 17, 57 ↔ 37, 12 ↔ 72, 14 ↔ 74
11
+ 🎯 Applications
12
+ πŸ§ͺ Benchmarking OCR systems
13
+ πŸ›‘ Studying digit recognition robustness
14
+ πŸ”‘ Training models for noisy / CAPTCHA-like digits
15
+ 🚨 Anomaly detection in digit datasets
16
+ βš™οΈ Technical Details
17
+ πŸ“‚ Total images: 23,000
18
+ πŸ“‘ Categories: 23 confusion pairs
19
+ ✍️ Font: Humor-Sans.ttf
20
+ πŸ”  Font size: 32
21
+ πŸ“ Image cell size: 60 Γ— 40 pixels, 2400x1000 image resolution
22
+ πŸ‘‰ This dataset provides a controlled testbed for studying digit misclassification under visually ambiguous conditions.
23
+ πŸ“¦ How to Use
24
+ 1️⃣ JSONL format (VQA-style for VLM testing) (merged_puzzles.jsonl)
25
+ Each entry includes:
26
+ πŸ–Ό image β†’ file path to the digit image
27
+ ❓ question β†’ natural language query
28
+ βœ… answer β†’ ground truth numbers
29
+ 2️⃣ CSV format (digit confusion localization)
30
+ The merged_puzzles.csv file provides metadata about anomaly location:
31
+ πŸ–Ό image β†’ file path
32
+ πŸ“Œ location β†’ anomaly position (row, col)
33
+ merged_puzzles.zip file contains all the images.
34
+ πŸš€ Suggested Use Cases
35
+ πŸ€– VLM evaluation β†’ Test Qwen-VL, InternVL, LLaVA on fine-grained OCR tasks
36
+ πŸ“Š OCR benchmarking β†’ Compare CNN-based OCR vs. multimodal LLMs
37
+ πŸ”„ Data augmentation research β†’ Train models to handle ambiguity
38
+ πŸ•΅οΈ Anomaly detection β†’ Use confusion pairs as β€œhard negatives” for OCR
39
+ πŸ§ͺ Real-World Testing with Ovis 2.5-9B (Latest Release)
40
+ I evaluated a subset of images using Ovis 2.5-9B (released Aug 2025).
41
+ πŸ–Ό Native-resolution ViT (NaViT) β†’ preserves fine details for loop/ stroke differences
42
+ πŸ”Ž Reflective inference mode β†’ improves reasoning under ambiguous digit confusions
43
+ πŸ† Benchmark leader β†’ achieves 78.3 avg. score on OpenCompass (best among <40B param open-source models)
44
+ πŸ“Œ Observation: Ovis 2.5-9B performed robustly across one-pixel stroke, mirror/rotation, and loop closure confusions, proving this dataset’s value for fine-grained OCR evaluation with VLMs.
45
+
46
+ This dataset is also made available on other trusted public repositories. One can test VLMs capability of finegrain digit identification.