import datasets import json import numpy import tarfile import io from io import BytesIO CHUNK_COUNT = 330 _FEATURES = datasets.Features( { "mbid": datasets.Value("string"), "title": datasets.Value("string"), "artists": datasets.Value("string"), "isrc": datasets.Value("string"), "length": datasets.Value("string"), "date": datasets.Value("string"), "ytid": datasets.Value("string"), } ) class MusicBrainzLoaderStream(datasets.GeneratorBasedBuilder): """MusicBrainz Dataset""" def _info(self): return datasets.DatasetInfo( description="MusicBrainz Dataset", features=_FEATURES, homepage="None", citation="None", license="None" ) def _split_generators(self, dl_manager): # Load the chunk list. _CHUNK_LIST = [x for x in range(CHUNK_COUNT)] # Create a list to hold the downloaded chunks. _list = [] # Download each chunk file. for chunk in _CHUNK_LIST: _list.append(dl_manager.download(f"data/{chunk+1}.jsonl")) # Return the list of downloaded chunks. return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "chunks": _list, }, ), ] def _generate_examples(self, chunks): """Generate images and labels for splits.""" for chunk in chunks: with open(chunk, mode='r') as infile: for line in infile: mbid, title, artists, isrc, length, date, ytid = json.loads(line) yield mbid, { "mbid": mbid, "title": title, "artists": json.dumps(artists), "isrc": json.dumps(isrc), "length": length, "date": date, "ytid": ytid }