Datasets:
Matej Klemen
commited on
Commit
·
9ff0802
1
Parent(s):
0ca4036
Fix punctuation characters sometimes being skipped
Browse files- dataset_infos.json +1 -1
- komet.py +2 -2
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from \nSlovene journalistic, fiction and on-line texts. \n\nTo annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol \n(Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14) \nwas used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered \nmetaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the \nDictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations: \nindirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag). \nIn addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers.\n", "citation": "@InProceedings{antloga2020komet,\ntitle = {Korpus metafor KOMET 1.0},\nauthor={Antloga, \u000b{S}pela},\nbooktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)},\nyear={2020},\npages={167-170}\n}\n", "homepage": "http://hdl.handle.net/11356/1293", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "uint32", "id": null, "_type": "Value"}, "idx_paragraph": {"dtype": "uint32", "id": null, "_type": "Value"}, "idx_sentence": {"dtype": "uint32", "id": null, "_type": "Value"}, "sentence_words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "met_type": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "met_frame": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "komet", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes":
|
|
|
1 |
+
{"default": {"description": "KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from \nSlovene journalistic, fiction and on-line texts. \n\nTo annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol \n(Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14) \nwas used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered \nmetaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the \nDictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations: \nindirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag). \nIn addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers.\n", "citation": "@InProceedings{antloga2020komet,\ntitle = {Korpus metafor KOMET 1.0},\nauthor={Antloga, \u000b{S}pela},\nbooktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)},\nyear={2020},\npages={167-170}\n}\n", "homepage": "http://hdl.handle.net/11356/1293", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "uint32", "id": null, "_type": "Value"}, "idx_paragraph": {"dtype": "uint32", "id": null, "_type": "Value"}, "idx_sentence": {"dtype": "uint32", "id": null, "_type": "Value"}, "sentence_words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "met_type": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "met_frame": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "komet", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3510816, "num_examples": 13963, "dataset_name": "komet"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1293/komet.tei.zip": {"num_bytes": 7311643, "checksum": "213f8f5c5b4e4989705a88e014c345fa6038f66e14a83fecb94e08e9f0da6640"}}, "download_size": 7311643, "post_processing_size": null, "dataset_size": 3510816, "size_in_bytes": 10822459}}
|
komet.py
CHANGED
@@ -63,7 +63,7 @@ def word_info(sent_el):
|
|
63 |
elif element.tag.endswith("seg"):
|
64 |
parsed_data = []
|
65 |
for child in element:
|
66 |
-
if child.tag.endswith("c"): # empty space betw. words
|
67 |
continue
|
68 |
|
69 |
res = _resolve_recursively(child)
|
@@ -108,7 +108,7 @@ def seg_info(sent_el):
|
|
108 |
deeper_elements = []
|
109 |
latest_element = []
|
110 |
for child in element:
|
111 |
-
if child.tag.endswith("c"): # empty space betw. words
|
112 |
continue
|
113 |
|
114 |
res = _resolve_recursively(child)
|
|
|
63 |
elif element.tag.endswith("seg"):
|
64 |
parsed_data = []
|
65 |
for child in element:
|
66 |
+
if child.tag.endswith("c") and not child.tag.endswith("pc"): # empty space betw. words
|
67 |
continue
|
68 |
|
69 |
res = _resolve_recursively(child)
|
|
|
108 |
deeper_elements = []
|
109 |
latest_element = []
|
110 |
for child in element:
|
111 |
+
if child.tag.endswith("c") and not child.tag.endswith("pc"): # empty space betw. words
|
112 |
continue
|
113 |
|
114 |
res = _resolve_recursively(child)
|