Datasets:
File size: 3,592 Bytes
ebe473f 08b1866 ebe473f 08b1866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
- name: source
dtype: string
- name: domain
dtype: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1364685913
num_examples: 3147478
- name: validation
num_bytes: 170841288
num_examples: 393435
- name: test
num_bytes: 170338153
num_examples: 393436
download_size: 988308759
dataset_size: 1705865354
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- ko
- ms
- pt
- ru
- tr
- vi
- zh
- ja
tags:
- sentiment
- multilingual
- emotion
- review
- classification
pretty_name: text
size_categories:
- 1M<n<10M
---
## Overview
**MultilingualSentiment** is a sentiment classification dataset that encompasses three sentiment labels: **Positive**, **Neutral**, **Negative**
The dataset spans multiple languages and covers a wide range of domains, making it ideal for multilingual sentiment analysis tasks.
## Dataset Information
The dataset was meticulously collected and aggregated from various sources, including Hugging Face and Kaggle. These sources provide diverse languages and domains to ensure a comprehensive and balanced dataset.
- **Total records**: 3,934,349
- The dataset is divided into three subsets: train, validation, and test, with a ratio of 8:1:1:
+ Train: 3,147,478
+ Validation: 393,435
+ Test: 393,436
### Number of Records per Language
| Language | Count |
|---------------|---------|
| Arabic (ar) | 208,375 |
| German (de) | 212,853 |
| English (en) | 1,519,860 |
| Spanish (es) | 222,911 |
| French (fr) | 262,645 |
| Hindi (hi) | 9,423 |
| Indonesian (id) | 12,536 |
| Italian (it) | 3,020 |
| Japanese (ja) | 335,656 |
| Korean (ko) | 259,998 |
| Malay (ms) | 6,661 |
| Multilingual | 9,391 |
| Portuguese (pt) | 49,188 |
| Russian (ru) | 205,186 |
| Turkish (tr) | 44,743 |
| Vietnamese (vi) | 127,068 |
| Chinese (zh) | 444,835 |
### Number of Records per Label
| Label | Count |
|-----------|----------|
| Negative | 1,436,539 |
| Neutral | 1,041,512 |
| Positive | 1,456,298 |
## Applications
This dataset is well-suited for training and evaluating models in multilingual sentiment analysis, natural language processing (NLP), and domain-specific sentiment classification tasks.
## Loading dataset
```python
from datasets import load_dataset
# Load the MultilingualSentiment dataset
dataset = load_dataset("clapAI/MultiLingualSentiment")
print(dataset)
```
```
DatasetDict({
train: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 3147478
})
validation: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393435
})
test: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393436
})
})
```
## Citation
```bibtex
@dataset{clapAI2024multilingualsentiment,
title = {MultilingualSentiment: A Multilingual Sentiment Classification Dataset},
author = {clapAI},
year = {2024},
url = {https://huggingface.co/datasets/clapAI/MultiLingualSentiment},
description = {A multilingual dataset for sentiment analysis with labels: positive, neutral, negative, covering diverse languages and domains.},
}
``` |