File size: 3,592 Bytes
ebe473f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b1866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe473f
08b1866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: label
    dtype: string
  - name: source
    dtype: string
  - name: domain
    dtype: string
  - name: language
    dtype: string
  splits:
  - name: train
    num_bytes: 1364685913
    num_examples: 3147478
  - name: validation
    num_bytes: 170841288
    num_examples: 393435
  - name: test
    num_bytes: 170338153
    num_examples: 393436
  download_size: 988308759
  dataset_size: 1705865354
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- ko
- ms
- pt
- ru
- tr
- vi
- zh
- ja
tags:
- sentiment
- multilingual
- emotion
- review
- classification
pretty_name: text
size_categories:
- 1M<n<10M
---
## Overview
**MultilingualSentiment** is a sentiment classification dataset that encompasses three sentiment labels: **Positive**, **Neutral**, **Negative**

The dataset spans multiple languages and covers a wide range of domains, making it ideal for multilingual sentiment analysis tasks.


## Dataset Information
The dataset was meticulously collected and aggregated from various sources, including Hugging Face and Kaggle. These sources provide diverse languages and domains to ensure a comprehensive and balanced dataset.

- **Total records**: 3,934,349
- The dataset is divided into three subsets: train, validation, and test, with a ratio of 8:1:1:
  + Train: 3,147,478
  + Validation: 393,435
  + Test: 393,436

### Number of Records per Language
| Language      | Count   |
|---------------|---------|
| Arabic (ar)   | 208,375 |
| German (de)   | 212,853 |
| English (en)  | 1,519,860 |
| Spanish (es)  | 222,911 |
| French (fr)   | 262,645 |
| Hindi (hi)    | 9,423   |
| Indonesian (id) | 12,536 |
| Italian (it)  | 3,020   |
| Japanese (ja) | 335,656 |
| Korean (ko)   | 259,998 |
| Malay (ms)    | 6,661   |
| Multilingual  | 9,391   |
| Portuguese (pt) | 49,188 |
| Russian (ru)  | 205,186 |
| Turkish (tr)  | 44,743  |
| Vietnamese (vi) | 127,068 |
| Chinese (zh)  | 444,835 |

### Number of Records per Label
| Label     | Count    |
|-----------|----------|
| Negative  | 1,436,539 |
| Neutral   | 1,041,512 |
| Positive  | 1,456,298 |

## Applications
This dataset is well-suited for training and evaluating models in multilingual sentiment analysis, natural language processing (NLP), and domain-specific sentiment classification tasks.

## Loading dataset
```python
from datasets import load_dataset

# Load the MultilingualSentiment dataset
dataset = load_dataset("clapAI/MultiLingualSentiment")

print(dataset)

```

```
DatasetDict({
    train: Dataset({
        features: ['text', 'label', 'source', 'domain', 'language'],
        num_rows: 3147478
    })
    validation: Dataset({
        features: ['text', 'label', 'source', 'domain', 'language'],
        num_rows: 393435
    })
    test: Dataset({
        features: ['text', 'label', 'source', 'domain', 'language'],
        num_rows: 393436
    })
})
```

## Citation

```bibtex
@dataset{clapAI2024multilingualsentiment,
  title        = {MultilingualSentiment: A Multilingual Sentiment Classification Dataset},
  author       = {clapAI},
  year         = {2024},
  url          = {https://huggingface.co/datasets/clapAI/MultiLingualSentiment},
  description  = {A multilingual dataset for sentiment analysis with labels: positive, neutral, negative, covering diverse languages and domains.},
}
```