Datasets:
Update README.md
Browse filesAdd use case info, example code for fine-tuning Mystral 7b Instruct.
README.md
CHANGED
|
@@ -8,4 +8,84 @@ tags:
|
|
| 8 |
pretty_name: Presto/Athena Text to SQL Dataset
|
| 9 |
size_categories:
|
| 10 |
- 1K<n<10K
|
| 11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
pretty_name: Presto/Athena Text to SQL Dataset
|
| 9 |
size_categories:
|
| 10 |
- 1K<n<10K
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
I created this dataset using [sqlglot](https://github.com/tobymao/sqlglot) to auto-convert the Spider and Wikisql datasets to Presto syntax, along with running some regex's for additional cleanup.
|
| 14 |
+
|
| 15 |
+
An example use case is fine-tuning an existing model to respond with Presto/Athena text-to-sql, if it performs well at standard SQL syntax used by the major text to sql training datasets.
|
| 16 |
+
|
| 17 |
+
Example of fine-tuning using this dataset (in this case for Mystral 7b Instruct):
|
| 18 |
+
|
| 19 |
+
```
|
| 20 |
+
import json
|
| 21 |
+
import pandas as pd
|
| 22 |
+
from datasets import Dataset
|
| 23 |
+
|
| 24 |
+
def read_jsonl(file_path):
|
| 25 |
+
data = []
|
| 26 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 27 |
+
for line in file:
|
| 28 |
+
json_data = json.loads(line.strip())
|
| 29 |
+
data.append(json_data)
|
| 30 |
+
return data
|
| 31 |
+
|
| 32 |
+
# Read the train and validation files
|
| 33 |
+
train_data = read_jsonl('training_data/train.jsonl') # use your own path to the training/validation data here
|
| 34 |
+
valid_data = read_jsonl('training_data/valid.jsonl')
|
| 35 |
+
|
| 36 |
+
# Convert to pandas DataFrame
|
| 37 |
+
train_df = pd.DataFrame(train_data)
|
| 38 |
+
valid_df = pd.DataFrame(valid_data)
|
| 39 |
+
|
| 40 |
+
# Convert DataFrame to Huggingface Dataset
|
| 41 |
+
train_dataset = Dataset.from_pandas(train_df)
|
| 42 |
+
valid_dataset = Dataset.from_pandas(valid_df)
|
| 43 |
+
|
| 44 |
+
# Example of processing
|
| 45 |
+
# train_texts = [example['text'] for example in train_dataset]
|
| 46 |
+
# valid_texts = [example['text'] for example in valid_dataset]
|
| 47 |
+
|
| 48 |
+
instruct_tune_dataset = {
|
| 49 |
+
"train": train_dataset,
|
| 50 |
+
"test": valid_dataset
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
...
|
| 54 |
+
|
| 55 |
+
def create_prompt(sample):
|
| 56 |
+
"""
|
| 57 |
+
Update the prompt template:
|
| 58 |
+
Combine both the prompt and input into a single column.
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
bos_token = "<s>"
|
| 62 |
+
original_system_message = "table:"
|
| 63 |
+
system_message = "Use the provided input to create an instruction that could have been used to generate the response with an LLM. The query dialect is Athena/Presto. The database table used is: "
|
| 64 |
+
question_and_response = sample["text"].replace(original_system_message, "").replace("Q:", "\n\n### Input:\n").replace("A:","\n### Response:\n").strip()
|
| 65 |
+
eos_token = "</s>"
|
| 66 |
+
|
| 67 |
+
full_prompt = ""
|
| 68 |
+
full_prompt += bos_token
|
| 69 |
+
full_prompt += "### Instruction:"
|
| 70 |
+
full_prompt += "\n" + system_message
|
| 71 |
+
full_prompt += "\n" + question_and_response
|
| 72 |
+
full_prompt += eos_token
|
| 73 |
+
|
| 74 |
+
return full_prompt
|
| 75 |
+
|
| 76 |
+
...
|
| 77 |
+
|
| 78 |
+
from trl import SFTTrainer
|
| 79 |
+
|
| 80 |
+
trainer = SFTTrainer(
|
| 81 |
+
model=model,
|
| 82 |
+
peft_config=peft_config,
|
| 83 |
+
max_seq_length=max_seq_length,
|
| 84 |
+
tokenizer=tokenizer,
|
| 85 |
+
packing=True,
|
| 86 |
+
formatting_func=create_prompt, # this will apply the create_prompt mapping to all training and test dataset
|
| 87 |
+
args=args,
|
| 88 |
+
train_dataset=instruct_tune_dataset["train"],
|
| 89 |
+
eval_dataset=instruct_tune_dataset["test"]
|
| 90 |
+
)
|
| 91 |
+
```
|