albertvillanova HF staff commited on
Commit
438b310
1 Parent(s): a9cb9d1

Delete loading script

Browse files
Files changed (1) hide show
  1. tv3_parla.py +0 -111
tv3_parla.py DELETED
@@ -1,111 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """TV3Parla."""
16
-
17
- import re
18
-
19
- import datasets
20
- from datasets.tasks import AutomaticSpeechRecognition
21
-
22
-
23
- _CITATION = """\
24
- @inproceedings{kulebi18_iberspeech,
25
- author={Baybars Külebi and Alp Öktem},
26
- title={{Building an Open Source Automatic Speech Recognition System for Catalan}},
27
- year=2018,
28
- booktitle={Proc. IberSPEECH 2018},
29
- pages={25--29},
30
- doi={10.21437/IberSPEECH.2018-6}
31
- }
32
- """
33
-
34
- _DESCRIPTION = """\
35
- This corpus includes 240 hours of Catalan speech from broadcast material.
36
- The details of segmentation, data processing and also model training are explained in Külebi, Öktem; 2018.
37
- The content is owned by Corporació Catalana de Mitjans Audiovisuals, SA (CCMA);
38
- we processed their material and hereby making it available under their terms of use.
39
-
40
- This project was supported by the Softcatalà Association.
41
- """
42
-
43
- _HOMEPAGE = "https://collectivat.cat/asr#tv3parla"
44
-
45
- _LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International"
46
-
47
- _REPO = "https://huggingface.co/datasets/collectivat/tv3_parla/resolve/main/"
48
- _URLS = {
49
- "transcripts": _REPO + "tv3_0.3_{split}.transcription",
50
- "audio": _REPO + "tv3_0.3.tar.gz",
51
- }
52
- _SPLITS = [datasets.Split.TRAIN, datasets.Split.TEST]
53
-
54
- _PATTERN = re.compile(r"^<s> (?P<text>.+) </s> \((?P<id>\S+)\)$")
55
-
56
-
57
- class Tv3Parla(datasets.GeneratorBasedBuilder):
58
- """TV3Parla."""
59
-
60
- VERSION = datasets.Version("0.3.0")
61
-
62
- def _info(self):
63
- return datasets.DatasetInfo(
64
- description=_DESCRIPTION,
65
- features=datasets.Features(
66
- {
67
- "path": datasets.Value("string"),
68
- "audio": datasets.features.Audio(),
69
- "text": datasets.Value("string"),
70
- }
71
- ),
72
- supervised_keys=None,
73
- homepage=_HOMEPAGE,
74
- license=_LICENSE,
75
- citation=_CITATION,
76
- task_templates=[
77
- AutomaticSpeechRecognition(transcription_column="text")
78
- ],
79
- )
80
-
81
- def _split_generators(self, dl_manager):
82
- urls = {
83
- split: {key: url.format(split=split) for key, url in _URLS.items()} for split in _SPLITS
84
- }
85
- dl_dir = dl_manager.download(urls)
86
- return [
87
- datasets.SplitGenerator(
88
- name=split,
89
- gen_kwargs={
90
- "transcripts_path": dl_dir[split]["transcripts"],
91
- "audio_files": dl_manager.iter_archive(dl_dir[split]["audio"]),
92
- "split": split,
93
- },
94
- ) for split in _SPLITS
95
- ]
96
-
97
- def _generate_examples(self, transcripts_path, audio_files, split):
98
- transcripts = {}
99
- with open(transcripts_path, encoding="utf-8") as transcripts_file:
100
- for line in transcripts_file:
101
- match = _PATTERN.match(line)
102
- transcripts[match["id"]] = match["text"]
103
- # train: 159242; test: 2220
104
- for key, (path, file) in enumerate(audio_files):
105
- if path.endswith(".wav") and f"/{split}/" in path:
106
- uid = path.split("/")[-1][:-4]
107
- if uid not in transcripts:
108
- continue
109
- text = transcripts.pop(uid)
110
- audio = {"path": path, "bytes": file.read()}
111
- yield key, {"path": path, "audio": audio, "text": text}