--- language: en license: mit task_categories: - text-generation tags: - stylometry - authorship-attribution - literary-analysis - austen - classic-literature - project-gutenberg size_categories: - n<1K pretty_name: Jane Austen Corpus --- # ContextLab Jane Austen Corpus ## Dataset Description This dataset contains works of **Jane Austen** (1775-1817), preprocessed for computational stylometry research. The texts were sourced from [Project Gutenberg](https://www.gutenberg.org/) and cleaned for use in the paper ["A Stylometric Application of Large Language Models"](https://arxiv.org/abs/2510.21958) (Stropkay et al., 2025). The corpus includes **7 books** by Jane Austen, including Pride and Prejudice, Sense and Sensibility, and Emma. All text has been converted to **lowercase** and cleaned of Project Gutenberg headers, footers, and chapter headings to focus on the author's prose style. ### Quick Stats - **Books:** 7 - **Total characters:** 4,127,071 - **Total words:** 740,058 (approximate) - **Average book length:** 589,581 characters - **Format:** Plain text (.txt files) - **Language:** English (lowercase) ## Dataset Structure ### Books Included Each `.txt` file contains the complete text of one book: | File | Title | |------|-------| | `105.txt` | Persuasion | | `121.txt` | Northanger Abbey | | `1342.txt` | Pride and Prejudice | | `141.txt` | Mansfield Park | | `158.txt` | Emma | | `161.txt` | Sense and Sensibility | | `946.txt` | Lady Susan | ### Data Fields - **text:** Complete book text (lowercase, cleaned) - **filename:** Project Gutenberg ID ### Data Format All files are plain UTF-8 text: - Lowercase characters only - Punctuation and structure preserved - Paragraph breaks maintained - No chapter headings or non-narrative text ## Usage ### Load with `datasets` library ```python from datasets import load_dataset # Load entire corpus corpus = load_dataset("contextlab/austen-corpus") # Iterate through books for book in corpus['train']: print(f"Book length: {len(book['text']):,} characters") print(book['text'][:200]) # First 200 characters print() ``` ### Load specific file ```python # Load single book by filename dataset = load_dataset( "contextlab/austen-corpus", data_files="54.txt" # Specific Gutenberg ID ) text = dataset['train'][0]['text'] print(f"Loaded {len(text):,} characters") ``` ### Download files directly ```python from huggingface_hub import hf_hub_download # Download one book file_path = hf_hub_download( repo_id="contextlab/austen-corpus", filename="54.txt", repo_type="dataset" ) with open(file_path, 'r') as f: text = f.read() ``` ### Use for training language models ```python from datasets import load_dataset from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments # Load corpus corpus = load_dataset("contextlab/austen-corpus") # Combine all books into single text full_text = " ".join([book['text'] for book in corpus['train']]) # Tokenize tokenizer = GPT2Tokenizer.from_pretrained("gpt2") def tokenize_function(examples): return tokenizer(examples['text'], truncation=True, max_length=1024) tokenized = corpus.map(tokenize_function, batched=True, remove_columns=['text']) # Initialize model model = GPT2LMHeadModel.from_pretrained("gpt2") # Set up training training_args = TrainingArguments( output_dir="./results", num_train_epochs=10, per_device_train_batch_size=8, save_steps=1000, ) # Train trainer = Trainer( model=model, args=training_args, train_dataset=tokenized['train'] ) trainer.train() ``` ### Analyze text statistics ```python from datasets import load_dataset import numpy as np corpus = load_dataset("contextlab/austen-corpus") # Calculate statistics lengths = [len(book['text']) for book in corpus['train']] print(f"Books: {len(lengths)}") print(f"Total characters: {sum(lengths):,}") print(f"Mean length: {np.mean(lengths):,.0f} characters") print(f"Std length: {np.std(lengths):,.0f} characters") print(f"Min length: {min(lengths):,} characters") print(f"Max length: {max(lengths):,} characters") ``` ## Dataset Creation ### Source Data All texts sourced from [Project Gutenberg](https://www.gutenberg.org/), a library of over 70,000 free eBooks in the public domain. **Project Gutenberg Links:** - Books identified by Gutenberg ID numbers (filenames) - Example: `54.txt` corresponds to https://www.gutenberg.org/ebooks/54 - All works are in the public domain ### Preprocessing Pipeline The raw Project Gutenberg texts underwent the following preprocessing: 1. **Header/footer removal:** Project Gutenberg license text and metadata removed 2. **Lowercase conversion:** All text converted to lowercase for stylometry 3. **Chapter heading removal:** Chapter titles and numbering removed 4. **Non-narrative text removal:** Tables of contents, dedications, etc. removed 5. **Encoding normalization:** Converted to UTF-8 6. **Structure preservation:** Paragraph breaks and punctuation maintained **Why lowercase?** Stylometric analysis focuses on word choice, syntax, and style rather than capitalization patterns. Lowercase normalization removes this variable. **Preprocessing code:** Available at https://github.com/ContextLab/llm-stylometry ## Considerations for Using This Dataset ### Known Limitations - **Historical language:** Reflects 19th-century England vocabulary, grammar, and cultural context - **Lowercase only:** All text converted to lowercase (not suitable for case-sensitive analysis) - **Incomplete corpus:** May not include all of Jane Austen's writings (only public domain works on Gutenberg) - **Cleaning artifacts:** Some formatting irregularities may remain from Gutenberg source - **Public domain only:** Limited to works published before copyright restrictions ### Intended Use Cases - **Stylometry research:** Authorship attribution, style analysis - **Language modeling:** Training author-specific models - **Literary analysis:** Computational study of Jane Austen's writing - **Historical NLP:** 19th-century England language patterns - **Educational:** Teaching computational text analysis ### Out-of-Scope Uses - Case-sensitive text analysis - Modern language applications - Factual information retrieval - Complete scholarly editions (use academic sources) ## Citation If you use this dataset in your research, please cite: ```bibtex @article{StroEtal25, title={A Stylometric Application of Large Language Models}, author={Stropkay, Harrison F. and Chen, Jiayi and Jabelli, Mohammad J. L. and Rockmore, Daniel N. and Manning, Jeremy R.}, journal={arXiv preprint arXiv:2510.21958}, year={2025} } ``` ## Additional Information ### Dataset Curator [ContextLab](https://www.context-lab.com/), Dartmouth College ### Licensing MIT License - Free to use with attribution ### Contact - **Paper & Code:** https://github.com/ContextLab/llm-stylometry - **Issues:** https://github.com/ContextLab/llm-stylometry/issues - **Contact:** Jeremy R. Manning (jeremy.r.manning@dartmouth.edu) ### Related Resources Explore datasets for all 8 authors in the study: - [Jane Austen](https://huggingface.co/datasets/contextlab/austen-corpus) - [L. Frank Baum](https://huggingface.co/datasets/contextlab/baum-corpus) - [Charles Dickens](https://huggingface.co/datasets/contextlab/dickens-corpus) - [F. Scott Fitzgerald](https://huggingface.co/datasets/contextlab/fitzgerald-corpus) - [Herman Melville](https://huggingface.co/datasets/contextlab/melville-corpus) - [Ruth Plumly Thompson](https://huggingface.co/datasets/contextlab/thompson-corpus) - [Mark Twain](https://huggingface.co/datasets/contextlab/twain-corpus) - [H.G. Wells](https://huggingface.co/datasets/contextlab/wells-corpus)