aicrowd commited on
Commit
d7dd32e
·
verified ·
1 Parent(s): c0c9efc

Update dataset card for CRAG-MM multi-turn v0.1.2 (master)

Browse files
Files changed (1) hide show
  1. README.md +54 -157
README.md CHANGED
@@ -1,85 +1,5 @@
1
  ---
2
- configs:
3
- - config_name: default
4
- data_files:
5
- - split: validation
6
- path: data/validation-*
7
- - split: public_test
8
- path: data/public_test-*
9
- dataset_info:
10
- features:
11
- - name: session_id
12
- dtype: string
13
- - name: image
14
- dtype: image
15
- - name: image_url
16
- dtype: string
17
- - name: turns
18
- sequence:
19
- - name: interaction_id
20
- dtype: string
21
- - name: domain
22
- dtype:
23
- class_label:
24
- names:
25
- '0': animal
26
- '1': other
27
- '2': shopping
28
- '3': book
29
- '4': general object recognition
30
- '5': local
31
- '6': vehicle
32
- '7': plants and gardening
33
- '8': style and fashion
34
- '9': food
35
- '10': text understanding
36
- '11': sports and games
37
- '12': math and science
38
- - name: query_category
39
- dtype:
40
- class_label:
41
- names:
42
- '0': reasoning
43
- '1': simple-knowledge
44
- '2': comparison
45
- '3': simple-recognition
46
- '4': multi-hop
47
- '5': aggregation
48
- - name: dynamism
49
- dtype:
50
- class_label:
51
- names:
52
- '0': fast-changing
53
- '1': static
54
- '2': slow-changing
55
- '3': real-time
56
- - name: query
57
- dtype: string
58
- - name: image_quality
59
- dtype:
60
- class_label:
61
- names:
62
- '0': rotated
63
- '1': truncated
64
- '2': occluded
65
- '3': low light
66
- '4': blurred
67
- '5': normal
68
- - name: answers
69
- sequence:
70
- - name: interaction_id
71
- dtype: string
72
- - name: ans_full
73
- dtype: string
74
- splits:
75
- - name: validation
76
- num_bytes: 867851844.0
77
- num_examples: 586
78
- - name: public_test
79
- num_bytes: 813099225.0
80
- num_examples: 587
81
- download_size: 1677258759
82
- dataset_size: 1680951069.0
83
  ---
84
  # CRAG-MM: Comprehensive multi-modal, multi-turn RAG Benchmark
85
 
@@ -111,10 +31,10 @@ You can easily load and explore the dataset using the Hugging Face `datasets` li
111
  from datasets import load_dataset
112
 
113
  # For single-turn dataset
114
- dataset = load_dataset("crag-mm-2025/crag-mm-single_turn-public", revision="v0.1.1")
115
 
116
  # For multi-turn dataset
117
- dataset = load_dataset("crag-mm-2025/crag-mm-multi_turn-public", revision="v0.1.1")
118
 
119
  # View available splits
120
  print(f"Available splits: {', '.join(dataset.keys())}")
@@ -135,6 +55,29 @@ import matplotlib.pyplot as plt
135
  plt.imshow(example['image'])
136
  ```
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
  ## Example Visualization
140
 
@@ -146,11 +89,12 @@ def _prepare_feature_vocabularies(dataset_split):
146
 
147
  These vocabularies allow conversion between integer indices and string labels.
148
  """
 
149
  return {
150
- "domain": dataset_split.features["turns"][0]["domain"],
151
- "query_category": dataset_split.features["turns"][0]["query_category"],
152
- "dynamism": dataset_split.features["turns"][0]["dynamism"],
153
- "image_quality": dataset_split.features["image_quality"],
154
  }
155
 
156
 
@@ -172,41 +116,48 @@ def print_conversation(example: Dict[str, Any], feature_vocabularies: Dict[str,
172
  When the actual image cannot be included, only the image_url will be available.
173
  The evaluation servers will nevertheless always include the loaded 'image' field.
174
  """
175
- image_quality_str = feature_vocabularies["image_quality"].int2str(example['image_quality'])
176
- print(f"Image Quality: {image_quality_str}")
177
 
178
- # Determine if single-turn or multi-turn
179
- is_single_turn = len(example['turns']) == 1
180
- print(f"Type: {'Single-turn' if is_single_turn else 'Multi-turn'} ({len(example['turns'])} turns)")
 
181
 
182
  # Create answer lookup dictionary if answers exist
183
  answer_lookup = {}
184
  if 'answers' in example and example['answers'] is not None:
185
- answer_lookup = {a["interaction_id"]: a["ans_full"] for a in example["answers"]}
 
 
 
 
 
 
186
 
187
  # Print each turn
188
  print("\nConversation:")
189
- for i, turn in enumerate(example['turns']):
190
  # For multi-turn, show turn number
191
  if not is_single_turn:
192
  print(f"\tTurn {i+1}:")
193
 
194
  # Convert metadata to string representations
195
- domain_str = feature_vocabularies["domain"].int2str(turn['domain'])
196
- category_str = feature_vocabularies["query_category"].int2str(turn['query_category'])
197
- dynamism_str = feature_vocabularies["dynamism"].int2str(turn['dynamism'])
 
198
 
199
  # Print metadata
200
  prefix = "\t\t" if not is_single_turn else "\t"
201
- print(f"{prefix}Domain: {domain_str} | Category: {category_str} | Dynamism: {dynamism_str}")
202
 
203
  # Print query and answer with fixed tab indentation
204
- print(f"{prefix}Q: {turn['query']}")
205
 
206
- ans = answer_lookup.get(turn['interaction_id'], "No answer available")
 
207
  print(f"{prefix}A: {ans}")
208
 
209
- if not is_single_turn and i < len(example['turns']) - 1:
210
  print() # Add blank line between turns in multi-turn conversations
211
 
212
  print("\n" + "-" * 60 + "\n") # Add separator between examples
@@ -221,66 +172,12 @@ print_conversation(dataset[split_to_use][0], feature_vocabularies)
221
 
222
  The dataset includes the following splits:
223
  - `validation`: A small subset for quick testing and exploration
 
224
  - Additional splits may be available depending on the specific version
225
 
226
  ## Versions
227
 
228
- The dataset is versioned using the `revision` parameter. Latest version: `v0.1.1`
229
-
230
- ## Dataset Structure
231
-
232
- ### Single-Turn Format
233
- ```json
234
- {
235
- "session_id": "string",
236
- "image": Image(),
237
- "image_url": "string",
238
- "image_quality": "string",
239
- "turns": [
240
- {
241
- "interaction_id": "string",
242
- "domain": "string",
243
- "query_category": "string",
244
- "dynamism": "string",
245
- "query": "string",
246
- }
247
- ],
248
- "answers": [
249
- {
250
- "interaction_id": "string",
251
- "ans_full": "string"
252
- }
253
- ]
254
- }
255
- ```
256
-
257
- ### Multi-Turn Format
258
- ```json
259
- {
260
- "session_id": "string",
261
- "image": Image(),
262
- "image_url": "string",
263
- "image_quality": "string",
264
- "turns": [
265
- {
266
- "interaction_id": "string",
267
- "domain": "string",
268
- "query_category": "string",
269
- "dynamism": "string",
270
- "query": "string",
271
- },
272
- ...
273
- ],
274
- "answers": [
275
- {
276
- "interaction_id": "string",
277
- "ans_full": "string"
278
- },
279
- ...
280
- ]
281
- }
282
- ```
283
-
284
 
285
  ## Citation
286
 
 
1
  ---
2
+ {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  # CRAG-MM: Comprehensive multi-modal, multi-turn RAG Benchmark
5
 
 
31
  from datasets import load_dataset
32
 
33
  # For single-turn dataset
34
+ dataset = load_dataset("crag-mm-2025/crag-mm-single_turn-public", revision="v0.1.2")
35
 
36
  # For multi-turn dataset
37
+ dataset = load_dataset("crag-mm-2025/crag-mm-multi_turn-public", revision="v0.1.2")
38
 
39
  # View available splits
40
  print(f"Available splits: {', '.join(dataset.keys())}")
 
55
  plt.imshow(example['image'])
56
  ```
57
 
58
+ ## Data Structure
59
+
60
+ Each example in the dataset contains:
61
+
62
+ ```
63
+ {
64
+ "session_id": str, # Unique identifier for the conversation
65
+ "image": Image, # Image
66
+ "image_url": str, # Image URL where applicable
67
+ "turns": { # Dictionary containing conversation turn data
68
+ "interaction_id": [str], # List of unique IDs for each interaction
69
+ "domain": [int], # List of domain category indices
70
+ "query_category": [int], # List of query category indices
71
+ "dynamism": [int], # List of dynamism level indices
72
+ "query": [str], # List of questions or prompts
73
+ "image_quality": [int] # List of image quality indices
74
+ },
75
+ "answers": { # Dictionary containing answer data
76
+ "interaction_id": [str], # List of interaction IDs (matches turns)
77
+ "ans_full": [str] # List of complete answer texts
78
+ }
79
+ }
80
+ ```
81
 
82
  ## Example Visualization
83
 
 
89
 
90
  These vocabularies allow conversion between integer indices and string labels.
91
  """
92
+ turns_feature = dataset_split.features["turns"]
93
  return {
94
+ "domain": turns_feature.feature["domain"],
95
+ "query_category": turns_feature.feature["query_category"],
96
+ "dynamism": turns_feature.feature["dynamism"],
97
+ "image_quality": turns_feature.feature["image_quality"],
98
  }
99
 
100
 
 
116
  When the actual image cannot be included, only the image_url will be available.
117
  The evaluation servers will nevertheless always include the loaded 'image' field.
118
  """
 
 
119
 
120
+ # Determine if single-turn or multi-turn based on number of queries
121
+ num_turns = len(example['turns']['query'])
122
+ is_single_turn = num_turns == 1
123
+ print(f"Type: {'Single-turn' if is_single_turn else 'Multi-turn'} ({num_turns} turns)")
124
 
125
  # Create answer lookup dictionary if answers exist
126
  answer_lookup = {}
127
  if 'answers' in example and example['answers'] is not None:
128
+ answer_lookup = {
129
+ interaction_id: ans_full
130
+ for interaction_id, ans_full in zip(
131
+ example['answers']['interaction_id'],
132
+ example['answers']['ans_full']
133
+ )
134
+ }
135
 
136
  # Print each turn
137
  print("\nConversation:")
138
+ for i in range(num_turns):
139
  # For multi-turn, show turn number
140
  if not is_single_turn:
141
  print(f"\tTurn {i+1}:")
142
 
143
  # Convert metadata to string representations
144
+ domain_str = feature_vocabularies["domain"].int2str(example['turns']['domain'][i])
145
+ category_str = feature_vocabularies["query_category"].int2str(example['turns']['query_category'][i])
146
+ dynamism_str = feature_vocabularies["dynamism"].int2str(example['turns']['dynamism'][i])
147
+ quality_str = feature_vocabularies["image_quality"].int2str(example['turns']['image_quality'][i])
148
 
149
  # Print metadata
150
  prefix = "\t\t" if not is_single_turn else "\t"
151
+ print(f"{prefix}Domain: {domain_str} | Category: {category_str} | Dynamism: {dynamism_str} | Image Quality: {quality_str}")
152
 
153
  # Print query and answer with fixed tab indentation
154
+ print(f"{prefix}Q: {example['turns']['query'][i]}")
155
 
156
+ interaction_id = example['turns']['interaction_id'][i]
157
+ ans = answer_lookup.get(interaction_id, "No answer available")
158
  print(f"{prefix}A: {ans}")
159
 
160
+ if not is_single_turn and i < num_turns - 1:
161
  print() # Add blank line between turns in multi-turn conversations
162
 
163
  print("\n" + "-" * 60 + "\n") # Add separator between examples
 
172
 
173
  The dataset includes the following splits:
174
  - `validation`: A small subset for quick testing and exploration
175
+ - `public_test`: The test split used in Round 1 of the Meta CRAG 2025 Challenge.
176
  - Additional splits may be available depending on the specific version
177
 
178
  ## Versions
179
 
180
+ The dataset is versioned using the `revision` parameter. Latest version: `v0.1.2`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
  ## Citation
183