|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """MsMarco Passage dataset.""" | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """ | 
					
						
						|  | @misc{bajaj2018ms, | 
					
						
						|  | title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, | 
					
						
						|  | author={Payal Bajaj and Daniel Campos and Nick Craswell and Li Deng and Jianfeng Gao and Xiaodong Liu | 
					
						
						|  | and Rangan Majumder and Andrew McNamara and Bhaskar Mitra and Tri Nguyen and Mir Rosenberg and Xia Song | 
					
						
						|  | and Alina Stoica and Saurabh Tiwary and Tong Wang}, | 
					
						
						|  | year={2018}, | 
					
						
						|  | eprint={1611.09268}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={cs.CL} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = "dataset load script for MSMARCO Passage" | 
					
						
						|  |  | 
					
						
						|  | _DATASET_URLS = { | 
					
						
						|  | 'train': "https://huggingface.co/datasets/Tevatron/msmarco-passage/resolve/main/train.jsonl.gz", | 
					
						
						|  | 'dev': "https://huggingface.co/datasets/crystina-z/msmarco-passage-dl19/resolve/main/dev.jsonl.gz", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MsMarcoPassageDL19(datasets.GeneratorBasedBuilder): | 
					
						
						|  | VERSION = datasets.Version("0.0.1") | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | datasets.BuilderConfig(version=VERSION, | 
					
						
						|  | description="MS MARCO passage train/dev datasets"), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features({ | 
					
						
						|  | 'query_id': datasets.Value('string'), | 
					
						
						|  | 'query': datasets.Value('string'), | 
					
						
						|  | 'positive_passages': [ | 
					
						
						|  | {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} | 
					
						
						|  | ], | 
					
						
						|  | 'negative_passages': [ | 
					
						
						|  | {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} | 
					
						
						|  | ], | 
					
						
						|  | }) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  |  | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  |  | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  |  | 
					
						
						|  | homepage="", | 
					
						
						|  |  | 
					
						
						|  | license="", | 
					
						
						|  |  | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | if self.config.data_files: | 
					
						
						|  | downloaded_files = self.config.data_files | 
					
						
						|  | else: | 
					
						
						|  | downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) | 
					
						
						|  | splits = [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], | 
					
						
						|  | }, | 
					
						
						|  | ) for split in downloaded_files | 
					
						
						|  | ] | 
					
						
						|  | return splits | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, files): | 
					
						
						|  | """Yields examples.""" | 
					
						
						|  | for filepath in files: | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | data = json.loads(line) | 
					
						
						|  | if data.get('negative_passages') is None: | 
					
						
						|  | data['negative_passages'] = [] | 
					
						
						|  | if data.get('positive_passages') is None: | 
					
						
						|  | data['positive_passages'] = [] | 
					
						
						|  | yield data['query_id'], data | 
					
						
						|  |  | 
					
						
						|  |  |